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Thesis Summary

The aim of this project is the PhysioNet’s and Computers in Cardiology challenge of
2003, specifically the building of a model of ST segments, based on component analy-
sis, and the creation of a classifier that can categorize these segments to ischaemic or
non-ischaemic. Two techniques were used to visualize the data, plots of Principal Com-
ponents and Neuroscale, with various datasets. However, these techniques performed
poorly because they did not separate the two classes in two dimensions. These datasets
were also used for classification. Using only the extracted Principal Components the
results were poor when compared with the other entries of the challenge. Adding AST
and AT into our dataset the results improved remarkably. The best classifier created
with that dataset had accuracy of 89.1%. Finally, using Automatic Relevance Deter-
mination method we conclude that AT is the most significant variable in classifying
ischaemia.

Keywords: ECG, ischaemia, Long Term ST Database, PhysioNet, MLP, Neuroscale,
Bayesian inference, ARD,PCA
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Chapter 1

Introduction

This project is inspired by the 2003 and 2005 PhysioNet and Computers in Cardiology
challenges. Computers in Cardiology is an international organization and PhysioNet
is an on-line forum, part of the Research Resource for Complex Physiological Signals
project. Physionet provides free access to PhysioBank which is a collection of different
databases of physiologic signals.

This project is an effort to answer affirmatively to the opening question posed in the
beginning of the introduction of the PhysioNet and Computers in Cardiology challenge
of 2003, “Is it possible to tell the difference between transient ST changes in the ECG
that are due to myocardial ischaemia, and those that are not?”.

An Electrocardiogram (ECG) is a graph which records the electrical voltage in the
heart in the form of a continuous strip graph. Each beat that is recorded in the ECG
can be separated in different sections such as P wave, QRS complex, ST segment and
T wave. Figure 1.1 depicts the segments of a heart beat as it is shown in an ECG.

Electrodes are used to measure the voltage of the heart and produce the ECG.
Nine electrodes are placed at certain points on the human body and produce an ECG.
According to their places, the form of an ECG will be different. There are twelve
different ways to place the electrodes for an ECG and form signals, which are referred
to as leads.

The leads are separated into two groups bipolar and unipolar. For bipolar leads, a
single positive and a single negative electrode are utilized and the electrical potentials
between them are measured. For unipolar leads, a single positive electrode and the
average of two negative electrodes are used to produce the ECG signal [Boutkan, 1972].

There are three bipolar leads in an ECG, lead I, lead II and lead III. In lead I the
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Figure 1.1: Segments of a normal heart beat as it occurs in ECG. (http
/ [en.wikipedia.org/wiki/ Electrocardiogram)

electrodes measure the potential difference between the left arm and right arm, lead
IT measures the potential difference between the left foot and right arm and lead III
measures the potential difference between left foot and left arm.

There are nine unipolar leads that are separated into two groups. The Augmented
Limb Leads aVr, aVl and aVf. In these leads one can measure the potential difference
between one of the mentioned electrodes and the mean potential of the remaining two.
For instance aVr=R-(L+F)/2, where R is the electrode which is placed in the right
arm, L is the electrode which is placed in the left arm and F is the electrode that
is placed in the foot of the patient. If we choose the positions of the electrodes of
the limb leads to be placed near the torso (Mason Likar positions), then these leads
are called modified. The modified leads gives more accurate results for ST deviation
[Feldman et al., 2005]. The other six leads are the precordial leads v1, v2, v3, v4, v5,
and v6. They measure the potential difference between the V electrode and the mean
of the other three electrodes Vlead=V-((R+L+F)/3). The positions the electrodes are

placed for each lead can be shown in figure 1.2.

Myocardial ischaemia is one of the most common fatal diseases of the western
industrial world. It is a heart problem that is caused by the lack of oxygen and nutrients

to the contractile cells (muscles), and it is often difficult to detect from a routine ECG.
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Figure 1.2: Positions of the body that the ECG’s electrodes are fixed to perform a 12
lead ECG. (http : //medlib.med.utah.edu/kw/ecg/mml/ecgtorso.gif)

There are several methods which are employed to detect myocardial ischaemia such
as coronary angiography, which is the most accurate method, and exercise test. The
former is an X-ray examination of the blood vessels or chambers of the heart. The
latter shows whether there is lack of blood supply in the arteries that feed the heart,
during the test. However coronary angiography and the exercise test are either very
expensive or very exhausting. These are the most important reasons for applying the
above mentioned methods only to high-risk patients.

Alternatively, ST segment analysis of the ECG record is cheaper and requires less
effort from the patient. Despite this, we should bear in mind that ST elevations and
depressions are caused by various factors, including changes in heart rate, the position
of the subject, noise in the ECG and many other which make the classification a diffi-
cult procedure. Nevertheless classifying ST segments still remains cheaper and easier
to apply when it is compared to coronary angiography and exercise test. Also the vol-
ume of ECG data that is recorded nowadays is large enough to provide the researchers
with a satisfactory amount of ECGs that can be used for that kind of research. Con-
sequently there is need to develop a classifier of ischaemic or non-ischaemic episodes
based on ECG records. For the above reason PhysioNet and Computers in Cardiology
created the challenge of 2003, so as to encourage the researchers to create a classifier
of ischaemia based only on the ECG. This is also the aim of this thesis.

The remainder of this thesis is set out as follows. This chapter gives the background

10
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Non-ischaemic Ischaemic classi-
classified fied episodes
episodes
Non-ischaemic True negatives False positives
episodes
Ischaemic False negatives | True positives
episodes

Table 1.1: Example of a confusion matrix

information that is relevant to the project. In the second chapter there is a literature
review including papers of the competition and other relevant papers in chronological
order. Then the third chapter consists of a description of the Long Term ST Data Base
(LTSTDB) and also information about the data extraction and preprocessing. The
results from visualization and classification techniques, using as dataset the extracted
Principal Components, are analyzed in chapter four. The fifth chapter includes the
results of analysis using as dataset not only Principal Components, but also more
features that have been inspired from the literature survey. The final chapter presents

conclusions, remarks and suggestions for future work.

1.1 Measures for quantification

The results of a classifier can be illustrated as a Confusion matrix. A Confusion matrix
is a matrix that represents the true classification versus the results of the classifications
from our algorithm [Bamia, 2003]. Table 1.1 depicts an example of a confusion matrix.

The measures that are most used widely to quantify the results of a classifier for
such problems, which are based on the confusion matrix, are accuracy, sensitivity and

specificity. These can be calculated through the formulas below [Bamia, 2003):

true positives + true negatives

accuracy = x 100% (1.1)

number of events
Accuracy is the percentage of the correct classified predictions.
true positives

A% % 100 1.2
sensttivity frue positive.‘5+fa£3€ negatives @ ( )

Sensitivity is the portion of the real positive cases of all the classified positive cases.

11
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true negatives

speci ficity = x 100% (1.3)

false positives + true negatives

Specificity is the percentage of the real negative cases of all the classified negative
cases.

Neither sensitivity, nor specificity, alone, can describe correctly the results of a clas-
sification. That is because if we create a classifier that labels all the events positive or
negative, the sensitivity and specificity will be 100% respectively. But such a classifier
would be useless. So sensitivity and specificity are to be used together as quantifying
measures of a classifier.

These three measures are used to quantify the results of the entries of the compe-

tition and the papers which are represented in the second chapter.

12



Chapter 2

Information about the data

In this chapter there is an extended description of the LTSTDB, giving information
about its structure and the files that it contains. Also there is an analytic description of
the way the data was extracted from LTSTDB and other features that were extracted

and used to visualize and classify the ST events.

2.1 Description of Long Term ST Database

The LTSTDB was a project that began in 1995 with the aim of contributing to the
field of automatic detection of ischaemia using the results of an ECG. Until then the
ESTDB was used. The ESTDB contains 90, 2 hour records fully annotated beat by
beat. This database does not contain enough patterns of ST changes that are not
caused by ischaemia, which is the most common phenomenon in the real world ECG.
For that reason the LTSTDB was developed.

The LTSTDB contains 86 records (21-24 hour ambulatory ECG) from 80 pa-
tients. From these 43 are available from Physionet as a training set for the com-
petition. Out of these records 34 are two-lead ECG and the other 9 are three-lead
ECG. [Jager et al., 2003] PhysioNet called these leads, lead 0, lead 1 and lead 2.

Each record contains twelve files which are the signal, annotations and some files
which are needed for SEMIA to work. SEMIA is a computer program which is used
for semi-automatically labeling of events in ECG records. Also for the needs of the

competition one more file was provided with the annotations of the type of each episode

13



CHAPTER 2. INFORMATION ABOUT THE DATA

in each record: ischaemic or non-ischaemic respectively. The frequency of the digitized
signal was 250 Hz.
According to PhysioNet an ST episode was identified using the following three

criteria:

1. the ST deviation, the difference between the ST level and the baseline, reached
50 pV;

2. the ST deviation must be equal or greater than a threshold value Vmin for at

least for a time period Tmin;
3. the episode ends when the ST deviation is smaller than 50 pV for 30 sec.

There were three different types of annotation that were used for the location of the
ST episodes according to different values of Vmin and Tmin. These annotations were
in the .sta, .stb, .stc files. The annotations that used in this project were these of
the .stb files. There are 1772 events according to these annotations where 1369 were
non-ischaemic and the other 403 were ischaemic.

The other annotation files that are relevant with the measurements of the ST seg-
ment were the .stf files which provided the ST deviation. Also there were the .16a files

that contained the J points of each beat based on a 16 second moving average.

2.2 Extraction of the Data

The WaveForm DataBase (WFDB) tools package was used initially to transform the
signal and the annotation files to a format that is compatible with Matlab. WFDB
tools are a set of wrappers that are provided by PhysioNet to convert the binary
annotation and signal files to Matlab variables. Firstly, the J points of the first beat
for every ST event were extracted, using the annotation files. The length of the ECG
signal that was initially extracted was from each J point to the next R-peak. These
segments include the ST segment of the first beats. Moreover these also include the
R-peak of the next beat. That R-peak would dominate the results of PCA. A sample

of 100 episodes was chosen randomly from the training set to calibrate the length of

14
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the data. Based upon to the measurements of this sample the end of each signal was
set to 80 milliseconds before the extracted R-peak.

Repeating this procedure for all the events for the three leads we have constructed
three matrices, each of which contained 1772 rows. The elements of the rows of the
matrix depicting lead 2 were equal to zero for the episodes that came from two lead
ECG records. Fifty percent of each matrix was selected as a training set randomly.
From the rest 50% half of it used as validation set and the other 25% were used as
test set. The events for each data set were selected randomly from the 1772 events of
each lead. The events which compose each dataset, training, validation and test set,
were the same for each of the three leads. This way of data separation allows episodes
of a specific patient to be used in training, validation and test set. As conclusion

generalization of the results to datasets which are based on different patients are risky.

15



Chapter 3

Literature Review

3.1 Introduction

The aim of this chapter is to give a brief description of the work that other researchers
have done until now to the field of automatic detection of ischaemia. This will include
six different approaches. The first two appeared before the challenge of 2003 and are
about the detection of ischaemia, using as dataset European ST Data Base (ESTDB)
instead of the LTSTDB which has been collected more recently. Three of the other
papers are considered to have participated the challenge of 2003 or 2005. Finally is
mentioned a paper which was an effort to improve upon the classifier of the winning

paper of the 2003 challenge. The papers are presented in chronological order.

3.2 Stamkopoulos et al 1998

In this work a non-linear approach for feature extraction is used. The authors as-
sume that the features that are important for detection ischaemia using ECG cannot
be extracted from linear functions of the data [Stamkopoulos et al., 1998]. For that
reason PCA wasn’t used for feature extraction and dimensionality reduction of the
data. Stamkopoulos et al implemented a Non Linear Principal Components Analysis
(NLPCA) method that was developed by Kramer [Stamkopoulos et al., 1998] in chemi-
cal reprocessing. NLPCA assumes that for a n dimension input vector x = [zy,...,z,]

the underlying feature vector is ¢ = [¢1,...,0,] where 2, = fi(¢1),...,2n = fn(dn)

16



CHAPTER 3. LITERATURE REVIEW

and f; is a non-linear function.

To find these features an auto-associative neural network was trained using back
propagation algorithm. The input of this network was the ST segments consisted from
40 samples, starting from the J point, of a 250 Hz sampling frequency. J point is the
point where the ST segment of each beat begins. To classify these beats, a Radial

Basis Function (RBF) neural network was used, minimizing the mean square error:
G=E| z-g(h(z)) |I? (3.1)

where g is the coding function from R™ to R™ and h is the decoding function from
R™ to R". Thirty-four of the ninety files of the European ST Database were used
for classification. As training set for the RBF neural network, only the normal beats
were used. Twenty-five percent of the normal beats were used as training set. The
sensitivity of that algorithm was approximately 75% and the specificity 80%. Compared
with other works up until 1998, these results were better than those of classifiers that

used as feature extraction method Principal Components Analysis (PCA)

3.3 Papaloukas et al 2002

In this paper a neural network produced a classifier with sensitivity of 86% and accuracy
of 87% [Papaloukas et al., 2002]. Firstly the QRS complex of each beat was detected.
Thereafter there was a filter applied so as to minimize or eliminate noise distortion, such
as A/C interference, baseline wandering or electromyographic contamination. Moreover
during the preprocessing phase they also pinpointed, with edge detection, the location
of J point. Each data sample contained 100 observations after the J point. If the beat
ended before the 100, observations then the input was padded with zeros. The end
of each beat was set as Beat.,q = QRS + 0.6RR — 60 . QRS is the location of the
R-peak and RR is the duration between the R-peak before the J point and the R-peak
after the J point. That procedure was repeated for all the events. After finishing
data extraction, PCA used to reduce the dimensionality of the data. Then the data
projected by PCA were fed in the neural network. The neural net comprised of four
input units, a hidden layer with 10 sigmoidal units and an output layer with one linear

output unit,

17
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Researcher accuracy sensitivity specificity
Langley et al|90.7% - -

2003

Zimmerman et | 79.1% 80.6% 78.9%

al 2003

Povinelli 2005 | 50.3% 2% 98.5%
Povinelli 2005% | 54% 74.6% 33.5%

Table 3.1: Table with the results of entries in the challenges of 2003 and 2005.

So as o train the Artificial Neural Network (ANN) they used a training set of 11
hour of two channel ECG recordings from ESTDB. Three medical experts annotated
independently each beat in three different groups: Normal, Ischaemic and artifact. If
there was discrepancy then the annotation was performed with total agreement with
each other.

The outputs of the neural network, that is the classification of each beat, were led
to a sliding adaptive window [Papaloukas et al., 2001]. It is a technique that is used
to identify the data windows which will be classified. Thirty second intervals that
contain more than 75% ischaemic beats were used to produce the ischaemic windows.
Thereafter all the possible ischaemic windows were merged so as to obtain the ischaemic
episodes in each recorded lead. Furthermore the detected episodes in every lead are
also merged and the overall ischaemic episodes were defined.

It is worth to mention that the results of that classifier were better than those of

Stamkopoulos et. al. who used NLPCA as feature extraction technique.

3.4 Langley et al 2003

This was the winning paper of the 2003 challenge. It achieved the best accuracy from
all the entries of the competition [Langley et al., 2003]. As we can observe in Table
3.1 Langley’s algorithm has achieved the better accuracy from all the other entries for
both challenges of 2003 and 2005.

Langley’s team classified the ST events using a rule-based classifier with AST as
main variaEie. AST is the difference between the voltage of the ST in the time that is

examined and the baseline level for the same time interval. The algorithm is initialized

18



CHAPTER 3. LITERATURE REVIEW

with the detection of the value of the AST for the beginning of the event 7, from
LTSTDB files. After that they compared the value of AST with a threshold value
Vinres- In other words a smaller value than Vj,,., meant a non-ischaemic episode. On
the other hand if the value of AST was greater than the threshold then proceed to
the next step of the algorithm. Following the previous there was the identification of
the time that the event was ended, 7,. They set 7, to be the beginning of a period of
time where AST would be smaller than Vj;,.s for a specific time interval Tj,.s. Then
they extracted from LTSTDB the values for AST for the interval from T§ to T,. The
next step was to find if there was another time interval equal or bigger than T}, that
AST remained bigger than V,,;, which is another threshold of the algorithm. If such
an interval existed then the event was classified as an ischaemic episode otherwise as
non-ischaemic. Figure 3.1 [Langley et al., 2003] depicts the thresholds that were used
for Langley’s algorithm for an example event. The steps of the algorithm are illustrated

in Figure 3.2. [Langley et al., 2003]

|asTivoLrs 4

Figure 3.1: Langley’s algorithm thresholds.

Two different features were used to optimize the algorithm. The Mahalanobis
distance of the ST level from the five first Principal Components and the number of
the ST crossovers. Both different optimizations were based to the already classified
ischaemic events. The events classified as ischaemic before were reclassified using these
two features.

The difference from the initial algorithm was that, in the ST crossovers optimiza-
tion, instead of using Vi.in and T, to specify an event as ischaemic or not, two new

thresholds were used, Noss and Vioss. Veross 18 @ threshold value like Vi, and Nergss
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Figure 3.2: Flow chart of Langley et al algorithm.

is the number of times that AST crossed that threshold. If AST crossed the threshold
value for at least N,..,, times, an event was characterized as ischaemic

The same reasoning was used for the optimization which was based in the Maha-
lanobis distance of the ST level and the principal components. In essence the substi-
tuted Vinin and T with Viepr and Tk respectively. Where KLT is the Karhunen-
Loeve transform coefficients which are equivalent to the Principal Components. The
same as previously, if AST was greater than the threshold value Vi1 for a period of
time Tk the event was classified as ischaemic.

These two efforts to optimize the algorithm, using the ST crossovers and the Ma-
halanobis distance from the Principal Components, were unsuccessful. The initial
algorithm achieved the best results. For the training set the accuracy was 91.1% was
achieved with sensitivity 99% and specificity 88.8%. An overall accuracy of 90.7% was
achieved using PhysioNet’s test set. Also it is mentioned from the authors that their

algorithm is better when identifying ischaemic episodes than non-ischaemic.
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3.5 Zimmerman et al 2003

This paper was an entry in the 2003 challenge. The Reconstructed Phase Space (RPS)
method was used to extract the features of the data. Firstly the J points of eight beats
before the beginning of the episode and the J points eight beats after the beginning of
the episode were extracted. As input data 100 samples (400ms) of each J point were

used. After that procedure the data embedded in a RPS of the following format:

Tn = [mn—(d—l)Ts coy Ly mﬂ] (32)

where n=1+(d-1)7,..., d is the dimension of the RPS and 7 is the time lag.

The embedded dimension and the time lag had been chosen empirically to be 6 and
5 respectively. For classification a mixture of 25 Gaussians and a Bayesian maximum
likelihood classifier was used. The accuracy on the validation set for that algorithm
was 79.1%. The sensitivity and the specificity of the validation set was 80.6% and
78.9% respectively [Zimmerman et al., 2003]. There was a big difference between the
results of the validation set and the results of PhysioNet’s test set. The accuracy, the

sensitivity and the specificity dropped to 55.7%, 63.8% and 49.9% respectively.

3.6 Zimmerman, Povinelli 2004

Another paper that we are going to describe briefly, is an attempt to improve the
algorithm that was proposed in [Langley et al., 2003] using Support Vector Machines
(SVM). The first step of this algorithm was to implement Langley’s algorithm. If the
result was non-ischaemic then that event was classified as non-ischaemic. If the result
was ischaemic then some new features were extracted from the database. These features
were: the Maximum ST deviation which is maximum value of the AST variable in the
time inter.val between T, and T,, the Mean ST deviation which is the mean of AST
for the same time interval and the initial ST deviation which is the value of AST at
the beginning of the episode. AST | T, and T, are the same variables as in Langley’s
algorithm.

After extracting these new features a SVM was used for classification. The results

were not the expected since they did not improve the results of Langley et al. For the
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authors’ test set the accuracy was 95.6%, the sensitivity 99% and the specificity 92.3%
[Zimmerman and Povinelli, 2004]. The best results that could improve the specificity,
which seemed to be Langley's algorithm weak point, were 94.3%. But this led to a
reduction in specificity from 99% to 80.5% and the accuracy from 95.6% to 89.3%.

3.7 Povinelli 2005

The next paper we are going to describe was an entry in the 2005 competition. Two
methods were used to define the features which were used for classification: Recon-
structed Phase Space (RPS) and the KLT coefficients of the ST segment. For both
methods a 400ms signal after each J point of the previous 30s of the starting event was
used as input data. Given that time series the points were reconstructed according to
Equation (2.2). Then a sixteen component GMM was employed using the EM algo-
rithm. For the KLT approach the ST segments of the previous 30s from the beginning
of the event were used to extract the KLT coefficients. Also for that approach the same
type of mixture model and the Bayesian classifier were used.

For the RPS method the accuracy was 50.3%; the sensitivity was very low at 2%
but there was a big percentage of the correct classified non-ischaemic events 98.5%.
The results of that classifier were not far from “tossing a coin” i.e 50% accuracy. The
accuracy for the KLT approach was better, 54%. The results in sensitivity were im-
proved compared with the RPS method since the sensitivity was 74.6%. That affected
the specificity of the model since there was a big drop compared with the RPS method
since specificity was 33.5%. [Povinelli, 2005]

3.8 Summary

Many different approaches have been adopted by researchers that are involved in au-
tomated detection of ischaemia. Some of them have applied neural networks, some
rule-based classifiers or time series techniques for their algorithms. Table 3.2 summa-
rizes the feature extraction techniques and the types of classifiers that have been used.
For neural network classifiers the one which used PCA and multilayer perceptrons

achieved the best results. For that reason these techniques constitute the basis of the
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Researcher Feature extrac- | Classifier
tion methods

stamkopoulos et | Non-linear PCA | RBF neural net-

al work

Papaloukas et al | PCA Multi-layer per-
ceptron

Langley et al PCA, AST Fuzzy Logic Al-
gorithm

Zimmerman et | RPS GMM

al

Zimmerman, PCA, AST SVM

Povineli

Povineli PCA, RPS GMM

Table 3.2: Summary of the feature extraction techniques and classifiers that used by
other researchers.

classifiers that will be used later.
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Chapter 4

Feature extraction and classification
using Principal Component

Analysis

In this chapter we are going to present the results of the visualization and classification
analysis. The dataset which is used in this chapter consists of the Principal Components
of each lead. Firstly we are going to describe PCA briefly, and then the procedure of
Principal Components extraction. The rest of this chapter can be separated into two
parts. The first presents the results of the data visualization, and the second the results
of the classification.

For consistency reasons, in this chapter there are some brief definitions of the meth-
ods that are used. For a more detailed and comprehensive description of them can been

found at the corresponding books and articles.

4.1 Principal Component Analysis

Principal Component Analysis (PCA) is a linear transformation that projects the data
to a new basis. PCA is used to reduce the dimensionality of multivariate data [Karlis, 2004].
We select 1I:he first n largest principal components that have a good representation of our
data with respect to a small loss of information. Since PCA is a linear transformation,

for k variables the k principal components we will have the following:
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Y, = anXi+apXo+. .. +anXi

Y2 — &2;X1 == G22X2 + o0k agka

Y., = auX;+ apoXso + . .. + Qe Xk

In a matrix form the principal components can be written as Y = AX, where
Y, X are k x 1 vectors and A is a k x k matrix. Since the principal components are
uncorrelated we are searching for an orthonormal matrix A which diagonalizes the

covariance matrix of Y (S,). So:

1 T
Sy= —YY

1 T
= ——(AX)(AX) (4.1)

=2 LAXXTAT
n—1

XXT is the covariance matrix of X (Sy) which is a square symmetric matrix. The

solution to that equation is for A to be the eigenvectors of the covariance matrix Sy

4.1.1 Extraction of Principal Components

From the dataset, which had been extracted as described in the previous chapter, the
mean of the training set was subtracted from the training set and also from validation
and test set. That is because the mean of each dataset (training, validation and test
set) would dominate the results of PCA. After that the eigenvalues and their corre-
sponding eigenvectors of the training set were extracted. Then the number of principal
components, that should represent the data for each lead was decided. Afterward all
the data set was multiplied with the appropriate eigenvectors. So these three different
datasets were used as an initial input in the classifiers.

There are several methods which are used to decide how many principal components
should be used for dimensionality reduction. Two of the most common methods used
are the percentage of the variance that the principal components can represent and

plotting the eigenvalues. An acceptable percentage for the method that uses the portion
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number of eigen- | lead 0 lead 1 lead 2
values

2 81.6% 85.53% 67.20%
3 87.38% 89.83 % 75.15%
4 90.28% 91.62% 81.57%
5 92.94% 93.26% 85.14%
6 94.02% 94.27% 88.30%
7 95.03% 95.14% 90.59%

Table 4.1: Percentage of the variance that principal components can explain for the
three leads.

of the variance as criterion, is of ninety or ninety-five percent of the variance. For the
eigenvalues plot, the point that after that the eigenvalues tend to be zero can be set
as an accepted number of Principal Components. Netlab’s function PCA is used to
extract the eigenvalues and the eigenvectors of the covariance matrix of the data.

The eigenvalues from the training data of lead 1 are plotted in Figure 4.1(a). It
is not possible from this graph to select the point that principal components begin
to be close to zero. For that reason it is useful to plot only a part of the first few
eigenvalues. A second plot with the twenty larger eigenvalues was used. The results
are shown in Figure 4.1(b). From Figure 4.1(b) we can see that four or seven principal
components are appropriate to represent the data. The figures for lead 0 and lead 2
are also two-fold like the previous results. The figures of these leads are in Appendix
A.

The above method is not an objective way to decide how many components should
be kept. That is because the number of the principal components that finally will
be used depends to the opinion of the researcher. For that reason the criterion used
for the decision is the percentage of the variance the principal components explain, as
described previously. The accepted percentage of the variance that eigenvalues should
explain was set empirically to ninety. In Table 4.1 there is the percentage of the
variance that different number of principal components can explain for the three leads.

From Table 4.1 we can see that four principal components should be kept for the
first two leads. For the third lead using the same criterion and according to the results
of table 4.1 seven principal components should be used. The number of the principal

components that were extracted for the first two leads is smaller than the number
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Figure 4.1: Plot of eigenvalues.
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of Principal Components that PhysioNet provide with the LTSTDB. In lead 2 more
Principal Components were needed to reach the threshold of 90%. An explanation
for that phenomenon is the small amount of data that used to extract the Principal

Components of that lead.

4.2 Data Visualization

In this section we use the Principal Components that we had extracted using the above
procedure, in order to separate the ischaemic and non-ischaemic episodes into two sepa-
rate groups. Two techniques were utilized for that purpose. The first one involved plots
of the Principal Components for each lead. This method uses linear transformations of
the data (Principal Components) to project the data into two dimensions. The second
one is Neuroscale. Neuroscale utilizes non-linear transformations and neural networks

to project the initial data points into smaller dimension.

4.2.1 Plots of Principal Components

The results obtained by extracting the Principal Components were used for visualiza-
tion. The figures of the first principal component versus the second one for the three
leads can been seen in the Figure 4.2(a), 4.2(b) and 4.2(c) respectively. The figures for
visualization between all principal components of each lead are included in Appendices
B, C and D respectively.

We observe that it is not possible to separate the two classes using linear functions.
The ischaemic episodes (crosses ) cannot be separated from the non-ischaemic episodes
(circles) for any of the three leads. Moreover, whatever the combinations of principal
components are, the results are still of poor quality. After that, we can conclude that

we cannot separate the events into two dimensions using only a linear transformation

of the initial data.

4.2.2 Neuroscale

Since the results of the visualization using the principal components were not the ex-

pected ones, there was an attempt to separate the data using nonlinear functions. In
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ERROR MEASURE

DATA SPACE

Figure 4.3: Neuroscale algorithm as it appears in [Lowe and Tipping, 1996].

contrast with PCA which is a linear transformation of the data, Neuroscale is a non lin-

ear topographic feature extraction and visualization technique. [Lowe and Tipping, 1996]
Neuroscale maintains the distances between the data points in the transformed

space as similar as it is possible to those in the data space. That is feasible by using

an error term of the form :

N

E=Y 3 (d, =)’ (4.2)

q o>

where d;, is the Euclidean distance between the data points in the data space and has

the form /(z, — z,)T((z, — z,) and /(y, — ¥p)" ((yg — yp) is the distance in the pro-
jected space, d,q. The projected space has smaller dimension than the initial dataset.
Usually the dimensionality of the projected space is two. Figure 4.3 [Lowe and Tipping, 1996]
illustrates the Neuroscale algorithm. Neuroscale is a relatively supervised method.
That is because we don’t know the target points in the space with the reduced dimen-
sionality. A Radial Basis Function (RBF) neural network is trained to create the data

of the projected space, with respect to the minimization of the error term.

4.2.3 Visualization using Neuroscale

The Principal Components of the initial dataset were used to train Neuroscale. More-
over the early stopping technique was used for regularization for all the RBF neural
networks that were trained.

In essence the RBF neural network that had been used for the lead 1 had four input
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Figure 4.4: Results of using principal components.

units, twenty hidden units, two outputs and trained for 1200 iterations.

The results are depicted in Figure 4.4. The results for the other two leads were
similar. There was overlapping between the two classes. The ischaemic and non-
ischaemic events cannot be separated. In the Appendices E and F there are the figures
with the results of Neuroscale for the other two leads.

The results weren’t improved even with the use of the Neuroscale. The projected

points could not be separated in two classes in the visualization plot.

4.3 Classification

The aim of this project is to create a classifier of ischaemic episodes using the ST
segments of ECG. This section presents an initial attempt to create that classifier.
The input data for that classifier were the extracted Principal Components of the
initial ECG signal. The neural network that was selected for that purpose was the

Multi-Layer Perceptron (MLP)
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4.3.1 Multi-layer Perceptron

The MLP is a feedforward neural network. For N input units, H hidden units and K
outputs the formula of the MLP is the following:

H N
= f(ng)g(Zwﬁ}wi)) (43)
=0

i=0

where y; is the k'™ output of the classifier, f the activation function of the output wg-)
are the weights of the ji, hidden unit of the ky, output, g is the hidden layer activation
function, wﬁ ) are the weights of the iy, input of the jy, hidden unit and z; is the iy,
input. For classification problems usually a logistic f(a;) = m or a softmax
fla;) = HZP—:?:‘} activation function is used. That because they converge faster and their
encoding is between zero and one. The logistic activation function is used fr two class
classification problems and softmax when the number of the classes is greater than two.
To avoid overfitting the early stopping technique was applied. In this method many
classifiers are trained with different number of hidden units and different number of
iteration for optimization. Then the error of validation set for the classifiers with the
same number of hidden units is compared. The classifier of each number of hidden
units which have the smaller error is stored. Then these errors are compared and the

classifier with the smaller error is chosen. For a detailed representation of the MLP

and backpropagation the reader could refer to [Bishop, 1995].

4.3.2 Receiver Operating Characteristic curve

The outputs of the MLP using the logistic activation function are between zero and
one. A question that arises from the above is how to determine efficiently a threshold
that separates ischaemic from non-ischaemic episodes. An answer is the Receiver Op-
erating Characteristic (ROC) curve. The ROC curve describes the trade off between
the sensitivity (true positives) and one minus the specificity (false negatives). The
points of the ROC curve of a classifier whose results are not better than a random
process are situated in the bisector of the axes. A “mostly ideal” ROC curve has most
of its points in the upper lefthand corner so the classifier has a big percentage of true

positive classifications and a small number of wrong negative classifications.
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lead 0 lead 1 lead 2
accuracy 76.52 78.33 88.89
sensitivity 38.68 46.23 94.59
specificity 88.23 88.43 62.50

Table 4.2: Results on validation set using the principal components for the three leads.

lead 0 lead 1 lead 2
accuracy 73.46 77.57 72.22
sensitivity 33.65 32.69 88.46
specificity 85.89 91.59 30.00

Table 4.3: Results on test set using the principal components for the three leads.

4.3.3 Results of classification using only the principal compo-

nents as dataset

After the training procedure and the application of the early stopping technique an
MLP was used with 4 input units, 10 hidden units, 1 output and trained for 1000
iterations for lead 0. The MLP which was used for lead 1 had 4 input units, 10 hidden
units, 1 output and trained for 800 iterations. Finally for the third lead a MLP was
trained for 700 iterations with 7 input units, 10 hidden units and 1 output. For the
three leads the output activation function was a logistic one and for the optimization
the scaled conjugate gradient algorithm was used. The threshold between the ischaemic
and non-ischaemic events was determined using the ROC curve. Figures 4.5(a), 4.5(b)
and 4.5(c) depict the results of the ROC curves for the three leads respectively. The
threshold values that gives the best combinations of accuracy, sensitivity and specificity
are 0.3, 0.3 and 0.25 for lead 0, lead 1 and lead 2 respectively.

The results of the classification for the validation and test set are seen in Table 4.2
and 4.3 respectively.

Comparing the two first leads, lead 0 and lead 1, we can observe that lead 1 has
better results both in validation and test set. It worth noticing that both leads have
a very low percentage of the ischaemic events that they can identify. The accuracy
for both leads is greater than 70% instead of the small percentage of sensitivity. Lead
2 has inverse results. That is because of the nature of the dataset. The LTSTDB

contained only nine records with three leads. The number of the events in lead 2 were
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Figure 4.5: ROC curve for the three leads for the MLP with input the principal com-
ponents.
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164, with 122 of them ischaemic. From the 83 that were used for the training test the
64 of them were ischaemic and the rest non-ischaemic. The network trained had more
ischaemic patterns to “match”. That is the main reason that the results in lead 2 were

more sensitive to identify ischaemic events.

4.4 Chapter conclusions

Two different techniques were applied for visualization, with similar results. Neither
the plots of Principal Components, nor Neuroscale was able to provide a visualization
of the data, with regards to their separation in two dimensions. The results for the
classification weren’t the expected ones since they performed worst than most of the
entries, especially in sensitivity. We concluded that more features are needed to improve
the data set. This is due to the fact the Principal Components alone weren’t able to
provide us with a classifier that could separate the two classes efficiently, in comparison

to the results obtained by the other entries of the challenge.
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Chapter 5

Extended feature extraction and
classification using empirical

features

The next step in our research after obtaining the results of Chapter 4, was the ex-
traction of new features according to the literature review (Chapter 3). This chapter
presents the visualization and classification results when these two features were added
to the dataset. Firstly, there is a description of the way these features were extracted.
Afterwards the results of Neuroscale for the new dataset are represented. Finally we

analyze the results obtained by the classification procedure.

5.1 Feature extraction

More features were extracted inspired by the literature review [Langley et al., 2003].
These features were the ST deviation and the duration of the episode combined with
knowledge we have for the ST deviation. Adopting Langley’s notation these variables
are referred as AST and AT respectively. AST is the difference between the ST level
voltage and the baseline of the moment that the event begins. The values of AST were
provided from PhysioNet. Measurements for the three leads were extracted. Also a
part of Langley’s algorithm was implemented to find AT. AT is the difference between
T, and T, where T is the beginning of each event. When AST became smaller than the
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threshold value of the algorithm Vjj,.s, the event was characterized as non-ischaemic
from the beginning. Hence T, is equal with T and consequently AT is equal to zero.

If the value of AST was bigger than Vjj,es, the value of T, could be determined from

-

|AST) VOLTS

Figure 5.1: AT extraction procedure

the starting point of a time interval where the value of AST was smaller than Vip,es
for at least Tinres seconds. Figure 5.1 [Langley et al., 2003] depicts the procedure that
used to determine AT for our algorithm. Viuyes and Tipres were set to 50 pV and 40

seconds respectively.

5.2 Visualization

Two attempts were made to improve the visualization results of the previous chapter.
Initially Neuroscale was trained using AST combined with the principal components.
Afterwards Neuroscale was trained using all the extracted features, Principal Compo-

nents, AST and AT.

5.2.1 Results of visualization using the new features

For the first attempt the RBF neural network was used to create the projected points
for the lead 1 having five input units, thirty hidden units, two outputs and was trained
for 1100 iterations.

The results of the projection are depicted in Figure 5.2. Unfortunately, the two
classes are'not separated again. The results for the two other leads, lead 0 and lead 2

are included in Appendixes E and F respectively.
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Figure 5.2: Results of using principal components and AST.

After the last results a final effort was employed to visualize the data into two
dimensions. A Neuroscale model was trained using the previous dataset and also AT.

The RBF neural network that had been used to create the projected points for the
lead 1 had six input units, thirty hidden units, two outputs and was trained for 600
iterations.

Figure 5.3 displays the results of Neuroscale. The overlapping between the two
classes still remains, and the results are the same also for the other two leads. Figures
with the above results can be found in the Appendices E and F respectively.

We notice that there is a structure in the results of in both attempts to visualize
the data. An explain to that abnormality is depicted in the Histograms 5.4 and 5.5.
In these figures we observe that AST and AT are two clustered variables.

AST can be separated in three groups and AT can be separated in two classes. At
the first one belongs the majority of the observations and it is the first class of the
histogram and the other class is formed from the rest data. We can observe that even

after using the new features, we cannot separate the two classes in the projected space.
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Figure 5.3: Results of using principal components, AST and AT.
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Figure 5.5: Empirical distribution of AT
5.3 Classification Results

Using the new features, AST and AT, a new classifier was built. Afterwards Automatic
Relevance Determination (ARD) was employed to find out which of the variables used,
until now, were the most important. An MLP with Bayesian inference was needed for

the ARD method, which was also used for classification.

5.3.1 Results of classification using the principal components

and A7 and AST

A new classifier was trained using the new dataset, which consisted of the Principal
Components and the variables AT and AST. After the training procedure and the
utilization of the early stopping technique an MLP was used with 6 input units, 10
hidden units, 1 output and trained for 1000 iterations for lead 0. The MLP which was
used for lead 1 had 6 input units, 8 hidden units, 1 output and was trained for 1300
iterations. Finally for the third lead a MLP was trained for 1500 iterations with 9 input
units, 20 hidden units and 1 output. For the three leads the output activation function
was a logistic one and for the optimization the scale conjugate gradient algorithm was
used. The ROC curve was used to determine the thresholds between the two classes.
The results of the ROC curves for each lead are depicted in Figure 5.4(a), 5.4(b) and

5.4(c) respectively. The threshold values that gives the best combinations of accuracy,

40



CHAPTER 5. ANALYSIS USING MORE FEATURES

lead 0 lead 1 lead 2
accuracy 87.58 86.91 86.67
sensitivity 84.91 81.13 97.30
specificity 88.43 88.72 37.50

Table 5.1: Results of validation set using as dataset the principal components AT and
AST for the three leads.

lead 0 lead 1 lead 2
accuracy 84.90 87.19 77.78
sensitivity 71.15 82.69 84.60
specificity 89.19 88.59 60.00

Table 5.2: Results of test set using as dataset the principal components AT and AST
for the thiee leads.

sensitivity and specificity are 0.3, 0.35 and 0.3 for lead 0, lead 1 and lead 2 respectively.
The results for the validation set and test set of the classification are in Tables 5.3 and
5.4 respectively.

The results for the three leads are not as good as the results of the winning paper
(accuracy 90.7%). Comparing the results of lead 0 and lead 1 with the other entries of
the competition, we can conclude that they had been better except from the sensitivity
of lead 0 in the test set which was smaller than that Zimmerman et al have achieved
(79.1 %).

The results in the lead 0 are better in the validation set but in test set there is a
big decline in the sensitivity from 84.91% to 71.15%. Lead 1 gives more trustworthy
results since the results in test and validation set are quite similar. Using the two
new variables the MLP became more sensitive to identify the real ischaemic events. In
both leads the results were improved spectacularly comparing with the sensitivity of
the classifiers with the data set containing only the principal components. Compairing
the results of that classifier with the results of the Tables 4.2 and 4.3 we can observe
that the sensitivity of the MLP for lead 0 increased from 38.68% to 84.91% for the
validation set and from 33.65% to 71.15% for the test set. Similarly, the sensitivity of
the MLP for lead 1 increased from 46.23% to 81.13% for the validation set and from
32.69% to 82.69% for the test set.

The néw variables had a small effect in the results of the lead 2 which were very
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Figure 5.6: ROC curve for the three leads for the MLP with input the principal com-
ponents AST and AT.
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similar with those of the classifier with the dataset with only the principal components.
An interesting fact is that using the new dataset the very poor specificity result (37.5%)
is at the validation set instead of the test set which was in the previous classifier at

lead 2.

5.3.2 MLP with Bayesian Inference

We are interested in the features that are most important for classifying the data. The
Automatic Relevance Determination method (ARD) was employed to identify these
inputs. For that reason an MLP with Bayesian inference was trained. A Bayesian
inference MLP combines the Bayes’ theorem with MLP. Initially that is a quite strange
idea since the nature of these techniques seems to be different. Bayesian inference can
be used to avoid the over-fitting problem that neural networks have, by controlling
the complexity of the model. At the beginning we should define the distribution of
the weights of a MLP given the dataset. From Bayes’ theorem and adopting Bishop’s
notation [Bishop, 1995] we have that :

p(uip) = 22, (5.1

where p(D|w) is the probability of the data given the weights and p(w) is the prior
distribution of the weight. Usually a Gaussian prior is used for the weight distribution.
The form of that prior is p(w) = m exp(—aEw), where Z,(a) is a normalization
factor of the form [ P(D|w)P(w) dw and Ew is a regularization factor of the form
Ew = Yw|? = 13V w?. Since the parameter a determines the distribution of
weights and biases it is called hyperparameter. Finally p(D) is a normalization factor.
For the classification problems a cross-entropy error function is used. The error function
log likelihood becomes p(D|w) = exp(—G(D|w)) where G is the cross-entropy function.

The function of the weights become :
1
p(w|D) = —Z—-emp(—G — aEw)), (5.2)

where Zg is a normalization constant. Since we have defined the distribution of the
weights of the classifier we should determine the form of the output distribution of our

network. The output will have the following form:

p(Cilz, D) = f o(@)p(elz, D)da, (5.3)
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where g is the logistic activation function. An approximation of that integral proposed

by MacKay is the following:

p(01|$, D) e g(k(s)aMP)v (54)

where k(s) = (1+ ’—';8’—2)_” ?, app is the hyperparameter a which maximize the posterior
distribution of the weights, and s is the standard deviation of the hyperparameters
distribution. To determine the a)sp we could integrate over the hyperparameters or use
the evidence procedure [MacKay, 1992] which is an iterative method and is equivalent

to type II maximum likelihood estimator.

5.3.3 Automatic Relevance Determination

Automatic Relevance Determination (ARD) is a method that uses Bayesian infer-
ence to identify the variables of the model which are more important than the oth-
ers [MacKay, 1993]. A different hyper-parameter « is assigned to each variable. Since
the hyper-parameter « is equal to the inverse of the variance, the smaller that o is, the
larger will be the variance of the corresponding weight distribution. That is important
because wider distributions means that the range of the weights for the specific variable
is large. If the hyperparameter allows the weights to have a big number, that means
that they are very important for the final result since they will dominate the results
in contrast with the other variables that have smaller values. So we can compare the
values of the hyper-parameters to decide which of them are important [Nabney, 2001].
Again there is no impartial approach to decide which is a big and a small hyper-
parameter. Especially in the case that each variable has different mean and variance
we cannot compare the values of the hyperparameters since the differences will be the
result of the different mean and variance. That is the reason why in ARD method the

variables are normalized to zero mean and unit variance.

9.3.4 Results of classification using MLP with Bayesian Infer-

ence

The Bayesian MLP was trained only for leads 0 and 1 due to the time constraint of
the MSc. There is no need to employ the early stopping technique since the Bayesian
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lead 0 lead 1
accuracy 81.48 89.10
sensitivity 83.81 82.38
specificity 80.75 91.19

Table 5.3: Results of test set for the Bayesian MLP for lead 0 and lead 1.

inference includes the regularization factor. For that reason the results of the error of
the training set are used as a decision measure for the best MLP. A Bayesian MLP
with 6 input, 8 hidden units and one output was trained for 1400 iterations was chosen
for lead 0, and one with 6 input, 8 hidden units and one output was trained for 1000
iterations was chosen for lead 1. For the estimation of the hyperparameter o the
evidence procedure was used. The results for the test set are illustrated in Table 5.3.

The best accuracy was achieved for lead 1. The overall results are better than all
the other classifiers that had been trained so far, but are still 1.6% lower than the
winning paper of the competition [Langley et al., 2003].

In lead 1 the specificity was 91.19% but the sensitivity was smaller than that of
the lead 0. The reason the results are not as good as in lead 1 is the low percentage
of specificity which is 10% smaller than lead 1. Comparing these with the previous
classifiers the results in lead 1 were improved using the Bayesian inference in accuracy
and specificity. In general, the results for lead 0 are not better than the ones achieved
from the MLP that was trained using the principal components, AST and AT as
inputs. The results for both lead 0 and lead 1 are still better than those of all the other

entries of the competition apart from the winning paper.

5.3.5 Results of ARD

After the training of a Bayesian MLP with a dataset of zero mean and variance one for
each variable the extracted hyperparameters o using the evidence procedure, for each
variable are depicted in Table 5.4.

From the previous table we can see that the most significant variable for both leads
is AT which has the smallest hyperparameter a. However we cannot specify with
certainty which variable will be next significant one due to the fact that for both leads

it has different value of significance. For example in lead 0 second most important
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Variable Value of hyper- | Value of hyper-
parameter « | parameter o
lead 0 lead 1

First Principal | 0.215 0.252

Component,

Second Principal | 0.235 0.634

Component,

Third Principal | 0.186 0.101

Component,

Fourth Principal | 0.252 0.091

Component

AST 0.034 0.231

AT 0.019 0.015

Table 5.4: Results for the ARD method for both leads.

Validation set Test set
accuracy 79.91 85.81
sensitivity 66.34 78.31
specificity 83.92 87.57

Table 5.5: Results for the validation and test set of the MLP that used only AT.

variable is PC4 (0.0912) whereas in lead 1 it is not the same (AST 0.034).

5.3.6 Classification using only AT

For both leads the results show that the variable with the smallest hyperparameter o
is AT. For that reason an MLP was trained only with that variable. That classifier
selected using the early stopping technique for regularization had only one input, four
hidden units, one output. The training stopped after 700 iterations. The results of
that classifier are in Table 5.5

The results were very good for that simple MLP. In the test set the results were
better than those of the validation set. In the validation set the sensitivity was only
66.34% but there was a big increase at the test set.

The accuracy of the test set was over 85% which is better than most of the entries
of the competition. That means that the combination of the time an event lasts with
the difference between the ST level and the baseline are of great importance for an

automatic detector to classify correct ischaemic and non-ischaemic events.
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5.4 Conclusion

Two different datasets were used for visualization. The results that obtained were
similar with these of the previous chapter. Unfortunately overlapping occurred be-
tween ischaemic and non-ischaemic episodes. So we can assume that this phenomenon
occurred because the data cannot be separated in two dimensions.

The new dataset improved the results of the classification. Then a Bayesian ap-
proach was implemented with better overall results. Finally one, of the most interesting
results was the good ones obtained by an MLP which had as an input only the AT.
Its accuracy was greater in the test set than all the entries of the challenge except for
the winning paper. The last MLP was employed after the implementation of the ARD
procedure. The results of ARD showed that the variable AT was the most important
variable during the classification.

To sum up, we can observe that the Bayesian inference MLP can be used instead

of the rule-based classifier of the winning paper since the results are very similar.
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Chapter 6

Conclusions and Future Work

6.1 Thesis summary

This project was inspired by 2003 and 2005 PhysioNet and Computers in Cardiology
challenges. The aim of this project is to develop an algorithm to distinguish ischaemic
from non-ischaemic ST changes of an ECG.

A different approach from the other researchers, whose work was presented in the
second chapter, was adopted for the extraction of the initial dataset. Instead of taking
the ST segment from the beats of the whole episode, or a number of beats near to
the beginning of the episode, the ST segment of the first beat only, for each episode
that was chosen as a dataset. The experiments of visualization and classification were
applied for the three combinations of leads that was provided from Physiobank.

Two techniques were used for feature extraction and visualization, PCA and Neu-
roscale. Additional features were used from the winning paper to find whether or not
these features could improve the results of the MLP that had as input only the principal
componenis. Many datasets were used for classification. Firstly an MLP with Prin-
cipal Components as inputs was employed. The accuracy for that MLP was 76.52%,
78.33% and 88.89% for lead 0, lead 1 and lead 2 respectively on the validation set.

To improve the results AST and AT were added to the dataset. After the improve-
ment of the results ARD method was employed to identify which of the input variables
were more important. A Bayesian inference MLP also used as classifier. That MLP

achieved the best accuracy from the classifiers that were trained. Finally an MLP with
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input the most significant variable, AT, according to the results of ARD was imple-
mented, with very good results since the accuracy of the test set was 85.81% which is

greater than the most of the entries of the competition.

6.2 Conclusion

Summing up the results of the project we can conclude that:

e The visualization techniques that employed were not able to separate two classes

of the data in two dimensions.

e Using the results only of PCA for feature extraction the results were compared

with the other entries of the challenge.
e ARD results showed that AT is important in classifying ischaemia.

e The Bayesian inference MLP had the best results compared with the other clas-

sifiers which were trained.

e A classifier which is based in AT can classify more accurate the non-ischaemic

episodes.

In the rest of that section we describe briefly these conclusions. The results of this
project can be separated in two groups, the ones of visualization and the results of
classification. Neither the plots of Principal Components, nor Neuroscale had useful
results. In all the graphs that produced the two classes weren’t separable. The overlap
between ischaemic and non-ischaemic events was preserved even after using and the
new dataset in .

Concerning the classification results of two first leads, we can observe that the first
classifier using as an input the principal components had poor results compared to other
work. Comparing them with the other entries they were better only than Povinelli’s
results, which were not better than chance. A notable point to these results was also
the very small percentage of the ischaemic episodes that had been classified correctly
for both leads. After adding the two new variables AST and AT into our dataset the

results were improved spectacularly. The Bayesian inference MLP improved the results
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in specificity and accuracy of lead 1. On the other hand there was a drop in specificity
in lead 0.

Using the ARD method AT was the most important variable for both leads. After
training a MLP using AT as the only input, the results were very good, the accuracy
for the test set was 85.81%. According to these results we can conclude that the
amplitude of the event combined with the ST deviation is a very important feature for
the characterization of an event as ischaemic or non-ischaemic. Another remarkable
point is the increase in the sensitivity when the principal components, AST and AT
were used. The best sensitivity was for the validation set of lead 0, 84.91%. The
dataset of lead 2 was different than the other two. The records that had three leads
were containing more ischaemic episodes than non-ischaemic. After employing the
first MLP using only Principal Components, the results were better than the other two
leads. The accuracy and the sensitivity were bigger than these of lead 0 and lead 1 in
validation set. Also at the test set the sensitivity was increased twofold from the other
two leads. Contrary with accuracy and sensitivity, specificity was small, 60% for the
validation set and 30% for the test set. After the usage of AST and AT this condition
didn’t change. In the particular experiment the specificity of the test set was 60% and
for the validation set was 37.5%. From these results we derived to the conclusion that
AST and AT are more accurate to identify the ischaemic episodes, but they can’t

contribute a lot to models that cannot identify non-ischaemic episodes.

6.3 Future work

For future work a data fusion model can be developed combing the data of the three
leads. The ARD method could be used to identify which principal components are
important for classification and then use them to the data fusion model. So the best
features of the three leads will be used to train the classifier. The results can be

compared with the results of each lead separately.
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Appendix A

Figures of eigenvalues for lead 0

and lead 2

Here are represented the graphs of the eigenvalues for lead 0 and lead 2. These figures,
as the figure 4.1, are not informative about the number of Principal Components that
should be used. Figure A.1 depicts the plot of all the eigenvalues and the first twenty

eigenvalues for lead 0 respectively. Figure A.2 depicts the plot of all the eigenvalues

and the first twenty eigenvalues for lead 2 respectively.
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Figure A.1: Plot of eigenvalues for lead 0.



APPENDIX A.

1. I
18 18
iy 14
2
12
1
1
0
o8
08
(13
04
u.zk ¥
a 02
-
(] ) 100 150 200 250 300 I T

Figure A.2: Plot of eigenvalues for lead 2.
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Appendix B

Visualization for all the Principal
Components of lead 0 which have

been extracted

This section represents the figures that depict the results of visualization, for different
combinations of the plots of principal components for lead 0. The two classes are not

separated in these figures.
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Figure B.1: Plots of Principal Component 1 versus the other extracted Principal Com-
ponents for lead 0.
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Figure B.2: Plots of Principal Component 2 versus the other extracted Principal Com-
ponents for lead 0.
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Figure B.3: Plot of Principal Component 3 versus the fourth Principal Component for
lead 0.
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Appendix C

Visualization for all the Principal
Components of lead 1 which have

been extracted

This section represents the figures that depict the results of visualization, for different
combinations of the plots of principal components for lead 1. The results are the same

as in lead 0. There is an overlap between ischaemic and non-ischaemic episodes.
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Figure C.1: Plots of Principal Component 1 versus the other extracted Principal Com-
ponents for lead 1.
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Figure C.2: Plots of Principal Component 2 versus the other extracted Principal Com-
ponents for lead 1.
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Figure C.3: Plot of Principal Component 3 versus the fourth Principal Component for
lead 1.
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Appendix D

Visualization for all the Principal
Components of lead 2 which have

been extracted

This section represents the figures that depict the results of visualization, for different
combinations of the plots of principal components for lead 2. Again the results are
the same as the two previous leads. The ischaemic events cannot be separated from

non-ischaemic events.
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Figure D.1: Plots of Principal Component 1 versus the other extracted Principal Com-
ponents for lead 2.
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Figure D.2: Plots of Principal Component 2 versus the other extracted Principal Com-
ponents for lead 2.
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Figure D.3: Plots of Principal Component 3 versus the other extracted Principal Com-
ponents for lead 2.

O mchemic apisodes o O inchemic spisodes
o8k O » NOn-ischemic sodes a8 +  non-ischamic spisodes
b o 4 0 o
o8 = o i
o4 e o o

ozr

-0z e o o,

Component 5
o
o
Q a
L0
..ou
& a
5
0a®
o0
%
g
-}
o
Principal Componant &
=
&8
o
o
o &3
% o
o

-azt . (P o a e
-0
~04b o,
o
+
=08
-os o ]
-08
-08 = o
-1 -1
-1 05 a os 1 15 =1 -08 o o8 1 18
Principal Componant 4 Principal Componant 4
by
L O ischamic apiscdes
o  non-ischamic episodes
£ 94 g
02
o4
o
+ao.* ) oo
el o oo | L% [}
(. e o, 6 o
+w0% gPa.
02 ° o
ot
Ed;
08 a
-08
-1
o
-2
-1 -08 o o5 1 5
PPrincipal Component 4

Figure D.4: Plots of Principal Component 4 versus the other extracted Principal Com-
ponents for lead 2.
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Figure D.5: Plots of Principal Component 5 versus the other extracted Principal Com-

ponents for lead 2.
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Appendix E

Neuroscale results for lead 0

This appendix contains the results of for lead 0. The results are depicted in graph E.1
for the three different datasets that were used, one with only the Principal Components,
one with the Principal Components and the AST ,and finally the previous added the
variable AT, respectively. As the graphs depict, we cannot separate the two classes in

lead 0 whatever dataset we use.
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Figure E.1: Neuroscale results for the different datasets for lead 0.
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Appendix F

Neuroscale results for lead 2

The results of for lead 2 are presented in this appendix. The results are depicted in
graph F.1 for the three different dataset that were used, one with only the Principal
Components, one with the Principal Components and the AST and finally the previous
added the variable AT, respectively. As it depicts in the graphs we cannot separate

the two classes in lead 2 whichever dataset we use.
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Figure F.1: Neuroscale results for the different datasets for lead 2.
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