
Neural Networks for

Modelling Wind Vectors

GUILLAUME RAMAGE

Master of Science (by Research)
in

Pattern Analysis and Neural Networks

Supervisor: Dr Dan Cornford

ASTON UNIVERSITY

Submission date: September 1998

This copy of the thesis has been supplied on condition that anyone who consults
it is understood to recognise that its copyright rests with its author and that no
quotation from the thesis and no information derived from it may be published

without proper acknowledgement.

ASTON UNIVERSITY

Neural Networks for

Modelling Wind Vectors

GUILLAUME RAMAGBE

Master of Science (by Research)
in

Pattern Analysis and Neural Networks, 1998

Thesis Summary

The ERS-1 satellite was launched in 1991. It carries a scatterometer with three antennae
which measure the reflected radar power from the surface of the Earth. This backscatter
is due to the reflection of the micro-wave radar beam from small ripples on the surface of
the ocean which are generated by instantaneous winds. The resulting measurement triplet
can be used to infer wind vectors.

The implementation of a forward model which maps wind vectors to radar backscatter
is addressed here, applying techniques from the field of neural networks. An empirical
approach is adopted here. The neural networks are trained with wind data from the
European Centre for Medium-Range Weather Forecasting in which high wind speeds occur.
The poor quality of the models obtained demonstrates that the noise in this input data
cannot be neglected. A Bayesian framework is then adopted to account for this noise.
Compared to existing reference models, the fit of the model in target space is improved,
especially at high wind speeds which are of greatest interest for meteorological studies.
Although the inversion of the model is not implemented, its potential accuracy is higher
than existing models.

Keywords: Wind vectors retrieval, ERS-1 satellite, probabilistic models, non-linear
regression, neural networks, input uncertainty

Contents

1 Introduction 9

id) TechnicaliGackproustiencsee: «emetic. la. so eel lee, © 9 esos 2 oe 9

1.2 Different techniques of wind retrieval...0--0--05. 10

12a BxIsting Approachesie. scale ste vnus are cee 6 Pe a ee 10

12:2) UNEGROSAT overview % 3. is. <5 « sey es ees ees 13

3 Reference forward-models 124... 2 2 yun cs ok ee ee a ee 14

edo OMOD4 and CMOD-PR2I i. wisso siete as Sows 2s 14

isda: NN-GMP ra mewral network. aise. ot ts ey oe Ss So 15

1.3.3 Wind retrieval using CMOD4............-..--2-+28-> 15

LEA MER AMSG CNIGOTO|GCU aN Merete, y ine Geode. wisn See Nee ecicl: vw. al ueete 16

1.6 About-the layout ofthis doctment .. 0.02.0 Bie se em ae ee ees 16

2 Early work: modelling the expectation 18

Bly PDEA e Aik Ro Oe GR GN oe L cronies] tlt)! en RS | er 18

oy be LeGround NeasUTeNientss.)h-. sat ey ion Lee ci eee. - ae ca 18

melee) Numerical modelen neces: «or Wares (ks seotee eeet aa a es 19

2:2) KGa MIC TONINA aa 7s cana ees See ha Se eee ne om ICOM eee eX Gum & 23

2.3 Modelling the expectation using a RBF network 23

2.3.1 Pre/post-processing 24

Za:e) Network architecture #270100 Jeei..+ Gis s ees oe aes ee ei 24

2:38:35 (Resulisigos. ss ying 1 «is sme. sues Seu nene eave) s+ 25

2.4 Modelling the expectation using a MLP network 27

24:1 "Complete model Seman. stilt rye ce vere: wares ay «+ ca wees fe hs 27

CONTENTS

3 More advanced models

3.1

3.2

Multivariate Density Networks 505.6. s ss1s ¢ nds oe ee ew

3.1.1 First attempt with mixture density networks

3.1.2 Presentation of the Multivariate Density Network.

3.1.3 Implementation of the Multivariate Density Network...

3.1.4 Computational efficiency.-0 00002 eee

3.1.5 Training the Multivariate Density Network

Hybrid: neural networks... 5202s ss ee ey ee ns Gc

3.2.1 Symmetry in CMOD4 and CMOD-IFR2................

32-2 Nem functional forks i, (ite eee adieu op eee con tee

8.23 s Biron function and its gradient .5 22005... se oe vs

Gr: brane the model 220. ccs Gist ene eke a eis css ee ee

POD DME RES ASR eer mania se Ore cee Eel Ue Me cree aoe een ct ele See

4 Graphical validation

4.1

4.2

4.3

4.4

4.5

o° as a function of wind speed and direction.0..

o° as a function of wind Cartesian components

Vertical and (cross-sections: osc. (ge aes ee np ee vet sn ee

Gone) in targebepace cy Aloo. i hema EONS ag Rea venules

Goncligionseeqrcr nna con su) ts oes in one Oren, 5 ence (one

5 Training accounting for input noise

5.1

5.2

5.3

5.4

5.5

Evidence for input Noise) aay si¢.cse as cies ee = ae

Effects of input noise on the results...000+-0 seu wns

Bayesian learning of neural networks .. 2.5.00 .05 64 0 ee eas

Bayesian learning of neural networks with noisy inputs.

Practical implementation «5 cis ieee 6) ss see fe eps ee etnies

5.5.1 Application to the wind retrieval problem

5.5.2 Description of the energies in the Markov chain.

28

28

31

31

31

32

33

34

36

36

37

38

39

40

43

43

45

46

48

53

CONTENTS

3.6 Gradient based optimisation 8 ~. 5 8.4.0) gee es 67

Ole COOCHUSIONS Fea. cgcetes a eens ene ee Nec es ee e w o 69

6 Validation against winds and improvements 71

6.1 Another effect of input uncertainty 2... 0-5 e pee eee 71

6:2 @Modelsinversion”......".)ce, siete Sah ctee | mas Mae Men A celebs 75

G2 Different techniques 205 fone cele cons is fe ee ds 5

6.2.2 Potential accuracy of wind retrieval/........--- TC

6.3 Possible means of improvement00 00 -e eee ueue 79

6:4 Conclusionsse rss serie sano vhaueae Gee ey re ne 82

7 Conclusions 83

A Symbol conventions 87

B Technical plots 90

Bele rllinseson the cone sections)... 0. 4 cpus) v One weeens We ee oS aitw WO ce oe 90

HES 12) ORG Ore cous es MRS iiy a) etree Sete eec sce MaMa iyo ewan eo a aves 92

C Training with noise: error derivatives 96

D The nn2cmod transfer function 100

List of Figures

del

1.2

1.3

2.1

2.2.

2:3

2.4

2.5

2.6

2.7

3.1

3.2

3.3

4.1

4.2

4.3

4.4

4.5

4.6

47

5.1

The ERS-1 scatterometer geometry...-...0000000 eee 10

Sketch of a composite model. cas seksi: 2 2s eas ys os se pe et ee 11

Most natural representation of the composite model 12

Charactenistics of the test set, sty ese. os & Gee ve tu es Be 21

Characteristics of the training set...0.0-.0 0000004 22

Sketehiok a complete model ae.) G0. owns se en at ye we 24

Error of the RBF network against number of hidden units 25

Residualsjof the RBP network...) ee 26

Speed distribution in datafile sotrn.............00000000- 28

Residuals of three reference models... 1... 00 ee ee es 29

Sketch of the un2emod model... se es ct el ess 38

Outputs of the hybrid network with hu.000. 41

Outputs of the hybrid network with 40 hu.000. 42

o° as a function of the wind direction+0000- 44

Op ereraus speed endidirectioneme nce. he coe Geos Gee fey) age 45

Vertical section of four models. 2.0.06. ss 2s Gs Ge ee 47

Grossisection-of fourmodels’. 32. win yas se ok yam pee oe 49

Clouds of points: o° measurements...6..00000000 08 50

CMOD4 and NN-GMF cones ... 0.2.2.2. ee eee ee es 51

MLP with 60 h.u. and hybrid model cones...00005 52

Hvidence forsinnut NOs week. «.-- aaa, cs estas See 56

LIST OF FIGURES

6.1

6.2

6.3

6.4

6.5

Al

Effect oftinputinoises jones 25 le a ee ee ee 58

Probability distribution P; = P(|lull) .. 0... a ev a 64

Initialisation of (u,v) components...00 0000 66

Effect of parameters normalisation on the learning curve........... 68

nn2cmod trained accounting/not accounting for noise 69

Effect of input noise during data selection0005 73

Probability density functions of ECMWF and retrieved winds... 76

Different views in 2° log spaces. ic ose, ae cue ne ee 78

Effect of 7° noise according to the hybrid model 80

Effect (of o° nosemmecording t0 CMOW4) (en een ee hs ys ss ee 81

Augles\in satellite peamenty fst sal eer Ce cor) 4 kane con 3 Gos aes 88

Acknowledgements

I would like to thank Dr Ian Nabney for his useful comments during this project.

I would also like to thank Dr Dan Cornford for his invaluable help and for the stimulating

environment he provided.

Tam also grateful to all students at the NCRG for their help and more specifically to

David Evans for the useful exchanges we had.

Chapter 1

Introduction

1.1 Technical background

The European Space Agency (ESA) launched its first Earth Remote-Sensing satellite

ERS-1 on 17 July 1991. It carries many instruments, including the Advanced Microwave

Instrument (AMI) which is a combined wind and wave scatterometer. This scatterometer

measures the return radar power from three antennae that form a swathe to the right side

of the satellite ground track (Figure 1.1). This backscatter is generated by the surface of

the ocean. As the on-board microwave radar operates at 5.3 GHz (C-band VV polarisa-

tion), the backscatter is mostly due to the in-phase reflection on small ripples of around

5 cm wavelength which are generated in turn by instantaneous surface winds.

The three antennae point at an azimuth of 45, 90 and 135° to the satellite heading for

the fore, mid and aft beam respectively. They sweep a 500 km wide swathe along the track

of the satellite. 19 cells are sampled every 25 km across this swathe. As the dimension of

these cells is 50 by 50 km, they overlap to some extent. The satellite executes its polar

orbit in 100 minutes and travels forward at 6.7 km/s. So each cell is swept in turn by the

three beams in a few minutes, depending on the position across the swath. This results in

a triplet of measured backscatter o° = (09, 0%, 92). This information, together with the

incidence angles of the beams, can then be used to determine the wind vectors over the

ocean.

Obtaining wind vectors over the ocean is important to Numerical Weather Prediction

CHAPTER 1. INTRODUCTION

Figure 1.1: The ERS-1 scatterometer geometry. Although this is not represented here,
the assumption of a flat sea surface is wrong.

(NWP) since the ability to produce a forecast of the future state of the atmosphere de-

pends critically on knowing the current state accurately. It is also important for studying

meteorological phenomena such as fronts or cyclones at a high resolution, and for studying

basin-wide ocean circulation models.

1.2 Different techniques of wind retrieval

1.2.1 Existing approaches

Many algorithms have already been developed for the retrieval of wind vectors from scat-

terometer data. The function we are really interested in is (o° ++ (u,v)). But this is a

multi-valued function, as the same o° vector can be measured for opposite wind directions.

This is due to the similarity of the shape of the ripples moving in opposite directions. Hence

this function is called an inverse model. By contrast, the forward model ((u,v) ++ o°) is

unimodal. Almost all existing algorithms are built on the inversion of a forward model.

It is often assumed that the three antennae of the satellite are equivalent. A model with

10

CHAPTER 1. INTRODUCTION

wind vm, tall ——]
composite

wind
direction ¥ o° model

incidence 0
angle

Figure 1.2: Sketch of a composite model. It has one output only. Whether the inputs are
(u,v) or (|||, 8) only plays a role when the model is trained.

one output only is used for all antennae, it is then called a composite model (see sketch in

Figure 1.2). It is run three times to get a o° triplet. The most natural representation of

the composite model is shown in Figure 1.3: o° is a function of (u,v) with parameter 0.

Figure 1.3 shows CMOD4 and nn2cmod (one of the models developed during this thesis)

for a speed range of 3-26 m/s (CMOD4 is only valid up to 15 m/s) and for incidence angles

9 = 18° (top funnel), 28.6°, 37.7° and 45.4° (lowest funnel) which correspond to mid

beam incidence angles for tracks 1, 7, 13 and 19 respectively. The colours represent con-

stant speeds and the straight line indicates up-wind direction. This is a good illustration

of what can be read in (Rufenach, 1995): The cross-sectional slope varies from about zero

dB / m/s at high wind speeds ||u|| = 18 m/s and small incidence angles 9 = 20° to about

1.3 dB / m/s at low wind speeds ||u|| = 3 m/s and large incidence angles, 0 = 55°.

Very recently (Janssen et al., 1998) proposed a physically based theoretical ocean

backscatter model (called VIERS-1). Unlike other models presented below, the expression

of this model is very complicated and it also makes use of a wave prediction model.

Therefore a direct comparison of its performance with the models which will be presented

here is not possible as it cannot be easily implemented.

However most of the existing models are obtained empirically. The models presented

in this document are also built from an empirical approach.

Forward models can be classified according to two criteria: the source of data used for

tuning and whether a prior hypothesis of a functional form is made.

The following models appear in (Rufenach, 1997), where a comparison of their perfor-

11

CHAPTER 1. INTRODUCTION

u, (m/s)

Figure 1.3: Most natural representation of the composite forward model: CMOD4 (top)
and nn2cmod (bottom).

12

CHAPTER 1. INTRODUCTION

mances is proposed on the basis of a comparison between predicted wind vectors and

collocated winds from buoy measurements:

¢ The CMOD4 function was trained using analysis winds from the European Centre

for Medium-Range Weather Forecasts (ECMWF). It uses a functional form (see next

section).

¢ The CMOD-IFR2 function was trained using a mixture of ECMWF winds and winds

from buoy measurements. It also has a functional form.

¢ The model from Oregon State University doesn’t use any functional form, it is tuned

with NWP winds.

CMOD4 and CMOD-IFR2 are presented in Section 1.3.

1.2.2) NEUROSAT overview

In (Thiria et al., 1993), artificial data was used to train several neural networks for the

inverse model. In this work, o° values from several contiguous cells were gathered to

facilitate the wind vector retrieval. More recently, a forward model was obtained using a

Multi Layer Perceptron neural network (Mejia et al., 1998). The data used in this study

was filtered with the help of this group at the Laboratoire d’Océanographie Dynamique

et de Climatologie (LODYC, Université de Paris 6, France). The wind retrieval model for

the NSCAT scatterometer (Mejia et al., 1998) has also been studied by this group.

Other studies carried out at the Neural Computing Research Group at Aston University

include the design of an inverse model where the tasks of wind direction and speed retrievals

were split (Cornford et al., 1997). Also in (Nabney and Bishop, 1995b) and (Nabney and

Bishop, 1995a), some techniques are proposed for the retrieval of wind direction from 0?

measurements using mixtures of wrapped Normal densities.

Alongside this thesis, MSc student David Evans is also developing an inverse model

using mixture density networks. His inverse model is used during this study.

A general overview of the NEUROSAT project is given in (Cornford and Nabney,

1998b).

13

CHAPTER 1. INTRODUCTION

1.3 Reference forward models

Three existing models are presented in this section: CMOD4, CMOD-IFR2 and NN-GMF.

1.3.1 CMOD4 and CMOD-IFR2

CMOD4 is a geophysical forward model. Its functional form is based on the use of a

truncated Fourier series. It was developed at the European Space Agency (ESA). Its

functional form is defined in (Offiler, 1994) as:

On = Bo(1 + By cos 9 + Bs tanh(Bo) cos 20)'® (1.1)

where Bo, Bi, Bz, B3 are complicated functions of the wind speed ||u||, the relative wind

direction 9, and the beam incidence angle @ (symbols conventions are listed in Appendix A)

with 18 tunable coefficients overall. In this form, 0° is in linear measure. The conversion

to decibels is given by:

O%p = 10 login fn (1.2)

The CMOD4 function was tuned using a sample of 20,000 wind vectors derived from

ECMWF analysis, with a maximum likelihood estimation (MLE) method. Some of the

parameters and thresholds were determined by empirical methods. Although CMOD4

was developed four years ago, it is still used operationally in several meteorological offices

across Europe. Articles written by its authors (Stoffelen and Anderson, 1997b; Stoffelen

and Anderson, 1997a; Stoffelen, 1998) are the most relevant in this work.

Another geophysical model called CMOD-IFR2 was developed at the Institut Francais

de la Recherche pour l’Exploitation de la Mer (IFREMER). Its functional form is close to

CMOD4’s. It is defined in (Maroni et al., 1995) as:

Olin = Bo(1 + Bi cos 0 + Bz tanh(B2) cos 20) (1.3)

This model is used at the CERSAT (Centre ERS d’Archivage et de Traitement) to find

outliers in the measured o° triplets. CMOD4 and CMOD-IFR2 are both composite mo-

14

CHAPTER 1. INTRODUCTION

dels: they are single-output functions so they implicitly assume that the three antennae

of the satellite are equivalent.

1.3.2 NN-GMF: a neural network

The NN-GMF forward model (Mejia e¢ al., 1998) was developed at the Laboratoire

d’Océanographie Dynamique et de Climatologie very recently. It is a Multi Layer Percep-

tron neural network with five hidden units. It has 5 inputs: the wind speed ||u||, sin()

and cos(¥) for the relative wind direction and cos(@) and sin(@) for the incidence angle.

Unlike the two models above, NN-GMF contains no a priori hypothesis! on the relation-

ship between o° and (u,v, ¥). This model was trained on ECMWF samples where priority

was given to speeds in the range 3 to 15 m/s. Wind speeds higher than 18 m/s were not

present.

1.3.3 Wind retrieval using CMOD4

The CMOD4 function gives a mapping ((||z||,0,0) + 0°), that is, it is a forward model.

However, the mapping we need in order to determine the wind vector from scatterometer

data is (o°, 8) + (u,v), so CMOD4 is inverted with the help of lookup tables. The wind

is obtained from the following algorithm (personal communication from Dave Offiler):

1. A first LUT gives sets of coefficients vs direction and incidence angle, so that given

a o° value, we get ||u|| = LUT(o°, 0,0). We apply this LUT at regular samples of

direction to form a set of candidate (|jz||,0) for 9 € [0,360] at intervals of 15°.

i)

. Then for each direction, the root mean square error (rms) of measured a? against

o° value computed by CMOD4. Local minima are found in sampled rms space, and

some interpolation is employed to find the actual minima, say J; (i can go up to 3

or 4).

3. The LUT is used again to estimate each corresponding ||u||;. We now have to remove

the ambiguity of these sets of (||2||;,0;).

‘The only (weak) assumption is that the relationship is infinitely continuously differentiable.

15

CHAPTER 1. INTRODUCTION

4. Select the set of (||u||i, 0:) which is the closest to Numerical Weather Prediction

(NWP) background winds (3-8 hrs forecast).

5. A median filter over contiguous tracks is applied to confirm or else update the result

of the previous step.

A very different method is employed for CMOD-IFR2, it is fully explained in (Maroni

et al., 1995).

1.4 Aims of this project

One of the aspects this report investigates is the design and implementation of a proba-

bilistic forward model, P(¢? | u,v,), relating backscattered radiation to wind vectors.

Existing models such as CMOD4 only give the expectation E[a° | u,v,@]. So currently,

when a conditional or unconditional probability distribution of 7° is required, it is im-

plicitly assumed that the error distribution is spherical. Such a probabilistic model can

be used in a Bayesian framework together with a wind field prior P(U,V) to obtain wind

fields, (U,V), from ©? values in a scene:

if Tl: P(e?)
e [HI Po? | use) POY)

P(U,V | =°)

where i designates the ith cell in a scene.

1.5 About the layout of this document

As the progression in this work was mainly linear in time (as opposed to divided in several

branches), it is presented in a rather chronological order, so the progression between

chapters is preserved. It is important to note that some of the conclusions which are

drawn in Chapters 2 and 3 are not correct. This is due to the presence of input noise in

the data. The reader may prefer to jump straight to Section 5.2 to have an overview of

the effects of input noise in this study.

16

CHAPTER 1. INTRODUCTION

A general presentation of the data used is proposed in Chapter 2. Some neural networks

are trained in the usual framework of non-linear regression. Some more complicated neural

networks are gathered in Section 3, including a “hybrid” model whose properties are

chosen to compensate for some faults of the other networks, according to the graphical

representations which are actually introduced in Chapter 4. It is shown in Chapter 5 that

input noise cannot be neglected. The training method is modified in consequence. Further

validation can then be undertaken (Chapter 6).

17

Chapter 2

Early work: modelling the

expectation

2.1 Data

In order to build an empirical mathematical model relating wind vectors to satellite mea-

surements, one first needs to collect information about the instantaneous wind vectors for

areas of the sea which match the cells on the satellite track (50 by 50 km), There are

two distinct sources for this information: ground measurements and data from Numerical

Weather Prediction (NWP) models.

2.1.1 Ground measurements

There exist different ways of measuring the wind on the sea: buoys, ships, and aircraft are

the most widely used. They give sparse (local) information about the wind vectors, at a

lower resolution than the cells on the satellite track. In 1991 the RENE campaign (Offiler,

1994) was carried out so as to remedy to this problem. This campaign was intended to

gather measurements from different sources and to specify as accurately as possible the

wind characteristics on the sea, off Norway. But the amount of data provided by this

campaign is small (22,000 individual observations not totally independent) and it is not

representative of the whole range of the wind speed and direction in the atmosphere: it

only covers the wind speed range of 1-21 m/s.

18

CHAPTER 2. EARLY WORK: MODELLING THE EXPECTATION

There exist other data bases gathering wind vectors: Rufenach (1995) made use of 75,000

collocated buoy measurements to estimate upwind-crosswind o° differences.

Moreover, this data is not free from noise. On the one hand, there exists measurement

errors: they are due to the imperfection of the instruments. On the other hand there are

also interpretation errors: they are due to differing scales to which the observations relate.

Indeed, in order to make the RENE-91 measures relevant for a comparison with satellite

measurements of o°, they must be averaged or interpolated in time or in space to match

the characteristics of the satellite footprint.

Finally, they must be adjusted to a reference height of 10 m. For instance, buoys

measure winds at a height of 3 or 4 m and aircraft measure the wind at their flying height.

All these calculations add uncertainty to the measured values.

As ground measurements do not provide enough information to train a model on a

wide range of speeds, they were not used in this study.

2.1.2 Numerical models

Presentation

Numerical models provide an alternative source of data which is used for this study.

Unlike ground measurements, the European Centre for Medium-Range Weather Forecast

(ECMWF) produces a complete wind field over the globe, with all speeds and directions

represented to at least some extent. In this study, the data files which were utilised to train

the neural networks come from the Centre ERS d’Archivage et de Traitement (CERSAT').

CERSAT makes use of ECMWF wind fields interpolated to the position and time of the

satellite measurements.

Data selection and filtering

Filtering at CERSAT CERSAT operates a rather stringent quality control on the data

gathered by the ERS-1 satellite (Maroni et al., 1995). CERSAT generates its own wind

field products (called WNF) with associated o° values. Associating ° to ECMWF winds

gives rise to errors as detailed in next section. CERSAT discards some o° measurements.

‘Information about CERSAT can be found at http://www. ifremer.fr/cersat/

19

CHAPTER 2, EARLY WORK: MODELLING THE EXPECTATION

Reasons for not validating o® measurements include: sea-ice data (a dynamic sea-ice

mask is used), low winds (< 3 m/s) for which the ¢° measurements are too noisy, points

contaminated by high rain or snow rates. The three latter reasons are revealed by a

Maximum Likelihood Estimator (MLE) being out of range, i.e. the o° triplet lying too

far away from the manifold defined by CMOD-IFR2 forward model in o° space. According

to the results in this thesis, CMOD-IFR2 is not a very good model for an unconditional

probability distribution of the measurements in o° space.

Further selection A further selection of the data used in this study was carried out.

Only cells from the 10 odd tracks were selected. This can be justified by the fact that

the odd and the even cells completely overlap. The distribution of the incidence angle

6 was smoothed. A smooth distribution of relative wind directions was also ensured.

Finally, the speed distribution of the data sets was chosen to represent both the natural

atmospheric distribution and our desire to get a good prediction of high wind speeds. This

was intended to avoid the use of weighted cost functions (Cornford and Nabney, 1998a),

and it was made possible thanks to a sufficient amount of data. So the distribution of

wind speeds for the training data set is the equal sum of a uniform distribution and the

atmospheric distribution (see Figure 2.2), in the range 4 - 24 m/s. To evaluate the error

of the model, we used a test data set with a speed distribution corresponding to the

atmospheric distribution (Figure 2.1).

It is shown in Section 5.2 that using a test and validation sets to compute test and

validation errors is actually not justified. Important issues in the process of data selection

are also discussed in section 6.1.

Error analysis

The error of ECMWF predicted winds against true (unknown) winds is thought to have a

Gaussian distribution in each Cartesian component of the wind, with the same standard

deviation. As resolution of the wind fields for this model (250 by 250 km) is lower than the

resolution of the cells on the footprint of the satellite (50 by 50 km), spatial interpolation

is required. This gives rise to a second source of error. Moreover, temporal adjustment is

also required. Finally, the reference height of the ECMWF model we use provides winds

20

CHAPTER 2. EARLY WORK: MODELLING THE EXPECTATION

(a) Distribution of the wind speed (atmo- (b) Distribution of the wind relative direction
spheric distribution)

Figure 2.1: Characteristics of the wind vectors in the test set (file dirs_tst, 5,000 pat-
terns. All incidence angles are equally represented and the directions are rather smoothly
distributed.

at a height of 50 m. As for ground measurements, these must be adjusted to the reference

height of 10 m (this is done for us by ECMWE), giving rise to even more uncertainty.

To summarise, the level of errors in WNF winds is not well known. However, the error

distribution seems best described as a Gaussian distribution in (u,v) space. Stoffelen and

Anderson (1997b) found that the standard deviation of the error in both u and v wind

components is 1.5 m/s. In (||||,0) space, the errors have complicated skewed distributions.

Some aspects of this topic will be discussed in greater detail in Chapter 5. These errors

are not taken into consideration at the beginning of the work presented in this thesis.

Concerning the o° values, Stoffelen and Anderson (1997a) showed that the errors are

proportional in linear space. Therefore 7° values are measured in logarithmic space in all

this study:

op = 10log19 On (2.1)

Errors are additive in log space, and their typical spreading from the theoretical surface

21

CHAPTER 2. EARLY WORK: MODELLING THE EXPECTATION

809

700}

600]

2500)
s
© 400)

300}

200}

100]

5 10 15 20
ms

 “85 20 -15 -10 -5 0 5 10 15 20 2 es PF u, component

(a) The wind vectors in (u,v) space (b) Distribution of the wind speed: atmo-
spheric + uniform

0 30

a ee ae 3
degrees

(c) The distribution of the wind direction is (d) Repartition of wind patterns between the
rather smooth 19 tracks. Only the 10 odd tracks were sam-

pled from.

Figure 2.2: Characteristics of the wind vectors in the training set (file dirs_trn, 10,000
patterns)

22

CHAPTER 2. EARLY WORK: MODELLING THE EXPECTATION

on which they lie is 0.2 dB (Stoffelen and Anderson, 1997a).

2.2 Data file format

The fields of the data files used to train neural networks are shown on Table 2.1. Different

files were used at the end of this study.

field | symbol | description units

1 oF fore beam backscatter
2 oe, mid beam backscatter dB
3 oe aft beam backscatter

incidence angle between local vertical and satellite mid 4 0 degrees beam
5 x azimuth: angle between North and mid beam degrees
6 [||] wind speed m/s
% mdir meteo wind direction degrees

Table 2.1: Fields of the data files

Here is a short description of each field: @ can take 19 values (only 11 values appear)

corresponding to the 19 tracks on the swath, from 17.9° to 45.5° (this is mid beam).

In order to run composite models such as CMOD4, we used a lookup table to obtain the

incidence angles of fore and aft beams.

The azimuth angle x is bimodal: it oscillates around the two values 79 or 281° depending

on whether the satellite is on an ascending or descending path.

More symbol conventions are shown in Appendix A.

2.3 Modelling the expectation using a RBF network

As a first approach, only the conditional average of the backscatter from the ocean was

modelled: E[a® | u,v, 6]. This was done using either a Radial Basis Function (RBF) or a

Multi Layer Perceptron (MLP) network. These neural networks are described in (Bishop,

1995). They were trained as complete models (Figure 2.3) so as to prepare for modelling

a complete probabilistic distribution of o°. As far as Root Mean Square (RMS) errors

and biases are concerned, both give similar results, the RBF doing slightly better though.

23

CHAPTER 2. EARLY WORK: MODELLING THE EXPECTATION

OG eg OF

Vv CE complete model OFF

Sin(@) 22 es oF —————————

Figure 2.3: The models presented in this section have 3 outputs. They take the Cartesian
wind components and the sine of the incidence angle as inputs.

The RMS error is defined for each beam as:

1m

Ens = SMe?, - 07.)? (2.2)
1

where i € {1,2,3} indicates beam and o?, and of, are the N simulated and observed

measurements. The bias is Dt (62 Ona) iN

2.3.1 Pre/post-processing

All the data sets are pre-processed in the same way to train the networks. Training input

as well as output data is normalised so it has zero mean and unit variance (for each field

independently) as suggested by Bishop (1995). This ensures that all input and output

variables are of order unity, and we expect the network weights to be in the same range

of values. The sine of the incidence angle was also used instead of the angle itself.

In practice, once the network is trained, input data to the network has to be translated

and rescaled with the same coefficients as the training set. The output of the neural

network then has to be rescaled using the inverse transformation.

2.3.2 Network architecture

The RBF network has a 3-dimensional input space and a 3-dimensional output space.

The hidden unit activation functions are Gaussian. Several values for the number of

hidden units are compared. There is still no over-fitting with up to 100 hidden units (both

24

CHAPTER 2. EARLY WORK: MODELLING THE EXPECTATION

02

2
2 s

2

av
er

ag
e

su
m-
of
-s
qu
ar
e

er
ro
r

pe
r

pa
tt
er
n

=
2 3

o & 60 80 100 120 140
Number of hidden units

Figure 2.4: Plot of the sum-of-square error as a function of the number of hidden units of
the RBF network.

training and validation sum-of-squares errors go on decreasing when increasing the number

of hidden units). The lowest test error for this network is obtained with the surprisingly

large number of 100 hidden units, as shown in Figure 2.4.

2.3.3 Results

Here are are some basic statistics about this model. For the test set, the covariance matrix

of the residuals of (07,002) of the network is:

0.0929 0.0508 0.0474

Xr = | 0.0508 0.0456 0.0456

0.0474 0.0456 0.0767

And their bias is almost zero:

br = (-0.0018 —0.0009 —0.0029)

Some indicators of the performances of this neural network are displayed on Figure

2.5. The residuals are plotted in the middle column. The thick dashed line represents

25

CHAPTER 2. EARLY WORK: MODELLING THE EXPECTATION

sof
10

3

oo 0 ° ~ ete ° 10
ted? mee

(a) Computed value of 0? (b) Residuals against true
against true value value (fore beam)

“4

“Se

(d) Computed value of o°
against true value

(e) Residuals against
value (mid beam)

true

(g) Computed value of o°
against true value

(h)
value (aft beam)

Residuals against true

Desnbuton te resals

(c) Distribution of the residu-
als

Ditruton lh edhe

(£) Distribution of the residu-
als

Desbuton fh eae

(i) Distribution of the residu-
als

Figure 2.5: Performances of the RBF network with 100 hidden units. Figures on lines 1,
2 and 3 represent fore, mid and aft beams respectively.

26

CHAPTER 2. EARLY WORK: MODELLING THE EXPECTATION

the moving average of the residuals. It appears clearly that the low values of 0? are

overestimated, by up to 5 dB for @° measured values below -30 dB. Fortunately only a

small proportion of the patterns are concerned. On the contrary, higher values of o° are

slightly underestimated. Finally, the bias is almost zero: on the third column of Figure

2.5, the histograms show the distribution of the residuals, and a centred Gaussian curve

on top of each of them. Each histogram fits the Gaussian very well.

At this stage of the work, this was considered a good omen, as representing P(a® | u,v, 4)

using a Gaussian model would be achieved with a good approximation. The standard

deviation of the residuals was also computed over small intervals, in the same way as for

the moving average. The two thin lines on each plot of the middle column represent the

mean + twice the standard deviation. This standard deviation is not constant: it is lower

for extreme values of 7°. Here again, this is validating the choice for a probabilistic model

using input-dependent covariance matrices.

2.4 Modelling the expectation using a MLP network

2.4.1 Complete model

Several Multi Layer Perceptrons (MLP) were also trained to perform this task. Two

different methods of regularization were applied: early stopping and weight decay. Early

stopping showed there was no over-fitting: after 600 training cycles using the Scaled

Conjugate Gradient algorithm and with a number of hidden units as large as 50, the test

error was still slowly decreasing.

Finally, the results were found to be close to those obtained using RBF networks. The

covariance matrix of the residuals is not diagonal either, showing that the residuals are

correlated:

0.1160 0.0646 0.0550

X= | 0.0646 0.0698 0.0582

0.0550 0.0582 0.1029

Moreover, the residuals also had a normal distribution (as in Figure 2.5, not shown).

This suggested the use of a multivariate density network to model P(o® | u,v, 0).

27

CHAPTER 2. EARLY WORK: MODELLING THE EXPECTATION

2.4.2 Composite model

A composite forward model is developed using an MLP. The inputs are the same, but

there’s only one output. The model is run three times to get the o° triplet. Several levels

of complexity are tested as above. The results are not different from the complete models.

Figure 2.6: Speed distribution in the datafile sotrn: several composite models were
trained on this file.

It should be noted that training a composite model requires a different file format: the

three fields of, of,, 02 are replaced by a single field 0°, in which the values are taken from

oF Om; %q with equal probabilities. In such a file, the azimuth angle y takes 6 different

values instead of 2. The same file so_trn was used to train the hybrid model presented in

section 3.2. Its speed distribution is shown in Figure 2.6. There are 10,000 patterns.

2.5 Comparison with other models

CMOD4 and CMOD-IFR2 are known to over-estimate o? values at high wind speeds.

Indeed they show a strong positive bias when their output is computed from our ECMWF

wind samples and compared with collocated o° values.

As stated in (Mejia et al., 1998), NN-GMF exhibits a lower bias than the two models

above. Tables 2.2 and 2.3 give the values of the bias and RMS error for each model and

28

CHAPTER 2. EARLY WORK: MODELLING THE EXPECTATION

‘ ‘
4
:

4
ay

rm

an Fo

25} 4

=
sf

“40 0 20 40 0 10 E 0 2 40 0 10 ie? mes!

(a) Computed value of o° (b) Residuals against true
against true value value

e
o
s

Pre
dit

ed
val

ue
8

¢
%

&

(d) Computed value of o?
against true value

(e) Residuals against true
value

(g) Computed value of o°
against true value

(h) Residuals against true
value

Dian of rss

0
pats

(c) Distribution of the residu-
als

Detibuon ole rsa

(f) Distribution of the residu-
als

Dire fh eine

(i) Distribution of the residu-
als

Figure 2.7: Residuals of three reference models for mid beam measurements. CMOD4,
CMOD-IFR2 and NN-GMF are presented on lines 1, 2 and 3 respectively. All incidence

angles are present. Test file is dirstst (4-24 m/s).

29

CHAPTER 2. EARLY WORK: MODELLING THE EXPECTATION

each beam. The residuals of the three reference models are also plotted in Figure 2.7.

Further assessment of the accuracy of these models (and also VIERS-1) is given in

Chapter 4.

CMOD4 CMOD IFREMER. NN-GMF
bias] RMS error bias | RMS error bias | RMS error

Fore beam || 0.7660 1.9412 0.3528 1.8575 -0.1966 1.7338
Mid beam 0.6284 1.6042 0.2646 1.5419 -0.1021 1.4614
Aft beam 0.7369 1.8543 0.3240 1.7480 -0.2053 1.6957

Table 2.2: Bias and RMS error (both in dB) of three reference forward models tested with

ECMWF input winds in the range 4 - 18 m/s (selected from file dirs_tst).

RBF 100 h.u. MLP 60 h.u. composite MLP 20 h.u.

bias | RMS error bias__| RMS error bias | RMS error
Fore beam || -0.0069 1.6975 -0.0069 1.6663 0.0280 1.6838
Mid beam |} -0.0018 1.3711 ~0.0029 1.3564 -0.0854 1.3805
Aft beam -0.0106 1.6196 -0.0069 1.6033 0.0081 1.6270

Table 2.3: As above for an RBF with 100 hidden units, an MLP with 40 hidden units
and a single output MLP with 20 hidden units. All speeds were used in the test file (up
to 24 m/s). Neural networks outperform reference models but these values are a poor
indicator of quality of models.

30

Chapter 3

More advanced models

The models which are presented in this chapter are “more advanced”: their architecture

is still based on MLP neural networks but the outputs are subject to further treatment

compared to conventional MLPs.

3.1 Multivariate Density Networks

The Multivariate Density Network (MVDN) is a probabilistic model. As a first approach

before its development, a mixture density network (MDN) was trained for the same task.

3.1.1 First attempt with mixture density networks

Introduction to Mixture Density Networks

In order to model the conditional probability density P(c°|u,v,8), an MDN was trained.

Unfortunately, this model didn’t give any result because it was too computationally ex-

1. This type of model combines a conventional neural network whose outputs pensive

determine the parameters in a mixture density model. It can in principle represent arbi-

trary conditional probability distributions. The probability density of the target data, t,

‘Now there exists a new faster implementation for this model (Evans, 1998), but it was not available
at that time.

31

CHAPTER 3. MORE ADVANCED MODELS

is represented as a linear combination of kernel functions in the form:

m

p(t| x) = >> ai(x)4(t| x)
i=l

where $;(t|a@) represents the conditional density of the target vector (t) for the i‘* kernel.

This type of neural network is extensively described in (Bishop, 1994).

Limitations

The structure for MDNs is implemented in the NETLAB? toolbox for MATLAB. This

implementation uses Gaussian kernels and it only supports spherical covariance matrices.

MDNs are particularly useful to represent multi-modal distributions. Although the model

we want to build is unimodal, it would have still been interesting to train an MDN with

several kernels for our problem. Indeed, in a 3D space for instance, two overlapping

spherical kernels can provide an approximate representation of an ellipsoid. However,

after a few trials it was estimated that training one single model would take at least

50 days of computation. It was not worth improving the code as it was not the most

appropriate model anyway.

3.1.2. Presentation of the Multivariate Density Network

Like an MDN, an MVDN provides a way of modelling conditional probability distributions.

(Williams, 1996) gives a complete description of this model. The basic principles are

recalled here for convenience. The conditional distribution of the n-dimensional quantity

y given @ is assumed to be described by the multivariate density

p(y |x) = eaamepere + su -wTEy —H)}

where j4(x) is the vector of conditional means and ¥(x) is the conditional covariance

matrix.

These parameters are determined by the outputs of the network: Obtaining the mean

vector 44 presents no problem. Its n components are given by n network outputs without

?NETLAB is available from http: //www.ncrg.aston.ac.uk/netlab/

32

CHAPTER 3. MORE ADVANCED MODELS

any further treatment. Obtaining the covariance matrix is less obvious. As X is symmetric,

there are only n(n + 1)/2 independent entries, © is also positive definite so its inverse can

be written as follows, using the Cholesky factorisation, with n = 4 for example:

Cys WC (S) M1 M2 O13 a4

x a2 an 0 0 0 a2 023 a4 St=ATA= (3.1)
213 023 O33 0 0 0 agg agg

O14 O24 O34 O44 0 0 0 aay

This decomposition exhibits the n(n + 1)/2 independent entries. The diagonal terms are

positive. Therefore they are related to n network outputs by the exponential function.

Off-diagonal entries are unconstrained so they are taken directly from n(n — 1)/2 other

outputs. Using the same notation as in (Williams, 1996):

Qi = exp(z7) oa

Oj = 2h t=l.on—1, j=2...n, 1<3.

There are n(n + 3)/2 entries overall. This is also the number of required outputs for

the neural network.

The negative log-likelihood of a set of N observations can be written as:

whorl l
B= Yi[5 10g [Bol + 5 (Up — Hp) Ep Up — Hy]

p=

where p is the index for each pattern and the normalisation constant has been dropped.

The derivatives are computed analytically and the network is trained using a non-linear

optimisation algorithm. More details and results can be found in (Williams, 1996).

3.1.3 Implementation of the Multivariate Density Network

In order to keep some compatibility with NETLAB, the same structure as in the imple-

mentation for the mixture density network was kept. Thus the programs were called mvdn

mvdninit mvdnfwd mvdngrad mvdnerr mvdnpak and mvdnunpak.

33

CHAPTER 3. MORE ADVANCED MODELS

mvdn creates the network part of the model (an MLP) and the

structure for the covariance matrix.

mvdninit initialises the weights of the network. The target data is

used to set the output biases of the network: the mean of

the target and the Cholesky decomposition of the covariance

matrix of the residuals is computed. The weights which

correspond to the output biases are then initialised to yield

these values. The other weights are initialised randomly

with a Gaussian prior.

mvdnfwd forward propagates the inputs through the model. The out-

put is an array of structures containing the mean vector and

the covariance matrix for each input pattern.

mvdnerr computes the error of the model for a set of inputs and

targets.

mvdngrd computes the error gradient of the model.

mvdnpak/unpak packs the weights of the network into a vector: this is re-

quired to use the scaled conjugate gradient optimisation.

An extra program called mlp2alpha performs the transformation from the MLP vector

of outputs to the upper triangular matrix A (Equation 3.1). The elements of A were

numbered as follows (this would be in dimension 4):

i s-6 7

0 28 9

00 3 10

000 4

3.1.4 Computational efficiency

Because of the presence of structures (containing both the mean vector and the covariance

matrix for each pattern) in the model, it was not directly possible to vectorise the code.

34

CHAPTER 3. MORE ADVANCED MODELS

MATLAB is very poor at using loops so running times were going to be even longer than

for the MDN. Hence the most computationaly intensive parts of the code (three loops over

the 10,000 patterns) were re-written in C, with an interface with MATLAB. The time of

execution of the whole code was reduced by a factor of 88. It still took about ten hours to

train a model for 1,000 iterations of the scaled conjugate gradient (SCG) algorithm but

this is quite acceptable.

3.1.5 Training the Multivariate Density Network

For this model, the pre/post-processing are exactly the same as for networks where only

the expectation is modelled (section 2.3.1). It is trained using the file dirs_trn. However,

some care has to be taken when un-normalising the outputs given by the model. Indeed,

if 5 denotes the covariance matrix given by the multivariate density network immediately

before post-processing, then the elements of the post-processed covariance matrix D are

given by:

Vy=LigeMiy i,j € (1,2,3} (3.2)

where M is the outer product:

o1

M=| 0 +(a o2 aa) (3.3)

o3

where (01 o2 03) is the vector of the three standard deviations of (o%,0%m:0@) in the

training set, which are used for rescaling the targets (pre-processing).

Various MVDNs with different complexities were trained using the SCG algorithm,

with the file dirs_trn (see section 2.1 for a description). All of them were trained for at

least 400 iterations and some of them for up to 1,000 iterations. Although the error level

seemed not to decrease significantly during these extra iterations, graphical representations

exhibited a real evolution (this was discovered later).

Studying the residuals always gives similar results: the bias is almost zero and the

35

CHAPTER 3. MORE ADVANCED MODELS

distribution of the residuals (measured ¢° minus computed most probable o°) was very

similar to the distribution found for networks modelling the expectation Efe? | u,v, 6],

whatever the complexity. For instance, the biases for the MVDN with 10 hidden units

were as low as (0.070 0.080 0.066) after only 400 iterations. The test errors were nearly

identical for all MVDNs.

At this stage it was necessary to find a better way of comparing these models. Graphical

means are presented in the next chapter. The cross-section and the vertical section of the

cone in o° space were used to assess the quality of the various MVDNs.

3.2 Hybrid neural network

As will be shown in Chapter 4, conventional neural networks that are trained on the (u,v)

to o° mapping exhibit unwanted asymmetries. This section presents a more complicated

model which corrects this fault. The assumption of a symmetric mapping with respect to

v is based on the symmetric geometry of the scatterometer measurement.

3.2.1 Symmetry in CMOD4 and CMOD-IFR2

A close study of CMOD4’s definition shows that the dependency of the outputs of the

model on the wind direction is fixed:

of, = Bo(1 + By cos 0 + Bs tanh By cos 20)! (3.4)

In the expression above, the parameters By, B; and Bo do not depend on ¥, so the model

is constrained to be symmetric with respect to J. These three parameters are complicated

functions of ||z|| and 8. These functions include hyperbolic dependencies, Legendre poly-

nomials and various thresholds. They introduce further constraints on the dependency of

the parameters Bo, By and B3 on ||ul| and 0.

The basic idea of the hybrid neural network introduced here is to copy the CMOD4

functional form and to determine its parameters using a neural network instead of the

functions described above.

36

CHAPTER 3. MORE ADVANCED MODELS

Here is a reminder of the functional form of CMOD-IFR2:

of, = Bo(1 + Bi cos” + B3 tanh By cos 2) (3.5)

This is a truncated Fourier series where only the first two symmetric components were

retained. (Stoffelen and Anderson, 1997b) introduces the transformation z = (0°)9:625

(hence the 1.6 = 1/0.625 in Equation 3.4) in order to compensate for the absence of

higher harmonics cos 30, cos43. This value 0.625 was determined by empirical means

and it may not reflect the varying relative importance of the harmonics. Therefore this

becomes a tunable parameter in the hybrid neural network model. This model is called

‘nn2cmod’ hereafter. A sketch of this model is shown in Figure 3.1.

3.2.2 New functional form

A natural functional form for nn2cmod could have been:

On = Bo(1 + Bi cos? + By cos 20)? (3.6)

But in the expression above the term (1 +B; cos 9 + Bp cos 2) has to be strictly positive

so the expression is defined for all p. This is achieved with the following transformation

(the variables Bp, B, and Bz are not consistent from one equation to the other):

Ofn = Bo(1 + 0.1 tanh(B;) cos 0 + 0.8 tanh(Bg) cos 20)? (3.7)

In Equation 3.7, the values 0.1 and 0.8 are just scaling parameters. They were chosen

so as to sum to a value less than 1. Their relative values have little importance as the

network output weights will incorporate them. Finally, 0° can be written in log space:

Oe ols = inti} (20 + pln (1+ 0.1 tanh(b;) cos(@) + 0.8 tanh (by) cos(20))) (3.8)
eee =K
=f,

37

CHAPTER 3. MORE ADVANCED MODELS

incidence angle

sin(@®)

ice
wind speed

Ss > E

error
o —I

Re aes target
wind direction

v
value

© = Linear transformation

Figure 3.1: Sketch of the hybrid model. The wind direction is no longer an input to the
neural network. Variables denoted with a tilde are normalised variables (set to zero mean
and unit variance by a linear transformation).

3.2.3. Error function and its gradient

Assuming Gaussian errors in o° space, the error of the model is given by the following

sum-of-squares error, where the normalising constants are removed:

N

= sr (oh - 08)?
foes fl ee

where N is the number of scatterometer measurements in the dataset. To train this model,

the expression of the derivatives of the error with respect to the weights is necessary.

Using the notation introduced in Equation 3.8, the derivatives of the error function

with respect to the outputs of the neural network can be written as follows. For clarity,

38

CHAPTER 3. MORE ADVANCED MODELS

the derivatives are calculated for each pattern but the subscripts n are removed.

dE _ , (c?-0?) ;
ae (3.10)

OE _ 01Lpcosd (7? — of)

OB, K cosh?B; 20

OE 0.8 L pcos 20 (o° — a?)

OB K cosh? By ae

o* ~ of) ab (Bp 7 Ee) z ll

The derivatives of the error function with respect to the weights of the network are then

obtained using back-propagation (Bishop, 1995).

3.2.4 Training the model

No particular theoretical problems arose for the implementation of the nn2cmod model.

The structure is similar to the one used for the Multivariate Density Network. The files

nn2cmoderr nn2cmodfwd and nn2cmodgrad played the same roles as for the MVDN (see

table page 34). The normalisation of the data is different from the other models as the

input J is not connected to the network and a? is no longer an output. The ranges of

values of the four outputs of the MLP are not normalised but they are reasonably close

to zero, and their magnitude is small.

The model was trained for 1,000 iterations? using the scaled conjugate gradient algorithm:

The training data file had 10,000 patterns (the file is briefly described in Section 2.4.2).

The network was trained for different numbers of hidden units: 10, 20, 30 and 40. The

output biases of the network were initialised using information from CMOD4: CMOD4

was run on the training set and the average values obtained for By, B, and Bg were

computed. Some necessary transformation was carried out in order to yield the definitions

of Bo, By and Bz in nn2cmod. Eventually the output biases were initialised to the three

following values: (—1.8,0.07,0.3) and 1.6 for the fourth output bias associated with p.

*The error had reached a stable level whatever the complexity

39

CHAPTER 3. MORE ADVANCED MODELS

3.2.5 Results

The consistency of these four networks was checked by comparing their respective four

outputs. Figures 3.2 and 3.3 show these outputs as functions of speed and mid beam

incidence angles. They had the same shape for the four networks (note that the presented

plots are the most different cases). In early trials where the output biases had not been set,

the outputs of two different networks (20 and 15 hidden units) finished in a very different

state where p took values around -4 although the cone surface was fitting the points rather

correctly in o° space (see next chapter).

This model has several advantages. As will be seen in the next chapter, its behaviour

at high wind speeds is good although the data is sparse (Figure 4.7). It means the risk of

over-fitting the data is smaller. This can be explained by two reasons. First the model is

symmetric so 50% less data is required for the same accuracy. Second, the outputs of the

MLP have a smoother dependency on the inputs so it is likely that the variation of these

will also be smooth where the training data is sparse or even absent. One drawback is the

assumption of symmetry. There’s no proof of its validity.

In chapter 5, this model is reused as it exhibits the best features so far.

40

CHAPTER 3. MORE ADVANCED MODELS

wind speed = wind speed ie

Figure 3.2: Outputs of the model NN2CMOD with 10 hidden units (one plot per output).

They are consistent with the values obtained with 20, 30 (not shown) and 40 hidden units

(see next page). The range of values obtained for p is quite comparable to the fixed value
(1.6) of CMOD4.

41

CHAPTER 3. MORE ADVANCED MODELS

Figure 3.3: Outputs of the model NN2CMOD with 40 hidden units (one plot per output).

Note that Bo, tanh(B,) and tanh(B2) cannot be considered as the coefficients of a Fourier
Transform as the parameter p is varying.

42

Chapter 4

Graphical validation

This section lists the graphical representations which are useful for comparing the forward

models. Some representations show 7° measurements as a function of certain components

(polar or Cartesian) of ECMWF winds. These plots can be misleading indicators of the

quality of the forward model, because of the uncertainty in ECMWF winds.

However, a number of representations are plotted directly in a? space. As we know the

targets lie close to a well-defined theoretical surface, these plots allow us to make sure the

computed values of 7° match this surface. This is the first step of a two-step validation

proposed by (Stoffelen and Anderson, 1997b), the second step being a validation against

winds, once the model is inverted.

4.1 o° asa function of wind speed and direction

An interesting representation appears in (Mejia et al., 1998). It is the representation of the

computed o° value as a function of wind direction where the incidence angle and the wind

speed are fixed. Such plots are presented in Figure 4.1 for track 11 and for six different

wind speeds. These plots show that all the models that have been developed and presented

have similar features and they exhibit a large difference with CMOD4 and CMOD-IFR2.

This representation shows that all the networks fit the clouds of points rather well. This is

also true for most of the other neural networks which were trained with different, numbers

of hidden units (not shown here). For intermediate wind speeds, changing the complexity

or the number of training iterations of the neural networks doesn’t have any important

43

CHAPTER 4. GRAPHICAL VALIDATION

‘constant speed = 4 m/s constant speed = 8 m/s

‘mona
-4| ? : i — CMoo-(FRemen | -3| 4 b $

REF 100 hu.

constant speed = 12 m/s constant speed = 16 m/s

rir rir

constant speed = 24 m/s

 a) -22| 5 -22| és

-24] 24]

Sie a8 1 sana e025 «FOS 0 “4500185 10225 -270—«SIS 360

Figure 4.1: 0° as a function of the wind direction. The thickness of the slice of selected
points is +0.25 m/s. On these plots, all the models but CMOD4 and CMOD-IFR2 fit the

cloud of points rather well. At high wind speeds where the training data is sparse, the

neural networks outputs are very chaotic.

44

CHAPTER 4. GRAPHICAL VALIDATION

effect on the result. For high wind speeds where the data is sparse, the outputs of the

neural networks are more and more chaotic as the number of hidden units increases. For

CMOD4 and CMOD-IFR2, the extrapolation seems far better thanks to the restrictions

imposed by their functional form. Moreover, high wind speed extrapolation for these

models starts around 15-18 m/s.

20 24

42 16
8

Wind direction Wind speed

Figure 4.2: of, as a function of wind speed and wind direction, for track 11. The surface

which is shown corresponds to the MLP with 60 hidden units. The colors represent wind

speed.

An equivalent 3-D plot is the representation of 7° as a function of both wind direction

0 and wind speed ||w|| (Figure 4.2). The plots described above are just slices through this

surface. Viewing this plot from above or from below shows that there are roughly as many

points on‘each side of the surface for a model such as the MLP.

4.2 o° as a function of wind Cartesian components

An example of such a representation is shown in the introduction (Figure 1.3), where the

surfaces are shown for different incidence angles. Actually, this plot could not be used for

validation purposes.

However, it is quite helpful for the understanding of some of the main issues which will

45

CHAPTER 4. GRAPHICAL VALIDATION

arise when inverting the model, namely: the small dependency of o? on both wind speed

and direction when the speed is high and the small range of values of a? for low incidence

angles (below the satellite). The wind retrieval will be less accurate in these cases.

4.3 Vertical and cross-sections

Two graphical representations are proposed in (Stoffelen and Anderson, 1997a): a vertical

section of the cone along the symmetry plane (of equation of = 04) and a cross-section

along the plane of equation of + 04 = 207.5. Both of them are proposed in linear 0°

space. The speed is roughly constant in the cross-section.

The vertical sections of four different models are reproduced on Figure 4.3. They

provide a powerful tool to compare the different models. The colours indicate the wind

speed dependency. For the points, this speed is given by the ECMWF values. From

these plots, it is clear that the RBF network has to be rejected. The MLP network is

performing much better, with a smooth curve, although the curve does not fit the points

perfectly. The expectation of the output of the MVDN has the same feature. Finally,

CMOD4 has a better fit to the points for low wind speeds. However, above 15 m/s the

fit is poor. Moreover CMOD4 will underestimate high wind speeds as the colours do not

match. Unlike the other models, the two sheaths of CMOD4 have a common intersection

with the vertical plane for wind directions of 45° and —45°. This is due to the definition

of CMOD4 (it is symmetric).

The MVDN provides more information than the other models: it also gives the distribution

of the o° triplets around the most probable value. As this distribution is assumed to be

Gaussian, an isodensity surface is an ellipsoid in the 7° space. The ellipses represent the

intersection of the section plane with these ellipsoids for a few sample points (10 or so for

each of the 4 intersection lines of the cone). The distance of the points of the ellipses from

their respective centres is one (varying) standard deviation (see Appendix B.1).

The vertical section of the MVDN is presented in the log space. Indeed, the covariance

matrices given by this model are valid in the log space. As the transformation is not linear,

the isodensity surfaces are not easily representable in the measurement (i.e. linear) space

as they become skewed ellipsoids.

46

CHAPTER 4. GRAPHICAL VALIDATION

MLP 60 hidden units 1000 iterations CMOD4

0.25} . 0.25

02 0.2

0.15} 0.15]

of ae °c °c

0.4 o4

0.05 0.05}

805 0 005 01 O15 $05 0 0.0 O4 0.15
- (R+o)iv2 * i i (0 $e 42 i i

RBF 100 hidden units MVDN 100 hidden units 1000 iterations (log space)
0.25

02

0.15

ot °C

0.4

0.05]

O05 0.05 O1 015 0 SE 4-95-20 15
(2 ooh 2” : (op) (2

Figure 4.3: Vertical section of four models for track 11. The colour of the points refer to
ECMWF speed. Each model is drawn for speeds up to 24 m/s. The MLP and the MVDN

‘catch’ the shape well but they do not exactly fit the points. CMOD4 doesn’t fit the cross

winds (lower limb). The RBF is poor although its bias is the smallest of all models (Table
2.3). MVDN: see text and Appendix B.1.

47

CHAPTER 4. GRAPHICAL VALIDATION

It can be noted that even for the MVDN, the selection of the points is performed in the

measurement space (before transformation). The selected points satisfy the the equation

of = 09 + 0.018 + (o% + 02) for the cross-section. The equation of the section plane in

the measurement space is 74 tin = Tajin Which is equivalent to OF log = Fajlog? Which is in

turn the equation of the symmetry plane in log space.

Cross-sections of several models are shown in Figure 4.4, All the models but CMOD4

lie inside the ‘theoretical’ (target) cone. CMOD4 is symmetric: its functional form imposes

that it takes the same values for 0 and -0. The equation of the cross section plane in the

measurement space is oF), +091in = 20fe¢- Unlike the vertical section case, taking the log

of left and right members of this equation no longer gives a linear relationship between

OF Jog and of alo Therefore the cross section plane in linear space becomes a curved surface

in log space and vice versa. The cross sections in log space are performed along the plane

of equation: FF 1og + Fa,log = 27 rep although it is not really perpendicular to the cone axis

anymore.

4.4 Cone in target space

This section presents the most important tool in the process of developing and validating

a forward model. The forward model is a function with three outputs and three inputs.

One of the inputs (@) takes discrete values so it can be fixed. The forward model is then a

parameterised surface in o° 3D space with parameters (||u||, 7). These input parameters

can be shown as colors and/or lines on the surface of the cone. The 0° measurements

are plotted together with the cone. The associated values of ECMWF winds are not

represented (unlike the vertical section). Many customisations can be brought to the

program used to generate these plots (source code is in Appendix B.2). They actually

give numerous interesting representations (see for instance figures on pages 56 and 78).

Figure 4.5 shows the o° measurements alone in the target space for a given track.

The view is equivalent to a view ‘from top’ of the cone. One can easily distinguish the

two sheaths as their distance is fairly constant in the log space. This implies that the

output noise has a small amplitude (0.2 dB). The points at the bottom left in log space

correspond to low wind speeds (< 3 m/s), they do not appear in figures where the cones

48

CHAPTER 4. GRAPHICAL VALIDATION

MLP with 60 hidden units cMons

0°

- E
lo
!

~0.02 ~0.01 ‘01 002 0, (ote) 2 h-dive

wae MYON 100 hidden units, 1000 iterations, log space

0.09]

0.015}

01

}

0.005}

El
e?

)

0°,
-~

Elo
!

0.006

0.01

3

0.015]

002-001 O01 0.02 4 0, i (0) -o)) V2 (o)- of) 2 a a9

Figure 4.4: Cross section of four models for track 11. The average speed associated with
the points is close to 8 m/s. The MLP and NN-GMF are very similar. The MVDN is
plotted in log space, as is CMOD4 for comparison. CMOD4 best fits the data.

49

CHAPTER 4. GRAPHICAL VALIDATION

 5

20

-2

-30

"
Of 01204 FSO a ew ts

oF

(a) Linear space (b) Logarithmic space

Figure 4.5: Clouds of points of ° measurements for track 11 (9 ~ 34.9°). The points are

projected on the plane of, =0. About 30,000 points are represented here.

are represented. These clouds of points (one per track) are used in this study as test sets.

Although the training data was subsampled from the corresponding files, not more than

4% of the points were selected. So these test datasets can be considered as independent

from the training data.

In figures 4.6 and 4.7, the cones are displayed for speeds of 3-15 m/s (which corre-

sponds to the speed range of the winds used to calibrate CMOD4 and NN-GMF) and

18-26 m/s (extrapolation for CMOD4 and NN-GMF). The black lines represent speeds of

6, 9 and 12 m/s on the cone. The colour coding is defined according to wind direction:

red, yellow, green, purple represent 0, 90, 180 and 270° respectively. One quarter of the

cone was removed (0 € [135, 180] and # € (315, 360]) to enable viewing the points and the

inner sheath. These figures present “aerial views” of the cone which are the easiest to in-

terpret. However, much more stringent selections between similar models can be obtained

by comparing views “from top”, where the the sheaths of points are most separated, as in

Figure 4.5. For instance in Figure 5.1, one can still distinguish the two sheaths. Here is a

comparison of the four presented models:

50

CHAPTER 4. GRAPHICAL VALIDATION

CMOD4, azimuth = 28.6

nngmf, azimuth = 28.6

Figure 4.6: CMOD4 and NN-GMF, for track 9 (9 = 28.6).

51

CHAPTER 4. GRAPHICAL VALIDATION

mip60h1000, azimuth = 28.6

nn2emod40h1000, azimuth = 28.6

Figure 4.7: MLP with 60 hidden units and hybrid model, for track 9 (0 = 28.6).

52

CHAPTER 4. GRAPHICAL VALIDATION

¢ The shape of CMOD4 is too close to a cylinder shape: at low and high wind speeds,

the points lie far inside the surface. This had already been referred to in (Stoffelen

and Anderson, 1995), it is just made clear here. On the contrary, at intermediate

wind speeds, most of the points are outside of the surface. This may be due to a lack

of free parameters or a restrictive functional form. And of course, the fitting is poor

for high wind speeds because CMOD4 was not trained for these winds. CMOD-IFR2

exhibits very similar features (not shown). Also compare the position of the points

in Figure 5.1 with the position of CMOD4 surface: CMOD4 retrieved speed is biased

low at 10 m/s compared with ECMWF speed.

For NN-GMF the fitting is poor. It is likely that the number of hidden units in the

model is insufficient. The input noise was not taken into account.

e The MLP network with 60 hidden units catches the shape of the cone better, but its

high number of hidden units makes the results very uncertain at high wind speeds.

As the training data is sparse at high wind speeds, the model is overfitting.

The last cone represents the hybrid model. Although the complexity is almost as

high as the MLP above, the behaviour at high wind speeds is much better.

4.5 Conclusions

The graphical representations that are highlighted in this section are very helpful for the

comprehension of many of the issues raised in this work. The view of the cone in o?

space is the most important tool. It allows us to discard a number of models which do

not fit the data. At this stage, CMOD4 and CMOD-IFR2 are among the best models.

However, a model such as the MLP could be of interest. As it lies inside the theoretical

cone, an autonomous disambiguation! will never be possible as the measured a? will

always “project” onto the outer sheath of the model. But if the disambiguation method

is efficient, then the determination of the wind vector may be of reasonable accuracy.

All the neural network models suffer from three major flaws:

‘This term appeared in (Stoffelen and Anderson, 1997a): autonomous disambiguation is accomplished
when the wind vector with highest MLE is the right solution.

53

CHAPTER 4. GRAPHICAL VALIDATION

1. They are not symmetric (see cross-sections of the cone). This is what one would

naturally expect from the forward model because of the symmetry of the problem.

The hybrid neural network (Section 3.2) was developed to correct this. In retrospect,

it was found that maybe the forward model doesn’t have to be symmetric: models

where this is not a constraint seem to be in agreement about the asymmetry.

2. The neural networks give poor results at high wind speeds where the data is sparse

or non-existent. NN-GMF has only 5 hidden units and it already catches the shape

of the cone. This means there is room for reducing the complexity of the neural

networks. It should remedy the problem.

3. None of the neural networks gives outputs which fit the o° well. Reasons for this

are given in Chapter 5.

54

Chapter 5

Training accounting for input

noise

5.1 Evidence for input noise

Until now, the uncertainty in the inputs of the forward model has not been taken into

account. As we know the scatterometer measurements lie on a surface parameterised by

(||u|], 8) for a fixed incidence angle, then a sub-selection of measurements on the basis of

true (unknown) ((lz||, 0) should give a set of well gathered points. Figure 5.1 shows the

measurements in &° space for track 11 and for an associated ECMWF wind speed range

of 9-10 m/s. All the measurements of the file from which the points are sub-sampled are

also shown in Figure 4.5 (compare the scales of the two figures: almost the whole cone

could be drawn in Figure 5.1). As we can distinguish the inner from the outer sheath in

Figure 4.5, this confirms the fact that the noise in ¢° space is small (around 0.2 dB). In

Figure 5.1, we can see that the input noise in wind speed is responsible for a scatter of

the points of roughly 5 dB. The scatter due to uncertainty in direction seems smaller. In

any case, the input noise cannot be neglected with respect to the output noise, although

this working assumption can often be made in the fields of neural networks and non-linear

regression.

CHAPTER 5. TRAINING ACCOUNTING FOR INPUT NOISE

‘CMODS, incid = 94.9

nn2emod15nt3000, incid = 34.9

 mh 2-0 ae 6-14-12 “5 ae 7 eae ais

(a) Selection on wind speed (b) Selection on wind direction

Figure 5.1: The points on the left plot show the measurements in o° space for track 11.
They were selected for associated ECMWF wind speed range of 9 to 10 m/s. The surface
is given by CMOD4 for the same range of speeds: it gives an idea of the size of the area
where the points should lie in the absence of noise. For reference, the other lines represent
6 and 13 m/s on the cone according to CMOD4. Right plot: same thing but the selection
criterion is 9 € [—-10,+10°] and the model is nn2cmod (15 h.u., 3,000 iterations). Only
the edges of the surface are represented.

5.2 Effects of input noise on the results

Here are the reasons why the conventional neural network methods for model selection fail

to select the best models. The first method for model selection which was presented in

this document consisted of comparing the 7° measurements with computed ¢® values for

the (noisy) ECMWF wind vectors which label the measurements. This method leads to

bad conclusions. Indeed, we might expect a model to have RMS errors of around 0.2 dB.

In Figure 2.5 (page 26), we can see that the errors lie in the range 0 to 5 dB, i.e. these

errors are mostly due to input noise. All we can say about models which exhibit no bias

in this test is that they are good at modelling o° from noisy wind vectors, but this is not

what we want. For the same reason, using early stopping (this consists in stopping the

training of the neural network if the test error starts increasing (Bishop, 1995)) or making

any use of a validation error is not a valid method.

56

CHAPTER 5. TRAINING ACCOUNTING FOR INPUT NOISE

The positive bias at low 0° values! (= low wind speeds) comes from the cutoff in the test

data at 4 m/s (see speed distribution of the test file on page 21). The lowest values of 0°

actually refer to true wind speeds around 1 m/s. But such low wind speed values do not

appear in the ECMWF data we selected. So the corresponding low o° values (which may

be correct by extrapolating the model) do not appear in the computed values of o°, thus

giving rise to positive bias, By contrast, in the intermediate speed range, the errors due

to underestimated and overestimated ECMWF speeds cancel as the model was trained on

this noisy input data, so the bias is nil. Nevertheless, CMOD4 and CMOD-IFR2 exhibit

higher biases, which only means they are bad at predicting o° from noisy wind vectors.

See also section 6.1 for deeper analysis.

In the same way, the plots on page 44 show that the networks learnt the noisy wind

to o° transfer function. This transfer function is smoother than the true wind to 0?

function. In particular, as the o° dependency on wind speed is higher at low speed

than at high speed (on page 44, the points are less and less scattered with increasing

wind speed. Remember we are talking about noise along the 3" axis), this dependency

is underestimated so the neural network curves lie above the CMOD4 and CMOD-IFR2

curves at 4 m/s.

Let’s consider the results for the probabilistic model for P(a® | u,v). Here again, the

scatter in o° space which is modelled by Gaussian distributions comes from the effect of

input noise on the distribution of the outputs. So the radii of the ellipses are about 5 dB

along the cone generating line (wind speed uncertainty) and 1 dB perpendicularly along

the surface of the cone (wind direction uncertainty). These values reflect the input noise,

not the 0.2 dB antenna instrumental noise. Actually the noise in o° space is more likely

to be spherical.

In o° space, the computed 7° values always lie inside the theoretical surface on which

the true measurements lie. This phenomenon is due to input uncertainty as shown in

Figure 5.2. Indeed the surface is convex both along @ and ||u/|-so the effects accumulate.

Moreover, for a fixed angle, the dependency of &° on ||w/| is not linear so a model trained

with noisy inputs will be biased, even if the fitting seems correct.

‘Figure 2.5 shows the residuals for all tracks together, but computing the residuals for each track shows
that o° is biased high at low wind speeds for each track.

57

CHAPTER 5. TRAINING ACCOUNTING FOR INPUT NOISE

Real value

Input,
uncertainty

Figure 5.2: This sketch shows the effects of input noise on the prediction of o° by the

forward model. Even a zero mean input noise will result in an output bias. This sketch
can be considered as a cut along the cone as well as a cut across the cone as both speed
and direction uncertainty will lead the surface defined by the model to lie inside the
theoretical cone. Also note that the effect of wind direction uncertainty is doubled as the

surface wraps twice.

5.3. Bayesian learning of neural networks

This section and the next one are mostly taken from a draft report by Dan Cornford,

which in turn borrowed heavily from the ideas in a recent paper by Andy Wright.

Until now, we have considered a regression problem without input noise. If we consider

the general regression problem then we have noisy inputs z, true inputs x, and noisy targets

t. The noisy targets are related to the true inputs by:

t=y(z;w) +e (5.1)

where y(x;w) represents the true transfer function (here written as a neural network

depending on weight vector w) and ¢ is the noise on the target, which is assumed Gaussian

and independently and identically distributed, with zero mean and variance o?. This is

what we want to learn, however we can only observe our noisy inputs, z, and thus when

training the network we will have to account for this.

Following Bishop (1995) we will first examine Bayesian learning in neural networks

where the inputs are assumed noise free. We shall consider a very general solution based

on sampling from the appropriate posterior distribution using Markov chain Monte Carlo

(MCMC) methods (Neal, 1996), so that we can use the results in the following sections.

58

CHAPTER 5. TRAINING ACCOUNTING FOR INPUT NOISE

The problem we want to solve is the determination of P(t* | x*,D) where D =

{tn,n},n = 1,...,N is the training dataset, x* is a new (unseen) input and ¢* is the

corresponding (unseen) output. With a neural network model the dependency of the target

on the input is expressed through the weight vector w rather than the training set D. We

can write this as:

Pt a")D) = I P(t* | x*,w)P(w|D) dw (5.2)
w

Now P(t* | a*,w) can be expressed as:

Pe | ate) =
aro

xp[PE ao #)) (5.3)
1

J2no?

assuming Gaussian errors on the target variable. We can rewrite P(w|D) using Bayes

theorem:

P(D | w)P(w)
Porat oa

HESS)
« (11 P(tn| on) P(w)

P(w|D) =

Now we can write:

1 DML (ven w) = ta)?
P(D|w) = U P(tn | tn, w) = Gare a (5.5)

Now the only unspecified component in the model is the prior over weights P(w). Here

we will not choose the usual standard weight decay prior given by:

 1 Dei (wi)? .
P(w) = manne) (5.6)

59

CHAPTER 5. TRAINING ACCOUNTING FOR INPUT NOISE

where W gives the total number of weights in the network. Instead we will simply use

P(w) =1 (ow

a

which means we don’t use any regularization. This will be justified in the following.

Thus we now have the required distributions so that we can compute:

P(t" |a*,D) « [P(t" |x*,w) [| Pl(tn | tn, w)P(w) dw (5.8)
2 n

and thus we can sample from the posterior predictive distribution under very general

conditions. In the above analysis we have considered a Gaussian error model for the

target but if we use MCMC to sample from the posterior, then we can have very general

noise and weight prior models. We can also calculate analytical solutions under simplifying

assumptions using the Laplace approximation, but this is not treated here.

In practice we need to construct a Markov chain in {w}. This is the training procedure

of the neural network, it gives a set of vectors w sampled from P(w|D). For comparison,

a frequentist approach only focuses on finding the most probable w from that posterior

distribution. Using this set of vectors {w}, we can compute the integral in Equation 5.8

using Monte Carlo integration. That is, we forward propagate each new input «* through

all the networks corresponding to the {w} to obtain samples of targets ¢* drawn from

P(t* | x*,D). In order to obtain samples of t* which are representative of P(t* | x*, D),

we need to ensure that the {w} are sampled from the stationary distribution, and indepen-

dent. With this approach, we can also compute error bars around t*. This is not possible

with a frequentist approach as only one value of t* is computed. This value corresponds

to. B[t* |2*,.D').

5.4 Bayesian learning of neural networks with noisy inputs

This section considers the case where the inputs are noisy, that is:

zZ=x2+C (5.9)

60

CHAPTER 5. TRAINING ACCOUNTING FOR INPUT NOISE

where we will assume that the input noise, ¢, is independently and identically distributed

Gaussian with zero mean and variance given by U. Thus we have a generative input noise

model:

Plel@)= Goa {73 @—2 et (w-2)} (5.10)

We are now interested in the predictive distribution:

P(E |a*,D!) (5.11)

that is the predictive distribution of an unseen target with a new noise free input, whereas

D' = {tn, zn} is a noisy dataset. This is the model we would use to evaluate P(o?|uj, vi, 0:)

(as presented in Section 1.4). We consider the true inputs x, to be latent (that is unob-

served) variables, while we observe the noisy dataset. Thus during training of the network

we must account for this input noise. We write:

P(t |2*,D') « [P(t |2*,w) [[] Plea. | D') dizndw (5.12)
f: one

where this time we have to integrate out the dependency on the unobserved (latent)

variables xn. If we again apply Bayes theorem then we can obtain:

P(tn,w | D') = P(2n,w | tn; 2n) (5.13)

— P(tn; 2n | tn, w)P(@n, w)
P(tn, Zn)

— Pltn | en, w)P(zn | &n)P(@n)P(w)
i P(tn; 2n)

x P(tn | @n,w)P(2n | tn) P(en)P(w)

where we use the fact that conditionally on zp:

P(tn;2n | @n,w) = P(tn | tn, w)P(2n | en) (5-14)

61

CHAPTER 5. TRAINING ACCOUNTING FOR INPUT NOISE

and the dependency on the weights in P(zn|an,w) has been removed. It can also be seen

that we now require P(x), an unconditional (true) input density model. The distribution

of the samples in the noisy dataset is known, so we can specify P(zn). Then P(an) can

be found by making use of Equation 5.9. We can now write:

P(t*|x*,D') « is PE | a")

2 (5.15)

 [[lta | en, w)PlEn | tn) P(@n)P(w) dendw
non

Thus it can be seen that during sampling the Markov chain we will need to run over

{xn,w}. Fortunately, we don’t need to store the samples of {,}: instead we can store

for each sample of w the corresponding value of

[U1 Pt | 20,20) Plen | en) Pleen) Pee) den (5.16)
non

However, the size of the dataset should be reduced as much as possible in order to keep

the Markov chain at a reasonable size.

5.5 Practical implementation

5.5.1 Application to the wind retrieval problem

As the nn2cmod model had the best features so far, this model was chosen to be trained

with Bayesian learning. The first thing to do is to relate the notation above to the notation

of the wind retrieval problem, and give a context to the terms in equation 5.16.

The targets tn are the triplets of ¢° measurements and n is running over the number

of patterns in the dataset. The inputs x, are the wind vectors components (u,v) and

the incidence angle 9. These three inputs play very different roles: @ is not subject to

any uncertainty, it is just a fixed parameter. Therefore it is not sampled in the Markov

Chain. However, it is necessary to keep track of this parameter as the noisy inputs and

the corresponding inputs in the Markov chain must be labelled with a common value for 0.

To keep a reasonably sized Markov chain, the size of the training set is decreased to 1,000

patterns. The number of hidden units of the nn2cmod model is set to 10. This makes

62

CHAPTER 5. TRAINING ACCOUNTING FOR INPUT NOISE

2+1,000+74 = 2,074 parameters in the Markov chain, which is still a very large number.

5.5.2 Description of the energies in the Markov chain

As the distributions in Equation 5.16 are Gaussian, it is more convenient and more efficient

to minimise the energy associated with the probabilities rather than to maximise the

probabilities themselves. Four energies are defined as follows:

E, =-In([] P(tn | an, w)) (5.17)

E,=—- In([] Plen len)

Es =-In([] P(2n))

Es = —In(P(w))

The total energy of the system is H = E, + Ey + E3 + Ey. We now switch to the wind

notations. (umc,vmc) are the samples in the Markov chain. (u,v) are the corresponding

values in the training set.

£, =-In (Th, P(e? | umc, vc, 9, w)) is the error of the model, calculated for the given

set of satellite measurements and for (umc,umc) which will hopefully tend to be a noise

free set of wind components during training.

E, = —In([T], P(umc, mc | u,v)) is the error due to the wind vectors in the Markov

chain going away from their associated ECMWF winds.

E3 = —In(P(ume, vmc)) only plays a small role here. It associates some error to the

winds in the Markov chain which are not likely to be derived from the dataset.

E, = —In(P(w)) = 0 We don’t want E, to play any role. Three factors are encouraging

us not to use weight decay regularization here. First, we know our forward model is al-

ready too smooth. Secondly, the outputs of the MLP in the nn2cmod model which will

be trained are not normalised. Thus a centred Gaussian prior over all the weights is not

a very good assumption”. Third, it is faster to compute and simpler to implement.

? more complicated weight prior could be used, but at this stage, it is not worth investigating it.

63

CHAPTER 5. TRAINING ACCOUNTING FOR INPUT NOISE

Mathematical expressions

The expression of the error of the model E; has already been given in Section 3.2. It is

recalled here:

éL
A,= Dar Ye — 084) (5.18) O50

Following (Stoffelen and Anderson, 1997b), the error E2 of the wind vectors was computed

in (u,v) space, with Gaussian error distributions. If we denote by oy, the common

standard deviation of the errors of ECMWF winds in (u,v) components, we can write:

By = > [(u- ume)? + (v —oc)"] (5.19)
UU oy

u,v Was set to 2.0 m/s which is higher than the recommended value of 1.5 m/s found

in (Stoffelen and Anderson, 1997b). From Figure 5.1, it seems 1.5 is an underestimate.

Anyway, this parameter is difficult to evaluate.

P3

ltull

4 28 m/s

Figure 5.3: Probability distribution P; = P(|lu||). It is uniform between 4 and 28 m/s

which are the cutoff values in the training set. Beyond these values, the probability
decreases exponentially.

£3 was defined by parts: as the selection of the training set was performed in order

to have a roughly uniform wind direction distribution and a set of speeds between 4 and

28 m/s, E3 was taken to be a function of speed only. The form of the associated proba-

bility P(a@n) = P(||u||) is shown in Figure 5.3. As stated above, this error was found to

64

CHAPTER 5. TRAINING ACCOUNTING FOR INPUT NOISE

play a very small role as the errors E, and E2 constrain the speed to be in the range of

speeds that are present in the dataset anyway.

Choice for a starting point

There are 2074 parameters in the Markov chain. This means the algorithm will perform a

random walk in a space of dimension 2074, looking for a minimum of the energy function.

Choosing a good starting point is fundamental if we do not want to face months of com-

putational time. For the vector of weights, we have a very good candidate for a starting

point, that is the set of weights of the network which was trained without accounting for

the noise. For the wind vectors, a natural solution is to start from the (u,v) vectors in the

dataset. This option was adopted at first but it was rapidly replaced by the (u,v) values

given by an inverse model of wind retrieval. This model was being developed by David

Evans at the NCRG. Figure 5.4 gives a good idea of how far these values are from NWP

winds. It is to be noted that the inverse model was trained with winds up to 24 m/s only.

Plots such as Figure 5.4 showed that NWP winds even above 23 m/s were systematically

pulled toward lower speeds (this was confirmed by comparing the different initial errors

of the Markov chain), hence the choice for a threshold of 23 m/s. No particular feature

appears in Figure 5.4 (no speed or direction error dependency, no clusters in the outputs),

which is encouraging for the quality of the starting point.

Training

Once the noise levels in the input and output spaces have been chosen, two parameters

have to be tuned in the Metropolis algorithm. These are the two step sizes in the Markov

chain. They have to be different for the proposals in (u,v) space on the one hand and

in w space on the other hand. By comparing their ranges of values, the ratio of the two

step sizes was estimated to be around 10. But this ratio should also reflect how confident

we are about the weights and the wind vectors: the starting point in the weight space is

known to be good, so we want the (u,v) components to move faster than the weights at

first.

Actually, after a few trials, it was found that these step sizes were very difficult to

65

CHAPTER 5. TRAINING ACCOUNTING FOR INPUT NOISE

 3 =
se) -20 -10 0 10 20 30

Figure 5.4: Initialisation of (u,v) components for Bayesian learning. The crosses represent
NWP winds, lines link them to the initial state for the Markov chain. Circles represent

speeds of 4, 23 and 28 m/s. All incidence angles are present. Colours are for ease of
reading only.

choose. Allowing the weights to move always made the error E; go uphill! Indeed, the

moves were accepted as E2 was going downhill much faster. Graphically, the fit to the

cone was getting worse and worse very quickly. So the step size in w was set to almost

zero most of the time during these trials.

A stationary distribution of the parameters was never reached: after several tens of hours

of running during which the the step sizes were changed, the algorithm was still in the burn-

in stage. That is to say it was just performing a very slow descent toward the minimum.

Moreover, it is to be noted that if large moves had been allowed for (umc,vmc), then there

would have been a risk of falling into one of the numerous local minima associated with

each ambiguous solution. A procedure was implemented in order to ensure the winds were

not approaching the opposite direction from ECMWF values, but no such winds were

66

CHAPTER 5. TRAINING ACCOUNTING FOR INPUT NOISE

detected.

In the view of the difficulties above and fearing that only 1,000 points would not be

enough to get proper results, this approach was abandoned. Instead, a gradient descent

was performed. This technique does not allow for modelling probabilistic distributions in

o° space as Bayesian learning does, but this is not really feasible in such a high dimension.

Even in the event of finding a stationary distribution using Bayesian learning, making the

samples independent would require a very big computational effort.

5.6 Gradient based optimisation

In the previous section, a Markov chain was found to be incapable of approaching a

minimum of the error function in a very high dimensional space.

The derivatives of the error functions on which we were sampling were computed in

order to perform a non-linear optimisation (using the SCG algorithm). The notation for

£, Ey and E3 is the same as above.

As the inputs to the nn2cmod model were actually (||w/||, 7), these parameters were

chosen as inputs rather than (u,v). So the parameters to optimise were (||u|], 0, w).

The following derivatives were calculated:

OE; OE; OF; 3° Wal’? de ia (5.20)

Their expressions are given in Appendix C.

Using these derivatives, the nn2cmod model with 10 hidden units was trained again

using the SCG algorithm. After a hundred iterations only, the fitting of the cone had

drastically improved for most incidence angles; the cone was obviously inflating. Unfor-

tunately, it was still far from being perfect and the progression was slow in the following

iterations. In fact, the weights had quickly adjusted to fit the new data (from David

Evans’ inverse model) but the (||w||, 0) variables were moving very slowly. Plots such

as Figure 5.4 showed that the optimised directions almost didn’t change compared with

initial values. This problem was rectified by normalising the variables ? and ||u|| (w was

already in the range [-1, 1]). The derivatives of the errors were updated as necessary. The

67

ASTON UNIVERSITY
LIBRARY & INFORMATION S

CHAPTER 5. TRAINING ACCOUNTING FOR INPUT NOISE

75

had
 a

2

Err
or

(ar
bit

rar
y

uni
ts)

oe

 a

0 1000 2000 3000 4000 5000 6000
Iterations

Figure 5.5: Learning curve for nn2cmod with 20 hidden units, trained using the SCG

algorithm. At 2,000 iterations, the parameters to optimise were normalised (see text).

effect of this normalisation is shown in Figure 5.5.

After a few thousand training iterations, the fitting in o° space is very good (Figure

5.6), except for low wind speeds. This is certainly due to data selection (Section 6.1).

With 10 hidden units only for the MLP in nn2cmod, straight lines appear in some areas of

the generating lines of the cone in o° space (not shown). A complexity of 20 hidden units

seems too high as the behaviour of the surface for high wind speeds changes too quickly

as soon as the data is sparser. 15 hidden units seems to be a reasonable compromise.

The variance of the errors in ECMWF winds is another important parameter. It was

set to 2 m/s. Smaller values could be tried as long as the fitting in 7° space is good. They

would diminish some risk of fitting well while having biased retrieved winds. In the case

of a very large error level specification, the fitting could be excellent but the relationship

between (umc,vmc) and (u,v) would be lost, thus leading to poor retrieved winds. These

effects are difficult to detect and no other values were investigated for the input noise level

specification.

68

CHAPTER 5. TRAINING ACCOUNTING FOR INPUT NOISE

nngemod15h1000, incid = 24.9 nngemed15nf3000, incid = 94.8

 24! -
28-26-24 22-20 4 16-14 -12 -10 -8 Bs 26-24-22 -20 a 6-14 -12 -10 8

Figure 5.6: nn2cmod trained accounting (right plot) / not accounting (left plot) for input
noise. View “from top” of the cone, track 11.

5.7 Conclusions

In this chapter, it was proved that the uncertainty in the ECMWF wind vectors cannot

be neglected. For the forward model, this input noise makes the conventional use of test

and validation errors inappropriate to validate the various neural networks. Models with

similar RMS errors can be very different.

During the training procedure, the input noise has an obvious effect; in target space,

the surface defined by the model always lies inside the target cone. Secondly, the input

noise will lead to biased retrieved speeds as the dependency of o° on speed is not linear.

A Bayesian framework is adopted to account for input noise during the training pro-

cedure of the neural network. Bayesian learning can determine input and output noise

levels. It can also give error bars for the outputs. Unfortunately, this technique is too

computationally intensive, it has to be abandoned.

Following this observation, a gradient descent is used to find the Maximum A Posteriori

of the posterior distribution of the parameters of the Markov chain. The computational

effort is now reasonable. This technique leads to a model which fits the data well in target

space, but it may still be suboptimal as the input and output noise levels are determined

69

CHAPTER 5. TRAINING ACCOUNTING FOR INPUT NOISE

empirically. Anyway the obtained model is good enough so we can now consider its

inversion. This is addressed in the next chapter.

Using the Maximum A Posteriori of the posterior distribution of the parameters of the

Markov chain as a starting point for this Markov chain, it may be possible to reduce the

computational effort of Bayesian learning. This is not investigated here.

70

Chapter 6

Validation against winds and

improvements

In Chapter 5 the fitting of the surface of nn2cmod in o® space was sufficiently improved

enabling a validation against winds for this model. A good fitting does not necessarily

mean a good quality of wind retrieval.

6.1 Another effect of input uncertainty

It has already been shown that using noisy inputs in the training procedure affects the

fitting in o° space; it can also lead to biased retrieved speeds. There is another effect of

input noise; it plays a role during the data selection. It has a strong impact on the model

which is trained on that data, even if it is trained accounting for input noise.

By comparing plots of the 3D cone in o° space for some nn2cmod models (with 10, 15,

20 hidden units, trained accounting for noise) on the one hand with the cone for CMOD4

on the other hand, one can infer that the predictions of wind speeds at a low wind speed

range are much higher for nn2cmod models than for CMOD4. This is revealed by the

surface which extends much further toward low wind speeds for nn2cmod. Although it is

recognised in the literature (Janssen et al., 1998) that CMOD4 predictions are too low for

low wind speeds, the difference is surprisingly large.

So what is happening? The reason is made fairly clear in Figure 6.1. The dataset we

71

CHAPTER 6. VALIDATION AGAINST WINDS AND IMPROVEMENTS

are using was filtered on the basis of ECMWF noisy wind speeds. All the ¢° measurements

labelled with speeds under 4 m/s were discarded from the dataset. This was originally

intended to improve wind retrieval for winds above 4 m/s as the backscatter process simply

doesn’t work (measurements are very noisy) at speeds below this threshold. Actually this

selection is very arbitrary. In the resulting dataset, ¢° measurements corresponding to

true low wind speeds are still present, but all of them are labelled by ECMWF with

overestimated speeds above 4 m/s. Thus the errors in the dataset are biased so the

assumption of a centred Gaussian noise distribution no longer holds. In Figure 6.1, a

Gaussian! noise with zero mean and standard deviation 1.5 was added to a set of uniformly

distributed ‘true’ speed values between 0 and 14 m/s. This noise results in a bias in the

selected dataset for winds up to 7 m/s. Moreover, the same effect will arise from a cutoff

at high wind speeds, and any selection criterion applied to the data according to ECMWF

wind speeds will introduce biased errors. Such methods appear in several articles in the

_ literature.

Any model which is trained on this data will learn the biased regression. This is revealed

by the 3D cone as explained above. It is also revealed by Figure 5.4 for the inverse model

by David Evans which was trained on similar data. Figure 5.4 shows that all predicted

values lie above 4 m/s although it would be expected that some of them should lie below.

This also explains (to some extent) why David Evans had to use several superimposing

Gaussian kernels to model the error distributions as they are skewed at wind speeds just

above 4 m/s.

The following conclusions can be drawn:

¢ One must not subsample the data on the basis of ECMWF speed. Using a threshold

as above has the worst repercussion on error bias. Instead, the natural distribution

of wind speeds could be kept. This constraint rehabilitates the idea of using a cost

function (Cornford and Nabney, 1998a) if we want to give greater importance to the

errors that occur for (rare) high wind speeds. A second alternative is to select the

samples on the basis of a classification in 0° space by geometrical means. This is a

safe method as the density of the inputs doesn’t affect the output noise distribution.

‘This noise is not supposed to be Gaussian and this is particularly wrong with decreasing wind speed,
but the approximation is good enough for this artificial problem.

72

CHAPTER 6. VALIDATION AGAINST WINDS AND IMPROVEMENTS

no
is
y

wi
nd

sp

ee
d

0 2 4 6 8 10 12 14
True wind speed

Figure 6.1: The effect of input noise during data selection. Selecting data with a threshold
of 4 m/s on the basis of noisy wind vectors introduces a positive bias (up to 5 m/s) on
winds between 0 and 8 m/s. This can be read on this plot by comparing the height of
the dashed line and the solid line (vertical moving average of the selected points). The

assumption of a centred Gaussian noise distribution in (u,v) components no longer holds.

The o° points can be classified using planes of equation of + of = 2o7,¢ as speed

is roughly constant in these planes. The values for of, must be defined at regular

intervals of speed for each track. There are two advantages for this geometrical

method. First, the error bias discussed above will be removed. Secondly, it is possible

not to select points in the area in o° space where the spreading of the points is large

(by graphical means). Thus the model itself will determine the corresponding speed

threshold. It can be noted that many of the points selected using a (noisy) speed

threshold of 4 m/s actually lie in areas of 7° space where the spreading is large (see

figure 4.5(b)). It is not worth training the model with these points.

As far as the work presented in this document is concerned, our position about re-

gularization may need to be revised. Indeed, during training, nn2cmod fits better

and better to only a few points which correspond to low wind speeds and which

73

CHAPTER 6. VALIDATION AGAINST WINDS AND IMPROVEMENTS

are labelled with systematically overestimated ECMWF wind speeds. Weight decay

may avoid this phenomenon in the absence of proper data. Indeed, the base of the

cone surface becomes very flat as a wide range of target points are labelled with an

ECMWF speed just above 4 m/s. Thus the o°-to-speed mapping is very steep in

that region (see the ‘stack of funnels’ for nn2cmod, page 12). In a neural network,

some of the weights need to move toward large values to obtain a very steep tanh

function. So weight decay may prevent the mapping from being very steep. Of

course, the use of well selected data is the best solution. After a few thousand more

iterations of the SCG algorithm, the nn2cmod model with 15 hidden units over-fits

the data at high wind speeds anyway (this is why the reference nn2cmod model in

this document is not trained for more than 3,000 iterations). So weight decay is

useful, even with well selected data.

The other conclusion about this work is that P(uac, vac) (it is shown in Figure

5.3) must be badly defined as it discourages ‘optimised’ winds to go down to wind

speeds below 4 m/s. With a well selected dataset, this prior should be used to

prevent optimised winds to go down to negative speeds. Actually, this prior should

represent the natural atmosphere speed distribution. This will also correct bias in

ECMWF wind speeds. ECMWF wind speeds have to be biased? as the natural

atmosphere speed distribution is not uniform. This can be explained with this ex-

ample. Let’s consider a ¢° measurement which is labelled with an ECMWF wind

speed of 25 m/s. The true speed is more likely to be overestimated than underes-

timated because winds just below 25 m/s are more common than winds just above

25 m/s. If P(umc, vac) is only speed dependent and it represents the atmosphere

distribution, all optimised winds will be naturally ‘pulled’ toward the most common

wind speed in the atmosphere (around 10 m/s), thus cancelling ECMWF speed bias.

?This is true if errors are Gaussian in wind components.

74

CHAPTER 6. VALIDATION AGAINST WINDS AND IMPROVEMENTS

6.2 Model inversion

6.2.1 Different techniques

The inversions of CMOD4 and CMOD-IFR2 are performed in linear space. The inversion

is obtained by minimising a maximum likelihood estimator (MLE) for varying speed and

direction of the simulated data (Stoffelen and Anderson, 1997a):

3

MLE=)> (ee (6.1)
i=1 m ot

where i runs over the 3 beams, s stands for simulated data (from the model) and o stands

for observed data. Kp, is a dimensionless constant determined by instrumental noise

(around 0.05). To determine the values of Kp,;, Stoffelen and Anderson (1997a) had to

make the assumption that CMOD4 fits the data well in o° space. In fact the values of Kp,;

they find are mostly dependent on the varying distance between the surface defined by

CMOD4 and the target surface in @° space. So their values must not be reused. Looking

at plots such as Figure 4.5(b), one can infer that the noise is roughly constant in log space,

so normalisation by o° noise level is useless in that space. Thus, the method proposed

here is performed in logarithmic space, and it does not take any a? noise level difference

between the different antennae. This procedure is a simple minimisation of (squared)

distances in o° log space:

d= llo$ —o8\)? (6.2)

= (0f0 — oF,2)° + (Fmjo — Fm,s)” + (Gao — Fa,s)” (6.3)

One single big lookup table is used where the simulated o° values are computed at regular

intervals of direction, and at different speeds. In order to make the grid of points more

regular and square on the cone, the increment in speed is adjusted every 0.5 m/s so the

increment in ||o®|| is equal along the cone. The (constant) increment in direction was

found empirically by making the grid look as square as possible on a plot in 7° space.

Instead of finding several minima and then removing ambiguity, a subsample of the lookup

table was taken for J; = [Ygcmwr — 90, Vecmwr + 90], thus systematically choosing the

75

CHAPTER 6. VALIDATION AGAINST WINDS AND IMPROVEMENTS

closest solution to ECMWF background wind.

This method gave very poor results actually. As shown in Figure 6.2, the distribu-

 120) a

100} 109}

Cy) 80}

2 2
é é
2 69 2 60
é é

0 90 180 270 360 0 90
Wind direction

(a) (b)

Figure 6.2: Probability density functions of ECMWF wind direction (a) and retrieved
wind direction after inversion of nn2cmod (b) for track 11.

tion of the wind directions is very different for the ECMWF winds and for the retrieved

winds, with marked peaks and troughs approximately 90° apart. An explanation for

this phenomenon is the elliptic shape of the cross-section of the cone in o° space (see

Figure 6.3(c)). Stoffelen and Anderson (1997a) faced the same problem and solved it by

using a transformed space where the cross section was closer to a circle. Using the same

method, inverted wind speeds were plotted against ECMWF wind speeds. They were in

good agreement (not shown). However, both the model and the data set were biased in

the same way because of the method used for data selection. Therefore such a plot cannot

reveal this bias.

A complete description of the inversion method for CMOD-IFR2 is given in (Maroni et

al., 1995). It may be reusable for any other model developed in this thesis. The principle

is recalled here for convenience. The inversion is performed in three steps:

1. For each direction between 0° and 355° with a 5° step, the speed for which MLE

is minimum is found using the Newton-Raphson method.

76

CHAPTER 6. VALIDATION AGAINST WINDS AND IMPROVEMENTS

2. Local minima in direction are then found using the 72 MLE values. The model is

scanned again around these minima with a 1° precision.

3. Ambiguity between the several selected aliases is removed.

It is interesting to note that an inversion method can be assessed by propagating a grid

of winds through a model and adding Gaussian noise to the o° triplets obtained. These

triplets can be inverted. Compared to the initial winds, the quality of the retrieved winds

will mostly depend on the inversion method, not on the model.

6.2.2 Potential accuracy of wind retrieval

It has been suggested in various articles that the impact of an instrumental noise of 0.2 dB

in the satellite measurements is 0.5 m/s and 20° on the associated wind vectors on average.

Actually, these two values depend on the track number and on the wind vector. Figures

6.4 and 6.5 show to what extent a variation of 0.2 dB can affect the retrieved winds using

nn2cmod and CMOD4 respectively.

These plots were obtained using a model but no actual data. First, some reference values of

o° are computed at regular intervals of speed, for all tracks and for a given wind direction.

Then the direction is altered by a small value (10°) or the speed is altered by a small value

(0.5 m/s). The corresponding 7° are recomputed. The distance in o° space between the

reference value and the new value is computed. The wind (or direction) which would have

given rise to a change of 0.2 dB is obtained using linear interpolation.

Figures 6.4 and 6.5 tell us about the effect of instrument noise on the accuracy we can

can expect from an algorithm of wind vector retrieval. This depends on the model being

considered. Comments below mainly rely on Figure 6.4 rather than Figure 6.5.

The best accuracy is always obtained for track 19, it decreases with the track number. For

track 1, the accuracy is very poor. There are two reasons for that. First the range of o°

values is smaller than for the other tracks (see the ‘stack of funnels’ page 12). Second, the

spread of the points seems higher than 0.2 dB; one cannot easily distinguish the surface for

o° measurements in o° space for that track. Thus, results may be improved by separating

track 1 from the other tracks as its characteristics are different from them. Maybe tracks

2 and 3 should be treated independently as well. If instrumental noise is assumed to be

at

CHAPTER 6. VALIDATION AGAINST WINDS AND IMPROVEMENTS

(CMODS, incid = 17.9, inngemedtSnfS000, incid = 17.9

 T T - t T T T T T 1

“15 10 3 5 10 5 0 15 10 4 -B 10 5 0
" % %

(a) The fitting of CMOD4 is poor for track 1. (b) nn2cmod fits better than CMOD4 at high
wind speeds

‘mn2emodSnt3000, incid = 17.9

(c) View through the cone (nn2cmod, track (d) Same as above, viewed from top. Note
11, axes are square) how asymmetric the distribution of the

points is.

Figure 6.3: Different views in o° log space. The surfaces are drawn for 4-24 m/s, the lines

represent constant speeds of 8, 12, 16, 20 m/s. The points are labelled with ECMWF

speeds up to 25 m/s.

78

CHAPTER 6. VALIDATION AGAINST WINDS AND IMPROVEMENTS

constant across tracks, this implies other geophysical parameters may be playing a role

in track 1. Finally, the measurements are definitely not symmetric for symmetric wind

directions for that track.

As far as the dependency of the error on wind vectors is concerned, the direction

retrieval is best at intermediate speeds (the radius of the cone is the largest). The errors

are higher at 0 and 90° than at 45 or 135°: this is due to the elliptic shape of the section

of the cone. In most cases the direction error is around 5-10°, not 20°. Finally, the

uncertainty on speed is highest at high wind speeds as o° varies slowly in these conditions

(on the cone, the lines of constant speed are tight).

6.3 Possible means of improvement

It was shown that the measurements are not symmetric for track 1. Several models where

symmetry is not constrained by a functional form agree in some asymmetry for all tracks

(this asymmetry can be noticed on Figure 4.5(b)). So perhaps a simple MLP network

trained as in Chapter 5 (i.e. accounting for input noise) would learn the asymmetry and

improve the results. It is not clear whether a separate model should be used for track 1

alone. In this case it would ideally take other geophysical parameters into account.

What are the ideal input parameters for the model? The dependency on the incidence

angle is high at low incidence angles so sin(9) is a better input than cos(@). Using the

wind Cartesian components is a very bad choice. This alone may explain the difference

between the MLP and nn2cmod at high wind speeds (see cones in o° space, page 52).

The wind vector could be represented by its speed and cos(#), cos(2¥), sin(?) and maybe

other harmonics.

If the asymmetry is due to the satellite movement, then the comportment of the three

antennae will not be the same, i.e. the use of a different model for each antenna will be

necessary.

The Bayesian framework which was used to train nn2cmod didn’t allow for the deter-

mination of hyper-parameters. The input noise level in particular is not well known. A

proper Bayesian learning method could determine it.

Following the advice in (Stoffelen and Anderson, 1997b), potential spatial correlation

79

CHAPTER 6.

dir
 e

rro
r

dir
 e

rro
r

direction is 0°, model is nn2cmodt Snf3000

wind speed if track

(a) Direction uncertainty for upwind

direction is 45°, model is nncmod1 3000

wind speed ‘ ak

(c) Direction uncertainty for crosswind

VALIDATION AGAINST WINDS AND IMPROVEMENTS

sp
ee
d

err
or

wind speed track

(b) Speed uncertainty for upwind

iris 45°, model is nn2emod4Snf3000
wind speed ek

(d) Speed uncertainty for crosswind

Figure 6.4: These plots show the difference in speed and direction which arise when we
perform a movement of 0.2 dB (typical noise) in o° space along the surface defined by
nn2cmod (30 h.u., 3,000 iterations). These plots are not reliable for speeds below 6-8 m/s.

80

CHAPTER 6. VALIDATION AGAINST WINDS AND IMPROVEMENTS

direction is 0°, model is CMOD4 iris 0°, model is CMOD4

dir
 e

rro
r

sp
ee

d
err

or

wind speed oe tack wind speed track

a) Direction uncertainty for upwind 'b) Speed uncertainty for upwind P y P'

direction is 45°, model is CMOD4 iris 48°, model is CMOD4

 di
err

or

id soa track wind speed

(c) Direction uncertainty for crosswind (d) Speed uncertainty for crosswind

Figure 6.5: As on the previous page, but this is obtained using CMOD4. The a? depen-

dency on speed is almost linear, which is wrong. The structure of CMOD4 is certainly

not complex enough to catch the mapping accurately.

81

CHAPTER 6. VALIDATION AGAINST WINDS AND IMPROVEMENTS

should be removed by imposing chosen cells to be more than 300 km away. In the current

data, some of the ° triplets are aligned in 7 space for high wind speeds, this can be

seen on plots such as Figure 4.5 (there are aligned points at the top right of the plot). It

means these measurements are not independent.

6.4 Conclusions

It was shown in this chapter how carefully the data selection should be done. Data must

not be selected on the basis of noisy ECMWF wind speeds. There are two drawbacks in

this method. The errors in the data are no longer centred so the model will learn a biased

regression. And the selection of the 7° measurements is arbitrary so there are still a lot of

points which correspond to true very low wind speeds; we don’t want to train our model

on this data. Geometrical considerations in o° space allow us to select input density

accurately and without introducing any bias in the data. The noisy speed distribution in

the dataset can still be checked a posteriori. If the ECMWF winds errors are Gaussian in

wind components, then the speed has to be biased but the training of the neural network

can account for this bias.

An inversion method is proposed for the wind retrieval using a forward model. The

quality of the inversion method is as important as the quality of the model itself. Although

existing models are inverted in linear space, it is suggested that an inversion in logarithmic

space will give better results. However the proposed method is poor because of the elliptic

shape of the section of the surface in target space; using a transformed logarithmic space

should improve the wind direction retrieval.

To improve the quality of the forward model, the constraint of symmetry with respect

to opposite wind direction angles must be removed. In the same way, it is likely that a

different model should be used for each antenna. Finally, a simple MLP network is still a

very good candidate for the forward model if it is trained accounting for input noise and

if the input parameters are chosen carefully.

Chapter 7

Conclusions

In this document, an algorithm of wind retrieval is proposed. It makes use of a forward

model which is a mapping from the wind vectors to the satellite measurements. This

model is built empirically with the help of neural networks, using wind vectors from a

Numerical Weather Prediction model. These wind vectors are noisy. The noise comes

from the imperfection of the numerical model. More uncertainty is added to these wind

vectors as they need to be interpolated in time and in space so as to match the cells on

the footprint of the satellite. We choose to describe these errors as Gaussian in wind

components. The magnitude of the noise in target space is of order 0.2 dB.

It is shown that traditional training methods for these neural networks give suboptimal

solutions because of the large uncertainty in the input wind vectors. Usual methods for

testing the quality of the models are also very fniciesdine in the presence of noisy inputs. A

probabilistic model is built ignoring input noise, so the conditional distribution it provides

is not correct. Actually, it only describes the effects of input noise in target space.

Some graphical representations proposed by Stoffelen and Anderson (1997a) (vertical

and cross sections of the cone) are implemented. Two features of the models using neural

networks are revealed:

1. They are not symmetric with respect to the satellite beam direction.

2. The fitting in o° space is poor.

The absence of symmetry is first attributed to the fact that the training set is finite

83

CHAPTER 7. CONCLUSIONS

and imperfect. In the absence of good validation methods, the assumption of a symmetric

behaviour of the backscatter with respect to the satellite beam direction seems easily

justified by the geometry of the satellite. Thus a new model is built where the symmetry

is constrained. It is advantageous to build a symmetric model because it requires 50% less

data for the same accuracy.

At the very end of this study it is found that this assumption is actually not correct.

The distribution of the 7° measurements is asymmetric for all tracks on the satellite

footprint. Therefore it is better not to constrain the model to have symmetric outputs

using a functional form such as CMOD4 or CMOD-IFR2. If the movement of the satellite

is responsible for this asymmetry, then a different model must be developed for each

antenna. It would be useful to know the actual reason for that phenomenon. However,

the symmetric model nn2cmod is found to be the most accurate during this study, so all

efforts are concentrated on improving it.

The poor fitting of the forward models in target space is confirmed by the observation

of the associated cones in a space. This poor fitting is due to input noise in the ECMWF

wind vectors. If we select o° triplets on the basis of the ECMWF winds which label

them and if we plot these triplets, their spreading (several dB) is much bigger than the

spreading due to the instrumental noise (0.2 dB) of the satellite (Figure 5.1). Therefore

input noise cannot be neglected.

A Bayesian framework is adopted to account for input noise during the training proce-

dure of the neural network. Bayesian learning can determine input and output noise levels

(i.e. the error variances). Unfortunately, this technique is too computationally intensive,

it has to be abandoned. An optimisation method is then used to find the Maximum A

Posteriori of the posterior distribution of the parameters (the weights of the neural net-

work and the wind vectors in the dataset) of the Markov chain used in Bayesian learning.

The computational effort is reduced, so improved models are obtained. Unfortunately this

technique leaves the difficult task of choosing the right values for the level of input and

output uncertainty. Therefore Bayesian learning could still be useful, starting the Markov

chain from the Maximum A Posteriori, in order to determine these hyperparameters.

Once the input noise is taken into account during the training procedure of the neural

network, the fitting in o° space is significantly improved. It is far better than all existing

84

CHAPTER 7. CONCLUSIONS

models, so the potential accuracy of the neural network is higher. The inversion of the

model can now be considered. An inversion method in logarithmic space is proposed.

Although this method is not computationally efficient, it shows that the inversion space

needs to be rescaled so all directions are retrieved with equal probability. The inversion

method is as important as the forward model itself.

The strongest winds are the most relevant to meteorological studies. Unfortunately, it

is shown that the instrumental noise of the antennae of the satellite is most detrimental

to the retrieval of high wind speeds. In order to to make the accuracy at high speeds as

good as possible, one can select the training data to be more representative of high wind

speeds. This must not be done using ECMWF wind data as it will systematically give

rise to biased errors in the wind data. Instead, geometrical considerations must be used in

o° space. In this space, planes of equation 02 + of = 20°., delimit slices of triplets which

correspond to roughly constant speed. This will enable us to increase the input data

density for high wind speeds without introducing any bias. The ECMWF wind speed

distribution can be checked a posteriori. Moreover, this selection enables us not to select

very low true wind speeds which we do not want to use during training.

In this study, all models trained accounting for input noise were compared using graph-

ical representations. These models could also be compared objectively using test set like-

lihood. To compute test set likelihood for models trained with input noise, we can write

the following integral:

le [Peiew,D)P@ yaa (7.1)

It would also be interesting to test if the residuals are correlated. There was not sufficient

time to do this during the project.

As the forward model must not be constrained to be symmetric, an MLP network

(trained accounting for noise) is still a very good candidate for the task of building an

empirical algorithm of wind retrieval. The inputs should be the wind speed plus several

harmonics of the wind direction. For the incidence angle, sin(@) should be used rather than

cos(6). Fine-tuning for the forward model will also involve improving the specification of

the errors. From the two plots on page 56 (Figure 5.1), it seems the uncertainty on wind

CHAPTER 7. CONCLUSIONS

speed is more important (the distribution is heavy-tailed) than the uncertainty on wind

direction.

Although more work has to be done, there is still a lot of room for improving the

current best models. Adapting the same neural networks to retrieve winds from other

satellites should also be possible.

86

Appendix A

Symbol conventions

CERSAT

ECMWF

ERS

ESA

hu.

IFREMER

MCMC

MDN

MLE

MLP

MVDN

NCRG

NWP

RBF

RMS

SCG

WNF

Centre ERS d’Archivage et de Traitement

European Centre for Medium-Range Weather Forecasts

Earth Remote-Sensing

European Space Agency

hidden units

Institut Frangais de la Recherche pour l’Exploitation de la Mer

Markov Chain Monte Carlo

Mixture Density Network

Maximum Likelihood Estimator

Multi Layer Perceptron

Multi Variate Density Network

Neural Computing Research Group (Aston University)

Numerical Weather Prediction

Radial Basis Function

Root Mean Square

Scaled Conjugate Gradient

Wind field product of CERSAT

87

APPENDIX A. SYMBOL CONVENTIONS

oF fore beam scatterometer measurement

oo. mid beam scatterometer measurement

CP aft beam scatterometer measurement

ie? = (04,0708)

oF: any of the 3 scatterometer measurements

(ur, Ur) or (u,v) relative wind vector components in m/s

|[t|| or s wind speed in m/s

0 relative wind direction in degrees

incidence angle in degrees

x azimuth angle in degrees

North

Mid beam

Direction

*. True wind
vector

Meteo wind
vector

Figure A.1: Angles in satellite geometry

The wind direction is given in standard meteo : clockwise relative to north. By

convention, the following notation is adopted:

88

APPENDIX A. SYMBOL CONVENTIONS

¢ mdir is the direction of the standard meteo wind vector (direction of 0° is blowing

from north).

¢ vdir is the direction of the true wind vector (direction of 0° is blowing from south). is

vdir = (mdir + 180) 360

e J is the direction of the true wind vector in the coordinate system relative to the

azimuth angle. 0 = (vdir — x) aan

The true wind vector is decomposed into its Cartesian components:

« in the absolute coordinate system (relative to north), the notation for the components

of the true wind vector is (u,v).

u= lull * cos(5 = vdirzaa) (Al)

v = |lull * sin(S ~ vdirzaa) (A.2)

¢ in the relative coordinate system (relative to the azimuth angle), the notation for

the components of the true wind vector is (u;,v,) (or (w,v)).

ty = [lull *c08(5 — Yraa) (A3)
ep vy = full + sin(S — daa) (Aa)

89

Appendix B

Technical plots

B.1_ Ellipses on the cone sections

This appendix presents the technique which was used to plot ellipses on the vertical and

cross sections of the cone for the MVDN model (figures on pages 47 and 47).

The multivariate density network which is used in this study is a model for P(o°|u, v, 9).

This probability is assumed to be a Gaussian distribution with a full covariance matrix in

o° space. Hence a surface of constant probability is an ellipsoid. Cutting this ellipsoid by

a plane which passes through its centre results in an ellipse. We need to find the Cartesian

components of the points of this ellipse in the cutting plane.

One approach is to compute the equation of the surface of the ellipsoid using the

eigenvalues and eigenvectors of the covariance matrix. This equation, coupled with the

equation of the plane gives the equation of the intersection, but this equation is difficult

to solve.

A better approach is to compute, for a set of directions a; € (0, 27] around the centre, in

the cutting plane, the standard deviation of the Gaussian distribution along each direction

a. It is possible to compute this standard deviation because the distribution is a one-

dimensional Gaussian along a straight line passing through the centre. This standard

deviation gives the radius of the ellipse along the considered direction. Here are more

details.

Let B be the basis of the space defined by the axes of the cutting plane and its normal

90

APPENDIX B. TECHNICAL PLOTS

direction. The normal direction is chosen so that det(B) = 1. For the vertical section,

-1/V2 0 1/v2

B= 0 1 0 (B.1)

-1/v2 0 -1/v2

and for the cross section:

1/v2 0 1/v2

B= 0 iteY Yi WIS (B.2)

-1/V2 0 1/V2

We also need the first vector of the basis B which will be rotated to obtain all the directions

around the centre. For the vertical and the cross section, these are respectively

-1/v2 1/v2
c= 0 and 2£= 0 (B.3)

-1/Vv2, -1/v2

Then for a set of values a; € [0,27], we define a rotation matrix of angle a; around the

third axis:

cos(a;) —sin(ai) 0

Ri =| sin(a;) cos(a;) 0 (B.4)

0 0 1

Using B as a transformation matrix, then the rotation matrix around the normal direction

to the cutting plane can be written as:

Ro = BR, B (B.5)

So now, for each a; € [0,27], we can consider each direction:

a= Ror (B.6)

91

APPENDIX B. TECHNICAL PLOTS

The standard deviation along direction 2; is

(B.7)

where © is the covariance matrix of the Gaussian distribution. (o;,a;) are the polar

coordinates of the points of the ellipse with respect to its centre. The transformation to

Cartesian components with respect to the origin is easily obtained.

B.2 3D Cone

This section presents the MATLAB source code for displaying a cloud of points in the a?

space together with the surface defined by a given forward model passed as argument

to the function. The second argument of the function is a matrix with 3 columns of

(04, o%,,08) log values, corresponding to a single mid beam incidence angle. This angle is

the 3rd argument of the function.

In the code, phi is the relative wind direction 9 in radians.

A call to the function modelfwd can be found in the code. It takes the name of a model as

argument, with the inputs (u,,v,) and @ and returns the o®° triplet. The latter function

was found to be extremely useful as it makes transparent all specificities of the different

models (pre-processing, single or triple output models...). However, the implementation

of this function is very specific so it is not presented here.

function disp_cone(model,trace5,incid)

% disp-cone(model, trace5) % assumes incid = 34.9
% — disp_cone(model, trace9, 45.5)
% — disp_cone(model, trace0, 17.9)
% disp-cone(model, tracel, 21.5)

%speed_ranges = [6 6; 9 10; 13 13];
speed_ranges =[4 8; 8 12; 12 16; 16 20; 20 24]

%phi-ranges = [0 2*pij; % full cone
%phi_ranges = [0 pi/2; pi pitpi/2); % remove a half
phi_ranges = [0 3*pi/4; pi pi+3*pi/4]; % remove a quarter

Y%phi_ranges = phi_ranges+pi/4; % rotate removed part 1/4 turn
%phi_ranges = phi_ranges+pi/2; % rotate removed part 1/2 turn

92

APPENDIX B. TECHNICAL PLOTS

% one figure per incidence angle
if nargin < 3

incid = [34.9]; %traced
Fincid = [18.0 21.7 25.2 28.6 31.8 34.9 37.7 40.5 43.0 45.4];

end

% number of speed and phi ranges (one piece of surface each)

n_speed_ranges = size(speed_ranges, 1);
nphiranges = size(phi-ranges, 1);

for i=1:length(incid)

h = figure;

for i_speed_range = 1:n_speed_ranges

minspeed = speed_ranges(i_speed_range,1) ;
maxspeed = speed_ranges(i_speed_range, 2) ;
speed = (minspeed:0.5:maxspeed)’;
nspeed = length(speed) ;

for i-phi_range = 1:n_phi_ranges

minphi = phi_ranges(i-phi_range,1) ;

maxphi = phi_ranges(i-phi_range, 2) ;
phi = minphi:pi/60:maxphi;
nphi = length(phi) ;

ur = speed*cos(pi/2-phi) ;

vr = speed*sin(pi/2-phi) ;

ur = reshape(ur,nphi*nspeed, 1);

vr = reshape(vr,nphi*nspeed, 1);

theta = incid(i)*ones(size(ur)) ;

sig = modelfwd(ur, vr, theta, model);

% reshape outputs
% msig stands for matrix sig
msigi = reshape(sig(:,1), nspeed, nphi);
msig2 = reshape(sig(:,2), nspeed, nphi) ;

msig3 = reshape(sig(:,3), nspeed, nphi) ;

tI
"

% Note the re-ordering of msig:
% mid beam <=> z axis

93

APPENDIX B. TECHNICAL PLOTS

if min(size(msig1)~=1)

surf(msigi, msig3, msig2, ones(size(speed))*phi) ;
end

hold on

% plot lines of constant extreme speeds in back

plot3(msigi(end,:) ,msig3(end,:),msig2(end,:), ...

2-k’, *Linewidth’ ,2);
plot3(msigi(1,:),msig3(1,:),msig2(1,:), ’-k’,

*Linewidth? ,2);

% plot lines of constant theta in blue,
% unless they superimpose (no section)
if mod(minphi,2*pi) ~= mod(maxphi,2*pi)

plot3(msigi(:,1),msig3(:,1),msig2(:,1), ’-b’,
*Linewidth’ ,2);

plot3(msigi(:,end) ,msig3(:,end) ,msig2(:,end), ...
2-b’, ?Linewidth’ ,2);

end

end

end

figname = [model, ’, incid = ’, num2str(incid(i))];

title(figname)
xlabel(’\sigmao_f’)
ylabel(’\sigma“o_a’)
zlabel(’\sigma~o.m’)
shading interp

ci = [ones(16,1), linspace(0,1,16)’, zeros(16,1)];

c2 = [linspace(1,0,16)’, ones(16,1), zeros(16,1) J;
c3 = [linspace(0,1,16)’, linspace(1,0,16)’, linspace(0,1,16)’];
c4 = [ones(16,1), zeros(16,1), linspace(1,0,16)’];
colormap([c1; ¢2; 3; c4]);
% colormap([autumn; flipud(autumn)]);
caxis([0 2*pi]);
view(45,15)
set (fh, ’Position’ ,[422 227 818 749]);
set(fh, ’Name’,[’Cone: ’, model]);

end

disp(’from aside view(45,0)’)

disp(’from front view(135,34)’)
disp(’aerial view view(100,35)’)

disp(’from top view(0,90)’)

BDLLLLLLDLLADNADB LDA LBALB LGA
% plot cloud of points

94

APPENDIX B. TECHNICAL PLOTS

% remove left half of the points
rmhalf = 0;

% select points for a range of ECMWF speeds
showmnoise = 0;

% values > 1 reduce the number of points
step = 1;

if 1 & not(length(incid)>1) % 0: do not plot the points

if nargin<2

load trace5.dat;

end

data = trace5;

if rmhalf

siga = data(:,3);
sigf = data(:,1);

ind = find(sigf>siga) ;
else

ind = 1:length(data) ;
end

if shownoise ==

% select speed range
datspeed = data(:,6);

ind = find(20<datspeed) ;
elseif showmoise =='

datdir = data(:,7);

dataz = data(:,5);
datspeed = data(:,6);

[mili nil2 datrdir] = speed mdir_to_uv(datspeed,
datdir, dataz);

datrdir = datrdir * pi/180;

ind = find(datrdir>(pi/4-pi/20) & datrdir<(pi/4+pi/20)) ;

end

sigf = data(ind,1);
sigm = data(ind,2);
siga = data(ind,3);

plot3(sigf(1:step:end), siga(1:step:end), sigm(1:step:end),...

?.k?, ’markersize’ ,4);

end

Appendix C

Training with noise: error

derivatives

The following derivatives are given in this section:

De
00’ 0s’ dw’

 i=1.3 (C.1)

The expressions for the errors E; are given in Section 5.5.2 (page 64). Figure 3.1 (page

38) is very helpful to understand these calculations.

For simplicity, the wind speed ||w|| will be noted s in this section. A tilde upon a symbol

denotes a normalised value. The normalisations are done with respect to the mean and

variance of the training set for each variable. These variances are noted o3 and ¢?, they

do not correspond to error variances.

 (C.2)

Error FE,

This is the tricky bit. The relationship between E; and the inputs of the model is obtained

through the whole architecture shown on Figure 3.1.

n= Le =a}?
2ag0

(C.3)

96

APPENDIX C. TRAINING WITH NOISE: ERROR DERIVATIVES

And o° is given by the nn2cmod model:

o° =L(Bot+plogK) with L= oe (CA)

and A = (0.1 tanh B; cos (Yraq) + 0.8 tanh Be cos (20;aa)) (C.5)

¢ OE; /0w has already been calculated in section 3.2, using back-propagation.

¢ OE) /Aceg : Here the units for 0 will be specified explicitly: Jyaq (used in trigono-

metry) or Ydeg (the input). Keeping the notations for K and L, we can compute

OE; /00 deg rather easily as we do not have to derive through the network:

OE; = Pips (—0.1 tanh B; sin (Jaq) — 0.8 * 2tanh Bo sin(20raa)) 7° — 0?

Waeg ? 180 K age
(C.6)

¢ Deriving £; with respect to speed is more complicated as the dependency upon speed

is obtained through the network. We first calculate the derivatives of the outputs of

the network with respect to the inputs in a general context. Using the same notation

as in (Bishop, 1995), the outputs of a MLP are related to the inputs by:

M d

Ue = an = v4; 9(> wjins + wj0) + wo (C.7)
j=l i=1

There are two inputs in our model:

M

Ue = SS Wkj 9(wyd + wy25 + w;0) + wro (C.8)
j=l

g was chosen as the tanh function, with linear output units so y = a. As the

normalised speed § = (s — 3)/as, the derivatives of the outputs with respect to the

speed are given by:

M
a 1 5 5 = arr So wajwye / cosh? (wid + wy25 + wo) (C.9) 85a

97

APPENDIX C. TRAINING WITH NOISE: ERROR DERIVATIVES

The y,,k = 1...4 are the 4 outputs By, By, B3, p. So the derivatives above are

denoted Bj, Bi, Bs, p’. Now we can write:

oD ae eR
sat (Bh +P log K +=) [2000 (C.10)

where

Kea OK s O-t.c08 (rad) Bi 0.8cos (20 rad) Bs (C1)

‘Os cosh* By cosh? By

Error E>

This error is associated with the the distance between (u;,v;) vectors from the training

set and computed (u,v) vectors. If we note AUn = ((un — Un,t), (Un — unt)» then E

can be written as:

N

== (AU)? D7} (AU) (C.12)
1

0
Zao = Oey (C.13)

0 uy

and oy, is the estimation of the standard deviation of the errors in (u,v) space for NWP

a
n
e

where

winds. Consequently, for each pattern (indices n are removed):

OE»

OWedeg

_, AAU) eae 1 AAU) ae z re
=(AU)" Sy, OG ae an = (AU)? 3 (C.14) iY Be

AU can be written in polar coordinates. Then the derivatives with respect to speed

and direction are:

O(AU) _ x [$ c08(Braa) a a(AU) _ sin(Vrad) Cs

D0ceg 180 ig hl cc as cos(Vrad) oe

98

APPENDIX C. TRAINING WITH NOISE: ERROR DERIVATIVES

Finally, Zz does not depend on the network weights so 0E2/0w = 0.

Error E3

This error depends only on speed, so

abs _
Ow

OB,
0 and —=(0 C.16 Daeg ee

Above 28 m/s 0F3/0s = (s — 28)/ds and below 4 m/s 0E3/0s = (s — 4)/ds where ds is

the uncertainty of NWP wind speeds.

Implementation details

For the implementation it is important to give a vectorized expression of all equations

above in order to keep training times reasonable. For instance Equation C.9 is not trivial

to obtain: in MATLAB code, this equation can be written as follows for the derivative

of the 1st output with respect to the 2nd input 089/05 (a similar expression gives the

derivatives of the 3 other outputs):

(1./ cosh(x*net.wi + repmat(net.b1, nx, 1)).72)

* (net.w2(:,1).#*net.w1(2,:)?)

where x is 10,000*2 (10,000 input patterns), net.w1 is 2*10 (input weights, for 10 hidden

units), net.b1 is 1*10 (input biases), net.w2 is 10*4 (output weights), net.b2 is 1*4

(output biases), nx = 10,000. The biggest matrix resulting from that computation is

10,000*10 (patterns*hidden units), which is very affordable.

99

Appendix D

The nn2cmod transfer function

The functional form of this model is

10 oe Tay (+ pln (1 + 0.1 tanh(b;) cos(J) + 0.8 tanh (by) cos(20)))

By, Bz, Bz and p (in this order) are determined by the four outputs of a neural network

with two inputs and 15 hidden units:

15

UR = oy we) tanh (wh + wh + wis) + wi Rade
j=l

sin(@) — 0.6190 $8 — 12.3534
and g= rh i — ais es

oem! 0.1463 5.9767

The weights of the network are presented on the next page.. The input and output biases

(w') and w) are at the first line of each matrix.

100

APPENDIX D. THE NN2CMOD TRANSFER FUNCTION

0.067894 —0.30723 -1.2241
—1.1824 0.24107 —0.87225
2.1596 —0.35863 0.8856
1.58 0.19281 0.57725

—0.28322 —0.301 —0.16
—4.0252 -0.087717 —2.4489
—2.7307 2.5937 —-0.025007

w) =| 21209 0.65365 +~—-0.49967

0.086781 0.49556 0.045686
—0.59721 0.42012 —0.43697
0.86032 0.18014 —0.034548
—1.129 0.64124 —0.074035
-1.7694 0.93374 —0.059592
1.0992 —0.12872 —0.23182

—0.55728 0.6679 0.37155

—2.2188 —0.15465 —0.35361 1.9599

—0.37344 —0.14064 0.017999 —0.52902

1529 —0.40896 —0.20945 0.84328

0.81448 0.43343 1.4056 —1.4742

0.90041 0.26926 —0.0065368 —0.36981

1.2265 1.4669 —0.53272 —0.84362

—2.0237 0.081579 0.79211 0.19508

2) __ | —0.2417 0.37919 0.20758 —0.22146

—2.0705 0.064967 —0.45171 1.5472

—1.2798 —0.65595 -0.095132 0.74194

0.88336 0.74858 —0.77331 —0.82517

0.18704 0.08397 0.34015 —0.72164

1.4216 1.2515 0.0030994 —0.1294

0.62342 —0.20165 —0.4667 0.45718

0.42097 —0.022376 —0.3991 —0.17022

—0.21451 —0.22747 0.49072 —0.64858

101

References

Bishop, C. M. 1994, February. Mixture Density Networks. Technical Report

NCRG/94/004, Neural Computing Research Group.

Bishop, C. M. 1995. Neural Networks for Pattern Recognition. Oxford Univ. Press.

Cornford, D. and I. T. Nabney 1998a, February. Cost Functions. Technical report,

Neural Computing Research Group. Unpublished.

Cornford, D. and I. T. Nabney 1998b, May. NEUROSAT: An Overview. Technical

Report NCRG/98/011, Neural Computing Research Group.

Cornford, D., I. T. Nabney, and C. M. Bishop 1997. Neural Network Based Wind Vector

Retrieval from Satellite Scatterometer Data. Technical report, Neural Computing

Research Group.

Evans, D. J. 1998. Mixture Density Network Training by Computation in Parameter

Space. Technical Report NCRG/98/016, Department of Computer Science and Ap-

plied Mathematics, Aston University, Birmingham, B4 7ET, UK.

Janssen, P. A. E. M., H. Wallbrink, C. J. Calkoen, D. V. Halsema, W. A. Oost, and

P. Snoeij 1998, April. VIERS-1 scatterometer model. Journal of Geophysical Re-

search 103 (C4), 7807-7831.

Maroni, C., N. Grima, and Y. Quilfen 1995, April. Quality Assessment of CERSAT

Wind Fields Products. Technical report, CERSAT.

Mejia, C., F. Badran, A. Bentamy, M. Crepon, S. Thiria, and N. Tran 1998. Determina-

tion of the geophysical model function of NSCAT scatterometer by the use of neural

networks. Technical report, LODYC, Universite de Paris 6.

102

REFERENCES

Mejia, C., S. Thiria, N. Tran, M. Crepon, and F. Badran 1998, June. Determination

of the geophysical model function of the ERS-1 scatterometer by the use of neural

networks. Journal of Geophysical Research 103 (C6), 12853-12866.

Nabney, I. T. and C. M. Bishop 1995a. Modelling conditional probability distributions

for periodic variables. In 4th International Conference on Artificial Neural Networks,

pp. 177-182. IBE.

Nabney, I. T. and C. M. Bishop 1995b. Modelling wind direction from satellite scat-

terometer data. In International Conference on Artificial Neural Networks.

Neal, R. M. 1996. Bayesian Learning for Neural Networks. Springer. Lecture Notes in

Statistics 118.

Offiler, D. 1994. The Calibration of ERS-1 Satellite Scatterometer Winds. Journal of

Atmospheric and Oceanic Technology 11, 1002-1017.

Rufenach, C. 1995. A new relationship between radar cross-section and ocean surface

wind speed using ERS-1 scatterometer and buoy measurements. Int. J. Remote

Sensing 16 (18), 3629-3647.

Rufenach, C. 1997. Comparison of Four ERS-1 Scatterometer Wind Retrieval Algo-

rithms with Buoy Measurements. Journal of Atmospheric and Oceanic Technol-

ogy 15, 304-313.

Stoffelen, A. 1998, April. Toward the true near-surface wind speed: error modelling

and calibration using triple collocation. Journal of Geophysical Research 103 (C4),

7755-7766.

Stoffelen, A. and D. Anderson 1995, February. The ECMWF contribution to the

characterisation, interpretation, calibration and validation of ERS-1 scatterometer

backscatter Measurements and winds, and their use in numerical weather predic-

tion models. ESA contract report, European Centre for Medium-Range Weather

Forecasts.

Stoffelen, A. and D. Anderson 1997b. Scatterometer Data Interpretation: Estima-

tion and Validation of the transfer Function CMOD4. Journal of Geophysical Re-

search 102, 5767-5780.

103

REFERENCES

Stoffelen, A. and D. Anderson 1997a. Scatterometer Data Interpretation: Measurement

Space and Inversion. Journal of Atmospheric and Oceanic Technology 14, 1298-

1313.

Thiria, S., C. Mejia, F. Badran, and M. Crepon 1993. A Neural Network Approach

for Modelling Nonlinear Transfer Functions: Application for Wind Retrieval From

Spaceborne Scatterometer Data. Journal of Geophysical Research 98, 22,827-22,841.

Williams, P. M. 1996. Using Neural Networks to Model Conditional Multivariate Den-

sities. Neural Computation 8, 843-854.

Wright, W. A. 1998. Neural Network Regression With Input Uncertainty. In Neural

Networks for signal processing, Volume 8, pp. 284-293.

104

