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Thesis Summary 

The problem of non-orthogonal signal representation we consider here consists of ex- 

pressing the signal as a linear superposition of non-orthogonal waveforms. Such wave- 

forms are selected from a set of functions, in general redundant, which is called a 

dictionary. The techniques we discuss to address the problem are in the line of the 

adaptive matching pursuit methods. Potential advantages, arising from the freedom to 

decide on the dictionary, are illustrated by considering dictionaries of different nature. 

Further potential advantages, arising simply by relaxing the orthogonality condition, 

are illustrated by introducing a non-orthogonal set of wavelets which originates from 

the orthogonal Haar basis. 

Keywords: non-orthogonal signal representation, adaptive techniques, matching 

pursuit techniques, greedy algorithms, non-orthogonal Haar wavelets, biorthogonal 

sets, sparse representations, atomic decomposition.
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Chapter 1 

Introduction 

Traditional methods for signal representation involve the use of orthogonal bases, such 

as the Fourier basis or the later introduced orthogonal wavelet bases [3]. The problem 

of N-term approximation, where one fixes a basis and looks to approximate a signal by 

a linear combination of N-terms of the basis, is a nonlinear problem. The nonlinearity 

is a consequence of allowing the terms to depend on the signal being approximated. 

The problem of finding the best of such N-term approximations has been, and still is, 

subject of much mathematical work even in the case of orthogonal basis. 

More recently, there has emerged another more complicated form of nonlinear ap- 

proximation, which we can call a highly nonlinear approximation. It takes many forms 

but has one basic ingredient: a basis is replaced by a system of functions which is 

usually redundant. Some types of approximations that fall into this general category 

are mathematical frames [4, 21], adaptive pursuit [8, 6, 11, 16, 13] and adaptive basis 

selection [1, 2]. This relatively new setting for signal representation seems to offer much 

promise for greater effectiveness in terms of approximation rate and sparseness. On 

the other hand it gives rise to highly nontrivial theoretical and practical problems. It 

can be said that a rigorous theory is only now emerging, and certainly far beyond the 

scope of this work. 

The purpose of this project was to produce evidences of the potential advantages of 

highly nonlinear signal representation outside the basis setting. With this motivation, 

and also with the ambition of drawing, somehow, theoretical conclusions, we have 

designed a series of numerical experiments. 

The methods that we have considered to deal with the problem of nonorthogonal 

signal approximation are all in the line of adaptive pursuit. We present a numerical 

example with the aim of comparing these approaches with regard to convergence rate. 

However, our central aim was not to focus on comparing methodologies. We have been 

lead for a different motivation. On the one hand our goal was to illustrate by some 

examples what is a rather obvious remark: 

Relaxing the orthogonality condition gives us more freedom to choose the spanning
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set. Therefore, we can obtain higher quality approximations of a given signal by using 

the adequate spanning set. 

On the other hand we have been driven by the motivation of answering the following 

question: 

Is it possible to obtain a significant gain in the approximation problem only by 

relaxing the condition of orthogonality? 

In order to answer this question we have proposed a generalisation of the Haar 

wavelet system. Such a system is an orthogonal basis if the translation parameter is 

an integer. By relaxing this condition on the translation parameter one creates an 

overcomplete set. We show here that, in the finite dimension case, introducing a non 

integer translation parameter not only introduces redundancy but also enlarges the 

corresponding subspace. We believe this to be the most important contribution of this 

work. 

The thesis is organised as follows: In chapter 2 we describe adaptive methods for 

non-orthogonal signal representation which are known as adaptive pursuit techniques. 

The above mentioned non-orthogonal Haar system is proposed in chapter 3 where 

a series of experiments leading to definitive theoretical conclusions is presented. In 

chapter 4 we illustrate, by very simple examples, the advantage of having the freedom 

of choosing different types of waveforms for approximating signals of different nature. 

Partial conclusions are given in each chapter and some general conclusions are drawn 

in Chapter 5.



Chapter 2 

Adaptive techniques for signal 

representation 

2.1 Introduction 

In this section we discuss the problem of non-orthogonal signal representation, which 

is often referred to as atomic decomposition. We also comment on some essential 

differences between orthogonal and non-orthogonal signal approximations. In the fol- 

lowing sections we present some techniques for adaptive signal representation. All the 

techniques we consider are leading to the so called adaptive pursuit approach. 

2.1.1 Signal space 

As our signal space we adopt the Hilbert space H of square-integrable functions. Hence, 

a signal f belongs to H if 

rie yf re Pde < oo. 

The inner product of two functions f,g € H is defined as in [18]: 

hoy = f Fogler, 
where with f* we denote the complex conjugate of f. 

2.1.2 Atomic decomposition 

Recent methodologies for signal representation operate on decomposing an arbitrary 

signal to a linear expansion of waveforms [9, 7]. Such a representation is known as 

atomic decomposition. We give next the formal definition.
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Definition: The atomic decomposition of a signal f € H is its representation as a 

linear superposition 
N 

f= doen. (2.1) 
n=1 

The waveforms a, € H are called atoms and are chosen, by some criteria, from a 

redundant family of functions, which is called a dictionary. 

Definition: Let the family of atoms D = {an}nez, be a dictionary for H. If this 

dictionary contains a dictionary of linearly independent atoms, the later is a basis for 

H (1). 

According to the atoms in D, the dictionary can be described as orthogonal or 

non-orthogonal. An orthonormal set of atoms forms an orthogonal dictionary, whereas 

non-orthogonal dictionaries include bases and overcomplete sets. Thus, non-orthogonal 

dictionaries can be constructed from all sorts of waveforms. 

Given a signal, the actual computation of its representation as given in (2.1), de- 

pends very much on the nature of the dictionary. In the next section we discuss a 

major difference arising in iterative signal approximation techniques, when dealing 

with orthogonal or non-orthogonal dictionaries. 

2.1.3 Orthogonal and non-orthogonal signal representation 

Let us assume that f € H and the atoms a, € H involved in (2.1) are given. Let us 

also assume that these atoms form an orthonormal set. Hence, the coefficients ¢, in 

(2.1) can be obtained in a straightforward manner, as the inner products: 

fi = Gof) jot —1, 2g Ne (2.2) 

If the signal we are representing does not belong to the subspace spanned by the NV 

orthogonal atoms a, the coefficients given in (2.2) are guaranteed to provide the op- 

timal approximation of the signal in the corresponding subspace. (The approximation 

is optimal in a minimum distance sense [10]). Moreover, if in order to improve the ap- 

proximation, we add one atom to the linear expansion, the new optimal approximation 

is obtained as: 

N 

f= Nc... + ¢n410N41, (2.3) 
n=1 

with evs: = (awsi, f). (2.4)
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Equivalently, if an atom is removed, say the atom a;, the optimal linear expansion in 

the reduced subspace is given by: 

f= Ye C0;; (2.5) 

a 
with c; = (a;, f). (2.6) 

When relaxing the orthogonality condition the process of iterative signal approx- 

imation becomes far more complicated than the simple procedure described above. 

This is a consequence of the fact that, in this case, if the representation subspace is 

increased (or reduced), the coefficients of the corresponding linear expansion should be 

appropriately modified for them to yield an optimal representation in the new subspace 

[16, 13]. To be precise: Let us consider that the atoms a, are not orthogonal, and let 

ve Man be the best approximation of a given signal in the span of the N atoms 

Qn. The superscript of the coefficients indicates the dependence of these coefficients on 

the number of atoms being considered. Hence, if the number of atoms is increased as 

above, by considering one more atom ay, the corresponding optimal approximation 

of the signal is to be computed as 

N 

f= Wan + OA ons. (2.7) 
n=1 

Unlike in the orthogonal case (cf (2.3)) now all coefficients must be recalculated for 

them to give rise to an optimal approximation. 

Equivalently, when removing an atom, say the j-one, in order to obtain an optimal 

approximation the remaining coefficients should be recalculated, i.e. the new approxi- 

mation is to be computed as 

f= S Va, — Yay. (2.8) 

nA 

The need for recalculating coefficients, when using non-orthogonal atoms in adaptive 

approximation of a signal, entails a practical complication one has to face. Here, we 

will address the problem adopting a recently introduced biorthogonalisation technique. 

Such a technique allows for recursive modification of the coefficients so as to achieve 

an approximation which is optimal in a minimum distance sense [16, 13]. 

Another problem that we have to address when approximating a signal by using non- 

orthogonal atoms, is the one of deciding how to choose the atoms to be used for 

the signal approximation. This is a very complex problem and several solutions have 

been proposed with different purposes in mind [8, 2, 1]. Here we shall restrict our 

considerations to methods that have been developed along the line of the so called 

10
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Matching Pursuit methodology [8, 6, 13, 11, 16]. In the following sections we present 

a description of such methodologies dedicating a special attention to the Optimised 

Orthogonal Matching Pursuit approach, since this is the technique that we will use in 

our experiments. 

2.2 The Matching Pursuit (MP) Approach 

Let D = {an;n = 1,---, N} be a finite dictionary and f € H a given signal to be 

represented as a linear superposition of atoms chosen from D. The Matching Pursuit: 

(MP) approach introduced in [8] proposes to make the selection by successive approxi- 

mations of f. At each step the corresponding residue is sub-decomposed by projecting 

it onto the dictionary atom that matches it best. 

Let R, be the k-th order residue and |, the index n for which the corresponding 

dictionary atom ay, yields a maximal value of |(@p, Rx)|;n = 1,..., N, ie. 

a, = argmax,, |(An, Rx)|. (2.9) 

Starting with f, =0 and R; = f, the k-th order residual is decomposed to: 

Re = (On, Reon + Ress, (2.10) 

which defines the residual of order (k+1). 

Since R,41 given in (2.10) is orthogonal to a, we have 

[el]? = [Coins Re)? + |LRisall?. (2.11) 

From the above equation it follows that the dictionary atom qa), yielding a maximal 

value of |(an, Ry)| minimises ||Rj41||?. 

Hence, in order to minimise the residual error ||R,4+1||?, we have to maximise the value 

of |(an, Rx)|. 

Letting the algorithm evolve with k, equation (2.10) gives the representation of the 

signal as: 

f= fe + Resi, (2.12) 

where fy, is: 
k 

fie = Yo (et, Rn) Uy (2.13) 
n=1 

The above described algorithm operates through the following steps: 

Initialise k = 1, R,; = f, f; = 0 and set some tolerance parameter € > 0 for the 

residual error. 

cy
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Step 1: For n = 1,...,.N, compute |(a,, R,)| and choose the atom giving the maximal 

value. Denote such an atom a;,. 

Step 2: Compute y+; by the formula: Ryi1 = Ry — (an, Ren 

Step 3: If the residual ||R,+1||? < € then stop the algorithm, else set k = k+1 and repeat: 

steps 1 > 3. 

The MP approach is a fast technique which, as it is clear from the operational steps, 

is very easy to implement. However, although its asymptotic convergence has been 

proved [7], in some situations the convergence may be so slow that it is impossible to 

achieve in practice. A refinement of this technique, which is based on orthogonalisation 

of the atoms, improves the convergence rates and provides convergence in a finite 

number of steps. This technique is described in the next section. 

2.3 Orthogonal Matching Pursuit (OMP) 

The MP approximations are improved by orthogonalising the directions of projection, 

as proposed in {11, 8]. The resulting orthogonal pursuit converges with a finite number 

of iterations, which is not the case for a non-orthogonal pursuit. 

The atom q™,,, selected by the MP is a priori not orthogonal to the previously 

selected atoms {a), ; m = 1,...,k}. When subtracting the projection of the residual 

over q,,, the algorithm reintroduces new components in the directions of {a ; m= 

,..+,k}. This is avoided by projecting the residues on an orthogonal family {@,; 1m = 

.,k} computed from {a ; n= 1,..., k}. 

Let us initialise ¢, = a,, and R,; = f. The atom ay, is selected so as to maximise 

|(Qn, Ri)|. The OMP evolves for k > 2, by selecting the atom a, that maximises the 

expression |(an, Rx)|, ie. 

oy, = argmax,,, |(n, Rx)|. (2.14) 

The orthogonal function ¢; is obtained as follows: 

k-1 

by =m, — u nce dn; (2.15) 

and the signal is expanded as: 

k 

(Rn On) 
recite ind bn “Tbe I? ® kL 

= Py f+ Rev, (2.16) 

where By, is the orthogonal projector on the space V, generated by {@n}i<n<k, and 

Ry+1 is the residual of the next order. 

12
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For any k > 1 the residue R, is the component of f orthogonal to V.,1. This implies 

that: 

(Re, Ok) = (Rx, o,)- (2.17) 

There exists a dimension M, such that ||Ri+i|| < € and the algorithm gives the 

following approximation for f 

M 
(Rns Qn) f= 5 et bn: (2.18) 

= |i nll 

To expand f over the original dictionary {a), }i<n<m we must perform a change of 

basis. Every ¢, is expanded in {ay, }icecm as: 

M 

do 00, Oi has (2.19) 

where the coefficients om are obtained by inverting the system. Inserting (2.19) in 

the equation (2.18), gives: 

Pe Yan, (2.20) 

with the coefficients cM) given as: 

AM) = =>) Buon (2.21) 

The OMP approach improves the MP convergence rate and therefore amounts to 

a better approximation of a signal after a finite number of iterations. However, at 

each iteration the OMP keeps selecting the dictionary atom as prescribed by the MP 

approach (c.f. eq (2.9) and (2.14)), although such a selection is no longer an optimal 

one. In the next section we describe an approach that overcomes this limitation. 

2.4 Optimised Orthogonal Matching Pursuit (OOMP) 

The Optimised Orthogonal Matching Pursuit (OOMP) is a technique that improves 

upon the MP and OMP approaches in the following sense [16]: 

At each iteration the algorithm gives an approximation to the signal, that is the or- 

thogonal projection onto the subspace generated by the selected atoms, and minimises 

the norm of the corresponding residual error. 

13
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Let us recall that the approximation f, of a signal f € H is the best possible 

approximation in a subspace Vj, only if f, is the orthogonal projection of f ontd Vi 

(see appendix A). Hence, if we decompose the signal into 

k 

f= Vidan + Re, (2.22) 
n=1 

in order to minimise the norm of the residual A; the coefficients cM) should satisfy: 

k 

Yo an = Buf. (2.23) 
n=1 

The superscript k in cf) indicates the dependence of these coefficients on the ap- 

proximation step. The OOMP approach introduces the proposal of modifying the 

coefficients c in subsequent iterations by means of an adaptive biorthogonalisation 

technique which is described below. 

Out of the dictionary D the OOMP method chooses an arbitrary atom, say a;,, and 

set V; = a;,. The subspace of the chosen atoms at iteration k is denoted as V;,, and at 

each iteration, a new subspace is constructed as: Vi41 = Vi ® au,,,- Consequently, if we 

denote as W;.; the orthogonal complement of Vj, in Vi.41, the orthogonal projector onto 

Ve+1 can be written as: Pris = Py, + Pug: Thus, since by definition ay, ,, € Vk41, the 

orthogonal projection of a,,, onto W,41 is the function Yy41 = Cie that satisfies: 

Ve = Pays Ung = Pips Mess — PV ngs 

= Oy, — Pyotys- (2.24) 

The normalised to unity version of function 7,41 is denoted by Wr1, hence we have: 

Vert 

l| ditt Il 

and the representation of the corresponding orthogonal projector operator onto Wi41 

den = (2.25) 

is given by 

Pana t = er bes f). 

In order to obtain the coefficients a, which at iteration k +1 render an approxima- 

tion fry = Pyal the OOMP approach introduces a representation for the operator 

Py,,, in terms of biorthogonal functions [16, 14]. 

14
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Adaptive biorthogonalisation technique: 

By setting BS =o, = wy the functions arising from the recursive equations: 

dey 

I Wet l| 

(k+1) _ Piet ! 2.96 

Poss = Teas Tl ee) 

  Bo = B= (Otis Be) | ma 1..-.5k 

have been shown to fulfil the following properties [16, 14]: 

a) are biorthogonal to functions a), ;n =1,...,k +1, i.e, 

(By Gr) oun aly. kd mt)... kl 

b) they provide a representation of the orthogonal projection as given by 

k+1 

Pras f = BE, fou. (2.27) 
n=1 

Due to the relevance of property b) to our purpose, the proof is given in appendix B. 

The biorthogonal functions (2.26) are used to recalculate the coefficients in (2.22). At 

each iteration the coefficients of the linear expansion representing the signal at best in 

the given subspace are calculated as: 

di) = oP — (BP ong MTREET LY § = Aysoork 
Ik 

oft) _ (TE fy (2.28)   

Il Pes Il’ 

with c() = (a,, f). 

As already stated, the OOMP differs from the MP and OMP method in the criterion 

to choose the atoms for the iterative approximations. Rather than selecting the atom 

as prescribed in (2.9) and (2.14) the OOMP aims at selecting the atom minimising the 

residual error Ry41 in (2.22). The following theorem, the proof of which is given in 

appendix C, prescribes how the selection is to be made. 

Theorem I [16]: The dictionary atom a;,,, that at iteration k + 1 minimises 

the norm of the residue Rin is the one yielding a maximal value of the functionals 

€n ; N=1,--+,N, where: 

ex Ham BaP _ Mdm bia 
T= (Gn, Pram) Wen TP 

15
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We sketch next the algorithm for selecting atoms by implementing condition (2.29), 

and successively adapting the corresponding coefficients yielding the orthogonal pro- 

jection of the signal onto the selected subspace. 

Set initialy k= 1, af, =an, do =1, h=n; n=1,-:-,N where l, is the index 

n for which |(a,, f)| has the maximal value. Set a tolerance parameter « > 0 and 

t=, Br =a, = (au, f), Ro =f, || Ry |7=I| Ro \? —|e,|?. 

Step 1: Forn=1,..., N calculate: 

Oy = Oh, — Ya (Wes On) 

On = (a, f) 

dn, = dn — |, @%)/? =I] a [IP 

if |b,| < € set e, = 0 else en = tal 

Step 2: Update: k=k-+1, |, =n, where n is the index for which e, is maximised. 

|| Re |P =I] Rar IP -en, 

  

= Oh Be = a 

cx = (Br, f) 

Step 3: For n =1,...,4—1 compute the biorthogonal functions, and the coefficients as: 

Bn = Bn — Br(Oys Bn) 

Cn = Cn — (Os Bu) Ck 

where with (a,,8,) we denote the complex conjugate of (a, , Bn). 

Step 4: If ||R,||? < € stop, else repeat steps 1 > 4. 

Note: The above algorithm uses the Modified Gram-Schmidt technique, for con- 

structing the orthogonal projectors Py,. In some situations to avoid accumulative er- 

rors, further reorthogonalisation may be needed [20]. Alternatively we can use the QR 

decomposition to compute the projectors. This is actually the approach that we have 

used for implementing this technique in our experiments. 

16
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2.5 Redundancy Elimination Technique 

Let us stress that the recursive equations (2.26) in section 2.4, can be applied on 

any given linear independent set of atoms. The way in which the OOMP technique 

selects atoms (in general, from a redundant dictionary), guarantees that such atoms are 

independent. There are situations, however, in which we do not have information on 

the signal itself, but only on the subspace it may lie in. In some cases, it is convenient 

to have a representation of the subspace by means of the minimum possible numbers 

of atoms. To this end we need to eliminate redundancy, in other words: we need to 

build bases for the subspace. 

Here we will adopt the technique proposed in [15] to construct dictionaries of linearly 

independent atoms and the corresponding biorthogonal functions. 

Note that from the definition of the functions 7, (cf. (2.24)) it follows that linearly 

dependent atoms give rise to functions 7), of zero norm. Hence, simply by disregarding 

those atoms, we can select an independent set. Nevertheless, in practice we have to 

deal with dictionaries yielding several functions %, of small norm, thereby producing 

important numerical errors. In order to reduce numerical errors, it is proposed in [15] 

that the selection should be made in the following hierarchical way: at iteration k the 

atom a, maximising the norm of the corresponding function 7), = a, — Py, Qn, should 

be selected, i.e. at iteration k the selected atom ay, is the one yielding a maximum 

value of the following quantities: 

Ilbnll? = 1 — (an, Py sn). 

Given a tolerance parameter € > 0 let us assume that the situation for which all 

values of ||%/n||? are less than e, is reached at iteration k. Hence, the method has selected 

the k linearly independent atoms, up to the given tolerance. In addition to the linear 

independent atoms a, ; j = 1,..., the algorithm provides us with the corresponding 

biorthogonal functions 4), ; j = 1,...,&, computed as prescribed in (2.26). 

Let us assume now that we are given a signal f € H and we choose the selected 

basis ay, ; j = 1,...,k to represent it. Since the biorthogonal functions yielding the 

representation of the orthogonal projector onto Vi, are already computed, the atomic 

decomposition of the signal 

fr= >on, (2.30) 

is readily obtained from the coefficients computed as the inner products: 

CP (BT) =k (2.31) 

Li
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2.6 The Backward Optimised Orthogonal Match- 

ing Pursuit (BOOMP) 

The biorthogonalisation technique we have discussed in section 2.4 allows for the mod- 

ification of biorthogonal functions in order to account for an additional atom in the 

spanning set. As already discussed, the coefficients of the atomic decomposition (2.22) 

need also to be recalculated if one atom is removed from the set. This can be achieved 

by a backward biorthogonalisation technique proposed in [12]. Based on this tech- 

nique an approach for reducing coefficients in an atomic decomposition is reported in 

[13]. Such an approach is termed Backward Optimised Orthogonal Matching Pursuit 

(BOOMP), because it selects the atoms to be disregarded according to a criterion 

which is equivalent to the one proposed by the OOMP technique. 

Given an atomic decomposition of a signal f € H through the linear expansion: 

k 

= oPan, (2.2) 
n=1 

where the atoms a, are assumed to be linearly independent, oe ae approach 

provides a set of recursive equations for modifying the coefficients c\) when one of these 

coefficients is to be disregarded. The approach decides on the atom to be disregarded 

by minimising the norm of the residual error. 

Let us assume that we are given a dictionary of k linearly independent atoms and let 

Vi; = span{ay;n=1, ... ,k}. Let us further assume that the corresponding functions 

(B ;n=1, ... ,k} representing Py are known. Hence the approximation in V, of 

an arbitrary signal f € H is obtained as 

k 

pe = on (B®, f) = > ag. (2.33) 
n=i n=1 

with the coefficients given by the the inner products: 

= (BQ, f). (2.34) 

Consider now that the atom aj is to be removed from V; and denote the subspace of 

the remaining atoms as Viejo, = span{ay,...,@j-1, Qj41,--- , a}. Then, the optimal 

approximation of the signal will be given by: 

k 

Prija,d = You (BE, f) = oan, (2.35) 
ie nz 

It is proved in [12] that the functions phi in (2.35) can be obtained from the recursive 

formula: 

(e/a) — ptt) 29 4B) Be) Lae pila) — pf Ee wale Lat Leo (2.36) 
I| 6s? IP 
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Consequently, the coefficients c/)) in (2.35) are computed as 

(82°, B®) off) = ft) — Sst, (2.37) 
Way Il 

Now that we know how to modify the remaining coefficients when one coefficient, 

say cj, is to be omitted, we need to consider a criterion for choosing c;. The following 

theorem establishes the BOOMP selection criterion. The proof can be found in ap- 

pendix D. 

Theorem IT: Let Rj be the residual resulting by disregarding the coefficient a as 

passing from approximation fy, to aja Le, fy, = Fe +Rj. In order to minimise the 
a i i 

norm of the residual R; such coefficient is to be chosen as the one yielding a minimum 

value of the quantity 
| 2 

J ; 2.38 
a? IP ee 

Assuming that the sets {a, ; n=1, ... ,k} and {B® ;n=1,... ,k} are known, 

the BOOMP disregards coefficients of an atomic decomposition as prescribed by the 

following steps: 

Step 1: Compute the coefficients db) = ( A) Ff), and find the index j for which the 
je) 2 

expression —4,— is minimised. 
Was 2 

Step 2: Modify the biorthogonal functions using equation (2.36), and the remaining co- 

efficients using (2.37). 

Step 3: Repeat steps 1 and 2 until a given tolerance error for the approximation is reached. 

2.7 Numerical example on MP algorithms 

2.7.1 Aims 

We illustrate here, numerically, some typical features concerning the performance of 

the MP, OMP and OOMP algorithms introduced in the sections 2.2, 2.3 and 2.4. The 

posterior application of BOOPM leading to interesting conclusions. 
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2.7.2 Procedure 

We will approximate the signal of figure 2.1 (left graph), using a dictionary of mexican 

hat wavelets, which will be introduced in section 4.2. 
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Figure 2.1: Left Graph: The chirp signal. Right Graph: Approximation of the chirp 
with mexican hat wavelets, using the MP approach. 

First we apply the MP approach. This approach exhibits slow convergence rate, 

after 10000 iterations the representation of the signal is the one of figure 2.1 (right 

graph). A graph of the error for the first 3000 iterations, is given in figure 2.2. 

2%)   

    6 Ey ee   

  

Figure 2.2: Approximation error of the chirp with mexican hat wavelet, using MP 

(10000 iterations). 

We also apply the OMP within the workings of the OOMP approach, i.e. computing 

biorthogonal functions rather than inverting a matrix, as originally proposed in [11, 6]. 

For this example we have found that the OMP needs 25 more coefficients than the 

OOMP approach to produce an approximation of the same quality. In figure 2.3 (top 
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left graph) it is plotted the OMP approximation with 100 coefficients. The OOMP 

approximation for the same number of coefficients is plotted in figure 2.3 (top right 

graph). See table 2.1 for the corresponding values of residual errors. 
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Figure 2.3: Top Left Graph: Approximation of the chirp signal with the mexican 

hat dictionary using the OMP approach and 100 coefficients. Top Right Graph: Ap- 

proximation using the OOMP and 100 coefficients. Bottom Left Graph: Applying 

the BOOMP to the previous approximation, 75 coefficients. Bottom Right Graph: 

Approximation using OOMP, 75 coefficients 

We now apply the BOOMP to the OOMP approximation of figure 2.3. We see that 

disregarding 25 coefficients the approximation is still acceptable (bottom left graph, 

figure 2.3). Nevertheless if the OOMP is stopped after 75 iterations the resulting 

approximation is the one plotted in the bottom right graph, of the same figure. 
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Coefficients | OMP OOMP. 
100 | 9.64828e-4 | 2.2229e-04 

125 | 2.2165e-4 | 2.7681e-05 

  

          

Table 2.1: Error of the approximation using the OOMP and the MP algorithms. 

2.8 Remarks 

In this chapter we have discussed some techniques for adaptive approximation of a sig- 

nal in terms of non-orthogonal atoms. The differences of the MP, OMP and OOMP ap- 

proaches have been established from a formal viewpoint. In addition, these approaches 

have been compared in relation to convergence rate by recourse to a numerical exam- 

ple. The results are in accordance with what can be expected from the theoretical 

considerations: OOMP renders the fastest convergence rate. In the given example, 

the difference as compared with the MP approach being enormous. The difference 

with OMP being less pronounced, however, since the implementation of OMP is not 

less computational demanding there is no practical advantage of this approach over 

OOMP. Hence, in all our relevant experiments we will use only the OOMP approach. 

A really interesting result arises from the application of BOOMP to the OOMP approx- 

imation. It strongly suggests that a smart forward/backward procedure could improve 

sparseness in the representation. Unfortunately, due to time limitation we have not 

been able to implement such a technique. We leave this line of research as one of our 

proposals of future work. 
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Chapter 3 

The Haar based dictionary 

3.1 Introduction 

In this chapter we introduce a non-orthogonal dictionary, which is generated from the 

well known orthogonal Haar wavelet system. We discuss the Haar basis in [0,1] and 

transform this basis into a redundant set. We show that, in the finite dimensional case, 

the new set spans a subspace larger than the one expanded by the orthogonal wavelets. 

Experiments illustrate potential advantages of the proposed non-orthogonal system. 

3.2 Dyadic intervals 

Definition: For each pair of integers m,n € Z we define the interval Im, by: 

Inn eeoten th 1): 

The collection of all such intervals is called the collection of dyadic intervals on R. 

One useful property of the dyadic intervals, is the following: 

Lemma: Given mo, 7,71, € Z and either mp # m, or no # 1, then one of the 

following must be true: 

© Tryar OLmo,no = 9 

In
 

© Imi  Imo.no 

© Tiong © Lm yni- 

In the last two cases, the smaller interval is contained in either the left or the right half 

of the larger interval. 

Another notation we can use, based on the previous lemma, is the following: 

23



CHAPTER 3. THE HAAR BASED DICTIONARY 

Definition: Given a dyadic interval of scale m, Im we write: 

fan = ae ul, myn? 

where J/, ,, is the left and J/,,, the right half of the interval In of scale m +1. 

3.3. The Haar system on R 

Let us define the function Xj) as: 

1, if a€[a,b) 

0, elsewhere 
X'a.6)(t) = { 

Let p() = Xjo,)(2), and for each m,n € Z, we define 

P(t) = 2% p(2"z — n). 
The collection {Pm n(2)}nez is referred to as the system of scale m Haar scaling func- 

tions. 

Let h(x) = Xo,1/2)(@) — X{1/2, (a) (see figure 3.1), and for each m,n € Z define 

Ringe) = QT (Qa —n). 

The collection {/mn() }m,nez is referred to as the Haar system on R. For each m € Z 

the collection {Mmn(2)}nez} is referred to as the system of scale m Haar functions. 

We call m the scale parameter and n the translation parameter. The Haar system is 

created through translations and dilations of the function h(x), which we call mother 

wavelet. 

Some important remarks on the Haar system on R: 

e For each m,n eZ 

Pann (@) = 27 (Xp, — Xip,,,)+ 

So the hyn is supported on the interval J;,,, and does not vanish on that interval. 

We say in this case, that the Haar function hm,» is associated with the interval 

Inn: 

e For each m,n € Z we have: 

H haade =] heed (e\dn = 0 
R Imn 

[iiomm(e)Pae = ff Vinal) Pde = 1 

24



CHAPTER 3. THE HAAR BASED DICTIONARY 

  

1 

4 | 

06 
08} | 

o2| 
06} 

q   

-02 
| 

-0.| 

0] 38) 
-o   ° +             af 0 1 2 + ° t 2 

Figure 3.1: The Haar scaling function poo(left graph) and the mother wavelet for the 
Haar system ho o(right graph). 

From the above remarks and using the properties of the dyadic intervals, we conclude 

that: 

The Haar system on R is an orthonormal system on R. 

We now define the Haar system on [0,1], which is of relevance to our experiments. 

3.4 The Haar system on [0,1] 

Definition: For any integer J > 0 the scale J Haar system on [0,1] is the collection: 

{ojn(@):0<n< 27 —1} U{hmn(z):m > J;0<n< 2-1}. 

For J = 0, this collection is referred to as the Haar system on [0,1]. 

As defined above the Haar system on {0,1} consists of precisely those Haar functions 

hmm corresponding to dyadic intervals I, that are subsets of [0,1] (see figure 3.2), 

together with the scaling function po,(z). 

In figure 3.3 we plot some elements of the Haar system in [0,1], corresponding to 

scales m = 0,1, 2 and 3. 

The following theorem is essential to our purpose. The proof is given in [19]. 

Theorem: For each integer J > 0, the scale J Haar system on [0,1] is a complete 

orthonormal system on [0,1]. 
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Figure 3.2: Haar wavelets on [0,1] corresponding to scales m = 2 (left graph) and 
m = 3 (right graph). 
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Figure 3.3: The Haar wavelets for scales m = 0 to 3 from top left to bottom right. 
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The subspace spanned by the single function po (a) will be called Vo and the 

span{hmn;0 <n < 2” —1} will be called W,,. We also define the subspace 

Vn =Vo UW, U---UWnm. (3.1) 

3.5 Non-orthogonal Haar based dictionary 

In order to introduce our non-orthogonal Haar based system let us recall that with h(x) 

we denote the mother Haar wavelet function and the set of functions {pm n(«) }nez, is 

the scale m Haar scaling functions system. We introduce now the key ingredient for our 

construction: rather than considering the translation parameter an integer (as required 

by the orthogonality condition) we let this parameter be of the form 6: n with n € Z 

and 6 a real number in (0,1). Hence the corresponding wavelet functions are of the 

form: 

Omn(x) = 27 h(2™a — bn). (3.2) 

The following definition completely characterises our Haar based dictionary on [0,1]. 

Definition: The non-orthogonal Haar based system on [0,1] is the collection: 

Poo(z)U {Omn(t): m>0, 0<n<2"—- i} 

In figure 3.4 some wavelets of the non-orthogonal system are plotted, for scalem = 1 

and different values of the translation parameter. 

We will denote the scale m non-orthogonal Haar based system as Ry, = span {n,n} 0 < 

ns 20 +} and the non-orthogonal Haar based system from scale 0 to scale j will be 

denoted as: 

By =VYUR,U---UR;. (3.3) 

As a consequence of introducing the parameter 6 in the wavelets definition (cf. 

(3.2)), the non-orthogonal dictionary contains atoms a;,,, that are no longer supported 

on the dyadic interval J, i.e, we can have wavelets that vanish on a given dyadic 

interval. It is clear then that, by relaxing the orthogonality condition we have, for each 

scale, a larger number of atoms, which completely lie inside the [0,1] interval. This is 

illustrated in figure 3.5. 

Since the orthogonal Haar system on [0,1] is a complete set of functions, it is clear 

that by incorporating more functions in the whole set we can only introduce redun- 

dancy. The question arises, however, as to whether this is also true when considering 
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Figure 3.4: Non-orthogonal Haar wavelets for scale m = 1 and for translation param- 

eters b = 0.5, 0.25, 0.125 and 0.0625 (from top left to bottom right) 
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Figure 3.5: Orthogonal Haar wavelets corresponding to scales m = 1 and m = 2 (left 
column), and non-orthogonal Haar based wavelets for the same scales and b = 0.25 
(right column). 
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a finite subset of functions, up to scale m say. In the next section we present an 

experiment that is specially devised to answer this question. 

3.6 Thought experiment 

3.6.1 Aims 

The aim of this experiment is to show that if we consider the linear span of Haar func- 

tions up to a fixed scale, the incorporation of non-orthogonal Haar functions, defined 

in section 3.5, up to the same scale, not only incorporates redundancy, but extends the 

subspace. 

We consider the subspaces V; and B; as defined in (3.1) and (3.3) respectively. 

Since V; is the subspace spanned by the Haar functions from scale 0 to j, and B; is 

the subspace spanned by the non-orthogonal Haar functions within the same scales, 

by construction we have that V; is included in B;. In order to show that V; 4 B; it is 

enough to show that there is a signal in B; which does not belong to Vj. 

3.6.2 Procedure 

We consider for this experiment the subsets V3 and B3. We define a signal f € H in the 

interval [0,1] as follows: Out of the dictionary B3 we take three dictionary functions 

at scale m = 3 and b = 0.25. The functions are chosen in such a way that none of 

them is an element of V3. We construct f as a linear combination of such functions. 

Hence f € B3. This signal is plotted in figure 3.6 with the solid line. If we try to 

approximate the signal using the orthogonal subdictionary V3, the approximation we 

obtain is shown in figure 3.6 on the left. It is clear from the graph, that f ¢ V3. 

In addition to the previous experiment we consider the dictionary V4, which is 

obtained by adding to V3 the orthogonal Haar functions of one higher scale. The 

representation that we obtain now coincides with the signal, i.e f € Vj (see figure 3.7). 
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Figure 3.6: Approximation of a signal f with two subdictionaries involving the same 

scales. The graph on the left corresponds to the orthogonal Haar dictionary and the 

one on the right to the non-orthogonal one. 
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Figure 3.7: Approximation of a signal f with orthogonal Haar wavelets up to scale 

m = 4 (left graph), and approximation with the non-orthogonal Haar wavelets up to a 
coarser scale m = 3 and b = 0.25(right graph). 
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3.6.3 Conclusions 

In the experiment above we have found a signal f € B3 which is not in V3. This leads 

to conclude that in the finite dimensional case, by increasing the number of functions 

at a fixed scale we can extend the subspace generated by orthogonal functions at the 

same scale. 

We are now in a position to answer the question motivating the experiment: 

In the finite dimension case, by decreasing the translation parameter b of the non- 

orthogonal Haar functions we do not only incorporate redundancy. The new, non- 

orthogonal dictionary creates a larger subspace, that is similar to a subspace created by 

orthogonal dictionaries of higher scales. 

From the experiments we have also seen that with the dictionary B3 and setting the 

parameter b = 0.25 we have the same approximation as with V;. This suggests that 

we can generate Haar wavelets of higher scales, by using the non-orthogonal Haar 

dictionaries of smaller scales, only by introducing a translation parameter b < 1. In the 

following experiments we will try to show that these conclusions hold in other cases 

as well, where we approximate arbitrary signals, and try to improve by changing the 

value of the translation parameter b. 

3.7 Experiments using the non-orthogonal Haar dic- 

tionary 

3.7.1 Aims 

In the thought experiment given in the previous section, we concluded that by decreas- 

ing the translation parameter b of the non-orthogonal Haar functions (c.f. eq (3.2)), 

we introduce a larger subspace. Here we illustrate this fact further, by approximating 

two signals of different nature. All approximations are obtained by using the OOMP 

approach discussed in section 2.4. 

We already know that using Haar wavelets of higher scales allows us to improve 

approximations. Theoretically, by increasing the scale to infinity we can represent any 

signal in H. In practice, however, we cannot use arbitrary large scales, as increasing 

the scale implies having to increase the resolution in representing the functions. On 

the other hand, we have already seen that by relaxing the condition of orthogonality 

and considering a translation parameter b = 0.25 it is possible to obtain, with coarser 

scale, the same approximation as with an orthogonal subdictionary at a finer scale. 

The aim of this series of experiments is to show that we can keep simulating finer 

and finer scales, by letting the translation parameter b decrease by powers of 2. 

31



0.8 

0.6 

0.4 

0.2 

0.8 

0.6 

0.4 

0.2 

CHAPTER 3. THE HAAR BASED DICTIONARY 

3.7.2 Procedure 

For the first series of experiments we will consider the blocky signal of figure 3.8. We will 

compare the dictionary V3 with the dictionary Bs; for different values of b. In figure 3.8 

(top graph on the left), we can see the approximation we obtain by using the orthogonal 

dictionary V3. The approximations obtained with the non-orthogonal dictionary are 

plotted in the remaining graphs of same figure, for the values b = 0.25, b = 0.125, and 

b = 0.0625. The orthogonal dictionary V3 cannot give a better approximation for this 

scale. However, as shown in figure 3.8, by letting the value of b decrease by powers of 

2 we have obtained better approximations without changing the scale. 
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Figure 3.8: Approximation of the blocky function using the orthogonal Haar dictionary 

of scale m = 3 (top graph on the left) and with the non-orthogonal dictionaries of scale 
m = 3 and values of b equal to 0.25, 0.125, and 0.0625 respectively. 
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Figure 3.9: Approximation of a smooth signal by the orthogonal Haar dictionary of 

scale m = 3 (top graph on the left). Subsequent approximations by considering the 

non-orthogonal Haar dictionaries of the same scale and values of b equal to 0.25, 0.125, 

and 0.0625 respectively. 

We consider now the smooth signal in figure 3.9. With an orthogonal Haar dictio- 

nary we can have a good approximation of this type of signal only by using a consid- 

erably large scale. If we consider the subdictionary V3 the approximation is the really 

poor one shown in figure 3.9 (top graph on the left). As in the previous example, when 

using the non-orthogonal dictionary B;, and by decreasing the value of the parameter 

b, we can achieve a higher quality approximation without changing the scale. 
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3.7.3 Conclusions 

We have approximated two signals of different nature. A blocky and a smooth signal. 

We have used the orthogonal Haar dictionary up to scale 3, V3, and the non-orthogonal 

Haar based dictionary B3; of the same scale, but for different values of b. We have 

obtained good approximations of both signals, without increasing the scale, but by 

letting the parameter b decrease. This can only be done by resigning orthogonality. 

Nevertheless, the release of such a property has allowed us to approximate functions, 

like the one in figure 3.9, which require high scales otherwise, without having to increase 

the precision of the representation. From the experiments of this section we conclude 

that: 

By decreasing the translation parameter b, we can achieve better and better approx- 

imations without changing the scale 

3.8 Redundancy elimination using the non-orthogonal 

Haar dictionary 

3.8.1 Aims 

So far we have considered the problem of selecting atoms from a non-orthogonal dic- 

tionary as a signal dependent problem: Given a signal, we have iteratively selected 

the atoms that, at each iteration, yield an optimal approximation of the signal. Here 

the selection will be carried out through a signal independent procedure: Out of a 

non-orthogonal dictionary, we will eliminate redundancy by the method described in 

section 2.5. For the non-orthogonal Haar based dictionaries we are considering in this 

chapter, all different sets of linear independent atoms are guaranteed to span the same 

subspace. This is due to the fact that, in these types of of dictionaries, the number of 

linear independent atoms can be determined without ambiguity. Hence, by eliminating 

redundancy we can easily obtain different bases for the identical subspace. 

The aim of the experiments in this section is to extract different bases from a non- 

orthogonal Haar based dictionary. The corresponding biorthogonal bases will also be 

computed. 

Once the biorthogonal bases are available, given a signal one can immediately com- 

pute the coefficients of its representation in different bases. Moreover, by disregarding 

coefficients through the BOOMP approach (section 2.6), one can assess if a basis is 

more adequate than others for representing that given signal. The suitability of a ba- 

sis may follow, in some cases, simply from the cardinality of the non-zero coefficients 

which are needed to represent the signal in such a basis. In other cases, entropy and 

other concave measures may be needed to decide on the suitability of a basis [7]. 
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3.8.2 Procedure 

In these experiments we consider the dictionary B3 with translation parameter 6 = 

0.0625. By eliminating redundancy we obtain different bases for the subspace. These 

bases however are not orthogonal, so that we will have to use the corresponding 

biorthogonal functions to obtain the representation of the signal. In figure 3.10 we 

can see that for an identical atom participating in two different bases, the correspond- 

ing biorthogonal function is different. 
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Figure 3.10: Each row corresponds to an atom and the corresponding biorthogonal 

functions for a different basis. Every time we choose a new basis, the biorthogonal 

functions are different. 

Having different bases we can approximate any given signal with a subset of the 

bases. Using the corresponding biorthogonal basis we compute the coefficients of the 

atomic decomposition and then apply the BOOMP for disregarding some of them. 

In figure 3.11 we approximate the blocky signal using two different bases. If we use 

all the coefficients the approximations we obtain are exactly the same, since both are 

approximations in the same subspace. As shown in figure 3.12 the coefficients of each 

representation are, of course, different. Also after applying the BOOMP for reducing 

coefficients in each case, the remaining coefficients vary quite a lot (see figure 3.12, 

lower row). 

The fact that a basis may be more appropriate than other is made clear in the 

following experiment. When approximating the signal of figure 3.13, we have the same
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Figure 3.11: Approximation of the blocky signal using the dictionary B; with b = 

0.0625. The approximations have been made using a different basis of Bs. 

result for both dictionaries. Since the two bases create the same subspace, the approx- 

imation error, as shown in the first row of table 3.1, is almost the same. However after 

applying the BOOMP, we see that there is a big difference in the number of coefficients 

needed for representing the signal. In figure 3.13 we can see the two approximations af- 

ter applying the BOOMP. The graph on the left corresponds to the approximation with 

the smaller error. In figure 3.14 we give a plot of the absolute value of the coefficients 

sorted in decreasing order. Stopping the procedure when we reach a certain value for 

the error, the approximations are almost the same. When we use the BOOMP algo- 

rithm to disregard coefficients up to an acceptable precision for the approximation, we 

see that the first basis needs only 15 coefficients (solid line), whereas with the second 

basis we have to use the double amount (30 coefficients, dashed line) and as it is clear 

from the table 3.1, the approximation is still not as good as the previous one. 

  

  

      

Basis 1 Basis 2 

All the coefficients 1.783 - 10-¥5 | 2.137 - 10-8 
After using BOOMP. 0.0555 0.2943     

Table 3.1: Representation errors, given by the norm of the difference between the signal 

and the calculated approximation. 
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200 200    0 -100 

200    0 -100 

Figure 3.12: 3D plot of the coefficients for the approximation of the blocky function 

using two different bases. Before applying the BOOMP (upper row) and after (lower 
row). 
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Figure 3.13: Approximation of a signal using two different bases that originate from 

the same dictionary. 

  

  

Figure 3.14: Graph of the absolute value of the coefficients sorted in decreasing order. 

The dashed line represents the coefficients needed for representing the signal of figure 

3.12 (right graph). The solid line represents the coefficients needed for the approxima- 

tion using a more suitable basis (left graph). 
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3.8.3 Conclusions 

In this series of experiments we eliminated the redundancy from the non-orthogonal 

dictionary B3 with translation parameter b = 0.0625. We obtained, thereby, different 

bases for the span of B3. We have seen that the form of the corresponding biorthog- 

onal functions may significantly change in each case. The experiments of this section 

illustrate that: 

From the same dictionary we can pick different sets of linear independent atoms, 

i.e. different bases for the same subspace. Although all bases represent a given signal 

up to an identical precision, some bases may be more suitable than others, in terms of 

amount of coefficients and approximation error, for a specific signal. 

39



Chapter 4 

Experiments on signal 

representation 

4.1 Introduction 

In this chapter we illustrate the relevance of using appropriate dictionaries to represent. 

different types of signals. To this end we will use two different dictionaries: The 

earlier introduced non-orthogonal Haar dictionary and the dictionary of mexican hat 

wavelets, to be introduced here. We will also consider the possibility of mixing these 

two dictionaries for representing signals of mixed features. 

4.2 Mexican Hat dictionary 

The Mexican Hat is a function obtained from the second derivative of the Gaussian 
2 : 5 . 5 

e~ 7. Its functional form is given by [5] 

v(z) =C-(1—2”)-e-7, (4.1) 

with C = Sant a normalisation constant. The shape of this function, as shown in 

4.1, justifies its name. 

  

Figure 4.1: Mother wavelet for the mexican hat dictionary. 
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The mexican hat dictionary is composed of wavelet functions Um» arising from the 

equation: 

Umn =2-?H(a™c —bn) ; mneZ (4.2) 

with, the mother wavelet. 7/o9(x) = (a) as given in (4.1). 

In figure 4.2 we plot some of the mexican hat wavelets for different scales. As 

shown in the graphs, changing the scale parameter m in (4.2) gives narrower or wider 

wavelets, while changing n gives translations of the same wavelet. 
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Figure 4.2: The mexican hat wavelets for different scale and translation parameters. 

We denote the set of the mexican hat wavelets of scale j as Vj = {yjn(x) ; n € Z}, 

and the set of mexican hat wavelets up to scale j as: Tj = Vp UW, U...UY;. 

4.3. Comparing non-orthogonal dictionaries 

4.3.1 Aims 

Dictionaries of wavelets, like the Haar and the mexican hat dictionaries we have defined 

here, contain atoms which originate from the same mother wavelet. Thus, the shape 

of all the dictionary’s elements is determined through that of the mother wavelet. 
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The aim of these experiments is to illustrate the results of choosing a suitable dic- 

tionary to approximate a given signal. These results are assessed in terms of number 

of coefficients in the representation and the corresponding residual error. 

We will compare the mexican hat and the non-orthogonal Haar dictionaries to 

approximate two signals of different nature: 

i) a modulated chirp and 

ii) a blocky-type signal. 

4.3.2 Procedure 

First we approximate the modulated chirp signal in the interval [0,8]. We use the 

following two non-orthogonal dictionaries: 

i) the mexican hat wavelets dictionary with translation parameter b = 0.2, and 

scaling parameter a = 2, denoted as Ty. 

ii) The non-orthogonal Haar based dictionary from scales m = —3 to 2, denoted as 

BU B_3/Bo. The translation parameter of the functions is fixed as b = 0.0625. 

In figure 4.3 (top left graph), we see that the mexican hat dictionary, using 75 

coefficients, gives a high quality representation of the signal. In addition, by applying 

the BOOMP technique to this approximation, we obtain the top right graph with only 

56 coefficients. Using the Haar based dictionary we obtain the approximation to the 

signal shown in the bottom left graph of figure 4.3 with 350 coefficients. After applying 

BOOMP to reduce the number of coefficients up to 130, the approximation is the one 

shown in the bottom right graph of the same figure. In both cases we stop the BOOMP 

algorithm for some level of approximation error. 

Now we approximate a different type of signal, a blocky function in [0,8], with 

the same dictionaries as in the previous case. Figure 4.4 (top left graph) shows the 

approximation we obtain with the mexican hat dictionary and using 250 coefficients. 

Figure 4.4, (top right graph), shows the approximation after applying the BOOMP, to 

retain only 138 coefficients, for which the approximation is still acceptable. 

With the non-orthogonal Haar dictionary we reach a satisfactory approximation of 

the signal, plotted with the dashed line in the bottom left graph of figure 4.4, using 

102 coefficients. After applying BOOMP, retaining only 58 coefficients we still have a 

satisfactory approximation. This approximation is represented with the dashed line in 

the bottom right graph of the same figure. 
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Figure 4.3: Top Left: Approximation of the chirp with the mexican hat, 75 coefficients. 

Top Right: Approximation using the mexican hat and BOOMP, 56 coefficients. Bottom 

Left: Using the non-orthogonal Haar, 350 coefficients. Bottom Right: Using the non- 

orthogonal Haar and BOOMP, 130 coefficients 
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Figure 4.4: Top Left: Approximation of the blocky function using the mexican hat with 

250 coefficients. Top Right: Using the mexican hat with BOOMP, 138 coefficients. 

Bottom Left: Using the non-orthogonal Haar, 102 coefficients. Bottom Right: Using 
the non-orthogonal Haar with BOOMP, 58 coefficients 
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4.3.3 Conclusions 

In these experiments we have represented a modulated chirp and a blocky signal, both 

in the interval [0,8]. For the representation we have used the mexican hat and the 

non-orthogonal Haar dictionaries. We have compared the number of coefficients in the 

corresponding representations as well as the corresponding residual errors. As expected, 

the chirp signal is better approximated by the mexican hat dictionary and the blocky 

signal by the non-orthogonal Haar one. The results are of course not surprising but 

support the following intuitive remarks: 

According to the type of signal we want to approximate, there are dictionaries that 

are more suitable than others. Signals with high regularity can be better approximated 

by dictionaries like the mexican hat, whereas signals with steps and discontinuities can 

be approximated better by dictionaries like the Haar. It is therefore very important to 

have the freedom to decide on the dictionary to be used in order to represent a signal 

of known properties. 
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4.4 Representation of a mixed signal 

4.4.1 Aims 

In the previous section we have seen that a dictionary may be more suitable than others 

to approximate a certain type of signal. We consider now the case in which the signal 

at hand is characterised by exhibiting distinct localised properties. 

The aim of the experiments in this section is to analyse the possibility of using a 

mized dictionary to approximate a signal of diverse features. 

We will use the non-orthogonal Haar, the mexican hat dictionary and a dictionary 

composed by joining together the previous two. 

4.4.2 Procedure 

Let the signal we want to represent be the mixture of two localised blockies and a piece 

of low frequency chirp, plotted in the top left graph of figure 4.5. As discussed in the 

previous section the Haar dictionary is suitable for representing the blocky part of the 

signal and the mexican hat for the oscillating one. With the experiments of this section 

we will compare the approximations obtained when using each dictionary by itself, and 

the approximation obtained when using both dictionaries as one. 

In figure 4.5 (top right graph), we plot the approximation of the signal obtained by 

using only the mexican hat dictionary and 224 coefficients (after applying BOOMP). 

In the blocky part of the signal we observe a phenomenon similar to the Gibbs effect. 

for the Fourier basis. We should stress that, although by increasing the number of 

dictionary functions used in the approximation, the norm of the residual error does 

decrease (yet slowly), the Gibbs-type effect remains. This suggests that by using a 

dictionary of mexican hat wavelets we may not be able to have pointwise convergence 

to only piecewise continuous signals. 

As it is seen in the bottom left graph of figure 4.5, by using a non-orthogonal Haar 

dictionary the Gibbs effect it is not present. The approximation plotted in the figure 

was obtained with 207 coefficients. However, in this case by using a larger number of 

coefficients (450) we can improve the approximation and make it visually identical to 

the exact signal. 

We now consider a large set, containing the mexican hat and the non-orthogonal 

Haar dictionaries. Applying first the OOMP technique to the whole set and then the 

BOOMP on that approximation, we obtain the approximation of figure 4.5 (bottom 

right graph) with 104 coefficients. With respect to the previous approximations the 

number of coefficients has been reduced. Comparing the norm of the residual errors 
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given in table 4.1 we conclude that this approximation yields the smallest residual 

error by means of the smallest number of coefficients. However, the Gibbs effect in the 

blocky part of the signal persists. As in the case of the single mexican hat dictionary, 

although the norm of the residual error can be diminished by increasing the number 

of atoms in the representation, the Gibbs-type phenomenon remains. In other words: 

unfortunately the mixed dictionary has inherited from the mexican hat dictionary the 

non-pointwise convergence to only piecewise continuous signals. 

  

  

    

Coefficients | Error 

mexican hat after BOOMP | 224 0.0037 

Non-orthogonal Haar after BOOMP | 207 0.0035 
mixed dictionary after BOOMP | 104 0.0033 
  

Table 4.1: For each approximation method we show the coefficients needed, and the 
corresponding residual error. 
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Figure 4.5: Top Left: The mixed signal: blockies with a low-frequency chirp. Top 

Right: Approximation using the mexican hat dictionary, 224 coefficients. Bottom Left: 

Approximation using the non-orthogonal Haar dictionary, 207 coefficients. Bottom 

Right: Approximation using the mixed dictionary, 104 coefficients. 
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4.4.3 Conclusions 

These experiments presented here have given us some “first experience” on the use of 

mixed dictionaries to approximate signals of mixed features. 

We understand that from this single experiment we cannot arrive to general con- 

clusions. Nevertheless, we believe that we are in a position to safely assert that: 

The use of mixed dictionaries for representing signals of mixed features seems to 

be an adequate procedure to achieve an economical representation. However, there is 

a convergence issue to be considered. It appears that, if one of the dictionaries does 

not yield pointwise convergence the mixture with other dictionaries does not guarantee 

pointwise convergence either. 

It is clear that there is still much work to be done on this subject. Finding a 

smarter way of selecting atoms from mixed dictionaries would certainly be of great 

importance. 
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Chapter 5 

Conclusions 

5.1 General remarks 

We divided the goal of the thesis in two main objectives. The first was to illustrate, 

by simple numerical examples, the advantage of choosing the waveforms to represent a 

signal by taking into account prior information about the signal properties. In general 

this entails having to resign the simplicity of dealing with orthogonal waveforms and 

face the nonlinear problem arising when using non-orthogonal ones. The techniques we 

have applied for this purpose can be classified in the line of adaptive matching pursuit. 

Such techniques operate by iteratively selecting waveforms (atoms) from a large, and 

in general redundant, dictionary of functions. In our experiments we have used the 

OOMP approach since, at least theoretically, it has been proved to improve upon 

earlier introduced MP techniques. We have illustrated this by a numerical example, 

since no simulation illustrating the theoretical improvement was available. We have 

also applied the recently introduced BOOMP, which allows for the reduction in the 

number of coefficients of a given non-orthogonal representation. This technique is easy 

to implement and our experiments show that its application may result in a significant 

gain as far as the economy of the representation is concerned. In addition, we have 

collected evidences suggesting that a recursive combination of OOMP and BOOMP 

techniques might result in a more economical representation. Unfortunately, due to 

time limitation we have not been able to look into the possibility of this combined 

strategy. We should leave the task as one of our main proposals of future work. 

Our second objective was to be in a position to answer whether simply by relaxing 

the orthogonality condition one can obtain some gain in the signal representation prob- 

lem. This has motivated the proposal of a generalisation of the well known orthogonal 

Haar dictionary. The new dictionary, that we have termed non-orthogonal Haar based 

dictionary, is generated simply by introducing a non-integer number in the transla- 

tion parameter of the Haar wavelets. We found the results of this generalisation most 
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interesting. We can definitively conclude that in the finite dimensional case relaxing 

the orthogonality condition does not only introduce redundancy, but creates a larger 

subspace. Our experiments show that, for a fixed scale, by decreasing the transla- 

tion parameters we obtain subspaces that can only be generated with orthogonal Haar 

functions of finer scale. The gain that can be achieved by using the new dictionary 

in problems of signal representation is clear. We are aware, however, that in order to 

use this dictionary for signal analysis, a new analysis scheme needs to be proposed. 

Looking into the possibility of devising such a scheme is our other main proposal of 

future work. 

5.2 Future work proposals 

e To combine forward/backward strategies in order to design new techniques for 

adaptive signal representation. 

To generalise other orthogonal wavelet families in order to see if the results hold- 

ing by generalising the Haar dictionary are extensible to other cases. 

To look for a new wavelet analysis tool based on density of points in the trans- 

lation parameter domain. 

To look for alternative criteria in choosing atoms from a mixed dictionary.



Appendix A 

Projection Theorem 

Let V be a closed subspace of a given Hilbert space H. We denote by V+ the set of 

elements in #, which are orthogonal to V. The subspace V+ is called the orthogonal 

complement of V, and it is also a Hilbert space. 

Projection Theorem [17]: Let f € H, and V a closed subspace. Then every 

f €H can be uniquely written: 

f=gr+h, (A.1) 

where g € V andhe V+. 

From the above theorem we have the following proposition. 

Proposition: The unique element g € V minimising the distance to an arbitrary 

element f € H, is obtained as: g = Py f, where with Py we denote the orthogonal 

projector onto the subspace V. 

Proof: Let g € H be an arbitrary function in V. We write g as: 

g=9-Pyf+Prf. 

Then the distance || f —g ||? can be written as: 

If-g9 P= f-9-Pvf + Pvf IP. (A.2) 

Since f — Py f € V+, from the projection theorem we have: 

lf-g IPH f—-Prf P+ ll Pvf—alP- 

Thus, the distance || f — g ||? is minimised if g = Pyf.



Appendix B 

Proposition 

We give here the proof of property b) satisfied by functions arising from the recursive 

equations (2.26). 

The following proposition was made in section 2.4. 

Proposition: Let functions y% and d,41 be given by equations (2.24) and (2.25), 

with y= hr = ay,. Let function Be = ay, and the functions ees be defined as: 

  

  

gir) o (4) ia Wre1 (ei 18) ae (B.1) 

i "Ul det II : 
Pes pe B2 tes Tess I oe 

The above defined functions provide a representation of the orthogonal projection op- 

erator onto V,41 as given by: 

k+1 

Pst = oO an. (B.3) 
° n=1 

Proof: The proof will be achieved by induction. 

For k+1=1, we have: (BM, fran, = (ay, f)a, = Py,f. Because the residual 

R, = f — (a,, fai, is orthogonal to aj,, ie. (ax,, Ri) = 0. 

Assuming that (B.3) holds for k, we will show that it is also true for k + 1. Using 
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(B.1), (B.2) we have: 

k+1 k wy 

Sah, Aon, = BEY, fan + (-, fois: 

  

ra a I vist II 

= S10, fou, — S16 a NOE Pets oy, tM fous. (BH) 
= =" Il Yet Il Il des Il 

By hypothesis 

k 

ni 1M, flor, = Py. f 
n=1 

E ~ 

and >> au, (8, 04,41) = Protea, 
n=1 

so that from (B.4) we have: 

k+l | " v 5 

DoW? Phan, = Put = Patt (ef) a fetes 
n=l ll dest Il ll es Il 

= Py f + (Ona — Pro Tay f) 

=Pyf+ Prat = Piaf (B.5) 

Thus, it is proved that (B.3) holds for all k. 
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Theorem I 

We give here the proof of Theorem I, (section 2.4). 

Theorem I: The dictionary atom q,,, that at iteration k +1 minimises the norm 

of the residual Res is the one that gives the maximal value for the expression: 

Kon Fe)? _ ns AYP 
r 1 (an, Pyan) Ten lz ll dn IF 0, (C.1) 

where for each n the corresponding function 7, is obtained by: 

Vn = On — Py,On. (C.2) 

Proof: Since the k + 1 order residual is given by: Ray =f— Pyat we have: 

|| Ress ||?=I) £ I? —(Puaif,f). Thus, in order to minimise || Ry41 || we have to 

maximise the expression: (Prat f). Using the equation: 

k+1 

Sa FY flo, =Pyt+ Pat = Prat 
n=1 

we have: 

(Pref f) = (Puts f) + Ta (Pry f)?. (C.3) 
Il de. 

So that to maximise the expression (C.3), considering that (Py, f, f) is fixed, we 

have to maximise: 

  

Hotness f) — (Pr Qngr £)P — Mtn f = Py fy? = Motas1 Fe)? (CA) 
|| Pet [l? 1= (0, yea) 1 = Cua, Pye) 

By Cie that the left hand side of the equation is equal to 
Wig A? 
Wi, al? the proof is concluded. 
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Appendix D 

Theorem II 

We give here the proof of Theorem II (section 2.6): 

4) a5 Theorem II: Let R; be the residual resulting by disregarding a coefficient c; 

passing from approximation fy, to SVijas In order to minimise the norm of the residual 

R; such coefficient is to be chosen as the one yielding a minimum value of the quantity: 

[2 
od hae (D.1) Bak : 

| 6S IP 

Proof: Since Rj =fy,- Wij = = Re oe dn — Dass ee, by using equation 
nAj 

(2.37), we have: 

i k k Eo, Ee BY 

i= Sy Man — SS can + we oe 3 
= =I = AS | 

oa nAj 

ee a) ms (or) (k) = Yon = May. (D.2) 

Since ee a, ( ee Ne Be it follows from the last equation, that: 

Dee, 
k aly 

Hence, the coefficient minimising the expression (D.1) yields the minimal value of 

RIP. 

(k) a(k) 
cs B; 
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