
Textural Segmentation of Natural 

Water Scenes for Surface Pollution 

Detection 

RAJPAL K Ral 

MSc by Research in Pattern Analysis and Neural Networks 

Supervisor: Professor David Lowe 

ASTON UNIVERSITY 

September 2000 

This copy of the thesis has been supplied on condition that anyone who 
consults it is understood to recognise that its copyright rests with its 
author and that no quotation from the thesis and no information derived 
from it may be published without proper acknowledgement.



ASTON UNIVERSITY 

Textural Segmentation of Natural 

Water Scenes for Surface Pollution 

Detection 

RAJPAL K Ral 

MSc by Research in Pattern Analysis and Neural Networks, 2000 

Thesis Summary 

Water-borne pollutants are currently monitored through spot sampling. This gives 

an occasional, localised and therefore unreliable picture of the level of contamination. 

This research is part of a larger EU funded project, ‘Blue Water’ the aim of which is 

to develop a system capable of continuous and automatic monitoring of water-borne 

pollution, through the use of remotely sensed visible band camera images. 

Water-borne pollution generates surface slicks which have a different texture to 

normal turbulent waves. In this thesis we develop a pixel by pixel segmentation al- 

gorithm which classifies the image into slick and non-slick textured regions. We test 

the algorithm on a set of grey scale lake images. The main stages of the algorithm 

are preprocessing of the images, feature extraction, classification, and finally postpro- 

cessing of the segmentation results. The segmentation process is based on a novelty 

detection approach. We build histogram and multivariate Gaussian density models of 

slick feature vectors which then represent ‘normality’. Receiver operating characteris- 

tic curves are used to set the decision boundaries of normality for these models, using 

expertly labelled slick and non-slick data. Each unseen pixel is then classified according 

to this model as either normal or novel, i.e having slick or non-slick like texture. A 

range of feature extraction techniques have been investigated namely, statistical mo- 

ments, principal components analysis and finally one and two dimensional fast Fourier 

transforms. 

Keywords: Image Segmentation, Texture Classification, Feature Extraction, Density 

Modelling, Novelty Detection.
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Chapter 1 

Introduction 

1.1 Motivation for Research 

Currently, sea pollution is monitored through a programme of spot sampling. The 

water samples taken are then sent to a laboratory for chemical analysis. It may take 

a few days before results are available in which time the pollution may no longer be 

present, making it extremely difficult to identify the source. If the spot sampling does 

not coincide with the discharge of pollution it is impossible to detect such occurrences, 

leaving the system open to abuse. This occasional, localised sampling gives an unre- 

liable picture of the level of contamination, especially for large stretches of water. A 

system capable of continuous, automatic monitoring is highly desirable. The require- 

ment for such a system provides the motivation for this research. The ideal would be 

to develop a system which can locate, track and possibly identify sources of surface 

pollutants from digital images of near-shore sea water. 

This research is a small part of a much wider EU funded project, ‘Blue Water’, 

proposal number: IST-1999-10388. The project involves the following partners, Aston 

University (UK), British Maritime Technology (UK), ENEL (Italy), TXT Ingegneria 

Informatica (Italy), Yermasoyia Municipal Authority (Cyprus), University of Hamburg 

(Germany), University Joseph Fourier, Grenoble (France) and Flow Research Diagnos- 

tics (UK). The pattern processing algorithms will be developed exclusively within the 

Neural Computing Research Group at Aston University.



CHAPTER 1. INTRODUCTION 

Matter found in sea water such as hydrocarbons, oil, algal bloom, bacteria and fish 

oil generate slicks which leave surface signatures by damping wave motions. These 

differences in the surface morphology are revealed by reflected light. The areas of 

damped waves have a smooth homogeneous appearance as the light has been reflected 

with little scatter. Normal turbulent waves on the other hand scatter the incident 

light giving rise to their rougher more uneyen appearance. Therefore, to locate slicks 

within an image, techniques are required which will allow these textural differences to 

be identified and modelled in some appropriate feature space. 

Experiments carried out under controlled conditions by Dr Philipp Lange, a member 

of the Blue Water consortium at the University of Hamburg, clearly show evidence of 

this damping effect '. Normal turbulent waves are generated in a windwave channel 

by exposing the water to a constant 5m/s wind, see Figure 1.1(a). Oleyl alcohol is 

then added to the channel to simulate the effect of a surface pollutant. This has an 

immediate damping effect on the waves as can be seen from Figure 1.1(b), eventually 

all waves in the channel are damped, Figure 1.1(c), as the alcohol film moves along 

the channel assisted by the wind. After approximately one minute has elapsed normal 

waves are returning once again as most of the alcohol has passed through the channel, 

Figure 1.1(d). 

A large volume of research has been carried out in the field of image segmentation. 

Examples include the segmentation of satellite synthetic aperture radar images for 

identifying land use, segmentation for automatic detection of objects such as vehicles 

or people, segmentation of documents into areas of text and pictures for automatic 

processing [9] and the segmentation of medical images for diagnostic purposes [3]. This 

wide range of applications has led to the development of many different techniques, each 

suited to a particular type of problem. An overview of image segmentation approaches 

is presented in Chapter 2 with emphasis being given to discussing techniques that are 

relevant to the segmentation of natural images. 

‘with thanks and acknowledgement to University of Hamburg for providing this data 

10



CHAPTER 1. INTRODUCTION 

  

(c) (a) 

Figure 1.1: Windwave channel experiment (courtesy of University of Hamburg) 

1.2 The Scope and Aims of this Research 

This research aims to investigate several key areas, which will work towards finding 

a solution to the problem of image segmentation for water-borne pollution detection. 

However, before outlining the main focus of this work we must formally state the nature 

and scope of this project, and the assumptions which have been made. 

It has not been possible to obtain near-shore sea images at this stage of the project. 

A set of lake images has been used instead. These images present several challenging 

problems representative of some of those which would be encountered in sea images. 

  

A detailed description of the test image set is provided in Section 2.3.1. Although 

11



CHAPTER 1. INTRODUCTION 

the images are in colour, only grey scale information has been used in this work. The 

images have been taken from a digital video sequence. However, no time information 

has been used in the segmentation work. All the test images contain some background 

such as rocks, trees and grass. In the final system these areas could be pre-labelled as 

non-slick by using geographical knowledge of the scene. In this work the segmentation 

algorithms have been applied to the whole image with no pre-labelling. However, the 

performance of the work is judged solely on the segmentation results achieved for the 

water regions of the image. 

The primary aim of this research is to develop a segmentation process within a 

statistical framework, that will allow pixel by pixel segmentation of an image into slick 

and non-slick textured regions. A general segmentation system involves several stages 

including, preprocessing, feature extraction, classification and finally postprocessing. 

A key factor in designing a successful segmentation process is to find a feature space 

in which the feature vectors from different texture classes form distinct clusters. The 

classifier is then used to identify the decision boundaries in this feature space. The main 

focus of the work is to investigate and compare the performance of different feature 

extraction techniques. This study will also draw conclusions regarding the suitability 

of using visible band images for water-borne pollution detection, and whether it would 

be useful to include dynamic information in the algorithm. 

1.3 Thesis Outline 

In this chapter we have presented the background and motivation for this research. We 

have also stated the scope and specific aims of this MSc research project. 

Chapter 2 gives an overview of image segmentation. We discuss the different nature 

of the image segmentation problem when applied to artificial versus natural images. 

This is followed by a discussion of the supervised versus unsupervised approach to 

image segmentation. We then concentrate on techniques relevant to the segmentation 

of natural images by texture. We present a review of previous work on texture feature 

extraction and classification. This is followed by a description of a general texture 

12



CHAPTER 1. INTRODUCTION 

segmentation system, based on supervised learning. Finally, we describe the image set 

to be used in our research. We discuss the main features of the images and how they will 

impact the design of the segmentation algorithm. We conclude by outlining the general 

approach we have adopted for implementing a successful segmentation algorithm. 

A detailed description of the techniques we investigated for our segmentation algo- 

rithm can be found in Chapter 3. We also present the segmentation results achieved 

and provide an analysis of each method. The segmentation pipeline includes prepro- 

cessing of the images, feature extraction, statistical modelling of the features, followed 

by the decision stage and finally the postprocessing of segmentation results. Four fea- 

ture extraction methods are evaluated namely, statistical moments, linear principal 

component analysis and one and two dimensional discrete Fourier transforms. His- 

togram thresholding is a standard non-statistical image segmentation method often 

used on images of man-made environments. We include a description of this method 

and present the segmentation results achieved for our image set. These results are later 

compared to those achieved using the statistical techniques detailed above. 

In Chapter 4 we compare the segmentation results achieved with the range of meth- 

ods we have employed. 

Chapter 5 summarises the conclusions of our investigation and presents a direction 

for future work. 

13



Chapter 2 

Image Segmentation 

2.1 Introduction 

There exists a wide spectrum of methods for image analysis and segmentation. The 

techniques employed vary depending on the nature of the problem in hand. There is 

an obvious split in the methods used to segment natural images and those used for 

artificial or man-made environments. Natural scenes have a much higher level of struc- 

tural complexity and variability than man-made environments. A typical natural scene 

will contain several different textural regions all of which will be subject to variation 

in time. The effect of environmental conditions is one major source of variability in 

natural scenes. For example, fog, mist, the level of daylight and the prevailing wind 

conditions will alter the contrast, brightness and the textural information in the im- 

age. Standard image processing techniques such as template matching, thresholding 

and edge detection are often used to segment images of artificial objects or man-made 

environments. However, this approach would fail if applied to the problem of segment- 

ing an image containing textural regions [15]. The alternative to working in the pixel 

domain is to work in feature space. This usually involves representing our original 

data with a smaller number of variables or features which are chosen for their ability 

to discriminate between different textures. These feature vectors can then be used as 

inputs to an appropriate classifier. 

One pixel domain segmentation method is to apply thresholding to the image to 

14



CHAPTER 2. IMAGE SEGMENTATION 

select pixels with certain grey values, these will correspond to the grey values of the 

object to be identified. We demonstrate the serious shortcomings of this method when 

applied to natural scenes in Section 3.2. In the rest of this thesis we concentrate 

on statistical, feature based segmentation methods. A comparison of segmentation 

results achieved using feature vectors and image thresholding is made in Chapter 4, 

demonstrating the superiority of the former approach. 

2.1.1 Supervised Versus Unsupervised Approach 

Classification techniques fall into two main groups, supervised and unsupervised. In 

supervised classification the class labels are known for the training data, whereas there 

is no labelled data for unsupervised classification. 

For supervised image segmentation an expert user must first label the data by 

selecting regions of the image that belong to recognised classes. The labelled data can 

then be used in a range of classification methods such as k-nearest neighbour, Fisher 

discriminant analysis, conditional density models or neural networks. 

In unsupervised classification we aim to establish the number of classes present and 

the features which distinguish them by seeking clusters within similar data. This is 

done using iterative techniques such as k-means (also known as c-means), see Webb 

[23] or Duda and Hart [6] for a detailed description of clustering techniques. There are 

several difficulties with unsupervised methods such as knowing the number of centres 

to chose, initialisation of the cluster means and the iterative nature of the process may 

make it time consuming. Once clusters have been identified the user must then assign 

them to the classes of interest. As one might expect unsupervised classification is more 

difficult. However, it may be chosen in preference to supervised classification in certain 

cases when there is a lack of sufficient labelled training data. 

For certain problems a semi-supervised approach using partly labelled data could 

be employed. In many practical situations we wish to classify data as either conform- 

ing to some predefined normal or abnormal state, for example condition monitoring of 

aircraft engines. A conditional density model of ‘normality’ could be constructed using
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feature vectors extracted from the labelled data corresponding to normal operation. 

Boundaries of normality would also be set for the model. Any prior knowledge and 

data available for the abnormal case could also be used in setting this boundary. For 

a new feature vector, the probability of belonging to the normal class would be calcu- 

lated, if this is within the boundaries defined it is classed as normal, else it is classed 

as abnormal. This approach can be extended to multiclass problems in which one class 

or a group of classes are defined as normal, any data which deviates from this ‘normal’ 

model by a predefined margin is then classed as abnormal or novel. This technique is 

commonly known as novelty detection and is used in a wide range of applications in- 

cluding fraud detection, condition monitoring and alarming, and in medical diagnostic 

systems. Nairac et al [12] used this approach to detect unusual signatures in jet engine 

vibration data. 

In this research we work with a set of images which can be labelled into slick and 

non-slick regions by an expert. For this reason only supervised and semi-supervised 

classification techniques will be considered here on in. This approach presents an easier 

problem than using an unsupervised method for the reasons outlined above. 

2.2 Textural Segmentation of Natural Images 

2.2.1 Textural Information 

Texture is a local property that depends on the tonal (grey level) variations of pixels 

in a given spatial region. There are no precise mathematical models for describing ho- 

mogeneous image textures. However, as humans are capable of discriminating between 

different textures fairly easily, texture features used for classification are designed to 

correspond well to our human visual textural perception [20]. These features include 

coarseness, contrast, directionality, line-likeness, regularity and roughness [21]. 

16



CHAPTER 2. IMAGE SEGMENTATION 

2.2.2 Review of Previous Work on Texture Segmentation 

A large volume of literature exists on image segmentation by texture. Many researches 

have asked the question, what makes a good set of features for texture classification. 

There is no overall best method which has emerged, instead a range of methods exists 

some of which are better suited to certain problems than others. In recent years there 

has been significant interest in the use of multiresolution decomposition methods such 

as wavelets [3, 5, 11, 13, 15, 19] and the competing method of multichannel filtering 

such as with Gabor filters [9, 11, 15, 19, 24]. The range of texture feature extraction 

techniques encountered in this literature survey fall into four main groups, statistical, 

geometric, model based and signal processing methods. In the remainder of this section 

we discuss the advantages and disadvantages of these different techniques. All these 

approaches extract features from a windowed section of the image with the pixel of 

interest in the centre. Wavelet analysis and Gabor filtering can also be performed on 

the image as a whole. 

In the statistical approach the stochastic properties of the tonal variations are 

characterised. One statistical method is to use co-occurrence matrices. In this method 

the joint or co-occurrence of grey level values between pixel pairs, along a predefined 

displacement vector are recorded in a G x G matrix, where G is the number of grey 

levels. For example, the co-occurrence matrix for the texture block shown in Figure 

2.1(a) for the displacement vector (1,0), is given in Figure 2.1(b). 

  

  

  

              

US POO 1 Om 2 

0/0 1 1 Oo) 3% 3.78 

o;1 f 2 THEO) S702 

1 1 22 2050-0 ot 

(a) (b) 

Figure 2.1: (a) Texture block, (b) corresponding co-occurrence matrix 

This method aims to capture information regarding the spatial dependency of grey 

17



CHAPTER 2. IMAGE SEGMENTATION 

level values. Smooth textures will tend to have larger values clustered around the 

diagonal. Second order statistical texture features are then extracted from this co- 

occurrence matrix [20]. There are a range of possible features which could be used, 

Strand and Taxt [20] selected angular second moment, contrast, correlation and en- 

tropy. Using a nearest neighbour classifier good segmentation results were achieved for 

two test images which contained four different natural textures each, taken from the 

Brodatz photographic album [2]. However, the boundaries were not clearly identified. 

Better segmentation results were achieved if the number of features used was increased 

from 4 to 8. However, this method was not able to segment an image containing 

textures with a stochastic structure. This highlights an important aspect of methods 

which extract features from a window of predefined size. Satisfactory segmentation 

results can only be achieved if the textural structure is small in relation to the window 

size. For stochastic textures, features are required which measure the average spatial 

texture properties, therefore larger windowed areas are needed [20]. This method is 

also inefficient in terms of memory requirements and computational time, this problem 

becomes more serious for images composed of large numbers of grey values. 

Faugeras and Pratt [7] presented the view that texture regions can be thought of 

as two-dimensional samples from a stochastic process, described by its statistical pa- 

rameters. Furthermore, this is suggested as a good model for natural textures such 

as sand, grass and water. A whitening operator was applied to the two-dimensional 

autocorrelation function of a windowed texture region. The resulting two-dimensional 

uncorrelated texture pattern was assumed to be a sample from the underlying stochas- 

tic generating process. A histogram of the grey level values of this uncorrelated texture 

pattern was formed from which features were extracted such as mean, standard devia- 

tion, skewness and kurtosis. Several natural texture patterns from the Brodatz album 

[2], were compared by evaluating their Bhattacharyya distance (B-distance) [8]. This 

is a scalar function of the conditional probability densities of feature vectors of two 

clas: Gaussian densities were assumed in this case. This is a computationally in- 

  

tensive method and it was suggested the whitening operator be replaced with a Sobel 
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CHAPTER 2. IMAGE SEGMENTATION 

gradient operator to speed the process up [18]. The results of this study did not provide 

convincing evidence that a stochastic model was suitable for natural textures. Several 

texture pairs such as grass and sand or wool and sand did produce large B-distances, 

however, other texture pairs such as grass and rafia did not. 

Geometric methods are based on the view that textures can be characterised with 

set. geometric rules. A subclass is structural methods in which textures are described 

as a set of basic repeating patterns with some displacement rules. In practice, it is 

difficult to extract such rules from real textures in which the underlying structure is too 

complicated to be described by a set of rigid geometric rules. Strand and Taxt [20] used 

a geometric method based on detecting local frequencies along a set of direction vectors 

to segment images containing different textural regions. The segmentation results were 

compared to those achieved using co-occurrence matrices, which were discussed earlier 

in this section. The local frequency method performed about equally as well as the 

co-occurrence matrix method in discriminating between the textures, with the local 

frequency method being slightly better at detecting the boundaries. As with the co- 

occurrence matrix method the local frequency method was not able to discriminate 

between textures with a stochastic structure for the reasons discussed above. 

One popular model based approach for texture analysis is to employ Markov ran- 

dom fields (MRFs). A random field is a spatial function that assigns a random variable 

at each spatial location [14]. A MRF is a random field probability density function. 

Fitting a MRF to a texture block allows a method of encoding spatial information 

which characterises mutual influences of neighbouring pixels. For a first order MRF 

the probability of a given pixel is defined such that it depends on the state of its 

nearest neighbours. A second order MRF would take into account the first and sec- 

ond nearest neighbours. The texture feature vector is given by the model parameters 

which maximise the probability of observing a given texture block, having assumed 

a certain parameterised probability density function. Chen and Huang [4] fitted 2nd 

order MRF models to a set of four images of different natural textures, these included 

grass, tree bark, calf leather and woodgrain from the Brodatz album [2]. A four di- 
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mensional feature vector was generated for each N x N training texture block from the 

test images. Principal component analysis was used to project the four dimensional 

feature vectors on to two dimensions. This was repeated using three different MRF 

models, the generalised ising model, auto-binomial model and gaussian markov ran- 

dom field model. Visual examination of the two dimensional projections showed none 

of these models were able to completely separate any of the four textures, in fact there 

was considerable overlap between the distributions of the classes. Classification error 

rates were given for nearest neighbour, quadratic and Fisher’s linear classifier. These 

confirmed the poor performance of the MRF models, the best correct classification 

rate achieved was 30%. This experiment was repeated using a set of four sandpaper 

textures. This produced similarly poor correct classification rates. This method is also 

computationally intensive. Chen and Huang [4] state the computational time required 

to generate a single feature vector from a 64 x 64 texture block as ranging from 0.42 

seconds for the gaussian markov random field model to 4.8 seconds for the generalised 

ising model, on a Sun 4/490 Sparc station. 

Signal processing methods perform frequency analysis of textures. This can be done 

through filtering in the frequency domain. Fourier transforms, wavelet analysis and 

Gabor filtering are some of the most common signal processing methods. Wavelets 

allow multiresolution decomposition of signals representing them as course versions 

then going to finer and finer detail. Wavelets allow a joint time frequency representation 

of signals. However there is a trade-off between resolution in the time domain and 

frequency domain. As the resolution increases in the time domain it decreases in the 

frequency domain. Wavelets have been used by many researchers for carrying out 

texture segmentation [3, 15]. Physiological experiments carried out on animals suggest 

simple cells in the visual cortex have a receptive field whose response is dependent on 

the frequency and orientation of the visual stimulus. Two-dimensional Gabor filters 

have been suggested as a good approximation for this receptive field and have been 

successfully applied to texture classification problems [5, 9, 11, 15, 24]. 
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CHAPTER 2. IMAGE SEGMENTATION 

2.2.3 A General Texture Segmentation System 

A general texture segmentation system is shown in Figure 2.2. The image containing 

two or more different textures is digitised into a M x N matrix whose elements have 

possible integer values from {0, 1, ...,G—1} where G is the number of grey levels. 

  

    

                    

  

Digitised Decision 
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Texture Extractor 
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Figure 2.2: A general segmentation system 

The main stages of the segmentation process are preprocessing, feature extraction, 

classification and finally postprocessing. 

In general the preprocessing stage can involve one or more transformations being 

carried out on the original input variables, in this case an M x N matrix of pixel grey 

levels, to generate a new set of output variables, an M x N matrix. Such transforma- 

tions are carried out for one of two main reasons. Firstly, they can be used to include 

prior knowledge about the desired form of the solution, which can lead to a significant 

improvement in performance [1]. Prior knowledge is often used to make the segmenta- 

tion process invariant to certain effects. For example, invariance to scale, position and 

rotation are common in many image segmentation applications. 

Another reason for employing preprocessing transformations is to enhance or re- 

store images in such a way as to improve the discrimination ability of the extracted 

feature vectors. For example, the grey level histogram of an image can be manipulated 

in several different ways to increase its contrast. This can improve the overall reso- 

lution of the image and amplify textural differences. Noise removal is an important 

image enhancement technique. Images may suffer from impulse noise which is additive 

or multiplicative noise such as from variable illumination of the scene. These noise 

sources can be reduced by using different filtering techniques. Restoration involves 
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correcting specific damage suffered by the image [14]. For instance correcting for ge- 

ometric distortions or blurring of images. A large volume of literature exists on the 

image processing methods mentioned above, Petrou and Bosdogianni [14] provide a 

good source of reference. 

Section 3.3.2 details the preprocessing transformations deemed necessary for this 

work based on an examination of the image set to be used, see Section 2.3.1, and the 

objectives of the segmentation process. 

In principal the aim of feature extraction is to represent the original data with as few 

variables as possible whilst retaining maximum discriminatory information. The most 

suitable texture feature extraction technique for a given problem will depend largely 

on the data. The aim is for all feature vectors captured from one texture to form a 

cluster and the clusters corresponding to different texture classes to be separated in 

some sense [4]. The performance of four different texture feature extraction techniques 

is investigated in Section 3.3. 

For segmentation each pixel has to be classified, so ideally we would have a feature 

vector for every pixel. One method is to generate each feature vector from an M x M 

subimage block with the pixel of interest in the centre. This is a standard approach 

used by several researchers for texture feature extraction [4, 22, 7, 20]. However, one 

must be aware of the trade-off between discrimination ability and boundary detection. 

Large block sizes will tend to give better discrimination at the expense of accurate 

boundary detection and vice versa for small block sizes. The effect of using different 

block sizes on discrimination ability is investigated and discussed in Chapter 4. 

In a general texture classification problem the aim is to assign a previously unseen 

texture pattern x to the correct class 7, where 1 < j < k and there are a total of k 

distinct classes. The classifier is designed using a set of training texture patterns from 

each class. The performance of the classifier is evaluated by measuring a suitable error 

rate for classifying a set of labelled test patterns. This process will also validate the 

feature extraction stage. 

Supervised classification techniques fall into two main categories. Methods based 
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on modelling the density of the data directly (parametric and non-parametric meth- 

ods) and those which use discriminant functions (linear and non-linear) to minimise a 

predefined cost function without modelling the density of the data first. The choice of 

classifier will depend largely on the data. Its success will be judged on its ability to 

segment the feature space into disjoint areas containing the different classes. A detailed 

presentation of a range of classifiers is given by Webb [23]. 

Postprocessing involves carrying out transformations on the output variables from 

the classifier. This allows prior information regarding the form of output solution 

required to be incorporated into the segmentation process. For example in an image 

segmentation problem we may have prior knowledge regarding the minimum size of the 

object to be recognised. Any objects identified by the classifier which are smaller than 

this can be disregarded as misclassifications, providing a smoother segmentation result. 

In a more complicated system there may exist a bank of classifiers and the postprocess- 

ing stage used to carry out a rule based combination of the outputs variables into one 

final decision. This was the approach used by Busch [3] for segmenting multi-modal 

magnetic resonance images of the brain. The postprocessing stage is an important 

step in many practical applications which can lead to a significant improvement in the 

performance of the system. Section 3.3.3.2 details the postprocessing transformations 

implemented in this work. 

2.3 Textural Segmentation of Lake Images 

2.3.1 Description of Image Set 

The segmentation algorithm will be tested on five lake images taken using a Sony 

digital video camera. Each image is 576 by 768 pixels with 8 bits/pixel. The original 

images were in colour, represented with three matrices which specified the intensity 

levels of red, green and blue for each pixel. The images were converted to grey scale by 

averaging the three intensity values and rounding the result to the nearest integer. This 

produced a grey level between 0 and 255 for each pixel. This approach was chosen for 
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its ease of implementation. Another method of converting a colour image to grey scale 

is to carry out principal components of the image using the three spectral components, 

red, green and blue (RGB). The RGB vector for each pixel is then projected onto 

the first principal component, producing a grey scale image with maximum contrast. 

However, this method is computationally much more intensive. The test images are 

shown in Figure 2.3 and Figure 2.4 along with their grey scale histograms. 

As discussed in Section 2.1 natural images have a far greater degree of variability 

than those of man-made environments. This is certainly the case for the image set 

presented in Figure 2.3 and Figure 2.4. The images contain a range of textures and 

are taken from different angles with varying zoom and are of different locations. All of 

this makes the image segmentation problem more difficult. In this section we will draw 

attention to specific sources of variability in the image set. These can be summarised 

as follows; 

Different size, shape and tone of slicks 

Differences in scale, i.e zoomed in or out images 

Different wave textures due to local wind and scale effects 

e The presence of shadows, reflections and glint due to the level and direction of 

sunlight 

We have outlined the slick regions of image 2 in Figure 2.5. There are four main 

regions of slick, each has a different size and shape. The slicks all have the same smooth 

homogeneous texture. However, there are also water regions which do not contain any 

surface pollutants and yet have the a smooth homogeneous texture. These regions are 

marked as 1 and 2 in Figure 2.5. At this stage we would not expect our segmentation 

process to be able to distinguish these regions from the slick areas we have highlighted. 

The texture of normal turbulent waves is varied as can be seen by comparing the 

different test images in Figure 2.3 and 2.4. There is also a difference in scale from 

image to image. Image 4 has been taken with a greater zoom than image 2. We can 
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also notice a change in scale as we move from the foreground to the background in 

some of the images. This is certainly the case for image 1. The varied light conditions 

under which the images have been taken also present potential difficulties. Image 5 

contains glint as it has been taken in direct sunlight. 

2.3.2 Discussion of Adopted Approach 

As we have seen from the discussion in Section 2.3.1 the size, shape and tone of the slick 

varies depending on its source and the wind conditions. However, the slick’s texture 

exhibits an invariance property. It retains a smooth homogeneous texture under a 

range of environmental conditions, as we have seen from the image set. The texture of 

normal waves does not share this invariance property, indeed the reverse has shown to 

be true. This relationship between the texture of slick and normal turbulent waves is 

an important feature which can be used for segmentation. It suggests that a classifier 

trained using a novelty detection approach would be well suited to this problem. Such 

a classifier would detect non-slick textures as outliers based on a statistical model 

of normal slick texture in feature space. The alternative approach would be to detect 

slick textures as outliers based on a statistical model of normal wave textures in feature 

space. This would clearly require a much more complicated model due to the range of 

different textures possible for normal turbulent waves. 

A range of classification techniques were discussed in Section 2.2.2. In this section 

we have discussed image features and how they will effect the classifier design. In con- 

clusion, a novelty detection classifier trained to recognise non-slick textures as outliers 

is deemed a suitable approach, and has be developed further in this work. Further 

evidence for the suitability of this approach is presented in Chapter 3.
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(e) Image 3 (f) 

Figure 2.3: Test Images 1-3 
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Figure 2.4: Test Images 4 and 5 
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Figure 2.5: Important features of image 2 
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Chapter 3 

Methods, Segmentation Results 

and Analysis 

3.1 Expert Labelling of Training Image 

Our supervised segmentation process requires labelled slick and non-slick data. This is 

obtained by expertly selecting block regions from our training image which correspond 

to only slick or non-slick and assigning the correct label. The training image shown in 

Figure 3.1 was chosen as it contains a relatively large continuous region of slick which is 

easy to label in this block fashion. The other images in the set contain smaller, disjoint 

slick regions of irregular shape which would be difficult to label using this approach. 

The areas highlighted in the training image have been labelled as follows. Region 

1 and 2 are slick, data from region 1 will be used to train the classifier and data 

from region 2 will be used for testing. Data from regions 3 will be used to test the 

classifiers ability to correctly label non-slick textured areas. Each highlighted region is 

then formed into a set of non-overlapping subimages which are n x n pixels. Feature 

vectors are extracted from these subimages. In this work we have investigated how the 

segmentation performance varies for 4 x 4, 8 x 8 and 16 x 16 subimages. Obviously the 

number of subimages obtained from a labelled region will decrease as the block size 

increases. Table 3.1 states the number of subimages obtained from the three regions 
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Figure 3.1: Expert labelling of image regions 

Block Size | Region 1: Slick | Region 3: Wave 
  

  

  

  

4x4 512 4096 

8x 8 128 1024 

16 x 16 32 256       
Table 3.1: Number of subimages obtained from training image for different block sizes 

for different block sizes. Region 1 and 2 are 32 by 256 pixels and region 3 is 256 by 

256 pixels. 

It is clear that the number of training examples falls sharply as the block size 

increases. One needs to be aware that this could lead to our classifier being overfitted 

to the training data, especially when using 16 x 16 subimage blocks. The limited test 

data should help to provide some clues as to whether this is the case. More training 

examples could be obtained from the same regions by overlapping the subimage blocks. 

However, this would lead to correlations within the test data and was therefore not 

deemed to be a suitable approach. 
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3.2 Segmentation by Histogram Thresholding 

Histogram thresholding is a standard image processing technique used to identify ob- 

jects in man-made scenes. This method works best for well defined images where a 

dark object lies on a light background or vice versa. We have employed this method 

on our image set to demonstrate its limitations when applied to natural scenes con- 

taining different textural regions. Figure 3.2(a) shows the grey level histograms for 

the complete training image and Figure 3.2(b) shows the histogram for region 1 of the 

training image which is labelled as slick. Segmentation using histogram thresholding 

relies on selecting a range of grey values which correspond to the object or region of 

interest. The image is then segmented by identifying all pixels with grey values within 

this range. 

The grey levels in region 1 range from 49 to 113 which is indicated by the solid lines 

on Figure 3.2(b). We have chosen to set thresholds at 60 and 90, this range contains 

97% of the grey values in region 1. These thresholds are used to classify any pixel 

with a grey value less than 60 or above 90 as non-slick. Figure 3.3(b) and 3.3(d) show 

the segmentation achieved for image 3 and image 5 respectively, by applying these 

thresholds. All pixels classified as non-slick are coloured in black all other pixels keep 

their original grey values. 

We are unable to segment the slick regions from the non-slick regions using this 

method. The slick regions highlighted by arrow A in Figure 3.3(b) are incorrectly 

classified as non-slick as their grey values fall outside the range we set earlier. A similar 

problem is observed in Figure 3.3(d), where water areas are incorrectly classified as slick 

and slick regions such as highlighted by arrow B are incorrectly classified as non-slick. 

This method fails because the slick regions in the test images do not contain the 

same range of grey values as the slick regions in the training image, even though they 

have the same texture. This suggests a textural segmentation process should be inde- 

pendent of the average intensity of a local region if it is to successfully classify textures 

in natural images, which will be subject to variations in the level of illumination. 

A comparison is made of the segmentation results obtained using histogram thresh- 
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Figure 3.2: (a) Histogram of training image (b) histogram of slick region only
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(a) Image 3 (b) Segmentation of (a) 

   
(c) Image 5 (d) Segmentation of (c) 

Figure 3.3: Segmentation of images 3 and 5 using histogram thresholding
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olding and feature based methods in Chapter 4 for the test images. 

3.3 Feature Based Segmentation 

3.3.1 Introduction 

In this section we describe the techniques employed in our feature based texture segmen- 

tation process. We have investigated four feature extraction methods namely, statistical 

moments, principal components analysis, one-dimensional fast Fourier transforms (1D 

FFT) and the two-dimensional fast Fourier transforms (2D FFT). Each method relies 

on extracting feature vectors from 4 x 4, 8 x 8 or 16 x 16 subimages. These dimensions 

were deliberately chosen to be powers of two so 1D FFT and 2D FFT algorithms could 

be used. These are very efficient implementations of the one and two dimensional dis- 

crete Fourier transforms. For example, the one dimensional discrete Fourier transform 

of N points can be computed in O(N?) operations, the 1D FFT is an O(N log, N) 

process which is an immense difference. See Press et al [16] for a detailed description 

of how the FFT is implemented. 

All these feature extraction techniques, apart from the 2D FFT, operate on vectors 

rather than two dimensional arrays. Vectors were obtained from the subimages by 

concatenating the columns. A similar approach was used by Tolba [22] who used 

concatenation of both rows and columns to generate vectors from subimages. 

In the remainder of this thesis we refer to subimages being classified as either slick 

or non-slick, by this we mean classification according to whether they have slick or 

non-slick like texture. 

3.3.2 Preprocessing of Images 

As we discussed in Section 2.3.1 the tone of the slick can vary from image to image. 

This observation was supported by the results we obtained for segmentation based on 

histogram thresholding in Section 3.2. We ensure the feature vectors will be invariant 

to changes in brightness of the image by making the mean of each subimage equal to 
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zero. 

The contrast will also vary between images, this is defined as the range between the 

maximum and minimum grey levels in the image. We chose to enhance the contrast of 

each image by stretching the histogram of the whole image to the full grey range of 0 

to 255 as shown in Figure 3.4. 

255 

O
U
T
 

0 min max 255 
IN 

Figure 3.4: Contrast enhancement 

This is achieved by applying the following simple transformation to each pixel, 

(3.1) Ree eT [eee] 
max — min 

where G is the number of grey levels and the result has been rounded to the nearest 

integer. Contrast enhancement improves the overall resolution of the image, which in 

turn will accentuate the difference between smooth and non-smooth textured regions. 

Petrou [14] discusses several contrast enhancement methods based on histogram ma- 

nipulation. Such methods work best when applied to the image as a whole. Local 

contrast enhancement can cause distortion in smooth parts of an image which con- 

tain a narrow range of grey levels. Stretching the histogram of such local regions will 

amplify every small variation, making the original smooth area appear rougher. 

As we saw from our discussion in Section 2.3.1 the test images are subject to 

variations in scale as we move from the foreground to the background. We have not 

implemented any preprocessing to take this effect into account for this study. 
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3.3.3 Statistical Moments 

One way of viewing each M x M subimage from our training set, is as a set of M? 

independent random samples from a given one dimensional distribution. Intuitively 

we would expect the distribution of samples from a slick region to be different to that 

obtained from a region of turbulent waves. The most obvious difference we would 

expect is in the variance, expecting a lower variance for the slick data. Figure 3.5(a) 

and 3.5(b) show the histograms of the pixel values from region 1 and region 3 of the 

training image, which correspond to slick and turbulent waves respectively. 

We can characterise these distributions in a compact form by their moments. The 

mean, variance, skewness and kurtosis being the first four moments. However, as we 

have chosen to zero mean each subimage we form a feature vector based on only the 

second, third and fourth moments. Form each M x M subimage we obtain a set of 

grey values 21,...,2, where N = M?. The variance of these values is defined as, 

N 

Varleue san) = 74 (a). (3.2) 

The skewness characterises the degree of asymmetry of a distribution. Positive val- 

ues of skewness indicate a distribution with an asymmetric tail extending out towards 

more positive x, and negative values indicate a distribution whose tail extends towards 

more negative values of x [16]. Skewness is defined as, 

  

N pe y48 
Skew(21, ~) = > |@] (3.3) 

NS 

where 

o(%1,..-,2N) = W/ Var(a1, -,2N)- (3.4) 
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Figure 3.5: (a) Histogram of slick and (b) wave data from training image 
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Finally, kurtosis the fourth moment measures the peakedness or flatness of a dis- 

tribution relative to a Gaussian distribution. Kurtosis is defined as, 

mica ee) eee Be, (3.5) 
j=l 

Figure 3.6 shows three dimensional plots of variance, skewness and kurtosis for the 

expertly labelled slick and wave data of the training image, obtained using 4 x 4, 8 x 8 

and 16 x 16 subimages. It is clear that we can not separate the distribution of slick and 

wave feature vectors exactly using the skewness and kurtosis dimensions. However, we 

see that there is less overlap between the distributions along the variance dimension 

and this reduces as we increase the size of the subimage used. We can completely 

separate the two distributions when using 16 x 16 subimages based on variance alone. 

This effect can clearly be seen in Figure 3.7 which shows histograms of the variance 

values for different sized subimages. We investigate the generalisation ability of this 

method in Section 3.3.3.2 by applying the technique to two test images. 

We can use the histograms shown in Figure 3.7 as density models of the variance for 

slick and non-slick textured regions. By setting a threshold for variance these models 

can be used for classification. Any previously unseen subimage which has a lower vari- 

ance than the threshold will be classified as having slick like texture and any subimage 

with a higher variance will be classified as having non-slick like texture. Changing 

the position of the threshold will vary the number of true positives, false positives, 

true negatives and false negatives. The classification matrix shown in Figure 3.8 de- 

fines these quantities. For example, true positives are the number of slick subimages 

correctly classified as slick as a fraction of the total number of slick subimages in the 

test set. Similarly, false positives are the number of non-slick subimages incorrectly 

classified as slick as a fraction of the total number of non-slick test cases. The true 

positives and false negatives sum to one, as do the false positives and true negatives. 

We can set the decision threshold in a principled fashion by using receiver operating 

characteristic (ROC) curves, as explained below. 
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(c) Using 16 x 16 subimages 

Figure 3.6: Variance, skewness and kurtosis plotted for slick and wave data 
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Figure 3.8: Classification matrix 
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3.3.3.1 Receiver Operating Characteristic (ROC) Curves 

A toy data example is given in Figure 3.9(a) which shows the distribution of likelihood 

values for slick and non-slick labelled subimages. By setting a threshold, we can classify 

any new subimage with a likelihood value greater than the threshold as slick, and those 

with a value lower than the threshold as non-slick. Figure 3.9(b) shows how the true 

positives vary with the false positives for a range of thresholds, this is called the ROC 

curve. The area under the curve is a measure of how well we are able to discriminate 

between the two classes. The closer the curve is to the left-hand and top-border, 

the better the discrimination ability. The 45-degree line represents the case for two 

completely overlapping distributions, in which case it is not possible to discriminate 

one class from the other. 

In this work we have assumed it is equally bad to misclassify a slick subimage as 

non-slick, as it is to misclassify a non-slick subimage as slick. However, if required, a 

different penalty could be assigned to each possible misclassification by using a loss/cost 

matrix. This would in turn alter the decision rule used to classify each subimage. 
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Figure 3.9: Toy data example, (a) histogram of likelihood values for labelled slick and 

non-slick data, (b) resulting ROC curve 
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3.3.3.2 Results 

The ROC curves obtained for the variance values of the labelled data from the training 

image are shown in Figure 3.10. Data from regions 1 and 2 was used as training and 

test cases respectively, for slick texture, data from region 3 was used as the non-slick 

texture case. Section 3.1 describes the expert labelling of the training image. 

The area under the ROC curve increases as we use larger subimages, indicating 

better discrimination ability. We have marked the position of the chosen threshold value 

on each curve. In each case the threshold was chosen where the tangent to the curve 

is approximately 45-degrees, sometimes referred to as the ‘knee’ of the curve. Beyond 

this point the false positives begin to increase at a faster rate than the true positives. 

Table 3.2 gives the true and false positives rates achieved with the chosen threshold for 

different sized subimages. We will examine how the segmentation performance varies 

if the threshold is chosen at different points along ROC curve in Section 3.3.4.2. 

Block size | Training data Test data 

oP FP TR) EP 

4x4 0.95 | 0.14 | 0.98 | 0.14 
8x8 0.99 0.05 0.99 | 0.05 

16 x 16 1.0 0 1.0 0 

  

  

            
Table 3.2: Classification rates using statistical moments 

We will now present and discuss the segmentation results achieved for images 2 

and 4 from our test set. All results are based on the thresholds set for the training 

image. Ideally each pixel would be classified based on a feature vector extracted from a 

subimage, with the pixel of interest in the centre. However, computationally this would 

be very intensive. We have chosen to generate a feature vector for each 2 by 2 pixel 

block, this still allows fine segmentation but with a reduced computational burden. 

Pixels classified as belonging to non-slick textured regions are coloured in black, those 

classified as belonging to slick textured regions keep their original grey values. 

The segmentation results achieved for image 2 using 4 x 4, 8 x 8 and 16 x 16 

subimages are shown in Figure 3.11. The final stage in our segmentation process is 
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Figure 3.10: ROC curves for variance values of training data 

postprocessing. Figure 3.11(b) and 3.11(c) show the segmentation results obtained 

using 4 x 4 subimages, before and after postprocessing respectively. We have many 

false positives in the lower part of the Figure 3.11(b) which contains normal waves. 

We discuss the reasons for these false positives in Section 3.3.3.3. However, we can 

observe that many of these false positives are isolated cases, or cases where only one 

or two neighbouring 2 by 2 pixel blocks have the same class label. Our postprocessing 

step involves using a 6 by 6 pixel smoothing window to remove these isolated misclas- 

sifications. Each 2 by 2 pixel block within the window will have one class label, we 

consider the class of the central block and its eight neighbours. If there are three or 
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more neighbouring blocks with the same class label as the central block it will keep 

its original class label. If not it will change class. The value three was chosen empir- 

ically. This produced the best balance between an effective reduction in the number 

of isolated misclassifications, and preserving boundaries of correctly identified regions. 

The smoothing window is scanned across the whole image moving across two pixels at 

a time, until the edge of the image is reached, then down by two pixels and so forth. 

Strand [20] used a similar technique for postprocessing in which the central pixel 

was assigned to the most dominant class in the smoothing window. 

All future segmentation results presented in this thesis have been been postpro- 

cessed in this manner. 

Figure 3.12 shows the segmentation results achieved for image 4 using 4 x 4, 8 x 8 

and 16 x 16 subimages. 

3.3.3.3 Analysis 

The segmentation results for image 2, shown in Figure 3.11 show an improvement 

as we use larger subimages. The most dramatic effect is on reducing the number of 

misclassifications in the lower part of the image which contains a low contrast fine wave 

texture. A similar effect was observed for the labelled training data where the false 

positive rate decreased from 0.14 to 0.05 for the wave data, as the subimage size was 

increased from 4 x 4 to 8 x 8. However, the increase in the true positive rate for the 

slick data was less significant, changing from 0.95 to 0.99. We suggest this effect is due 

to the fact that a 4 x 4 subimage is not large enough to capture the basic structure 

of the wave texture. By structure we mean the characteristic local variations in grey 

levels. 

The smooth water areas in the top half of the image are classified as having slick 

like texture as we would expect from our earlier discussion in Section 2.3.1. 

These results also display how boundary detection becomes courser as we use larger 

subimages. 

The segmentation results for image 5, shown in Figure 3.12 show a less dramatic 
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Figure 3.11: Segmentation of image 2 using statistical moments 

45



  

CHAPTER 3. METHODS, SEGMENTATION RESUL   S AND ANALYSIS 

  

(a) Image 4 b) Segmentation of (a) using 4x 4 subim- Bi 5 

ages 

   600 700 

(c) Segmentation of (a) using 8x8 subim- (d) Segmentation of (a) using 16 x 16 

ages subimages 

Figure 3.12: Segmentation of image 4 using statistical moments
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improvement for larger subimages. This can be attributed to the different wave texture 

present. The two main differences are the increased contrast and fineness of the texture. 

Both these factors will lead to increased discrimination ability based on a measure of 

variance, and should allow the use of smaller subimages. 

3.3.4 Principal Component Analysis 

We consider the following scenario, we obtain a M? dimensional vector, x; form each 

M x M subimage by concatenating its columns. We generate a population of such 

vectors x = (2, ye) from our slick labelled data. We then consider x as a random 

vector population and attempt to model its distribution with a parameterised multi- 

variate probability distribution, p(y). A conditional density model could be used to 

classify a previously unseen vector x; based on its likelihood given this model, p(«;|x). 

For this approach to work we require the vector populations from the slick and wave 

data to cluster in different regions of this high dimensional space. Therefore we ex- 

pect relatively large values for the likelihood of vectors which have slick like texture, 

compared to lower values for vectors with non-slick texture. 

However, modelling the distribution of such high dimensional data requires a com- 

plicated model with many free parameters. A large amount of data is required in 

order to obtain robust estimates for these parameters. This approach is not feasible 

when dealing with a limited amount of training data, as in our case. Principal com- 

ponents analysis (PCA) can be employed to reduce the dimensionality of our data, 

enabling a simpler density model to be used. This is achieved by projecting our origi- 

nal m-dimensional data onto a n-dimensional subspace spanned by a set of orthogonal 

vectors, where n is chosen such that most of the variance of the original data is pre- 

served. These orthogonal vectors are referred to as principal components. The first 

principal component is in the direction of maximum variance in the original data. The 

second principal component is orthogonal to the first and in the direction of maximum 

variance in this subspace and so on. These principal components are given by the 

eigenvectors of the symmetric positive definite covariance matrix D, and are ordered 
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in terms of their corresponding eigenvalues. The k'” principal component having the 

k'® highest eigenvalue. The covariance matrix of a sample of vectors x = (2,...,2,v)" 

is given by, 

he Ee = 57 Dj — oa) (0j — pa)” (3.6) 
j=l 

where 

1 & 
= toa, (3.7) 

j=l 

See Webb [23] for a derivation of principal components and further details on eigen- 

vector eigenvalue decomposition of symmetric matrices. PCA would not be suitable 

for data which contained non-linear correlations as it may over estimate the intrinsic 

dimensionality of the data [1]. Another difficulty with PCA is determining the number 

of principal components to retain. One method is to use the eigenvalue spectrum. Fig- 

ure 3.13 shows the eigenvalue spectra obtained for the slick data from region 1 of the 

training image, using 4 x 4, 8 x 8 and 16 x 16 subimages. The eigenvalue spectrum can 

be viewed as separating the data into signal and noise subspaces. A cutoff point can 

be defined where the eigenvalues fall sharply before levelling off at small values (the 

‘scree’ test) [23]. All eigenvalues below this cutoff can be viewed as representing the 

noise in the data and so can be neglected. This cutoff is sometimes referred to as the 

‘elbow’ of the curve. This is still rather a subjective method but one which provides 

a good guide as to the number of principal components to retain. Table 3.3 shows 

the number of principal components retained by applying this test to the eigenvalue 

spectra in Figure 3.13. 

Block Size | Number of principal 

components retained 

  

  
4x4 6 

8x8 15 

16 x 16 

Table 3.3: PCA: Number of principal components retained for different block sizes 
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Figure 3.13: Eigenvalue spectra of slick data using (a) 4 x 4 (b) 8 x 8 and (c) 16 x 16 
subimages 

By employing PCA we have been able to significantly reduce the dimensionality 

of our original data. We can now form our feature vectors by projecting the original 

slick and wave data vectors obtained from the training image, onto the first n principal 

components, as given in Table 3.3. Figure 3.14 shows the distribution of these feature 

vectors projected onto the first three principal components, obtained using different 

sized subimages. The slick feature vectors are clustered together with the wave feature 

vectors distributed around this central cluster. The separation of the classes increases 

with increasing block size. 
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Figure 3.14: PCA: Slick and wave data projected onto first three principal components 
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3.3.4.1 Density Modelling 

From the exploratory data visualisation carried in Section 3.3.4 we conclude that a sin- 

gle multivariate Gaussian distribution is a suitable form for modelling the distribution 

of the slick feature vectors. A more complicated model such as a mixture of gaussians 

could also be considered. However, as a first step we chose to adopt the simpler single 

multivariate Gaussian model. In d dimensions the multivariate Gaussian probability 

density function can be written as 

v0) = Gamat — 5 - EW 1). (38) 

This distribution is governed by the d-dimensional mean vector jz, and the d x d 

covariance matrix ©. These parameters were estimated using the slick feature vectors 

obtained from the training image, as defined by equation 3.7 and 3.6 respectively. In 

this instance the covariance matrix will be diagonal as we have removed correlations 

within the data. 

3.3.4.2 Results 

Given our conditional density model of ‘normal’ slick texture we calculated the like- 

lihood values for all the labelled slick and wave subimages. These values were used 

to generate the ROC curves shown in Figure 3.15. The discrimination ability clearly 

increases as we use larger block sizes. The ROC curve obtained when using 16 x 16 

subimages shows perfect segmentation was achieved of the two classes in the training 

set. 

We experimented with choosing different threshold values and observing the effect 

on segmentation performance. Three different thresholds were chosen using 4 x 4 

subimages as detailed in Table 3.4. The corresponding segmentation results are given 

in Figure 3.16. 

Table 3.5 gives the classification rates achieved for the training data for threshold 

values chosen to be at the ‘knee’ of the curve for different subimage sizes.
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Figure 3.15: PCA: ROC curves of likelihood values of training data 

Figure 3.17 and 3.18 show the segmentation results for images 2 and 3 using 4 x 4, 

8 x 8 and 16 x 16 subimages. 

3.3.4.3 Analysis 

We can see from the results in Figure 3.16 that the decision threshold chosen from the 

ROC curve has a significant effect on the segmentation results. By visual examination 

the best segmentation results would be those of Figure 3.16(b) which has the lowest 

false positive rate, 0.02 out of the three sets of results. However, it also has the lowest 

true positive rate, 0.6. This demonstrates the trade-off which can be made between the
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Segmented Image | TP | FP 

Figure 3.16(b) | 0.60 | 0.02 
Figure 3.16(c) | 0.90 | 0.10 
Figure 3.16(d) | 0.96 | 0.15 

  

  

  

      

Table 3.4: PCA: Segmentation results for different threshold values 

Block size | Training data Test data 

ae FP TPR SEP 

4x4 0.96 0.15 0.95 | 0.15 

8x8 0.98 | 0.05 | 0.98 | 0.05 
16 x 16 1.0 0 0.98 | 0.0 

  

  

            

Table 3.5: Classification rates using PCA 

false positive and true positive rate in order to obtain the most suitable results for a 

given situation. For example in a segmentation system we may be prepared to accept 

a slightly lower true positive rate if it means that the false positive rate becomes very 

low. 

The results of Figure 3.17 and 3.18 demonstrate the effect on segmentation per- 

formance of using different block sizes. As was the case for feature vectors based on 

statistical moments, using PCA with small block sizes does not achieve correct seg- 

mentation of water areas which contain fine wave textures, such as in the lower part of 

Figure 3.17 and 3.18. The results improve with larger block size with 16 x 16 subimages 

producing the best results. However, this is at the expense of boundary detection which 

becomes less well defined and has led to the misclassification of small slick textured 

regions. These results also validate the choice of using a multivariate Gaussian density 

model for the slick feature vectors. 

3.3.5 One Dimensional Discrete Fourier Transform 

Any discrete series {x,}, n = 0, 1...,(N — 1) can be decomposed exactly as a sum of 

discrete sinusoidal waves. The magnitude of these sinusoidal waves is given by a set of 

N Fourier components X,, k = 0,1, ...,(N—1), which represents the discrete frequency 

spectrum of our original series given by, 
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(a) Image 2 (b) 

  

Figure 3.16: PCA: segmentation of image 2 using different threshold values



CHAPTER 3. METHODS, SEGMENTATION RESULTS AND A 

  

vALY; 

    

(a) Image 2 (b) Segmentation of (a) using 4x4 subim- 

ages 

  

(c) Segmentation of (a) using 8 x 8 subim- (d) Segmentation of (a) using 16 x 16 
anes subimages 

Figure 3.17: Segmentation of image 2 using PCA
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(c) Segmentation of (a) using 8 x 8 subim- (d) Segmentation of (a) using 16 x 16 
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Figure 3.18: Segmentation of image 3 using PCA
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Xp= a Ye 8"), 3.9 =F ne 69 

n=0 

  

The frequency power spectrum is given by the magnitude of X;. Essentially, we are 

projecting our original discrete series or N-dimensional vector {x,}, onto an orthogonal 

set of basis vectors e,[{n] in N-dimensional space given by, 

ex{n] = exp JOCK") 
  

O0<k<N. (3.10) 

We have investigated the use of the frequency power spectrum of our subimages for 

texture classification. We first generated a set of vectors for our labelled slick and wave 

data from the training image, by concatenating the columns of each subimage. We then 

applied the 1D FFT to each N-dimensional vector which gave us another complex N- 

dimensional vector. We obtained the discrete power spectrum of each subimage by 

taking the magnitude of each component of this complex vector. Finally, we employed 

PCA to reduce the dimensionality of the discrete power spectrum, as described in 

Section 3.3.4. The number of principal components retained is shown in Table 3.6. It 

is interesting to note that for 8 x 8 and 16 x 16 subimages, the data can be summarised 

using fewer principal components than when PCA was applied directly to the original 

data. 

Block Size | Number of principal 

components retained 

  
4x4 4 

8x8 ie 

16 x 16 12 

Table 3.6: 1D FFT: Number of principal components retained for different block sizes 

As for the PCA method our aim is to build a conditional density model of the slick 

feature vectors which we can then be used for classification. However, we must first 

choose an appropriate parameterised form for this model. We carry out exploratory 

on
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visualisation of our slick and wave texture feature vectors by plotting their projections 

onto the first three principal components, see Figure 3.19. 

  

= waves: region 3 
slick region 1 

2 slick region 2 
slick: region 1 

8 slick: region 2 
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(b) Using 8 x 8 subimages (c) Using 16 x 16 subimages 

Figure 3.19: 1D FFT: Slick and wave data projected onto first three principal compo- 
nents 

These 3D plots show we are able to achieve good separation between the slick and 

wave classes, especially when using 8 x 8 or 16 x 16 subimages. The slick feature vectors 

are tightly clustered as was the case in the PCA method. Once again we conclude that 

a multivariate Gaussian distribution is suitable to model the slick feature vectors, see 

Section 3.3.4.1. 
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3.3.5.1 Results 

As described in Section 3.3.4.2 we obtained a set of ROC curves for the likelihood 

values of our slick and wave training data, given by our conditional density model of 

‘normal’ slick texture. In order to remain as concise as possible we do not present the 

ROC curves. Once again we chose the decision threshold to be at the ‘knee’ of the 

curve. Table 3.7 gives the classification rates achieved for the slick and wave training 

data using different size blocks. 

Block size | Training data Test data 

IP FP ‘ER)|| EP 

4x4 0.95 0.12 0.93 | 0.12 

8x8 0.93 0.04 | 0.98 | 0.04 

16x 16 | 0.88 0 LOH EO 

  

  

            

Table 3.7: Classification rates using 1D FFT 

Figure 3.20 and 3.21 show the segmentation results for images 2 and 4 using 4 x 4, 

8 x 8 and 16 x 16 subimages. These results are based on the threshold set for the 

training data. 

3.3.5.2 Analysis 

The 1D FFT results follow the same general pattern that has emerged from the results 

for statistical moments and PCA. The segmentation performance improves with larger 

block sizes. However this improvement is largely due to the reduction in the number 

of false positives. However, this was accompanied by worse boundary detection for the 

PCA method. In comparison the 1D FFT method achieves better boundary detection 

using 16 x 16 subimages. See Figure 3.20(d) and 3.17(d). Similarly good results are 

achieved for image 4 using 16 x 16 subimages, which contains a more well defined 

texture which presents an easier texture segmentation problem. These results are the 

most promising so far in terms of having low numbers of false positives whilst retaining 

fairly accurate boundary detection.
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(c) Segmentation of (a) using 8 x 8 subim- (d) Segmentation of (a) using 16 x 16 

ages subimages 

Figure 3.20: Segmentation of image 2 using 1D FFTs 
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(c) Segmentation of (a) using 8 x 8 subim- (d) Segmentation of (a) using 16 x 16 

ages subimages 

Figure 3.21: Segmentation of image 4 using 1D FFTs 
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3.3.6 Two Dimensional Discrete Fourier Transform 

The 1D Fourier transform can be extended to two dimensions. This allows a 2D array 

of numbers to be exactly represented as a linear combination of a set of two dimensional 

orthogonal basis vectors, the magnitudes of which are the Fourier coefficients. Consider 

a N, x No array of numbers given by, 

y(r, 8) r=0,1,...,N,—1 

  

(3.11) 
3=0,1,...,No—1. 

The two-dimensional discrete Fourier transform of y(r, s) is given by, 

y Metma 
Narra y(n; s)eF2"(r/Mitms/Na) fk = 0,1,...,N,—1 

Nie x x (3.12) 

m=0,1,...,N2—1. 

We applied the 2D FFT directly to each M x M subimage, then formed the result 

into a vector by concatenating the columns. We took the magnitude of each complex 

component of this vector inorder to obtain the power spectrum. Finally, PCA was 

then employed to reduce the dimensionality of this vector as described in Section 3.3.4. 

The number of principal components retained is shown in Table 3.8. The data can be 

summarised with the same number of principal components as for the 1D FFT method 

for 4x 4 and 8 x8 subimages and fewer components for 16 x 16 subimages. We form the 

slick and wave texture feature vectors as before by projecting our original M? vector 

onto the principal components. 

Block Size | Number of principal 

mponents retained 

    

  
4x4 

8x8 i 

16 x 16 10 

Table 3.8: 2D FFT: Number of principal components retained for different block sizes 

Figure 3.22 shows the slick and wave texture features projected onto their first three 

principal components. 
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Figure 3.22: 2D FFT: Slick and wave data projected onto first three principal compo- 

nents 
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As for the 1D FFT method these 3D plots show we are able to achieve good sep- 

aration between the slick and wave classes, especially when using 8 x 8 or 16 x 16 

subimages. A multivariate Gaussian distribution is used to model the slick feature 

vectors as described in Section 3.3.4.1. 

3.3.6.1 Results 

We obtain likelihood values for the slick and wave training data based on our conditional 

density model of ‘normal’ slick texture, these are used to generate ROC curves as 

described in Section 3.3.4.2. 

We present the classification rates for the training data in Table 3.9, these results 

are based on selecting the likelihood threshold value to be at the ‘knee’ of the ROC 

curve, see Section 3.3.3.2 for a more detailed description. 

Block size | Training data Test data 

Te FP TPA|CEP 

4x4 0.93 0.12 | 0.95 | 0.12 

8x8 0.94 | 0.04 | 0.98 | 0.04 
16 x 16 1.0 0 1.0 0 

  

  

            

Table 3.9: Classification rates using 2D FFT 

Figure 3.23 and 3.24 show the segmentation results for image 2 and image 3 respec- 

tively. These results are based on the threshold chosen for the training image. 

3.3.6.2 Analysis 

Using 2D FFTs has given an improvement in the segmentation results compared to the 

1D FFT method. The 2D FFT produces better results for 8 x 8 and 16 x 16 subimages 

as can be seen in Figures 3.23 and 3.24. The improved correct classification of non-slick 

textures is accompanied by good boundary detection which also shows an improvement 

over the results for the 1D FFT method. 
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(a) Image 2 (b) Segmentation of (a) using 4x4 subim- 

ages 
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(c) Segmentation of (a) using 8 x 8 subim- (d) Segmentation of (a) using 16 x 16 

ages subimages 

Figure 3.23: Segmentation of image 2 using 2D FFTs



CHAPTER 3. METHODS, SEGMENTATION RESULTS AND ANALYSIS 

ei) 
hii a a ty vs 

   
(a) Image 3 (b) Segmentation of (a) using 4x4 subim- 

ages 

  

(c) Segmentation of (a) using 8 x 8 subim- (d) Segmentation of (a) using 16 x 16 

ages subimages 

Figure 3.24: Segmentation of image 3 using 2D FFTs 
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Chapter 4 

Comparison of Segmentation 

Results 

In this section we compare the segmentation results for the test images based on using 

8 x 8 subimages for the range of methods employed in this thesis. Firstly we can see 

that histogram thresholding is clearly not a suitable approach. The success of this 

method relies solely on the slick textured regions containing the same range of grey 

level values from image to image. The intrinsic variability of these natural images 

makes this approach unfeasible. 

The performance of the remaining four feature based methods, namely statistical 

moments, PCA, 1D FFTs and 2D FFTs is closely matched. This is especially true 

for those images which contain well defined textures. By well defined, we mean where 

there is a clear difference between the slick and non-slick textured regions, and the 

non-slick textured regions have high contrast such as in image 4 and 5. See Figure 

4.3(a) and 4.4(a). The slightly superior performance of the FFT methods apparent 

from the segmentation results of image 2 and 3, see Figure 4.1 and 4.2. The FFT 

based methods achieved fewer false positives by classifying more of the fine textured, 

  

low contrast water regions correctly. Overall, the 2D FFT method produced the best 

segmentation results. 
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(a) Original image (b) Segmentaion of (a) using histogram 

thresholding 

   
(c) Segmentaion of (a) using 

  

atistical (d) Segmentaion of (a) using PCA 

moments 

300 400    
(e) Segmentaion of (a) using 1D FFTs (f) Segmentaion of (a) using 2D FFTs 

Figure 4.1: Segmentation results for image 2 
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(a) Original image (b) Segmentaion of (a) using histogram 

thresholding 

   500 600 700 

(c) Segmentaion of (a) using statistical (d) Segmentaion of (a) using PCA 

moments 

   
(e) Segmentaion of (a) using 1D FFTs (f) Segmentaion of (a) using 2D FFTs 

Figure 4.2: Segmentation results for image 3 
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(a) Original image (b) Segmentaion of (a) using histogram 

thresholding 

   
(c) Segmentaion of (a) using statistical (d) Segmentaion of (a) using PCA 

moments 
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(e) Segmentaion of (a) using 1D FFTs (f) Segmentaion of (a) using 2D FFTs 

  

Figure 4.3: Segmentation results for image 4 
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(a) Original image (b) Segmentaion of (a) using histogram 

thresholding 

   
(c) Segmentaion of (a) using statistical (d) Segmentaion of (a) using PCA 

moments 

   
  

gmentaion of (a) using 1D FFTs (£) Segmentaion of (a) using 2D FFTs 

Figure 4.4: Segmentation results for image 5 
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Chapter 5 

Conclusions and Future Work 

5.1 Conclusions 

The primary aim of this research was to develop a segmentation process within a sta- 

tistical framework, that would allow pixel by pixel segmentation of an image into slick 

and non-slick textured regions. We have investigated statistical moments, principal 

components analysis and one and two dimensional fast Fourier transforms as methods 

of feature extraction and presented a range of segmentation results for our lake test 

images. These feature based methods have been compared with histogram thresh- 

olding, a standard image processing method most often used for the segmentation of 

images of man-made environments. The segmentation process was based on a novelty 

detection approach. We built histogram and multivariate Gaussian density models of 

slick feature vectors, which represented ‘normality’. ROC curves were used to set the 

decision boundaries of normality for these models. Previously unseen feature vectors 

were then classified as normal or novel according to this model, i.e. having slick or 

non-slick texture. 

We investigated how the segmentation performance varied for different threshold 

points chosen on the ROC curve. The feature vectors were extracted from subimages 

of 4x 4, 8 x 8 or 16 x 16 pixels. 

We can draw the following conclusions from this study,
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e The subimage size used to extract the feature vectors has a significant effect on 

segmentation performance. The best results were achieved using 16 x 16 pixel 

subimages for the range of images in the test set. This gave better performance 

than the small subimages as they were not large enough to capture the underly- 

ing textural variations of the non-slick textured regions which gave rise to high 

misclassification rates. 

e The threshold chosen from the ROC curve also has a significant effect on seg- 

mentation performance. High true positive rates were achieved for the range of 

methods investigated by selecting the decision threshold for ‘normality’ at the 

‘knee’ of the ROC curve. However, this produced a relatively high false positive 

rate for some of the methods. A significant improvement could be obtained in 

the segmentation results if a lower threshold point was chosen. The reduced false 

positive rate gave much better segmentation results overall, although we had to 

accept a lower true positive rate. 

e We demonstrated the failure of the histogram thresholding method for this seg- 

mentation problem. 

e The 2D FFT method gave the best segmentation results overall. 

This research has produced some promising results and demonstrates the feasibility 

of extracting textural information from grey scale images for use in a segmentation 

process. The work has also highlighted several areas which could be investigated further 

to improve the segmentation process, with a view to developing a system which could 

carry out full slick segmentation. These points are discussed in the next section. 

5.2 Future Work 

The test images used contain several objects or regions which appear to have slick like 

texture. These include rocks, trees, and calm water regions such as those identified in 
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Figure 2.5. A method of identifying these regions as non-slick is required. Features 

based on intensity levels or shapes may be useful. 

The use of dynamic information could be investigated. This could help to differenti- 

ate slicks which should be persistent over some reasonable period of time, from shorter 

duration effects such as the appearance of calm water regions created by local wind 

effects. Dynamic information could also be used to track the boundaries of a slick.
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