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Thesis Summary 

This thesis studies the relationship between light absorption spectra and pigment 

concentrations in oceanic waters. Neural networks including Multi-layer Perceptrons and 

Radial Basis Functions will be used in order to model this relationship. The data will first be 

investigated by a thorough visualisation before attempting to reconstruct the spectra using 

forward models. Bayesian learning techniques are then discussed and applied to the retrieval 

of pigment concentrations. A range of data driven models will be implemented and finally a 

generative model produced, using Hybrid Monte Carlo sampling techniques. 
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Chapter 1 

Introduction 

1.1 Aim of the Thesis 

The ultimate aim of the project is to create a model that reliably predicts pigment 

concentrations from remotely sensed light absorption spectra. 

1.2 Background of the issue 

The pigments studied are naturally occurring chemicals contained within phytoplankton. The 

importance of creating such a model then stems from the vital role of phytoplankton in both 

photosynthesis and the marine food web. 

The contribution of phytoplankton to photosynthesis means it is an essential element of the 

carbon cycle. Models of phytoplankton growth together with satellite data have been used ‘to 

convert maps of pigment concentration into maps of the carbon fixation rate’ (Bricaud et al, 

1995). A better scientific understanding of the carbon cycle may aid research into global 

climate change and in particular global warming. 

Phytoplankton are also a vital element of various ecosystems, as they form the basis of the 

marine food chain. They are relied on by many species and therefore set ‘a kind of upper limit 

on the productivity of the entire food chain’ (Thomas, 1997).
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Phytoplankton contain many pigments including chlorophyll. Chlorophyll concentrations are 

‘the major determinant of transmissibility of visible light through the ocean’ (Chlorophyll 

Concentration, 2002) and therefore again affect entire ecosystems. A reliable model has many 

potential applications by facilitating basic monitoring of changes in chlorophyll and/or 

phytoplankton levels. This may assist investigation into the effects of major events, such as El 

Nifio, on the global marine ecosystem (Thomas, 1997). 

Differentiating between pigments is important because it allows identification of 

phytoplankton groups, each of which may have different properties and varying ecological 

roles. The size of the oceans means that reliable retrieval of pigment concentrations via 

remote satellite sensing would be much cheaper and more practical than current alternatives. 

13 Overview of the Context of the Research 

A substantial amount of relevant work surrounding the problem has already been done. 

Important contributions have come from Morel and Bricaud (1981), Hoepffner and 

Sathyendranath (1993) and more recently from Wozniak er al (2000). Regression frameworks 

have dominated with models achieving varying degrees of success in modelling the 

relationship between pigment concentrations and absorption spectra. 

Previous models have focused on two central ideas. The first is the simpler approach and is 

based on the use of derivative analysis. High order derivatives of spectra are examined to 

identify change points and spectral absorption peaks for each pigment, as the basis for 

reconstructive models. The peaks may be used as the centres for fitting absorption bands, as 

by Aguirre-Gomez, Weeks & Boxall (1998), such that derivative analysis is a precursor to 

other modelling approaches. 

The second and recently more popular approach focuses on absorption bands. Different 

pigments absorb in different areas of the spectrum, so each group of pigments studied has 

characteristic absorption bands. These are partially known at least for in vitro pigments (as 

dispersed in solution under laboratory conditions). These bands are usually assumed to be 

Gaussian with fixed centres, but as yet there are no universally agreed parameters. These may
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be determined by various methods and subsequently mixture models fitted to the data, as for 

example by Hoeppffner and Sathyendranath (1993). 

The relationship between spectral absorption coefficients and concentrations of chlorophyll a 

(the dominant pigment) has been shown to vary with pigment composition and pigment 

packaging effect (Bricaud et al, 1995). These are in turn each governed by phytoplankton 

population levels and photoacclimation, the natural adaptation of the phytoplankton due to 

varying amounts of light reaching their cells. Population levels and photoacclimation reflect 

changes in other underlying factors, such as temperature, depth and nutrient concentration (for 

further detail see Wozniak et al (2000) and references therein). 

The package effect arises because pigments are contained within cells and not uniformly 

distributed within phytoplankton. It is a result of variations in cell size and pigment 

distribution among phytoplankton populations and refers to the corresponding effect upon 

absorption spectra. Bricaud et al (2004) conclude that it is the package effect, rather than the 

pigment composition, that is often the ‘dominant source of biological noise’. 

The package effect is quantified as the ratio of pigment absorption in vivo versus that in vitro 

(Finkel et al, 2002). That is, the actual absorption of the pigment, as naturally ‘packaged’ 

within cells, compared to the corresponding absorption when dispersed into solution. In 

general, greater ‘packaging’ of pigments (or a larger cell size distribution) effectively 

dampens the whole of the corresponding absorption spectrum, as illustrated below (figure 

1.3/1). 

Figure 1.3.1: Effects of cell size on absorption spectra (Finkel 2001). 
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Morel and Bricaud (1981) discuss this flattening effect further and also propose a 

parameterisation of the package effect. The package effect is known to depend on cell size 

and intracellular pigment concentration (Morel and Bricaud, 1981), yet the associated non- 

linearity and uncertainty remain difficult to model. Properties of the phytoplankton are 

therefore an important variable in the pigment concentration versus absorption relationship. 

Photoacclimation operates in a similar way, yet has the reverse effect on absorption levels. 

The amount of light reaching the cells, largely affected by varying depth and location of the 

phytoplankton and by seasonal factors, determines pigment content per cell. The greater the 

pigment content the larger the corresponding absorption, thus countering the package effect 

illustrated in figure 1.3.1. 

Wozniak et al (2000) produced some of the best results to date by modelling both package 

and acclimation effects. Error bars in estimating mean absorption coefficients for chlorophyll 

a are stated as 36% - significantly better results than earlier models have produced. This 

project aims to improve upon previous works and to produce a solid modelling foundation for 

the reliable prediction of pigment concentrations from remotely sensed spectra. 

1.4 The Data 

The data were obtained from eight separate cruises each in different regions of oceanic water. 

Each sample includes a spectrum, which measures the absorption of light by the 

phytoplankton at 151 wavelengths. For each spectrum there are corresponding measures of 

concentration of five primary pigment groups: 

= Chlorophyll a (Chl-a); 

= Chlorophyll b (ChI-b); 

= Chlorophyll c (Chl-c); 

* Photosynthetic Carotenoids (PSCs); and 

= Non-photosynthetic Carotenoids (NPSCs)
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In addition there are several parameters relating to the size distribution of the phytoplankton 

cells. These consist of the estimated percentages of small, medium and large cells and also an 

overall size index for each sample (see below for further detail). 

Also known is the cruise from which each sample was obtained. In total there are 1525 

samples. These have been pre-divided into training (1220) and test (305) sets in order to 

evaluate the performance of any models produced. This predetermined division ensures any 

results will be comparable with those of related research taking place in France (Bricaud et al, 

2003). 

Absorption coefficients were measured using either the Quantitative Glass-fibre Filter 

Technique (QFT) or the “glass slide technique” (cruise 3 only). Contributions of 

phytoplankton and non-algal particles to total particulate absorption were then scientifically 

determined. 

Pigment concentrations were measured simultaneously using High-pressure Liquid 

Chromatography (HPLC). The pigments were then grouped into the following five categories 

based upon absorption characteristics and the total corresponding concentration calculated. 

Further details of these methods are presented by Bricaud et al (1998). 

Size parameters are also estimated using the HPCL concentration measurements together with 

taxonomic data regarding the sample-specific phytoplankton properties. The relative biomass 

proportions of picophytoplankton (<2 pm), nanophytoplankton (2-20 jm) and 

microphytoplankton (20-200 jm) are estimated the using the formulae presented in Bricaud et 

al (2004). This produces three size parameters specific to each sample from which a size 

index is then derived. A central value is assumed for each of the three taxonomic subsets and 

is then weighted by the corresponding biomass. The sum of these produces the size index — an 

indication of the dominant size structure for each sample. 

The samples considered are all collected from the first optical depth to impose some 

limitation on photoacclimation variability and subsequent influence on the package effect. 

Samples have been processed to remove both the absorption due to detritus in the water and
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that due to the seawater itself. Where necessary correction factors have been applied to 

measurements potentially introducing systematic errors to the affected samples. 

The nature of the data is such that there may be many additional variables impacting upon the 

concentration and absorption measurements. These include cruises in different depths and 

temperature waters, cruises in varying locations at different times of year and differences in 

measuring equipment. The experimental methods then may be subject to some uncertainties 

and particularly instrumental limitations. Small inconsistencies within the dataset are 

therefore unavoidable given the substantial time and costs involved in collection and collation 

of the data. 

A summary of cruise locations, times and number of samples collected can be found in 

Appendix A.1. 

15 The Approach 

The investigation will begin with a visualisation of the data in Chapter 2. This is an 

opportunity to understand the data and any immediate structure within it and to find any 

outliers. Dimension reduction techniques will be applied to assist visualisation and also to 

potentially produce a more relevant and manageable data set for the following modelling 

process. 

A discussion of Bayesian methods follows in Chapter 3 providing a framework for the 

subsequent models. The remainder of Chapter 3 concerns ‘forward modelling’ experiments, 

which attempt to reconstruct the absorption spectra given the concentration measurements. 

These are tackled first, because they are believed to be simpler and may provide useful 

insights prior to tackling the reverse problem. 

Finally, pigment concentration retrieval will be attempted - firstly using data driven models in 

Chapter 4 and finally by producing a generative model in Chapter 5. The conclusions reached 

will be summarised in chapter 6 and suggestions for further work proposed in chapter 7.
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Chapter 2 

Visualisation & Dimensionality Reduction 

The first stage of the research process is to visualise the data. Any immediate correlations, 

patterns or structure in the data and any outliers may then be identified. 

2.1 Basic Spectra Visualisation 

Basic plots of the raw spectra were produced, including plots for separate cruises and selected 

size index groupings. This basic representation showed similar shaped spectra across cruises 

and size divisions, though differences were evident, particularly at shorter wavelengths. A 

plot of the mean spectra per cruise shows some significant feature variation (see figure 2.1.1), 

such as the heights of the major peaks. This may be attributed to differences in concentrations 

between cruises, but could also indicate other differences, such as variation in the package 

effect. Additional cruise dependent differences suggest that the modelling framework may 

need to incorporate additional variables and/ or model cruises separately. 

Figure 2.1.1: Visualisation of Absorption Spectra 
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A plot of the standard deviation of absorption by wavelength showed very similar structure to 

the mean spectrum suggesting that the variance may be proportional to absorption. 

Normalisation to unit variance could then enable clearer representation of the data and 

possibly better separation of certain subsets. Multiplicative variability also indicates that a log 

transform of the data may be useful. 

2.2 Visualisation Issues 

The high dimensionality of the data meant informative visualisations were difficult. Also, use 

of the raw data as an input to a neural network was likely to result in lengthy training and sub- 

optimal parameters. 

To avoid these problems and enable better graphical representation, dimensionality reduction 

techniques were used. Both linear and non-linear approaches were considered to try to 

determine the underlying structure of the data. The particular methods used were Principal 

Components Analysis (PCA) and Neuroscale, each of which may emphasise different aspects 

of the data. A lower dimension representation may also help avoid over-fitting of networks 

and therefore improve following model performance. 

2.3. Principal Components Analysis (PCA) 

The first approach was to try a simple, linear PCA of the data. PCA was carried out on the 

raw data set, on the log transformed data set and using data normalised to zero mean and 

optionally unit variance. 

The log-plot in figure 2.3.1 shows the eigen-spectrum relating to the Principal Components 

(PCs). The relative size of the first and second eigenvalues indicates that a huge amount of 

information is contained in the first two PCs. The curvature of the descending data points is 

relatively smooth, so it is difficult to determine at what point noise becomes dominant. This 

lack of an obvious break in the curvature could indicate that the noise is quite high on even 

the larger PCs. It appears that around ten to twelve PCs are necessary to capture most of the 

information.
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Figure 2.3.1: Eigenvalue Analysis 
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A cumulative analysis followed to see how much of the variance was retained by using 

successive numbers of PCs (see fig 2.3.1). The trend is examined more closely by omitting 

the largest eigenvalues, normalising and producing log plots. Up to 99.3 percent of the 

variance in the data (depending on the normalisation method) is retained by the first two PCs. 

Using just six PCs this increases to over 99.9% (see fig 2.3.1) and using 10 PCs the variance 

attributable to additional PCs is of order 10°. 

Plotting the PCs (eigenvectors) themselves revealed a similar pattern (see Appendix A.2 for 

illustration). The first eight to twelve vectors (depending on normalisation and space) have a 

fairly smooth appearance. As further vectors are plotted there appears to be less structure and 

erratic behaviour is observed. This is assumed to be the result of noise in the data. 

Although the graphical analysis does not give a definitive answer as to the optimal number of 

principal components, around eight to twelve PCs appear to retain information without 

excessive noise. These conclusions are supported by previous research (Evans & Cornford, 

2003), which used probabilistic PCA and proposed an optimal representation of twelve PCs.
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2.3.1 PCA visualisation 

To visualise the data in two dimensions it was initially projected onto the first two PCs. The 

first approach was to project the spectral data, second the concentrations and finally to project 

a combined dataset comprising both. Labelled plots of training and test data projections 

confirm that the test set spans a similar range to the training data. 

The PCA visualisation was repeated with labelling by cruise and by size index. As with the 

spectral plots there is evidence of differences between cruises indicated by clustering of the 

samples by cruise (see figure 2.3.1.1). The size distribution data also appears significant, as 

despite the approximate nature of the size index, clustering is again evident. 

Projecting the data onto the second and third PCs resulted in an alternative representation, but 

still displayed the same apparent clustering by cruise and size. The same was true when 

incorporating concentrations and using concentration data alone, so a proportion of this 

clustering is likely to be the result of differences in concentration between cruises. 

Figure 2.3.1.1: PCA Projection of Absorption Spectra 
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2.4 Neuroscale 

To investigate the possibility of non-linear structure in the data Neuroscale, a non-linear 

projection technique (Nabney, 2002), was used. Again both spectra and concentration data 

were used. Initially, Neuroscale was applied directly to the data without any dimensionality 

reduction but had limited success. The main approach involved pre-processing the data using 

PCA with various numbers of PCs. Normalised data was projected onto these PCs and then 

used as an input to Neuroscale. The log transform is again considered. 

The Neuroscale results supported previous PCA findings of clustering by cruise and size with 

several possible outliers (see figure 2.4.1). Separations were not obviously improved by using 

Neuroscale, suggesting the data was largely of linear structure. Each approach highlighted 

outliers, though this was no more conclusive than by use of PCA. 

Figure 2.4.1: Neuroscale Projection of Absorption Spectra 
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2.5 Outlier Analysis 

Given the level of uncertainty related to the data and experimental methods it was expected 

that there be some outlying samples. Identifying and removing these from the dataset should 

enable a more accurate model. 

The various visualisations of the data reveal a number of possible outliers. However, the 

outliers identified are not consistent for all visualisations. There is dependence on the 

particular visualisation method (PCA or Neuroscale), input data (spectra and/or 

concentrations), normalisation, and whether or not the log transform is used. Even using a 

single plot the analysis is subjective. Density modelling has been avoided here, as although 

this would attach an objective measure the densities would be based on the same data and 

therefore not provide an independent threshold. 

Having identified potential outliers from each visualisation the individual spectra of these 

samples were examined for unusual features. Comparison with the total mean spectrum, mean 

spectrum for the appropriate cruise and the spectra of surrounding points followed. 

Interestingly, a number of outliers identified by concentrations corresponded to those found 

using the spectra. This consistency suggests these may be extreme cases rather than ‘true’ 

outliers resulting from errors. To address this issue for certain samples the concentrations 

were examined alongside the spectra and also compared to mean concentrations and several 

typical concentration profiles. 

Several spectra displayed exponential characteristics indicating the influence of detritus in the 

water. It appears that the detritus effect has not been correctly removed from these samples 

and so they will be discarded. In examining individual spectra some unusual structures were 

evident. Certain spectra, for example sample 1443 (see fig 2.6.1), showed noisy 

measurements at lower wavelengths, while others such as sample 80 were noisier at high 

wavelengths. Others, including sample 286 (see fig 2.6.1) display noise in all areas of the 

spectrum. This may indicate differences in noise characteristics and package effect across 

cruises, suggesting a need for separate noise models. Some spectra, despite obvious influence 

of noise were retained, as they are still characteristic of the basic underlying structure. 
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Figure 2.6.1: Example Absorption Spectra 
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The final analysis classified the majority of samples as extreme yet valid. Forty-one training 

samples (3.36%) and 8 test samples (2.62%) were identified as outliers. The majority of these 

came from cruise seven suggesting either problems with the measuring equipment or errors in 

processing the measurements (see Appendix A.4 for breakdown). For some samples the 

analyses were inconclusive and so these were retained with caution. 

2.6 Visualisation & Dimensionality Reduction Conclusions 

Several main findings resulted from visualisation offering some insight into the structure of 

the data: 

Clustering by cruise and clustering by size: The evidence of clustering by cruise and size 

suggest a definitive need to incorporate these characteristics into the modelling framework. 

Both are likely to be largely a result of packaging and acclimation effects. 

Evidence of largely linear underlying structure: The degree of clustering does not seem to 

vary greatly using the non-linear projection methods and so the relationship appears largely 

linear. Outliers were also more successfully identified by PCA than Neuroscale methods. 
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Dimension reduction: PCA suggests that the data can be reduced to ten dimensions without 

significant loss of information. 

Usefulness of logarithmic space: Log space certainly spread the data more and assisted 

identification of outlier. It also proved useful in examining the structure of PCs. 

Outliers: Irregular outliers have been removed from the dataset, such that subsequent models 

will disregard these samples. 

Differential noise structures: Early evidence suggests a need for cruise specific noise 

models. 
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Chapter 3 

Spectra Reconstruction and Regression Framework 

This stage of research will focus on reconstructing the spectra from the concentration data. 

The results of this ‘forward modelling’ will then be used together with previous findings to 

determine an appropriate regression framework for the following pigment concentration 

retrieval problem. If a forward model accurately reconstructs the spectra then there is 

potentially a direct inversion of this model that can predict concentrations from the spectra. 

3.1. Bayesian Methods 

As there is uncertainty regarding the model parameters a Bayesian approach is preferred. This 

models uncertainty by using probability densities and incorporates prior knowledge by 

placing prior distributions over the parameters (Nabney, 2002). Weight priors are comparable 

to regularisation coefficients, such that many parameters may be used without problems of 

overfitting. A specific form of prior also facilitates use of Automatic Relevance 

Determination (ARD). 

In the Bayesian framework before any data is observed the parameters are modelled by a prior 

probability distribution, p(w) that reflects knowledge of the parameters before any training. 

When the data is observed (as training takes place), the prior is updated using the new 

information to produce the corresponding posterior distribution for the parameters. This is 

done using Bayes’ theorem (3.1), which combines the prior with the likelihood, p(D | w) — the 

probability of the data given the weights. 
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p(w|D)= p(D | w) p(w = p(D | w) p(w) (3.1) 

p(D) Jp | w) p(w) dw 

The denominator p(D) is just a normalising constant, so the posterior for the weights p(w |D) 

is proportional to the product of the likelihood and the prior. The posterior distribution 

narrows as training incorporates new knowledge as to which weight values are most 

consistent with the data observed. 

Network training then results in a posterior probability distribution for the parameters based 

on prior beliefs and all the observed data. Forward propagation of new inputs through the 

trained network then produces corresponding outputs. Bayesian predictions are then found by 

integrating these outputs with respect to the posterior distribution for the parameters (Neal, 

1996). 

More specifically, the predictive (or posterior) distribution of a new data point y, given input 

vector x and the dataset D, is obtained by integrating over the posterior distribution of 

network weights, w (see (3.2) below). 

p(y |x, D) = [p(y | x, w) p(w| D) dw (3.2) 

where p(w | D) is again the posterior distribution for the weights, w given the dataset, D and 

p(y | x, w) is the output for the given model with parameters, w and input, x. Predictions are 

not then based on a single estimate for the parameters, but effectively integrate over all 

possible models so that validation is theoretically unnecessary. 

3.1.1 Bayesian Methods in Practice — Priors 

The current knowledge of parameters in the problem is limited, so the initial prior probability 

distribution used will be broad. Small weights are preferred initially to allow sufficient 

flexibility of mapping, so a Gaussian distribution with zero mean of the general form (3.3) 

will provide a suitable first approximation and may simplify later analysis. 
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p(w) = (1/ Zw(a)) exp(-a Ew(w)) (3.3) 

where a is a hyperparameter controlling the prior distribution, Ew is the error function and 

Zw(a) is the normalisation factor Zw(a) = J exp(-a Ew(w)) dw, such that J p(w) dw=1. 

For a quadratic weight penalty the error function Ew takes the form (3.4): 

Ew(w) = (1/2) Yi w? (3.4) 

The prior then becomes (3.5): 

p(w) = (1/ Zy(a)) exp(-a/2) ||wl|? (3.5) 

= (a/2n)”” exp(-o/2) [Iw 

Multiple priors may be used to correspond to groups of weights, each comparable to a weight 

error term regularising the associated weights (Nabney, 2002) and therefore tackling 

overfitting. 

The prior is governed by the additional hyperparameter, a, which represents the inverse 

variance of the distribution and controls the distribution of the other model parameters. Such 

‘hyperpriors’ effectively allow a network to choose its own complexity (Saad, 2004) by 

determining the magnitude of weights allowed and are central to the use of ARD (see section 

3.6). 

3.1.2 Bayesian Methods in Practice - Likelihood 

The likelihood may be expressed similarly using the general form (3.6) with hyperparameter, 

B. 

p(D | w) = (1/ Zp(B)) exp(-B En(w)) (3.6) 
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where Ep is the error function and Zp(B) the normalisation factor Zp(B) = Jexp(-B Ep(w)) aD, 

such that J po | w) dD = 1. B scales the error function and so controls the variance of the 

noise. 

For a sum-of-squares error function Ep is expressed as (3.7): 

Ep(w) = (1/2) Yn (y(n W) - Yobsn)” (3.7) 

where y(Xn, w) is the model prediction for input x, and yous is the corresponding observed 

value. 

Thus the likelihood becomes (3.8): 

PD | w) = (1/ Zx(B)) Tn exp(-B/2)( ¥%ny W) - Yorsn)) (3.8) 

= (1/Zx(B)) exp( -B/2 |ly - yousll*) in matrix form, 

where Z(B) is the combined normalising constant. 

3.1.3 Bayesian Methods in Practice — Posterior 

Using the definitions of the prior (3.3) and likelihood (3.6) together with Bayes’ rule (3.1) the 

posterior distribution can now be expressed as (3.9): 

p(w|D) = (1/ Zs) exp (-S(w)) (3.9) 

where S(w) = BEp + oEw and Zs= J exp(-BEp - aEw) dw, 

Expanding S(w) about the minimum using Taylor series gives the following approximation 

(3.10): 

S(w) ~ S(wap) + (1/2)( w- wp)" ACW wr) (3.10) 

where wwp is the weight vector at the minimum of S and A is the Hessian of S (A = V VS). 
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The posterior can then be expressed as a Gaussian approximation (3.11), which becomes 

exact for a linear model. 

p(w | D) ~ (1/ Zs+) exp (-S(wmp) - (1/2)( w- wp)" A (W- Wee) (3.11) 

where Zs+ is a normalising constant for the approximating Gaussian. 

This is known as the Laplace approximation and effectively finds the most likely parameters 

by identifying the modes of the posterior and modelling each by a Gaussian distribution. The 

above analysis however, assumes the hyperparameters to be known and fixed. This is not the 

case here and so will be dealt with shortly in section 3.1.4. 

3.1.4 Bayesian Methods in Practice - Hyperparameters & Evidence 

The normalisation factor, p(D) is known as the evidence. As seen in (3.1) it is obtained by 

integration over the weights, which may only be analytically tractable for particular forms of 

prior and likelihood (Nabney, 2002). Also, true Bayesian prediction requires integration over 

the posterior (see (3.2)), which can cause similar problems. Consequently, the data driven 

networks will use ‘evidence’ approximation in calculation of the posterior. 

The fully Bayesian approach integrates over all unknown weights including hyperparameters, 

so the posterior may be represented as in (3.12). 

p(w|D)= JJ p(w,a,B|D) da dp (3.12) 

= JJ powla,B,D) p(a,B|D) da ap 

Evidence approximation avoids this multi-dimensional integral by instead seeking optimal 

hyperparameters based on information from the training data. By assuming the posterior of 

the hyperparameters p(a, 8 | D) to be sharply peaked around their most probable values amp 

and Bmp, the weight posterior in (3.12) reduces to (3.13). 
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p(w|D)= p(w amp, Bap,D) JJ p(a,B|D) da dp (3.13) 

= p(w | amp, Bap, D) 

To make the approximation the hyperparameters must be fixed to these ‘optimal’ values amp 

and Bmp that maximise the posterior p(w | D). The posterior p(w | a, B, D) however, may 

contain multiple modes due to non-linear mapping and/or network symmetries (Nabney, 

2001). Therefore amp and Byp are found from the modes of the posterior distribution of the 

hyperparameters (see (3.14)). 

p(a.B|D) = pCD | a, B) pCa, B) (3.14) 

p(D) 

p(D) is the integral of the numerator in (3.14) and therefore not relevant in determining the 

modal values. Also, the prior p(a, §) can be assumed uniform, such that to find the peaks it is 

necessary only to maximise p(D | a, B) — the probability of the data for the given 

hyperparameters. This probability can be expressed as: 

p(D | a, B)= Jp(D|w, a, B) p(w] a, B) dw (3.15) 
= Jp(D|w, B) p(w| a) dw 

a and § are effectively scale parameters determining the magnitude of ||w||’ and the noise 

respectively. The weights then have no dependence on the noise parameter, B, and the 

likelihood is independent of a. Using (3.3) and (3.6) this is equivalent to (3.16): 

p(D | a, B) = (1/ Zw(a)) * (1/ Zp(B)) Fexp{- a Ew(w) - B Ep(w) } dw (3.16) 

To find hyperparameters the logarithm of this likelihood, In{p( D | a, B)}, is optimised 

separately with respect to o and f (as outlined by Bishop (1995)). This results in the following 

equations ((3.17) and (3.18)) for a and B in terms of the eigenvalues € ; of the data Hessian (H 

=BV VEp): 

PAs}
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2aEWw= yi (6) /Ei + a} =v (3.17) 

2BEpM = N-Yi (6: /&) + a} =N-v (3.18) 

which reduce to the following re-estimation formulae for a and B ((3.19) and (3.20) 

respectively): 

a" = (v/2Ew) (3.19) 

p™’= (N-v/2Ep) (3.20) 

Using iterative optimisation of weights and re-estimation of hyperparameters it is then 

possible to find the optimal values for a, B and w, which should eventually converge. The 

hyperparameters are then fixed to these values and the posterior recalculated using equation 

(3.13), The output of this trained network corresponds to the mean of the predictive 

distribution, which as before is found using equation (3.2) following substitution of the newly 

approximated posterior. 

3.2. Networks - The Multi-Layer Perceptron (MLP) 

The basic neural network used will be a two layer Multi-Layer Perceptron (MLP). This is 

compatible with use of Bayesian methods, regularisation and Automatic Relevance 

Determination (ARD). Pre-processing methods will include PCA, as the full dimensionality 

of data may again cause problems through computational complexity and sub-optimal 

training. The PC reconstruction of the spectra is very good reducing dimension without 

significant loss of information: using ten PCs the correlation coefficient exceeds 0.999 and the 

mean absolute error is 0.00008. 

Inputs to the network itself will be the five pigment concentrations and (optionally) cell size 

distribution data. Outputs will be either normalised estimates of total absorption or 

alternatively projected spectra, as reduced to ten dimensions by PCA. The networks will be 

trained using scaled conjugate gradient optimisation (Nabney, 2002) with a sum-of-squares 

error function. Performance will be evaluated using the designated test set and reconstruction 
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errors calculated by comparing observed and predicted spectra. Error measures will include 

the root mean squared error (RMSE), mean absolute error (MAE) and bias (see Appendix A.5 

for full error formulae), The analysis will compare final reconstructed spectra rather than raw 

network outputs, so as to optimise with respect to any data processing as well as the network 

mapping. 

Experiments will include training models for the whole spectrum, at individual wavelengths 

and by separate cruises. The basic normalisations and a log transform of the data will also be 

considered. The log transform has the advantage of constraining outputs to be positive as well 

as potentially fitting underlying structure in the data. 

3.3. Validation 

The strict application of Bayesian methods implies that any ‘large’ network can produce 

reliable results and that validation for network selection is unnecessary. However, excessive 

numbers of hidden units result in the modelling of unnecessary noise and highly complex 

networks may result. There is also a required knowledge of what constitutes a large enough 

network. To avoid these issues a more flexible approach will investigate the performance of 

various network structures using a validation set. 

The validation set consists of a random sample of 20% of the training data. The remainder of 

the training data will be used to train the validation networks with various numbers of hidden 

units between one and sixty. Validation experiments will be carried out with no regularisation 

and using several different weight decay priors (Nabney, 2002). 

3.3.1 Validation Outcomes 

Training and testing validation networks results in several error minimums for each structure. 

Errors are quite erratic and also vary with optimisation parameters, but approximate global 

error minimums are identified in the following analysis. The basic regression model for all 

cruises taking concentration inputs and using the ten PC representation of spectra gives a 

global minimum at five to six hidden units (see figure 3.3.1.1). Incorporating size distribution 

31



PREDICTION OF PHYTOPLANKTON PIGMENT CONCENTRATIONS FROM ABSORPTION SPECTRA 

inputs into the model has some effect on errors, but this is neither conclusively good nor bad. 

Use of small weight decay coefficients appears beneficial but the effects are again small. 

Figure 3.3.1.1: Validation Error for the basic forward model with PCA pre-processed spectra. 
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The alternative model not using PCA and predicting absorption at individual wavelengths 

supports a network with seven to eight hidden units (dependent on optimiser parameters, see 

figure 3.3.1.2). While further minimums occur around 16 to 18 units the improvement is 

minimal. Training is already lengthy and so further units would appear to unjustifiably 

overcomplicate networks. 

Weight decay appears to marginally improve model performance, while size inputs have 

varying effects and cause some erratic error behaviour. Despite these differences in the 

magnitude of errors there is limited effect on positioning of global minimums and the inferred 

optimal networks. The optimum number of hidden units remains between five and eight for 

each variant of model. 
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Figure 3.3.1.2: Validation Error for the forward model by wavelength. 
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A given structure is assumed to be at least as effective in fitting the data when trained on 

individual cruises as when modelling the whole data set. While there may be more hidden 

units than necessary for individual cruise models hyperparameters will adjust accordingly. 

Using a standardised structure determined using all the data will better facilitate performance 

comparisons. Limiting the hidden layer to eight units constrains potential structural noise, but 

can still be considered a ‘large’ network relative to the estimated optima. Further forward 

models will use this pre-determined structure and revert to use of the full training set 

(including the validation data). The original test set will be used to evaluate model 

performance. 

3.4 Reconstruction 

Initially, basic non-Bayesian reconstructions of the data were produced to understand the 

general mapping. Attempts to reconstruct the whole spectra from the MLP directly with 151 

outputs result in non-smooth predicted spectra. It is concluded as expected that such a model 

is too complex and fits the noise in the data. Models were more successful where the target 

spectral data was reduced in dimension (by PCA) prior to training. 

33



PREDICTION OF PHYTOPLANKTON PIGMENT CONCENTRATIONS FROM ABSORPTION SPECTRA 

3.4.1 Bayesian Modelling 1: Full Spectrum using PCA 

Bayesian models are first implemented using ten PCs and eight hidden units, as determined 

by validation. The basic model takes the five concentrations as inputs with variations also 

incorporating the three size data variables or size index. A Generalised Linear Model (GLM) 

with the same inputs and outputs will also be tested alongside the MLP to provide a 

benchmark. The results of training several preliminary models are seen in table 3.4.1.1. 

Table 3.4.1.1: Bayesian forward model errors. MLP has 8 hidden units; all models use 10 PC representation of spectra. 

MLP MLP MLP MLP GLM GLM GLM 

No size No size Size index 3 sizes No size Size index 3 sizes 

  

Munorm* | SDnorm* | SDnorm* | SDnorm* | SDnorm* | SDnorm* | SD norm* 
  

  

  

  

CORR 0.965 0.967 0.966 0.966 0.954 0.955 0.956 

Mean 15.44 15.10 14.91 16.01 18.04 17.47 17.56 

% error 

Bias -6.70e-05 9.49e-06 | -2.10e-05 | -1.17e-05 9.71e-05 9.32e-05 9.32e-05 

MAE 0.0014 0.0014 0.0014 0.0014 0.0016 0.0016 0.0016 
  

RMSE 0.0025 0.0024. 0.0025 0.0025 0.0029 0.0028 0.0028 

CORR=Correlation coefficient, RMSE=Root mean squared error, MAE=Mean absolute error. 
                    

*Data normalisation method (spectra, concentrations and size each normalised separately): Mu refers to removal of mean, SD 
removes mean and sets to unit variance. 

Normalisation of inputs to zero mean and unit variance tends to improve results. The overall 

correlation between true and predicted values is in excess of 0.95 for all models, including the 

GLM. Incorporating the size data there are only small changes, which appear more positive 

when using the GLM. The true effect however is difficult to assess at this stage, as the 

additional data sometimes improves performance and other times worsens it. It may be that 

small improvements are disguised by an increase in noise resulting from the more complex 

network created. 

Modelling by cruise significantly improves the overall predictive performance for all of the 

models. Table 3.4.1.2 compares two of the models from table 3.4.1.1 with the average errors 

found using the by cruise model. Calculating average reconstruction errors (excluding any 

problem cruises) there is consistently greater accuracy in the mapping. Average correlations 

improve for all networks compared to the corresponding overall model, as do error measures 

RMSE and MAE. Size effects remain unclear but again seem more positive using the GLM. 
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Table 3.4.1.2: Bayesian forward model errors — comparison with by cruise averages. MLP has 8 hidden units; all models use 
10 PC representation of spectra, SD norm. 
  

  

  

  

  

  

  

MLP with size index GLM with 3 size inputs 

Overall By cruise Overall By cruise 

average* average 

CORR 0.966 0.968 0.956 0.982 

Mean 14.91 13.43 17.56 11.00 

% error 

Bias -2.10e-05 0.000132 9.32e-05 6.48¢-05 

MAE 0.0014 0.0011 0.0016 0.00098 

RMSE 0.0025 0.0020 0.0028 0.0017             
  

*MLP by cruise average excludes cruise | due to extreme error. 

Cruises with few samples however, such as cruise 1, are prone to extreme or infinite errors 

when using particular networks. This is illustrated by the example breakdown of by cruise 

results in table 3.4.1.3, which correspond to the MLP from table 3.4.1.2. 

Table 3.4.1.3: Bayesian forward model errors - breakdown by cruise for the MLP, modelled in linear space with size index 

input, 8 hidden units, 10 PCs, SD norm. A refers to the overall model and B to the model trained on individual cruises. 
  

  

  

  

  

  

  

  

  

  

            

Cruise CORR Mean Bias RMSE 

% error 

Model A B A B A B A B 

1 0.99 | 0.32 11.58 9.9e+152 | 0.0020 | -1.5e+149 | 0.0025 | 2.3e+149 

2 0.91 0.94 25.41 19,30 0.0012 | -3.90e-04 | 0.0037 0.0029 

3 0.92 | 0.86 24.02 24.42 0.0015 5.92e-04 0.0033 0.0030 

4 0.96 | 0.97 16.11 15.04 4.07e-04 | 4.62e-04 0.0015 0.0014 

5 0.98 | 0.98 23.52 14.53 -0,0022 | -3.83e-04 | 0.0042 0.0025 

6 0.95 | 0.96 17.67 15.79 -5.17e-04 | 2.14e-04 0.0023 0.0021 

7 0.98 | 0.99 11.44 9.07 5.52e-04 | 5.70e-05 0.0020 0.0016 

8 0.98 | 0.99 10.95 9.85 -3.10e-04 | 4.17e-05 0.0023 0.0020 

Average * | 0.97 | 0.97 15.74 13.43 -2.25e-05 | 0.00013 0.0024 0.0020             

* Averages for by cruise model exclude Cruise 1. 

This comparative breakdown also offers an insight as to how the two types of model perform 

on individual cruises. Aside from the unusual cruise 1 each cruise is better predicted where 

the model is trained specifically on that cruise. This may be attributed to implicit learning of 

cruise specific package effects. The difference in performance is most evident for cruise 5 
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where the change in percentage error is almost 9%. The errors from the by cruise model are 

quite low suggesting that the difference in performance might be caused by a stronger 

presence of cruise specific attributes relative to the other cruises. This could be an external 

non-modelled variable that has greater influence on the fifth cruise. 

An alternative approach is to carry out the modelling in log space. The variables are 

transformed by taking their natural logarithm prior to any other processing. The model is 

applied as normal and the transform later reversed with an exponential transform. The 

correlations are calculated directly in log space, but to allow some degree of comparability the 

predictions in log space are exponentially transformed before calculation of the errors. 

Although this reversal of the original transform may introduce a small bias (Smith & Barnett, 

2004) it will give a close approximation to the errors to help establish whether the transform 

is useful. 

Results for four overall models in log space and the corresponding by cruise model are shown 

in table 3.4.1.4. Results produced by the overall models are very similar to those using the 

standard, untransformed space and modelling by cruise similarly improves predictions. 

Relative to the standard space the by cruise averages tend to be slightly better correlated and 

produce smaller errors. Also the incorporation of the extra size inputs seems more successful 

when working within the log space. The differences overall however are not significant 

enough to conclude that either space is superior particularly as transformation bias has not 

been removed. At this point the GLM by cruise in linear space with three size inputs (table 

3.4.1.2) is the best performing model. 

Table 3.4.1.4: Bayesian forward model errors - log space models, All use 10 PC representation of spectra. 

MLP has 8 hidden units. 
  

  

  

  

  

  

    

MLP MLP GLM GLM 

No size Size index No size 3 size inputs 

Overall | By cruise* | Overall | By cruise* | Overall | By cruise* | Overall | By cruise* 

CORR 0.967 0.973 0.968 0.970 0.959 0.977 0.963 0.978 

Mean 16.06 12.52 15.18 11.95 18.39 12.28 17.03 11.70 

% error 

Bias -1.57e-04 | -3.05e-05 | -1.3le-04 | 1.40e-05 | -1.43e-04 | -5.06e-05 | -1.4le-04 | -3,99e-05 

MAE 0.0014 0.0011 0.0013 0.0011 0.0016 0.0011 0.0015 0.0010 

RMSE 0.0025 0.0018 0.0024 0.0019 0.0029 0.00178 0.0027 0.0017                 
  

*MILP by cruise averages exclude cruise 1 due to extreme error. 

36 

 



PREDICTION OF PHYTOPLANKTON PIGMENT CONCENTRATIONS FROM ABSORPTION SPECTRA 

3.4.2. Bayesian Modelling 2: By wavelength 

An alternative network model predicts absorption separately at each wavelength. The inputs 

are the concentrations and optional size data as before, but the output is a single prediction of 

total absorption at a given wavelength. Iteration produces a prediction at each wavelength to 

give a complete reconstruction of each spectrum. 

The resulting predictions are some of the best thus far in terms of both correlations and errors 

and the best overall models in both linear and log space are produced. The by cruise averages 

also improved further, though predictions for cruises with few samples remain erratic. In 

particular for cruise 1 and sometimes also cruise 2 the algorithm completely collapses as 

before. Using the log transform in this model improves predictions and avoids collapse for 

cruise 2, though cruise | remains problematic containing only two test samples. There does 

not appear to be any benefit to modelling by wavelength for the GLM relative to the previous 

models. 

Results for the most successful experiments are seen in table 3.4.2.1 alongside the previous 

best model for comparison purposes. The log transform on the by wavelength model produces 

the best model so far, though it only marginally outperforms the previous best GLM. 

Table 3.4.2.1: Bayesian forward model errors — by wavelength models. 
  

  

  

  

  

    

MLP MLP MLP GLM GLM 

by wavelength by wavelength by wavelength by wavelength 10 PCs. 

by cruise* by cruise* by cruise* 

Size index 3 size inputs No size inputs No size inputs 3 size inputs 

linear space log space log space linear space linear space 

(best overall (best overall log | (best model so (best GLM- 

model) space model) far) previous best 

model) 

CORR 0.971 0.971 0.980 0.982 0.982 

Mean 14,23 14.44 10.74 11.40 11.00 

% error 

Bias -4.04e-005 -1.48e-004 -5.38e-005 3.16e-005 6.48e-005 

MAE 0.0013 0.0013 0.00091 0.0010 0.00098 

RMSE 0.0023 0.0023 0.0016 0.0017 0.0017               

*MLP by cruise errors are averages per cruise excluding cruise 1. GLM by cruise errors are averaged across all cruises. 
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3.4.3. GLM comparison 

The GLM performs quite consistently, giving similar results whether trained by wavelength 

or using the full projected spectra (see tables 3.4.1.1 — 3.4.2.1). For the basic versions of both 

models the correlations are slightly smaller and errors significantly bigger than those found 

using the non-linear models. However, training the GLM by cruise is much more successful 

and even gives better average results than the corresponding MLP in many cases. The GLM 

also does not encounter difficulties in modelling any individual cruise and is fast to train. 

Table 3.4.2.1 illustrates how close the GLM (particularly in linear space) comes to matching 

the optimal MLP at this stage. 

Compared to the MLP-based networks inclusion of size inputs improves results more widely 

when using the GLM. Log transformation improves results for the overall models whether 

using PCA or modelled by wavelength, but appears to have detrimental effect for the ‘by 

cruise’ variants. The improvement from including size seems greater when working in log 

space, but the best predictors are derived in linear space. 

The good performance of the GLM relative to the non-linear models suggests that a large part 

of the basic relationship is linear. It may only be additional factors such as noise and 

acclimation effects that introduce non-linearity. Overall the MLP log space model is 

marginally more effective (table 3.4.2.1) indicating that some non-linear element may exist. 

Having determined the best forward models using the standard Bayesian evidence approach, 

several of these will be adapted to incorporate Automatic Relevance Determination (ARD). 

35 Automatic Relevance Determination (ARD) 

ARD is a method for identifying the most significant inputs and automatically adjusting 

weights to reflect this. Thus, it may directly limit the number of input variables, such that only 

relevant ones are retained. Alternatively, calculation and analysis of ARD coefficients 

provides a relative measure of input importance. This may guide the complete removal of 

irrelevant inputs from the dataset, thereby eliminating all noise contributed by unnecessary 

inputs. 
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ARD coefficient analysis is also potentially useful when inverting and producing models for 

concentration retrieval. Analysis by wavelength may determine significant inputs for 

prediction in each part of the spectrum. For example, if a pigment is identified as irrelevant in 

predicting absorption between 600 and 700nm then it may be assumed that these absorption 

measurements are irrelevant when it comes to the reverse problem of predicting 

concentrations. 

The high dimensionality of the data means ARD has the potential to significantly improve 

model performance by limiting the noise in both the forward and inverse models. It may also 

determine the usefulness of specific pigments and size data for predicting absorption and thus 

has implications for any further modelling. 

3.5.1 Implementing ARD 

ARD is implemented by adapting the prior so that each input variable has a separate 

regularisation coefficient. The weights associated with each input then have independent 

Gaussian prior distributions, each governed by a hyperparameter representing the inverse 

variance of the corresponding weights. The hyperparameters or ARD coefficients then 

indirectly control the magnitude of the weights. A small hyperparameter specifies large 

variability in the weights, which means they are likely to be big and the associated input 

important. 

ARD works iteratively within the evidence framework (described in section 3.1.4) gradually 

re-estimating hyperparameters to reflect the degree of relevance of inputs. Normalisation of 

inputs to zero mean and unit variance before training ensures comparability of the 

coefficients. 

3.5.2. ARD Priors for Best Forward Models 

Re-training the best models identified previously with ARD priors has almost no effect on the 

errors. For each model implemented MAE and RMSE do not change (to the 4 d.p. accuracy 
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recorded). The only changes are small improvements to percentage errors (less than 0.03%) 

and to the bias (less than 2 x 10°). Individual cruise models show similarly marginal 

improvements for some cruises yet experience further problems of instability and extreme 

errors. 

3.5.3 ARD Coefficients — Wavelength Analysis 

The ARD coefficients are the hyperparameters and so their inverse gives a measure of 

importance of the corresponding input. Using Bayesian training to predict absorption from the 

concentration inputs at each individual wavelength generates a sequence of ARD coefficients 

for each pigment. Variations include incorporating size data, using log transformation of 

variables and using different network structures and optimisation parameters. 

Results vary greatly depending on the particular model and parameters chosen, but most seem 

to agree that certain pigments have little importance for absorption prediction in certain areas 

of the spectrum. In the standard space, as expected ARD finds chlorophyll-a to be dominant 

throughout the whole of the visible spectrum (see figure 3.5.3.1). In contrast, the NPSCs and 

chlorophyll b have a much smaller contribution to overall absorption. PSCs also have much 

less significance but display two peaks at around 540nm and 690 nm. 

Figure 3.5.3.1: ARD Coefficients for the MLP with 3 hidden units in linear space and 1000 optimiser iterations. 
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Using eight hidden units however, chlorophyll b no longer appears insignificant in most areas 

of the spectrum. The more complex network seems able to capture the more subtle predictive 

information provided by the chlorophyll b input. Chlorophyll a displays a similar dominance 

but the effect of other pigments, particularly chlorophyll b and the PSCs is magnified. 

Figure 3.5.3.2: ARD Coefficients for the MLP with 8 hidden units in linear space and 100 optimiser iterations. 
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Log space experiments however give very different results suggesting much less influence of 

chlorophyll a. Chlorophyll c dominates in the first half of the measured spectra and each of 

the other pigments appears to dominate a small part of the spectrum at higher wavelengths. 

Figure 3.5.3.3: ARD Coefficients for the MLP with 3 hidden units in log space and 1000 optimiser iterations. 
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Using a log transform on the spectra, thus constraining the absorptions to be positive, whilst 

retaining linear space for the concentrations gives different results again. This experiment is 

again consistent with the dominance of chlorophyll a, yet indicates greater influence of the 

PSCs and chlorophyll c (see figure 3.5.3.4). This is especially true for the PSCs at higher 

wavelengths and both pigment groups become the dominant input at certain wavelengths. 

Figure 3.5.3.4: ARD Coefficients for the MLP with 3 hidden units, concentration in linear space, log transformed spectra and 

1000 optimiser iterations. 
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Running ARD on both concentration and size inputs mostly show the concentrations to be 

much more influential (see figure 3.5.3.5). The size index has its greatest impact at higher 

wavelengths between 575 and 650nm where it becomes more important than several pigments 

for certain network structures. Plotting ARD coefficients for the pigments and all three size 

inputs it becomes difficult to assess the effect of individual size inputs. 

ARD coefficients vary vastly with both network structure and the parameters of the optimiser. 

It is difficult then to draw many firm conclusions and this remains a possible avenue for 

further exploration. Considering alternative initialisations of each network and/or averaging 

across models may retrieve more a more stable result or decide that noise is dominant. 

Another possibility is to iteratively apply ARD and then remove the implied least important 

inputs. This would gradually reduce network sizes and may more accurately remove noise 

sources. Despite this instability however, recurring themes include the dominance of 

chlorophyll a across the spectrum as expected and the small but present influence of size 

inputs particularly at higher wavelengths. 
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Figure 3.5.3.5: ARD Coefficients for the MLP with 8 hidden units in linear space and 100 optimiser iterations. 
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3.6 Optimal Reconstruction Models 

The small gains from using ARD priors appear insignificant relative to the instability 

introduced into the models. The best performing models across the monitored statistics then 

are those detailed previously in table 3.4.2.1. The reconstruction performance of two of these 

is illustrated graphically in figures 3.6.1 and 3.6.2. Predicted versus observed values of 

absorption are plotted for six feature wavelengths selected using the spectra visualisation. 

Figure 3.6.1: Predicted versus observed absorptions for the best MLP - by wavelength, by cruise, in log space, no size inputs. 
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Note: Absorptions are plotted for all test samples at six selected feature wavelengths (430, 470, 540, 590, 640 and 674nm) 
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Figure 3.6.2: Predicted versus observed absorptions for the best GLM - by cruise, in linear space, three size inputs. 
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Note: Absorptions are plotted for all test samples at six selected feature wavelengths (430, 470, 540, 590, 640 and 674nm). 

The two plots actually appear very similar to the extent that the errors seem to occur on the 

same samples. This may suggest excessive noise or that factors such as the package effect are 

more prevalent in these samples, as both models predict absorption badly. Visual similarity of 

the plots, although subjective, is further evidence that the MLP does not add much predictive 

ability relative to the GLM. 

Error magnitudes appear only slightly larger where observed absorption is greater suggesting 

that there may be a proportional element to errors, but that they are largely additive. Both 

figures also indicate some negative bias not obvious (particularly for the GLM) from the 

statistics alone. This bias is most evident for larger absorptions though does not appear 

extreme. The structure of errors is investigated further in the following section (3.7). 

3.7. Error Structure 

Plotting the errors found across the spectrum offers further insight. Error magnitudes for each 

model, whether trained at individual wavelengths or using PCA reduced spectra, reveal a 

structure reflecting the mean spectrum, as in the example in figure 3.7.1. The errors then do 

appear proportional to absorption. This apparently multiplicative error may favour the use of 

log transformed spectra in further models, such that errors would become additive. This 
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structure also means that the largest errors occur at lower wavelengths between 400 and 

500nm (nanometers). However, whilst error magnitudes are smaller in certain areas of the 

spectrum particularly around 550 to 650 nm, absorption varies correspondingly such that 

relative errors actually tend to be higher. 

Figure 3.7.1: Error Structures by cruise (on the test set) for the MLP by cruise, linear space, three size inputs, 10 PCs. 
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Comparing the errors for each cruise as in figure 3.7.1 reveals some structural differences. 

Some display individual characteristics, such as slight differences in shape and positioning of 

the major peaks and possible secondary peaks. This may be related to differences in 

concentration, but might also indicate certain differences in combinations of pigments or 

additional factors, such as the package effect as modelled by Morel and Bricaud (1981). This 

is further evidence to support modelling by cruise or at least inclusion of a cruise related 

component for the inverse model. 

3.8 Permutations 

The previous forward modelling experiments have indicated that problems occur in some 

cases where there are few samples available. This suggests possible dependence on the split of 

the data. To investigate this several of the models will be applied to four new divisions of data 

set where the samples are designated to test and training sets by random methods (for a 

breakdown see Appendix A.6). 
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Experiments for the overall models on each permutation of the data show the error 

magnitudes to display a structure similar to the mean as before (see figure 3.8.1). The errors 

for each permutation are very closely correlated with those of the original set. There are 

however small differences in magnitude throughout the spectrum, which are most prominent 

at the lower wavelengths between 400 and 500nm. The same relation is true for the variance 

for each set of predictions. These conclusions remain unchanged for models including size 

inputs. 

Figure 3.8.1: Error Structures (on the test set) for the MLP in linear space, no size inputs, 10 PCs using the original 

designated data set and four random permutations. 
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The effect of the permuting the data set is much more apparent however in the models by 

cruise. The performance on several individual cruises is clearly much more sensitive to the 

split of training and test set, as is the case for cruise 2 (see fig 3.8.2). Error magnitudes vary 

significantly here with each permutation. 

Error structures for a given cruise though are mostly of very similar shape and resemble the 

mean. All permutations for Cruise 6 (figure 3.8.3) for example display the same secondary 

error peak around 550nm. Between cruises however, there are obvious differences in structure 

as well as magnitude. This is seen by comparing just two cruises using figures 3.8.2 and 3.8.3 

and is further evidence of additional cruise related differences, as well as varying pigment 

concentrations. 

46



PREDICTION OF PHYTOPLANKTON PIGMENT CONCENTRATIONS FROM ABSORPTION SPECTRA 

Figure 3.8.2: Error Structures (on the test set) for the MLP by cruise, in linear space, no size inputs, 10 PCs using the original 

designated data set and four random permutations. 
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Figure 3.8.3: Error Structures (on the test set) for the MLP by cruise, in linear space, no size inputs, 10 PCs using the original 

designated data set and four random permutations. 
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Several permutations however do result in some unusual features specific to that permutation 

and cruise. The original data set for example produces for cruise 3 a secondary error peak 

around 525 nm, which is either much more subdued or absent for the other permutations (see 

figure 3.8.4). Interestingly this is the split with least test data samples for cruise 3, suggesting 

the error may be disproportionately skewed by an unusual sample. As expected such 

differences tend to be most prominent where there are few samples in the given cruise and 

where the biggest changes in sample size occur. This is confirmed by comparing the average 

RMSE for each cruise and permutation of data. 
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Figure 3.8.4: Error Structures (on the test set) for the MLP by cruise, in linear space, no size inputs, 10 PCs using the original 

designated data set and four random permutations. 
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Figure 3.8.5 shows the average errors for cruise 2 — the smallest cruise except for cruise 1. 

The errors display more inconsistency than any of the other cruises and vary by up to 0.005 

between data sets. The error is greatest on the fourth permutation where the number of data 

samples designated for train: ing is least. 

Figure 3.8.5: Average Reconstruction errors (on the test set) for the MLP by cruise, in linear space, no size inputs, 10 PCs 

using the original designated data set and four random permutations. Average error across all wavelengths for cruise 2. 
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In contrast, errors for the largest cruise (cruise 6) are plotted in figure 3.8.6. These have the 

least variability of errors — less than 0.0005 across the permutations tested. 

Figure 3.8.6: Average Reconstruction errors (on the test set) for the MLP by cruise, in linear space, no size inputs, 10 PCs 

using the original designated data set and four random permutations. Average error across all wavelengths for cruise 6. 
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The extent of these effects of permuting the data on several cruises mean it may be necessary 

to model this as a further source of uncertainty resulting in extended confidence intervals. 

3.9 Forward Modelling (Spectra Reconstruction) Conclusions 

Good reconstruction: Models reconstruct spectra from pigment concentrations with 

correlations in excess of 0.98. 

Network structure: Eight hidden units appear to be an appropriate forward MLP framework 

so this may be a starting point for the inverse model. 

GLM performance: Impressive results using the GLM compared to the MLP suggest some 

potential for a linear element to models. The small differences though do suggest that the 

MLP implicitly captures at least some of the natural variability due to package and 

acclimation effects. 
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Log transform: The transform appears to improve model performance though the effect is 

small for the forward model. Proportional error structures also indicate that transform of the 

spectra may be useful. 

Size distribution data: Experiments are inconclusive as to the benefits of incorporating the 

additional size data. ARD suggests limited relevance yet there are some positive effects on 

model performance, so its inclusion will be considered for the inverse models. 

Important pigments: ARD confirms that the pigments have varying importance with regard 

to predicting total absorption and identifies chlorophyll a as the dominant pigment. This may 

suggest a need to model individual pigments separately. There is potential to further explore 

ARD output, particularly an iterative application. 

ARD priors: Models incorporating ARD tend to improve predictions but the effect is 

marginal. 

Dataset dependence: The sensitivity of models to alternative selections for training and test 

data indicate further uncertainty in the data possibly to be incorporated in the modelling 

framework. 
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Chapter 4 

Concentration Retrieval — Data Driven Methods 

The project will now investigate the retrieval of concentrations. Concentration retrieval will 

begin with data driven networks based on direct inversion of the forward models and then 

later focus on a generative absorption model. In both cases a Bayesian approach will again be 

adopted, as the same uncertainties exist. 

The data driven retrieval models are basically reversals of the ‘forward’ networks. These 

models will take spectral data and various other inputs with the ultimate aim of accurately 

retrieving the concentrations of one or more of the five pigment groups. As with the forward 

models they can be trained on individual cruises and incorporate PCA, log transformations 

and ARD priors. The natural variability due to package effect and photoacclimation is 

modelled implicitly by the data driven approach. 

4.1 Validation 

As with the forward models the first step will be a brief validation experiment. This may give 

some insight as to whether it is useful to include size distribution data, what prior might be 

appropriate and primarily the number of hidden units to be used for an MLP-based model. As 

before several models will be used with various combinations of input, normalisation and 

weight decay coefficient. Outputs will be concentration predictions for a single pigment or all 

five pigments. 
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4.1.1 Validation Outcomes 

The first model takes as inputs the ten dimensional PC projections of the spectra and 

(optionally) size data and predicts the five pigment concentrations for each sample. For the 

basic model taking only absorption inputs the main minimum occurs at eight hidden units 

with and without weight decay (see figure 4.1.1.1). Weight decay has some effect on errors 

and correlations and generally improves predictions. This indicates that even a simple weight 

decay prior will prove useful. Incorporating some form of projected size data reduces errors 

for certain network architectures shifting the minimum to five to six units (see figure 4.1.1.2). 

Using in excess of ten units the errors start to magnify, so eight units appear to be the best 

structure for this particular model. 

Figure 4.1.1.1: Validation errors for direct inverse model with PCA with and without weight decay. 

No size inputs, 1000 optimiser iterations. 
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Networks trained to retrieve individual pigment concentrations favour slightly different 

networks. For Chl-b and the NPSCs RMSE is minimised at six units while for Chl-c four 

units are optimal and for the PSCs thirteen units produce the minimum (see figure 4.1.1.3). 

Chl-a retrieval errors have three similar minima at nine, thirteen and sixteen units. The 

separate predictions reveal that although similar network structures may be optimal for 

selected pigments the magnitude of errors varies significantly depending on the pigment being 

retrieved. The Chl-b, Chl-c and NPSC pigment groups score mean absolute errors less than 
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0.05 for each structure implemented (with two or more hidden units). In contrast the Chl-a 

and PSC mean errors are more than twice as large and are largely in the range 0.08 to 0.12. 

Figure 4.1.1.2: Validation errors for direct inverse model using various size inputs, 

0.01 weight decay coefficient, 1000 optimiser iterations. 
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Figure 4.1.1.3: Validation errors for direct inverse model with PCA retrieving concentrations for individual pigments. No size 

inputs, and 0.01 weight decay coefficient. 1000 iterations. 
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In terms of correlations however, chlorophyll a retrieval is far superior and significantly 

poorer results are achieved for other pigments, particularly chl-b and NPSCs (see figure 

4.1.1.4). The results are highly erratic for chlorophyll b suggesting there may be large errors 

in the data or that the relationship between absorption and this pigment is rather weak. 

Nevertheless, maximum correlation for all but chl-c is achieved using between six and nine 

units. Average reconstruction errors and correlations across all pigments remains close to 

those found using a single model, so the individual retrieval does not appear to greatly benefit 

predictive capability. 

Figure 4.1.1.4: Validation correlations for direct inverse model with PCA retrieving concentrations for individual pigments. 

No size inputs, 0.01 weight decay coefficient, 1000 optimiser iterations. 
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A second MLP is constructed taking all 151 absorption measurements as direct inputs. In the 

absence of size inputs the minimums coincide at five and thirteen hidden units. Incorporating 

the size index reduces correlations and increases errors both with and without weight decay. 

Using the three size measures has less impact but also seems to increase errors. For the 

models including size the minimums are even less clear at around three to seven units. 
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Figure 4.1.1.5: Validation errors for direct inverse model taking raw inputs, with different size inputs and weight decay 

coefficient combinations, 2000 optimiser iterations. 
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Training these models to retrieve pigments individually results in large error variances again 

(see figure 4.1.1.6). This difference in magnitude of errors means that certain pigments 

dominate with regard to where overall minimums are situated. Errors for Chl-a and the PSCs 

are again significantly larger and thus their minimums coincide with those of the overall 

model at five and thirteen units respectively. Chl-a predictions are again the most closely 

correlated whilst results for chl-b are much worse relative to the other pigments (see figure 

4.1.1.7). 
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Figure 4.1.1.7: Validation correlations for direct inverse model taking raw inputs and retrieving pigments individually. No 

size input and 0.01 weight decay coefficient. 500 iterations. 
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Comparing the two main types of model (with raw data input and projected inputs) reveals 

interesting differences. The error magnitudes using the raw inputs generally seem bigger for 

the majority of structures tested (between one and twenty units) - possibly a result of the more 

complex network necessary. Results from the raw input model however, appear more stable 

with respect to the number of hidden units and display less sharp error peaks. 

As both models have potential yet display quite different minimums two different starting 

structures for the direct inverse networks will be preferred: nine hidden units for the projected 

data model and thirteen units for the raw data model. Size data experiments will continue as 

validation and previous experiments remain inconclusive as to whether the size data provides 

a useful input variable. The variation in errors in the retrieval of individual pigments suggests 

that individual models ought to be considered further. 

Errors as a whole are larger and generally more erratic than for the forward models. The 

similar size of network indicated by validating the first MLP, suggests some parallels with the 

forward problem and is indicative of linearity in the mapping. As with validation of the 

forward models there is potentially a more stable result to be achieved by averaging across 

many network architectures and initialisations. The analysis however appears to provide a 

reasonable first estimate. 
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4.2 Bayesian Pigment Concentration Retrieval 

As a result of validation the following three model structures are implemented: 

1 MLP — 9 hidden units 

Input dimension reduced to ten using PCA 

2 GLM - (no hidden units) 

151 raw (normalised) spectral inputs 

3 GLM - (no hidden units) 

Input dimension reduced to ten using PCA 

Initially the second model was an MLP with 13 hidden units taking raw inputs, but this proves 

to be too complex and collapses. Given the success of the GLM in forward modelling a 

second GLM taking raw inputs is to be used. The basic experiment will take only spectral 

inputs and retrieve all five pigments simultaneously. The three models produce the following 

results (table 4.2.1): 

Table 4.2.1: Average Concentration Retrieval Errors for all Pigments 
  

  

  

  

  

  

    

Model 1—MLP with PCA 2-GLM, raw input 3-GLM with PCA 

Normalisation Method MU SD MU SD MU SD 

CORR 0.973 0.974 0.975 0.976 0.970 0.970 

Mean % error 31.07 30.56 29.91 29.90 32:52 31.50 

Bias -5.52e-04 0.0015 0.0012 5.01e-04 5.91e-04 6.46e-04 

MAE 0.0250 0.0240 0.0238 0.0237 0.0255 0.0252 

RMSE 0.0408 0.0399 0.0391 0.0379 0.0428 0.0425               

Note: MU refers to normalisation removing mean, while SD normalisation also divides by the standard deviation 

As in the majority of previous experiments the SD normalisation improves results for both the 

GLM and non-linear models. All three produce correlations close to 0.97 and perform 

similarly on the error measures. The GLM with raw inputs is consistently slightly better for 

each measure followed by the MLP with PCA and then the GLM with PCA. This suggests 

that the latter are not complex enough at this stage to capture all the available information in 

the mapping. 

Bi! 
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4.3 Individual Pigment Concentration Retrieval 

Adapting the above models to retrieve each pigment individually has varying effects (see 

table 4.3.1). The GLM with PCA appears not to be affected at all by the change. For the GLM 

with raw input, which performed best in the previous experiment, RMSE decreases yet MAE 

becomes worse. In contrast the MLP results improve such that MAE is better than for all the 

other models. The GLM with raw input though remains the best predictor regarding 

correlation and RMSE. Individual retrieval has some positive effect then in the non-linear 

case, but has little if any beneficial effect on the GLM. 

Table 4.3.1: Average Concentration Retrieval Errors for models trained by pigment (All SD normalised) 
  

  

  

  

  

          

Model 1-—MLP with PCA 2-GLM, raw input 3-GLM with PCA 

CORR 0.975 0.976 0.970 

Mean % error 26.13 30.49 31.48 

Bias 0.0018 4,95e-04 6.46¢e-04 

MAE 0.0221 0.0240 0.0252 

RMSE 0.0397 0.0382 0.0425     

The following table (4.3.2) breaks down the results of the two PCA based models by pigment. 

Each individual pigment is better predicted by the MLP except for the PSCs where RMSE is 

actually less using the GLM. This may indicate that this particular pigment has a more linear 

relation to the absorption spectra relative to the other pigments and might support the use of 

different models for the different pigment groups. 

Table 4.3.2: Concentration Retrieval Errors for models trained by pigment - breakdown by pigment (PCA-based models) 
  

  

  

  

  

  

                    

Pigment CORR Mean Bias RMSE 

% error 

Model MLP | GLM MLP GLM MLP GLM MLP GLM 

Chi-a 0.98 0.97 19.55 25.57 0.0052 7.41e-04 0.056 0.067 

Chl-b 0.91 0.89 30.77 35.43 -8.65e-05 0.0011 0.022 0.025 

Chi-c 0.94 0.92 31.91 40.06 0.0014 -0,0012 0.022 0.025 

PSC 0.94 | 0.95 27.90 31.87 0.0028 0.0020 0.059 0.053 

NPSC 0.91 0.84 22.84 27.29 -2.34e-04 | 5.96e-04 0.018 0.023     
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Finally, the MLP is compared to the corresponding model retrieving the pigments 

simultaneously. Each pigment tends to be equally well or better predicted by individual 

retrieval, though for the PSCs RMSE actually increases. This may suggest that there is simply 

more noise in the PSC measurements. Both breakdowns show chl-a to be most accurately 

retrieved in terms of the percentage errors. 

Table 4.3.3: Concentration Retrieval Errors - comparative breakdown by pigment (MLP with PCA) 

A refers to the model retrieving all pigments simultaneously and B to individual pigment retrieval. 
  

  

  

  

  

  

  

Pigment CORR Mean Bias RMSE 

% error 

Model A B A B A B A B 

Chi-a 0.97 0.98 22.41 19,55, 0.0030 0.0052 0.064 0.056 

Chi-b 0.92 0.91 31.97 30.77 | -5.70e-04 | -8.65e-05 0.021 0.022 

Chi-c 0.94 0.94 33.68 31.91 7460-04 0.0014 0.022 0.022 

PSC 0.96 0.94 39.69 27.90 0.0041 0.0028 0.051 0.059 

NPSC 0.88 0.91 25.70 22.84 3.9le-04 | -2.34e-04 0.020 0.018                       

4.4 Separate Cruise Models 

Training networks on individual cruise data sets for both the MLP and the raw input GLM, 

correlations and RMSE become worse, while MAE and percentage errors improve (see 

below). The MLP also encounters problems with the first cruise, lacking in samples. 

Table 4.4.1: Average Concentration Retrieval Errors by cruise (All SD normalised, not individual pigment retrieval) 
  

  

  

  

  

  

Model 1—MLP with PCA 2-—GLM, raw input 3-GLM with PCA 

CORR 0.971 0.966 0.9813 

Mean % error 23.45 28.71 23.02 

Bias 0.0031 0.0029 0.0012 

MAE 0.0218 0.0235 0.0195 

RMSE 0.0435 0.0472 0.0337             

Note: MLP results do not include cruise 1 
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For the GLM with PCA however, both correlation and errors significantly improve. It 

becomes the best model based on correlation, MAE, RMSE and also mean percentage error 

which falls to its lowest at 23%. 

In addition, models were trained both by cruise and by pigment. Retrieving individual 

pigment concentrations for each cruise the performance of the raw input model actually 

deteriorates on each error measure relative to the by cruise only model. Minimal negative 

changes occur for each cruise and similarly for each pigment group with a small adverse 

effect overall. For the GLM with PCA by cruise, retrieving pigments individually changes 

results only marginally- some becoming better and others worse. 

Adapting the MLP to model by cruise and by pigment results in collapse for all of the first 

three cruises. On the remaining cruises predictive performance varies. Effects again are small 

with predictions improving for cruises 7 and 8 yet worse for 5 and 6. Each individual pigment 

group is predicted slightly better aside from the PSCs. Overall results are slightly better than 

modelling by cruise alone, but exclude those cruises with fewest samples and extreme results 

and so improvements cannot be considered significant. 

Individually retrieving pigments from the ‘by cruise’ models is not conclusively beneficial 

and appears to overcomplicate particularly the non-linear models. It may still be considered 

later when attempting to optimise the better models found. 

4.5 Logarithmic Transformation 

Applying the log transform to concentration inputs encountered problems, specifically the 

significant number of zero measurements relating to chl-b, chl-c and the NPSCs. Despite 

having amended these to take on small values the effect on the model is demonstrated clearly 

by the following regression plot (figure 4.5.1). On the left of the plot the vertically aligned 

data points are those for which the true (observed) concentration has been amended. Their 

positioning appears inconsistent relative to those in the main cluster, yet may be an accurate 

representation reflecting the absence of certain pigments in these samples. 
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Figure 4.5.1: Log space correlation plot. (R is the correlation coefficient between true and predicted NPSC concentrations) 
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As a possible solution all samples containing one or more zero concentrations were removed. 

This creates an alternative dataset with the number of training samples reduced by 212 to 967 

and the number of test samples reduced by 62 to 235. 

The new dataset was first tested on several models in linear space to provide a benchmark and 

assess the effect of removing the samples. Little difference was found in correlations though 

percentage errors improved, particularly for the MLP. MAE and RMSE however, actually 

became worse with the new dataset for every model. Analysis by pigment indicates that this 

may be because the loss of more accurate data relating to other pigments outweighs the 

benefit of removing the noisy data. Results for chl-a for example, which previously contained 

no zeros, become worse with the amended data. 

In log space the trend is similar (see table 4.5.1). Correlations are all slightly worse, but 

percentage errors improve. MAE and RMSE both increase compared to the results in linear 

space (from both the previous dataset and the new one with zeros removed). In some cases 

there are small positive changes for individual pigments but clearly not the majority. The 

exception to the above trend is the MLP by cruise for which all the errors improve in log 

space with the new dataset. Again though the improvement is not enough to match the GLM. 
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Table 4.5.1: Concentration Retrieval Errors— log space comparison, (all SD normalised) 
  

  

  

  

  

  

  

Model 1—MLP with PCA 2-GLM, raw input 3-GLM with PCA 

(by cruise) (by cruise & pigment) 

linear LOG linear LOG linear LOG 

CORR 0.9710 0.9703 0.9761 0.9591 0.9812 0.9727 

Mean % error 23.4517 19.8739 29.8979 23.6231 23.1113 17.6473 

Bias 0.0031 0.0018 5.01e-004 -0.0015 0.0011 -0.0019 

MAE 0.0218 0.0217 0.0237 0.0248 0.0196 0.0200 

RMSE 0.0435 0.0396 0.0379 0.0416 0.0338 0.0342                   

Note: MLP results do not include cruise 1, LOG results use amended dataset, linear results use previous data. 

The GLM with PCA by cruise and by pigment in log space now produces the lowest 

percentage error for any of the models. However, given that improvement is also seen using 

linear space with the new dataset and that other errors increase, at least part of this 

improvement is attributed to the removal of small and zero concentrations, which have a 

disproportionate effect on percentage error. Bearing this in mind and that transform bias has 

not been removed use of the transform is still not obviously beneficial to any form of GLM. 

A final variant of model takes a log transform of the spectra only. While individual pigment 

results may be better for each model whether or not trained by pigment and/or cruise the 

overall correlations reduce and errors increase. 

4.6 Size Inputs 

Inclusion of size data potentially assists the implicit modelling of the package effect and is 

considered in two forms. Firstly, for those models using PCA the two types of size input (size 

index and the three size measurements) will be included in the projection. This method 

increases the total input data without affecting network structure. Secondly, for all models the 

two types of size data will be used as direct inputs. These are therefore additional to the 

spectral input units, increase the dimension and alter the structure of the network. 
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4.6.1 Projected Size Inputs 

Incorporating the single size index into the projection data affects each PC based model 

slightly differently. The general trend however is a reduction in correlation and increase in the 

majority of errors, as is the case for the MLP in table 4.6.1.1, such that overall it appears 

detrimental to model performance. Similarly including the three projected size measures has 

negative effects for most models. It does however improve predictive output for the MLP 

when trained by cruise (table 4.6.1.1). 

In log space the effects differ and are slightly clearer. The overall MLP predictions are 

worsened by including the size index, but improve where 3 sizes are used. For the MLP by 

cruise both size options and particularly using three sizes improves predictions, which become 

better than those produced in linear space. 

For the GLM with PCA both forms of projected size input are not helpful for the overall 

model, though when modelled by cruise using the three size inputs becomes useful. 

Table 4.6.1.1: Average Concentration Retrieval Errors using various size inputs for the MLP by cruise 

(all SD normalised, all pigments) 
  

  

  

  

  

  

Model No size Projected Projected Non- projected | Non-projected 

size index 3 size inputs size index 3 size inputs 

CORR 0.9710 0.9676 0.9720 0.9756 0.9736 

Mean % 23.4517 22.8898 21.4439 20.8874 22.5810 

error 

Bias 0.0031 0.0033 -5.719e-004 0.0024 0.0029 

MAE 0.0218 0.0217 0.0209 0.0204 0.0210 

RMSE 0.0435, 0.0460 0.0416 0.0397 0.0407               
  

Note: Results do not include cruise 1. 

4.6.2 Additional (non-projected) Size Inputs 

Using additional network inputs has a different impact. For the size index results are very 

mixed with some models, such as the MLP by cruise (table 4.6.1.1), improving and others 

63



PREDICTION OF PHYTOPLANKTON PIGMENT CONCENTRATIONS FROM ABSORPTION SPECTRA 

becoming worse predictors. Using three inputs effects remain small, but results are generally 

more positive. Aside from the overall MLP, correlations and errors improve or are at least 

maintained. 

In log space including the size index worsens overall MLP predictions but improves them 

where the three size measurements are used. The improvement is better than when using the 

three projected inputs and significantly improves on all other variants thus far. Modelling by 

cruise each size input improves prediction surpassing those in linear space. 

Including the size index in log space for the raw input GLM is unhelpful. Using three sizes 

RMSE and percentage error improve but MAE gets worse. By cruise, size inputs improve 

outputs but linear results remain superior. For the GLM with PCA size mostly has a negative 

effect. By cruise however the reverse is true and (non-projected) size inputs improve the 

model. 

The size index alone does not appear to capture the information well enough to be useful to 

the models, Results are often worse presumably because the network is made unnecessarily 

complex without adding useful information. Regarding the three size inputs results are more 

positive, particularly where taken as additional (non-projected) inputs. Working with log- 

transformed spectra and concentrations, the extra size inputs appear to have more impact and 

often improve results, with selected models exceeding performance in linear space. 

The effect of size inputs is not consistent, though in some forms and for certain networks it 

appears a useful input. The available measures may not contain enough information to well 

represent the cell size distributions and/or package effect and may also be subject to noise. 

4.7 Optimal Models 1 

The optimal models in each space thus far and their corresponding performance measures are 

detailed below (table 4.7.1). The direct inverse model and overall GLM with PCA are 

excluded here, as the alternative models are significantly better predictors at this stage. The 

GLM with PCA modelled by cruise remains most successful, though now the log transform 

(remembering that the transform bias must be removed for an exact measure) appears useful. 
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Table 4.7.1: Concentration Retrieval Errors — optimal models 

(all SD normalised, all pigments retrieved simultaneously unless specified) 
  

  

  

  

  

  

  

Model 1~MLP with PCA 1—MLP with PCA 3-GLM with PCA 

(all cruises) (by cruise) (by cruise) 

Space Linear LOG Linear LOG Linear LOG 

Size Inputs no size 3 sizes size index 3 sizes no size 3 sizes 

by pigment | (nonproj) (nonproj) (projected) (nonproj) 

CORR 0.9746 0.9700 0.9756 0.9752 0.9813 0.9790 

Mean % error 26.1292 19.8660 20.8874 17.6812 23.0236 16,0752 

Bias 0.0018 -0.0018 0.0024. -0,0012 0.0012 -9,58e-004 

MAE 0.0221 0.0217 0.0204 0.0203 0.0195 0.0189 

RMSE 0.0397 0.0365 0.0397 0.0362 0.0337 0.0332                 
  

Note: MLP by cruise results do not include cruise 1, LOG results use amended dataset with zero samples removed, linear 

results use previous data. 

These and several other models showing potential will now be considered with further 

adaptations to inputs, outputs, network structure and priors. 

4.8 Alternative Network Structures - Extra PCs /hidden units 

Variants of several superior models will now be explored for further predictive potential 

firstly using changes to the number of inputs (by amending the PC dimension) and secondly 

to the number of hidden units. Although validation has been carried out previously this was 

with regard to broadly defined models. Also, for the simpler GLM (with no hidden units) a 

greater number of inputs ought to be viable without creating an overly complex network and 

introducing unnecessary noise. 

4.8.1 Increasing the PC dimension 

Regarding the MLP, for both the overall model and the model trained by cruise the trend is of 

decreasing errors and increasing correlation as the number of PCs increases. Taking the 

overall case to the extreme of 151 PCs maximises correlation in linear space, though does not 

minimise all error measures, presumably because there is more potential for noise to interfere. 

65



PREDICTION OF PHYTOPLANKTON PIGMENT CONCENTRATIONS FROM ABSORPTION SPECTRA 

In log space additional PCs also reduce errors but again there is a point, thought to be close to 

40 PCs, at which errors begin to rise again. The optimal variants of this overall MLP are 

produced using log space, but still do not surpass previous results for individual cruise 

models. Several higher dimensional PC projections of inputs also cause large shifts in error 

values and cause erratic behaviour of individual pigment retrieval models. 

Regarding the MLP by cruise there seems to be an optimal dimension again close to 40 PCs at 

which minimum errors are achieved in both linear and log space. The optimal MLP found has 

a PC dimension of 40, takes three projected size inputs and is in log space. The following 

table (table 4.8.1.1) compares this with the corresponding model in linear space and with use 

of alternative size inputs. 

The comparison shows that selected size inputs have a positive effect and again appear most 

influential in log space. This adapted MLP now succeeds the GLM as the best model, though 

is now quite sensitive to changes to inputs and is liable to collapse on the small cruises using 

this larger numbers of PCs. 

Table 4.8.1.1; Concentration Retrieval Errors for the MLP by cruise with increased PC dimension and varying size inputs 

(non projected unless otherwise stated) in both linear and log space. (All SD normalised) 
  

  

  

Model Dynamics Linear space, 40 PCs LOG space, 40 PCs 

Size Inputs No size I size 3 size No size 3 size 3 size proj 

CORR 0.9759 0.9681 0.9759 0.9646 0.9774 0.9794 

  

Mean % error 22.5954 23.7296 22.6236 20.4683 16.7191 16.0817 

  

  

  

Bias 0.0015 0.0031 0.0020 8.00e-004 0.0034 -3.76e-05 

MAE 0.0206 0.0214 0.0199 0.0222 0.0195 0.0182 

RMSE 0.0392 0.0455 0.0392 0.0413 0.0369 0.0323                 
  

Note: These averages do not include cruise 1 

The GLM however may also use additional PCs and ought to support a much greater number 

of inputs before noise interferes compared to the MLP, which is much more complex due to 

its hidden layer. Increasing the PC dimension for the GLM with PCA improves performance 

though it still cannot match the by cruise models (seen in table 4.7.1). 
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Adapting the GLM by cruise however improves results further and re-establishes the GLM as 

the optimal model. In linear space the maximum number of PCs (151) with no size input 

produces the best correlation and minimises RMSE at 0.0323, while including size minimises 

MAE at 0.0185. Log space improves on these further and is optimised using only 48 to 50 

PCs plus the three size inputs. Minimums are produced for MAE and RMSE at 0.0181 and 

0.0323 respectively with either projected or non-projected size inputs. Retrieving pigments 

individually does not appear to improve the adapted PC models. 

Table 4.8.1.2: Concentration Retrieval Errors for the GLM by cruise with increased PC dimension and varying size inputs 

(non projected unless otherwise stated) in both linear and log space. (All SD normalised) 

  

  

  

  

  

  

  

Model Linear space LOG space 

Dynamics 

Size Inputs No size No size No size 3 size proj No size | 3 size proj | 3 size proj 

50 PCs 100 PCs 151 PCs 151 PCs 50 PCs 50 PCs 100 PCs 

CORR 0.982 0.983 0.983 0,982 0.977 0.982 0.982 

Mean % error 2197 21.63 21.54 21.36 16.73 15.15 15.07 

Bias 0.0016 0.0016 0.0014 0.0013 -1,88e-04 | -4.56e-04 -2.24e- 

004 

MAE 0.0190 0.0188 0.0187 0.0185 0.0192 0.0181 0.0182 

RMSE 0.0332 0.0325 0.0323 0.0334 0.0332 0.0323 0.0324                     

Additional PCs certainly seem to gradually add more useful information, but at the cost of a 

more complex model. This is clearly more of an issue regarding the MLP than the GLM. The 

by cruise models are again confirmed as superior and clearly surpass the raw input GLM and 

overall models. Log space results are also better and including three size inputs again appears 

most useful. 

4.8.2 Increasing the number of hidden units 

Given that the optimal models so far are by cruise, use some form of size data and take 

additional inputs in the form of a greater PC dimension it may be that more or less hidden 

units provide a more appropriate structure for the MLP. Several by cruise models will be 

adapted to investigate this. 
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Firstly the hidden layer was reduced to eight units. The effect as expected is an increase in 

MAE and RMSE relative to the corresponding model with nine units. Subsequently 

increasing the PC dimension reduces errors but not to the extent of rivalling the nine unit 

model. The same was true using both seven and four units for the hidden layer. 

Increasing the hidden layer by one unit at first appears helpful, as the error on the standard 10 

PC model reduces. However, when trying to use in excess of 30 PCs problems occur for 

cruises where there are few samples. Further hidden units (in both linear and log space) 

generally appear to introduce more noise and overcomplicate the network, such that results 

tend to get worse or the model collapses. No significant improvements on the original nine 

unit hidden layer structure are found. 

Adjusting network architecture causes some erratic behaviour, such that certain combinations 

of inputs and hidden layer size give particularly good or bad results. These do not seem 

systematic or to follow any obvious pattern and so may be the result of noise. The current 

structure performs relatively well and is generally stable and will therefore be retained, 

4.9 ARD 

An ARD prior potentially improves a given model by adjusting weights to reflect importance 

of inputs. The optimal non-linear models at this stage will be adapted to incorporate ARD. 

The GLM is excluded, as it does not have a hidden unit layer or therefore the weights that 

ARD controls. However, using the forward model ARD coefficients it may be speculated as 

to which pigments are most important in predicting absorption at each wavelength. This data 

can potentially be analysed and converted to weightings for spectral inputs for the reverse 

models, including the GLM. 

4.9.1 ARD Prior for the direct inverse model 

Adapting the prior for several of the better MLP models to incorporate ARD has mixed 

effects. Some models, such as the first example in table 4.9.1.1 become worse, whilst others 
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like the second example show small improvements. Overall the effect is more often positive 

for those models it is applied to. Certain by cruise models however become very sensitive to 

collapse for the smaller cruises, depending on the combination of PC dimension and size 

inputs. 

Applying ARD to the MLP by cruise, it succeeds the GLM as the best model. The margin 

though is small as shown by table 4.9.1.1. Minimum errors are achieved in log space using 40 

PCs and 3 projected size inputs. MAE falls to 0.0180 and RMSE to 0.0318. 

Table 4.9.1.1: Concentration Retrieval Errors for MLP by cruise with ARD compared to the previous best model 

(all SD normalised) 

  

  

  

  

  

  

  

  

Model MLP by cruise GLM by cruise 

Space Linear LOG LOG 

Size Inputs No size 3 size proj 3 size proj 

PC dimension 40 PCs 40 PCs 50 PCs 

Prior No ARD ARD No ARD ARD (No ARD) 

CORR 0.9759 0.9756 0.9794 0.9800 0.982 

Mean % error 22.60 23.21 16.08 15.87 15.15 

Bias 0.0015 0.0021 -3.76e-05 5.98¢-06 -4,56e-04 

MAE 0.0206 0.0210 0.0182 0.0180 0.0181 

RMSE 0.0392 0.0394, 0.0323 0.0318 0.0323                 
4.9.2 Applying ARD Information from forward modelling 

Although some improvements were found using ARD in the inverse model the effects are 

small. Therefore given the significant uncertainty related to the ARD data collected from 

forward models the removal and/or additional weighting of inputs will not be pursued here. 
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4.10 Constrained Concentrations 

Given that the concentration predictions ought to be positive they will be constrained within 

the models. Following forward propagation and post-processing each negative prediction will 

simply be set to zero. 

Applied to the GLM by cruise with no additional inputs and the standard 10 PCs the results 

for each cruise are identical where there are no negative concentration predictions and 

improve slightly where there are. In these cases retrieval errors for each pigment are also 

slightly better such that the overall result is a small improvement. The log transform 

implicitly applies this constraint so any log space models ought not to be affected by the 

change. As log space models are optimal at this stage the constraint may be unnecessary. 

4.11 Additional Slope & Curvature Information 

The final adaptation of direct inverse model to be considered incorporates gradient and/or 

curvature data related to the spectra. This potentially adds a further dimension to the 

information that can be captured by the model. The slope is calculated numerically using the 

MATLAB ‘gradient’ function, which takes forward differences for the end absorptions and 

central differences for interior points. The curvature is similarly calculated by applying the 

‘gradient’ function twice. The data produced is then normalised, PCs calculated and various 

combinations of the new data then incorporated into the GLM and MLP. 

4.11.1 Concentration Retrieval using Slope & Curvature Data alone 

Firstly a new model will be considered for retrieving the concentrations without using the 

standard absorption inputs. The GLM by cruise will be used to assess the viability of retrieval 

by this method. 

In linear space retrieval of concentrations using gradient data alone is quite successful. 

Additional PCs also improve results but the new model still fails to match the standard 

spectral PC model. The best result found using gradient data alone is produced using the first 
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35 PCs. This maximises correlation at 0.9805 and reduces RMSE to 0.0344. In log space 

correlations are still close to 0.95 but the errors much worse than for the standard model. 

Using the curvature data alone it is again possible to retrieve the concentrations to some 

degree. Around twenty PCs appear optimal producing correlations as high as 0.973. Errors 

though in both linear and log space are significantly worse than when using either absorption 

data or the absorption gradient data and RMSE exceeds 0.040. 

Using equal numbers of PCs of slope and curvature data does not appear to improve on results 

from using gradient PCs alone. The information provided by each evidently overlaps, so that 

where gradient data is used adding in curvature data complicates the network without bringing 

new information. 

Slope and/or curvature data does not in itself contain enough information for accurate 

concentration retrieval, but there is certainly evidence that the variables are related to the 

pigment concentrations. It may be that each could provide useful additional information to 

that contained in the absorption spectra alone. 

4.11.2 Incorporating Additional PC Inputs 

The gradient/curvature inputs will now be incorporated into previous models with only 

absorption data inputs. The effect of additional inputs will be assessed by comparison with 

corresponding models in terms of the number of standard spectral inputs, size inputs and 

network structure. Gradient data is initially included in equal proportion to the absorption 

data, such that the basic model takes the first ten PCs of the spectra and the first ten PCs of 

the gradient of the spectra. Similarly a second variant includes equal numbers of spectral and 

curvature PCs and a third model takes equal numbers of PCs for the raw spectra, the gradient 

and the curvature. 

The MLP and GLM will both be investigated in linear and log space and with varying 

network structures. Both overall and by cruise models are considered, as is modelling by 

pigment and the use of ARD priors. 
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4.11.3 Inclusion of Gradient PCs 

The first experiments test the overall GLM but show no radical improvement from previous 

models. Given the already superior performance of the by cruise models the focus from here 

on will shift to these variants of the GLM and MLP. 

In linear space the effect of including gradient data (with or without size inputs) on the GLM 

is mixed. Using log space however, the model performs consistently better with the extra data. 

Small numbers of additional PCs improve this further as does modelling by pigment to give 

the following best model (table 4.11.3.1): 

Table 4.11.3.1: Concentration Retrieval Errors for the GLM by cruise with additional gradient inputs. Modelled in log space 

by pigment with 3 non-projected size inputs, (SD normalised). Standard model takes 11 absorption spectra PC inputs. 

  

  

  

  

  

  

Standard Plus 11 

model gradient PCs 

CORR 0.9790 0.9803 

Mean % error 15.9763 15.1732 

Bias -9.1877e-004 -0.0013 

MAE 0.0189 0.0180 

RMSE 0.0331 0.0309           

For the MLP the extra inputs do not appear useful and results are worse than both the GLM 

and the standard MLP. 

4.11.4 Inclusion of Curvature PCs 

Adding in the curvature rather than gradient data improves predictions for all of the models 

tested in linear space, but changes are minimal relative to the standard absorption input 

models. In log space the performance is also better than for the standard GLM, but not as 

good as the corresponding model using gradient inputs. The curvature model does however 

improve on the gradient inclusive model when using larger numbers of inputs, but does not 

significantly or consistently outperform previous models. Again adaptation is unsuccessful for 

the MLP, which becomes unstable quite quickly with additional PCs. 
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4.11.5 Inclusion of both Gradient and Curvature PCs 

For the model including both gradient and curvature data the linear space predictions 

generally become worse. Utilising the log transform as well predictions are mostly better or 

equivalent to both the standard model and those inclusive of gradient/curvature data alone. On 

exceeding around 20 PCs the errors do however start to increase at a faster rate than for the 

corresponding models due to the more complex structure. 

The combined inputs produce a new best model taking 11 PCs each from the spectra, gradient 

and curvature data for which the results can be seen in table 4.11.6.1. The model is 

implemented in log space, takes three non-projected size inputs and retrieves pigments 

individually. Both MAE and RMSE are minimised by the model at 0.179 and 0.0309 

respectively. 

Having tried several combinations of PC inputs there is clearly some useful information 

contained in the gradient and/or curvature PCs. It may be that alternative proportions of each 

input are optimal. A more systematic approach to selecting optimal gradient and curvature 

inputs will use a PC-based analysis of the data. 

4.11.6 Gradient and Curvature data — PCA and Concentration Retrieval 

Plotting eigenvalue spectra for the gradient and curvature data there are big differences (see 

table 4.11.6.1), such that each may be best represented by different numbers of PCs. For the 

gradient data the first eleven PCs are needed to capture 90% of the variance. A noticeable 

kink in the trend does occur between the fifth and sixth eigenvalues suggesting that noise is 

being introduced. 

The variance explained by the curvature data PCs is much more evenly spread between the 

PCs. The first PC only captures 28% of the variance and in excess of fifty PCs are necessary 

to retain 90% of the variance. The kink again appears at five to six eigenvalues (see figure 

4.11.6.1). Examination of the corresponding eigenvectors (PCs themselves) for each dataset 

reveals very noisy structure even in the early PCs. Six to eight of the gradient PCs display 

most structure yet only two to five of the curvature PCs. 
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Figure 4.1.6.1; Eigenvalue spectra for gradient and curvature of the absorption data, 

  

2 Descending Eigenvalues for Gradient data 2 Descending Eigenvalues for Curvature data 
10° 10° 

      

Using this information as a starting point several further combinations of PC inputs are tried. 

The optimal models discovered are detailed below (table 4.11.6.1). Individual pigment 

retrieval is again found to have small but positive effects. 

Table 4.11.6.1: Concentration Retrieval Errors for GLM with various PC inputs (All SD normalised) 
  

  

  

  

  

  

            

Model GLM with PCA, by cruise 

Space Linear LOG LOG LOG 

Size Inputs 3 sizes (nonproj) 3 sizes (nonproj) 3 sizes (nonproj) 3 sizes (nonproj) 

PC Inputs 20 spec PCs 11spec PCs 11 spec, 11 grad, 100spec PCs 

20 grad PCs 11 grad PCs 11 curv PCs 10 grad PCs 

by pigment by pigment by pigment 

Correlation 0.9821 0.9803 0.9806 0.9835 

Mean % error 21.8337 15.1732 15,1593 14.2000 

Bias 0.0014 -0.0013 -0.0013 -0.0010 

MAE 0.0195 0.0180 0.0179 0.0170 

RMSE 0.0329 0.0309 0.0309 0.0299 

    
Note: LOG results use amended dataset, linear results use previous data. 

One of the better linear models is shown as a benchmark to illustrate the benefit of applying 

the log transform. Each selected log model is clearly more successful. The change from the 

second to the third model is minimal confirming previous beliefs of limited impact of the 
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curvature data when added to the direct absorption data and gradient data. Improvements are 

maximised by using one hundred spectral PCs with an additional ten gradient PCs and this 

model is discussed further in the following section. 

The derivative data is clearly relevant to some extent and improves model performance. For 

the MLP however, it appears that the increase in inputs and therefore complexity outweigh the 

potential benefit of the additional information. 

4.12 Optimal Models 2 

A correlation plot for the optimal direct inverse model found is shown in figure 4.12.1. The 

errors do appear to increase slightly with the magnitude of the observed concentration, though 

there is no particular range where predictions appear worse or any obvious bias. 

Figure 4.12.1: Observed versus true concentrations (all pigments) for the GLM by cruise modelled in log space, 100 PC 

spectral inputs plus 10 PC gradient inputs, 3 non-projected size inputs, modelled by pigment (SD normalised) 
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Analysing the correlation by pigment and by cruise some further conclusions may be drawn. 

Outlying predictions do not appear particular to select pigment groups, though certain cruises 

do appear to be more prone to errors. The NPSC concentrations, as plotted in figure 4.12.2, 

highlight cruises three and eight as the greater sources of error. Plots for each of the other 
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pigment groups can be found in Appendix A.7. The Chl-a and Chl-b analyses show the 

greatest errors on cruise two and again three. Chl-c on the other hand highlights several 

outliers from cruises seven and five and the PSCs again highlight cruise seven. Those from 

cruise seven and possibly several others seem likely to be noise affected samples that ought to 

have been removed earlier. This analysis confirms that particular cruises are modelled better 

than others, whether due to non-modelled natural cruise differences, such as photoacclimation 

effects, or different noise levels between cruises. 

Figure 4.12.2: Observed versus true concentrations of NPSCs for the GLM by cruise modelled in log space, 100 PC spectral 
inputs plus 10 PC gradient inputs, 3 non-projected size inputs, modelled by pigment (SD normalised) 
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The breakdown of results by cruise in table 4.12.1 supports these findings and especially 

highlights cruise 3. This may be largely because the cruise contains few samples, but may also 

be indicative of an un-modelled variable, which is particularly relevant to cruise 3. 
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Table 4.12.1: Concentration Retrieval Errors for the optimal direct inverse model (from table 4.11.6.1) broken down by 

  

  

  

  

  

  

  

  

  

  

cruise 

Cruise CORR Mean % err Bias MAE RMSE 

1 0.9775 29.3980 0.0102 0.0199 0.0266 

2 0.9855 14.6069 0.0059 0.0141 0.0223 

3 0.9089 29.3514 -0.0160 0.0304 0.0408 

4 0.9754 15,7543 0.0013 0.0121 0.0180 

5 0.9867 15.4696 0.0034 0.0169 0.0321 

6 0.9801 15.3591 -0.0033 0.0144 0.0266 

7 0.9902 11.0848 -9.3877e-04 0.0195 0.0350 

8 0.9899 10.8413 -3.5383e-04 0.0153 0.0264 

Average 0.9835 14.2000 -0.0010 0.0170. 0.0299                 

4.12.1 Overall versus By Cruise Models 

By cruise models are clearly superior in terms of predictive performance, however their 

practical application is quite limited. It is currently unknown what causes different 

characteristics between cruises and thus the models could only reliably be applied to 

concentration retrievals of a very specific nature, for example regarding location. It would be 

useful then to understand how predictive capabilities of the two model types differ with the 

aim of finding an optimal model in terms of both prediction and applicability. 

Scatter plots of predictions for each pigment produced by each type of model are compared in 

Appendix A.8. Errors are not identical and analysis is quite subjective, but there is no 

immediate structure evident. The overall model does not appear to do anything consistently 

‘wrong’ and plotting the corresponding predictions against one another shows no particular 

pattern of errors. This may suggest that the two models learn equally well the basic 

underlying mapping, but that by cruise models are able to learn cruise specific detail. This 

could include effects of unknown variables, such as temperature or cruise specific noise, such 

as systematic measurement error. 

Overall models are still very relevant and could benefit from inclusion of further variables, 

such as temperature, which might influence the relationship between pigment concentrations 

and absorption spectra. 
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4.13 Direct Inverse Modelling Conclusions 

Model Performance: The errors for the optimal direct inverse model found are listed in table 

4.13.1. It is a variant of the GLM modelled by cruise, which uses the logged dataset, three 

non-projected size inputs, one hundred absorption spectra PCs and ten spectra gradient PCs 

and retrieves by pigment. 

Table 4.13.1: Concentration Retrieval Errors for the optimal direct inverse model (from table 4.11.6.1) 
  

  

  

  

  

  

    

Pigment CORR Mean Bias MAE RMSE 

% error 

Chl-a 0.9845, 11.5342 3.4076¢e-004 0.0331 0.0483 

Chi-b 0.9634. 18.5127 -0.0018 0.0104 0.0176 

Chl-c 0.9694, 15.753 -0.0010 0.0094 0.0188 

PSC 0.9849 11,8639 -8.7146e-004 0.0229 0.0358 

NPSC 0.9726 13,9437 -0.0017 0.0093 0.0144 

OVERALL 0.9835 14.2000 -0.0010 0.0170 0.0299             

Modelling by cruise: Individual cruise models are again superior in terms of error 

performance, though overall models appear quite similar regarding where errors occur. 

Network structure: Nine hidden units and forty PC inputs appears the optimal structure for 

the MLP modelled by cruise. For the GLM each additional input PC appears to improve 

results in linear space, while in log space the error minimum seems to occur around fifty PCs. 

GLM performance: For direct inverse modelling the GLM generally outperforms the MLP 

suggesting the relation is largely linear. 

Log transform: Transforms of the spectra and concentrations appear useful though require 

removal of zeros, which reduce the dataset further. Earlier findings regarding multiplicative 

properties of errors suggest possible usage as part of a noise model. 
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Size distribution data: Size inputs have a positive effect on predictive ability, particularly in 

log space, and are included in the optimal model thus far. Log space improvements may 

suggest a link to the noise model. 

Individual pigments: Retrieving each pigment separately seems to improve or at least 

maintain performance, though effects are small for the GLM and by cruise models. 

ARD priors: ARD priors have a small positive effect when incorporated into the MLP. 

Dataset dependence and small cruises: Small cruises continue to be problematic 

particularly when using the MLP. 

Slope and curvature data: Inclusion of slope data produces better results though the further 

addition of curvature data does not appear to add any useful information. 

Noise and/or external variables: Each cruise appears to be subject to individual noise 

sources and/or additional non-modelled variables. There is scope to improve models by 

identifying and incorporating these features. Inclusion of further variables relating to package 

and acclimation effects, such as depth and temperature, potentially improve the implicit 

model. 

The data driven models can be adapted quite easily to incorporate additional variables and 

generally perform well. Errors though are still at 14% suggesting that there is something 

missing from the model, most likely an accurate representation of the package effect, and/or 

that the noise levels are simply too high for more accurate retrieval. 
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Chapter 5 

A Generative Model for Concentration Retrieval 

Some of the most successful research undertaken to date has focused on the Gaussian spectral 

model (see figure 5.1). Underlying the theory of the model is an assumption that the 

absorption due to each pigment can be represented by a number of Gaussian distributions. A 

specific absorption spectrum can then be calculated for each pigment, which estimates the 

absorption at each wavelength for unit concentration of the given pigment. Multiplying this 

specific absorption by a measured concentration of the corresponding pigment then ought to 

give the absorption due to that pigment. 

Figure 5.1: Gaussian Spectral Model: the specific absorption spectra for each pigment as estimated by Annick Bricaud. 
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Note: These spectra are derived from in vitro measurements for each individual pigment (in solvent). The band maxima have 

subsequently been shifted to match the known in vivo maxima. This means that the package effect is not included here. 
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The model estimates that total absorption is equal to the sum of products of concentrations 

and specific absorption (5.1), subject to the package and photoacclimation effects. 

ad) = YC Yay oyApi,or) 6.1) 

where / is the wavelength 

a(A) is the total absorption (a function of wavelength) 

i is the pigment index (from one to five) 

j is the index of the Gaussian band used to represent the i" pigment 

a’, are the heights of the Gaussians 

is a function of the wavelength, A and also w ij and oi, the centres and widths of the 

Gaussian bands respectively. Therefore, oj (A, LL ijs07%) is the i" Gaussian band for the i™ 

pigment. 

Xj a’ 04(A, Lij,073) is then the specific absorption for the i pigment. Given this model 

there are four unknowns: j, a‘i, [4j and O54, whilst the known variables are the observed data D 

= {a(A), C)}- the set of absorption spectra and corresponding concentrations. 

5.1 Estimation of Model Parameters 

The first stage then is to estimate the unknown parameters j, a‘i, Mj and oF. The Gaussian 

spectral model is similar to a Radial Basis Function (RBF), which has the general form seen 

in (5.2). The RBF then will be the starting point for creating a generative Gaussian based 

model. 

yi(x) = Dj wij 0j(x) (5.2) 

The findings from both visualisation and the direct inverse model suggest that that the relation 

between concentrations and spectra is largely linear. To incorporate this information and 

simplify the model the parameters j, uj and oi will be fixed. This means that the number of 

Gaussian bands, their positions and widths will be fixed, such that the only unknown in 
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specific absorption is ai, the heights of the bands. Having fixed the other three unknowns it 

will be possible to learn distributions for a’ in the Bayesian framework. 

To fix these three parameters a simple non-Bayesian RBF is created. The first aim of the 

model will be to fit the Gaussian absorption bands proposed by Annick Bricaud (figure 5.1). 

The RBF is trained using a single wavelength input and target data consisting of Annick’s 

absorption bands. The model output and errors are then analysed numerically and graphically 

to assess how many basis functions and what parameters are most appropriate to accurately 

model Annick’s estimated spectra. 

As a preliminary investigation the model was implemented without fixing the basis function 

parameters. The centres and width parameters (|) and oi) are initialised randomly and 

allowed to change to reflect a Gaussian mixture model fitted to the data. Using this flexible 

structure each of Annick’s pigment spectra are best modelled using eight hidden units (to 4 

d.p). Additional units offer no improvement on this fit and tend to marginally increase the 

error, such that eight ‘bands’ per pigment appears the optimal network architecture with the 

following errors (table 5.1.1). 

Table 5.1.1: RMSE for RBF fit to Annick’s specific absorption bands with non-fixed basis functions. 
  

  

  

  

  

  

Pigment Group Number of Bands RMSE 

(RBF centres, j) (4d.p) 

Chl-a 8 0.0029 

Chl-b 8 0.0031 

Chi-c 8 0.0064 

PSC 8 0.0008 

NPSC 8 0.0033           

The RBF was next adapted to use fixed, equally spaced basis functions of equal width to see 

if this affects the number of basis functions needed or the performance of the model. The 

basic model was run for each pigment using up to sixty basis functions. The centres (\Uj) are 

fixed with one centred on each end of the spectrum (400nm and 700nm) and the others 

positioned at equally spaced intervals determined by the value of j. Experiments are run using 

several different widths of Gaussian with a common width for all bands modelling a given 

pigment. 
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Training is much faster using fixed basis functions and it is possible to get an excellent fit to 

Annick’s specific absorption spectra using the networks detailed in table 5.1.2. The fixed RBF 

models use more basis functions but fit the spectra much more closely than those with non- 

fixed centres. A fixed width of 1000 appears to give good model flexibility to fit the spectra. 

Increasing the scale tends to reduce the number of basis functions needed but results in a 

bigger minimum. 

Three alternative models are identified each using a different threshold for identifying optimal 

structures. The first finds the minimum to 4d.p, the second uses an RMSE threshold of 0.001 

and the third an RMSE threshold equal to 1% of maximum absorption for the given pigment. 

The corresponding correlations for each pigment spectrum are in excess of 0.99 and RMSE 

less than 9e-004 for each pigment. 

Table 5.1.2: RMSE for RBF fit to Annick’s specific absorption bands with fixed basis functions. All widths (o7)) set to 1000. 
All RMSE figures given to 4 dp. 
  

  

  

  

  

  

  

  

Pigment Number of Gaussian Bands (RBF centres, j) & RMSE 

Group RMSE 4 d.p. minima RMSE < 0.001 RMSE < 1% max(a(A)) 

j RMSE j RMSE j RMSE 

Chi-a 28 0.0002 18 0.0009 28 0.0002 

Chi-b 20 0.0001 13 0.0009 17 0.0003 

Chi-c 22 0.0001 15 0.0006 15, 0.0006 

PSC 26 0.0001 7 0.0008 22 0.0004 

NPSC 28 0.0002 22 0.0009 24 0.0005                 
  

The Chl-a group clearly requires the most complex network as expected, given the more 

complex absorption spectrum estimated by Annick. Graphical analysis shows the errors for 

each pigment follow a similar trend and converge to a minimum. The RMSE plot for chl-b 

(figure 5.1.1) levels off around 20 basis functions, which matches the 4d.p minimum 

identified previously (table 5.1.2). 

In log space the error curves tend to be less smooth with several minima. Using the 1% 

maximum absorption RMSE threshold the number of bands used to fit chl-a, chl-b, chl-c, PSC 

and NPSC spectra are estimated at 22, 16, 18, 21 and 23 respectively. The number of bands 

then is less clear but fewer than the corresponding linear space estimates for all except chl-c. 
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Figure 5.1.1: RMSE in fitting Annick’s estimated chl-b spectrum with various RBF networks 

x10° 

RMSE in RBF fit to ChI-b Spectrum 
  45 

    eK x px x ey 
0 5 10 15 20 25 30 

Number of Basis Functions, j 

  

As a further benchmark the number of bands required to model the forward model estimate of 

specific total absorption from the raw data is explored. A model is produced for each pigment 

mapping it’s individual concentration to the total observed absorption spectrum. A unit 

concentration of that pigment is then forward propagated to produce a corresponding estimate 

of absorption. It is then noted how many basis functions best model the relation between 

wavelength and this specific total absorption spectrum estimated using the given pigment. 

Using non-fixed basis functions to fit these forward model absorption estimates eight units for 

each pigment is appropriate again, as in modelling Annick's individual spectra. Fixing the 

basis functions and using the 1% maximum absorption threshold supports the following 

network structure (table 5.1.3). 

Table 5.1.3: RMSE for RBF fit to forward estimates with fixed basis functions. All widths (6%,) set to 1000. 

Structure selected using 1% maximum absorption threshold for RMSE, RMSE given to 4 d.p. 
  

  

  

  

  

  

Pigment Group Number of Bands RMSE 

(RBF centres, j) 

Chl-a 24 0.0001 

Chl-b 19 0,0003 

Chl-e 14 0.0007 

PSC 20 0.0003 

NPSC 14 0.0005           
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By fixing the basis functions the computational complexity is significantly reduced. 

Therefore, the choice of structure will be based on the most reasoned approach despite not 

being the simplest network. By selecting the network with RMSE threshold of 1% maximum 

absorption (table 5.1.2) the threshold is appropriate to the specific pigment. The 

corresponding reconstructed specific absorption spectra are shown in figure 5.1.2. 

Figure 5.1.2: RBF fit to the specific absorption spectra proposed by Annick Bricaud 
(using the structure detailed in table 5.1.2 for RMSE < 1% max(a(A)) ) 
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Comparing this to the model itself in figure 5.1 the network seems to offer a good 

approximation. Using different numbers of bands per pigment in this way may slightly 

complicate software, but allows the model to be more flexible where most needed. 

5.2 The Generative Model & Bayesian Methods 

Having now fixed the values of the parameters j, j4j and oi a distribution for the weights can 

be learnt by training the network using the observed dataset. These weights are the heights, 

a’ and the value of the true concentration given the observed value. They are represented in 

the following discussion by the probabilities p(w) and p(x|x ops) respectively. 

Using Bayes’ theorem (as described in section 3.1) the posterior distribution of weights (w) 

given the observed data (D) is given by (5.3), which may then be expressed as in (5.4). 
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p(w|D)= p(D|w) p(w) = p(D | w) p(w. (5.3) 

p(D) Jp@ | w) p(w) dw 

P(W|D) = —_ p(W| Yobs, Xobs) = PCYors Xobs, W) D(W] Xons) (5.4) 

J PCyobs [Xobs, W) PCW] Xops) dw 

The known data are the observed values of y given the true concentrations x, that is (Yoos | x). 

The posterior (5.4) though contains the term (Yovs [xobs), Which is unknown. However, this 

posterior may be re-expressed to incorporate the known data by rewriting p(Yobs |Xobs, W) in 

terms of the true x as in (5.5). 

PCVobs | Xobs, W) = J plyobs| x, W) P(X | Kons) dx (5.5) 

Substituting this into the expression for the weight posterior (5.4) results in equation (5.6). 

This in turn reduces to (5.7) by recognising that p(w) represents the prior belief about the 

weights and so has no dependence on Xobs. 

p(w|D)= Lp(yovs X, W) p(x | Xobs) D(WI Xops)_ax (5.6) 

J I p(yovs | x W) P(X | Xons) POW] Xons) dx dw 

p(w|D)= obs | X- W) p(X | Xops) p(w)_dx (5.7) 

J Jp(yovs | x w) p(x | Xovs) p(w) dx dw 

Again using Bayes rule ((3.1)): 

P(Xobs | X) = POX Xobs) P(Kobs) (5.8) 

p(x) 

With the assumption of a generative noise model: x,y; = X + €, where ¢ is a noise term the 

unconditional distributions p(x), p(xops) are assumed identical, so that p(x) = p(Xops). This then 
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implies p(Xobs | x) and p(x| Xops) are symmetrical distributions, such that p(Xobs | x) = p(X| Xobs) - 

The posterior then can be expressed as (5.9). 

p(w|D) = obs |X. W) D(Xons | x) p(w) dx (5.9) 

J I p(yons | x W) p(Xobs |x) p(w) dx dw 

To progress each of the probabilities in (5.9) must be replaced by an appropriate probability 

distribution. These will be chosen consistent with prior beliefs, so that the generative model 

incorporates as much knowledge as possible and also implicitly imposes known constraints. 

The spectral data you; is assumed to be generated by the model (5.1) plus Gaussian noise, so 

that: 

P(Yobs |X, W) ~ N(Yoos, Cy obs) (5.10) 

where the mean Yop; is the observed training data and the standard deviation Cy obs is a fixed 

value equal to 10% of the mean absorption across all wavelengths and all samples in the 

training data. 

A gamma prior of the form (5.11) will be used for both the concentrations and the heights, so 

as to constrain each to be positive. Given the model (5.1) this then also constrains the 

absorption to be positive, as is the prior belief for all pigment concentrations. 

x ~ Ga(a, B) => p(x) = (B*/T(a)) x"? exp(-Bx) (5.11) 

where E(x)= w/B, Var(x)= a/B? 

The conditional distribution of concentrations then is given by (5.12). The values of a and B 

are determined using the observed training data concentrations, which are assumed to be 

subject to noise of 5%. The mean is set to the observed values of the concentrations plus a 

small additive component to ensure a reasonable flexibility on even the smaller weights. The 

variance will be set to the square of the assumed error plus a similar additive component. 

Using the definition of the gamma distribution (5.11) this implies the following values for a 

and B. 
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P(X|X obs) ~ Ga(ac, Be) (5.12) 

where Oc = (X obs + K)°/ {(X obs * 0.05) 7+ 7} 

Bo = (% obs +) / {Kops * 0.05) *+ «°} 

for K = 0.05 * Xohs, (5% of the mean concentration across all samples for each pigment). 

The prior distribution for the heights (5.13) is set similarly with parameters estimated using 

Annick’s specific absorption spectra. Taking a larger variance on the heights of 20% will 

reflect the uncertainty in Annick’s estimates and the derived initialisation. Again an additive 

component will be incorporated into both the mean and variance. 

p(w) ~ Ga(ow, Bw) (5.13) 

Justified approximations have now been found for each distribution in (5.9). However, there 

is not an obvious analytic solution and so sampling will be required. 

5.3. Sampling 

The basic principle of sampling is to replace a complex integral with a finite sum. To evaluate 

an integral of the form: 

1 = JF(w) p(w | D) dw (5.14) 

weight vectors w; are sampled from the posterior p(w | D), so that the approximation 

becomes: 

I= (1/L) Yi F(wi) where i=1,2...,L (5.15) 

The difficulty is in ensuring that the finite set of sample vectors w; are appropriately 

distributed so as to be representative of the true posterior p(w | D). There are many possible 

sampling methods with varying degrees of complexity, though each has certain limitations. 
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Gibbs sampling for example requires conditional distributions, which in this case are 

unknown, while other methods are simply poor at finding representative samples or very time 

consuming. 

Markoy Chain Monte Carlo (MCMC) methods attempt to generate representative samples by 

using random walks in parameter space with the aim of finding areas of weight space where 

p(w | D) is reasonably large. A sequence of vectors is generated where each has a dependence 

on the previous vector and also a random component, so that: 

Wnew = Wold + € (5.16) 

where € is a small random vector. 

One of the most widely used MCMC methods is the Metropolis-Hastings algorithm. This 

approach attempts to preferentially sample regions of higher posterior probability. Steps 

resulting in a reduction in p(w | D) are proportionally rejected with the intention of generating 

a truly representative sample set. This method produces some good results though may 

encounter problems due to strong correlations in the posterior (Bishop, 1995). It is also only 

feasible for smaller networks, as the non-systematic approach to exploring the distribution can 

be lengthy with many steps taken in the ‘wrong’ direction away from areas of high probability 

density. 

Hybrid Monte Carlo (HMC) methods are a progression from the Metropolis-Hastings 

algorithm and attempt to increase efficiency by introducing a systematic element to the 

sampler. The HMC algorithm incorporates gradient information from the sampled distribution 

to bias the direction of movement of the otherwise random sampler. This reduces the number 

of steps necessary to explore the distribution, thus making a more efficient sampler. This is 

therefore the only practical method applicable to this particular problem. 

5.3.1 Implementing Hybrid Monte Carlo (HMC) Sampling 

The posterior for the weights p(w| D) will be sampled using its corresponding cost and 

gradient functions. The posterior to be sampled is given by (5.9), though for the purpose of 
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generating samples the normalisation constant can be omitted as in (5.17). The exponential of 

the weights will be stored in the network to ensure the positivity of absorption estimates. 

p(w] D) % pl¥obs | Xs W) P(X | X obs) p(w) (5.17) 

The related cost function E is expressed in (5.19) and consists of three error components. 

E = -In(p(w| D)) (5.18) 

E c -In {p(Yoos |X W) p(X | X obs) p(W)} 

These components are the data error (5.19), the weight error (5.20) and the concentration error 

(5.21) and are each calculated by taking the negative logarithm of the distributions defined 

previously in (5.10), (5.12) and (5.13). 

-In{p(Yoos | x4 w)} = Zi (Bp /2).* Xn (Yn = Yoos n)” (5.19) 

-In {p(w)} = Li (Bw*w) + In((ay)) = ((aw-1).*In(w))-(aw*In(By)) (5.20) 

-In{p( x | Xobs)} = (Bc*x) - (ac -1).*In(x))+ In(T(ac)) - ac * In(Be) (5.21) 

where i = 1,2,3,4,5 and is the pigment index. 

The corresponding gradient function (5.22) is simply given by the derivative of (5.18) with 

respect to w. Together these provide the necessary input functions to the HMC sampler. 

(dE/dw) = (d/dw)[-In{p(w|D)}] (5.22) 

The posterior is sampled (using only the training data) generating samples x, and wy for the 

concentrations and the heights, given the observed training data {yovs , Xobs}. In this first stage 

of sampling only the weight samples for the heights will be retained giving the set of vectors: 

{wa; n=1, 2, 3,....N}, where N is the total number of samples taken. 
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As it may be difficult for the sampler to find the region(s) of high posterior probability a 

reasonable initialisation may be critical. To this purpose the heights will first be initialised 

using Annick’s estimated specific absorption bands and the concentrations using the observed 

data. Scaled-conjugate-gradient optimisation will follow to find an approximate numerical 

solution for these weights as a first estimate for the sampler. Over-optimisation however will 

be avoided, as this can result in a high level of rejection and difficulty in exploring the whole 

posterior. 

To ensure that initialisation of the heights is satisfactory the implied specific absorption 

spectra for each pigment will be compared with Annick’s estimates of specific absorption. It 

was clear from early plots that the mapping was initially too smooth and producing a poor fit 

to Annick’s estimates. Thus the Gaussian widths were reduced and as the comparison in the 

following plot (figure 5.3.1.1) shows, a reasonable fit is now achieved. 

Figure 5.3.1.1: Comparison of specific absorption spectra as implied by initialised weights and Annick’s estimates 
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Initially 1000 samples will be generated following a burn in period of 1000 samples. 

Discarding the first 1000 samples in this way ought to allow the sampler to converge, such 

that samples are taken from the stationary distribution. While this is a relatively small sample 

size it appears appropriate for this linear-based model with fixed basis functions. Step sizes 

will be set by experimentation ensuring that acceptance rates fall in the range 0.6 to 0.9. A 

systematic sub-sample of 200 will be taken from the 1000 to produce a more manageable 

dataset to carry forward to the second stage of sampling. This sampling process is repeated 

per cruise and using the complete set of training data. 

5.3.2 Sampled Heights 

The sample paths for both the height and concentration samples are plotted to ensure that 

convergence has occurred and that the samples are being taken from a relatively stable 

distribution. The sampling paths for a number of randomly chosen heights and concentrations 

using the cruise 2 data are shown in figure 5.3.2.1. While the paths appear a little erratic there 

is no major swapping of weights. It seems that the sampler is sufficiently burned in, but that 

there is simply not enough information in the data to more accurately determine the weights. 

Figure 5.3.2.1: Sample paths for random selections of weights from cruise 2 (untransformed from log space) 
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Similarly, for cruise 1 the sample paths are quite erratic yet appear to have converged as far as 

possible given the small number of samples in the data set. The variance in the sample paths 

is therefore greater, though there is no particular trend to suggest non-convergence. The other 

cruises seem similarly well mixed, such that they are as close to convergence to the stationary 

distribution as the data will allow. 

The only obvious swapping of weights is displayed by the heights from cruise 6, which as the 

largest cruise, was thought to offer more potential for a ‘by cruise’ model. Within cruises 

however, samples come from various water types and locations. As the largest cruise it may 

contain more information, thus necessitating a more complex mapping and taking longer to 

converge. Experimenting with a longer burn in however does not produce more stable results. 

It may be that there is more noise present than previously thought or that an un-modelled 

variable, such as the package effect, is particularly significant for this cruise. 

Sample paths generated using all of the training data are more promising (see figure 5.3.2.2). 

The paths for both heights and concentration are relatively stable with no swapping of the 

most significant weights. 

Figure 5.3.2.2: Sample paths for a random selection of weights from all cruises (untransformed from log space) 
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To assess graphically the accuracy of the height estimations several spectra will be 

reconstructed using the optimised network. Figure 5.3.2.3 shows the observed and 

reconstructed spectra for four examples from the training data of cruise 2. 
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Figure 5.3.2.3: Spectra Reconstructions using the optimised weight vector compared to true observed spectra. The four 

spectra are randomly selected samples from the training set for cruise 2 
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The implied reconstructions show a close approximation to the true spectra and similar results 

are achieved for other individual cruises and also when sampling weights for the whole data 

set. However, as figure 5.3.2.4 shows cruise 6 is again an exception. Equivalent plots 

generated from the cruise 6 data show a much worse fit with significant errors for each of the 

four samples across the whole spectrum. This is likely to be reflected in poorer concentration 

retrievals later on. 

Reconstruction performance on the test data is also quite different. Using the optimised 

network and test concentrations to estimate spectra has hugely variable results, such that some 

reconstructions are quite accurate whilst others are poor. Figure 5.3.2.5 shows the observed 

spectra and corresponding reconstruction for every sample in cruise 2. Despite the good 

performance on the training set seen in figure 5.3.2.3 the approximations range from an 

RMSE value of 0.00095 for the third sample up to 0.029 on the seventh. This variability 

suggests that the network is lacking in information relevant to the mapping. The performance 

on unseen data is consequently poor and likely to limit the accuracy of later concentration 

retrieval. 
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Figure 5.3.2.4: Spectra Reconstructions using the optimised weight vector compared to true observed spectra. The four 

spectra are randomly selected samples from the training set for cruise 6. 
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Figure 5.3.2.5: Spectra Reconstructions using the optimised weight vector compared to true observed spectra. The ten spectra 
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are the full set of samples from the test set for cruise 2. 
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Finally, the implied reconstructions of specific absorption will be examined. The following 

plots show the specific absorption implied by the initial optimisation of the weight vector and 

the specific absorptions implied by fifty sample vectors from the posterior weight distribution. 

This enables pigment specific analysis of the variability of estimates across the sampled 

vectors for each cruise data set. 

Looking first at the results using the full training set in figure 5.3.2.6, the variances are small. 

All of the sampled vectors produce implied absorptions with a very small range across the 

spectrum and are very close to the reconstruction produced by the optimised weight vector. 

These implied spectra however, are also very similar to the initialisation (figure 5.3.1.1). This 

may suggest that the model has not actually learnt from the data, which is quite possible given 

the large number of inputs and likely dependencies between them. It would also explain why 

the sample paths were more stable than for the separate cruises. 

Figure 5.3.2.6: Implied specific absorption spectra using the optimised weight vector and fifty samples using all data 

0.06 0,04 

  

  

  

        

Chia c Chr-b 
2 0.04 2 

E 0.02 
0.02 2 2 

S00 500 600 700 Boo 500 600 700 
Wavelength, nm Wavelength, nm 

0.04 0.015 

Chee PSCs 
4 s 0.01 

0.02 

0.005 
< 

800 500 600 700 Soo 500 600 700 

Wavelength, nm Wavelength, nm 

On 
NPSCs 

& Optimised 

a one Sampled 
< 

Yoo 500 600 700 

Wavelength, nm 

96



PREDICTION OF PHYTOPLANKTON PIGMENT CONCENTRATIONS FROM ABSORPTION SPECTRA 

The results by cruise are quite different to those from the overall sampler and also vary 

significantly between cruises. The ranges are significantly bigger suggesting less certainty in 

the weights. 

Results for cruise 2 (figure 5.3.2.7) and most other individual cruises also have a very similar 

structure to that estimated by the optimised weight vector, but have larger range of estimates. 

This variability appears greater at the lower wavelengths suggesting less certainty in these 

weights, as was indicated by previous error analysis (see section 3.7). The shapes of the 

spectra however have changed, indicating that the model has been able to learn characteristics 

specific to the cruises. 

Figure 5.3.2.7: Implied specific absorption spectra using the optimised weight vector and fifty samples using cruise 2 data 
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Cruise 6 is slightly different and the weight samples produce a particularly large range of 

estimates especially for chlorophyll c (figure 5.3.2.8). These differ significantly from the 

optimised estimates suggesting that the optimisation may not have converged, that the data is 

simply more variable or that the data does not contain enough information to translate into an 

accurate mapping. 
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Figure 5.3.2.8: Implied specific absorption spectra using the optimised weight vector and fifty samples using cruise 6 data 
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The chl-c and NPSC plots show quite different implied spectra from the optimised values and 

from other cruises. Other cruises such as cruise 4 show some such discrepancies though not to 

this same extent. Previous analysis has not indicated any major characteristic differences 

between cruise 6 and the other cruises. These individual pigment absorption structures may 

again then be indicative of external influences, in particular the package effect, which has not 

been modelled here. 

Having found a high level of uncertainty in some of the heights distributions the effect on the 

parameters of altering the variance will be briefly examined. Using the cruise 2 data the 

sampler is implemented with the noise on the heights amended to 10% and 30%. The greater 

variance tends to slightly increase the sampler rejection rates and reconstruction variability, 

but this simple experiment does not immediately highlight any major effects. The 20% noise 

estimate will therefore be considered satisfactory. 

While there is clearly uncertainty in the samples there are some successes in reconstructing 

the spectra. The sampled weight values then will be accepted as reasonable estimates for the 

following concentration retrieval. 
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5.4 Concentration Retrieval 

The predictive distribution is given by (5.23) 

P(Xnew | Ynew,D) = Jp(Xnew | Ynew, W) Ap(W | Yooss Xobs) 
I J PC&new | Ynew, W) POW | Yooss Xobs) dw (5.23) 

Using Bayes’ theorem (3.1) the posterior for a new unknown concentration Xnew can be 

expressed as: 

P(Xnew | Ynew,W) = P(Vnew | Xnew, W) P(Xnew) (5.24) 

P(Ynew) 

This can then be substituted into the predictive distribution (5.23) so that: 

P(Xnew | Ynew,D) e¢ Jp(Ynew | Xnews W) PRXnew) POW | ¥ obs, Xobs) dW (5.25) 

The weights can now be fixed to the sampled values so that for each sample Wp, there is a 

corresponding posterior proportionality (5.26). 

PCXnew | Ynew,D) % Sp(¥new | Xnews Wn) P(Xnew) dW (5.26) 

where n = 1,2,... 200. 

The values (Ynew | Xnew, Wa) are assumed to be generated by the given model and again subject 

to Gaussian noise, so 

P(Ynew | Xnew, Wn) ~ N(Ynew » Cy new) (5.27) 

where the mean Ynew is the observed test absorption spectra and the standard deviation C. 'y new 

is a fixed value equal to 10% of the mean absorption across all wavelengths and all samples 

for the test data. 
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The concentration prior p(Xnew) Will be assumed gamma distributed, thus again ensuring 

positivity of the concentration measures. It parameters will be set based on only the training 

data to avoid any biasing of test experiments. The mean is set equal to Xons - the mean 

concentration across all training examples per pigment and the variance to Cy obs — the 

corresponding variance in concentration by pigment. 

P(Xnew) ~ Ga(ap, Bp) (5.28) 

where ap = (Xops)"/Cxobs and — Bp = Xobs / Cx obs 

It is now possible to sample from p(Xnew | Ynew, D) to generate samples of predicted 

concentration for each of the sampled height vectors. The cost function (F) is derived from 

(5.26) and given by (5.29). By taking the fixed sample values wa for the heights the integral 

over w becomes redundant. 

F = -In{p(Xnew | Ynew, D)} (5.29) 

ce -In {J P(Ynew | news Wa) P(Xnew) dw} 

ec -In {p(Ynew | X news Wn) P(Xnew) } 

The retrieval cost function has two components — the data error (5.30) and concentration 

error (5.31). 

-In{ P(Ynew | X news Wa)} = Xi (Bo /2).* Zn (Yn = Yoosn)” (5.30) 

-In{P(Xnew)} = (Bp*x) - (Gp -1).*In(x))+ In(/(ap)) - ap * In(Bp) (5.31) 

Together with the corresponding gradient function these provide the appropriate inputs to the 

sampler for retrieval of unknown concentrations. Sampling predicted concentrations, Xpew 

from the posterior generates a Markov chain of samples for each Wa: 

[{Xnew m}] Wi, {Xnew m}] Wa, ... (Xnew m}] W200] (5.32) 

where m=1,2,...M (the number of samples). 

100



PREDICTION OF PHYTOPLANKTON PIGMENT CONCENTRATIONS FROM ABSORPTION SPECTRA 

Optimisation will again be carried out prior to sampling to provide a reasonable initialisation. 

50 burn in samples will be discarded and 50 samples then collected for each sampled height 

vector Ww. 

5.5 Sampled Concentrations 

Firstly, to check the underlying model performance the concentrations retrieved by 

optimisation alone will be analysed and compared to the corresponding true (observed) 

values. The heights will first be optimised and fixed and the concentrations also then 

optimised, thus providing a rough estimate without use of sampling. This ought to indicate 

whether the model has the potential to produce good results. The height optimiser uses 400 

iterations followed by 10000 for the concentrations. 

The initial results are seen in table 5.5.1 and are significantly poorer than those achieved by 

data driven methods. Modelling cruises separately is again the most successful method, but 

comparison with the error breakdown by cruise in table 4.12.1 highlights the inferior 

performance. Comparison with early versions of the data driven model however, particularly 

for cruises 2 and 4, the results achieved are much closer. 

Table 5.5.1: Concentration retrieval errors from the optimised concentrations versus the true measures (test set) 
  

  

  

  

  

  

  

  

  

  

Cruise CORR Mean % err Bias MAE RMSE 

1 0.949 129.57 0.093 0.0996 0.1373 

2 0.949 56.99 0.013 0.0448 0.0703 

3 0.424 88.27 0.0099 0.0738 0.1396 

4 0.927 25.31 -0.0031 0.0188 0.0265 

= 0.502 90.04 -0.036 0.0886 0.1522 

6 0.506 101.46 0.0067 0.0503 0.0784 

7 0.982 28.68 0.0095 0.0312 0.0471 

8 0.960 36.19 0.016 0.0351 0.0518 

ALL 0.867 61.17 -0.0015 0.0539 0.0896                 
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There is a lot of variability between the cruises - more so than for the direct model and bad 

results are especially noticeable for cruises 1,3 5 and 6. A second experiment increases the 

height optimiser iterations to a maximum of 30000 to see if this affects the retrievals. The 

amendment produces some small improvements for individual cruises, but actually makes the 

overall model results slightly worse. On the problem cruises 5 and 6, the results were identical 

(to the recorded accuracy) and further investigation suggests that the concentration optimiser 

is becoming stuck in local minima. 

Plotting these retrieved values against the observed concentrations confirms these differences 

between cruises. Cruises 2, 4, 7 and 8 produce quite structured correlation plots as in figure 

5.5.1 with no particular pigments consistently badly predicted, while cruise 3 shows a much 

wider scatter. 

Figure 5.5.1: Retrieved versus true concentrations using the optimised heights and concentrations for cruise 7 
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Given that these errors are currently still quite large the sampling process is unlikely to 

retrieve concentrations accurately. The results though are quite promising for this early stage 

of modelling and there is no collapse of the model on any individual cruise. A small number 

of experiments implementing sampling will therefore be carried out to further assess the 

potential of the model. As described previously it will be a two stage sampling process where 

the heights will first be optimised and sampled and subsequently the concentrations. 
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Having carried out the retrieval the final gamma distributions implied for the concentrations 

will be compared to the true distribution of data. The gamma prior distributions appear to 

offer a reasonable fit whether modelling each cruise separately or altogether, though they do 

vary from model to model and between pigments. An example of the fit using the model for 

all cruise data is seen in figure 5.5.2. The fit appears to be best for chl-a, chl-c and the PSCs, 

so it is expected that these will be modelled slightly more successfully. 

Figure 5.5.2: Final gamma prior distributions compared to the true test data distributions (all cruises) 

  

  
      

Chra Chr-b Chic 
3 20 30 

2 a 20 g 2 g 
é ¢ 10 e 2 2 2 
ee os i 10 

% 1 % 02 04 % 01 02 
Concentration Concentration Concentration 

PSCs NPSCs 
15 

6 
Mi Test Data 

Ee p16 Gamma Prior 

g z i 2 x 

0 0 C 
0 05 1 0 04 02 
Concentration Concentration 

An estimation of expected concentration for each pigment in each data sample can now be 

produced by averaging the sampled concentrations Xm over all sampled heights wy, This is 

then used to calculate a measure of retrieval error comparable with the data driven models, as 

seen in table 5.5.2. 

The results as expected following the optimisation based retrieval analysis, are far from 

rivalling those of the direct models at this stage. The fact that several cruises generate 

percentage errors of around 25 - 30% though, is encouraging and together with relatively high 

correlations shows the model to at least be functional. Cruises 1, 3, 5 and 6 are still 

problematic, as was indicated by the prior analysis, though could be improved using 

alternative initialisation and/or extended optimisations. Results are not particularly good at 

this stage but provide a foundation for further work. 
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Table 5.5.2: Concentration retrieval errors for the mean of the sampled concentrations versus the true measures (test set) 

Height optimisation — 400 iterations, concentration optimisations — 10000 iterations 
  

  

  

  

  

  

  

  

  

              

Cruise CORR Mean % err Bias MAE RMSE 

1 0.9451 119.62 0.0775 0.0879 0.1283 

2 0.9532 41.595 0.0128 0.0403 0.0673 

2 0.4521 81.59 0.0047 0.0715 0.1333 

4 0.9256 25.0575 -0.0038 0.0191 0.0272 

5 -0.0166 273.1394 0.1341 0.2816 0.6061 

6 0.7938 63.7326 -0.0108 0.0308 0.0575 

z 0.9805 31.5544 0.0090 0.0322 0.0488 

8 0.9498 36.5908 0.0170 0.0387 0.0575 

ALL 0.8685 62.59 -0.0021 0.0547 0.0897   
  

Finally to illustrate the actual output of the model the distribution of retrieved samples for a 

single test set example is plotted as a histogram in figure 5.5.3. The true value of the 

concentration for each pigment is superimposed. 

Figure 5.5.3: Distributions of retrieved concentration samples for the first test set example taken from cruise 8 
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This particular example shows relatively accurate retrieval of all pigments except chl-a with 

true values approximately coinciding with modal retrieved values. As is the case here for chl- 
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a however, at least one of the true pigment concentration values frequently falls completely 

outside the retrieved distribution. This illustrates that the retrieval is currently subject to 

significant errors. The high level of confidence reflected by these distributions may be due to 

the small number of samples taken and is a likely area for future improvement. 

5.6 Generative Modelling Conclusions 

The basic model appears to function well and provides a reasoned framework for the mapping 

from absorption spectra to pigment concentrations. Despite the limited number of experiments 

thus far, results are encouraging and several useful conclusions may be drawn. 

Gaussian bands: The RBF offers a good fit to the estimated specific absorption spectra. 

Gamma priors: The gamma approximation for the prior distribution of concentrations also 

looks to be appropriate and a good fit. 

Individual cruise models: Results by cruise are better and there is evidence that these models 

are capable of learning cruise specific weights. Highly variable results between cruises are 

indicative of cruise specific noise sources and/or non-modelled relevant variables, such as the 

package effect and photoacclimation. 

Model parameters: The model is likely to benefit from improved initialisation, better 

optimisation and increased sample sizes. An optimal ‘burn in’ period may also be identified 

using convergence diagnostics (Nabney, 2002). 

The data: Uncertainty regarding the data remains a source of difficulty in modelling and 

understanding the results obtained. 

While results at this stage are much worse than those from data driven retrieval there remains 

much scope for further experimentation and improvement. This includes the opportunity to 

incorporate cell size and spectra gradient data and to integrate more fully the log transform, 

which has appeared useful throughout. Parameterisation of the package effect appears 

essential and may largely explain performance differentials relative to the data driven model. 
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Chapter 6 

Conclusions 

Modelling the relation between absorption spectra and pigment concentrations is a difficult 

problem exacerbated by the lack of a larger, more reliable data set. It has however still been 

possible to retrieve concentrations to some degree of accuracy and also to make some valid 

inferences. 

6.1 ASummary of Outcomes 

Visualisation highlighted several concepts, which have since been confirmed as relevant 

aspects of the modelling process. Evidence of linear characteristics within the data were first 

noted during visualisation and later verified by the success of both the GLM and the linear 

based, generative model. Cruise differentials were similarly evident at an early stage and 

cruise specific models since have been proved to be far superior. The same is true of log 

transformation of variables and also the size data. Visualisation also facilitated removal of 

outliers and produced a useful lower dimension representation of the data. 

Forward modelling successfully reconstructed the spectra with mean errors of less than 11%. 

Several important factors were highlighted including the recurring themes of linearity, cruise 

differentials and log transform benefits, whilst the effects of size inputs were inconsistent. 

ARD priors improved models marginally though analyses by wavelength produced 

inconsistent results across the various models. Significant dependence on the division of the 

data was also demonstrated, thus emphasising the problems of working with a limited data 

set. 
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Data driven inverse models have produced useful estimates of pigment concentration. The 

most success is achieved by working with log transforms of the data and by modelling cruises 

and pigments individually, Further improvements although small are achieved using size 

distribution data and absorption spectra gradient data alongside the standard absorption 

inputs. Pigment concentrations were retrieved with errors of approximately 14% and several 

useful conclusions reached, which provided a strong basis for a generative absorption model. 

Generative modelling has so far shown that it is possible to map to some degree a relation 

between spectra and concentrations, Concentration retrievals however, are currently much 

worse than by direct methods. Uncertainty in the data was a problem and it was difficult to 

distinguish between the effects of noise and the influence of non-modelled variables. This 

model though attaches more physical meaning to the data and there remains much scope for 

adaptation and further improvement. 

6.2 Limitations and Constraints 

The project has encountered several limitations, which have made it difficult to draw many 

firm conclusions. 

The data set itself has been a constraint and is subject to many potential sources of noise and 

uncertainty. The data has been collated over 12 years and so changes in measurers and 

instruments were unavoidable. Therefore, despite strict and precise measurement protocols 

some degree of error is inevitable. There are also still possible unknowns including missing 

(not measured) pigments and light absorbing compounds within the water and phytoplankton. 

Several potentially relevant variables could not be considered directly due to the limited data 

set. These include temperature, nutrient concentration and depth of waters. The data set is also 

relatively small given the variety of potential noise sources, which is particularly relevant 

when modelling cruises individually. 

The final key limitation has been time. Even with limited data availability the amount of 

information to be considered and the many permutations thereof is vast. There remain many 

unexplored avenues some of which will be suggested for further work in chapter 7. 
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Chapter 7 

Further Work 

As discussed previously availability of data has imposed some limitations on the work to date. 

The current data set appears almost exhausted in terms of what further information can be 

gained from it. Further work would almost certainly benefit from a larger and more 

comprehensive dataset, which might enable more solid inferences. Ideally measurers, methods 

and equipment used would be identical for all data collection and subsequent pre-processing. 

Additional data collection however, would require a substantial investment of both time and 

money. 

Visualisation was indicative of size related structure and it may be that the phytoplankton cell 

size would prove more useful given an alternative measure, or if modelled explicitly as part of 

the package effect. There certainly appears to be something missing from both data driven and 

generative models and so experimentation with additional variables, such as water depth, 

temperature and time of year could be useful. Feature selection methods such as Independent 

Component Analysis (ICA) could be applied to a data set containing such extra variables to 

determine which are useful inputs. A larger data set would in itself engender greater 

confidence, particularly on a by cruise basis. 

ARD is an area, which given more time could be explored more fully. In particular there is 

scope to build upon the wavelength analysis produced during forward modelling. Possibilities 

include using averaging of ARD output and iterative applications. If a more stable result is 

achieved then application to the inverse problem may be more practicable. Experiments thus 

far indicate that the relevance of pigments varies greatly across the spectrum, so there is 

certainly potential to significantly reduce the dimension of the problem given a reliable result. 
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A significant amount of linearity is clearly present in this problem and is captured 

successfully by the models. Advancement of the models however, is limited by the absence of 

components accurately representing packaging and acclimation effects and therefore the non- 

linear aspect of the mapping. Inclusion of size parameters produced some improvement, 

further confirming the relevance of the missing components and the need for a more 

informative associated parameterisation. Further work then would almost certainly benefit 

from focusing on these non-linear elements. 

There is certainly scope to improve both the data driven model and the generative model. The 

generative model in particular may benefit from simple adaptations, such as more accurate 

initialisation and more thorough optimisation, burn in and sampling. The model is yet to fully 

capitalise on the findings of the data driven model and may benefit from introducing elements 

such as gradient and size data. Subsequent improvements would rely on more significant 

changes, in particular inclusion of variables better reflecting package and acclimation effects. 

The data driven model on the other hand, implicitly models both the package effect and 

photoacclimation. Additional inputs representative of these could however improve the model 

further, for example a more detailed size breakdown or a depth parameter for each sample. 
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Appendix A.1 - Details of data collection 

The known details for each cruise are as follows: 

  

  

  

  

  

  

  

  

        
  

Cruise Location Date No. of samples 

i NW Mediterranean April 1990 9 

2 N tropical Atlantic October 1991 48 

3 Pacific September 1994 77 

4 Pacific November 1994 180. 

5 E & W Mediterranean May 1996 106 

6 Mediterranean September 1999 446 

ay Alboran sea January 1998 446 

8 N Atlantic 2001 213 

1525 
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Appendix A.2 - Eigenvectors 

Figure A.2.1: Eigenvectors from linear space, normalised by removing mean 
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Figure A.2.2: Eigenvectors from log space, normalised by removing mean 
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Appendix A.3 — PCA visualisation plots 

Figure A.3.1: 

PCA Projection of Data by Size Index 
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Figure A.3.2: 

PCA Projection by Cruise (logged data) 
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Appendix A.3 — PCA visualisation plots 

Figure A.3.1: 

PCA Projection of Data by Size Index 
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Figure A.3.2: 

PCA Projection by Cruise (logged data) 
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Appendix A.4 - Removed Outlier Breakdown 
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Appendix A.5 — Error formulae 

All errors are calculated in MATLAB and make use of MATLABs built-in functions. 

‘resid’ is the prediction error vector or matrix. 

Correlation coefficient (CORR) = corr2(A, B) 

- calculates the correlation between two variables A and B 

Root mean squared error (RMSE) = sqrt(mse(resid)); 

Mean absolute error (MAE) = mae(resid); 

Or equivalently MAE = mean(abs(resid)); 

- the mean magnitude error over all absorption predictions 

Bias = mean(resid); for error vectors 

Bias = mean2(resid); for the case of an error matrix 

Percentage errors are calculated only after omitting those points which are less than or equal 

to 0.01. This is to avoid extreme error values where the target values are very small. 

idx = find(abs(target)>0.01); 

mean percentage error = mean(abs(resid(idx)./target(idx))).*100; 

maximum percentage error = max(abs(resid(idx)./target(idx))).* 100; 

In forward models the variance in the errors at each wavelength is also calculated using: 

variance=var(resid) 
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Appendix A.6 - Permuted Data Set Splits 

Cruise 1 2 3 4 5 6 7 8 Total 

Total Data 6 47 76 180 105 442 408 212 1476 

Original Trn 4 oy 61 144 84 354 326 169 1179 

Original Test 2 10 15 36 21 88 82 43 297 

PERM1L 4 ie 19 40 18 99 84 26 297 

PERM2 2 5 19 31 27 89 ot 33 207 

PERM3 2 8 17 31 25 89 93 32 297 

PERM4 4 13 17 33. 27 96 83 24 297                     
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Appendix A.7 — Correlation Plots 

Figure A.7.1: Optimal Direct Inverse Model - Correlation Plots by Pigment 
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Appendix A.8 — Overall/ By Cruise Model Comparison Plots 

The model compared is the GLM using the full 151 PC inputs and no size inputs, in linear space and 
simultaneously retrieving all pigments. 

Figure A.8.1: Overall versus By Cruise Model Comparison for Chl-a 
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Figure A.8.2: Overall versus By Cruise Model Comparison for Chl-b 
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Figure A.8.3: Overall versus By Cruise Model Comparison for Chl-c 
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Figure A.8.4: Overall versus By Cruise Model Comparison for PSCs 
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Figure A.8.5: Overall versus By Cruise Model Comparison for NPSCs 
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Abstract 

In this project I will explore the concept of entropy. I will study different 
measures of entropy and the context in which they are used. I will discuss methods for 
efficiently approximating probabilities by maximising the entropy of the distribution 
given a set of constraints. 

I will first look at the requirements a measure of entropy should fulfil and then go on 
to look at measures that have been suggested by mathematicians through history. 
Following on from this, I will then use the method of optimization, which involves 
maximisation and minimisation of functions. Despite all the mathematical techniques 
available in entropy optimization, Lagrange’s method of constrained optimization will 
be the preferred method for entropy optimization. 

The next part of the project will be to explore principles of entropy maximisation. 
This will analyze the available information in order to determine a unique probability 
distribution, avoiding using any information not given to us. The probability 
distribution that will be used consistent with the given constraints is the one that has 
maximum uncertainty. I will then go on to lok at maximum entropy principles 
suggested by mathematicians over the years and the context in which they are used. 

     

  

BCL easyPDF



The concept of entropy or uncertainty has played an increasingly significant 
role in the formulation of probabilistic systems, which are encountered in a variety of 
disciplines. In this project I will be referring to the information-theoretic entropy 
rather than the thermodynamic entropy. 

What is entropy? 

Entropy is a measure of the disorder suggesting a transformation from order to 
disorder. Entropy can be considered simply as the dictionary definition for 
uncertainty. 

Uncertainty plays a very significant role in our perceptions about the world around 
us. As our perception of the world becomes more and more complex, the number of 
phenomena about which we are uncertain increases and the uncertainty about each of 
the phenomenon also increases. One way of decreasing our uncertainty is to collect 
information, but it is normally this information that increases our uncertainty, rather 
than decreasing our uncertainty. 

Entropy can be defined in different ways depending on the application in which it 
is being used, in a probabilistic sense it can be defined a measure of the probability of 
a particular result. One example of this is if we consider the probabilities for the sum 

of two dice in backgammon. Below, the left column indicates the sum of the two dice, 

the next column lists all the possible combinations that give that sum, the third 

column counts the number of combinations for that sum. As you can see, there are a 

total of 36 different combinations for the two die, and each are equally probable to 
occur for "honest" dice. Thus the probability of getting a particular sum, as shown in 
the last column, is just the number of combinations divided by 36. 

    

Sum Combinations mber Probability 

Dull 1-1 1 1/36=3% 

[3 | a 2 | 2/36=6% 
[4 321,22) 3 | 336=8% 

5 23,32; (44 4 | 4/36=11% 
Gunes 21-5, 5-1e 4-3 5 | 5/36=14% 
7 (3-4, 4-3, 2-5, 5-2, 1-6,6-1[ 6 | 6/36=17% 
8 if. 3-5,5-3, 2-6, 6:2, 4-4 5 | 5/36=14% | 

(9 4 | 4B6=11% | 
/ 10 ‘| 3/36=8% | 

in | 2/736=6% | 
12 | 1/36=3% | 

  

The most probable result, occurring one-sixth of the time, is to get seven. 

Here, without going into too much detail, you can clearly see that a seven is the result 
with the highest probability, and a 2 or a 12 have the lowest probability. 
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The probabilities for dice lead us to our first definition of the entropy: 

Entropy: A measure of the probability of a particular result. 

The equivalent of this in information theory is that the entropy is the measure of 
disorder in a system. 

Entropy: A measure of the disorder or randomness in a closed system. 

We can think of entropy as a measure of the disorder in a system. This is 
reasonable because what we think of as "ordered" systems tend to have very few 
configurational possibilities, and "disordered" systems have very many. Consider, for 
example, a set of 10 coins, each of which is either heads up or tails up. The most 
"ordered" states are 10 heads or 10 tails, in either case; there is exactly one 

configuration that can produce the result. In contrast, the most "disordered" state 
consists of 5 heads and 5 tails, and there are 252 ways to produce this result. 

Under the statistical definition of entropy, the second law of thermodynamics states 
that the disorder in an isolated system tends to increase. A broader interpretation of 
this is that the uncertainty in the world always tends to increase. This can be 
understood using our coin example. Suppose that we start off with 10 heads, and re- 
flip one coin at random every minute. If we examine the system after a long time has 
passed, it is possible that we will still see 10 heads, or even 10 tails, but that is not 

very likely, it is far more probable that we will see approximately as many heads as 

tails. 

During this project I will be concentrating my efforts on the case of probabilistic 
uncertainty. For example, as I have shown before there may be uncertainty on the 
result when flipping a coin or throwing a die. There may be 7 possible outcomes in 
each of the situations I have just mentioned, and there probabilities may be: 

Pi, P2,.+++) Pn Where p; > 0, p22 0,......... + Pn=0, > pi=1. 
dsl 

We are uncertain as to what the actual outcome will be, we may not even know the 

values of py, pi, ...+- 5 Pn- 

Different probability distributions have different uncertainties associated with them, 
for example, it can easily be seen that the uncertainty of a probability distribution 
(0.5, 0.5) for a head or a tail is much more than the uncertainty of the probability 
distribution (0.00001, 0.99999) of winning the lottery. The uncertainty with the 
probability of outcomes is called probabilistic uncertainty, which I will now refer to 

as entropy. 

 



Measures of entropy 

General requirements of a measure of uncertainty of a probability distribution 

If the probabilities of n possible outcomes Aj, A2,...... An of an experiment 
aTe Pi, P2,---+.- > Pn, this gives rise to the probability distribution: 

P=(P1, p2,--- Pn); >, Pi= 1 where p > 0, pr>0,......... ,pn>0. 

There is an uncertainty as to the outcome when the experiment is performed. Any 
measure of this uncertainty should satisfy the following requirements: 

1. It should be a function of py, p2,...., Pn So that we can write it as: 

S=Sn (P) = Sn (Pi, P2s.-++5 Pr) 

2. It should be a continuous function of p;, p2,...., Pn, i-e. small changes un p;, 
P2,-+++s Pn Should cause small changes in Sy. 

3. Sn (Pi, P2,-.-+) Pn) Should be permutationally symmetric, i.e. S should not 
change when pj, p2,...., Pn are permuted among themselves, since uncertainty 

should not change when outcomes are labelled differently. 

4. it should not change if an impossible event is added to the probability scheme, 

i.e. Sntt (Pi, P2s--++s Pn» 0) = Sn (Pi, P2,-+++ Pn): 

5. it should be minimum and possibly zero when there is no uncertainty about the 
outcome. Thus it should vanish when one of the outcomes is certain to happen 
so that Sp (pi, p2,..++. Pn) = 0 when pj= 1, pj= 0 when j #i. 

6. It should be maximum when there is maximum uncertainty which arises when 
the outcomes are equally likely so that S, should be maximum when 

7, The maximum value of S, should increase as n increases. 
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8. For two independent probability distributions . 

P= (Ou PrssPsO= Gio ds Ga)ed) P= 1. >, Gad 
i=l il 

The uncertainty of the joint probability distribution should be the sum of their 
uncertainties, i.e. 

Spm (PUQ) = Sn (P) + Sm (Q) 

Shannon’s measure of uncertainty 

In 1948 Claude E Shannon suggested the following measure: 

n 

Sp= (ts Pas» Po) =—>, pilnpi 
i=l 

It can easily be seen that this measure is a function of pj, p2,...., Pn, Satisfying [1]. It is 

also a continuous and symmetric function and if we replace 0 In 0 by 0, it does not 
change when an impossible event is added, satisfying [2], [3] and [4]. When one of 
the probabilities is unity and the others are zero, its value is zero and this is its 
minimum value, satisfying requirement [5]. To find its maximum value, we can use 
Lagrange’s method to maximise, 

-> pilnp,- al > pi -1 
ist isl 

n 
Since p; In pj is a convex function, > pi In pjis a convex function, therefore 

il 
n 

ae pi In pjis a concave function and its local maximum is a global maximum. The 
i=l 

maximum value of S,, is: 

ce in (2 )= Inn 

and this goes on increasing as n increases, hence satisfying requirements [6] and [7] 
from earlier. For requirement [8] to be satisfied, I have to show that 

Snm (PUQ) = Sn (P) + Sm (Q) 

%) BCL easyPDF 
Printer Driver



Hence 

m n 

Spm(PUQ=- YY (igi) mn (q) 
yA iat 

n n 

a at pnp] - 2 BLD q Inq J 
j=l i=l 

Nl 

Y aS) + ¥ VS. 
Fl ial 

Il Sn(P) + Sm(Q) 

This shows that requirement [8] is also satisfied by Shannon’s measure of entropy. 
Shannon showed that any measure that satisfied all these requirements must be in the 
form: 

Si S) pilnp;, 
i=l 

where K is an arbitrary positive constant. Any other measure of uncertainty can only 
be obtained by modifying one or more of the requirements. 

There are also properties which Shannon’s measure of entropy satisfies, but which are 
not general requirements. They are the following: 

e if p and q are not necessarily independent, let 

P(X=x) =pi P(Y=y; |X=xi)=qy, 

So that 

P(X=xi, Y=yj)= pig 

and 

Sma (p*q)= — Pi di In pi qi 
j=l isl 

fe - . i 
==>) [pan pail = >) p>, ay In ail, 

ta jal ia ial 
Now 

m 

Y giz ¥ Pry, | X=x)=1 
jal 
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Since it is certain that y must take one of the values y), y2,...... + Ym When X= xj. 

Thus (qi, gia, «..++ + dim) represents the conditional probability distribution of the 

outcomes of the second experiment when the first experiment has resulted in X = xj, 
Thus, 

Sm (p*@)= Sn(P)+ ¥2 piSm(qi) 
i=l 

Where S, (qj ) is the entropy of the conditional probability distribution of outcomes of 
the second experiment when the first experiment has resulted in the ith outcome. 
Thus, the entropy of the joint distribution is equal to the entropy of the first 
experiment plus the expected value of the conditional entropy of the second 
experiment. 

e Another property Shannon’s measure satisfies is, 

So-t (Pi + P2s Pas-e+++sPn) = — (Pr + p2) In (pit po)— >) pilnp; 
ial 

n 

=—(pi+ po) In (pi + po) + piInpi +poinp, — >) pilnp; 
i=l 

so that 

Sn (Pi P2s P35.+++++5Pn) = Sn-t (Pi + P25 P3se+-++sPn) + 

(DED ge ee nee eee 
pitp2 pitp2 pitp:  pitp 

= Spt (Pi + Poy Pay-e-+-sPn) + (pit p2) So [PL , —P_] 
pit+p2 pit+p2 

so that 

Sn-t (Pi + P2s P3s-+++-3Pn) S Sn (Pi, Pr, P3>-+-+++sPn) 

If the two outcomes are combined, the entropy is reduced. This property is desirable 
because if the two outcomes are combined the uncertainty should not increase. 
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Figure: The Branching Principle 

We proceed in two stages to get S, (pi, po, P3,---- +» sPn) - in the first stage we get S,.1 

(Pi + pa, p3,....-.. sPn) . In the second stage, we have a probability p; + p2 divided into 
two parts, p; and p2, giving rise to the probability distribution 
{pi / (pi + p2), pi / (pi + p2) J with an entropy S> [pi / (pi + p2), pi/ (pi + p2) ] and 
with a weight p; + p2. this also explains the earlier formula, 

Sn (Pi, Pes P3se++++sPn) = Sot (Pi + Pay P3s---++-sPn) + (Pit p2) So [—PL_, —*_] 
pitp2 pi+p2 

This recursive property is also called the branching principle, as shown above. 

The main properties of Shannon’s measure are: 

¢ S should depend on all probabilities p;, p2,...., Pn.i.e., S should be a function 
of p. 
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Sn (Pi, P2,----s Pn) Should be a continuous function of pj, p2,...., Pa. i.e small 

changes in pj, p2,...., Pn Should lead to small changes in S. 

Sn (Pi. P2s---+s Pn) Should be permutationally symmetric i.e., S should not 
change when pi, p2,...., Pn are permuted among themselves since uncertainty 
should not change when outcomes are labelled differently. 

Shannon’s measure is a concave function of pj, p2,..-.5 Pn- 

Continuity. 

When p;= 0, p; In p; is not defined, but 

" ° In pi 
lim pio pi In p; = lim pi 0 P   

pi 

1 

  

  

=lim jo - . 

(pi)*2 

= lim pi—o(-Pi) 

= 

Entropy does not change with the inclusion of an impossible event. 

Sati (Pis P2s+++) Pas 0) = => pilnp; — 0nd 
i=l 

= Sn (Pi, P2s-+++9 Pn) 

There are n degenerate distributions. 

Ai=(1, 0, ..., 0) 

Ap=(0, 1, ..., 0) 

Ag= (00) .2251) 

For all f these S, (p) = 0. 

Concavity 

Let ¢ (p)=—plnp 

¢’(p)=-Inp-1 
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¢"@=-+ 
Pp 

Thus ¢ (p) is a concave function of p. And because the sum of concave 

functions is also concave S, (p) is a concave function of (pi, p2,..-.; Pn)- 
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Optimization 

Optimization includes maximization and minimization as well as simultaneous 
maximization of one function and minimization of another function. Most 
applications are frequently concerned with constrained optimization. In the sense of a 
business, the situation is that the company normally wants to maximise its production 
in the face of constraints such as capital investment available, physical resources, 
manpower etc. Despite all the mathematical techniques available in entropy 
optimization, Lagrange’s method of constrained optimization will be the preferred 
method for entropy optimization. 

The reason we optimize entropy is that it provides a way of picking out 
probability distributions of desired level of uncertainty bounded by the available 
information. This means that the uncertainty is being reduced by obtaining more and 
more information. The reason for entropy optimization is best described in the die 
example. 

Example: Rolling a die. 

1. The number of unknowns is the number of faces — n. 

¢ Being told that the number of faces is 6, reduces the uncertainty. 
2. We now have many different distributions, (p), pa, ...... Dads 

¢ Weare now only limited to probability distributions (p1, p2, ...... » Po), 

where >, pal. 
isl 

3. Ifin addition we are told that the mean number of points on the die is 4.5 
© pi + 2p2 + 3p3 + 4p4 + Sps + 6p6 = 4.5 

¢ Our choice of distributions is now restricted to those satisfying ©. p; = 1 
and p; + 2p2 + 3p3 + 4p4 + Sps + 6p = 4.5, and our uncertainty is 
further reduced. 

4. Ifin addition we are also told that: 

© * Pp + 2?p2 + 3°ps + 4?pg + 5°ps + Ope = 15. 
¢ Our choice of probability distributions is now further reduced to those 

satisfying this constraint, our uncertainty is also further reduced. 

Variation of Sax and S,in With constraints. 
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We can carry on getting more and more information which will decrease our 
uncertainty. We can go on to get a unique set of values of p; through till pg, the 
uncertainty for these values is completely removed. At the earlier stages, we have an 
infinity of probability distributions available satisfying the constraints. At each stage, 
out of all the distributions consistent with the constraints till then, one will have a 

maximum uncertainty, Sax, and the other extreme will have a minimum uncertainty, 

Smin. Since at each stage the set of probability distributions is a subset of the 

probability distributions available at the earlier stage, Smax decreases and Simin 

increases. At the sixth stage on the graph, there is only one probability distribution 
that gives maximum and minimum uncertainty. 

It is worth noting that the information given by the constraints does not reduce 
uncertainty about the outcome, but these constraints are only reducing the uncertainty 
about the values of pj, p2,-.....,P6. The only way to remove the uncertainty about the 
outcome is to carry out the experiment. 

  

Principles of entropy maximisation 

The principle of entropy maximising is a method for analyzing the available 
information in order to determine a unique probability distribution. We should use all 
the information given to us and scrupulously avoid using any information not given to 
us. Out of all the probability distributions consistent with a given set of constraints, 
we will choose the one that has maximum uncertainty.The two principles that I will 
be following are the following: 

Out of all the probability distributions satisfying given constraints, choose the 
distribution that is closest to the uniform distribution. 

The maximisation of uncertainty can be considered by this principle, because if we 
first find the most uncertain distribution subject only to the constraint, 

Pls P25.---) Pn Where py 2 0, p22 Oy vensnney   Pn2 0, S pi=l. 
i=l 

 



The only other information we have is that the sum of the probabilities is unity and 
that is all the information we have about these probabilities. This means that there is 
no reason to choose different values of pj, p2,...., Pn, Which means; 

Pi=P2=---=Pn=4- 

Therefore we choose the probability distribution 

Ui Greco: 

This is called the uniform distribution. This distribution has maximum uncertainty out 
of all the probability distributions for n outcomes. Any other probability distribution 
can only be used if we have any additional information, we would not have in this 
case. This principle is also called Laplace’s principle of insufficient reason, because 
the only information we have is p; > 0, and the sum of the probabilities is unity. 

There are many situations where this principle would not be sufficient because of 
additional information available. If we have information suggesting different starting 
values for probabilities, we should use this information. The additional information is 
usually in the form of a priori probability distribution. That means the chosen 
probability distribution would satisfy the given constraints and be closest to the 
known priori distribution. 

Out of all the probability distributions satisfying the given constraints, choose the 
distribution that is closest to the given a priori distribution. 

This is also known as the principle of minimum directed divergence or the principle 
of minimum discrimination information or more appropriately the minimum cross 
entropy principle. 

Combining the two principles, we have a general principle: 

Out of all the probability distributions satisfying given moment constraints together, 
choose the distribution that is closest to the given a priori probability distribution, in 
the case of no a priori distribution, choose the distribution that is closest to the 
uniform distribution. 

H 
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In the future 

In this project so far I have looked at certain measures of entropy suggested by 
mathematicians. To increase my knowledge on the subject I will look at more 
measures of entropy suggested by other mathematicians and the context in which they 
are used. I will also look at the applications in which these measures of entropy, with 
the same principles for maximisation of entropy are used. This will provide useful 
when I focus on a particular problem myself. 

After having looked at certain measures of entropy and the applications in which they 
are used, I will go onto focus on a particular problem. I will discuss the difference in 
using different measures of entropy on the chosen application and apply the chosen 
methods on the particular application. 
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