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Thesis Summary 

This project is sponsored by GenRad, a leading supplier of vehicle diagnostic and 
service information solutions for complex electrical and electronic systems in the au- 

tomotive and aerospace industries. The long term goal is to create more sophisticated 

diagnostic systems that incorporate signal processing of noise/vibration signals and 

that can provide global diagnostic information (i.e. fuse information derived from mul- 

tiple sources). The aim of this project is to test the feasibility of using neural networks 

and belief nets for condition monitoring and fault diagnosis in the automotive indus- 
try. Neural networks are used for signal processing at the individual sensor level, and 
Bayesian belief nets are used for reasoning about the predictions made by individual 

neural networks. 
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Chapter 1 

Introduction 

The objective of this work was to develop and evaluate a system for condition mon- 

itoring and fault diagnosis using neural networks and belief networks. This model is 

based on signal processing of vibration signals which is generally accepted as a good 

tool to diagnose the state of the rotating machine. 

Vibration monitoring of the rotating machine has been used during the past 30 

years. Since 1920’s, experts have known that the spectrum of the vibration signal 

could be used to detect unbalance in rotating machines. In the sixties, it was identified 

too as a good means to detect cracks, misaligned couplings and other undesirable con- 

ditions. Such conditions introduce a perturbation in the vibration signal which experts 

are able to interpret. In the past 10 years, computer-based systems have been created 

to use the vibration signal for condition monitoring purposes. [7] 

Our intention is to prove that belief networks and neural networks can be used to 

infer the state of a rotating machine from its vibration signals. Neural networks are 

used for signal processing at the individual sensor level, and Bayesian belief nets are 

used for reasoning about the predictions made by individual neural networks. 

Building a condition monitoring tool requires background information from different 

fields: Vibration analysis, knowledge of rotating machines, etc. So before beginning to



CHAPTER 1. INTRODUCTION 

build a condition monitoring tool it is important to known where to search for expertise 

and how that expertise is structured already. 

The objective of knowledge elicitation is to milk all available sources of information 

such as talking to experts, reading books, etc. There does not seem to be a recognised 

methodology for the process of knowledge elicitation. Some methods work well for 

certain domains and others don’t. Typical sources for diagnostic information are: 

- Literature on vibration analysis 

- Manufacturer’s operations and maintenance handbooks 

- Expertise of a diagnostician 

- Operator experience 

- Cases derived from operation. 

Nevertheless, the knowledge acquisition is a difficult process because the different 

sources can have different and sometimes conflicting opinions. 

The chapter 2 reviews briefly how the vibration diagnosis is carried out today. 

The chapter 3 describes the proposed model and the rig data used for test the model. 

In the chapter 4, a method for finding the characteristic symptoms of a fault is described 

and the methods used to calculate the symptom value are explained. 

Chapter 5 is a description of Belief Networks. In addition, some techniques used to 

build this type of networks are explained. 

Chapter 6 shows the results we obtain with this model for a particular rotating machine. 

The last chapter gives the conclusions of this work and some suggestions for the further 

work. 
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Chapter 2 

Vibration analysis for diagnosis of 

machinery 

Vibration monitoring and analysis is used in industry for troubleshooting rotating 

equipment problems and as a predictive maintenance tool. It is generally accepted as 

a good tool to diagnose a machine’s health. 

Typically, all these monitoring systems, whether they are designed for on-line or 

off-line use, can carry out relevant data reduction, trending and presentation but the 

actual diagnosis of machinery health is normally carried out manually by experts with 

experience both of instrumentation and of the dynamics of the machine or process. 

However, as the correct interpretation of such data is a fairly complex task, experts 

are rare and need a long time to build up experience. 

2.1 Definition of the vibration diagnosis problem 

Diagnosing a machinery failure from vibration data is a difficult and complex task due 

to: 

- The large amount of data involved. 

- The many possible ways of displaying and pre-processing data. 

ll
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- Each fault may have a large number of characteristic symptoms which may or 

may not occur at the same time. 

- Each machine has its own signature, which depends on where it is installed, its 

operating condition, machines installed in the neighbourhood etc. 

In this section an attempt is made to highlight some of the problems which occur 

when trying to diagnosis the state of health of a rotating machine. The knowledge 

necessary for diagnosing the state of the rotating machine is difficult to acquire and 

needs a long learning time. So the experts are rare, this simple fact is perhaps the 

biggest problem for a person who attempts to built a condition monitoring tool. 

Before considering mechanical faults, we have to examine the problems linked to 

failure of sensors and human errors. Many of the problems which occur are simply 

instrumentation failure, sensor and wiring failure being the most frequent. 

A complete failure of a sensor may be interpreted as the machine running extremely 

smoothly. Nevertheless, this particular type of failure is easy to detect. More bother- 

some is partial failure which may result in an erratic signal, recognising this type of 

failure is often a problem for an expert but can be extremely difficult for an computer- 

based system. 

Operating conditions have a great influence on the vibration level of the machine. 

A machine running with low load and low speed has a much lower vibration level than 

a machine running at maximum power. 

The vibration signature can change during the lifetime of the machine. So, the 

diagnostic system has to be upgraded at regular interval in order to prevent the system 

becoming obsolete. 

Some faults have different causes: unbalance may be caused by a bow in the shaft, 

by impact or by an sudden temperature variations. A fault can have different conse- 

quences. A coupling misalignment may produce a vibration of 1x rotational speed in 

12
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some cases, and produces a vibration of 2x rotational speed in other cases. Although 

a 1x component is usually blamed on unbalance or bearing clearance, a one-time rota- 

tional speed vibration can be often be cleared up by close alignment. Axial vibration 

is also a good indicator of misalignment. 

As can be seem from the above the symptoms associated with the individual faults 

often overlap, making fault diagnosis difficult. There are also severe limitations on 

sensor types, locations and numbers as well as in the methods of data acquisition and 

there is a real need to ensure that the data being used for diagnosis are accurate. An 

other important aspect is the necessity of tailoring the system to the specific machine 

and its components [18]. 

2.2 How is vibration diagnosis carried out? 

To measure the vibration signal, proximity sensors and acceleration sensors are used. A 

proximity sensor is a non-contact device, which measures the displacement or position 

of an observed surface relative to its mounting surface. An acceleration sensor measures 

the acceleration of the observed surface. The two types of sensor basically carry the 

same information. But, the proximity sensors are more efficient for lower frequencies 

and acceleration for higher frequency components. 

To measure the relative movement of the shaft in the radial direction, a pair of 

proximity sensors and a pair of acceleration sensors equip each bearing of the rotating 

machine. To record the axial movement of the shaft as well, one or more probes may 

be placed at the end of the shaft. 

The signal obtained by these sensors has to be pre-processed in order to be useful 

for the diagnostician. The following presentations are often used: 

- Plots of the signal for examining the magnitude, stability, etc. of the vibration 

signal. Interpretation of these plots may indicate the nature of the vibration 

13
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(Figures 2.1 and 2.2). 

- Comparative spectrum plots for tracking change in the spectral content over a 

period of time. Comparing new vibration data with old data, where the state of 

the machine is known can provide useful information (Figures 2.3 and 2.4). 

- Position of the rotor in the bearing. This knowledge can provide warning of major 

changes in the alignment state of the machine and an indication of bearing wear. 

The development of a conditional monitoring tool will, to a high degree, depend 

on the co-operation of an experienced diagnostician and has to be tailored to some 

particular machine in order to be successful. [13][3][12] 

14
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Figure 2.1: Vibration of a rotating machine in normal operating condition. This signal 
is obtained from a proximity sensor 
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Figure 2.2: Vibration of a rotating machine in unbalance fault. This signal is obtained 

from a proximity sensor
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16



Chapter 3 

A Framework for a Condition 

Monitoring System 

3.1 Description 

The vibration of a mechanical system can be modelled as a time varying function of 

the machine’s condition: 

v(t) = f(e(k),t) 

In some cases it may be possible to estimate this function f(.) from the dynam- 

ics of the machinery. In general it is unknown. For condition monitoring purposes, 

the objective is to determine the machine’s condition c(k) from the vibration signal v(t). 

The inverse of the function f(.) is required to extract a single sample of the condition 

from a large number of vibration data points. One method of obtaining the inverse 

of this function is by training a neural network, however this has the disadvantage of 

requiring a network with a large number of inputs. 

A more common approach to this inversion process is to split the process into a 

symptom extraction phase and a condition classification phase. The symptom ex- 

traction phase transforms the vibration signal into a vector of symptoms which are 

characteristic of the different possible states of the machine. The second phase uses
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this vector to diagnostic the state of the machine.|[1] 

The model based diagnosis system being developed is shown schematically in the 

Figure 3.1. It uses neural networks to extract the symptoms from the vibration signal 

and a belief network to infer the state of the machine. 

  

| Machine ] 

  
  

| Vibration signals | 

Neural Neural Neural 
Network 1 Network 2 Saal Network n 

Symptoms | 

Belief 
Network 

| Machine’s condition 

  

  

  

      
  

  
  

Figure 3.1: Simplified schematic of the model based diagnostic system 

3.2 Interest of using Belief Network 

Using Belief Networks could be profitable for several reasons. A belief network works 

in both directions (i.e. symptoms towards faults and faults towards symptoms). It 

is interesting because generally a condition monitoring system works in the direction 

symptoms towards faults, so this system needs DNS"! QNevmptom: different probabili- 

ties to work (Nsymptom; is the number of characteristic symptoms of the fault 7). The 

18
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belief networks could works in both directions, so we can work in the direction faults to- 

wards symptoms. In this case, we need the probability p(symptom;/ fault;,,..., fault;,) 

to train the network so we have to evaluate only DNsv™"em QNJaulti where N fault; is 

the number of faults which exihibit the symptom 7. 

The other interesting fact is that a belief networks is more flexible than a rule-based 

system. So, it is easier to experiment with a belief networks (for example see the effect 

of a sensor failure, change the location of a sensor ...). 

In addition, a belief network could be updated in real time allowing the condition 

monitoring tool to evolve with its machine and with the environment of the machine. 

For example, the vibration signal could change with the machine’s age (wear of pieces) 

so the condition monitoring tool has to be updated in order to be efficient. 

3.3. The machine used 

For this study, I used data from the Modiarot project, an EU Brite/EuRam collabo- 

rative research project to develop a method of fault diagnosis in rotating machinery. 

3.3.1 Description 

The rig consists of two rotors, which may be rigidly or flexibly coupled. Each rotor 

is supported by two bearings. To simulate the faults, the rig has five balancing disks, 

each of which has 24 equally spaced holes in which balancing weights may be mounted. 

To measure the signal, we have several sensors : 

- two acceleration sensors (one horizontal the other vertical) for each bearing. 

- two proximity sensors (+/— 45 degrees from Top vertical) for each bearing. 

19
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Figure 3.2: Rig of the Modiarot project 
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Figure 3.3: Technical Diagram of a Rotor 
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3.3.2 Rig data 

The Modiarot team carried out several tests. The sensors take 32 measurements by 

turn (at regular angle space) of the shaft. So, we note that the vibration signal is not 

in the time domain but in the order domain. 

For a rotating machine, the interesting information is extracted at frequencies re- 

lated to the speed of the shaft. So in the time domain, experts have to run the shaft 

at several speeds in order to obtain useful data. They plot the spectrum of the data 

as a function of the frequency and the speed of the shaft. The interesting information 

appears in the plane of equation x = y. This plot is called the order spectrum. 

  

Speed 
Frequency 

Figure 3.4: Order Spectrum 

Obtaining this plot in the time domain presents several problems: 

- need several measurement (different speed). 

- the number of records per second increases with the speed in order to observe all 

the frequency spectrum. 

- runout subtraction (i.e. even if the shaft is stopped the sensors record a value so 

we have to subtract this noise from the data). 

21
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However, from data recorded as a function of the angular position of the shaft, we 

can directly obtain the order spectrum. In this case, we speak about order instead of 

frequency [8]. 

The tests consist of a series of data where 16 turns of the shaft is recorded at 141 

different speeds. The balancing disks allow the operator to simulate the unbalance 

fault under various conditions. The balancing weights have several locations (disk and 

hole in the case when several weights are mounted) and different weights. 

Since the two rotors may be flexibly coupled, it is possible to simulate a flexible 

coupling misalignment under various conditions. To simulate this fault, the Modi- 

arot team put a shim between the two rotor axis. 

Rotor | Axe Rotor 2 Axe 

  
~ Shim 

Figure 3.5: use of a shim to simulate a angular misalignment 

Unfortunately, we do not have the data from all the sensors. Only the data from 

the 8 acceleration sensors and 4 proximity sensors are always recorded (the proximity 

sensor used is the “+45 degrees from Top vertical ”for 3 first bearings, the “—45 de- 

grees from Top vertical ”for the last bearing). 

For a complete description of the dataset see Annexe A. 
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Chapter 4 

Symptom Selection 

Symptom selection is a very important task in building diagnostic systems. The main 

aim of this selection is to find a set of symptoms which will, hopefully, contain all rele- 

vant and discriminatory information needed to infer the state of the rotating machine. 

As an example consider the situation where three symptoms are used to distinguish 

between three faults. Each of the faults are characterised by the presence of two 

symptoms. The presence of a third symptom should have no influence. Now, as long 

as two symptoms are known to be true and one false, the diagnosis is clear and simple. 

Tf all three are known to be true, we have three different conclusions: 

- we have a new fault which manifests itself with all three symptoms 

- the three faults are present 

- only two faults are present 

4.1 Definition of the symptom selection problem 

Like a human disease, each fault of a machine is characterised by a certain number of 

symptoms. To obtain these symptoms we need the expert’s opinion and the available 

literature. But, this selection is not a easy task for several reasons. 

23
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All machines are different, even machines of the same type. We cannot be sure 

how a fault will manifest itself. Generally, we have little or no data available, simply 

because the fault has never appeared on the machine. In addition, a full mathematical 

description of a fault doesn’t exist or demands too much effort to be adjusted to a 

particular machine. So, in deciding what to accept as a characteristic symptom of a 

fault, we have to proceed carefully and ask an expert’s help. Nevertheless, the experts 

cannot solve all the problems. Different expert may have different opinions on how 

important certain symptoms are to diagnose a particular fault. 

To built a computer-based diagnostic system, it is important to find symptoms 

which distinguish between the different states of a machine. But, experts and the 

available literature is more focused on what characterises a fault and not on what will 

discriminate it from the other faults. 

The question is, which symptoms to use and how many of these should be ex- 

tracted from the data raw. At least in theory, if the number of symptoms is sufficient 

it is possible to distinguish between all possible faults. That, however, is theory and 

only true in Boolean logic, where symptoms are either false or true and the absence of 

one symptom is sufficient to abandon a particular fault. 

In practice, the more symptoms that are known to be present the more difficult it 

is to differentiate between faults. This paradox can be explain by the fact that the 

symptoms are more or less important for diagnostic a fault and are often characteristic 

of several faults. For example, if two faults have several symptoms, which have a little 

influence to diagnostic the fault, in common. If all these symptoms are present, the 

two faults may be diagnosted present, even when their most characteristic symptom is 

absent. 

The point is to find as many symptoms as necessary to distinguish between faults 

24
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and preferably no more than that. On the other hand, the more faults one wants to 

diagnose the more symptoms one needs, where several characteristics are common to 

several faults. If the distinguishing symptoms are overestimated in their importance, 

then a fault will possibly be diagnosed even in the case when only a few symptoms 

are present. If a relatively low weight is assigned to them, it will be impossible to 

distinguish between similar patterns. In addition, in the case of sensor failure, it could 

be useful to have some redundancy. 

Unfortunately, there does not seem to be a general solution to the problem of 

symptom selection. 

4.2 How find the characteristic symptom of a fault 

Obviously, the best way to find the characteristic symptom of a fault is to have its 

description. Nevertheless, if such information is not available or not sufficient, it would 

be interesting to see the influence of the fault on some general symptoms. 

  

Change in subsynchronous frequency components 

Change in principal frequency components 

Frequency | Odd frequency components 3, 5, 7x 

component | Half harmonics 1.5, 2.5, 3.5x 

Rotor stator resonant frequency 

Amplitude when passing first critical 
  

Orbit stability 

Orbit Shape (i.e. round), elliptic, flat etc. 

Direction of rotation         
Table 4.1: Symptoms for condition monitoring of rotating machinery
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Variations of vibration with speed 

Speed Speed of current first critical 

related Operating speed 

information | Speed stability 

RMS when passing first critical 

Overall axial vibration 

Overall radial vibration 

Stability of vibration 

Possible increase of first order over period of time 

General Possible slight increase of vibration at low speed 

information | Increase of horizontal and vertical vibration 

Vibration stability 

Possible change of vibration pattern after start/stop 

Axial and Radial shaft position 

Operating | Load changes 

condition | Hot/cold gas etc. 

Temperature variations 
  

Table 4.2: Symptoms for condition monitoring of rotating machinery 

4.3 Faults Description 

From the dataset provided by the team of the Modiarot Project, it is possible to test a 

diagnostic system with two different faults. The intention of this section is to describes 

these faults in order to find their characteristic symptoms. 

4.3.1 Normal operating condition 

Of course, conditions where a machine has very a low level of vibration, usually indicate 

that no significant mechanical or operational problems are present. However sometimes 

considerable faults in the machine do not cause high vibration. For this reason it is 
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recommended to make additional measurements, for example bearing oil temperature 

or noise control. However, if the level of vibration exceeds a defined value this is a 

reliable sign that significant mechanical or operational problems are present in the 

machine. 

4.3.2 Unbalance 

Unbalance is the most common cause of vibration at rotating machine. According to 

the International Standards Organisation (ISO), unbalance can be defined as: 

..that condition which exists in a rotor when vibratory force or motion is im- 

parted to its bearings as a result of centrifugal forces. 

A more intuitive definition of unbalance is an unequal distribution of weight of a part 

about its rotating centreline. Another common and useful definition for unbalance is: 

...a condition which exits whenever the rotating centreline (shaft axis) and central 

principal axis of a rotor do not coincide. 

The central principal axis is the axis about which the weight of the rotor is equally 

distributed. 

Unbalance is a linear problem. If a rotor is out of balance, it should be out of 

balance by the same quantity, through 360 degree of rotation. For this reason unbal- 

ance is characterised by a frequency component of 1 x w (i.e. first order component). 

But, some other faults have dominant first order components too, such as shaft bow, 

bearing misalignment, etc. For this reason it is difficult to distinguish unbalance from 

these faults. 

The following conditions can be helpful for determining unbalance in a system: 

- Frequency component at half shaft or fractional shaft speed is not present. 

- High frequency component (2 x w, 3 x w, ...) are small. 
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- The unbalance has a fixed phase angle with respect to a shaft reference mark. 

- Vibration is related to speed but is not related to load. 

Under normal conditions, sinusoidal signals are obtained. When excessive mass 

unbalance is present, however, the behaviour of a bearing can cause truncated signals 

that introduce higher-order vibrations (2 x w, 3 x w, ...) with amplitudes lower than 

the 1 x w vibration. 
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Figure 4.1: Order spectrum of a typical unbalance fault 

Types of unbalance can be classified according to the geometric relationship between 

the center of mass, the shaft axis and principal inertia axis of a rotor. Essentially, there 

are three types of rotor unbalance : 

- static is a condition that exists when the center of mass is not on the shaft axis 

and when the principal axis of inertia is parallel to the axis of rotation. Force 

unbalance is another name for static unbalance. 
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Principal Axis of Inertia 

Shaft Axis 

  

Figure 4.2: Static unbalance 

- couple is a specific condition that exists when the center of mass is on the shaft 

axis and when the principal inertia axis is not parallel with the axis of rotation. 
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Figure 4.3: Couple unbalance 

- dynamic is a specific condition that exist when the center of mass is not on the 

shaft axis and when the principal inertia axis is not parallel with the axis of 

rotation. 

[Principal Axis of Inertia 

CG Shaft Axis 
  

  

  

    | 

Figure 4.4: Dynamic unbalance 

4.3.3 Flexible coupling misalignment 

It is very difficult to align two shafts so that no forces exist which will cause vibration. 

For this reason vibration due to misalignment is almost as common as vibration due 

to unbalance. Flexible coupling misalignment results in two forces, axial and radial, 

which cause axial and radial vibration. These forces and therefore the level of gener- 

ated vibration will increase with increased misalignment. 
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Misalignment occurs when two shafts are not aligned properly. Misalignment will 

cause a predominant vibration at a frequency of 1 x w in many cases, but unlike un- 

balance, misalignment will often be accompanied by harmonically related frequencies, 

including 2 x w, 3 x w and occasionally higher orders of rotating speed. In severe cases, 

the second-order component can exceed the first-order component. 

  

  

  
— Reeignineert 

45] --- Normal     

      
Figure 4.5: Power spectrum of a typical misalignment fault 

Types of misalignment can be classified according to geometric relationship between 

the shaft axis of the rotors. Essentially, there are three types of misalignment between 

two rotors: 

- radial is a specific condition that exist when the rotor’s axis have a distance of a 

mm between them. 

Rotor 2 axis 
Rotor | axis 

  

  
Figure 4.6: Radial misalignment 
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- angular is a specific condition that exist when the rotor’s axis have a angle of a 

degree between them. 

Rotor 2 axis 

Rotor | axis 

  

  

a degree 

Figure 4.7: Angular misalignment 

- combination of these two. 

4.4 Characteristic Symptoms of the unbalance and 

misalignment faults 

The team of the Modiarot project made a rule base or fault matriz which can be used 

as a guide to determine the relation between faults and symptoms. The fault matrix 

consists of a two-dimensional array of symptoms (columns) and faults (rows). At each 

(fault /symptom) pair, we associate two weights (a;;/(3;;) where 7 is the fault index and 

j is the symptom index. The weight aj; is to be used when symptom j is present. The 

weight (;; is applied when the evidence is absent. 

The rule base of the Modiarot team is used in a condition monitoring tool for ro- 

tating machines. This tool is built to distinguish between 11 different faults. So, we 

need only a part of the rule base to select the characterised symptoms of the unbalance 

and misalignment faults. 

This rule base provides useful information: in particular, it helpful to decide which 

symptoms are the most useful for distinguishing between the two faults. For example, 
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the symptom 2xR1x is clearly important because its presences indicates a misalign- 

ment and the symptoms O5nld and O5lod can be ignored because they have the same 

influence for the two faults. 

  

  

  

  

  

  

  

  

  

Symptom name Unbalance | Misalignment 

Major amplitude of axial vibration high (a) 0/0 30/0 

Frequency Components at [0.10x-0.45x] (sd) -10/0 0/0 

Frequency Components at [0.45x-0.55x] (sc) -10/0 0/0 

Frequency Components at [0.55x-0.95x] (su) -10/0 0/0 

Frequency Component at 1x high (12) 80/-50 30/-10 

Frequency Component at 2x high (2z) 20/-10 40/-20 

Frequency Component at 3x high (82) 0/0 20/-10 

The 1x is dominant (12d) 35/-30 0/0 

The 2x is dominant (22d) -30/0 20/0 

Dominant frequency 0.5x not locked (05nd) -25/0 -20/0 

Dominant frequency 0.5x locked on (05lod) -25/0 -20/0 

Trend in 1x is accelerating (127) -10/0 5/0 

Trend in 2x is accelerating (2x7) -5/0 10/0 

Trend in 3x is accelerating (327) -5/0 5/0 

Background level increases (6) -40/0 0/0 

Relation (2xw/1xw) in percent (22R 12) 0/0 60/0 

The 1x vector is changed (12Caf) 30/-40 10/0 

The 2x vector is changed (2zCaf) 10/0 30/-10 

The 3x vector is changed (8zCaf) 0/0 10/-5           

Table 4.3: Extract of Modiarot’s rule base 

A description of these symptoms follows: 

- a: Major amplitude of axial vibration is the amplitude of total vibration level 

measured in a direction parallel with the shaft axis. 
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- sd, sc, and su: these symptoms define whether subsynchronous components in 

a frequency spectrum are high. 

- 1x, 2x, 3x: these symptoms define whether the three first harmonics in a fre- 

quency spectrum are high. 

1xd, 2xd: these symptoms define the largest peak for some vibration compo- 

nents. 

1xd = Present if harmonic lrw is > 1.41* all other frequency components. 

2xd = Present if harmonic 2rw is > 1.00* all other frequency components. 

- 1xT, 2xT, 3xT: if the level of the three first harmonics, or their vectors, show 

an increasing rate of change during several measurements over a period of time, 

these symptoms contain information about kind of change for these harmonics. 

The total change should be at least 25 percent. 

- b: This symptom contains information about frequency ranges which are not 

specified above, for example due to changes in non-synchronous resonant re- 

sponse. 

- 2xR1x: information about the ratio between second order components and first 

order components. 

- 1xCaf, 2xCaf, 3xCaf: These symptoms contain information about whether 

amplitudes and phase angles of the first three harmonics are steady or have 

changed. These symptoms look for a difference in the magnitude of the complex 

vector (modulus and angle) between present and previous measurements. 

We also need symptoms, which permit to distinguish between the normal operating 

condition and the two faults. The symptom Major amplitude of radial vibration 

high (r), according to the rule base, is enough for this purpose. For shaft vibration, 

this symptom is defined as the higher value of the peak displacement measured in 

two selected perpendicular measurement directions. For measurements on the bearing 

pedestal or casing it is defined as the maximum Root Mean Square vibration velocity. 
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4.5 Practical calculation of the symptoms 

The value of a symptom is not interesting in itself but how it is related to other 

value or to a former measurement. In this study, we use the signals recorded under 

normal condition operation as references. The interesting value to have is not the 

numerical value of the symptom but its probability of presence according to a former 

measurement. 

4.5.1 Signal partition 

The signal is split in ee portions where N is the number of point in the signal, 

Nsamp the number of points in each portion of the signal and Nshift the number of 

points between the beginning of each portion (Nshift can be inferior at Nsamp). 

x10* 

  

o5| 

4       Nshitt 
  

50 100 150 200 250 300 350 

Figure 4.8: signal partition 

For each portion of the signal, the symptoms are calculated. To choose the values 

of Nsamp and Nshift any particular techniques could be used. Nevertheless, for the 

symptom r the root mean square value for a digital signal is calculated thanks to the 

formula: 
i N 

RMS? = —)> 2? we 
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where N is the number of data point and x; the amplitude value at this data point. 

This quantity is a constant if NV is enough great. So, we have to be sure that Nsamp 

is large enough in order to respect this property. 

4.5.2 Dependencies of the vibration signal 

The symptoms are speed depend and bearing depend: the value of a symptom changes 

as a function of the localisation of the sensor which has recorded the signal. 

So, the method we use to calculate the symptom probability has to respect care of 

these dependencies. 
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Figure 4.9: Numerical values of symptom r under different rotating speeds (data from 
proximity sensor of bearing 1) 

4.5.3 Calculation with a threshold function 

To express the probability of a symptom from its value, a soft threshold function can 

be used: 
i 

T+ erway = p= (s1 = present) = y(x) =
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Figure 4.10: Numerical values of Symptom 2xR1x under different rotating speed (data 

from proximity sensor of bearing 1) 
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Figure 4.11: Numerical values of symptom r under different rotating speed (data from 

proximity sensor of bearing 3) 
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Figure 4.12: Numerical values of symptom 2xR1x under different rotating speed (data 

from proximity sensor of bearing 3) 

To choose the w and w, coefficient we minimising the cross-entropy error function: 

N 

a Ltn In(yn) + ( 1— tn) In(1 — yn)} 

OE OE   To perform this minimisation, we evaluate the derivatives 57, 5, 

OE 

Ow 

with (1—yn) = ynetw?-ve) so 

OYn 
Ow 

and finally 

n=i Yn Ow 

Stn—Yn OYn 

tn OYn 1 = tn On 
1— yn Ow 
  

  

~ £4 yn(l = yn) Ow 
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Let’s we introduce the gradient descent rule: 

OE 
  Aw = =n ‘ w naa Aw, 

So we finally obtain the formulas: 

N 
Aw = —1 >) 2n(Yn—tn) 

n=l 
N 

Awe = —7 (Yn —tn 
n=l 

(4.9) 

(4.10) 

(4.11) 

(4.12) 

(4.13) 

which allows us to built a learning algorithm for the parameters w and w. where 17 is 

learning rate parameter. 

To initialise the algorithm, we can take any values for w and wo. Nevertheless, we 

have to perform this algorithm for each bearing and for each rotating speed. So in 

order to reduce the computation time, we have to choose values for sensible initial w 

and wW,. 

To initialise the algorithm, we assume that the probability of the mean of the normal 

value is 0.01 

21n(99) 
t= 21 
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4.5.4 Calculation with a Neural Network 

since we have to train a networks for each bearing, for each symptoms and for each 

rotating speed, we have to choose a neural network which its training method could be 

performed quickly. There are two major class of neural network model: 

1. the multi-layer perceptron network: model based on units which compute a 

non-linear function of the scalar product of the input vector and a weight vector. 

2. the radial basis functions network: model in which the activation of a hidden 

unit is determined by the distance between the input vector and a prototype 

vector. 

A Radial Basis Functions network (RBF) is chosen to perform this classification 

task. This choice is based on the fact that the procedures for training a RBF network 

can be substantially faster than the methods used to train a multi-layer perceptron 

model [2]. 

The radial basis function neural network structure consists of a network of pro- 

cessing elements, or nodes, arranged in layers. In this study, we use three layers of 

processing nodes: an input layer which accepts the input variable (numerical value 

of a symptom), one hidden layer, and an output layer (probability of presence of the 

symptom). 

To train the RBF, we use the Cross-validation technique: the dataset is divided 

into S$ distinct segments. The network is trained with 5 —1 segments. We evaluate the 

error function using the last segment in order to test the network performance. This 

operation is repeated for each of S$ segments. 

The Cross-Validation technique is used to find the best number of hidden neurones. 

In practice, we test the networks with 1, 2, 3, 4, 5 and 6 hidden neurones with S = 3. 
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Belief Networks 

A classic example of the use of belief networks is in the medical domain. Here each 

new patient typically corresponds to a new case, and the problem is to diagnose the 

patient (i.e. find beliefs for the unmeasurable disease variables), predict what is going 

to happen to the patient, or find an optimal prescription, given the values of observ- 

able variables (symptoms). A doctor may be the expert used to define the structure 

of the network, and provide the initial relations between variables (often in the form 

of conditional probabilities), based on his medical training and experience with previ- 

ous cases. Then the network probabilities may be fine-tuned by using statistics from 

previous cases, and from new cases as they arrive. 

In our case, a belief network is used to infer the state of a rotating machines from 

a symptom vector. The analogy with the medical network is obvious. Nevertheless, 

building a belief network for a rotating machines could be more difficult simply because, 

by luck, we have more doctors than rotating machine’s experts. The other difficulty is 

that often, two humans are less differences than two different machines, so determines 

the symptoms probability could be easier. 
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5.1 Belief Networks and Probabilistic Inference 

A belief network (BN) (also known as a Bayesian network or probabilistic causal net- 

work) is a directed acyclic graph where each node represents a scalar variable, which 

may be discrete, continuous, or proposititional (true/false). The BN captures the re- 

lations (which may be uncertain, stochastic, or imprecise) between the set of variables 

represented by the nodes. Because of this, the words node and variable are used inter- 

changeably throughout this document, but variable usually refers to the real world or 

the original problem, while node usually refers to its representation within the belief 

network . 

A link between two nodes A and B exists if: 

A causes B. 

A partially causes or predisposes B. 

- B is an imperfect observation of A. 

- A and B are functionally related. 

- A and B are statistically correlated. 

the node A is called the parent node and the node B the child node. The precise 

definition of a link is based on conditional independence, and is explained in detail in 

[16] and [14]. However, most people use the notion of link without concentrating on 

the precise definition. 

Furthermore, probabilistic relations are provided for each node, which express the 

probabilities of that node taking on each of its values, conditioned on the values of its 

parent nodes. These relations are express by a conditional probability table (CPT) (or 

in more generals terms a conditional probability function (CPF)). 

After the belief network is constructed, it may be applied to a particular case. For 

each variable you know the value, you enter that value into its node. Then the belief 

network does probabilistic inference to find beliefs for all the other variables. 
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Parent A | Parent B| Child C state Y | Child C state U 

state a | p(C= Y/A=a, B=a) | p(C= ¥/A=a, B=a) 

statea | state b | p(C= T/A=a, B=b) | p(C= %/A=a, B=8) 

state a | p(C= Y/A=, B=a) | p(C= U/A=, B=a) 

state 8 | state b | p(C= T/A=G, B=b) | p(C= ¥/A=8, B=5) 

state a | p(C= T/A=v, B=a) | p(C= ¥/A=y, B=a) 

statey | stateb | p(C= Y/A=7, B=b) | p(C= ¥/A=7, B=8) 
    

Table 5.1: Example of CPT 

Depending on the structure of the network, and which nodes receive findings or 

display beliefs, a belief network may do diagnosis, prediction, classification, logic, arith- 

metic calculation, or any combination of these, to complete the probabilistic inference. 

The final beliefs are sometimes called posterior probabilities (with prior probabilities 

being the probabilities before any findings were entered). Probabilistic inference done 

using a belief network is called belief updating. 

5.2 Example 

This network is one of the simplest networks in condition monitoring because the 

assumption is made that all the faults and all the symptoms are independent. This 

network is a good starting point for beginning the construction of the real network. 

Some faults can have a particular localisation on the shaft (unbalance for example), 

so it is interesting to create a symptom node for each bearing in order to permit the 

localisation of each fault in the shaft. In our application, links between faults and 

symptoms are created using the Modiarot base rule. 

The following network is not complete: several nodes are omitted, simply because 

we don’t need all the nodes for illustrate your purpose and the complete network is 

big. 
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Figure 5.1: Belief network example 

5.3 Constructing Belief Networks 

The goal of this section is simply to provide a flavour of the process of structuring large 

networks and quantifying probabilistic influences. [9] 

5.3.1 Structuring the network 

When one tries to build a model, these is an inevitabe simplification of expert’s knowl- 

edge, which is itself a simplification of the real world. The goal is to identify which 

elements or relationships are important and which can be omitted or abstracted. A 
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model is generally built for a specific task so decisions about which elements to include 

in the model and which to ignore are made according to whether they seem likely to 

affect this decision. To refine the model a sensitivity analysis could be used. 

A directed link shows a probabilistic dependency between two nodes; similarly a 

lack of link represents conditional independence. An expert is generally asked to find 

the links between the nodes; in this study the links were created according to the 

Modiarot’s rule base. The guiding rule for selecting the direction of the link is to 

choose whichever direction feels most natural or the most easy to express. 

We have to distinguish the two notions of influence and causality. Influence rep- 

resents a probabilistic relation and can generally be expressed in either direction irre- 

spective of the causal relation or lack of such between two nodes. So two nodes can 

be in influence but it is impossible to create a directed link between them (the belief 

network is acyclic). For example in a diagnostic belief we have the node normal and 

fault X. A relationships obviously exists between these two nodes, but is it the normal 

condition which cause the lack of fault or the presence of a fault which cause an ab- 

normal condition? 

The next work is to discritise the value of each node. For example, the node could 

take two states present or absent. A node is generally a binary variable, nevertheless 

some nodes could have several states. We have to be careful at this stage because 

increasing the number of a node’s states, increases the size of its conditional probability 

table and more importantly the size of its childrens CPT. 

When the discritisation step is over, we have to find the CPT of each node. Gen- 

erally, a expert was asked to make qualitative judgements about the influence of each 

parent on theirs children. Nevertheless, if such knowledge is not available, some tech- 

niques permit the construction of the CPT from real data. This technique will be 

explained in the next section. 
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5.3.2 Refinement of model structure 

When the CPT were built some refinements were be made. This happened whenever 

modifications to the network structure made it easier to assess, or the expert changed 

his mind after further consideration about earlier assumptions. 

Violation of conditional independence 

One important example concerned violations of conditional independence. If, on fur- 

ther reflection, the expert judged that two variables with a common parent but no 

direct link between them are not conditionally independent, then an additional node 

may be required to fix the problem. 

    
Unbalance 

   
becomes 

    

     

        

   

  

nbalance RJ) 

  

   
     

    

Figure 5.2: Addition of node renders the two lower ones conditionally independent 

For example, the unbalance fault is located in one rotor of the rotating machines so 

its characteristic symptoms are occuring in the two bearings which support the rotor 
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are not independent. 

Discovery of a failure of conditional independence is often an indication that there 

may be a hidden variable whose introduction can facilitate the assessment process [15]. 

Identical effects 

Another way in which an additional node can simplify the assessment process is where 

two factors are judged to have identical effects if either or both were present. For 

example, the nodes Unbalance and Misalignment at a given level were both judged 

to have the same impact on Iz bear 1, 1x bear 2, 1x bear and 1x bear 4. Thus the 

additional node 1z common was defined. 

                    

    

  

   

   
     

  

   

    

   (Misalignment, 

Figure 5.3: Unbalance and Misalignment have the same effect 

So, after these refinements our example becomes: 
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Unbalance R1 1xCaf Rotor 1 
      

    

= 

Unbalance R2 I 

1xCaf Rotor 2) 

Figure 5.4: Belief network after refinements 
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5.3.3 Sensitivity analysis 

Sensitivity analysis is useful to discover the relative importance of a variable in arriving 

at a diagnosis. During the construction of a network, sensitivity analysis can be also 

useful to identify which parts of the network may be critical and important for the 

diagnostic. 

One useful measure of sensitivity to predictive or causal evidence is the sensitivity 

range of the probability of an event y with respect to an event x (y and a are binary 

variables). Suppose e is an assessment error (viewed as an event) which might affect 

the assessment of the probability of x, giving p(|e). Suppose that y is conditionally 

independent of e given x. 

e 

error, 

Figure 5.5: Network showing y conditionally independent of error e, given x 

Then the sensitivity range is defined as the derivative of p(y|e) with respect to 

  

p(ale): i 

SR(y,2) = PS (641) 
Given conditional independence, so that p(y|x) = p(y|a,e), we have, 

P(yle) = pylz)-p(zle) + p(ylz)-(1 — p(zle)) (5.2) 

Taking the derivative with respect to p(z|e), we get, 

SR(y,) = p(y|z) — plylz) (5.3) 
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So, it turns out that the sensitivity range is equal to the maximum possible change 

in the probability of y which can be caused if error e varies from 0 to 1. 

Since a sensitivity range is a difference between two probabilities, its absolute mag- 

nitude cannot be greater than one. If the link is non-deterministic, then it must be 

strictly less than one: 

| SR(y,) |< 1 (5.4) 

Consequently the effect of any error in judging a probability of a causal or predictive 

variable cannot be greater than the magnitude of the error. Thus errors in probability 

assessment cannot be amplified by the model. In general they will be attenuated as 

the number of cascaded uncertain inferences is increased. Suppose we have a causal or 

predictive chain: It is easy to show that the sensitivity range of the end of a chain with 

respect to an error in the probability p(2,|e) is simply the product of the sensitivity 

ranges for each of the intermediate links: 

SR(fn;01) = Tl SR(xi41|2i) (5.5) 

e 
error, 

  O—O—© 
Figure 5.6: Propagating the effect of error e along a causal chain 

We may also consider the potential impact in errors in assessments of the link prob- 

abilities, p(x;4|2;). Since the absolute sensitivity range of each link must be less than 

unity if it is non-deterministic, each link serves to dilute the impact of all the others, 

whether they come before or after it in the chain. This supports the intuition that the 

longer a chain of uncertain reasoning, the more tenuous the results. 
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However, things can be a little different for diagnostic links. Suppose variable a 

influences b, but there is some error e in the assessment of the influence of a on 6. We 

assume that a and e are independent. 

e 

error 

Figure 5.7: Examining the sensitivity of variable a to diagnostic information b 

We define the prior of a as O(a).The assessment of the likelihood ratio may be 

affected by the error e: 

  _ Pda, €) L(b, ale) = p(6l,¢) (5.6) 

Bayes’ rule gives the formula: 

ale) = Moledo(albe) 
p(b, ale) pale) (5.7) 

so 

TB ale) ee eee rpralsO(a) (5.8) 
P(ale)p(alb, €) 1—p(alb, e) 

we can restate the posterior probability for a in terms of the prior odds and likelihood: 

L(b, ale)O(a) 

L(b,ale)O(a) +1 (5.9) P(alb, e) = 

Taking the derivative of this posterior with respect to the likelihood ratio as a measure 

of sensitivity, we get: 

dp(alb, e) O(a) 
dL(b,ale)  (L(b, ale)O(a) +1)? (e220) 

This sensitivity can get large when O(a) is large and L(a, ble) is small. 
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5.4 Learning 

During the construction of a belief network, the most difficult task is to quantifier the 

value in the CPT. This section presents a method for learning this CPT from the data. 

5.4.1 Learning from Cases 

Belief network learning is the automatic process of determining a suitable belief net- 

work, given data in the form of cases. A case is a set of variables which describe a 

particular event (for example the probabilities of the symptoms when the machine run 

in normal condition operation at 30 Hz). Some cases may not have values for some 

variables that other cases do, which is known as missing data. We can ignore some 

of the variables in order to see its influence (or its lack of influence) to diagnostic a 

particular fault. 

The belief network learning task has traditionally been divided into two parts: 

1. structure learning determines the dependence and independence of variables 

and suggests a direction of causation, in other words, the placement of the links 

in the network. 

2. Parameter learning determines the conditional probability relationship at each 

node, given the link structures and the data. 

Here, we are interested in the second part, as the structure has been designed by 

hand. 

5.4.2 Experience 

There is considerable controversy over the best way to represent uncertainty, with some 

of the suggestions being probability, fuzzy logic, nonmonotonic logic, belief functions, 

Dempster-Shafer, etc. Currently probability and fuzzy logic are the most practical 

methods for most applications. Of these two, probability has a much sounder theoret- 

ical basis (at least with respect to the way it is actually used). However, a deficiency 

51



CHAPTER 5. BELIEF NETWORKS 

of using only probability is the inability to represent ignorance in an easy way. 

As an example, suppose we work for a firm which has developed a diagnostics tool 

for rotating machine. Each time, we test a rotating machine we try to predict if the 

machine is in good state or not. If you go for the first time in the firm X, you known 

nothing about the rotating machine in this particular firm, so the probability that the 

machine has no fault is 0.5. 

Now, you have visited the firm X several time, and you have a good knowledge of 

this firm. So two situations appear: 

1. the employer takes care of their machines, and the firm has a good maintenance 

service. In this situation, the probability that the machine is in a good state, is 

more than 0.5. 

2. the machines are being over-used. In this case, the probability that the machine 

is in a good state, decreases. 

This example illustrates the concept of experience: We are able to do a better 

prediction of the state of the rotating machine simply because we known additional 

information. 

One way to handle this using just probabilities is to keep track of the beliefs about 

the ratio of normal to abnormal condition. Then we will have many probabilities, one 

for each possible ratio. Each of these probabilities will change as , and when you are 

asked to supply a probability that the next state will be normal, they will all be in- 

volved in the calculation. These are sometimes called second order probabilities, but 

in this example they are really just a probability distribution over possible ratios. 

Instead we can introduce the concept of experience, which is a measure of the con- 

fidence that the belief network has in its probabilities. 

At each node we store one experience number for each possible configuration of 

states of the parent nodes, along with the CPT vector of conditional probabilities (one
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probability for each state of the node). The experience value corresponds closely to the 

number of cases that have been seen or its equivalent (normally it is 1 more than the 

number of cases). This form of experience has sometimes been called the “equivalent 

sample size (ess) ”. 

5.4.3 Learning Algorithm 

This describes the algorithm used for parameter learning of conditional probability 

tables from a file of cases. 

Before learning begins, the network starts off in a state of ignorance (providing 

there has been no previous learning or entry of probabilities by an expert). At each 

node, all CPT probabilities start as uniform, and each experience starts at its lowest 

value (normally 1.0). 

So for each node i, for each state s; of a node 7 and for each instantiation s,, of the 

set of parents 7; of the node i 

Pi(Sis8n,) = — (5.11) 

€i(SisSx;) = 1 (5.12) 

where 

- pi(s;, $x;) is the conditional probability that the node 7 has the state s; when the 

set of parent 7; has the instantiation s,,. 

- (Si, 8x,) is the experience number corresponding at the conditional probability 

Bi Csivene): 

- n; the number of different states of the node 7. 

For each case to be learned the following is done. Only nodes for which the case 

supplies a value (finding), and supplies values for all of its parents, have their experi- 

ence and conditional probabilities modified (i.e., no missing data for that node). 
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So for each node i, for each state s; of a node i and for each instantiation s,, of 7; 

, the conditional probability p;(s;,s,,) is modified as follow: 

PHONES) Benet) (5.13) 

C:(8:,5e;) = €:(8;:85,) +1 (5.14) 

The other probability p;(s/, s,;) where s} is a different state of the node 7 are modified 

as follow: 

1 Pi Sis Sn: )€i(Sis Sm) . 
ace) = 15, Pi( Si, Sx:) Anam (5.15) 

in order to respect the constraint: 

ne 

Dd vist, sn) = 1 (5.16) 
k=1 

For more information see [6] section 4.1 (with the word precision equivalent to experi- 

ence). 

5.4.4 Fading 

The previous algorithm allows us to built the CPT from a cases file. In this algorithm 

each case as the same influence in modifing each probability of each CPT. In a world 

which is constantly changing new cases have to be include in the CPT of each node in 

order to update the belief network. Nevertheless it is useful to treat more recent cases 

with a higher weight than older ones to match a changing world. 

We can achieve this partial forgetting of the past by using fading. We will re- 

duce the experience and smooth the probabilities of the selected nodes by an amount 

dictated by the degree, with 0 having no effect, and 1 creating uniform distributions 

with no experience (thereby undoing all previous learning). Then when you continue 

to learn new cases, they will effectively be weighted more than the cases you just faded. 

Fading once with a = 1 — d, and again with a = 1 — f, is equivalent to a single 

fading with a = 1 —df. So the effects of multiple fadings accumulate as they should. 
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To be most accurate you would fade a very small amount after each case, but for all 

practical purposes you can just fade a larger amount after a batch of cases. 

If an occurrence time for each case is known, and the cases are learned sequentially 

through time, then the amount of fading to be done is: a = 1 — rt where At is the 

amount of time since the last fading was done, and r is a positive number less than 

(but close to) 1, and depends on the units of time and how quickly the environment is 

changing. Different nodes may require different values of r. 

During fading, each of the probabilities in the node’s CPT is modified as follows: 

Pili, Sui) = © {palsis Sn )ei(sis sn) —a@ {pilsi,snJei(si 8m) ee ~)}} (5.17) 
uh 

c {a — a)pi( si, Sm;)€i(8i Sai) + =} (5.18) 

We have to respect the constraint (5.14) so 

= So(1-a)ni(sf snedet, se) + & (5.19) 
ea1 .



Chapter 6 

Results 

6.1 Data set 

To built the data set we use only a part of the data provided by the Modiarot’s team 

(problem of size and computation time). We use the data from the series 1, 2, 3, and 4". 

For each series, we take one third of the rotating speed (between 55Hz and 20Hz). 

The data from series 5 are not used because they duplicate with data provided by the 

first series (with extended rundown range 55Hz to 2Hz). The series 6 are not used 

because we do not have enough data in order to train the model. 

To process the signal, we take Nsamp = 256 and Nshift = 32 so we have 16 

different portion of signal for each rotating speed and for each test. Furthermore, half 

of the data is used to train and to construct the model; the second half is used to test 

it. 

6.2 Classification results 

We have decided that the nodes are binary variables (Present or Absent), so in order 

to calculate the classification error, we simply take the formulae: 

‘for details see annexe A 
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(1 = tn)9(Yn) 

  

y= ENG —in) me 
N a B= Enzi tol IYn)) (6.2) 

Dn=1 #n 
1x 

E= FW L(t tng G(Yn) + tn(1 — g(Yn)) (6.3) 
Ne 

where 

1 if2>05 
gz) = (6.4) 

0 otherwise 

Ep represents the classification error for the output of normal class (i.e. tn = 0), 

E, the classification error for the output of fault class (i.e. t, = 1). E is simply the 

global classification error. 

6.2.1 Using threshold functions 

The classification error is very small for the symptom r. In particular the error of 

classification is below to 1 percent when the state of the machine is normal. So, the 

model using threshold functions could distinguish between the normal operating con- 

dition and the faults. 

Unfortunately, the classification error for the symptoms 2xR1x, 3xCaf and 3x 

is greater than 40 percent. So, it is seems that the model could have some difficulty 

in distinguishing between the misalignment fault and the other states of the rotating 

machine.
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6.2.2 Using neural networks 

The global error using neural networks is better than using threshold functions. So, 

we can hope have better results using neural networks than threshold functions. In 

particular, the diagnostic of the misalignment fault will be better because the classifi- 

cation error for the symptom 2xR1x is less then 30 percent. 

Nevertheless, for the symptom 1xCaf and 2xCaf, the neural networks are unable 

to classifis the target. So, these symptoms will have no influence to diagnostic the state 

of the machine when we use neural networks. 
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Figure 6.3: Classification error using neural networks (1: r, 2: 1x, 3: 2x, 4: 3x, 5: sd, 
6: sc, 7: su, 8: 1xCaf, 9: 2xCaf, 10: 3xCaf, 11: 2xR1x) 

60



CHAPTER 6. RESULTS 

Bearing 2 
  

og 

08 

  

z 
3 

' 3 

© & 
© & 

o4 

  

normal error 
fault error 
global error   

‘Symptoms 

Bearing 3 
  

09 

cla
ssi

fic
ati

on 
err

or 
(2%

) 
£
6
 

02:   
   

r r T T t ) 

  

       
normal error 
fault error 
global error   

a es ee a 
Symptoms 

Figure 6.4: Classification error using neural networks (1: r, 2: 1x, 3: 2x, 4: 3x, 5: sd, 

6h.8e) 

  

su, 8: 1xCaf, 9: 2xCaf, 10: 3xCaf, 11: 2xR1x) 

61



CHAPTER 6. RESULTS 
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Figure 6.5: Classification error using neural networks (1: r, 2: 1x, 3: 2x, 4: 3x, 5: sd, 

6: ac, uu, 8: 1xCaf, 9: 2xCaf, 10: 3xCaf, 11: 2xR1x) 

  

6.3 General results 

The following belief network is obtained using the techniques explained in Chapter 5. 

In addition of the symptom and fault nodes, we introduce the node state: this node 

permits us to link the different states of the rotating machine. The number of possible 

values for this node is equal to the number of different states that the belief network 

can distinguish (In our case, this node could take tree values: normal, unbalance and 

  

misalignment). 

In the test step, the node state shows the performance of the networks using a 

matrix (s;,;) where the s;; elements are the number of good diagnostics for the state 

2 and the s,,; elements the number of cases where the belief network diagnostics the 

state j instead of the state 7.
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The belief network was built with the commercial software Netica. It is impossible 

in a 9-month project to develop a software able to build, train and test a belief network. 

The Netica software was chosen because it can train a belief network with a cases file 

[5] (4). 

6.3.1 Using threshold functions 

  

  

  

    

Predicted 
Actual 

Normal | Unbalance | Misalignment 

Normal 1060 53 15 

Unbalance 111 938 455 

Misalignment 422 341 553       
  

Table 6.1: Diagnostic error 

We obtain a global error of 35 % 

When a particular fault is present, the probability that the fault is detected is: 

e 94 % for the normal operating condition 

e 62 % for the unbalance fault 

— 20 % of error cases are diagnostic as normal operating condition 

— 80 % of error cases are diagnostic as misalignment fault 

e 42 % for the misalignment fault 

— 55 % of error cases are diagnostic as normal operating condition 

— 45 % of error cases are diagnostic as unbalance fault 

The bad result for the misalignment fault is due to the classification problem for 

the symptom 2xR1x. With this poor result, the belief network is unable to detect the 
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misalignment fault when it is present. 

We do not obtain 100 % in diagnosing of normal operating condition because the 

Root Mean Square for some unbalance and misalignment fault is close to the RMS 

value for normal operating condition. 

6.3.2 Using neural networks 

  

  

  

      

Predicted 
Actual 

Normal | Unbalance | Misalignment 

Normal 1082 42 4 

Unbalance 41 967 496 

Misalignment 308 140 868       

Table 6.2: Diagnostic error 

We obtain a global error of 26 % 

When a particular fault is present, the probability that the fault is detected is: 

e 96 % for the normal operating condition 

e 64 % for the unbalance fault 

— 8 % of error cases are diagnostic as normal operating condition 

— 92 % of error cases are diagnostic as misalignment fault 

e 66 % for the misalignment fault 

— 69 % of error cases are diagnostic as normal operating condition 

— 31 % of error cases are diagnostic as unbalance fault 

We notice that the better classification result for the symptom 2xR1x permits a 

better diagnostic for the misalignment fault. 

65



CHAPTER 6. RESULTS 

These results are in the range define in [11], with the rule-based method they obtain 

between 60 % and 80 % in diagnosing the faults and 100 % for diagnostic normal 

operating condition. 

6.3.3 Discussion 

The belief network has better results when using neural networks than using threshold 

functions. This result is not a surprise according to the better classification error using 

neural networks than using threshold functions. 

Nevertheless, in both methods more 90 % of the error is a mistake to distinguish the 

misalignment fault from the other machine’s conditions. This error could be explained 

by the fact that we have no access to valuable information, in particular: 

- the orbital plot of the shaft: 

this plot is obtained from the signal provided by two proximity sensors; the form 

of the shaft orbit is characteristic for several faults. 

  

characteristic orbital plot 

of normal condition operation 

  

characteristic orbital plot 

of unbalance fault 

= characteristic orbital plot 

/ of misalignment fault 

Table 6.3: Characteristic orbital plots 

HY 
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- vibration signal during a long period of time: 

according to the Modiarot team, change over a short (less than 1 minute), medium 

(between a few minutes and a few hours) and long (more than 12 hours) period of 

time in the two first harmonics gives useful information to detect misalignment. 

Unfortunately, we have only 16 turns of the machine recorded for each rotating 

speed. 

We have introduce the nodes unbalance+r1 and unbalance_r2 in order to help the 

operator to find the localisation of the unbalance fault. The error for this two nodes 

is close to the unbalance error when this fault is not present. But when this fault 

is present their errors are 10 % greater than the error of the node unbalance. This 

difference between the unbalance node is explained by the fact that the node state is 

linked to the fault nodes. When the node normal and misalignment takes the absent 

value, the unbalance node takes the value present even if the both nodes unbalance_rl 

and unbalance_r2 have the value absent. 
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Chapter 7 

Conclusions and suggestions 

7.1 Conclusions 

The implementation of the complete model (i.e. using neural networks and belief net- 

work) is able to correctly diagnose the case studies. The results are in the range of the 

result obtain by the matrix method. 

The mean used to obtain the probability of the symptoms are speed dependent. 

So, we need as many as neural networks than different rotating speeds. An attempt to 

use a neural network with the value of the symptom and the rotating speed as input 

variables was made. However, the classification results with this neural network were 

very bad (in particular the neural network was unable to class the symptom 1xCaf, 

2xCaf, 3xCaf and 2xR1x). The neural network used was a simple radial basis functions 

network with one hidden layer. Tailoring a more complex neural network could solve 

this problem. Nevertheless, several rotating machines have one or a few number of 

rotating speed. 

A big problem in developing a diagnostic system for vibration analysis is that the 

knowledge of the symptoms of possible faults is not complete. We have to tailor the 

model for each particular machine in order to maximise the number of good diagnostics. 

But, in general, we have no data to train the neural networks and the belief network 
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(in particular, vibration signal when a fault is present). The only way to solve this 

problem is to use the expert’s knowledge with all its inherent problems (see chapter 2). 

Nevertheless, the introduction of new symptoms (such as the orbital plot, gas path 

analysis, temperature and pressure monitoring, oil analysis, etc.) could increase the 

performance of the model. 

Furthermore, if vibration signals of the different states are available, the training 

procedure of the model can be entirely automotatic. This fact is a great advantage of 

the model and permits to find the best configuration for the sensor localisation on the 

machine. 

Of course, the test of this model on only one machine is not a proof of the model’s 

validity but the results are encouraging. 

7.2 Suggestions for further work 

Several different rotating machines exist (gearbox, centrifugal compressor, etc) and 

their characteristics could be very different. So, the first work to do is to test the 

model on different rotating machines in order to establish the model’s validity for 

these type of machine. 

More work has to be done in extracting symptoms from the measured data. In 

particular, building a neural network able to give the presence probability for each 

symptom with the numerical value of the symptom and the rotating speed of the ma- 

chine as inputs would be interesting. 

Rotating machines could have several faults: the Modiarot’s team built a system to 

distinguish between 11 different faults. It would be interesting to known the model’s 

response when the model copes with the 11 faults. Another point is to test the model 

with a unlearnt fault, however such test needs a more complex belief network which 

introduce the notion of abnormal state. 
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Another problem in condition monitoring is to deal with the case where two dif- 

ferent faults are present at the same time. Such as there the case where we have and 

thus, we do not known the model’s response to this particular situation. 

In chapter 2, we have seen that many of the problems which occur are simply 

instrumentation failure. So, test the model’s response to sensor failure could give us 

valuable information on the model performance. 

70



Appendix A 

Data set description 

Description of the different dataset. For each serie of test the Modiarot team provides 

a test under normal operating condition. 

1. A series of rundowns (55 Hz to 20 Hz) in various states of unbalance. 12 channels 

recorded (8x accelerometers, 4x mobile (RS) proximitors). 
  

Weight (g) Disk number Hole number 
  

17.4 

17.4 

17.4 

17.4 

17.4 

8.6     

ah 

o
n
 

fF 
wo 

bd 

  

Ht 

  

Table A.1: Description of test for unbalance (one weight) 

2. A series of rundowns(55 Hz to 20 Hz) in various states of angular misalignment 

(shim of 0.08, 0', 0.05 mm) . 12 channels recorded (8x accelerometers, 4x mobile 

(RS) proximitors). 

Ino misalignment repeat to check no permanent change 

(e 
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3. A series of rundowns (extended 55Hz to 2Hz) in further states of unbalance. 12 

channels recorded (8x accelerometers, 4x mobile (RS) proximitors). 

  

  

  

            

Weight 1 Weight 2 

Weight (g) | Disk | Hole | Weight (g) | Disk | Hole 

20 a fs 20 3 22 

20 2 18 20 5 13 

20 u 10 20 5 5 
  

Table A.2: Description of test for unbalance (two weights) 

4. A series of rundowns (55Hz to 2Hz) in various states of angular misalignment(shim 

of 0.025, 0.050, 0.025 mm). 12 channels recorded (8x accelerometers, 4x mobile 

(RS) proximitors). 

5. A series of rundowns (55Hz to 2Hz) in various states of unbalance. 16 channels 

recorded (Sxaccelerometers, 8x mobile (RS) proximitors). 

  

Weight (g) Disk number Hole number 
  

  

17.4 

17.4 

17.4 

17.4 

17.4   8.6 o
a
n
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wo 

  

1 

a. 

    

Table A.3: Description of test for unbalance (one weight) 

6. Rundown (55Hz to 2Hz) with 0.1 mm radially misaligned coupling. 16 channels 

(8x accelerometers, 8x proximitors). 

 



Appendix B 

Belief network softwares 

To built, train and test a software has been used. To choose the software, several were 

tested. The following sites list different softwares available: 

- http://www.sis.pitt.edu/ dsl/da-software.html 

- http://www.cs.berkeley.edu/ murphyk/Bayes/bnsoft.html 

- http://bayes.stat.washington.edu/almond/belief.html 

B.1 JavaBayes 

e web : http://www.cs.cmu.edu/ javabayes/Home/ 

e advantages : JavaBayes was written in Java so this software doesn’t depend on 

the operating system you use. 

e disadvantages : the graphic interface is not so easy ( it is especially uneasy to 

see the belief values after a computation). 

B.2 Genie 

e web : http://www2.sis.pitt.edu/ genie/
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e advantages : Compared with the other softwares Genie has two important ad- 

vantages. First, it proposes several method of computation. Secondly , it can 

read several different types of files (hugins, netica ...) so we can create our belief 

network with these softwares and use Genie for the calculus. 

e disadvantages : like JavaBayes , we can not easily read the belief values after 

a computation 

B.3 Hugin 

e web : http://www-hugin.dk 

e advantages : like netica, hugin has a very efficient graphic interface and an 

application program interface. In addition, Hugin provides DDE (Dynamic Data 

Exchange). With DDE other programs (like Excel) are able to use the probabil- 

ities calculated in Hugin. 

e disadvantages : Hugin has only one disadvantage : it is not a free software 

B.4 Netica 

e web : http://www.norsys.com 

e advantages : Netica has a very efficient graphic interface. But its biggest advan- 

tage compared with the other softwares is that netica is able to learn from a case 

file. As a result, you can build the belief networks (in particular the conditional 

probability table) from a case file. In addition, netica has a application program 

interface (API). The Netica API is a complete library of functions for working 

with Bayesian belief networks and influence diagrams that you can call from your 

own program. It contains functions to build, learn, modify, transform, save and 

read networks, as well as a powerful inference engine. It may be embedded in 

programs written in any language (such as Java, C++, C, Visual Basic, Delphi, 

or Pascal), as long as the language can call C functions. 
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e disadvantages : Netica has only one disadvantage : it is not a free software 
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