Experiments on non-orthogonal

signal representation

EVANGELOS SAGIANOS

MSc by Research in Pattern Analysis and Neural Networks

<

ASTON UNIVERSITY

September 2003

This copy of the thesis has been supplied on condition that anyone who
consults it is understood to recognise that its copyright rests with its
author and that no quotation from the thesis and no information derived
from it may be published without proper acknowledgement.



ASTON UNIVERSITY

Experiments on non-orthogonal

signal representation

EVANGELOS SAGIANOS

MSc by Research in Pattern Analysis and Neural Networks, 2003

Thesis Summary

The problem of non-orthogonal signal representation we consider here consists of ex-
pressing the signal as a linear superposition of non-orthogonal waveforms. Such wave-
forms are selected from a set of functions, in general redundant, which is called a
dictionary. The techniques we discuss to address the problem are in the line of the
adaptive matching pursuit methods. Potential advantages, arising from the freedom to
decide on the dictionary, are illustrated by considering dictionaries of different nature.
Further potential advantages, arising simply by relaxing the orthogonality condition,
are illustrated by introducing a non-orthogonal set of wavelets which originates from
the orthogonal Haar basis.
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Chapter 1
Introduction

Traditional methods for signal representation involve the use of orthogonal bases, such
as the Fourier basis or the later introduced orthogonal wavelet bases [3]. The problem
of N-term approximation, where one fixes a basis and looks to approximate a signal by
a linear combination of N-terms of the basis, is a nonlinear problem. The nonlinearity
is a consequence of allowing the terms to depend on the signal being approximated.
The problem of finding the best of such N-term approximations has been, and still is,
subject of much mathematical work even in the case of orthogonal basis.

More recently, there has emerged another more complicated form of nonlinear ap-
proximation, which we can call a highly nonlinear approximation. It takes many forms
but has one basic ingredient: a basis is replaced by a system of functions which is
usually redundant. Some types of approximations that fall into this general category
are mathematical frames [4, 21], adaptive pursuit [8, 6, 11, 16, 13] and adaptive basis
selection [1, 2]. This relatively new setting for signal representation seems to offer much
promise for greater effectiveness in terms of approximation rate and sparseness. On
the other hand it gives rise to highly nontrivial theoretical and practical problems. It
can be said that a rigorous theory is only now emerging, and certainly far beyond the
scope of this work.

The purpose of this project was to produce evidences of the potential advantages of
highly nonlinear signal representation outside the basis setting. With this motivation,
and also with the ambition of drawing, somehow, theoretical conclusions, we have
designed a series of numerical experiments.

The methods that we have considered to deal with the problem of nonorthogonal
signal approximation are all in the line of adaptive pursuit. We present a numerical
example with the aim of comparing these approaches with regard to convergence rate.
However, our central aim was not to focus on comparing methodologies. We have been
lead for a different motivation. On the one hand our goal was to illustrate by some
examples what is a rather obvious remark:

Relazing the orthogonality condition gives us more freedom to choose the spanning
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set. Therefore, we can obtain higher quality approzimations of a given signal by using
the adequate spanning set.

On the other hand we have been driven by the motivation of answering the following
question:

Is it possible to obtain a significant gain in the approzimation problem only by
relazing the condition of orthogonality?

In order to answer this question we have proposed a generalisation of the Haar
wavelet system. Such a system is an orthogonal basis if the translation parameter is
an integer. By relaxing this condition on the translation parameter one creates an
overcomplete set. We show here that, in the finite dimension case, introducing a non
integer translation parameter not only introduces redundancy but also enlarges the
corresponding subspace. We believe this to be the most important contribution of this

work.

The thesis is organised as follows: In chapter 2 we describe adaptive methods for
non-orthogonal signal representation which are known as adaptive pursuit techniques.
The above mentioned non-orthogonal Haar system is proposed in chapter 3 where
a series of experiments leading to definitive theoretical conclusions is presented. In
chapter 4 we illustrate, by very simple examples, the advantage of having the freedom
of choosing different types of waveforms for approximating signals of different nature.
Partial conclusions are given in each chapter and some general conclusions are drawn

in Chapter 5.



Chapter 2

Adaptive techniques for signal

representation

2.1 Introduction

In this section we discuss the problem of non-orthogonal signal representation, which
is often referred to as atomic decomposition. We also comment on some essential
differences between orthogonal and non-orthogonal signal approximations. In the fol-
lowing sections we present some techniques for adaptive signal representation. All the
techniques we consider are leading to the so called adaptive pursuit approach.

2.1.1 Signal space

As our signal space we adopt the Hilbert space ‘H of square-integrable functions. Hence,
a signal f belongs to H if

1f = /'uwdx 2.

The inner product of two functions f, g € H is defined as in [18]:

i) = [ £*(2)9(s)ds,

where with f* we denote the complex conjugate of f.

2.1.2 Atomic decomposition

Recent methodologies for signal representation operate on decomposing an arbitrary
signal to a linear expansion of waveforms [9, 7]. Such a representation is known as
atomic decomposition. We give next the formal definition.
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Definition: The atomic decomposition of a signal f € H is its representation as a

linear superposition
N
J= chan. (2.1)
n=1

The waveforms a, € H are called atoms and are chosen, by some criteria, from a
redundant family of functions, which is called a dictionary.

Definition: Let the family of atoms D = {a, },cz, be a dictionary for H. If this
dictionary contains a dictionary of linearly independent atoms, the later is a basis for

H [1].

According to the atoms in D, the dictionary can be described as orthogonal or
non-orthogonal. An orthonormal set of atoms forms an orthogonal dictionary, whereas
non-orthogonal dictionaries include bases and overcomplete sets. Thus, non-orthogonal
dictionaries can be constructed from all sorts of waveforms.

Given a signal, the actual computation of its representation as given in (2.1), de-
pends very much on the nature of the dictionary. In the next section we discuss a
major difference arising in iterative signal approximation techniques, when dealing
with orthogonal or non-orthogonal dictionaries.

2.1.3 Orthogonal and non-orthogonal signal representation

Let us assume that f € H and the atoms a,, € H involved in (2.1) are given. Let us
also assume that these atoms form an orthonormal set. Hence, the coefficients ¢, in
(2.1) can be obtained in a straightforward manner, as the inner products:

o =({an,f) ; n=1,... ,N. (2.2)

If the signal we are representing does not belong to the subspace spanned by the N
orthogonal atoms «,, the coefficients given in (2.2) are guaranteed to provide the op-
timal approximation of the signal in the corresponding subspace. (The approximation
is optimal in a minimum distance sense [10]). Moreover, if in order to improve the ap-
proximation, we add one atom to the linear expansion, the new optimal approximation
is obtained as:

N
f= chﬂfn + CN+1QN+1, (2.3)
n=1
with eyt = (an41, f)- (2.4)
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Equivalently, if an atom is removed, say the atom «;, the optimal linear expansion in
the reduced subspace is given by:

N
f= chan — Cjly, (25)
n=1
R
with ¢; = (a4, f). (2.6)

When relaxing the orthogonality condition the process of iterative signal approx-
imation becomes far more complicated than the simple procedure described above.
This is a consequence of the fact that, in this case, if the representation subspace is
increased (or reduced), the coefficients of the corresponding linear expansion should be
appropriately modified for them to yield an optimal representation in the new subspace
(16, 13]. To be precise: Let us consider that the atoms a, are not orthogonal, and let
Z:;I C;N)aﬂ be the best approximation of a given signal in the span of the N atoms
a,. The superscript of the coefficients indicates the dependence of these coefficients on
the number of atoms being considered. Hence, if the number of atoms is increased as
above, by considering one more atom a1, the corresponding optimal approximation
of the signal is to be computed as

N
= Z el e + Cfr\?:”ﬂwﬂ- (2.7)

n=]
Unlike in the orthogonal case (cf (2.3)) now all coefficients must be recalculated for
them to give rise to an optimal approximation.
Equivalently, when removing an atom, say the j-one, in order to obtain an optimal
approximation the remaining coefficients should be recalculated, i.e. the new approxi-
mation is to be computed as

N
F=3Y o Nay — oMoy, (2.8)

n=1
n#j

The need for recalculating coefficients, when using non-orthogonal atoms in adaptive
approximation of a signal, entails a practical complication one has to face. Here, we
will address the problem adopting a recently introduced biorthogonalisation technique.
Such a technique allows for recursive modification of the coefficients so as to achieve
an approximation which is optimal in a minimum distance sense [16, 13].

Another problem that we have to address when approximating a signal by using non-
orthogonal atoms, is the one of deciding how to choose the atoms to be used for
the signal approximation. This is a very complex problem and several solutions have
been proposed with different purposes in mind [8, 2, 1]. Here we shall restrict our
considerations to methods that have been developed along the line of the so called

10
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Matching Pursuit methodology [8, 6, 13, 11, 16]. In the following sections we present
a description of such methodologies dedicating a special attention to the Optimised
Orthogonal Matching Pursuit approach, since this is the technique that we will use in

our experiments.

2.2 The Matching Pursuit (MP) Approach

Let D = {ay;n = 1,---, N} be a finite dictionary and f € H a given signal to be
represented as a linear superposition of atoms chosen from D. The Matching Pursuif
(MP) approach introduced in [8] proposes to make the selection by successive approxi-
mations of f. At each step the corresponding residue is sub-decomposed by projecting
it onto the dictionary atom that matches it best.

Let Rj be the k-th order residue and I, the index n for which the corresponding

dictionary atom qy, yields a maximal value of |[(an, Rk)|; n=1,...,N, ie.
o, = argmax, |{om, Ri)|. (2.9)
Starting with f; = 0 and R, = f, the k—th order residual is decomposed to:
Ry = (an, Ry)ayn + Riya, (2.10)

which defines the residual of order (k+1).
Since Ry, given in (2.10) is orthogonal to a,, we have

||Rk”2 = |(Omek>|2 -+ I|Rk+1||2- (2.11)

From the above equation it follows that the dictionary atom ¢, yielding a maximal
value of |(a,, Rx)| minimises ||Rj11||?.

Hence, in order to minimise the residual error ||Rx1||?, we have to maximise the value
of |{an, Rk)|-

Letting the algorithm evolve with k, equation (2.10) gives the representation of the

signal as:
f = fx + Rita, (2.12)
where f} is:
k
fe =) (o, Ru)au,. (2.13)
n=1

The above described algorithm operates through the following steps:
Initialise k = 1, Ry = f, fi = 0 and set some tolerance parameter ¢ > 0 for the

residual error.

11
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Step 1: For n = 1,..., N, compute |[{ay,, ;)| and choose the atom giving the maximal
value. Denote such an atom q, .

Step 2: Compute Ry, by the formula: Ry = Ry — (o, Ri)a,.

Step 3: If the residual || Ry, ||> < € then stop the algorithm, else set k = k+1 and repeat
steps 1 — 3.

The MP approach is a fast technique which, as it is clear from the operational steps,
is very easy to implement. However, although its asymptotic convergence has been
proved [7], in some situations the convergence may be so slow that it is impossible to
achieve in practice. A refinement of this technique, which is based on orthogonalisation
of the atoms, improves the convergence rates and provides convergence in a finite
number of steps. This technique is described in the next section.

2.3 Orthogonal Matching Pursuit (OMP)

The MP approximations are improved by orthogonalising the directions of projection,
as proposed in [11, 8]. The resulting orthogonal pursuit converges with a finite number
of iterations, which is not the case for a non-orthogonal pursuit.

The atom oy, selected by the MP is a priori not orthogonal to the previously
selected atoms {oy, ; n = 1,...,k}. When subtracting the projection of the residual
over oy, ., the algorithm reintroduces new components in the directions of dey. ron=

., k}. This is avoided by projecting the residues on an orthogonal family {¢,; n =
1,...,k} computed from {a, ; n=1,...,k}.

Let us initialise ¢; = ay,, and R, = f. The atom qy, is selected so as to maximise
|{an, Ry)|. The OMP evolves for k > 2, by selecting the atom ¢, that maximises the
expression |{ay,, Rg)|, i.e.

oy, = argmax,_|{an, Ri)|. (2.14)

The orthogonal function ¢y is obtained as follows:

k-1

¢k = C.ng Z <|Ti;;¢|5|?;> (ﬁﬁns (215)

and the signal is expanded as:

k
Rﬂ: n :
=2, (n 5 QTP) Pt ine

= kaf + Ry41, (2.16)

where Pyk is the orthogonal projector on the space Vi generated by {,}i1<n<k, and
Ry is the residual of the next order.

12
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For any k > 1 the residue Ry is the component of f orthogonal to Vi.;. This implies
that:
(Ry, o) = (Ry, au,). (2.17)

There exists a dimension M, such that ||Ry41]| < € and the algorithm gives the

following approximation for f

M
f = E R’“a‘“ n. (2.18)

To expand f over the original dictionary {ay, }1<n<m We must perform a change of
basis. Every ¢, is expanded in {ay, }r<k<nmr as:

M

di=y Bi¥ar nety o M. (2.19)
k=1

where the coefficients binj are obtained by inverting the system. Inserting (2.19) in
the equation (2.18), gives:

f= Z e e (2.20)

with the coefficients ciM} given as:

M) = be”‘ ﬁ?’;al‘]z (2.21)

The OMP approach improves the MP convergence rate and therefore amounts to
a better approximation of a signal after a finite number of iterations. However, at
each iteration the OMP keeps selecting the dictionary atom as prescribed by the MP
approach (c.f. eq (2.9) and (2.14)), although such a selection is no longer an optimal
one. In the next section we describe an approach that overcomes this limitation.

2.4 Optimised Orthogonal Matching Pursuit (OOMP)

The Optimised Orthogonal Matching Pursuit (OOMP) is a technique that improves
upon the MP and OMP approaches in the following sense [16]:

At each iteration the algorithm gives an approximation to the signal, that is the or-

thogonal projection onto the subspace generated by the selected atoms, and minimises

the norm of the corresponding residual error.

13
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Let us recall that the approximation f; of a signal f € #H is the best possible
approximation in a subspace Vj, only if fi is the orthogonal projection of f onto Vi
(see appendix A). Hence, if we decompose the signal into

k
F=Y oy + R, (2.22)

n=1

in order to minimise the norm of the residual Ry the coefficients c}f) should satisfy:

k
Yelas =R (2.23)

n=1

The superscript k& in cgk) indicates the dependence of these coefficients on the ap-

proximation step. The OOMP approach introduces the proposal of modifying the
coefficients ¢4 in subsequent iterations by means of an adaptive biorthogonalisation
technique which is described below.

Out of the dictionary D the OOMP method chooses an arbitrary atom, say «,, and
set V) = ay,. The subspace of the chosen atoms at iteration k is denoted as Vj, and at
each iteration, a new subspace is constructed as: Vi1 = Vi@ ay,,,. Consequently, if we
denote as Wy, the orthogonal complement of Vj in Vj, the orthogonal projector onto
Vi+1 can be written as: pvk+l = Isvk +}5Wk+l. Thus, since by definition oy, ,, € Vj41, the

orthogonal projection of g, ,, onto Wiy, is the function 94, = oef;ﬂ, that satisfies:

Yk+1 = PWk-:-laka = ka+la’:k+1 = PVkale
(& kaa;kH. (224)

The normalised to unity version of function ., is denoted by Ur+1, hence we have:

- Vk+1
= — 2.25
'd)k"}-l || '(!)k..i.l || ( )

and the representation of the corresponding orthogonal projector operator onto Wiy
is given by
PWHlf = wk+1<1./f‘k+1; f)

In order to obtain the coefficients ¢\ +1), which at iteration k£ + 1 render an approxima-

tion fry1 = ka [, the OOMP approach introduces a representation for the operator
Py, in terms of biorthogonal functions [16, 14].

14
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Adaptive biorthogonalisation technique:
By setting [31(11) = o, = %, the functions arising from the recursive equations:

w~k+1 k
m<a!k+l’ﬁ!(n)> y h = 1,k

(k-i—l ‘J)k+l 226
B =Taal (29

k k
5}“““) 8 Bg(ﬂ) ad

have been shown to fulfil the following properties [16, 14]:

a) are biorthogonal to functions a; ;n=1,...,k+1, i.e,

(A[fH)aﬂtm):Jln,tm =L e B =0 ekl

b) they provide a representation of the orthogonal projection as given by

k41

‘ka+1f Z ﬁlk+1 r (227)
Due to the relevance of property b) to our purpose, the proof is given in appendix B.
The biorthogonal functions (2.26) are used to recalculate the coefficients in (2.22). At
each iteration the coefficients of the linear expansion representing the signal at best in

the given subspace are calculated as:

(k+1] [k 'J)k+1 ] =1 &

) (ﬁ !k+1)<“wk+l ”:f) y N yrregy
(k-l—].) = wk‘f']- 2 28
s <|| et 1! el

with " = (o, f).

As already stated, the OOMP differs from the MP and OMP method in the criterion
to choose the atoms for the iterative approximations. Rather than selecting the atom
as prescribed in (2.9) and (2.14) the OOMP aims at selecting the atom minimising the
residual error Ry, in (2.22). The following theorem, the proof of which is given in
appendix C, prescribes how the selection is to be made.

Theorem I [16]: The dictionary atom qy,,, that at iteration k + 1 minimises
the norm of the residue Rkﬂ is the one yielding a maximal value of the functionals
én; n=1,---,N, where:

|(atm, Ri)|? = |(2!J,,.,f)|2-
1— (amﬁVkaﬂ.} H wn ||2

en = (2.29)

15
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We sketch next the algorithm for selecting atoms by implementing condition (2.29),
and successively adapting the corresponding coefficients yielding the orthogonal pro-
jection of the signal onto the selected subspace.

Set initialy k=1, o), =an, du =1, i =n; n=1,---,N where [; is the index
n for which |(a,, f)| has the maximal value. Set a tolerance parameter ¢ > 0 and
wl =y, ﬁl = &y;61= (at'lrf>1 RO = f: ” Rl “2:” RU ”2 _|61|2'

Step 1: Forn=1,..., N calculate:

if |b,| < € set e, = 0 else e, = J%ﬂﬁ
Step 2: Update: k = k + 1, [y = n, where n is the index for which e, is maximised.

I Be |1 =l Re1 |I* —e,

WYk = ik
Vi,
aj
Br=—
k d,
cx = (Br, f)
Step 3: Forn =1,...,k — 1 compute the biorthogonal functions, and the coefficients as:

Bn = Bn — Bk (afks ﬁ?l)

Cp = Cn — (at;,aﬂn)ck:
where with (ay,, 3,) we denote the complex conjugate of (q,, B

Step 4: If ||Ri||? < e stop, else repeat steps 1 — 4.

Note: The above algorithm uses the Modified Gram-Schmidt technique, for con-
structing the orthogonal projectors ka- In some situations to avoid accumulative er-
rors, further reorthogonalisation may be needed [20]. Alternatively we can use the QR
decomposition to compute the projectors. This is actually the approach that we have
used for implementing this technique in our experiments.

16



CHAPTER 2. ADAPTIVE TECHNIQUES FOR SIGNAL REPRESENTATION

2.5 Redundancy Elimination Technique

Let us stress that the recursive equations (2.26) in section 2.4, can be applied on
any given linear independent set of atoms. The way in which the OOMP technique
selects atoms (in general, from a redundant dictionary), guarantees that such atoms are
independent. There are situations, however, in which we do not have information on
the signal itself, but only on the subspace it may lie in. In some cases, it is convenient
to have a representation of the subspace by means of the minimum possible numbers
of atoms. To this end we need to eliminate redundancy, in other words: we need to
build bases for the subspace.

Here we will adopt the technique proposed in [15] to construct dictionaries of linearly
independent atoms and the corresponding biorthogonal functions.

Note that from the definition of the functions v (cf. (2.24)) it follows that linearly
dependent atoms give rise to functions ¥ of zero norm. Hence, simply by disregarding
those atoms, we can select an independent set. Nevertheless, in practice we have to
deal with dictionaries yielding several functions 1, of small norm, thereby producing
important numerical errors. In order to reduce numerical errors, it is proposed in [15]
that the selection should be made in the following hierarchical way: at iteration k the
atom a,, maximising the norm of the corresponding function v, = o, — ;f’vk_l o, should
be selected, i.e. at iteration k£ the selected atom oy, is the one yielding a maximum
value of the following quantities:

||I|bﬂ”2 =1- {aﬂlp‘r’k-1aﬂ)'

Given a tolerance parameter € > 0 let us assume that the situation for which all
values of ||1,||? are less than €, is reached at iteration k. Hence, the method has selected
the k linearly independent atoms, up to the given tolerance. In addition to the linear
independent atoms ay; ; j = 1,...,k the algorithm provides us with the corresponding
biorthogonal functions g, ; j =1,...,k, computed as prescribed in (2.26).

Let us assume now that we are given a signal f € H and we choose the selected
basis oy, ; j = 1,...,k to represent it. Since the biorthogonal functions yielding the
representation of the orthogonal projector onto Vi are already computed, the atomic
decomposition of the signal v

hi=% alla; (2.30)
n=1

is readily obtained from the coefficients computed as the inner products:

B = (B®,f) ; n=1,...,k. (2.31)

17
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2.6 The Backward Optimised Orthogonal Match-
ing Pursuit (BOOMP)

The biorthogonalisation technique we have discussed in section 2.4 allows for the mod-
ification of biorthogonal functions in order to account for an additional atom in the
spanning set. As already discussed, the coefficients of the atomic decomposition (2.22)
need also to be recalculated if one atom is removed from the set. This can be achieved
by a backward biorthogonalisation technique proposed in [12]. Based on this tech-
nique an approach for reducing coefficients in an atomic decomposition is reported in
[13]. Such an approach is termed Backward Optimised Orthogonal Matching Pursuit
(BOOMP), because it selects the atoms to be disregarded according to a criterion
which is equivalent to the one proposed by the OOMP technique.
Given an atomic decomposition of a signal f € H through the linear expansion:

k
=2 el (2.32)
n=1

where the atoms a, are assumed to be linearly independent, the BOOMP approach
provides a set of recursive equations for modifying the coefficients ) when one of these
coefficients is to be disregarded. The approach decides on the atom to be disregarded
by minimising the norm of the residual error.

Let us assume that we are given a dictionary of & linearly independent atoms and let
Vi = span{a,;n =1, ... ,k}. Let us further assume that the corresponding functions
{ﬁ,(f) ; n=1, ... ,k} representing lf’w, are known. Hence the approximation in Vj, of
an arbitrary signal f € H is obtained as

k k
Paf =3 a8, f) = 3" e, 2.3)
=1

el

with the coefficients given by the the inner products:

e = (B, f). (2.34)

Consider now that the atom «; is to be removed from Vj; and denote the subspace of

the remaining atoms as Vi/o, = span{ai,...,q;j_1,Qj41,. .. , i }. Then, the optimal
approximation of the signal will be given by:
k k
PV;«/QJ- f = Z Cip </3r{1k”}1 f) = Z Cq(:cfj)am (235)
"7 =y
It is proved in [12] that the functions /7 in (2.35) can be obtained from the recursive
formula:
(k) gk) (k)
I OO i\ . R S FE R (2.36)

185 |12
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Consequently, the coefficients FA) in (2.35) are computed as
. (B, B3°)
clkld) = (k) _ o - c§ ), (2.37)
157 |

Now that we know how to modify the remaining coefficients when one coefficient,
say ¢;, is to be omitted, we need to consider a criterion for choosing ¢;. The following
theorem establishes the BOOMP selection criterion. The proof can be found in ap-
pendix D.

Theorem II: Let f%j be the residual resulting by disregarding the coefficient cf,-k} as

passing from approximation fy, to fy, , 1.e., fy, = I, +Rj. In order to minimise the
~ 1 1

norm of the residual R; such coefficient is to be chosen as the one yielding a minimum

value of the quantity

|C§k)|2
iy 2.38)
7 (
185712
Assuming that the sets {a, ; n=1, ... ,k} and {ﬁ&k) in=1,...,k} are known,

the BOOMP disregards coefficients of an atomic decomposition as prescribed by the
following steps:

Step 1: Compute the coefficients P = ( ,&k},f), and find the index j for which the
PO

expression W is minimised.
3

Step 2: Modify the biorthogonal functions using equation (2.36), and the remaining co-
efficients using (2.37).

Step 3: Repeat steps 1 and 2 until a given tolerance error for the approximation is reached.

2.7 Numerical example on MP algorithms

2.7.1 Aims

We illustrate here, numerically, some typical features concerning the performance of
the MP, OMP and OOMP algorithms introduced in the sections 2.2, 2.3 and 2.4. The
posterior application of BOOPM leading to interesting conclusions.

19



CHAPTER 2. ADAPTIVE TECHNIQUES FOR SIGNAL REPRESENTATION

2.7.2 Procedure

We will approximate the signal of figure 2.1 (left graph), using a dictionary of mexican
hat wavelets, which will be introduced in section 4.2.

1t g 1t
o.8f R o8l
0.6} R 0.6
0.4 ~1 0.4}
oz2f R 0.2}
o o
—0.2} e 0.2}
—0.4f - —0.4}
=4 2 o 2 a —a 2 o 2 a

Figure 2.1: Left Graph: The chirp signal. Right Graph: Approximation of the chirp
with mexican hat wavelets, using the MP approach.

First we apply the MP approach. This approach exhibits slow convergence rate,
after 10000 iterations the representation of the signal is the one of figure 2.1 (right
graph). A graph of the error for the first 3000 iterations, is given in figure 2.2.

a 500 1000 1500 2000 2500 3000

Figure 2.2: Approximation error of the chirp with mexican hat wavelet, using MP
(10000 iterations).

We also apply the OMP within the workings of the OOMP approach, i.e. computing
biorthogonal functions rather than inverting a matrix, as originally proposed in [11, 6].
For this example we have found that the OMP needs 25 more coefficients than the
OOMP approach to produce an approximation of the same quality. In figure 2.3 (top
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left graph) it is plotted the OMP approximation with 100 coefficients. The OOMP
approximation for the same number of coefficients is plotted in figure 2.3 (top right
graph). See table 2.1 for the corresponding values of residual errors.

1F
08¢
06}
0.4}
0.2}
0
-0.2¢

1F
0.8}
061
0.4}
021
0
-02}

; ; . -0.4¢ : . ,
-4 <2 0 2 4 -4 -2 0 2 4

Figure 2.3: Top Left Graph: Approximation of the chirp signal with the mexican
hat dictionary using the OMP approach and 100 coefficients. Top Right Graph: Ap-
proximation using the OOMP and 100 coefficients. Bottom Left Graph: Applying
the BOOMP to the previous approximation, 75 coefficients. Bottom Right Graph:
Approximation using OOMP, 75 coefficients

We now apply the BOOMP to the OOMP approximation of figure 2.3. We see that
disregarding 25 coefficients the approximation is still acceptable (bottom left graph,
figure 2.3). Nevertheless if the OOMP is stopped after 75 iterations the resulting
approximation is the one plotted in the bottom right graph, of the same figure.
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Coefficients | OMP OOMP
100 | 9.64828e-4 | 2.2229e-04
125 | 2.2165e-4 2.7681e-05

Table 2.1: Error of the approximation using the OOMP and the MP algorithms.

2.8 Remarks

In this chapter we have discussed some techniques for adaptive approximation of a sig-
nal in terms of non-orthogonal atoms. The differences of the MP, OMP and OOMP ap-
proaches have been established from a formal viewpoint. In addition, these approaches
have been compared in relation to convergence rate by recourse to a numerical exam-
ple. The results are in accordance with what can be expected from the theoretical
considerations: OOMP renders the fastest convergence rate. In the given example,
the difference as compared with the MP approach being enormous. The difference
with OMP being less pronounced, however, since the implementation of OMP is not
less computational demanding there is no practical advantage of this approach over
OOMP. Hence, in all our relevant experiments we will use only the OOMP approach.
A really interesting result arises from the application of BOOMP to the OOMP approx-
imation. It strongly suggests that a smart forward/backward procedure could improve
sparseness in the representation. Unfortunately, due to time limitation we have not
been able to implement such a technique. We leave this line of research as one of our
proposals of future work.
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Chapter 3

The Haar based dictionary

3.1 Introduction

In this chapter we introduce a non-orthogonal dictionary, which is generated from the
well known orthogonal Haar wavelet system. We discuss the Haar basis in [0,1] and
transform this basis into a redundant set. We show that, in the finite dimensional case,
the new set spans a subspace larger than the one expanded by the orthogonal wavelets.
Experiments illustrate potential advantages of the proposed non-orthogonal system.

3.2 Dyadic intervals
Definition: For each pair of integers m,n € Z we define the interval I, ,, by:
Inn= 1277027 +1)).

The collection of all such intervals is called the collection of dyadic intervals on R.
One useful property of the dyadic intervals, is the following:
Lemma: Given mg, ng, my,n; € Z and either mgy # m; or ng # ny, then one of the
following must be true:
L Im~,,m N Imu,ng = @
L Im;,m g I’-"ﬂ.:],ng
* Imn,no g Im,,m-
In the last two cases, the smaller interval is contained in either the left or the right half

of the larger interval.

Another notation we can use, based on the previous lemma, is the following:
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CHAPTER 3. THE HAAR BASED DICTIONARY

Definition: Given a dyadic interval of scale m, I,,, we write:

By = BT

m,n?

where I} . is the left and I7, , the right half of the interval I, ,, of scale m + 1.

3.3 The Haar system on R

Let us define the function Xj,;) as:

1, if z€lab)
0, elsewhere

Xiap(z) = {
Let p(z) = Xjo,1)(2), and for each m,n € Z, we define

pm,n(m) = 21}:0(2m$ —n),

The collection {pmn(z)}nez is referred to as the system of scale m Haar scaling func-

tions.

Let h(z) = Xjo,1/2)(x) — Xp1/2,1)(z) (see figure 3.1), and for each m,n € Z define
homn(z) = 22 h(2™z — n).

The collection {hy, n(Z) }imnez is referred to as the Haar system on R. For each m € Z
the collection {hmn(z)}nez} is referred to as the system of scale m Haar functions.
We call m the scale parameter and n the translation parameter. The Haar system is
created through translations and dilations of the function A(z), which we call mother
wavelet.

Some important remarks on the Haar system on R:

e For each m,n € Z

m

hm,n(x) = QT(X;?!“M il X{f,;l,n)'

So the hy, 5 is supported on the interval I, , and does not vanish on that interval.
We say in this case, that the Haar function h,,, is associated with the interval
Im,‘n-

e For each m,n € Z we have:

f hann(z)dz = / hmn(z)dz =0
R I'm.n

z)|*dx = z)|%dz = 1.
[{Ihnl.n( )|*dz -/;mrn|hm,n( )|°d 1
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Figure 3.1: The Haar scaling function pg(left graph) and the mother wavelet for the
Haar system hgo(right graph).

From the above remarks and using the properties of the dyadic intervals, we conclude
that:

The Haar system on R is an orthonormal system on R.

We now define the Haar system on [0,1], which is of relevance to our experiments.

3.4 The Haar system on [0,1]

Definition: For any integer J > 0 the scale J Haar system on [0,1] is the collection:
{pin(z):0<n < 27 —1}U{hmn(z) :m > J;0<n < 2™ -1}

For J = 0, this collection is referred to as the Haar system on [0,1].

As defined above the Haar system on [0,1] consists of precisely those Haar functions
hmn corresponding to dyadic intervals I, that are subsets of [0,1] (see figure 3.2),
together with the scaling function pgo(z).

In figure 3.3 we plot some elements of the Haar system in [0,1], corresponding to
scales m = 0,1,2 and 3.

The following theorem is essential to our purpose. The proof is given in [19].

Theorem: For each integer J > 0, the scale J Haar system on [0,1] is a complete

orthonormal system on [0,1].
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Figure 3.2: Haar wavelets on [0,1] corresponding to scales m = 2 (left graph) and
m = 3 (right graph).
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Figure 3.3: The Haar wavelets for scales m = 0 to 3 from top left to bottom right.
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The subspace spanned by the single function pgg(z) will be called V5 and the
span{hmn; 0 < n < 2™ — 1} will be called W,,. We also define the subspace

Vm=WWUWiU---UW,,. (3.1)

3.5 Non-orthogonal Haar based dictionary

In order to introduce our non-orthogonal Haar based system let us recall that with h(z)
we denote the mother Haar wavelet function and the set of functions {p, () }nez, is
the scale m Haar scaling functions system. We introduce now the key ingredient for our
construction: rather than considering the translation parameter an integer (as required
by the orthogonality condition) we let this parameter be of the form b - n with n € Z
and b a real number in (0,1). Hence the corresponding wavelet functions are of the

form:

Omn(z) = 2% h(2™z — bn). (3.2)

The following definition completely characterises our Haar based dictionary on [0,1].

Definition: The non-orthogonal Haar based system on [0,1] is the collection:

1
Dop(z) U {amn(z): m20, 0 n<2™ - 5}

In figure 3.4 some wavelets of the non-orthogonal system are plotted, for scale m = 1
and different values of the translation parameter.

We will denote the scale m non-orthogonal Haar based system as R,, = span{a, ;0 <
n<2™m— %} and the non-orthogonal Haar based system from scale 0 to scale j will be

denoted as:
B;=WUR;U---UR,;. (3.3)

As a consequence of introducing the parameter b in the wavelets definition (cf.
(3.2)), the non-orthogonal dictionary contains atoms a, , that are no longer supported
on the dyadic interval I, ,, i.e., we can have wavelets that vanish on a given dyadic
interval. It is clear then that, by relaxing the orthogonality condition we have, for each
scale, a larger number of atoms, which completely lie inside the [0,1] interval. This is
illustrated in figure 3.5.

Since the orthogonal Haar system on [0,1] is a complete set of functions, it is clear
that by incorporating more functions in the whole set we can only introduce redun-
dancy. The question arises, however, as to whether this is also true when considering
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Figure 3.4: Non-orthogonal Haar wavelets for scale m = 1 and for translation param-
eters b = 0.5, 0.25, 0.125 and 0.0625 (from top left to bottom right)
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Figure 3.5: Orthogonal Haar wavelets corresponding to scales m = 1 and m = 2 (left
column), and non-orthogonal Haar based wavelets for the same scales and b = 0.25
(right column).
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a finite subset of functions, up to scale m say. In the next section we present an

experiment that is specially devised to answer this question.

3.6 Thought experiment

3.6.1 Aims

The aim of this experiment is to show that if we consider the linear span of Haar func-
tions up to a fived scale, the incorporation of non-orthogonal Haar functions, defined
in section 3.5, up to the same scale, not only incorporates redundancy, but extends the
subspace.

We consider the subspaces V; and B; as defined in (3.1) and (3.3) respectively.
Since Vj is the subspace spanned by the Haar functions from scale 0 to j, and B; is
the subspace spanned by the non-orthogonal Haar functions within the same scales,
by construction we have that V; is included in B;. In order to show that V; # B, it is

enough to show that there is a signal in B; which does not belong to Vj.

3.6.2 Procedure

We consider for this experiment the subsets V; and B;. We define a signal f € H in the
interval [0,1] as follows: Out of the dictionary Bs we take three dictionary functions
at scale m = 3 and b = 0.25. The functions are chosen in such a way that none of
them is an element of V3. We construct f as a linear combination of such functions.
Hence f € Bj. This signal is plotted in figure 3.6 with the solid line. If we try to
approximate the signal using the orthogonal subdictionary V3, the approximation we
obtain is shown in figure 3.6 on the left. It is clear from the graph, that f ¢ Vj.

In addition to the previous experiment we consider the dictionary Vj, which is
obtained by adding to V3 the orthogonal Haar functions of one higher scale. The
representation that we obtain now coincides with the signal, i.e f € V} (see figure 3.7).
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Figure 3.6: Approximation of a signal f with two subdictionaries involving the same
scales. The graph on the left corresponds to the orthogonal Haar dictionary and the
one on the right to the non-orthogonal one.
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Figure 3.7: Approximation of a signal f with orthogonal Haar wavelets up to scale
m = 4 (left graph), and approximation with the non-orthogonal Haar wavelets up to a
coarser scale m = 3 and b = 0.25(right graph).
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3.6.3 Conclusions

In the experiment above we have found a signal f € B; which is not in V3. This leads
to conclude that in the finite dimensional case, by increasing the number of functions
at a fixed scale we can extend the subspace generated by orthogonal functions at the
same scale.

We are now in a position to answer the question motivating the experiment:

In the finite dimension case, by decreasing the translation parameter b of the non-

orthogonal Haar functions we do not only incorporate redundancy. The new, non-
orthogonal dictionary creates a larger subspace, that is similar to a subspace created by
orthogonal dictionaries of higher scales.
From the experiments we have also seen that with the dictionary B3 and setting the
parameter b = 0.25 we have the same approximation as with Vj. This suggests that
we can generate Haar wavelets of higher scales, by using the non-orthogonal Haar
dictionaries of smaller scales, only by introducing a translation parameter b < 1. In the
following experiments we will try to show that these conclusions hold in other cases
as well, where we approximate arbitrary signals, and try to improve by changing the
value of the translation parameter b.

3.7 Experiments using the non-orthogonal Haar dic-

tionary

3.7.1 Aims

In the thought experiment given in the previous section, we concluded that by decreas-
ing the translation parameter b of the non-orthogonal Haar functions (c.f. eq (3.2)),
we introduce a larger subspace. Here we illustrate this fact further, by approximating
two signals of different nature. All approximations are obtained by using the OOMP
approach discussed in section 2.4.

We already know that using Haar wavelets of higher scales allows us to improve
approximations. Theoretically, by increasing the scale to infinity we can represent any
signal in #. In practice, however, we cannot use arbitrary large scales, as increasing
the scale implies having to increase the resolution in representing the functions. On
the other hand, we have already seen that by relaxing the condition of orthogonality
and considering a translation parameter b = 0.25 it is possible to obtain, with coarser
scale, the same approximation as with an orthogonal subdictionary at a finer scale.

The aim of this series of experiments is to show that we can keep simulating finer
and finer scales, by letting the translation parameter b decrease by powers of 2.
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3.7.2 Procedure

For the first series of experiments we will consider the blocky signal of figure 3.8. We will
compare the dictionary V3 with the dictionary Bj for different values of b. In figure 3.8
(top graph on the left), we can see the approximation we obtain by using the orthogonal

dictionary V3. The approximations obtained with the non-orthogonal dictionary are

plotted in the remaining graphs of same figure, for the values b = 0.25, b = 0.125, and

b = 0.0625. The orthogonal dictionary V3 cannot give a better approximation for this

scale. However, as shown in figure 3.8, by letting the value of b decrease by powers of

2 we have obtained better approximations without changing the scale.
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Figure 3.8: Approximation of the blocky function using the orthogonal Haar dictionary
of scale m = 3 (top graph on the left) and with the non-orthogonal dictionaries of scale
m = 3 and values of b equal to 0.25, 0.125, and 0.0625 respectively.
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Figure 3.9: Approximation of a smooth signal by the orthogonal Haar dictionary of
scale m = 3 (top graph on the left). Subsequent approximations by considering the
non-orthogonal Haar dictionaries of the same scale and values of b equal to 0.25, 0.125,
and 0.0625 respectively.

We consider now the smooth signal in figure 3.9. With an orthogonal Haar dictio-
nary we can have a good approximation of this type of signal only by using a consid-
erably large scale. If we consider the subdictionary V3 the approximation is the really
poor one shown in figure 3.9 (top graph on the left). As in the previous example, when
using the non-orthogonal dictionary Bz, and by decreasing the value of the parameter

b, we can achieve a higher quality approximation without changing the scale.
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3.7.3 Conclusions

We have approximated two signals of different nature. A blocky and a smooth signal.
We have used the orthogonal Haar dictionary up to scale 3, V3, and the non-orthogonal
Haar based dictionary Bj of the same scale, but for different values of b. We have
obtained good approximations of both signals, without increasing the scale, but by
letting the parameter b decrease. This can only be done by resigning orthogonality.
Nevertheless, the release of such a property has allowed us to approximate functions,
like the one in figure 3.9, which require high scales otherwise, without having to increase
the precision of the representation. From the experiments of this section we conclude
that:

By decreasing the translation parameter b, we can achieve better and better approz-

imations without changing the scale

3.8 Redundancy elimination using the non-orthogonal

Haar dictionary

3.8.1 Aims

So far we have considered the problem of selecting atoms from a non-orthogonal dic-
tionary as a signal dependent problem: Given a signal, we have iteratively selected
the atoms that, at each iteration, yield an optimal approximation of the signal. Here
the selection will be carried out through a signal independent procedure: Out of a
non-orthogonal dictionary, we will eliminate redundancy by the method described in
section 2.5. For the non-orthogonal Haar based dictionaries we are considering in this
chapter, all different sets of linear independent atoms are guaranteed to span the same
subspace. This is due to the fact that, in these types of of dictionaries, the number of
linear independent atoms can be determined without ambiguity. Hence, by eliminating
redundancy we can easily obtain different bases for the identical subspace.

The aim of the experiments wn this section is to extract different bases from a non-
orthogonal Haar based dictionary. The corresponding biorthogonal bases will also be
computed.

Once the biorthogonal bases are available, given a signal one can immediately com-
pute the coefficients of its representation in different bases. Moreover, by disregarding
coefficients through the BOOMP approach (section 2.6), one can assess if a basis is
more adequate than others for representing that given signal. The suitability of a ba-
sis may follow, in some cases, simply from the cardinality of the non-zero coefficients
which are needed to represent the signal in such a basis. In other cases, entropy and
other concave measures may be needed to decide on the suitability of a basis [7].
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3.8.2 Procedure

In these experiments we consider the dictionary Bjs with translation parameter b =
0.0625. By eliminating redundancy we obtain different bases for the subspace. These
bases however are not orthogonal, so that we will have to use the corresponding
biorthogonal functions to obtain the representation of the signal. In figure 3.10 we
can see that for an identical atom participating in two different bases, the correspond-

ing biorthogonal function is different.
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Figure 3.10: Each row corresponds to an atom and the corresponding biorthogonal
functions for a different basis. Every time we choose a new basis, the biorthogonal
functions are different.

Having different bases we can approximate any given signal with a subset of the
bases. Using the corresponding biorthogonal basis we compute the coefficients of the
atomic decomposition and then apply the BOOMP for disregarding some of them.
In figure 3.11 we approximate the blocky signal using two different bases. If we use
all the coefficients the approximations we obtain are exactly the same, since both are
approximations in the same subspace. As shown in figure 3.12 the coefficients of each
representation are, of course, different. Also after applying the BOOMP for reducing
coefficients in each case, the remaining coefficients vary quite a lot (see figure 3.12,
lower row).

The fact that a basis may be more appropriate than other is made clear in the
following experiment. When approximating the signal of figure 3.13, we have the same
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Figure 3.11: Approximation of the blocky signal using the dictionary B; with b =
0.0625. The approximations have been made using a different basis of Bj.

result for both dictionaries. Since the two bases create the same subspace, the approx-
imation error, as shown in the first row of table 3.1, is almost the same. However after
applying the BOOMP, we see that there is a big difference in the number of coefficients
needed for representing the signal. In figure 3.13 we can see the two approximations af-
ter applying the BOOMP. The graph on the left corresponds to the approximation with
the smaller error. In figure 3.14 we give a plot of the absolute value of the coefficients
sorted in decreasing order. Stopping the procedure when we reach a certain value for
the error, the approximations are almost the same. When we use the BOOMP algo-
rithm to disregard coefficients up to an acceptable precision for the approximation, we
see that the first basis needs only 15 coefficients (solid line), whereas with the second
basis we have to use the double amount (30 coefficients, dashed line) and as it is clear
from the table 3.1, the approximation is still not as good as the previous one.

Basis 1 Basis 2
All the coefficients 1.783- 10~ | 2.137 .10~ *°
After using BOOMP 0.0555 0.2943

Table 3.1: Representation errors, given by the norm of the difference between the signal
and the calculated approximation.
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Figure 3.12: 3D plot of the coefficients for the approximation of the blocky function
using two different bases. Before applying the BOOMP (upper row) and after (lower
row).
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Figure 3.13: Approximation of a signal using two different bases that originate from
the same dictionary.
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Figure 3.14: Graph of the absolute value of the coefficients sorted in decreasing order.
The dashed line represents the coefficients needed for representing the signal of figure
3.12 (right graph). The solid line represents the coefficients needed for the approxima-
tion using a more suitable basis (left graph).
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3.8.3 Conclusions

In this series of experiments we eliminated the redundancy from the non-orthogonal
dictionary Bj with translation parameter b = 0.0625. We obtained, thereby, different
bases for the span of B;. We have seen that the form of the corresponding biorthog-
onal functions may significantly change in each case. The experiments of this section
illustrate that:

From the same dictionary we can pick different sets of linear independent atoms,
i.e. different bases for the same subspace. Although all bases represent a given signal
up to an identical precision, some bases may be more suitable than others, in terms of
amount of coefficients and approzimation error, for a specific signal.
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Chapter 4

Experiments on signal

representation

4.1 Introduction

In this chapter we illustrate the relevance of using appropriate dictionaries to represent
different types of signals. To this end we will use two different dictionaries: The
earlier introduced non-orthogonal Haar dictionary and the dictionary of mexican hat
wavelets, to be introduced here. We will also consider the possibility of mixing these

two dictionaries for representing signals of mixed features.

4.2 Mexican Hat dictionary

The Mezican Hat is a function obtained from the second derivative of the Gaussian

Iz . 3 . oo
e~ 7. Its functional form is given by [5]

W

T

U(E)=C-(1-2)-e 7, (4.1)

. g -1 S . - :
with C = %ﬂ' i a normalisation constant. The shape of this function, as shown in
4.1, justifies its name.

Figure 4.1: Mother wavelet for the mexican hat dictionary.
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The mexican hat dictionary is composed of wavelet functions 1, , arising from the

equation:
Yma =27 F¢(a" —bn) ; mneZ (4.2)

with, the mother wavelet 1o (z) = ¢ (z) as given in (4.1).

In figure 4.2 we plot some of the mexican hat wavelets for different scales. As
shown in the graphs, changing the scale parameter m in (4.2) gives narrower or wider
wavelets, while changing n gives translations of the same wavelet.

15 2
4 1.5
1
05 ]
0.5
0
0
-0.5} 05
-1 =
-4 x 0 2 4 =4 2 0 2 4
3 4
al 3
2
1
1
0
0
o j e
=2 ' - : =2 :
4 -2 0 2 4 4 2 0 2 4

Figure 4.2: The mexican hat wavelets for different scale and translation parameters.

We denote the set of the mexican hat wavelets of scale j as ¥; = {¢; .(z) ; n € Z},
and the set of mexican hat wavelets up to scale j as: I'; = oUW, U...UV,.

4.3 Comparing non-orthogonal dictionaries

4.3.1 Aims

Dictionaries of wavelets, like the Haar and the mexican hat dictionaries we have defined
here, contain atoms which originate from the same mother wavelet. Thus, the shape
of all the dictionary’s elements is determined through that of the mother wavelet.
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The aim of these experiments is to illustrate the results of choosing a suitable dic-
tionary to approzimate a given signal. These results are assessed in terms of number
of coefficients in the representation and the corresponding residual error.

We will compare the mexican hat and the non-orthogonal Haar dictionaries to
approximate two signals of different nature:

i) a modulated chirp and

ii) a blocky-type signal.

4.3.2 Procedure

First we approximate the modulated chirp signal in the interval [0,8]. We use the
following two non-orthogonal dictionaries:

i) the mexican hat wavelets dictionary with translation parameter b = 0.2, and
scaling parameter a = 2, denoted as I'4.

ii) The non-orthogonal Haar based dictionary from scales m = —3 to 2, denoted as
By U B_3/By. The translation parameter of the functions is fixed as b = 0.0625.

In figure 4.3 (top left graph), we see that the mexican hat dictionary, using 75
coefficients, gives a high quality representation of the signal. In addition, by applying
the BOOMP technique to this approximation, we obtain the top right graph with only
56 coefficients. Using the Haar based dictionary we obtain the approximation to the
signal shown in the bottom left graph of figure 4.3 with 350 coefficients. After applying
BOOMP to reduce the number of coefficients up to 130, the approximation is the one
shown in the bottom right graph of the same figure. In both cases we stop the BOOMP

algorithm for some level of approximation error.

Now we approximate a different type of signal, a blocky function in [0,8], with

the same dictionaries as in the previous case. Figure 4.4 (top left graph) shows the
approximation we obtain with the mexican hat dictionary and using 250 coefficients.
Figure 4.4, (top right graph), shows the approximation after applying the BOOMP, to
retain only 138 coefficients, for which the approximation is still acceptable.
With the non-orthogonal Haar dictionary we reach a satisfactory approximation of
the signal, plotted with the dashed line in the bottom left graph of figure 4.4, using
102 coefficients. After applying BOOMP, retaining only 58 coefficients we still have a
satisfactory approximation. This approximation is represented with the dashed line in
the bottom right graph of the same figure.

42



CHAPTER 4. EXPERIMENTS ON SIGNAL REPRESENTATION
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Figure 4.3: Top Left: Approximation of the chirp with the mexican hat, 75 coefficients.
Top Right: Approximation using the mexican hat and BOOMP, 56 coefficients. Bottom
Left: Using the non-orthogonal Haar, 350 coefficients. Bottom Right: Using the non-
orthogonal Haar and BOOMP, 130 coefficients
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Figure 4.4: Top Left: Approximation of the blocky function using the mexican hat with
250 coefficients. Top Right: Using the mexican hat with BOOMP, 138 coefficients.
Bottom Left: Using the non-orthogonal Haar, 102 coefficients. Bottom Right: Using
the non-orthogonal Haar with BOOMP, 58 coefficients
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4.3.3 Conclusions

In these experiments we have represented a modulated chirp and a blocky signal, both
in the interval [0,8]. For the representation we have used the mexican hat and the
non-orthogonal Haar dictionaries. We have compared the number of coefficients in the
corresponding representations as well as the corresponding residual errors. As expected,
the chirp signal is better approximated by the mexican hat dictionary and the blocky
signal by the non-orthogonal Haar one. The results are of course not surprising but
support the following intuitive remarks:

According to the type of signal we want to approzimate, there are dictionaries that
are more suitable than others. Signals with high regularity can be better approzimated
by dictionaries like the mezican hat, whereas signals with steps and discontinuities can
be approzimated better by dictionaries like the Haar. It is therefore very important to
have the freedom to decide on the dictionary to be used in order to represent a signal

of known properties.
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4.4 Representation of a mixed signal

4.4.1 Aims

In the previous section we have seen that a dictionary may be more suitable than others
to approximate a certain type of signal. We consider now the case in which the signal
at hand is characterised by exhibiting distinct localised properties.

The aim of the experiments in this section is to analyse the possibility of using a
mized dictionary to approzimate a signal of diverse features.

We will use the non-orthogonal Haar, the mexican hat dictionary and a dictionary

composed by joining together the previous two.

4.4.2 Procedure

Let the signal we want to represent be the mixture of two localised blockies and a piece
of low frequency chirp, plotted in the top left graph of figure 4.5. As discussed in the
previous section the Haar dictionary is suitable for representing the blocky part of the
signal and the mexican hat for the oscillating one. With the experiments of this section
we will compare the approximations obtained when using each dictionary by itself, and
the approximation obtained when using both dictionaries as one.

In figure 4.5 (top right graph), we plot the approximation of the signal obtained by
using only the mexican hat dictionary and 224 coefficients (after applying BOOMP).
In the blocky part of the signal we observe a phenomenon similar to the Gibbs effect
for the Fourier basis. We should stress that, although by increasing the number of
dictionary functions used in the approximation, the norm of the residual error does
decrease (yet slowly), the Gibbs-type effect remains. This suggests that by using a
dictionary of mexican hat wavelets we may not be able to have pointwise convergence

to only piecewise continuous signals.

As it is seen in the bottom left graph of figure 4.5, by using a non-orthogonal Haar
dictionary the Gibbs effect it is not present. The approximation plotted in the figure
was obtained with 207 coefficients. However, in this case by using a larger number of
coefficients (450) we can improve the approximation and make it visually identical to

the exact signal.

We now consider a large set, containing the mexican hat and the non-orthogonal
Haar dictionaries. Applying first the OOMP technique to the whole set and then the
BOOMP on that approximation, we obtain the approximation of figure 4.5 (bottom
right graph) with 104 coefficients. With respect to the previous approximations the
number of coefficients has been reduced. Comparing the norm of the residual errors
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given in table 4.1 we conclude that this approximation yields the smallest residual
error by means of the smallest number of coefficients. However, the Gibbs effect in the
blocky part of the signal persists. As in the case of the single mexican hat dictionary,
although the norm of the residual error can be diminished by increasing the number
of atoms in the representation, the Gibbs-type phenomenon remains. In other words:
unfortunately the mixed dictionary has inherited from the mexican hat dictionary the
non-pointwise convergence to only piecewise continuous signals.

Coeflicients | Error

mexican hat after BOOMP | 224 0.0037
Non-orthogonal Haar after BOOMP | 207 0.0035
mixed dictionary after BOOMP | 104 0.0033

Table 4.1: For each approximation method we show the coefficients needed, and the
corresponding residual error.
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0 2 4 6 8 0 2 4 6 8
Figure 4.5: Top Left: The mixed signal: blockies with a low-frequency chirp. Top
Right: Approximation using the mexican hat dictionary, 224 coefficients. Bottom Left:

Approximation using the non-orthogonal Haar dictionary, 207 coefficients. Bottom
Right: Approximation using the mixed dictionary, 104 coefficients.

48



CHAPTER 4. EXPERIMENTS ON SIGNAL REPRESENTATION

4.4.3 Conclusions

These experiments presented here have given us some “first experience” on the use of
mixed dictionaries to approximate signals of mixed features.

We understand that from this single experiment we cannot arrive to general con-
clusions. Nevertheless, we believe that we are in a position to safely assert that:

The use of mized dictionaries for representing signals of mized features seems to
be an adequate procedure to achieve an economical representation. However, there is
a convergence issue to be considered. It appears that, if one of the dictionaries does
not yield pointwise convergence the mizture with other dictionaries does not guarantee
pointwise convergence either.

It is clear that there is still much work to be done on this subject. Finding a
smarter way of selecting atoms from mixed dictionaries would certainly be of great

importance.
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Chapter 5

Conclusions

5.1 General remarks

We divided the goal of the thesis in two main objectives. The first was to illustrate,
by simple numerical examples, the advantage of choosing the waveforms to represent a
signal by taking into account prior information about the signal properties. In general
this entails having to resign the simplicity of dealing with orthogonal waveforms and
face the nonlinear problem arising when using non-orthogonal ones. The techniques we
have applied for this purpose can be classified in the line of adaptive matching pursuit.
Such techniques operate by iteratively selecting waveforms (atoms) from a large, and
in general redundant, dictionary of functions. In our experiments we have used the
OOMP approach since, at least theoretically, it has been proved to improve upon
earlier introduced MP techniques. We have illustrated this by a numerical example,
since no simulation illustrating the theoretical improvement was available. We have
also applied the recently introduced BOOMP, which allows for the reduction in the
number of coefficients of a given non-orthogonal representation. This technique is easy
to implement and our experiments show that its application may result in a significant
gain as far as the economy of the representation is concerned. In addition, we have
collected evidences suggesting that a recursive combination of OOMP and BOOMP
techniques might result in a more economical representation. Unfortunately, due to
time limitation we have not been able to look into the possibility of this combined
strategy. We should leave the task as one of our main proposals of future work.

Our second objective was to be in a position to answer whether simply by relaxing
the orthogonality condition one can obtain some gain in the signal representation prob-
lem. This has motivated the proposal of a generalisation of the well known orthogonal
Haar dictionary. The new dictionary, that we have termed non-orthogonal Haar based
dictionary, is generated simply by introducing a non-integer number in the transla-
tion parameter of the Haar wavelets. We found the results of this generalisation most
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interesting. We can definitively conclude that in the finite dimensional case relaxing
the orthogonality condition does not only introduce redundancy, but creates a larger
subspace. Our experiments show that, for a fixed scale, by decreasing the transla-
tion parameters we obtain subspaces that can only be generated with orthogonal Haar
functions of finer scale. The gain that can be achieved by using the new dictionary
in problems of signal representation is clear. We are aware, however, that in order to
use this dictionary for signal analysis, a new analysis scheme needs to be proposed.
Looking into the possibility of devising such a scheme is our other main proposal of
future work.

5.2 Future work proposals

e To combine forward/backward strategies in order to design new techniques for
adaptive signal representation.

To generalise other orthogonal wavelet families in order to see if the results hold-

ing by generalising the Haar dictionary are extensible to other cases.

To look for a new wavelet analysis tool based on density of points in the trans-

lation parameter domain.

To look for alternative criteria in choosing atoms from a mixed dictionary.



Appendix A

Projection Theorem

Let V be a closed subspace of a given Hilbert space H. We denote by V* the set of
elements in #, which are orthogonal to V. The subspace V* is called the orthogonal

complement of V, and it is also a Hilbert space.

Projection Theorem [17]: Let f € #H, and V a closed subspace. Then every

f € H can be uniquely written:
f=g9+h, (A.1)

where g € V and h € V+.
From the above theorem we have the following proposition.

Proposition: The unique element g € V' minimising the distance to an arbitrary
element f € H, is obtained as: ¢ = Py f, where with Py we denote the orthogonal

projector onto the subspace V.

Proof: Let g € H be an arbitrary function in V. We write ¢ as:
9=9—Pf+Pf
Then the distance || f — ¢ ||* can be written as:
I f=glP=llf-9g—Pvf+Pf|?. (A.2)
Since f — Py f € V*, from the projection theorem we have:
I f=glP=llf=PvfIP+ | Pvf-gl?.

Thus, the distance || f — g ||* is minimised if g = Py f.



Appendix B

Proposition

We give here the proof of property b) satisfied by functions arising from the recursive
equations (2.26).
The following proposition was made in section 2.4.

Proposition: Let functions 1 and 93, be given by equations (2.24) and (2.25),
with ¢, = 1;7,-1 = oy, . Let function ﬁi{f) = oy, and the functions {3}“” be defined as:

n

B+ _ gk _ M@W SR A T (B.1)
. S 70 | "

B+ _ Vk+1 (B.2)
it e ||

The above defined functions provide a representation of the orthogonal projection op-

erator onto Vi, as given by:

k+1
P = Y (BE flan, (B.3)
L] n=1

Proof: The proof will be achieved by induction.

For k+1=1, we have: ( }P,f)ah = (o, f)ou, = Py, f. Because the residual
Ry = f — (au,, f)au, is orthogonal to «y,, i.e. (ay,,Ry) = 0.

Assuming that (B.3) holds for &k, we will show that it is also true for k + 1. Using
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(B.1), (B.2) we have:

k+1 k ’I\ZY
3 (8%, fau, = Y85, fan, + (2, fon,,,

=i et Il e |
k k 7 5
= S0, fag S SED o SRR fg VR e (B
i e | Prta |l | e+ |l
By hypothesis
k -~
Z( ;(:)J)atn =Py f
n=1
and Za;n a;m kaalk+ﬂ
so that from (B.4) we have:
- (k+1) ol 11 P Ykt Prs1
Z(ﬁ;n » flaw, = Py f — Pyoay,, £+ e,
s | Pt |l | Y ||’
T Pka ¥ (aik+1 g PVkalkH)(m_:I_“a f)
L kaf -+ PWHlf I Iﬁvk+lf' (B.5)

Thus, it is proved that (B.3) holds for all k.
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Appendix C

Theorem 1

We give here the proof of Theorem I, (section 2.4).

Theorem I: The dictionary atom «y, , that at iteration k + 1 minimises the norm
of the residual Ry, is the one that gives the maximal value for the expression:

. |(am Rk) |2 - |('¢'m f) |2
1 — {(am, Py,an) | ¥n |2

;o [|# 0, (C.1)

n

where for each n the corresponding function ¢, is obtained by:
Y = Qp — kacun. (C.2)

Proof: Since the £ + 1 order residual is given by: Rk.,.l =f—- pv,¢+1f, we have:
| Risr 2= £ |I> =(Py,,,f, f). Thus, in order to minimise || Ry, || we have to

maximise the expression: (ka+if, f). Using the equation:

k+1
Z< i(fH)’f)afn = Pka + Pwkﬂf = ka-Hf,
fi=1
we have:
” A 1 .
(kaq.]f? f) — (kaf'.! f> + _ﬁl(aik+11f) . (kaafk+l’f>|2' (CS)
| Yit1 ||

So that to maximise the expression (C.3), considering that (Py, f, f) is fixed, we

have to maximise:

I(alkﬂ ; f> — (pvkaik_'_l,f)I? L |<a‘f,€+11 i PkaHz - |<al!k+1=Rk>[2 (C 4)
Il Y41 I 1= <a!k+11 PVkalHl) b <m"=+1’P"!’°ak+1>

By noticing that the left hand side of the equation is equal to

I NP SNy
7 the proof is concluded.



Appendix D

Theorem 11

We give here the proof of Theorem II (section 2.6):

Theorem II: Let Rj be the residual resulting by disregarding a coeflicient c;k} as

passing from approximation fy, to fy, , . In order to minimise the norm of the residual
= J

R; such coefficient is to be chosen as the one yielding a minimum value of the quantity:
[c{-k] 2

J

b (D.1)
| B |12

Proof: Since ﬁj = fv, — fvi = Eﬁzl c,(f)an - E%l c,(q” J )aj, by using equation
J

(2.37), we have:

N k k k 5 <§lk) 5(::)}
=Y b, 3y + 3 o, L)
n=1 n=1 n=1 || 5}' ”
n#j n#j
(k) e B8 w
_ ; 1 Mg
¢, a;+c; Zan OIS (D.2)
n=1 || 5;' ”

Since Z:Zl i ( ,{f), ﬁ}k}) = ,(3;5” it follows from the last equation, that:

g
S S TR
155 12

Hence, the coefficient minimising the expression (D.1) yields the minimal value of
I 117
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