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Thesis Summary 

There is a considerable interest in the investigation of traffic control in road networks. 

Road congestion is now part of daily life in urban environment. As cities develop, 

traffic congestion only worsens, and constructing more roads does not always resolve 

the problem. One of the approaches is to improve traffic lights management and make 

them adaptive to the traffic conditions. 

Using the traffic information, one aims to estimate the best traffic lights configura- 

tion for each junction. Using probabilistic methods, message passing techniques [1] can 

be applied to a road network, represented by a sparse graph, such that each junction 

shares traffic and traffic light control information with neighbouring junctions. 

It is the aim of the project to devise a belief propagation algorithm for efficient 

traffic lights management of a given road network according to the current traffic 
information. Two inherent cost/success measures will be employed based on equating 

traffic flow in all roads and on limiting traffic density per road below a fraction of its 

capacity. Simulations were carried out for both cases, and the algorithm gives good 

results. Depending on the cost function used, the algorithm manages to balance the 

loads or reduce the number of congested roads. 
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Chapter 1 

Introduction 

Several approaches exist to tackle the problem of traffic congestion. It is a class of 

problem we encounter in many areas: road networks, the Internet or any information 

network. Some of the approaches propose offline and centralized solutions, where traffic 

is routed using fixed rules from historical data on traffic flow. The main drawback is 

that these methods are not flexible enough to cope with dynamic changes in the traffic 

volume. In addition, centralized methods typically require higher computional costs. 

In the case of road networks, adaptive management of the traffic lights offer a much 

better solution. Cooperative methods [2] have been introduced to change the traffic 

rules in correspondance to the local current traffic demands. Here we are interested 

in a locally computed global solution, and use a probabilistic method called belief 

propagation [1, 3, 4, 5] to infer the optimal traffic lights configuration from the traffic 

information. 

1.1 Road traffic management 

Traffic management in roads is actually achieved by traffic lights and sign posts. In 

the case of recurrent congestion in an area, constructing new roads can reduce loads 

and decrease traffic jams. However they typically offer a costly and long-term solution 

to this complex problem. That is one of the reason to focus on traffic lights manage- 

ment. A classical approach is to coordinate them so that traffic flows. In rural areas, 

where traffic patterns are more easily identified we can define fixed rules from historical 

data, to synchronize traffic lights. However, in an urban environment, the dynamics are 

complex and require a more flexible approach as the traffic changes quickly. To coor- 

dinate the traffic lights, decentralized solutions are also considered but usually involve 

communication between the traffic lights and therefore a costly implementation. Inter- 

mediate solutions between centralized and decentralized approaches also exist, using 

multiagent systems [6].



CHAPTER 1. INTRODUCTION 

1.2 Traffic modelling 

Real road networks are difficult to describe exactly mathematically. A large variety 

of models are being used to simulate traffic for traffic forecasting and control. Some of 

them simulate the behavior of each car on a given network [7, 8]. K. Nagel [8] proposed 

a microscopic model based on cellular automata. Each car is described as a particle 

moving on a cell network, with its own speed, acceleration, destination etc. Other 

models consider macroscopic properties, like the Lighthill, Whitham and Richards 

model which uses the analogy between traffic and the flow of fluids[8}. 

We formulate the traffic routing problem as a flow optimisation problem. We take 

into account the current traffic loads, roads capacities and the network topology to de- 

termine the appropriate routing rules which minimize a cost function. We first describe 

a macroscopic model used to represent road networks. It is based on bipartite factor 

graphs composed of two sets of nodes representing respectively junctions and roads. 

We also model the interactions between junctions. The traffic flows are simulated ac- 

cording to a model similar to fluid dynamics. We will then consider two different cost 

functions depending on our objectives. The first one aims to balance the traffic over 

the roads, ignoring the roads capacities. Afterwards, we will focus on congestion in the 

network and use an associated cost function with capacity constraints. 

In both cases, a Belief Propagation algorithm is devised to minimize the cost func- 

tion. Experiments were carried out on random graphs on which we create traffic and 

simulate it according to our model.



Chapter 2 

Belief propagation algorithm 

2.1 Bayesian networks 

2.1.1 Definition 

A Bayesian network is a directed acyclic graph, in which nodes represent random 

variables and directed links represent probabilistic dependencies among the variables. 

They are used for modelling decision support systems and many other systems which 

involve probabilistic inference of dependent variables. 

Figure 2.1: Bayesian network 

The figure 2.1 is an example of Bayesian network. There is a directed link from 

node B to node D, it means variable D depends directly on variable B. The variable B 

is called a parent of D. For each node, there is a conditional probability distribution 

P(A | pa(A)), where pa(A) are the parents of A. In the case of a node A without 

any parents, its probability is represented by an unconditional probability distribution 

P(A). For some nodes, the variables have known values and are called evidence nodes. 

With this information, we can infer the conditional marginals of the variables on the 

non-evidence nodes.
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2.1.2 Inference 

The goal of inference in a Bayesian network is to find the conditional probability 

distribution of certain variables from the information on other variables with known 

values, by summing or integrating over any remaining undetermined variables. For 

example, in figure 2.1, one can determine the conditional probability P(C | A,B), 

from the known distributions P(A) and P(B). 

Several methods exists to infer these probabilities, exact and approximative ones. 

We are only interested in the approximative algorithm called belief propagation (BP), 

as it is the only algorithm used in this project. 

2.2 Belief propagation in Bayesian networks 

Given a Bayesian network, Pearl [3] proposed an iterative algorithm based on local 

propagation rules to infer the most likely values of its variables. The idea is to factor 

the marginal probability at a given node into a product of contributions coming from 

its neighbours with the following rules (using his notation): 

Consider a node X, having children Y;,...,¥;, and parents U;,...,U,. e+ and e~ 

denote the evidences coming respectively from its parent and child nodes. 

Its marginal probability is given by: 

P(X =2) = aX(zx)n(x), with a a normalizing factor (2.1) 

where 

Az) = Pee“ |X=a)= [J rv,(2) (2.2) 

mz) = P(X =2|e*) Pt P(x | u,...,Un) | [rx(u) (23) 

All those quantities are calculated with the messages sent by both its parents 7 (w;) 

and children Ay,(x). In the same way X sends the following messages which are prob- 

abilities: 

to Uj, Ax(ui) = _ P(U; = uj | X,U;4:) 

Ax(ui) 6M) ) SS P@lm,...stm)[] rx(ue) (2.4) 
ug, RAL k#i 

tees @ is a normalizing term 

(2.5) 

10
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Figure 2.2: BP in Bayesian networks 

to Y;, ny,(@) = P(X =2| Yj4,Uh,...,Un) 

my(a) = “X=2 (20) 
This algorithm is executed for all the nodes of the network, and is guaranteed to 

converge in Bayesian networks to the correct posterior probabilities. It offers the other 

advantage to have a computational cost growing linearly with the system size, but 

exponentially with the connectivity. 

2.3 Belief Propagation in bipartite factor graphs 

A bipartite factor graph is composed of variable nodes X = {X,,...,X,,} and factor 

nodes Y = {Yi,...,¥m}. £(A) represents the neighbouring nodes of X or Y connected 

to node A. The factor nodes represents probabilistic dependencies between the vari- 

ables nodes and are functions whose arguments are subsets of X. This representation 

expresses how the joint probability P(X = x) can be approximately factorised into the 

product of the local functions Y;(x,,y,)). Those functions have for arguments the values 

of the neighbouring nodes. 

Factor Yi YD Yk 

nodes s [ve] 

SY 

  

          <b 

Variable 

nodes at 

8 
w<
ay
, 

Le!
 

Figure 2.3: Factor graph 
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Joint probability mass function 

P(R=x) = [TPG ihe) = T] POG | 20%) 

1 
=e II Yi(L(%i) = xc) 

x = {x),...,,} and Z is a normalizing term 

Xc(y;) are the values taken by the neighbouring nodes of Y; 

It has been demonstrated [4, 5] that BP is mathematically equivalent in factor 

graphs and Bayesian networks. However in this case, the message are sent between the 

two different types of nodes. 

Message sent from Y; to X;: 

P(Y; | {Ye}epi, Xj = 23, {Xu }ugs) 

= YO View %s=2)) TT oxalate) 
xe(y;)\%9 XKEN(Y)\XG 

Ty,+x;(@;) 
  

Message sent from X; to Yj: 

Ax; (tj) = P(X; = 2; | {Xe}eas, {Yehea) 
xf] rsx,(z) (2.7) 

YREL(XG)\Y 

This algorithm have been employed in graphs with loops and have given excellent 

experimental results for decoding in turbo-codes and Low Density Parity Codes [9]. A 

reason to explain convergence of the BP algorithm in loopy graphs has been still to be 

found and has been studied by Y. Weiss [10]. 

12



Chapter 3 

Simple model 

To manage traffic lights, we first need a mathematical model of road networks to 

apply the algorithm. Our approach is similar [11], we devise an algorithm to minimize 

a cost function. 

As it was explained in the previous chapter, the BP algorithm has a computational 

complexity that grows exponentially with the connectivity. Road networks by nature 

have a graph structure with a connectivity which rarely exceeds 5, that is why the BP 

algorithm is suitable to the problem. It should give us a solution in a reasonable time 

scales whatever the size of the system is, as it grows linearly with the system size. By 

sending messages about the traffic lights configuration between junctions, we expect 

the algorithm to give a solution that minimizes traffic loads in the road network. In 

this project, we assume the traffic loads on roads to be known and usable as evidence. 

In this chapter, we first model a road network as a factor graph. The second task 

will be to use the BP algorithm to optimize the traffic lights management given the 

information we have on the loads. In this first cost measure considered here, we do not 

consider any capacity constraints on the roads to simplify the problem. 

3.1 Representation 

    

  

        

  

    

Figure 3.1: Conversion of the network to a factor graph 
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CHAPTER 3. SIMPLE MODEL 

We consider a road network of N junctions, with a fixed number C of bidi- 

rectional separated roads connected to each of them. Each lane of these roads has a 

limited capacity denoted as «jj; (for the lane (i + j)). To apply the algorithm, the 

road network is converted to the associated factor graph as in figure 3.1. The factor 

nodes are the functions f(;;)(z;,«;) which give probabilistic information about the load 

given traffic informations Y§ at time step t we have on each lanes of the roads. The 

variable nodes are the traffic light states X} at time step ¢. 

We do not model any driver behavior, so the car drivers follow exactly the traffic 

lights orders during their journey. Our model is pretty similar to information networks. 

The cars behave as information packets travelling along the edges of the graph, and 

being redirected accordingly to their destination at the nodes. However in our case, 

the drivers do not have any destination and drive in the network without stopping at 

any time. We assume the the total traffic within the network to remain constant. 

Definition of X!: The variable X! represents the state of the traffic lights at 

junction i. In this model, no realistic and complex traffic lights configuration are used. 

Each state is just an indication of how to redirect the incoming flow, as routing rules. 

The traffic lights redirect the traffic flow of incoming roads to outgoing roads; however 

U-turns are not allowed. 

rE) = {J>k| J ELH), KEL) \ 5} 

with £(i) denoting all the junctions connected to i 

  

Figure 3.2: Example of X! 

We assume that the traffic lights cycle through a finite set of states for a duration 

14



CHAPTER 3. SIMPLE MODEL 

of in a given order. Each of the states has a duration 6"(x;) so that: 

ers) =o! 
ei EN(i) 

; 5¢(2i) : The sum of the fractions of cycle =F" allocated to each state is equal to 1. 

O(a; ee = 1 
BEQ 

  

So we can define the fraction feo as the posterior probabilities of having this state 

x; given the global traffic information Y‘ = {Y;'} and others traffic lights configuration 

X'\ X} = {X{}i.4:. The more probable that state is, the more time it will be allocated. 

5 (ai) 
5 

  

  = P(X}=2;|¥',X'\ Xj) 

Definition of Y;!,;: The variable Yj eat ij Tepresents the traffic information on the 

lane connecting junction 7 to junction j. It can have any value between 0 and «jj. It 

is not a discrete model, so that traffic information represents a real flow similar to the 

density of cars rather than their number on a given road. It is the evidence we are 

going to use. 

The variables X} are the values we are trying to find in this project, by using them 

as variables to optimise a cost measure. The BP algorithm will be used to determine the 

conditional propability distributions P(X} | Y‘, X‘\ X!). Then the cost function will 

measure the quality of the expected traffic distribution this set of variables generates. 

It will work in a similar way as a cooperative system in which all the traffic lights share 

their information with their neighbouring junctions. 

3.2 Next time step generation 

The system has real dynamics, at each time step the traffic flows through the roads 

and junctions depending on the loads and traffic lights. We consider dynamics which 

are similar to fluids flowing through pipes. The outgoing traffic at a junction is equal 

to the incoming traffic and we assume that there is conservation of the traffic over time 

so there is no creation or loss of traffic between each time step. The main difference is 

that the state of each traffic light affects the traffic flow coming in and out of a given 

junction. That’s why the junctions interact with one another as the state of traffic 

lights of a certain junction is function of the neighbouring ones. It has repercussions 

on the flow coming in and out of this junction. 

15



CHAPTER 3. SIMPLE MODEL 

The traffic on a road is defined as the incoming traffic through its origin minus the 

outgoing flow. The incoming flows are weighted by the fraction of traffic light cycle 

times allocated to the various traffic light states, so that only part of this traffic is 

contributing to the flow in the considered road. 

®. / 
‘ ie 

(5G) Pcs wri 
f \ 

/ TN 

\ 

Figure 3.3: Interations between variables nodes 

From that, we can generate the incoming traffic in a road at the next time step: 

Atyy = YT P(X=k > 5)¥E 
kEL(i)/j 

The outgoing traffic is function of the time allocated to the road (i > j) which is 

the total duration of all traffic lights states (i > *) redirecting traffic from this road . 

It is defined as: 

ATi v= V5 SE P(XG = 1 = b) 
kEL(j)/é 

The traffic increment is then the difference between the two previous values: 

AY S Arye = acy (3.1) 

3.3. Cost function 

3.3.1 Definition 

Our main criteria to define the quality of a traffic lights configuration is to study the 

distribution of the traffic we expect it to generate. It would be interesting to observe 

how the loads on the roads are divided given this configuration. A good traffic light 

management would then lead to a balanced load, where there is no congestion. This 

is one method, and it is commonly used to qualify traffic networks. In information 

theory, the resource utilisation to route packets is also often used as a criteria. As we 

do not have any information of that kind, and will focus on traffic distribution. 

16



CHAPTER 3. SIMPLE MODEL 

The quadratic energy-cost function we are going to use is: 

1 t ar t\2 
Es) = NG » (Yj) (3.2) 

To normalize the cost function, it is divided by NC the total number of lanes. 

The choice of this function can be explained by the fact that it is closely related 

to the variance of the traffic distribution. The variance of a traffic distribution is by 

definition: 

Ve) = xe D4 - (33) 

= we (EG! - No EMS + Eevee) 

  

= xe Ly ey 
where Y = DES the total traffic 

If we neglect the constant term (%)’. the cost function is equal to the variance. 

This cost function is relevant as it measures the variance of the traffic distribution, and 

therefore how balanced are the traffic loads over the network. The more distributed 

the traffic on the roads is, the closer the loads on the roads are and the lowest the cost 

function is. 

Our goal is to optimise this cost function so that loads are spread equally on each 

road. We will also use it as a termination criteria for the algorithm and stop its 

iterations once variations are below a defined threshold. 

3.3.2. Optimal distribution 

In this toy problem, the optimal solution which minimizes the cost function is easy 

to find. The only constraint we have is that the overall traffic Y is constant over time. 

Vi, You en Ve 
ce) 

Due to the way the cost function is related to the variance of the system, the 

minimum of the variance is the minimum of the cost function. Actually the variance 

goes to 0 when each Y;j is the mean traffic load 35 a . It obviously still satisfies the traffic 

conservation constraint and represents a state a minimum difference for the variables. 

17



CHAPTER 3. SIMPLE MODEL 

The minimum cost is then: 

E,(¥") = es a a) 

3.4 Factor nodes 

3.4.1 Expected loads calculation 

What we need in the case of the factor nodes is not the generated loads, but the 

expected value of loads we would get if we set the two traffic lights X;, X; at certain 

states 2;,2;. We consider uniquely the contribution those traffic lights states make 

to the current road. It means that the incoming and outgoing flows still need to be 

weighted by the posterior probabilities P(X! = x; | ¥',X‘ \ Xf). 

If both states involve the considered road then they both contribute to change the 

traffic load. 

  

Figure 3.4: The two traffic lights contribute to update the flow of Y;f 

ViN(an2)) = Y§ + PUXE= (bd) 1Y.X'\ XD Yk 
P(X} = (i F) | ¥4X\ XH) VG 

Otherwise that means one of the state does not redirect traffic in or from this road. 

Thus the lane might have only an incoming or outgoing flow. 

Yj — P(X} = (i>) |¥,X'\ X) ¥3 
Ys + P(XE = (k 9) [YE X\ X) Yh 

if 25 # («> 3), YE" (ea) 
if aj # (i > +), Yj" (i, 25) 

The last case is if none of the states concerns the current road, then: 

if m A (* > 9) and aj A (@—>*), ¥G"(ai,2)) = Yh 

18



CHAPTER 3. SIMPLE MODEL 

3.4.2 Definition of factor node functions 

By definition the factor nodes represent the interactions between variables. Previ- 

ously, we saw that the traffic lights states have obviously repercussions on the system’s 

evolution. Two neighbouring traffic lights will interact and modify the loads on the 

lanes connecting them. From the load on a lane, we can compute an expected load 

Yea: ;) for the next time step if traffic lights X} and X} are set to the states x; and 

xj. This expected value concerns only the contribution of those two states x; and x;, 

neglecting any others incoming or outgoing flows. We define the factor nodes to rep- 

resent the posterior probabilities of having these expected contributions veo (a;,2;). 

The global problem is to minimize the cost function, by distributing all the traffic over 

the graph, but locally it corresponds to having each lane to minimize its traffic load. 

We will model the posterior probabilities to favour low expected values of flow, by 

giving them a higher probability. This will affect the BP algorithm. Thus each lanes 

will try to reduce its own load, but the message-passing algorithm will compare their 

belief and expectation to get a global solution. 

We will use a gaussian probability distribution, as they are easy to deal with and 

multiply it with the © function to forbid any negative value: 

BOE | Xt Sy x oy) 

exp (- B Cet (zi, 23) yr) e Ost! (a:, ;)) 

@  : temperature parameter 

Fg) (ais) 

R 

Q(x) : the © function returns 1 for a non-negative x, 

and 0 otherwise 

  

  

      

      

1 A ae 
eel 

\ 
i 08) 

5 | —— bete=1 
go4 \ —+— betera.t 
e \ = — betess0 

02} | 

\ 
°o 1 2 3 4 5 

Traffic on the lane = Y 

Figure 3.5: Gauss function 
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CHAPTER 3. SIMPLE MODEL 

The @ parameter controls the stiffness of the f(:;)(7i,2,;) function, as we can see in 

figure 3.5. For too high values of 3, the function favours strongly low values of flow, 

and can result in giving only very small values which give rise to numerical problems. 

On the other hand, too small values of @ will give messages that won’t differentiate 

between solutions. In this case, it would behave similarly as an uniform distribution 

and the low loads would not be favoured. 

As Y{*1 can only reach value between 0 and +00, f(ij)(i,j) has to be normalised 

by 4 to ensure it to be a probability distribution. 

+00 ir 
Vie V3 [ ef di = =o 

0 2V 8 
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Chapter 4 

Algorithm 

The traffic lights control algorithm consists in sending message between the junc- 

tions Xf and the lanes Y; connecting them. Gradually these messages should converge 

and give an approximative solution to the posterior distribution given the evidence. In 

this chapter, we will focus on describing how to compute these messages and how to 

apply the algorithm. 

4.1 Message passing equations 

There are two types of messages to send, depending if it is sent from a variable node 

X{ or a factor node Yj. They are respectly the qi.(i;)(«) and r(j).;(x) messages. We 

update each type of message at the same time for all nodes. 

We can distinguish two different cases depending on whether the message are sent 

from the origin of the roads or the destination of the road. 

If the messages are sent from a lane to its origin junction (i.e. rjj)—;(7) messages), 

the marginalization is carried out over all the possible states of the destination traffic 

lights. The associated update-rules are: 

rant) = Do fanlen ey) Gan(as) (4.1) 
2369) 

Otherwise, if they are sent between a lane and its destination junction, the equations 

are: 

rani) = YD fen(tnes) aan (ai) (4.2) 
riEXi) 

Here the marginalization is done over the states of the traffic lights at the incoming 

junction. 

The message qj-.(ij)(ti) is sent from the junction X; to the lane Yj. It is the 

product of the messages 1(4i)-.;(i); T(ix)i(;) coming from the other incoming lanes 
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Y,; and outgoing lanes Y;, connected to junction X;. It has to be normalized over all 

the possible values of 2;. 

    

  

      

  

  

t 
aes 

6 1 

t 

Yj % 

7 
t 

=         

  

Figure 4.1: Gauss function 

Ga (gy(ti) ox Il T (i) i(@i) II Tih) (Zs) 
kEL(i)\5 keL(i) 

We chose to initialise the messages at random normalized values as it does not 

change the efficiency of the algorithm. 

4.2 Description 

The input to the optimisation is the network topology, the link capacities and an 

estimate of the demand between each pair of edge nodes in the network. The output 

of the optimisation is a routing that gives the optimal flow on each link, according to 

a cost function. 

The parameter ¢, which define the tolerance for the variations of the cost function, 

is set at 0.0001. 
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At step time step t = 0 

Compute the system variance o? (Eq. 3.3) 

Compute 8 = sy 

Initialise the messages to random values 

Compute the cost function and save the value in oldCost 

for time step t = 1 to t = tax do 

for if =1/to tt = ttn, do 

for every road (i — j) of the graph do 

Compute the r-messages (Eq. 4.1 and 4.2) 

end for 

for every junction i of the graph do 

Compute the q-messages (Eq. 4.3) 

end for 

Compute the posterior probabilities from the current messages (See 2.3) 

Estimate the expected traffic loads from the current configuration (See 

3.4.1) 
Compute the cost function and save it into cost 

if abs(cost — oldCost) < € then 

Go out of the it loop 

end if 

end for 

Generate next time step 

end for       
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Chapter 5 

Experiments and results 

Before starting the experiments, we implemented a random road network generator. 

To avoid any finite-size effect, we used it to generate large networks of N = 1000 

junctions. We only consider graphs of fixed connectivity to simplify the problem, but 

the algorithm can be extended to any connectivity profile. As in most traffic models, we 

assume the traffic to be Poisson distributed; we set the initial traffic values accordingly. 

The experiments are carried out by applying the BP algorithm at each time step 

to find a configuration for the traffic lights. The solution is then used to generate the 

next time step, giving us new traffic loads on the roads. Finally, the system evolution 

is achieved by iterating those steps. 

In order to study the performance of the algorithm, for each generated network, we 

also let the system evolve from the initial state without applying any algorithm. We 

assign the traffic lights at a precise configuration, for which the probability distribution 

P(X! | ¥', X*\ X!) is uniform. 

  Va; € Oi), P(X} |YX'\ Xj) = RO 

where | Q(2) | is the cardinality of (i) 

That is effectively giving the same duration to all traffic lights state. Thus the 

outgoing traffic of any roads is shared equally with the roads connected to its outgo- 

ing end. We will also compare the algorithm’s efficiency to the optimal distribution 

E,(¥"). 
We will study how the algorithm converges to the optimal value. A second exper- 

iment is done to analyse its behavior given the network connectivity. Finally, we will 

observe the number of iterations the algorithm requires to converge to a solution at 

each time step. 

24



CHAPTER 5. EXPERIMENTS AND RESULTS 

5.1 Definition of the 6 parameter 

The only parameter we can manipulate in the model is the @ parameter. It dras- 

tically changes the performance of the algorithm, sometimes giving no convergence at 

all if chosen wrongly . The best performance was achieved by using a value related to 

the system variance V(Y‘). We thought about updating the @ parameter during the 

system evolution, and changing it to the new variance at each time step. We will see 

further that, as the time progresses, the algorithm manages to equilibrate the loads. 

The variance tends then to become very small and we encountered numerical problem 

in dealing with these small values. We therefore decided to use a constant value for 3 

which is the variance of the system at the first time step. 

During all the experiments, the 9 parameter has the value: 

1 

a= We be 
where V(Y°) = oa yy (¥% te na) 

ay 

5.2 Convergence to the optimal solution 

In figure 5.1, we show one example with a N = 1000, C = 3 network. The @ 

parameter is set as describe previously. The initial state is generated from a Poisson 

probability distribution of mean= 2.5. 

We notice that as the time goes by, the algorithm manages to get close to the 

optimal distribution. Moreover it converges to a steady state and keeps the loads 

balanced on all roads. The optimal distribution is not reached in one step due to the 

time it takes traffic to migrate on the graph; it may take several time steps for the 

algorithm to be able to distribute the traffic on all the roads. The traffic reduction of 

a congested road takes time, especially if it is located in a congested area. 

We notice that the algorithm behaves better that an uniform allocation of the 

traffic lights. It favours the highly loaded roads to distribute their traffic. Using flat 

posteriors, we still converge to the optimal distribution as it stillscatters the traffic. 

But that would not be necessarily achieved with a random allocation, because of the 

possible existence of congestion clusters. They are areas where the traffic lights tend 

to promote the incoming flows. It results in an increasing overall traffic in the area 

over time. 

We can see in figure 5.2 that the traffic loads on each roads tend to converge to 

the mean of the traffic over the network. It is logical as the cost is getting close to its 

minimum, the variance of system is becoming close to zero. It represents a state of 

nearly perfect distribution of the traffic so that the load is shared by all. 
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Figure 5.2: Histograms of the traffic values at the initial and final states 

5.3 Performance given the connectivity 

To study the comparative performance between our algorithm and an equal-time 

assignement of the traffic lights, we measure the percentage of improvement by using 

the BP algorithm at each time step. 
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Improvement measure definition: 

Ex(¥p) — Es(¥np) 
Perf(t) = 100 x Ep(¥5) ~ Ba (¥*) (5.2) t 

  

1 en 
where Ep(Y*) = NG » (ye) 
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Figure 5.3: Performance measurement given the connectivity (run on 500 randomly 

generated networks) 

The statistics on figure 5.3 show the performance of the BP algorithm compared to 

the flat posteriors case. For any connectivity, the performance goes up as the system 

evolves, however at the same time we observe a slow down of the increase. As we 

reach the optimal distribution, the traffic is more distributed than at the initial state, 

so the traffic loads tend not to change very much. The functions f;;(2;,7;) give very 

close probabilities whatever are the states 2; and x;. The more loaded roads are not 

favoured anymore, and it results in an nearly equal allocation of time for all traffic 

lights. That is why the improvement rate is decreasing with time. 

The choice of using a constant / is also part of the reason of the slowing down. By 

updating it at each time step, the smaller value of (@ we use in the lastest time step 

would make the little traffic difference sensible. 

Another important point to notice is that we get a smaller improvement as the 

connectivity increases. The more roads are connected to a junction, the easier it 

becomes to distribute the traffic. Congested roads can reduce their traffic much faster, 

and have more solutions to do so. In this case, an equal-time assignement is numerically 
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*closer’ to the solution found by the algorithm. That explains why the difference in 

performance diminishs when the connectivity is growing. 

5.4 Iterations at each time step 
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Figure 5.4: Average number of iterations of the BP algorithm at each time step given 

the connectivity (variance is smaller than the symbol) 

I also measured, at each time step and for different connectivities, the number of 

iterations needed for the algorithm to find a solution. In figure 5.4 we show the results 

averaged over 500 networks. We notice that for the connectivity C = 6 the algorithm 

definitely converges faster. As previously, the more choice we have to distribute the 

traffic, it becomes easier to find a solution. Thus the algorithm requires less iterations 

to reach a stable state of its messages. The biggest difference is at the first time step, 

that is when the the network is most unbalanced and traffic light control is the most 

difficult to manage. 

However there is a behavior we cannot explain in the results we got. The C = 5 

connectivity case is troubling, because it takes statistically more iterations for the 

algorithm to converge to a solution at the first time step. The structure of the graph 

with this connectivity does not differ from the other cases and cannot be the cause 

of this. After a long time looking for errors in the implementation of the algorithm, 

I could not find the reason for this behaviour. Understanding this behaviour would 

require further study. 

28



Chapter 6 

Limited capacity model 

We saw that the algorithm manages to balance the loads on the roads and mini- 

mizes the cost function. It was a simple problem that we make more complicated by 

considering limited capacity constraints on the roads. From now on each road has its 

own capacity «;; that we have to take into account in the optimisation problem. This 

will give us a much more realistic model, in a sense that real traffic networks cannot 

handle an unlimited number of cars. In this chapter, instead of studying the traffic 

distribution, we will focus on the network congestion. 

Our task is to introduce a new cost function as our criteria have changed, and 

modify the factor nodes definition to fit the new problem. 

6.1 Cost function 

6.1.1 Definition 

The new cost function is a global congestion measure of the network. For that it 

gives the percentage of congested roads. We consider that a road is congested, if its 

traffic is above a certain ratio a of its capacity Kay. 

1 
Ec(¥') = We Loy -—a Kij) (6.1) 

ig 

Q(x) : the © function returns 1 for a non-negative x, 

and 0 otherwise 

The optimal value is obviously zero, if the traffic is distributed so that none of the 

roads is congested. 

6.1.2 Satisfiable case 

The satisfiable case is when the cost function can be nullified, from the knowledge 

we have about the network. It exists then a solution to distribute the traffic so that all 
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CHAPTER 6. LIMITED CAPACITY MODEL 

the loads are below the threshold. The following inequality should be obeyed if such a 

minimum could be found. 

eM Sa diny 
ing ig 

If the inequality is satisfied, then it means that we have enough ressources to tackle 

all the traffic demands, the global traffic demand being smaller than a considered 

fraction of the network total capacity. 

6.2 Factor nodes 

From now we will model the factor nodes, so that they only accept not-congested 

roads. We define them as: 

PYG | XP = ai, X}=2;, X) 

Mi Gaol aay 005) (0 (6.2) 
Rij 

Fes (ti, 25) 

By using the step function ©, we only allow positive traffic values below a fraction 

a of the road capacity. 

Practically, if we use a function of this form, it might generate a chain reaction 

which nullify all the messages. Let consider the case where whatever are the ingoing 

and outgoing flows of a road, the expected contribution Yor is above a Kjij. So for 

all values of (x;,2;), the function f(;)(x;,x;) returns 0. From the equations (4.4) and 

(4.6), we notice that the r(j).;(7) messages are nullified. Therefore the q;.(j)(«) are 

also equal to 0. We end up with no messages sent between nodes. 

In order to solve that issue, we need to approximate the step function and give some 

tolerance for the limited capacity constraints. For that we use the complementary error 

function erfc(x). It is defined by: 

2 ee Sa 
erfe(z) = =f e* dt 

We approximate the factor function by multiplying the erfe(x) with the step func- 

tion Q(x) to forbid any negative traffic values: 

iL Ys 
fj) (tin 25) = erte( (2 -a)) ays one a Zi iy (4) 

Once again, the @ parameter controls the stiffness of the curve. The higher it is, 

the better is the approximation. On the other hand the constraints are stricter, as the 

values above the threshold are less tolerated. We can observe that on figure 6.1. 
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Figure 6.1: Error function 

To ensure that f(;)(«;,x;) describes a probability distribution, it has to be normal- 

ized by: 

ig . 
Zj = fe es ‘ij ‘i ee aC te a)) du 

iy [901-9 
= = erfe(v) d Bilaes rfc(v) dv 

by substituting with v = 3 (= — a) 
Kaj 

From [12], we know that the indefinite integral of the complementary error function 

  

is: 

Cay [ extet du = werfe(u) — =S +C 

We conclude that: 

2; = "FP (9(20 - a)) — 9-28) 
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Chapter 7 

Experiments and results 

Simulations were carried out with networks of size N=1000. However, difference in 

the graph generation from the previous chapter 5 is that, from now on we assume that 

the roads have symmetrical capacities. It means that «jj = «ji. It is usually a property 

of road networks and it makes the problem much simpler. I have noticed that with 

small connectivity (C = 3) graphs, having asymmetrical edges prevents the algorithm 

from finding a solution. Locally, we can imagine an overloaded junction where outgoing 

capacities are too small to let the traffic disperse. That would make the computation 

impossible to carry out, especially in small connectivity graphs when there are less 

choices to distribute the traffic. Our simulation implementation of the traffic, allows 

loads to go above the capacity. 

We will use a congestion threshold set at a = 0.7. The termination criteria is 

defined so the algorithm stops when the variations in the cost function are smaller 

than 1%. 

As the algorithm did not manage to give any consistent results for a connectivity 

C= 3, we do not consider this case. I encountered many numerical errors for this 

connectivity. 

7.1 Influence of 3 

7.1.1 Relationship between (@ and connectivity 

The performance of the algorithm are highly dependent on the connectivity and the 

stiffness parameter 3, as we can observe in figure 7.1 and 7.3. 

For C = 4, the problem is more difficult than for graphs with higher connectivities, 

as we have less choice to distribute the traffic. Among the values examinded the lowest 

value 3 = 7 offers the best performance, as we relax the capacity constraints and allow 

more traffic over the threshold. Using this constant value of 3 is enough to make the 

algorithm converge. 
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Figure 7.2: Final load distribution for C = 5 

In the case of C = 5, soft constraints do not lead to successful solutions arguably 

as there are many competing solutions. Starting from time step 3, the congestion 

is sufficiently reduced, and the loads tend to accumulate around the threshold value 

(figure 7.2). By using a higher value 6 = 11 the difference between values above and 

below the threshold is emphasized. We somehow help the algorithm to strengthen 

decision at this blurry border. 

For C' = 6, it is similar to the previous case. As there are more roads connected 

to each junction, the traffic spreads even faster. From figure 7.3 and 7.4, we can see 

that the increase of congested roads happens earlie than for C = 5, and even occurs
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for = 11. As the traffic is distributed faster, it takes less time to uncongest roads 

and therefore loads tend be around the threshold value sooner, figure 7.4. It becomes 

more difficult for the algorithm to take a decision, even for 6 = 11, as there are more 

roads connected to each junction. Constraints have to be stricter than in the C = 5 

case. Only with harder constraints 4 = 15 does the algorithm manage to converge. 

In this last case, I suggest another strategy to define 3. 
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Figure 7.3: Energy function for different @ values, C = 6 

7.1.2 Adaptive 3 values 

From figure 7.3, we can notice that depending on the values of 3, the algorithm 

behaves better for different stages of the simulation. 

Instead of using a fixed value of 3, I decided to use predefined values of 3 for each 

time step. By increasing the value of 3, I tighten the constraints in order to guide 

the BP algorithm as it is more and more difficult for the algorithm to converge. The 

convergence of the algorithm is definitely faster and the number of congested roads is 

even smaller. 
  

Time step Loe Ss | SCS 1 8-59" 10 

B f 11 | 12 | 13 | 14 | 15 | 18 | 18 | 18 | 19 
  

                          

To choose the values of 3, I observed the evolution of the cost function for different 

§ and choose the value which gave me the lowest number of congested roads at a given 

time step. 
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Figure 7.4: Final load distribution for C = 6 

7.2 Convergence 

From the initial traffic distribution, the algorithm reduces the number of congested 

roads until it stabilizes. We do not achieve an absolutely uncongested network, because 

of the approximation taken, by using the erfe(«) function, we tolerate some values above 

the threshold. It is particulary clear on figure 7.5 that the final state is representative 

of our model. 

The algorithm is not time-consuming, as all the computations are carried out locally. 

By using BP, we manage to reduce the number of congested roads, while respecting the 

capacity constraints. The objectives expressed in the cost function are clearly satisfied, 

even if we do not reach the optimal solution. 
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Chapter 8 

Conclusion 

8.1 Achievement 

This project aims at devising a probabilistic algorithm for optimal traffic lights 

control given some measure if success. 

The fist part of this project focused on balancing loads on irrespective of road capac- 

ity restrictions, modelling traffic networks with an approach similar to fluid flow. Our 

model is similar to information networks, where the traffic is routed at each junctions 

given some simple rules. It was a really simple model, considering only the capacities 

of the roads. We did not take into account any practical properties as driver behavior, 

limited speed, traffic build-up, but concentrated on balancing loads. The analogy with 

fluid dynamics is particulary clear as we assume conservative flows. Although it is 

simple, the probabilistic BP algorithm we devised managed to give good results. 

With the first experiments, we demonstrated that the algorithm is capable of bal- 

ancing the loads on a random network and offers an improvement compared to an 

equal-time assignement of the traffic lights state. We observed a higher improvement 

as the problem became more difficult, i-e., at lower connectivity networks. The algo- 

rithm concentrates on the highly loaded roads to accelerate the traffic distribution. The 

number of iterations the algorithm needed to find a solution was small, especially in 

the last steps of the simulation when the system was close to the optimal distribution. 

It showed dependence on the difficulty of the problem and the connectivity. 

The second set of experiments we carried out was based on an algorithm aimed at 

reducing congestion. For that, we firstly added capacity constraints to the model and 

modified the factor nodes to fit these constraints using the ratio of congested roads as a 

cost function. We noticed that the performance of the algorithm is highly dependent on 

the @ parameter we use; it reflects how strict are the constraints and has to be adapted 

to the problem. For the algorithm to work in difficult cases, the constraints has to be 

soften, using a lower value for 3. But as there is more choice to distribute the traffic, 
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and less congested roads, restricting the constraints allows to guide the algorithm when 

it is indecisive. Once { is correctly set, the algorithm demonstrated that it was able of 

reducing the number of congested roads, while respecting the capacity limits. 

8.2 Future directions 

The current work should be used in conjunction with a better model to represent 

more realistic traffic scenarios. It would be interesting to observe how it behaves with 

more complex models. A good start would be to use OD-networks to have information 

on road loads, and then use it to define road priority indexes. More complex models 

can also give us a better simulation of the traffic, the cars will not necessarily follow 

the routing rules and may have their own destination and behavior. More realistic 

traffic lights state should also be considered, with multi-road routing and different 

cycle durations. Once all of this done, one can look at the results on real networks. 

However I would not extend this approach to others networks like the Web or 

power-grids, as they have higher connectivity and would be really time-consuming as 

it is now. It is definitely not appropriate in these cases. Kabashima [13] studied the 

application of BP in dense graphs, and should be studied further. 
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