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Abstract 

This paper proposes two approaches to the analysis of the different behaviours emerging 

in arrays of coupled nonlinear oscillators, according to their different parameters of 

structure, coupling, stiffness or distribution. The first approach is a theoretical analysis 

of the dynamics of such arrays of coupled nonlinear oscillators, based on a recent tool: 

Contraction Theory. In the second approach, numerical techniques are employed, for 

such large arrays, to validate conditions for synchronisation of the system, according 

to its different parameters, as predicted by the theoretical analysis. 
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Chapter 1 

Introduction 

1.1 Background 

Mutual synchronisation is a common phenomenon in Nature. It occurs at different 

levels, ranging from the small scale of the cardiac pace-maker cells of the Sino-Atrial 

and Atrium Ventricular nodes in the human heart that synchronously fire and give the 

pace to the whole muscle or of the millions of neurons firing together to control our 

breathing, to the coordinate behaviours of crickets that chirp in unison and of fireflies 

that flash together in some parts of southeast Asia, or event to the Moon’s spin, which 

is precisely in synchrony with its orbit [25]. 

The dynamics of coupled oscillators is a very broad field of research. 

The study was, first, initiated by Huygens, who noticed, in the 17" century, that 

two pendulum clocks on the same shelf would, after a while, reach a stable state, where 

they would swing with exactly the same frequency, but in anti-phase [2]. 

It involves, today, a variety of research fields, such as Mathematics [23, 33, 34], 

Biology [27], Chemistry [8], Neuroscience, Robotics, Electronics, or Nano-Science[28}. 

Indeed, using the synchronisation properties by imitating the natural oscillating net- 

works is found to be very useful in building such devices as, for instance, artificial 

pacemakers, olfactory bulbs and breathers, laser arrays, or micro-electro-mechanical 

devices.



CHAPTER 1. INTRODUCTION 

In both the natural and human-made worlds, the important thing is not the behaviour 

of one oscillator (a single cell or neuron does not have any effect), but of the global 

system. 

Therefore, the question one might want to answer is: what global phenomena could 

be expected to arise from the rhythmical interactions of whole populations of periodic 

processes? 

Winfree [33] was the first to underline the generality of the problem, fixing the 

first assumptions for a mathematical model. In his work, each oscillating species (cell, 

cricket, fireflies) is modelled as a nonlinear oscillator with a globally attracting limit- 

cycle. The oscillators were assumed to be weakly coupled, and their natural frequencies 

to be randomly distributed across the population. 

Kuramoto [8] proposed the first model. His assumptions were that each oscillator 

is equal to the others, except for the frequency and phase, that the system has a 

mean-field coupling, and that the amplitudes of the oscillations are all the same. 

This kind of model, called a phase-space model analyses the behaviour of the phases 

all the oscillating species, and concludes on the emergence, or not, of a global behaviour. 

Another approach of the problem is to perform an analysis directly on the state of 

the system itself, instead of on the phase of each oscillating species. 

This approach uses what are called state-space models, which are much closer to 

physical reality, as they do not set as restrictive conditions on the oscillator and the 

coupling, as the phase-space models. 

However, one cannot say that one model is better than the other, as there still does 

not exist a general and explicit analysis tool to study the state-space models. 

1.2 Motivation 

This paper intends to analyse the different behaviours emerging in arrays of coupled 

nonlinear oscillators, according to their different parameters of structure, coupling, 

stiffness or distribution, using both a phase-space model and a state-space model.



CHAPTER 1. INTRODUCTION 

The importance for the oscillators to be nonlinear is crucial: as it will be demon- 

strated numerically at the end of the paper, coupled linear oscillators do not reach 

synchrony; the only global phenomenon which can be observed in networks of coupled 

linear oscillators is resonance, which is the response of a system that is non-active, id 

est that demonstrates no oscillations without external driving: without an external 

force, the oscillations die. In practice, the analysis will mainly be applied to the case 

of Van der Pol oscillators, which present the main interest of being autonomous oscil- 

lators, id est which do not need to be externally driven to continue oscillating. 

First, the state-space model approach will be driven by a recent nonlinear system anal- 

ysis tool, based on studying convergence between two arbitrary system trajectories: 

Contraction Theory. 

Three different behaviours - synchronisation, anti-synchronisation, and oscillator- 

death - will be spotted, according to conditions on the coupling-strengths, for arrays, 

of various sizes, of coupled identical oscillators. 

Then, the phase-space model approach will be based on a numerical analysis of simula- 

tions results for large arrays of coupled non-identical oscillators, displaying the depen- 

dencies of the synchronisability of the system on different parameters of the array, such 

as the coupling-strength, the configuration of the coupling, the number of connections, 

the stiffness of each oscillator, or the distribution of the natural frequencies. 

Finally, a conclusion will draw some remarks, advices and ideas, for those who would 

intend to physically build such arrays.



Chapter 2 

Contraction Theory Approach of 

the Dynamics of Networks of 

Coupled Identical Nonlinear 

Oscillators 

This chapter carries out a theoretical analysis of the dynamics of coupled identical Van 

der Pol oscillators, using a recent method: Contraction Theory [20, 21, 29, 30, 31, 32]. 

After a brief summary of the basic definitions and results of contraction theory, 

a contraction analysis is performed on two coupled identical Van der Pol oscillators. 

The behaviour of simple patterns of coupled identical Van der Pol oscillators is then 

studied, according to the different symmetries of the couplings. Finally, larger arrays of 

coupled identical Van der Pol oscillators are analysed. The chapter ends with a critical 

analysis of the contraction theory approach towards the coupled nonlinear oscillators 

problem. 

2.1 Contraction Theory 

This section briefly summarises basic definitions and results of contraction theory. 

Consider an m-dimension nonlinear system: 

10
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x = f(x,2), (2.1) 

where f is an m x 1 nonlinear function vector and x is an m x 1 state vector. 

Assuming f(x, t) is continuously differentiable, one has: 

6x7 6x + 6x7 6x 

Of ay) nf ot 
(Fo) 6x + 6x (Fe) 

os 
= dx? (= +5) ox 

< (5x7 dx) 

Ox = Ox 

= 26x'J,ox 

bx? J,6x 

bx? bx 
v'J,v 

viv 
= 2Xmaz(Is) x7 5x, (2.2) 

=x" ox   

  < 26x™5x max 

where 6x is a virtual displacement between two neighbouring solution trajectories of 

the system, J, = 3 (J + J?) is the symmetric part of the Jacobian matrix: 

of 
d= ax’ 

and Amaz (Js) is the largest eigenvalue of J,. 

Hence, if J, is uniformly negative definite, all its eigenvalues are uniformly strictly 

negative, thus so is its largest eigenvalue Amar, and the virtual displacement vector 6x 

converges exponentially to the nil vector [30], implying, in turn, that all the solutions of 

the system (2.1) converge exponentially to a single trajectory, regardless of the initial 

conditions. 

More generally, consider a coordinate transformation: 

02 = (00x; 

where ©(x, t) is a uniformly invertible square matrix. 

One has: 

a:
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< (627 52) = 607 52+ 627 dz 

= (@5x 7" @sx)" Ja + bat (65x ee 05x) 

. af\" : of — ies x = 6x (+0) 6z +62 (0+0%) ix 

zz 

= dQ" (e + ox) 6a + ba (6 db ox) 0-62 

= 6at (((8 +05) eo") + (6+ ex) e*) bz 

= 2627F,6z, 

where F, = 3 (F oe F*) is the symmetric part of the generalised Jacobian matrix: 

=aile Of 9-1 F= (e+eF Je : 

Hence, if F, is uniformly negative definite, the vector dz converges exponentially 

to the nil vector, implying, in turn, that all the solutions of the system(2.1) converge 

exponentially to a single trajectory, regardless of the initial conditions. 

By convention, if F, is uniformly negative definite, the system (2.1) is called con- 

tracting and f(x, t) is called a contracting function. 

2.2 Dynamics of Two Coupled Identical Van der 

Pol Oscillators 

This section investigates the dynamics of networks composed of two coupled identical 

Van der Pol oscillators, with respect to their coupling strengths and signs. 

Three behaviours are studied: synchronisation, anti-synchronisation, and oscillator- 

death; first individually, on different basic examples, then altogether on a more general 

system. 

12



CHAPTER 2. CONTRACTION THEORY APPROACH OF THE DYNAMICS... 

2.2.1 General Results 

Before getting started with the coupled identical Van der Pol oscillators case, a few 

general results about coupled identical systems should be set. 

Theorem 1 Consider a pair of one-way coupled identical oscillators: 

{ x £(x1, t) 

X2 = f(x2,t) + ua) — u(x) ’ 

where x,X2 € R™ are the state vectors, £(x,t) the dynamics of the uncoupled oscilla- 

tors, and u(x;) —u(x2) the coupling force. If the function f — u is contracting, the two 

oscillators will reach synchrony exponentially, regardless of the initial conditions. 

Proof The second subsystem, with u(x;) as input, is contracting, and x, (t) — xa(t) is 

a particular solution. O 

Theorem 2 Consider two coupled subsystems. If the dynamics equations verify: 

% —h(x:,t) = x —h(x2,t), 

where the function h is contracting, then x, and x2 will converge to each other expo- 

nentially, regardless of the initial conditions. 

Proof Denote by x;(¢) and x2(¢) the solutions of the two coupled subsystems. Define: 

B(x1,x2,t) = x: —h(x1,2) 

X2 — h(x, t), ll 

and construct the auxiliary system: 

y = h(y) + e(x(¢), xo(t), 4). (2.3) 

The system (2.3) is contracting since the function h is contracting. Thus, all the 

solutions for y converge together exponentially. Since y = x;(t) and y = x(t) are two 

particular solutions, one gets that x;(¢) and x;(t) converge to each other exponentially, 

regardless of the initial conditions. oO 

13
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To be applied to the coupled identical Van der Pol oscillators case, the conditions 

in Theorem 1 and Theorem 2 need to be relaxed to uniformly negative semi-definite 

systems, introducing the concept of semi-contraction. 

Theorem 3 Consider an m-dimensional nonlinear system: 

x = (x,t). (2.4) 

If the symmetric part F, of the Jacobian F = x is uniformly negative semi-definite, the 

system (2.4) is, by convention, called semi-contracting, and any virtual displacement 

vector 5x between two solutions converge exponentially to a constant vector. 

Proof Using the same argument as in the previous section, one gets, for the virtual 

displacement 6x: 

4 (5x7 5x) SAD Minne (Bp) Ox OX: 

where Amaz(F's) is the largest eigenvalue of the matrix F,. Thus, if F, is uniformly 

negative semi-definite, its largest eigenvalue A;oz is either uniformly strictly negative, 

or zero, which means, from what precedes, that 6x converge exponentially to a constant 

vector. Oo 

Applied to the Van der Pol oscillator case, Theorem 3 gives the following result: 

Lemma 4 Consider a Van der Pol oscillator 

£+(Bt+aa’)t+u*2 = u(t), (2.5) 

driven by an external input u(t), where a, 8 and w are strictly positive constants. All 

the solutions of the system (2.5) converge exponentially to a single trajectory, regardless 

of the initial conditions. 

Proof Introducing a new variable y, the system (2.5) can be written: 

i = ate oe 
; u 
y = -wr+-5 

14
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The corresponding Jacobian matrix is: 

and its symmetric part: 

F, = fae 4 

is negative semi-definite. Thus, the system is semi-contracting, and according to The- 

ba 
orem 3, the virtual displacement vector dz = between two solutions of the 

oy 

0 
system converges exponentially to the constant vector 

8 Yoo 
Looking at the first subsystem of the system (2.6), one gets: 

bt = wéy—(B+az")dz 

> WbYoo. 

Thus, 5% has a limit 1. 

Suppose | # 0. Then, after a certain period of time, dx will be increasing or decreasing 

constantly, depending on the sign of J, and will, therefore, never converge, which is a 

contradiction with the fact that dx converges exponentially to 0. Thus, 1! = 0, which 

implies: dy. = 0. 

One can conclude that the virtual displacement vector 6z converges exponentially to 

the nil vector, which is equivalent to saying that all the solutions of the system (2.6), 

thus of the system (2.5), converge exponentially to a single trajectory, regardless of the 

initial conditions. O 

In the rest of the paper, the terms oscillator and nonlinear system will only ap- 

ply to the Van der Pol oscillator case whenever they refer to a semi-contracting system. 

From what precedes, Theorem (1) and Theorem (2) can be generalised as follows. 

Corollary 5 Consider a pair of one-way coupled identical oscillators: 

15
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13: = f(x1,t) 

X= £(xe,t) + u(xi) — u(x) ” 

where x;,X2 € R™ are the state vectors, f(x,t) the dynamics of the uncoupled, and 

u(x,) — u(x) the coupling force. If the function f — u is contracting (or semi- 

contracting), the two oscillators will reach synchrony exponentially, regardless of the 

initial conditions. 

Corollary 6 Consider two coupled subsystems. If the dynamics equations verify: 

X1—h(a,t) = x2 —h(x.,¢), 

where the function h is contracting (or semi-contracting), then x; and x2 will converge 

to each other exponentially, regardless of the initial conditions. 

The contraction theory results are now fully ready to be applied to the coupled 

identical Van der Pol oscillators case. 

2.2.2 Synchronisation 

Consider a system of two-way coupled identical oscillators: 

{ % = £(x,,t) + ui(x2) — u(x) 
X_ = £(xe,t) + ue(x1) — uo(xe) © 

Suppose f — (u; + ug) is contracting (or semi-contracting). 

One gets: 

uy (x2) + u2(x1) 1 — (f(%1, t) — (uri) + ue) 

= Xo — (F(%2, t) — (ui (x2) + u2(x2))) 

I 

According to Corollary 6, x; and x2 will converge to each other exponentially, 

regardless of the initial conditions. 

Furthermore, the coupling forces in system (2.7) vanish exponentially, so, for non- 

zero initial conditions, both oscillators tend to their original limit-cycle behaviour, but 

with a common phase. 

16
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Hence, if the system: 

x = f(x,t) 

has a stable limit-cycle, both oscillators will continue oscillating, with a common phase. 

By convention, the two oscillators are said to be reaching synchrony. 

Applying this result to the coupled identical Van der Pol oscillators case, one gets 

as follows. 

Consider two coupled identical Van der Pol oscillators: 

& + a(a? —1)e) +2, = ay (2 — 4) 
Ho + a(x —1)to+w*a. = ake(%) — a2) ’ 

where a and w are both strictly positive constants. 

Defining the following functions: 

£(x,t) = te?) cay > 

et 
wea) = [°C 

u(x) 

y 

The symmetric part of the Jacobian matrix of f — (u; + ug) is: 

x 
where x = , one gets that the system (2.8) is equivalent to the system (2.7). 

0 0 

which is uniformly negative semi-definite if h, + 2 —1> 0. 

F, = bata ane me 

Therefore, for , + K2 > 1, f — (u; + ug) is semi-contracting, and the system: 

kee i (xt) 

has a stable limit-cycle (according to Appendix A), which implies that the two oscilla- 

tors will reach synchrony exponentially, for non-zero initial conditions. 

This result confirms what one might have intuited: synchronisation takes place for 

strong enough coupling forces. 

WG



CHAPTER 2. CONTRACTION THEORY APPROACH OF THE DYNAMICS... 

2.2.3 Anti-Synchronisation 

Consider a system of two-way coupled identical oscillators: 

{ x, = h(x,,t) + u(x2) — u(x) (2.9) 
X_ = h(xe,t) + u(x) — u(x) * 

Suppose h is contracting (or semi-contracting) and odd in x. 

One gets: 

x, —h(x;,t) = u(x) — u(x) 

—(u(xi) — ua) 

—(X2 — h(x, t)) 
= (—%2) — h(—x2, 1) 

According to Corollary 6, x; and —x2 will converge to each other exponentially, 

regardless of the initial conditions. 

Furthermore, considering the system: 

{ X = (h(x1,t) — 2u(x1)) + (u(x2) + u(x)) (2.10) 

X_. = (h(x, t) — 2u(x2)) + (ue) + u(x2)) ” 

equivalent, to the system (2.9), one gets that, if u is odd in x, the term u(x;)-+u(x2) in 

system (2.10) vanishes exponentially, so, for non-zero initial conditions, if the system: 

x = h(x,t) —2u(x) 

has a stable limit-cycle, both oscillators will continue oscillating, but with an opposite 

phase. 

By convention, the two oscillators are said to be reaching anti-synchrony. 

Applying this result to the coupled identical Van der Pol oscillators case, one gets 

as follows. 

Consider two coupled identical Van der Pol oscillators: 

ak(—a2 — £)) &, + a(x? — 1)a) + way 

aK(—%, —Z) * Hy + a(23 — 1)d_ + war, (2.11) 

18
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where a and w are both strictly positive constants. 

The system (2.11) is equivalent to: 

aK(—£2 + 4) & + a(x? + (24 — 1))a1 + wz, 
aK(—% + a2) ° Bq + a(23 + (2K — 1))t_ + wee 

Defining the following functions: 
bs

 
# co
 \ [sae Gre tal toy |: 

z 
where x = , one gets that the system (2.11) is equivalent to the system (2.9). 

y 
The symmetric part of the Jacobian matrix of h is: 

F- —a(z?+(2«-1)) 0 
0 Onl) 

which is uniformly negative semi-definite if 2k — 1 > 0. 

Therefore, for « > 3, h is semi-contracting, and h is odd in x, so x; + X2 vanishes 

exponentially, regardless of the initial conditions. 

Moreover, u is odd in x, and the system: 

4 Il h(x, t) — 2u(x) 

am -a(= —2)+wy 
—wr 

has a stable limit-cycle (according to Appendix A), which implies that the two oscilla- 

tors will reach anti-synchrony exponentially, for non-zero initial conditions. 

This result confirms what one might have intuited: anti-synchronisation takes place 

for strong enough inhibitory coupling forces. 

2.2.4 Oscillator-Death 

Consider an autonomous non-linear system of oscillators: 

x = £(x,t) (2.12) 

19.
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Suppose f is contracting (or semi-contracting). 

One knows, by definition, that all the solutions of the system (2.12) converge expo- 

nentially to a single trajectory, regardless of the initial conditions. The system being 

autonomous, id est with no external force, the nil vector is a particular solution, which 

implies that all the solutions of the system (2.12) will tend exponentially to the nil 

vector, regardless of the initial conditions. 

By convention, the oscillators are said to be reaching oscillator-death. 

Applying this result to the coupled identical Van der Pol oscillators case, one gets 

as follows. 

Consider two coupled identical Van der Pol oscillators: 

#, + a(x} -1)a)+w22, = an(d2 — a) (2.13) 
#) + a(23 -—1)d2+w*a. = aw(—d) — a2) ’ : 

where a and w are both strictly positive constants. 

Defining the following function: 

-o(2 + («& —1)a1) + wy; + Kae 

f(x,t) = 4 foo 
—a(3 + («& — 1)ar2) + wy2 — Kary 

wx 

T, 

where x= | ” , one gets that the system (2.13) is equivalent to the system (2.12). 
2 

Yo 

The symmetric part of the Jacobian matrix of f is: 

-a(z?+(K-1)) 0 0 0 
ad 0 0 0 0 
eat 0 0 -a(23+(«-1)) 0]? 

0 0 0 0 

which is uniformly negative semi-definite if « —1 > 0. 

Therefore, for « > 1, the whole system is semi-contracting, as well as autonomous, 

which implies that the oscillations of the two oscillators will die. 
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This result confirms what one might have intuited: oscillator-death takes place 

for strong enough coupling forces: one in the excitatory way, and the other in the 

inhibitory way. 

2.2.5 General Case 

Consider two identical Van der Pol oscillators coupled in a general way: 

{ #, +0(2? —1)¢;+w22, = a(yéo — wity) (2.14) 
&+a(23—1)d2+w't. = aya; — Kay) ’ 

where a@ and w are both strictly positive constants, and « is a positive constant. 

According to what precedes, one gets the following results: 

e if y >1-—k, 2 converges exponentially to x2; 

e if y<«—1, 2, converges exponentially to —x». 

A study of the stable behaviour of the coupled system needs to be performed, in order 

to analyse whether it keeps oscillating or tends to a stationary equilibrium. 

Assuming y > 1 —k, one gets: 

&j +(x? —1)a;+w2, ~ a(y—K)ai, t= 152; 

which gives the stable dynamics of x; and zp as: 

B+a(a?+(k-y-1))ti+u'2;, = 0, i=1,2. 

According to Appendix A, the dynamic equation has a stable limit-cycle if y > k—1, 

and a stable equilibrium point at the origin otherwise. 

Assuming  < & — 1, one gets: 

#+o(2}-1)a;+w*2, ~ —a(y+%)zi, i=1,2, 

which gives the stable dynamics of x; and x2 as: 

Eto(ait+(k+7—-V)éitw%e, = 0, 1=1,2. 
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According to Appendix A, the dynamic equation has a stable limit-cycle if y < 1—K, 

and a stable equilibrium point at origin otherwise. 

From this study, one can conclude that: 

e the two oscillators will reach synchrony if y > 0 and y > [1 — x]; 

the two oscillators will reach anti-synchrony if y < 0 and |7| > [1 — «|. 

This result agrees with the common intuition that excitatory coupling leads to syn- 

chrony, while inhibitory coupling leads to anti-synchrony, for a strong enough coupling 

force. 

Furthermore, if 7 = 0, the system (2.14) is equivalent to two independent stable 

subsystems. Therefore, if « > 1, both x, and x2 tend to the origin, which can be 

considered as a continuous connection between y > 0 and y < 0. If « = 1, 2; and 

Z2 will keep oscillating for all y 4 0. Oscillator-death as a transition state between 

synchronised and anti-synchronised solutions does not exist except when y = 0. 

Consider now a coupled system with non-symmetric couplings: 

{ &+a(2? -l)é+w2x, = a(yto — m4) 
dg +.a(03 — dg +22. = alot — Kote) ’ (2.15) 

where a and w are both strictly positive constants. 

Defining the following function: 

3 
=o(4 + («1 —1)t1) +wy + 1122 

wey 
F(c, 2) 3 

i —a(F + (Ke — 1)22) + wy + y201 
—W2 

Ty 

yw 
where x = , one gets that the system: 

t2 

Yo 

Si) 
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is equivalent to the system (2.15). 

Therefore, the symmetric part of the Jacobian of the system (2.15) is: 

—a(z?+(K;-1)) 0 nin 0 
ie 0 0 0 0 

4 whee 0 -a(x2+(K2—-1)) 0]’ 
0 0 0 0 

which can be shown, by a cofactor/minor analysis, to be uniformly negative semi- 

definite if: 

Ky 1, 

1, 

(m +72)? 
ae 

From what precedes, if k; = 1 and k2 = 1, the only way for the system to reach 
IV
 

IV.
 

Ka 

(#1 — 1)(*2 — 1) IV
 

oscillator-death is 7, = 0 and y2 = 0. 

Therefore, the condition for oscillator-death of a truly coupled system (2.15) is: 

Kk, > 1, 

ee Sal, 
2 

Diep 2 4 

2.3 Dynamics of Simple Patterns of Coupled Iden- 

tical Van der Pol Oscillators 

This section analyses how the symmetries of the coupling forces can affect the synchro- 

nisation of simple arrays of coupled identical Van der Pol oscillators. 

Four patterns often encountered in large networks in the natural world are studied: 

chain structure, one-way coupled ring, two-way coupled ring, all-to-all coupled star, 

and their threshold coupling values for synchronisation are compared. 

In order to avoid repetitions, in this section, as well as in the rest of the paper, results 

for contracting functions or systems will also apply to semi-contracting functions or 

systems, in the coupled identical Van der Pol oscillators case, without further mention 

about it. 
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2.3.1 Chain Structure 

Before getting started with the coupled identical Van der Pol oscillators case, one can 
easily extend the result of Theorem 1 to a network containing n oscillators with a chain 
structure. 

Theorem 7 Consider a chain of one-way coupled identical oscillators: 

% = £(x:,t) 
X2 = £(X2, t) + uo(x1) — uo(x2) (2.16) 
Xi, = f(xp,t) + Un(Xn-1) — Un (Xn) 

where X1,X2,...,X, € R™ are the state vectors, f(x, t) describes the dynamics of the 
uncoupled oscillators, and u,(X;-1) — u,(x;), for i = 2,...,n, the coupling forces. If 
the functions f — u,, for i = 2,...,m, are contracting, all the oscillators will reach 
synchrony exponentially, regardless of the initial conditions. 

Proof Applying the result of Theorem 1 to the first two subsystems of the sys- 
tem (2.16) with f — up contracting, one gets that the second subsystem converges 
exponentially to the system: 

X= (x,t), (2.17) 
One can, then, apply again the result of Theorem 1 to the system (2.17) and the 
third subsystem of the system (2.16) with f — ug contracting, and so on, until the last 
subsystem. Oo 

Applying Theorem 7 to the coupled identical Van der Pol oscillators case, one gets as 
follows. 

Consider a chain of one-way coupled identical Van der Pol oscillators: 

% +a(2?-1)¢,+w?2, = 0 
%_+0(23 -1)to+w2x = Qk (41 — &) (2.18) 

E, +0(22 -1)in twa, = On (tn — Sp) 

where a and w are both strictly positive constants. 
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Defining the following functions: 

fens ee ee 

uj(x) = [ae 

z 
for j = 2,...,n, where x = | , one gets that the system (2.18) is equivalent to the 

y 
system (2.16). 

The symmetric part of the Jacobian matrix of f — Uy) TOV 7 2, Pais: 

F, = | —@(2?+(«;-1)) 0 
—— 0 o|> 

which is uniformly negative semi-definite if kj-1>0. 

Therefore, for «; > 1, f — uj is semi-contracting, for j = 2,...,n, and the system: 

x = f(x,t) 

has a stable limit-cycle (according to Appendix A), which implies that all the oscillators 
will reach synchrony exponentially, for non-zero initial conditions. 

2.3.2 All-to-All Coupled Star: On 

Networks with S,, symmetry can be analysed using an immediate extension of Theo- 
rem 2. 

Theorem 8 Consider n coupled oscillators. If there exists a contracting function 
h(x, t) such that: 

%1 —b(xi,t) =---= x%&, —h(xp, t), 

then all the oscillators will synchronise exponentially, regardless of the initial condi- 
tions. 

For instance, consider the following network of n identical oscillators coupled with 
diffusion type force (id est coupled on the amplitudes, and not on the velocities): 

25



CHAPTER 2. CONTRACTION THEORY APPROACH OF THE DYNAMICS... 

n 

% = £(xi,t)+ (u(x) — u(x),  i=1,...,n. (2.19) 
jel 

Contraction of f — nu guarantees the synchronisation of the whole network. 

Applying this result to the coupled identical Van der Pol oscillators case with S4 sym- 

metry, one gets as follows. 

Consider the following S,, network of n coupled identical Van der Pol oscillators: 

n 
G+ oi —1)a,+u%e, = ox) (t)-%), i=1,...,n, (2.20 i z 

j=l 

where @ and w are both strictly positive constants. 

Defining the following functions: 

f(x, t) 

we) = [57], 

H 
—
 | A o/
h | = aE = <
 

ee
, 

x 
where x = , one gets that the system (2.20) is equivalent to the system (2.19). 

y 
The symmetric part of the Jacobian matrix of f — nu is: 

Pe aren oes rr 

which is uniformly negative semi-definite if nx — 1 > 0. 

Therefore, for « > 3, f — nu is semi-contracting and the system: 

x = £2) 

has a stable limit-cycle (according to Appendix A), which implies that all the oscillators 

will reach synchrony exponentially, for non-zero initial conditions. 
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2.3.3 Two-Way Coupled Ring: D,, 

To remain simple, the only case when n = 4 will be investigated here. 

Consider the following coupled network with D4 symmetry: 

x = F(x) + (Gia) — ule) + (UG) — u(x), 4 = 1,2,3,4, (2.21) 

where the subscripts i — 1 and i +1 are computed circularly. 

x3 xX: 
Combining these four oscillators into two groups * | and | 

X2 x4 

, one gets the 

following system: 

u(x) + u(x4) e. x1 — f(x, t) + 2u(x) 
u(x) +u(xs) | ~ | 2 — £(x2,t) + 2u(x2) 

= | x3 — £(x3, t) + 2u(x;) 

X4 — £(x4,t) + 2u(x4) |” 

x x: 
According to Theorem 8, if the function f — 2u is contracting, * | and | . 

x2 X4 
will converge to each other exponentially, regardless of the initial conditions. 

Thus, if f — 2u is contracting, one gets: 

{ %1 —£(x1,t) + 2u(x1) ~ 2u(x2) 
X — f(x2,t) + 2u(x2) ~ 2u(x) ’ 

which gives the following stable dynamics system: 

\ a
 os
 

2 ie rx
 

* Ss
 { X — f(x, t) + 4u(x:) 

X_ — £(X2, t) + 4u(x2) | 

— x 2 ce = * eS
 

Once again, according to Theorem 8, if the function f — 4u is contracting, x, and 

X2 will converge to each other exponentially, regardless of the initial conditions. 

Hence, if f — 2u and f —4u are contracting, the four oscillators will reach synchrony 

exponentially, regardless of the initial conditions. 

Applying this result to the coupled identical Van der Pol oscillators case with Ds 

symmetry, one gets as follows. 
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Consider the following D, network of four coupled identical Van der Pol oscillators: 

G+ a(a} — 1s +0x = on((éi-1— 4) + (G41 —4)), 1 = 1,2,3,4(2.22) 

where a and w are both strictly positive constants, and where the subscripts i — 1 and 

i+ 1 are computed circularly. 

Defining the following functions: 
a B Rar

 I tae +wy 

u(x) = eek 

x 
where x = , one gets that the system (2.22) is equivalent to the system (2.21). 

y 
The symmetric part of the Jacobian matrix of f — ju, for j € N* is: 

—a(2? +(jx—1)) 0 
KF, = 0 o}? 

which is uniformly negative semi-definite if jx —1> 0. 

In particular, if 2« —1 > 0 and 4« — 1 > 0, the functions f — 2u and f — 4u are 

semi-contracting, and the system: 

x)=) fz) 

has a stable limit-cycle (according to Appendix A), which means that a sufficient 

condition for the four oscillators to reach synchrony is: « > i, for non-zero initial 

conditions. 

2.3.4 One-Way Coupled Ring: Z,, 

In order to analyse the case of the one-way coupled ring, the previous results need to 

be extended, using the concept of partial contraction. 

Theorem 9 (Partial Contraction) Consider a nonlinear system of the form: 
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x= o(x, t) a (xst), 

where c(x, t) is contracting. If a particular solution verifies a specific property indepen- 

dent of the explicit form of d(x, t), then all system trajectories will verify this property 

exponentially, regardless of the initial conditions. The system is said to be partially 

contracting. 

Proof Construct an auxiliary system driven by the input d(x(¢), t): 

¥ = ely,t) +d(x(2),9). 

Since c(y, t) is contracting, the auxiliary system is contracting. Therefore, since: 

y(t) —c(y(t),t) = x(t) — c(x(?),¢), 

Theorem 2 guarantees the exponential convergence of x(t) and y(t) towards each other, 

regardless of the initial conditions. If a particular solution xo(t) verifies a specific 

property independent of the explicit form of d(x,t), then a particular solution yo(t) 

verifies the same property for every possible input d(x(t), ¢). Since the auxiliary system 

is contracting, all trajectories y(t) tend exponentially to yo(t), so they will verify the 

property exponentially. In turn, since x(t) and y(t) tend to each other exponentially, 

this implies that all trajectories x(t) will verify the property exponentially. oO 

Before getting started with the one-way coupled ring case, one may, first, want to 

define a few matrix notations, which will be re-used in the next sections as well. In 

what follows, “> 0” (respectively, “< 0”, “> 0”, “< 0”) stands for: “is positive 

definite” (respectively, “is negative definite”, “is positive semi-definite”, “is negative 

semi-definite” ). 

Definition Consider n square matrices K; of identical dimensions, and define: 

iS 0 0 
eel 6 270 

Ky, a oe oe 

0 10) --= -K, 

One has Ix, > 0 if, and only if, K; > 0, Vi. 
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Definition Consider a square symmetric matrix K, and define: 

K K K 

ees K sce 
ey er: ‘ f 

nxn 

and 

pie KG uate SoeeS etlacs 

TK(ij) = sien ; 
s+ -K ee K 

ee ee 
where all the elements in TX (ij) except those dlivady Depiagel in the four intersection 

points of the * and j*" rows and i‘* and j** columns are zero. It can be shown that: 

K>0 > Uk>0 and TR(ij) > 0. 

To remain simple, the only case when n = 4 will be investigated here. 

Consider the following coupled network with Z, symmetry: 

% = f(xi,t)+Ki1-x), 1=1,2,3,4, (2.23) 

where K is a square symmetric matrix, and the subscripts i— 1 and i+1 are computed 

circularly. 

The system (2.23) is equivalent to the following system: 

4 
& = f(xi,t)—K(2x4+xin tx) +K ox, 1 =1,2,3,4. 

jal 

One may now construct an auxiliary system driven by the input Ka x; (t): 

4 

He = {(yit)-KQyit+yirtyn2)+K ox (), i= 1,2,3,4, 
a 

which admits the particular solution: y; = y2 = y3 = y4 = Yoo, With: 
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4 

Yoo = £(¥c0,t) — 4Kyao + KS x;(t). 
j=l 

To apply Theorem 9 for the specific property x; = x2 = x3 = x4, and prove that 

all solutions of the system (2.23) will verify this property exponentially, id est that 

all the x; will synchronise exponentially, regardless of the initial conditions, there only 

remains to study the symmetric part of the Jacobian matrix of the auxiliary system: 

F, - 2K -K -K 0 

aoe OP 2k ok -K 
% —-K 0 F; — 2K -K i 

-K -K 0 Fy, — 2K 

where F; = ae and whose symmetric part is: 

F,,-2k -k -K att 
eons -K F,-2K -¥ iG 
oa -K -K F,-2k -K , 

K K =k -K —K F,—2K 
i 1 

= Th,-«— 3Uk — oF 

where: 

K 0 Keo 

ee || Bt) 3% 
int K 0K 0 

0: aK 20K 

One knows that if, for i = 1,2,3,4, F;, - K < 0, then Th,,-K < 0, and if K > 0, 

then UX > 0 and F, > 0. If both conditions are satisfied, the Jacobian F, is negative 

definite, thus the auxiliary system is contracting, and all the x; will synchronise expo- 

nentially. 

Applying this result to the coupled identical Van der Pol oscillators case with 24 

symmetry, one gets as follows. 

Consider the following Z, network of four coupled identical Van der Pol oscillators: 
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&+0(c? -1)¢;+w2x, = an(di1-4),  i=1,2,3,4, (2.24) 

where @ and w are both strictly positive constants, and where the subscripts i — 1 and 

i+1 are computed circularly. 

Defining the following function: 

and coupling matrix: 

ak 0 

a | 0 ak ; 

zx 
where x = , one gets that the system (2.24) is equivalent to the system (2.23). 

y 
One gets that, for i = 1,2, 3,4, the matrix: 

; _ [ -a(z?+(*%-1)) 0 
BK = 5 0 |? 

where F;, is the symmetric part of the matrix F; = ee is uniformly negative 

semi-definite if « -1> 0. 

Moreover, if « > 0, one gets: K > 0. 

Noticing, once again, that the system: 

x = f(x,7) 

has a stable limit-cycle (according to Appendix A), one gets that a sufficient condition 

for the four oscillators to reach synchrony is: « > 1, for non-zero initial conditions. 

2.4 Dynamics of Larger Arrays of Coupled Identi- 

cal Van der Pol Oscillators 

The aim of this section is to find a synchronisation condition on the coupling force, by 

performing a partial contraction analysis of the dynamics of larger arrays of identical 
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oscillators, with general coupling structures, before applying it to the particular case of 

identical Van der Pol oscillators, coupled with nearest-neighbour and sparse structures. 

This analysis introduces links towards graph theory, that further research may want 

to explore. 

2.4.1 General Coupling Structure 

Consider the following network containing n identical oscillators coupled with diffusion 

forces: 

x= f(r) KE eye), t= 1 at, (2.25) 
JEN; 

where the coupling matrix K is symmetric and positive definite, and \/; denotes the 

set of indices of the active links of oscillator i. 

In what follows, all the JV; are considered to be having the same number of elements, 

fOY $l ee Mea 

The system (2.25) is equivalent to the following system: 

n n 
= f(xi,t) + K Do (x; — xi) -K))>x; +Ko >> x;, an 

JEN: 322 j=l 

where Ko is chosen to be a constant symmetric positive definite matrix. 

As usual, one may now construct an auxiliary system driven by the input K )7j_, x,(t): 

a n 
vi = f(vit)+K DO (yj-yi) -—Ko lyst Ko > x(t),  i=1,...,m, 

JEN j=l j=l 

which admits the particular solution: y; = +++ = yn = Yoo, with: 

Yoo = £(¥00,t) — NKoYoo + Ko Sox; (2). 
j=l 

To apply Theorem 9 for the specific property x; = --- = x, and prove that all 

solutions of the system (2.25) will verify this property exponentially, id est that all 

the x; will synchronise exponentially, regardless of the initial conditions, there only 

remains to study the symmetric part of the Jacobian matrix of the auxiliary system, 

which is: 
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1 Aaa, 
F, = Ih,-5 Tei) — UR, 

JEN 
i=l)... 

where F;, is the symmetric part of: F; = SS ae 

One may introduce the following definition, making reference to graph theory. 

Definition Let: 

1 ae 
Jeo ey SS Tk(i3) — Uk, 

GEN; 

i=1,...n 

The network is said to be connected if: for Kg > 0 and K > 0, J, < 0. 

One can notice that the definition of J, has a physical interpretation: it represents the 

network’s geometric structure, whereas If, represents the oscillators’ internal dynam- 

ics. 

The purpose of the following analysis is to get a condition on the coupling force, in 

order to get: 

Amaz(Fs) < 0, 

where the notation \mac(M) refers to the largest eigenvalue of a matrix M. 

Noticing that F, = Th, +4J,, and that Ko and K are both symmetric, one gets the 

equality: 

DMies(lte) = Sepec TS) tema de) 

It is evident that, if J, is only negative semi-definite, no condition on the cou- 

pling force will ever be found. Therefore, one has to prove that Ko can be chosen 

large enough to make J, < 0, and still not affect the synchronisation rate, defined as 

Amaz (F's). 
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The largest eigenvalue of J, can be calculated as follows [12]: 

Amante) = max v!Jrv 

1 a 
eave ye. Tx(ij)v — v7UK,v 

GEN; 

i=1,..4n 

m: 
IIvl=1 

Since Ky > 0, —v"UK,V keeps decreasing as Ko increases, for all vector v = 

Uili=t,...n) except on the set }>”_, v; = 0, so one can choose Ky large enough, and still seal i=l 8 8) 

get a condition on the coupling force: 

1 a 
Amaz(Jr) = max | —5v" Y7 TE(is)v 

livil=1 GEN 

Thi w=0 
§=1,...)n 

1 
=e a min va > T(ij)v 

et es 
Elie! i=). 

= Ami} So TR) |, 
GEN; 

i=1,....n 

according to the Courant-Fischer Theorem [11, 22], where the eigenvalues are arranged 

in an increasing order, and: 

Md} Do Tk) | = =Am | SO TRE) | =0, 
JEN JEN, 

t=1,....% f=1,....0 

where m is the dimension of the individual oscillator. 
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Note that, in the particular case m = 1, eigenvalue \2 | > TK(ij) | is a 
GEN; 

i=1,...n 

fundamental quantity in graph theory, named algebraic connectivity, which is equal to 

zero if and only if the graph is not connected. 

From this analysis, one gets the following theorem: 

Theorem 10 Consider a network containing identical oscillators coupled with diffu- 

sion forces which are positive definite and symmetric in different directions. Assuming 

the network is connected, and the largest eigenvalue of F;, is bounded, all the coupled 

oscillators will reach synchrony exponentially if the coupling forces are strong enough. 

The two conditions to guarantee synchrony in Theorem 10 are the requirements 

to both the oscillators’ internal dynamics and the network’s geometric structure. The 

condition that the couplings have to be strong enough means: 

Amt | > Tif) | > max (Amar (Fi,)) 
GEN 
that 

  

uniformly. An upper bound on the corresponding threshold can be computed through 

eigenvalue analysis if a special network is given. 

2.4.2 Nearest-Neighbour and Sparse-Coupling in the Coupled 

Identical Van der Pol Oscillators Case 

Consider the following general network composed of coupled identical Van der Pol 

oscillators: 

#,+a(2?-1)t;+w?2; = aK Se — i), 2d att (2.26) 
GEN 

Defining the following matrices: 
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= eee 

hi, = | eet els £5 Yah 0 0 

ak 0 «= [Fo]: 
one gets, according to the previous partial contraction analysis, the Jacobian matrix: 

F, = ip, +J, 

oer ee Sy 
= E5 SS TEs) — UE. (2.27) 

GEN; 

i=l..n 

The problem with the system (2.27) is that the coupling matrix K is positive semi- 

definite, and not positive definite. 

To apply Theorem 10, and thus get a condition on the coupling strength «, one 

must, therefore, consider, first, the following system, obtained by ruling out the even 

rows and columns in the system (2.27): 

= 2 i rs Bo = Ga 5 SS TEs) — UR, (2.28) 

JEN; 
i=1,...n 

with: 

= -a(z? — 1), CS My 

= ak. 

  

Thus, one gets the following condition for the negative definiteness of F,: 
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Me} So TRG) | > max (Amer(F.,)) 
JEN; 

i=1,...n 

anr2| >> Tris)| > max (-a(2? — 1)) 

JEN; a 
fSLj.n 

6 > ———_, (2.29) 

M2] jew, TI) 

iSLjnan 

which guarantees the system (2.28) to be contracting, and, therefore, simultaneously, 

the system (2.27) to be semi-contracting, which ensures the exponential synchronisa- 

tion of all the oscillators. 

The previous result allows one to draw the following conclusions on the dependen- 

cies of the critical coupling strength K., which will be assessed in Chapter 3: 

e The critical coupling strength depends on the non-linearity of the system. 

First of all, one should notice that the real coupling strength is not «, but K = ak. 

Therefore, the condition (2.29) is actually: 

K > ’ 

{SD jeu, THD) 
i=1,...0 

which means that the critical coupling strength K, increases with the non- 

linearity a. 

e The critical coupling strength depends on the configuration of the coupling. 

For instance, one might want to compare two systems: 
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— one using a nearest-neighbour connectivity, where each oscillator is coupled 

equally to its four nearest neighbours; 

— one using a sparse connectivity, where each oscillator is coupled to a fixed 

number n, of neighbouring oscillators, with a certain probability of connec- 

tion depending on the distance between two oscillators - this probability will 

be fully described in Section 3.1.2. 

Computing the values of the algebraic connectivity of the Laplacian matrix 

Try for both cases, for the same number n of oscillators, one 
EN; : JEN: 

i=1,....n 

gets that the algebraic connectivity in the nearest-neighbour connectivity case 

is significantly smaller than in the sparse connectivity case, which means that 

the critical coupling strength is larger in the nearest-neighbour connectivity case 

than in the sparse connectivity case. 

For example, for n = 5* and n, = 4, for a given probability function, one gets: 

Kenn = 2.61803 for the nearest-neighbour connectivity case, and K,,, = 0.341104 

for the sparse connectivity case. 

More generally, one will see, in the next chapter, that the critical coupling 

strength depends on the average distance between two oscillators coupled to one 

another. 

e The critical coupling strength depends on the size n of the system. 

Computing the values of the algebraic connectivity of the Laplacian matrix for 

different values of n, one gets, according to Figure 2.1, that the critical coupling 

strength increases logarithmically with n, within a certain range of n. 

e The critical coupling strength depends on the number n, of connections per os- 

cillator. 

Computing the values of the algebraic connectivity of the Laplacian matrix, in the 

sparse connectivity case, for a given probability function, for different values of 
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Figure 2.1: Theoretical results for the critical coupling-strength as a function of n, in 
the sparse connectivity case. 

Ne, one gets, according to Figure 2.2, that the critical coupling strength decreases 

asymptotically to a positive constant as n, increases. 

Ke 
0.4 

Figure 2.2: Theoretical results for the critical coupling-strength as a function of n,, in 
the sparse connectivity case. 

All these conclusions confirm what one might have intuited in the first place: synchro- 

nisation is easier for small networks of not too stiff oscillators, coupled with a lot of 

connections scanning the whole area of the network. 

Chapter 3 will show that, in some cases, intuition might be wrong... 
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2.5 Limits of the Contraction Theory Approach for 

the Coupled Nonlinear Oscillators Problem 

This section carries out a brief critical analysis of the contraction theory approach 

towards the coupled nonlinear oscillators problem, showing its restrictiveness and com- 

plexity. 

2.5.1 Non-Optimality of the Contraction Analysis 

From the results of Section 2.1, one sees that the fact that contraction of the dynam- 

ics implies synchronisation of the system does not mean that synchronisation of the 

system implies contraction of the dynamics, which can be summarised by saying that 

contraction theory is an implication, and not an equivalence. 

Therefore, one might have a synchronising system which is not contracting. Thus, 

the conditions on the coupling strengths found during the contraction analysis per- 

formed all through Chapter 2 are not optimal, and one may find systems, with coupling 

strengths lying below the so-found thresholds, which might still synchronise. 

Consider, for instance, the system (2.8) of two coupled identical Van der Pol oscil- 

lators, studied in Section 2.2.2. 

The condition for contraction was found to be K; + K2 > 1. 

Consider, now, the representation through the time of the oscillations of the two 

coupled identical Van der Pol oscillators, taking «1 = K2 = 0.1. 

One can see, in Figure 2.3, that the two oscillators reach synchrony, even though the 

values of the coupling strengths do not satisfy the conditions required for the system 

to be contracting. 

Therefore, one might want to get more accurate conditions on the coupling strengths, 

performing numerical simulations. This will be the subject of Chapter 3. 
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Figure 2.3: Simulation result of two coupled identical Van der Pol oscillators, with 
parameters: @ = 1, w = 1, &, = K2 = 0.1, and random initial conditions. 

2.5.2 Non-Generality of the oscillators dynamics 

The analysis carried out all through Chapter 2 only deal with the case of coupled iden- 

tical nonlinear oscillators. Contraction Theory does not give any result for coupled 

non-identical nonlinear oscillators. 

Consider, for instance, the following system of two coupled non-identical Van der Pol 

oscillators: 

{ $+ an(aj—1)t1 + wt, = arr(t2— a1) (2.30) 
ig + 0915 —1)i2 + wh. = agho(t — da) ? 

and consider the representation through the time of the oscillations of the two coupled 

non-identical Van der Pol oscillators, taking distinct values for a, and ay, and w; and 

We. 

One can see, in Figure 2.4, that the two oscillators reach synchrony, even though 

their dynamics are non-identical. 

Therefore, one might want to perform numerical simulations on coupled non-identical 

nonlinear oscillators, and get results regarding the different values of their parameters. 

This will be dealt with in Chapter 3. 
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Figure 2.4: Simulation result of two coupled non-identical Van der Pol oscillators, with 

parameters: a; = 1, a2 = 1.5, w, = 1, we = 1.25, my = 10 and kp = 1, and random 

initial conditions. 

2.5.3 Complexity of the High-Dimensional Case 

Even though the analysis performed in Section 2.4 is valid for all dimension n, the 

calculations of the algebraic connectivity of the Laplacian matrix, carried out in Sec- 

tion 2.4.2, show to be very demanding in terms of computational memory, power and 

speed. 

Therefore, the calculations in Section 2.4.2 could not be performed for values of n 

beyond 12?, as they had to deal with finding the eigenvalues of a matrix n? x n?... 

The problem of finding a general analytical solution for the algebraic connectivity 

of the Laplacian matrix calls for some heavy analysis in Graph Theory, and has not 

been solved yet. 

Simulations in Chapter 3 do not deal with the Laplacian matrix of the system, and, 

therefore, are able to look at networks with n = 25, or even more. 

2.5.4 Exclusivity of the Synchronisation 

Reading through Chapter 3, one sees that contraction theory only deals with the 

convergence of the trajectories of the oscillators, and not about other effects of self- 

entrainment. 

Consider, for instance, the system (2.30) of two coupled non-identical Van der Pol 
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oscillators and the representation through the time of their oscillations, for given val- 

ues of the parameters. 

  

Figure 2.5: Simulation result of two coupled non-identical Van der Pol oscillators, with 
parameters: a, = 1, a2 = 1.5, w; = 1, we = 1.5 and K, = Ke = 1, and random initial 

conditions. 

One can see, in Figure 2.5, that the two oscillators do not reach phase-synchrony, 

but do reach pulse-synchrony, or phase-locking. 

This phenomenon will be tackled in Section 3.3.1. 

2.5.5 Absence of Spatial Behaviour Results 

Mainly from the facts that contraction theory does not deal with either coupled non- 

identical nonlinear oscillators or other self-entrainment effects other than phase-synchronisation 

it, therefore, cannot say anything about the spatial behaviour of arrays of oscillators 

that may form different patterns according to the different distributions of their fre- 

quencies. 

This aspect will be considered in the end of Chapter 3. 
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Chapter 3 

Numerical Approach of the 

Dynamics of Networks of Coupled 

Non-Identical Nonlinear Oscillators 

This chapter performs simulations of the dynamics of arrays of coupled non-identical 

Van der Pol oscillators. 

After a presentation of the configuration of the network of coupled non-identical 

Van der Pol oscillators, a numerical analysis of the dependencies of the critical coupling- 

strength to different parameters is performed. The chapter ends with a brief overview 

of other self-entrainment aspects. 

3.1 Configuration of the System 

This section presents the configuration of the network on which the simulations are 

performed, as well as the different kinds of coupling connectivity used. It defines, 

as well, the order parameters used in Section 3.2 to analyse the conditions on the 

coupling-strength to get synchronisation. 

3.1.1 Basic Equation of the Oscillator-Net 

To make things not too complex, the oscillator-net used to perform the simulations is 

two-dimensional a square array of coupled non-identical Van der Pol oscillators. The 
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two-dimensionality was chosen for two reasons: 

¢ first, it is much closer to the physical arrays one may want to build, in the MEMS 

field, for instance; 

e then, two dimensions are the best compromise between one-dimensional arrays, 

which barely show global self-entrainment effects, and three-dimensional arrays, 

which require bigger computational resources. 

The equation of motion of the oscillator-net is written as: 

# aaj is, tuje, = K) (¢;—%), 1=1,...,n, 
JEN: 

where a; and w; are, respectively, the non-linearity and the natural frequency of the it* 

oscillator, K is the coupling strength, N; denotes the set of indices of the active links 

of the i** oscillator, n. = card(N;), for i = 1,...,n, is the number of active links of 

each oscillator, and n is the total number of oscillators. 

One can notice that, contrary to Chapter 2, Chapter 3 does not consider «, which 

was only a convenience for contraction analysis, but directly deals with the effective 

coupling strength K = a, as this is the actual coupling strength one should set in 

order to build a physical array of such oscillators. 

Moreover, from the definition of n., one can see that the number of connections is 

considered to be the same for each oscillator. 

Simulations performed all through Chapter 3 usually use the following values for the 

parameters, unless the contrary is specified: n = 257, n, = 10, and a; = 1, for 

t=1hon: 

The initial conditions for x; and <;, for i = 1,...,n, are set to random complex 

numbers included in the square defined by —(1 +i) and 1 +i, and are identical for 

every simulation. Each oscillator is, therefore, bi-dimensional, matching usual physical 

cases. 

Simulations performed in Section 3.2 use a uniform distribution of the w; around the 

central frequency wo, with a bandwidth 5, where a < 1, to make the synchronisation 

easier to occur; Section 3.3.1 will show the effect of a too large 5. The natural frequency 
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of the i” oscillator is, for i = 1,...,n, set as: w; = wo— Q +54, and the oscillators are 

  

arranged on the square-lattice sites from the bottom left to the top right, in order of 

increasing natural frequencies. Usually, in what follows, simulations will be performed 

with: wo = 10 and 6 =0.1. 

3.1.2 Configuration of the Coupling Connectivity 

Simulations performed all through Chapter 3 use two types of configuration for the 

coupling connectivity [15]: 

e nearest-neighbour connectivity, where each oscillator is coupled equally to its four 

nearest neighbours; 

© sparse connectivity, where each oscillator is coupled equally to a fixed number 

ne of neighbouring oscillators, with a probability of connection, decreasing with 

the distance d;,; between two oscillators i and j, and defined by the following 

Gaussian probability density function: 

  
1 ay Pig = en at 

V2n0 

with mean zero and standard deviation o. 

Both configurations have a different physical meaning. 

The nearest-neighbour connectivity represents a short-range coupling: even though 

it is the least difficult to build, it will also show to be the least effective for synchroni- 

sation. 

The sparse connectivity is a long-range coupling: not as easy to build as the previous 

one, it will, nevertheless, prove to be more effective. Furthermore, the advantage of 

defining a Gaussian probability of connection, in comparison to, for instance, a random 

probability, is that one can control the average distance between two oscillators coupled 

to one another, which is proportional to the standard deviation a: this might be quite 

helpful, and cost-saving, when time comes to physically build such an array. 
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3.1.3 Definition of the Order Parameters 

In order to analyse whether, or not, synchronisation takes place, one needs to introduce 

a few parameters [19]. 

One may, first, define the average of the normalised complex amplitudes: 

  
ee) 

ie i aaa 
It is easy to see that, if all the 2;(t), for i = 1,...,n, are equal at an instant t, 

one gets: |X(t)| = 1. Therefore, if there is synchronisation, id est if all the 2;(t), for 

i=1,...,n converge to a single trajectory, the magnitude of X(t) approaches to unity, 

and the trajectory of X(t) converges to the unity circle. On the opposite, if there is 

no self-entrainment, the motion of X(t) remains exclusively inside the unity circle, and 

does not converge to a circle. 

To be able to analyse the synchronisation effect, independently of the time, one might 

want to introduce the order parameter 7 of the equilibrium state and the fluctuation 

¢ of |X(t)|, defined, respectively, as: 

2 4 

n = ((IX@P))*, 

and: 

¢ = (UX@l-(X))))*, 

where (.) is the long-time average. 

The average being processed on the long time, the behaviour of the early steps of 

the simulation does not have an important weight in the values of 7 and ¢, for the 

benefit of the long-time behaviour, so it is not too difficult to figure out that, if there 

is synchronisation, the values of 7 and ¢ will be, respectively, (around) 1 and 0. 

One can notice, as well, from the form of its definition, that ¢ will be zero even if 

there is only phase-locking, and not phase-synchronisation. 
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In Section 3.2, synchronisation will be considered reached if 7 > 0.95. The simula- 

tion results for ¢ do not appear to be very accurate: their global A-shaped behaviour 

is intuitively meaningful, but their deviation is too strong and, thus, does not enable 

one to get a precise result for K,; therefore, they will not be taken into account for the 

analysis, which implies that the results for the critical coupling-strength will only deal 

with conditions for synchronisation, and not any other effect of self-entrainment, like 

phase-locking. This phenomenon will, nevertheless, be tackled in Section 3.3.1. 

However, the results for ¢ will still be displayed, for future research to try and find 

a reason for such a non-accuracy. Its definition might make it too sensitive... 

3.2 Dependencies of the Critical Coupling-Strength 

This section performs a numerical analysis of the dependencies of the critical coupling- 

strength to different parameters. 

One must be aware that the range for the coupling-strength might vary from one 

figure to another, because of the different scale of the critical coupling-strength in each 

case. 

3.2.1 Connectivity-Dependency 

First, one might wonder if the configuration of the coupling connectivity is a determi- 

nant factor for the value of the critical coupling-strength. 

This can be analysed by simulating the value of the order-parameter 7, for differ- 

ent values of the coupling-strength K, using both nearest-neighbour connectivity and 

sparse connectivity. To be relevant, the number of connections in both cases must be 

the same; therefore, as it is equal to 4 in the nearest-neighbour connectivity case, n- 

has to be set to 4 in the sparse connectivity case. 

Figure 3.1 shows, in the nearest-neighbour connectivity case, that the order param- 

eter 7 increases slowly as K increases, and barely reaches 0.8 for K = 3 (at least for 

this sample), whereas, in the sparse connectivity case, the transition from the low n 

state to the high 7 state is quite sharp, and 7 goes beyond 0.95 at K = 0.6, and stays 
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Figure 3.1: Simulations results for 7 and ¢, in the (a) nearest-neighbour connectivity, 
(b) sparse connectivity case, with parameters: n, = 4, 0 = 6. 

    
close to 1 from that point. 

One can, therefore, conclude that synchronisation occurs more easily, and for a signif- 

icantly weaker coupling-strength, in the sparse connectivity case than in the nearest- 

neighbour connectivity case. This result confirms the intuition and the analysis carried 

out in Section 2.4.2. 

Moreover, the same simulations (not displayed here), performed on another sample, 

id est changing the initial conditions, proved 7 to be quite sample-dependent in the 

nearest-neighbour connectivity case, and not in the sparse connectivity case. 

Further simulations will, thus, be carried out on the sparse connectivity case only. 

3.2.2 o-Dependency 

Following the idea, presented in Section 3.1.2, that being able to get a control on the 

average distance between two oscillators coupled to one another may be quite helpful 

for building purpose, one may, now, wonder whether the standard deviation o of the 

Gaussian probability density function defining the probability of connection between 

two oscillators in the sparse connectivity case has an impact on the value of the critical 

coupling-strength. 
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This can be analysed by simulating the value of the order-parameter 7), for different 

values of the coupling-strength K, using sparse connectivity, with different values of o. 

As usual, to be relevant, the number of connections must be the same in each case. 
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Figure 3.2: Simulations results for 7 and ¢, in the sparse connectivity case, with pa- 
rameters: (a) o = 2, (b) o = 6, (c) o = 20, (d) o = 50. 

Figure 3.2 confirms what one may have intuited: the critical coupling-strength is 

larger for a small o (here, K, = 1, for o = 2) than for a large o (here, K, = 0.17, 

for o = 6), which means that synchronisability increases with the average distance 

between two oscillators coupled to one another, within a certain range of o. 

However, Figure 3.3 shows that keeping increasing 0, beyond a certain threshold, 

does not have any influence on K, any more. This can be explained by the fact that the 
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Figure 3.3: Simulations results for the critical coupling-strength as a function of a, in 
the sparse connectivity case. 

array analysed has a finite dimension, so the average distance between two oscillators 

coupled to one another cannot go beyond the value of this dimension. 

From this analysis, one could conclude that it is possible to choose, easily, an opti- 

mal value of o to have a minimal critical coupling-strength (in the analysed case, this 

value would be around 20). Nevertheless, one will see, in Chapter 4, that such a choice 

cannot be made so simply. 

3.2.3 n.-Dependency 

A direct question one may, now, want to answer is whether the number of connections 

per oscillator has an influence on the critical coupling-strength. 

This can be analysed by simulating the value of the order-parameter n, for different 

values of the coupling-strength K, using sparse connectivity, with different values of 

ne. As usual, to be relevant, the values of the other parameters must be the same in 

each case. 

Once again, Figure 3.4 proves the intuition, as well as the analysis performed in 

Section 2.4.2, to be right: the critical coupling-strength decreases significantly with 

the number of connections, within a certain range of n, (from K, = 0.6, for n. = 4 to 

‘Ke 0,1 7)-for te = 20.) 

However, Figure 3.5 shows that this significant decrease is not valid anymore be- 

yond a certain point: from a certain number of connections, adding some more does 
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Figure 3.4: Simulations results for 7 and ¢, in the sparse connectivity case, with pa- 

rameters: (a) n, = 7, (b) m = 20, (c) me = 30, (d) ne = 50. 

Figure 3.5: Simulations results for the critical coupling-strength as a function of ne, in 

the sparse connectivity case. 
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not improve the synchronisation that much, anymore, and the critical coupling-strength 

seems to converge to a limit value, below which no synchronisation can occur, no mat- 

ter how many connections are set. 

The consequence of this result will be discussed in Chapter 4. 

3.2.4 n-Dependency 

A last dependency of the critical coupling-strength on the structure of the array might 

be interesting to study: the size of the array itself. 

This can be analysed by simulating the value of the order-parameter 1, for different 

values of the coupling-strength K’,, using sparse connectivity, with different values of n. 

As usual, to be relevant, the values of the other parameters must be the same in each 

case. 

Once again, Figure 3.6 proves the intuition, as well as the analysis performed in 

Section 2.4.2, to be right: the critical coupling-strength increases with the size of the 

array, within a certain range of n (from K, = 0.12, for n = 100 to K, = 0.19, for 

n = 400.) 

However, Figure 3.7 shows something that the analysis in Section 2.4.2 could not 

predict, because of the too small size of array it could handle with: the increase of the 

critical coupling-strength is not valid anymore beyond a certain point; from a certain 

size of the array, adding more oscillators does not affect the synchronisability of the 

system, and the critical coupling-strength remains constant, no matter how many os- 

cillators are added. 

The consequence of this result will be discussed in Chapter 4. 

3.2.5 a-Dependency 

After analysing the dependencies of the critical coupling-strength on the structure 

of the array, on may, now, wonder whether the structure of the oscillator itself has 

an influence or not on K,. The case of the natural frequency will be dealt with in 

Section 3.3.1; therefore, the only case of the a-dependency will be exposed here. 
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Figure 3.6: Simulations results for n and ¢, in the sparse connectivity case, with pa- 

rameters: (a) n = 10, (b) n = 15, (c) n = 20, (d) n = 30. 

Figure 3.7: Simulations results for the critical coupling-strength as a function of n, in 

the sparse connectivity case. 
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As usual, the value of the order-parameter 7 will be simulated, for different values 

of the coupling-strength K, using sparse connectivity, with different values of a, and 

the same values for all the other parameters. 

(a) (b) 
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Figure 3.8: Simulations results for 7 and ¢, in the sparse connectivity case, with pa- 

rameters: (a) a = 0.5, (b) a = 0.1, (c) a= 0.01, (d) a=0. 

Figure 3.8 and Figure 3.9 seem to show that the nonlinearity a has nearly no- 

influence on the critical coupling-strength K,. 

One must notice that this representation for small nonlinearity is deceiving: indeed, 

it seems to show that, for a = 0, id est for a linear oscillator, synchronisation is still 

present..., which seems weird, given the fact that self-synchronisation only occurs 
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Figure 3.9: Simulations results for the critical coupling-strength as a function of a, in 
the sparse connectivity case. 

within nonlinear systems. 

This deceit comes from the definition of the order parameters, especially this of the 

average of the normalised complex amplitudes X(t). Actually, X(t) will converge to 1 

whenever all the trajectories converge to a single, but will not say anything about the 

average amplitude of this single trajectory. 

Therefore, one might want to define the average of the (non-normalised) complex 

amplitudes: % 

¥@) = 1 al, 
i=1 

and look at its behaviour through time for different values of a. 

Figure 3.10 shows two interesting results: 

e for a not too small (for example, 0.5 < a < 1), there is synchronisation, and the 

speed it occurs with increases with the nonlinearity; for a smaller a (for instance 

a = 0.1), synchronisation is not reached within the time elapsed, but the increase 

in the amplitude of the simulations indicates it will be, after a while; 

e for a nil a, there is no synchronisation: the convergence of the trajectories to 

a single one is a kind of self-entrainment which is not synchronisation, but only 

a resonance phenomenon; that is why the amplitude of the oscillations is very 

small (around 0.015, against around 2 in the case of synchronisation). 

The consequence of this result will be discussed in Chapter 4. 
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(a) (b) 

  

Figure 3.10: Simulations results for Y(t), in the sparse connectivity case, with param- 

eters: (a) a = 1, (b) a=0.5, (c) a=0.1, (d) a=0. 

3.3 Other Effects of Self-Entrainment 

This section presents a brief overview of effects of self-entrainment, other than syn- 

chronisation: phase-locking and clusterisation. 

3.3.1 Phase-Locking 

As presented in Section 2.5.4, there exists a phenomenon when the oscillations are self- 

entrained, but do not reach phase-synchrony: instead, their frequencies synchronise, 

so their phases are locked to a constant difference; this phenomenon is called phase- 

locking, and can occur, for instance, for a small enough coupling-strength, when the 

bandwidth of the initial distribution of the natural frequencies is too large compared 

to the central frequency, id est if the condition oe <1, mentioned in Section 3.1.1, is 

not satisfied. 

As this phenomenon can less easily be spotted using the technique of the order pa- 

rameters, one might want to look directly at the spatial distribution of the frequencies. 

Figure 3.11 shows that the phases of the oscillators are not synchronised, but that 

their frequencies have reached synchrony and converged to the central frequency wo. 
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(a) (b) () 
  

  

  

Figure 3.11: Simulations results for the spatial distribution of the (a) natural frequen- 
cies, (b) phases, (c) frequencies, with parameters: wp = 10,6 = 1,0 = 2 and K = 0.05. 

3.3.2 Clusterisation 

Another self-entrainment phenomenon can also be observed when only part of the 

oscillators reach synchrony, to form different groups, called clusters, of coherent os- 

cillators; this phenomenon is called clusterisation, and can occur, for instance, for a 

small enough coupling-strength, when the initial distribution of the natural frequencies 

shows specific properties, for example one or two Gaussian peaks. 

(a) (b) (c) 

  

Figure 3.12: Simulations results for the spatial distribution of the (a) natural frequen- 

cies, (b) phases, (c) frequencies, in the one-Gaussian-peaked case, with parameters: 
Wo = 10, OGaussian = 4, 6 = 2 and K = 0.05. 

Figure 3.12 shows a case of particular case of phase-locking, where the oscillators 

behave like two macro-oscillators - one in the middle, one dispatched in the four corners 

- that have reached anti-synchronisation. 

Figure 3.13 shows a case of particular case of phase-locking, where the oscillators 

behave like two macro-oscillators - one in the diagonal, one dispatched in two of the 

corners - that have reached anti-synchronisation. 

These behaviours may be interesting to study, in the future, as they might reduce 
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Figure 3.13: Simulations results for the spatial distribution of the (a) natural frequen- 

cies, (b) phases, (c) frequencies, in the two-Gaussian-peaked case, with parameters: 
wo = 10, OGaussian = 4,0 = 2 and K = 0.05. 

a large array problem, to a two-oscillators macro-problem. 
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Chapter 4 

Conclusion 

4.1 Summary 

This paper has been carrying out an analysis, first theoretical, then numerical, of the 

global behaviour of arrays of coupled nonlinear oscillators, according to the values of 

its different parameters (coupling-strengths, coupling symmetries and configurations, 

numbers of oscillators and connections, natural frequencies distributions, nonlinearity). 

In a first place, a theoretical analysis, based on Contraction Theory, studied the dif- 

ferent behaviours of arrays of coupled identical nonlinear oscillators, according to the 

different values of the coupling strengths used. 

This analysis, simple and general, gave exact and global results, applicable to any 

type of coupled identical nonlinear oscillators. Although its efficiency for arrays of small 

numbers of oscillators, arranged in simple patterns, cannot be denied, its application 

to large networks with general coupling structures proved to be, in practice, equivalent 

to a very complex problem, calling for a good deal of Graph Theory, including results 

that are still to be found. 

In addition, this analysis was too restrictive, mainly, as it could not deal with the 

case of coupled non-identical nonlinear oscillators, which can show more interesting 

results. 

A numerical analysis was, therefore, to be carried out on larger arrays of coupled 
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non-identical nonlinear oscillators. 

Using order parameters meant to show whether, or not, synchronisation occurred, 

this analysis displayed some conditions on the coupling-strength for the studied array 

to reach synchrony, according to other parameters related to either the oscillators’ 

internal dynamics, or the network’s geometric structure. 

The end of the analysis extended the study on other effects of self-entrainment, 

exploring the spatial behaviour of the array. 

4.2 Opening to Future Research 

The arrays studied in this paper do not mean to remain only theoretical: one might 

actually want to build them. 

In this optic, one may want to choose optimal parameters for synchronisation, in 

accordance with the results found. 

However, one must be careful, and remember that the choice of the parameters 

have a great impact, not only on the synchronisability of the array (which the previous 

analysis tried to display), but also on the actual cost of such a project. 

Thus, one might want to keep in mind that the factors of increasing cost are: 

e the number of oscillators; 

e the coupling-strengths; 

e the type of connectivity used: a sparse connectivity is much more difficult to build 

than a nearest-neighbour connectivity, which can directly use the conductivity 

properties of the lattice the oscillators are set on; 

e the number of physical connections; 

e the lengths of the physical connections; 

e the nonlinearity of each oscillator: a nonlinear oscillator is more difficult to build 

than a linear oscillator; 

e the total time required for the experiment to run. 
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Therefore, one may want to build a cost-function, to analyse the optimal solution 

to the following problems: 

e Increasing the number of connections allows the critical coupling-strength to be 

smaller, which is cost-saving, but it is, itself, cost-increasing; 

e Increasing the average distance between two oscillators coupled to one another 

allows the critical coupling-strength to be smaller, which is cost saving, but it is, 

itself, cost-increasing; 

e Increasing the nonlinearity of each oscillator increases the speed of synchronisa- 

tion, which is cost-saving, but it is, itself, cost-increasing; 

e Using a sparse connectivity allows the critical coupling-strength to be smaller, 

which is cost-saving, but it is, itself, cost-increasing, compared to using a nearest- 

neighbour connectivity. 

One should also keep in mind that there exists a minimal critical coupling-strength, 

which, from a certain point, cannot be decreased, not matter how many connections 

are added to the network. This statement may, first, seem to be a drawback, but it 

may prove to be quite useful in practice. It comes from the fact that an array using 

sparse connectivity is quite robust: from a certain point, adding oscillators or connec- 

tions does not affect the critical coupling-strength. In turn, this means that, for a large 

enough array, with many enough connections, loosing a few oscillators or connections - 

which might happen in a physical array - does not affect the critical coupling-strength, 

and, thus, the synchronisability of the system... 

Other aspects of the problem have not been tackled in this paper, and may be the 

object of further research. 

In order to reduce the analysis to a simpler small array problem, one might, first, 

want to try and get a clusterisation of the large array, in order to get an equivalent 

system of a few coupled macro-oscillators, and, then, perform a simple analysis on this 

small number of macro-oscillators. 

Instead of only looking at an array using either nearest-neighbour connectivity, or 

sparse connectivity, one might want to try to build an array using a combination of the 
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two: for instance, one could consider the behaviour of an array using a strong nearest- 

neighbour connectivity - easier to build - and a weak sparse connectivity - easier to get 

synchronisation. 

Considering the fact that it has been proved [18] that perfect synchronisation for 

short-ranged coupling is only possible in arrays of at least three dimensions, another 

idea would be to try and build three-dimensional arrays by superposing layers of two- 

dimensional arrays coupled to one another, and then get an array which would be easier 

and faster to synchronise, for smaller coupling-strengths, and using a nearest-neighbour 

connectivity, which would be cheaper. 

A last issue one might want to consider, if the array is to be built in the MEMS 

field: the dynamics studied all through the paper may not be applicable when it comes 

to the small-world dynamics, and, therefore, one may need to analyse the problem 

using quantum physics. . . 
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Study of the Stable-Limit Cycle 

Behaviour of a Single Van der Pol 

Oscillator 

There are plenty of ways of studying the stable-limit cycle behaviour of a single Van 

der Pol oscillator, among which is one using Liénard’s Theorem. 

Theorem 11 (Liénard’s Theorem) Consider the following system: 

y (Al) { é 

y —9(2) — f(a)y. 

Suppose f(x) and g(x) satisfy the following conditions: 

e f(x) and g(x) are continuously differentiable for all x; 

e g(x) is an odd function; 

g(x) > 0 for >0; 

e f(x) is an even function; 

The odd function F(x) = fy f(u)du has exactly one positive zero at x = a, is 

negative for 0 <x <a, is positive and nondecreasing for x > a, and F(x) — co 

asx O. 
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Then, the system (A.1) has a unique, stable limit cycle surrounding the origin in 

the phase plane. 

Applying this result to the single Van der Pol oscillator case, one gets as follows. 

Consider the following Van der Pol oscillator: 

£+(B+ac’)t+we = 0, (A.2) 

where a and w are strictly positive constants. 

Defining the following functions: 

f(z) = B+azx’, 
g(z) = wa, 

one gets that the system (A.2) is equivalent to the system (A.1). 

Therefore, one can notice that: 

e f(x) and g(x) are continuously differentiable for all x; 

e g(z) is an odd function; 

© g(x) > 0 for x > 0; 

f(a) is an even function; 

F(a) = (6 + $x?)x, which has a zero if, and only if, 8 < 0; in that case, 

C= —38, and F(z) is negative for 0 < x < a, is positive and nondecreasing 

for z > a, and F(x) > 00 as t + 00. 

One can, therefore, conclude that the Van der Pol oscillator has a unique, stable 

limit-cycle surrounding the origin in the phase plane, if, and only if, B < 0. 
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