
VALIDATION AND VERIFICATION 
OF 

EMBEDDED NEURAL SYSTEMS 

PAVEN Mickaél, José, Stéphane 

MSc by research in Pattern Analysis and Neural Networks 

THE UNIVERSITY OF ASTON IN BIRMINGHAM 

September 1996 

This copy of the thesis has been supplied on condition that anyone who consults it is 
understood to recognise that its copyright rests with its author and that no quotation 

from the thesis and no information derived from it may be published without proper 

acknowledgement.



The University of Aston in Birmingham 

PAVEN Mickaél, José, Stéphane 

MSc by research in Pattern Analysis and Neural Networks 

Thesis summary 

In a safety critical environment every element of a system must be dependable. 

Although neural network technology could be applied to solve various problems in 

safety critical environments, there is currently no established method to validate and 

verify systems embedding neural network technology. This deficiency is mainly due to 

the fact that neural network technology corresponds to a very different way of viewing 
software, and that validation and verification methodologies developed for 

conventional software do not take into account these differences. 

This thesis is aimed at showing that even if at first sight a neural network function may 

look like a very compact ‘black box’, it is in fact not true and, therefore, the validation 

and the verification of neural systems are possible. 
Firstly, a short presentation of the business context in which this project has been 

placed is given. Secondly, an overview of neural network technology, which includes 

in particular a description of the main principles on which it is based, is presented. 

Thirdly, a set of good practice rules to develop a successful neural network application 

is suggested. From these good practice rules, guidelines to assess a neural network 

system have been derived and tested against two case studies. The main findings are 

discussed. Finally, a set of research issues and suggestions for future research are 

provided. 

This document is necessarily limited in its scope. Indeed, there is a considerable 

variety of models related to neural network technology, and each of them has its own 

characteristics. A general framework to validate and verify all these models would 

probably be too general and, therefore, might be unable to detect some significant 

mistakes specific to the model considered. Similarly, we cannot consider each model 

individually. We have, therefore, chosen to restrict the scope of this document to the 2 

main types of models currently used, namely, the radial basis function network and the 

multi-layer perceptron. We have excluded, for instance, unsupervised techniques and 
recurrent neural networks that raise notoriously difficult problems which could not be 
addressed within the time available. However, whatever the model used, they are 

related in that they are data-driven. Consequently, issues relative to the data discussed 

in this thesis are central and generally applicable to each of these models. 
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Foreword 

¢ This project has been developed in collaboration with Lloyd’s register (LR). 

e This document is intended for anyone interested in neural network (NN) 

technology, and in particular for any potential developer of NN applications. 

To read this document no prior knowledge of NN technology is required, but it is 

assumed that the reader has studied mathematics to, at least, a A-level standard. 

Finally, note that experience in conventional software development or in the 

assessment conventional software applications may be helpful. 

e Appendix A contains a list of technical definitions. In order not to overload the 

main text of this thesis, references to these definitions have not been systematically 

included. The reader is therefore invited to consult this appendix if need be. 

1. BUSINESS CONTEXT 

1.1 Lloyd's Register 

1.1.1. Overview 

Lloyd's Register (LR) is an international company, whose work can be summarised by 

the following statement: LR provides its customers with services intended to help them 

to comply with safety, quality and reliability standard criteria. LR provides commercial 

safety and quality assessment, and in the case that compliance requirements are fulfilled 

LR can award certification. Finally, LR is active in research, which allows LR to play 

a part in the definition and the improvement of new international safety and quality 

standards.



Nowadays there is an increasing appreciation of the importance of safety and quality. 

LR is a financially stable group that has always belonged to the leading group of 

classification societies. Moreover, LR is one of the pioneers in the domain', and hence 

is now highly renowned. 

The range of sectors within which LR operates is considerable, and while its main 

sector of activity remains the marine, LR is present in numerous others. For instance, 

LR has clients in the chemical, oil, transport, and software systems industries. 

LR is arranged in 3 main divisions and 1 group: 

e the ship division: which, in 1994, represented 57% of LR income, 

e the industrial division: 21% of LR income in 1994, 

e the offshore division: 9% of LR income in 1994, 

e the Engineering services group: this group can be seen primarily as an internal 

service provider for LR, since most of the services it provides are intended for the 

other divisions of LR. That said, it also deals directly with external clients. 

1.1.2. Engineering service group 

This group, which is the initiator of the project, has two types of departments: 

e the plan appraisal departments, which operate in various fields (such as piping, 

machinery design) and provide expertise in these fields. 

e the assessment departments, which provide assessment in the same fields as the Plan 

appraisal departments. 

SIRM (System Integrity and Risk Management) which has commissioned the project, 

belongs to the latter group of departments, and is itself arranged in 2 groups: “system 

integrity group” and “risk management group”. These have a common theme the 

safety of software systems. 

1 LR has provided certification services since 1760. 
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Most of the staff concerned with the project, belong to the software integrity group. 

The system integrity group provides 2 different commercial services: “assurance” and 

“certification”. 

Assurance means: ensuring that a system complies with certain criteria in order to 

answer the question “is this system appropriate for a particular use?”. The quality 

standard criteria are principally concerned with process rather than product: i.e. 

checking that appropriate methods have been used to develop the software. 

One of the main differences between the certification and the assurance processes, is 

that the certification process may lead to the award of a certificate, whereas the 

assurance process does not. Nevertheless, assurance and certification can both cover 

any phase of the software life cycle, and are available to any user or supplier of 

software. Usually these services are requested when the software forms part of a high- 

integrity system. 

1.2. Validation and verification of embedded neural system 

1.2.1. Why neural networks? 

Commercial neural network (NN) applications have been in existence for more than 5- 

10 years, but now the technology is moving from research to products in more safety 

related areas. 

Their power and their efficiency are becoming more widely known, and in a few years, 

safety related systems including software based on neural network technology will 

probably start to be widely developed. 

11



For LR, this means a potential new market. Indeed, neural network technology has 

already been applied in several fields relevant for LR’s business”, and many others will 

surely be found in the future. 

Furthermore, in the case that LR were to be the first to propose the assessment of 

safety related systems including neural network technology, that would be an 

important advantage over competitors: that is the advantage of pro-activeness. 

NNs are a new way of viewing software. Indeed, the classical view of software 

development is mainly based on the implementation of an algorithm. This classical 

approach is not valid with NNs, since using NN consists of building a model that is 

based on data. For instance, this means an absence of rigorous specification to 

describe the NN functionality. But above all, this means for LR, that most of the usual 

software assessment methods no longer cover all aspects of system safety. 

Hence, LR would like to have available methods to assess safety related systems 

including NN technology. As NN technology is currently not mastered by LR, Aston 

University Neural Computing Research Group is to develop such methods in this 

project. 

This project is important, since its results will be used on the international market. The 

whole project is planned to last 3 years. The purpose of the MSc project was, first, to 

provide a first set of guidelines to assess NN applications, and secondly, to raise the 

main research issues that will have to be solved to complete the overall project. This 

phase of the project has lasted one year. 

1.2.2. Project definition 

A safety critical application must be an example of rigour, and “nearly right” is not 

acceptable, since, by definition, if there is any problem with this kind of application, the 

2 for instance, neural networks are used in medical instrumentation, and currently, pilot studies are 
being carried out in the naval vessel and car motor ignition fields. 
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consequences may be catastrophic. Hence, in safety critical systems, it is important to 

be able to show that the probability of failure is very low. 

If a serious problem occurred with a safety critical application certified by LR, and this 

problem occurred in conditions for which the application had been certified, then LR’s 

credibility would be affected and LR could be liable. 

However, as NNs are probabilistic models, a set of questions arises: 

e Are there any limitations, or specific context for their use? 

e What are the phases of the system development life cycle that cannot be taken into 

account by using conventional software assessment? 

e What are the key safety properties that need to be assessed? 

Consequently, the main task of this MSc project was to identify the key safety 

properties, to find a set of criteria to assess them, and thus provide assessors with a 

tool, in the form of guidelines. These guidelines must have a very practical aspect’. 

They must enable LR assessors, first, to answer the crucial question “is a system safe 

for the use for which it has been designed?”, and secondly, to understand what are, in 

terms of safety, the underlying safety requirements. Moreover, they must be relevant 

for the typical scale of LR projects. Finally, the assessment of systems is based on a 

top-down view, and the assessment of a NN component should fit into that process. 

Consequently, these guidelines must be applicable in a top-down approach’, 

The last stage of the MSc project has consisted of testing these guidelines through two 

case studies, in order to correct and refine them. 

In order to do that, assessment techniques used by LR in conventional software 

assessment, and neural NN knowledge provided by Aston University, have been used 

in synergy. 

3 since they are intended for software assessors and not neural network specialists, implementors, nor 
system designers. 

4 Some procedures such as HAZOPS are bottom-up processes but these tend to be used during design 
and safety case development. As such, they fall outside the scope of the initial MSc project. 
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1.3. Summary 

For this MSc project, a very practical approach was needed. Thus, technical problems 

did not always need to be solved, but, on the other hand, the key questions had to be 

raised. 

Lastly, the guidelines must contain principles of assessment rather than narrowly 

applicable prescriptive rules. 
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2. Introduction 

This project takes place in the more general framework of safety related systems. In 

this deliverable, we shall suppose that the reader is familiar with the terminology and 

concepts defined in that framework. The reference document we have used is: "draft 

TEC 1508: Functional safety: safety related systems" [1]. 

Even if Neural Networks (NNs) are implemented in software on conventional 

computers, NNs correspond to a very different way of viewing computer programs, so 

it is not obvious that the classical methods used to develop and assess software are 

applicable to them. Therefore, each phase of the life cycle (specification, design, 

implementation, validation, operation and maintenance) may have peculiarities 

compared to the ones defined with classical software applications, and consequently, 

assessment techniques also differ. A NN application can be naturally inserted in the 

“TEC framework” as the software part of an E/E/PES* safety related system. 

2.1. Objectives 

This document identifies the technical issues relevant to the assessment of NN 

applications. It addresses the question of where safety problems arise and deals with 

issues such as: 

e what aspects of performance assessment are not understood? 

. under what circumstances are the current assessment techniques (such as ISO 

9001 and the MISRA guidelines) not applicable? 

This document should be read as a companion to the Assessment Guidelines 

(deliverable D3). It contains the following sections: 

° an overview of the differences between neural computing and conventional 

programming; 

> A more precise definition is given in [1]. 

° B/E/PES: Electrical/Electronic/Programmable Electronics System, the exact definition is given in 

[1] part 4.



° a description of neural computing and its relationship with statistical pattern 

recognition; 

e the key issues that should be addressed in a neural computing applications. This 

section explains the reasoning behind many of the detailed points in the 

Assessment Guidelines. 

2.2. Scope 

This document is necessarily limited in its scope. We only address certain sorts of 

problem and certain NN architectures. It is assumed that the applications of most 

relevance to LR’s business involve the use of a model of a dynamical system (such as 

an engine) for the purposes of control or monitoring. Such applications are of 

classification or regression type, and often time series data is used to develop such 

models. Usually, feedforward NN architectures (such as MLP and RBF networks) are 

applied to such problems. At an approximate estimate, about 70-80% of applications 

in the process modelling and control industries fall within the scope of this document. 

Aspects of neural computing that are not addressed in this document include: 

e model development for non-stationary time series. This raises difficult issues for 

assessment which have not yet been solved. The problem is discussed further in 

section 4.2.3. 

° neural controllers. Currently, in live applications, NNs are more often used as a 

system model within a more conventional model based control framework than 

as a controller in their own right. There are many difficult issues concerned with 

the training and validation of neural controllers that there is insufficient time to 

address in the current scope’. 

. recurrent networks. A network architecture used in time series analysis. Again, 

there are a lot of open research questions involved in the validation of such 

networks. 

7 Indeed, stability results are only available for neural controllers with some special cases of non- 

linear systems. 
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e unsupervised networks (such as the Kohonen network). The principal use of 

such networks is for clustering and visualisation, and they are therefore rarely 

used in applications of relevance to LR’s business. 

Future work on the project could cover this material: the first and third areas are of 

most potential relevance. 

17



3. Neural Computing and Inductive Programming 

3.1. Data Modelling 

Neural computing is a form of inductive programming: a task is performed by a 

general model which is trained using data that represents the task. Such an approach is 

particularly appropriate when applied to problems that involve modelling complex 

systems. We can compare this with a conventional approach by considering the 

problem of developing a system model for a marine engine. 

A conventional approach would involve determining the physical processes involved in 

the engine, analysing these to generate mathematical equations that represent the 

system, and then programming some software to simulate these equations (and their 

solution). In principle, this method could be used without the use of an actual engine. 

An inductive approach involves gathering data from an existing engine, and training a 

model (a NN, for example) to reproduce the same relationships as are in the data and 

determine a good approximation to the underlying function that has generated the data. 

The training process consists of adjusting some variable parameters in the model using 

the data. In principle, this method involves no software development, as the software 

to run and train the model is independent 

of the application and data. 

In practice, the distinction between the two development approaches may not be so 

clear cut. When modelling any complex real world system, some data from the actual 

system is nearly always required, if only for model calibration and validation. Most of 

the issues discussed in this document are relevant wherever real world data is used for 

such purposes, as can be seen in the next section. Equally, neural computing may only 

represent part of the solution to a problem. 

It is clear that neural computing represents a very different approach to the 

conventional view of software development where an algorithmic solution can be 

specified in advance of writing the software. Because the performance and precision 

of the model cannot be determined in advance, the use of neural computing is confined 

to applications where efficient algorithmic solutions are impossible or impractical. 

Such applications are typically complex, poorly understood, and imprecise. 

18



Understanding speech, reading hand-written documents, and modelling and controlling 

non-linear systems are all areas where neural computing and other statistical techniques 

outperform algorithmic methods. 

Although there is little or no software development in a neural computing application, 

there are other important tasks to be carried out. These are discussed more fully later 

in the document, but the key tasks are: 

° data collection. Adequate quantities of relevant data are essential. 

e data pre-processing. It is rare that the best performance is achieved when the 

data is presented in its raw form. 

° network training. This has to be carefully monitored to ensure that a good 

solution is reached. 

e performance assessment. The key question is not how well the network 

performs on the data it was trained on, but how well it generalises to unseen 

data. 

Another consequence of the fact that NN software is the same for different 

applications is that it is the parameters in the model that are the only thing which is 

specific to the problem. Thus these parameters represent the problem-specific 

‘algorithmic processing’. The interpretation of these parameters is considerably more 

difficult and less precise than the interpretation of the algorithmic source code 

produced by a conventional approach to software. This implies that the assessment of 

such systems is necessarily statistical in nature. This is not necessarily a drawback, as 

safety cases typically are written in terms of probability of failure. 

3.2. Life cycle model 

Most phases of a neural computing application development life cycle will be familiar 

to people who know about life cycles for conventional software development. The key 

differences arise for three reasons: 

e a precise functional specification (i.e. as for conventional software) is not 

possible at the start of development; 

° the use of data means that extra tasks must be carried out; 
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development is necessarily iterative. 

Although there is no definitive life cycle (just as for conventional software 

development), the following is an approach which has been successfully used in 

practice: 

1 

2; 

Specification: What are the aims? How can you measure success? 

Data collection: data sampled from the system to be modelled, cost measures, 

prior information (for example, how smooth the function should be, operational 

constraints on variables). 

Data analysis: visualisation for understanding the data, feature extraction, 

missing and corrupt data, pre-processing. 

Model development: model design is based on prior knowledge and data 

analysis. A range of models should be trained: simple models as benchmarks, 

more complex models to attempt to capture more features of the problem and to 

improve accuracy. 

Model validation: check the compliance with the requirements specification. 

Compare models with benchmarks and test model assumptions. 

Integration: interface with other software. 

Operation and maintenance: ongoing model validation and retraining. 

20



4. Neural Networks and Statistical Pattern 

Recognition 

4.1. Introduction 

Three of the main reasons that explain the current emergence of NN technology are: 

° Generality. NNs are universal approximators® that can learn a function from a 

set of examples. NNs have been used to solve a wide range of notoriously 

difficult problems. 

. Speed. In operation, running a NN consists of computing a relatively small and 

fixed number of floating operations. (Note: this is true for feed-forward NNs, 

which are the only NNs we shall consider in that project). 

e Accuracy. The high performance (in terms of accuracy) possible with a well 

designed neural computing application can make it the only viable solution in 

safety critical contexts. 

In this document we shall consider only supervised problems: in such problems each 

data point consists of a set of input values from which a set of target output values are 

to be predicted. For example, when developing a model of a distillation process, the 

inputs could be temperature measurements and collected volumes, and the outputs 

could be the proportions of chemical compounds in the distillate. To train the NN, 

both inputs and outputs must be available in the data. In operation, only the inputs 

need to be measured; the role of the NN is to predict the (unknown) values of the 

outputs. 

There are two major classes of supervised application: 

e classification. The target values belong to a small set of possible classes. Each 

data point belongs to a given class. The task is to predict the class of an example 

(or more generally, to predict the probability that the example belongs to a given 

5 A feedforward NN is able to model with arbitrary accuracy any continuous function defined on a 

finite domain. 
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class). For example, in a condition monitoring application, the task might be to 

determine whether a bearing is faulty based on vibration sensor measurements. 

° regression. The target values belong to a set of continuous numeric values. The 

task is to predict the continuous numeric values associated with an example. An 

example is the identification of a state model for an engine, where the states are 

physical measurements on a continuous scale.’ 

The data sample used to train a statistical model is usually one of two types: 

. static data. Each data point is sampled independently of the other data points 

and is considered to be uncorrelated with the rest of the data. 

e time series. Time series data consists of parameters measured over time. In this 

case, we expect that data later in the time series will be dependent on data 

measured earlier: i.e. there is an ordering to the data that must be respected. 

In order to implement these applications, many different architectures are available, the 

two main ones being the multi-layer perceptron (MLP) and the radial basis function 

networks (RBF). Other architectures exist'® but, we shall not consider them in this 

document. 

Some example applications: 

. TOKAMAK plasma control 

° Steel blast furnace control (Kobe Steel works, Japan): a hybrid NN/knowledge 

based system 

e Microwave oven control (Sharp) 

. EEG Analysis to determine sleep states (Oxford Instruments) 

Most NN applications are implemented in software, yet successful hardware 

implementations of NN do exist. The main advantage of hardware implementations is 

the potential increase of the performance in terms of speed, since for instance, they 

allow the implementation to benefit from the intrinsic parallel structure of the NNs. 

We will not specifically address hardware implementations further in this document, 

° A NN used as a controller represents a special type of regression problem where the desired outputs 
are not in the data gathered. 

‘© For instance: unsupervised techniques (e.g. Kohonen nets) or recurrent NNs. 
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since the problems they pose are either common to those set by software 

implementations of NN, or belong to the usual problems related to hardware 

applications and hence are not specific to the NN context. 

4.2. Problem types 

4.2.1. Regression problems 

In a regression task the aim is to learn a function that maps inputs to a set of 

continuous numeric values. The data set consists of pairs of vectors in the form (input, 

target) where the target is a vector of real numbers. 

A regression model is usually written in the following form: 

target = h(input) + €, 

where € is the noise and is drawn from a zero-mean probability distribution (usually 

chosen to be a normal distribution). With this model, the NN is trained using a sum of 

squares error function. For this error function, the optimal solution is for h to have the 

value of the conditional mean of the data at each input point. The variance of the 

conditional mean (that is, the value predicted by the NN) can also be determined to 

provide error bars around the conditional mean values (see fig. 1). 
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Figure 1: Conditional distribution modelling 
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Figure 1: Illustration of the notion of conditional distribution of the target 

values. Given an input value (x;), the NN predicts the corresponding target value 

by, in a way, computing an average, of the targets of the training data points 

lying in the vicinity of x; This average value is the conditional mean and is the 

value predicted by the NN for the input x; Note that a second set of Cartesian 

co-ordinates is represented. In these Cartesian co-ordinates, the conditional 

distribution of the targets is plotted (this distribution is conditioned by the 

‘position of x;’). 

This conditional distribution of the targets expresses the uncertainty concerning 

the output value produced by the NN. Roughly speaking, this uncertainty has 

two main origins: the uncertainty on the weights (due to a lack of training data 

points in the vicinity of x;) (see [3] pp. 399-401) and the uncertainty due to the 

noise on the targets. On this figure to simplify the problem we have considered 

the uncertainty on the weights to be negligible compared to the uncertainty due 

to the noise. Consequently, the conditional distribution has a Gaussian form and 

has a variance approximately equal to the variance of the noise (see also section 

5.6.1.1). 
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TOKAMAK plasma control is an example of a regression problem. Here the task is 

the prediction of the energy confinement time (a continuous numeric value) from 4 

input variables. 

4.2.2. Classification problems 

In a classification task the aim is to learn a function that maps inputs to a small set of 

classes. The data set consists of pairs of the form (input vector, class label), where the 

class label is a discrete value identifying the class that the point represented by the 

input vector belongs to. 

It is often more useful to map inputs to the conditional probability of the classes. The 

reason for this involves decision theory. The classification produced by the NN should 

be such that it minimises the risk of misclassification error. It can be proved that 

classifying the input to the class corresponding to the largest Bayesian posterior 

probability'’ minimises the misclassification risk. With a suitable choice of model (e.g. 

involving ‘softmax’ outputs) and error function (cross-entropy), a minimum error 

solution corresponds to the Bayesian conditional probabilities. 

The decision may involve a loss matrix which defines the cost associated with each 

type of misclassification. A typical example is that of health screening: It is less grave 

to diagnose a cancer when the patient is healthy than to state that the patient is healthy 

when he does have a cancer. The loss matrix can be then used to weight the 

conditional probabilities in a simple way to arrive at the optimal decision. The class 

with the smallest expected cost (given by the product of the conditional probability and 

its associated losses) is the best prediction. 

Fault detection is an example of a classification problem. The task is to determine the 

status of a system (i.e. is it functioning normally, or is it in some malfunctioning state), 

given certain physical measurements from the system. 

4.2.3. Time series 

Time series data is mostly used for regression problems, but can be used for 

classification problems. Time series data captures the temporal behaviour of a system. 

Because of this, the order of data points is significant, as we expect there to be 

correlations between data gathered at different points in time. In ‘static’ data sets, we 

" See appendix A; definition of ‘Bayes’ theorem’. 
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assume that the data points are independent. A typical time series problem consists of 

predicting future states of a system given past data: this can be done precisely because 

of the time-based correlations. Much of the analysis of time series data is concerned 

with determining the time window over which the correlations act for different 

variables, and the form of the functions that relate different data points. 

A time series is said to be stationary if the underlying generator of the time series 

remains constant. Obviously, over long periods of time, this assumption may break 

down. For example, wear of physical components means that engine response changes 

over time. In this document we shall not consider the development of models for non- 

stationary time series, since this involves on-line training methods, where the model 

parameters are adjusted after installation. This raises difficulties for assessment which 

are not yet solved. However, we will address the issue of detection of non- 

stationarity, so that a system may alert the user to the fact that the assumptions under 

which it was trained are no longer valid. 

4.3. Feed-forward NN architectures”: MLP, RBF 

4.3.1. Multi-Layer Perceptron networks (MLP) 

The Multi-Layer Perceptron (MLP) is the most commonly used NN in applications. 

Most MLPs consist of three layers of nodes: the input nodes (which just have the input 

data values), the hidden nodes and the output nodes. Each hidden node computes a 

linear combination of the input values and passes this through a non-linear activation 

function. The output nodes compute a linear combination of the hidden node values 

and pass the values through an activation function which depends on the type of 

problem (typically the identity for a regression problem, and ‘softmax’ for a 

classification problem). 

Advantages: 

° Universality. With sufficient hidden nodes, such a network can approximate any 

continuous function on a bounded domain to arbitrary accuracy. 

Pan example of feed-forward NN is given in fig. 2. 
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e Global interpolation properties. Because of the mathematical form of the 

network, it tends to interpolate well between data points, even in regions of 

relatively low data density. 

Drawbacks: 

. The training process is usually computationally very demanding, and there is no 

assurance that the optimal solution (see section 4.4) will be found. 

Figure 2 

x1 x2 x3 

Input nodes 

1st weight layer 

Hidden nodes 

2nd weight layer 

Output nodes 

  

Figure 2: A feed-forward NN architecture. 

4.3.2. Radial Basis Function network (RBF) 

The principle underlying this form of NN is that any function can be approximated by a 

linear combination of localised’? functions (see fig. 3). The name of the network 

comes about since the ‘basis’ functions chosen are radially symmetric so that their 

value depends only on the distance of a data point from the ‘centre’ or ‘position’ of the 

function. 

13 This means that the function value is zero (or near zero) except in a small region. 
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Figure 3 
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Figure 3: illustration of the idea of linear combination of basis functions to 

approximate a function. In this figure the function is modelled by a linear 

combination of three basis functions (the weighting coefficients of the linear 

combination are all equal to 1). 

RBFs also use one layer of hidden nodes. The usual training process for a RBF 

consists of two steps: first, the parameters of the basis functions (i.e. position and 

width) are determined often by some clustering process, and secondly the weights of 

the second layer are determined by a matrix inversion. 

Advantages: 

. Universality. With sufficient hidden nodes, such a network can approximate any 

continuous function on a bounded domain to arbitrary accuracy. 

° This two stage procedure is much faster than trying to optimise all the weight at 

once by using costly iterative non-linear methods. 

e The basis function centres have a statistical interpretation: they model the input 

data density 

Drawbacks: 
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. Owing to the localised aspect of the basis functions, RBFs are very sensitive to 

the problems related to the curse of the dimensionality (see section 4.7), and thus 

the number of basis functions needed may increase exponentially with the 

number of input variables. This, of course, results in greatly increased 

computational effort required. 

e The localised response means that the RBF may not interpolate well to regions 

of low data density. However, this problem can be detected, as the response of 

all the basis functions will be low in such circumstances. This can be used to 

alert the rest of the system that the response at this data point is unreliable, given 

the data that the network was trained on. 

Note: It is also possible to use non-local basis functions in RBFs with good practical 

results (see [18]). 

4.4, Learning and generalisation 

4.4.1. Principles 

Learning for a NN means adjusting parameters (the weights) to approximate an 

unknown function, based on a data set sampled from that function. As we only 

consider supervised learning, this data is in the form of pairs of vectors (input value, 

target value). 

The weights are adjusted during the training process by minimising an error function. 

This error function is a global measure of the discrepancy between the target values 

and the values predicted by the NN. 

One of the main difficulties in the training process stems from the fact that the error 

function is often very complex (since it depends on the weights in a highly non-linear 

way). Thus, finding the minimum of this error function is not an easy problem. To 

find such a minimum, optimisation algorithms are used. Current algorithms are mainly 

based on the fact that the global minimum of a function is a point where all the 

derivatives of the function are equal to zero. However, having zero derivatives at a 

point is a necessary but not sufficient condition to ensure that this point is the global 

minimum of a function. There may be numerous points where the derivatives are equal 

to zero: these points can be local minima (i.e. at this point the function is at its 
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minimum value for some small region around the point), local maxima, or ‘saddle 

points’ (which are ‘flat’ regions but are neither maxima or minima). 

Figure 4.a 
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Figure 4.a: Illustration of the difference between local and global minimum: B is 

a local minimum, C is the global maximum, D is a very flat region, E is the global 

minimum, F is a local maximum. All these points are characterised by a zero or 

near zero (e.g. D) derivative. A can be, for instance, the starting position at the 

beginning of the training process. Typically in this case, most algorithms would 

be trapped in the local minimum B, and would ignore the global minimum E. 
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Figure 4.b 
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Figure 4.b: This figure is very similar to figure 4.a, but the weight space is a two 

dimensional space. Note, that for a neural network, we can typically expect 

spaces with a dimensionality greater than 20. In this figure A is the global 

minimum, B is a ‘good ’ local minimum, C is the global maximum, D a local 

maximum, and E is a local minimum (probably a bad local minimum). 

Being ‘trapped’ in a bad local minimum implies that the solution produced by the NN 

is a sub-optimal one, which may result in non-compliance with the specification. 

One of the main difficulties of the training process is to avoid being trapped in such 

bad local minima and to find the global minimum or at least a good local minimum. 

Most optimisation algorithms find the local minimum nearest to the point in parameter 

space they start'*. While, none of them is better at finding global minima than all the 

others, there are some which are more efficient in their search for minima. For 

example, algorithms that make use of higher order gradient information (such as quasi- 

Newton and conjugate gradient algorithms) are usually much more efficient than those 

that do not (such as gradient descent, often called ‘back-propagation’'*). 

'4 Although this picture is a bit simplistic, it gives a good idea of what happens. 
'S This terminology is improper, for further information see appendix A; definition of ‘back- 

propagation’. 
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Another major problem is that the data the NN is provided with, is corrupted by noise 

(e.g. owing to the imprecision of measuring instruments that have provided the data). 

Hence, the aim of the training process is to avoid the NN learning this noise. Rather 

than merely storing the training data (which is noisy) the NN is supposed to learn the 

main structure of the underlying function generating the data. 

So, if a NN has learned the training data and fits perfectly with it, this NN is said to 

overfit the training data. Generally overfitting leads to very poor generalisation 

capability and therefore this may result in non-compliance with the specification. This 

problem can be detected by using the error on an independent test set (see fig. 5 and 

fig. 6). 
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Figure 5.a: Illustration of the difference between the training error curve and 

testing error curve as a function of the training time. The training error is a 

monotonically decreasing function of the training time. When the testing error 

starts to increase, the NN starts to learn the noise in the data and so starts to 

overfit the training data. Note that with real NN applications stochastic aspects 

intervene, and hence the curves obtained look more chaotic (see [4] fig. 22). 
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Figure 5.b 
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Figure 5.b: Given a problem, this figure gives an idea of the type of relationship 

there is between the training error, the testing error and the complexity of the 

models trained on this problem. The more complex the model is, the more likely 

it is to overfit the data. However, the models must be complex enough to be able 

to reproduce the main trends in the data. 
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Figure 6.a: complex model (overfitting) 
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Figure 6.a: This figure illustrates the overfitting phenomenon. A complex model 

has been trained to fit a (comparatively) simple problem. 

In this figure the training error is zero which means that the model fits perfectly 

the training data points. However, the testing error is high (i.e. the deviation 

from the testing points is sometimes very large). This is synonymous with a poor 

generalisation ability. The model overfits the training data. 

Note: In figure 6.b the same problem is considered but the model used is 

significantly less complex. 
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Figure 6.b: simple model (no overfitting) 
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Figure 6.b: In this figure the problem to be solved is the same as in figure 6.a, 

but the model used is less complex and therefore less flexible. 

This reduction of the model complexity reduces the risk of overfitting, which 

results (in this figure) in a more suitable solution. Indeed, although the results 

obtained on the training data are less good than for the complex model (see fig. 

6.a), the testing error for this model is dramatically smaller, and is not 

significantly greater than the training error. 

Finally, note that this model provides a much smoother solution than the 

complex model that sometimes oscillates wildly. 
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Figure 6.c: complex model with more training points (no overfiiting) 
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Figure 6.c: This figure shows that increasing the number of training data points 

enables a better control of the complexity of the model and reduces the 

overfitting phenomenon. With this increase in the number of training points the 

complex model gives a very good approximation within the interpolation area 

and outperforms the simple model (see fig 6.b). 

For continuous inputs, although the training data is sampled at discrete points in the 

input space, the underlying function has values everywhere in the input domain. We 

usually have some prior expectation that the function will vary in a relatively smooth 

way between the training data points. This prior knowledge can be incorporated in the 

model and will improve generalisation. 

These remarks lead us to say that a good model of the function should be such that the 

function generated by the NN passes smoothly close to the training data, and 

reproduces well the main trends of this data. 

Lastly, let us note that a NN can provide good interpolation results, but cannot be used 

as a reliable extrapolation tool. So in the NN context, we shall say that generalisation 

ability is the capacity to give reliable interpolation predictions (see fig. 7). 
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Note: The opposition between interpolation and extrapolation is discussed further in 

the next section. 

Figure 7 
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Figure 7: This figure shows the difference between the generalisation that a NN 

may produce and the generalisation one could expect. Both are comparable 

within the interpolation domain (area where the training data lies) but may be 

dramatically different outside the interpolation domain (extrapolation domain). 

Note that for this figure the data generator is a linear function. Finally, note that 

this figure is a bit simplistic since it considers a sharp boundary between the 

interpolation and extrapolation areas. This problem is discussed further in 

section 4.4.2. 

4.4.2. Interpolation/extrapolation and data density 

The understanding of the distinction between interpolation and extrapolation is 

fundamental in the NN technology context. As said in the previous section, NNs 

can be efficient interpolation tools but usually give very poor results when forced to 

extrapolate. Nevertheless, giving a precise definition of both notions is not easy. 

Let us consider a simplistic example. Consider a one-dimensional input data space 

and two training data points P, and Ps whose co-ordinates are respectively 
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(X4,¥4) and (Xz,Yg), where X4 and Xz are the one-dimensional input co-ordinates 

of P, and Ps, and Y, and Yz the values of the function to be modelled at these 

input points. Consider now that we fit a model ‘M’ on these two training data 

points. Then, the following definitions of interpolation and extrapolation are often 

given: 

Consider a third point Pc whose input co-ordinate is Xc, if: 

. Xc is between X, and Xz (i.e. X4SXcSXp or XpgSXcSXq), then M is said to 

interpolate if it is used to predict the value of the function at Xc. 

. Xc is outside the interval defined by X, and Xz (i.e. Xc<X4 and Xc<Xz, or Xc>X4 

and Xc>Xz), then M is said to extrapolate if it is used to predict the value of the 

function at Xc. 

Despite these definitions are commonly used, they are too simplistic. For instance, 

if the dimensionality of the input space is greater than 1, then it is not obvious to 

define when a point is between two other points. Moreover, as said previously, one 

of the main motivations to distinguish interpolation from extrapolation is that when 

a NN is forced to extrapolate its predictions are often very poor, whereas when it 

interpolates they are generally much more accurate. The simplistic definition given 

above is not always consistent with this idea. For example, suppose that X4 and Xz 

are very far from each other, then the prediction of M may be significantly more 

accurate for an input point X¢: that lies outside the interval defined by X4 and Xz but 

is very close to X,4 or Xz than for an input point X¢c located in the middle of this 

interval (see fig. 8.a). 

In [24] (pp. 105-108) the authors refine a little the simplistic definitions and 

consider (for one dimensional input spaces only) that if an input is “outside the 

range of tabulated values by more than the typical spacing of tabulated points then it 

can be considered as an extrapolation point”. Even if this definition is sensibly 

better it only partially defines what is extrapolation (i.e. it gives a sufficient 

condition but not a necessary condition) and is only applicable to one dimensional 

input spaces. 

As this is a crucial issue in the NN context, a more precise definition has to be 

given. A better way to distinguish interpolation from extrapolation is probably to 
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consider the notion of data density, and to say that the areas of the data space 

where the training data density is low are extrapolation areas whereas areas where 

the training data density is high are interpolation areas'®. Intuitively, the idea is: 

in the areas where the model has information (i.e. data points) about the behaviour 

it is supposed to adopt, the model ‘knows’ how to behave. On the other hand, if it 

has no information it behaves freely and can do anything (see fig. 7). Even if this 

definition remains slightly ambiguous (we have not defined what ‘low’ and ‘high’ 

mean), this ambiguity can probably not be completely suppressed since 

‘interpolation’ and ‘extrapolation’ are continuous notions: that is given a data point 

P, and a model M, whatever the area of the data space considered, the influence of 

P on M is never nil (even if it is often negligible). Accordingly, a simple way to 

solve this problem could consist of changing the terminology and instead of 

distinguishing ‘interpolation’ and ‘extrapolation’, speaking of ‘degree of 

interpolation’. 

In order to simplify the understanding of the basic problems existing in the NN 

context, we will not use explicitly this notion of degree of interpolation, but rather 

use the classical sharp distinction between both notions, and implicitly consider that 

areas where the training data density is low (e.g. below a given threshold 

empirically chosen) are areas of extrapolation, whereas areas of high training data 

density are interpolation areas (see fig. 8.b and fig 8.c). 

‘© This interpretation may be arguable. However, it is quite natural and well established results seem 

to be consistent with it (e.g. for regression problems it has been shown that the amplitude of the error 
bars is approximately inversely proportional to the data density of the training set). 
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Figure 8.a: Interpolation/extrapolation 
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Figure 8.a: According to the accuracy expected the point X;» can be considered 

as an extrapolation point whereas Xc may be considered as an interpolation 

point. Indeed d, is significantly smaller than d2. 
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Figure 8.b 
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Figure 8.b: This figure corresponds to the same problem as in figure 8.a. It 

represents the data densities in the input space. It also illustrates what has been 

said for the figure 8a: The density at X-» (between X, and Xz) is significantly less 

than the density at X- (just outside the interval defined by X, and Xj), and as 

said previously (see fig 8.a) the accuracy of the NN prediction is lesser. 

Note that the overall density is normalised and, therefore, is a weighted sum of 

the densities generated by P, and by Pz; (the same weighting coefficients have 

been used for the densities from P, and Ps, namely 0.5). 

For completeness, note also that the density models used in fig 8.b and fig. 8.c are 

Gaussian mixtures with equal priors for each component and with a constant 

width (for these simplistic examples we have arbitrarily chosen a width equalling 

3): 
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Figure 8.c 
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Figure 8.c: This figure is very similar to fig. 8.b but it does not correspond to the 

problem represented in fig. 8.a. Indeed, in this figure P, and Pz are closer in the 

input space. 

Although fig 8.b might suggest that for an input point X¢ the distance to the 

nearest data point explains the input density value at Xc, this view is too 

simplistic and that is what figure 8.c shows. For instance, the shortest distance 

between X¢: and any training input point is smaller than the shortest distance for 

Xc», yet the density at X¢» is higher than at X~. This is due to the fact that P, 

and Pz are close enough to each other for both to contribute significantly in 

generating the density at Xc.. On the other hand for Xc only the contribution 

from P, is significant (This effect partially explains the extensive use of the 

simplistic definitions) 

4.5. Pre and Post-processing 

With a NN application, each embedded NN function can roughly be divided into three 

units: a pre-processing unit, a NN unit (which is the actual NN component of the 

function'’), and a post-processing unit. The pre-processing and post-processing units 

'7 \ NN unit may be composed of several NNs (e.g. committee of NN, mixture of experts). 
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are responsible for some of the operations the NN function is supposed to perform (see 

fig. 9). 

Figure 9 
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Figure 9: This figure shows the arrangement of the three units for a NN function, 

that is, the pre-processing unit, the NN unit, and the post-processing unit. 

Note that, by virtue of its universal approximator properties, the NN unit could 

theoretically carry out all the operations the NN function is supposed to perform. 

However, the proof of this result shows only that an approximation exists, and says 

nothing about how to find it. Learning an accurate approximation to a function 

sampled at a limited number of data points is generally a hard task. This said, we have 

the following intuitive idea: if the number of data points is fixed, then the simpler the 

problem to be modelled, the greater the accuracy of the solution is likely to be. This is 

another example of the phenomenon noted in section 3.1: if an efficient algorithmic 

solution exists, then it should be used rather than learned from data. 

The distribution of the initial problem between the three units (NN, pre and post- 

processing units) is based on this intuitive idea: the pre and post-processing units make 

the task of the NN unit easier and thus increase its performance. In the simplest case, 
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the pre and post-processing units apply a linear transformation to scale the input and 

output values to some desired range: for example, to make them have zero mean and 

unit variance. 

A good example of the importance of pre-processing is the implementation of 

invariant properties of the modelled system through the pre-processing unit. For 

example, character recognition should be translation invariant, in that it should not be 

affected by a letter’s position in the field of view. This can be ensured by pre- 

processing the data so that the character is always in the centre of the field of view. 

Indeed, by doing so, performances of the NN function may be significantly increased, 

since: 

. the NN unit does not have to learn these invariant properties, since they are 

computed by the pre and post-processing units. So the function the NN unit has 

to learn is simpler, and is more likely to be learned more efficiently. 

e invariant properties can be satisfied exactly instead of being approximated by the 

NN unit using the data set. 

° if the property is an invariant transformation of the inputs then a smaller training 

set can be used since inputs which differ only by the invariant transformation can 

be considered as equivalent, and so, can be represented by a single pattern in the 

training set. 

° generalisation is improved, since the NN is able to extrapolate to new input data 

if this is equivalent to training data modulo the invariant transformation. 

The alternative to pre-processing the data would be to train a NN classifier to have this 

translation invariance property by presenting all example characters at all positions in 

the input field. This is a harder task which requires many more pieces of the data to be 

presented to the network. 

As we shall see later, there are several other reasons to pre-process the input data. For 

instance: 

. to suppress possible scaling effects by normalising the data (see section 5.3.3.2). 

e to perform feature extraction in order to reduce the dimensionality of the data 

space (see section 4.7 and 5.3.3.2).



4.6. Evaluation of the generalisation performance 

In a safety critical context, the slightest incident can have serious consequences, and 

hence safety critical NN applications must be dependable. Consequently, the risk of 

failure of the application and therefore the dependability and the quality of the outputs 

produced by the NN should be assessed. Because the underlying function is unknown 

and is being approximated from data samples, any results in this area must be 

probabilistic (or statistical) in nature. We cannot, even in principle, ensure that the 

outputs of the NN correspond exactly to the values of the function we are modelling. 

Various techniques exist to evaluate the variance of the NN predictions, and such 

techniques exist for the two main classes of problems: classification and regression 

problems 

e Regression problems: 

Techniques exist that give error bars'* on the output predicted by the NN in 

operation. We shall call such techniques ‘in operation error bar techniques’. 

These error bars are a measure of model variance, the likely variation of the 

actual target value around the value predicted by the NN. 

These techniques stem from well-founded frameworks and numerous results 

have been mathematically proved (an indispensable condition for safety critical 

applications). One of these results that is particularly relevant for the safety 

critical application context is the following. Note: It has been shown that, for 

regression problems'’, the amplitude of the error bars in certain regions of the 

data space is approximately inversely proportional to the data density in this 

area”® (see [7] and [30]). 

These techniques can be used with the two principal NN architectures (MLP and 

RBF), and have already been successfully applied to various projects. 

'8 The role of an error bar is to quantify the variance of the output value at a given input point. This 
is the variance of the noise. If the distribution of the noise is known, then we can determine an 
interval around the predicted in which the true value lies with any probability p. If p is increased, 

then the error interval becomes larger. 

'° We have found nothing in the literature concerning a similar result for classification problems. For 
further information see appendix C, section C.6. 
?° Tn fact, this result has been proved for Generalised Linear Regression models (RBFs belong to this 
class of models), and empirically shown for MLPs. 
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Examples of techniques: Bayesian error bars, use of an additional NN to model 

the error of the NN predictions. 

Such error bars do not ensure that the true value of the function to be modelled 

lies within these error bars, but that there is a probability P that it lies within 

them (P is generally called the ‘p-error’). For instance if the error bars are 

defined as two standard deviations around the NN prediction, then there is a 

probability of 95% that the true value of the function lies within the error bars. 

The main drawback of such techniques is that they provide error bars only for 

the input data point considered, and so, they do not provide an overall upper 

bound of the error for all the relevant input data space. 

. For classification problems, two main classes of techniques exist: 

- Probably Approximately Correct (PAC) learning techniques”: 

These techniques provide stronger results, since unlike the in-operation error 

bars used with regression problems, they give an upper bound for the error for 

all the relevant data space of the considered problem. Furthermore, they can 

provide practical help to design a NN when an error upper bound for the whole 

relevant data space has been specified in advance (see [2] and [15]). For 

example, the number of training data points can be related to the generalisation 

error required. 

We now describe a typical result proved using these techniques. First, consider a 

two-class classification problem defined in an n-dimensional input space and that 

we are using a feed-forward NN architecture A, . Let us also assume that we 

require the generalisation error rate (i.e. the probability of misclassification) to be 

no more than € (where 0 < € < 1/4). Then there exists a value K depending 

only on € and A,, such that if: 

1) A, can learn at least a fraction 1-€/2 of « randomly drawn training examples 

from a distribution II (i.e. the error rate on the training data is no more than €/2), 

1 Such techniques stem from Computational Learning Theory and VC dimension. 
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2) All future examples are also randomly drawn from the same distribution as the 

training set, 

then there is a probability close to 1 that the actual generalisation error of the 

NN is at most €. The value of K is provided by the PAC learning framework and 

can be calculated. This means that if a specification requires a certain error rate 

we can achieve this (with high probability) by making sure that our training set 

has at least K examples, and that our training error rate is less than half e. 

Although these results are very powerful, there are difficulties with applying 

them to practical problems. Firstly, these results are currently only applicable to 

classification problems with two target classes. Secondly, these techniques 

provide very pessimistic bounds for the error which is of value if a high safety 

integrity level is required, but can be too extreme for many real world problems. 

This is because they assume the worst possible sampling of training examples 

from the underlying function and make no assumptions about the nature of the 

function generating the data (which could be very ‘unsmooth’). Most of the 

time, the number of training data samples required (ic) to guarantee the desired 

error upper bound is very large, and it may be extremely difficult and expensive 

to gather such large quantities of data. 

However, research in this field is very active, and in the near future these 

restrictions may be overcome. 

- The second class of techniques enables to put error bars over the generalisation 

error value obtained on the testing set’, two cases must be considered: 

. First case, the data set is large”: 

Error bars for the true generalisation error can be given from the size of the 

testing set and the generalisation error obtained for this set (see [29] pp. 44-46). 

2 Unlike in-operation error bars for regression problem, but like PAC learning results, these results 

apply globally to the entire relevant data space. 

The definition of “large” is problem dependent. For example, a small set of high quality data may 

be preferable to a larger one whose data quality is poor. 
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More precisely, there is a mathematical formula that defines the standard 

deviation of the generalisation error estimates as a function of the size of the 

testing set and the generalisation error estimate obtained on this set. This 

estimate of the standard deviation, is used to define error bars. 

. Second case, the testing data set is not large enough: 

Error bars cannot be directly given. The idea is then to use resampling 

techniques to estimate the variance of the generalisation error from the different 

generalisation error estimates obtained on the different testing sets. Then, as 

above, given this variance estimate, error bars for the true generalisation error 

can be provided. 

4.7. The curse of dimensionality 

The main purpose of NNs is to model functions from data generated by real world 

systems. Modelling problems can be partially characterised by their input variables. 

When a value is assigned to each of these inputs, the combination of values obtained 

represents a point in a data space. The number of input variables is called the 

dimensionality of the data space. 

The goal of training a NN is to allow it to learn a function which maps points in the 

data space to the output space. That is, to develop a NN that, for all input data points 

produces as an output a good approximation of the value of the function at that point. 

To learn the function, the NN is provided with a finite number of data points generated 

by the function. Unfortunately, the “size” of a data space depends exponentially on the 

dimensionality of this space. This exponential relationship is a big problem, since it 

implies that there is an exponential relationship between the number of data points 

required and the input dimension. 

To illustrate this point, let us consider the problem of modelling, using a histogram, a 

data density. Let us suppose that each dimension of the data spans the interval [0, 1]. 

If the dimension of this data space is 1, then the data space is merely the interval [0, 1]; 

if the dimension of this space is 2 then the space is a unit square; if the dimension is 3 

then the data space is a unit cube, and so on. Now suppose that the width of the 

histogram boxes is 0.1. If the dimension of the space is 1 then there are 10 histogram 
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boxes, each of which is an interval of width 0.1; if the dimension is 2 then there are 

100 boxes which are square with sides of length 0.1, and so on. If we sample points 

from the data space and fill the boxes of the histogram with these points, the question 

arises “how many points are needed so that the histogram gives a good approximation 

of the actual density of the points in the data space ?”. A reasonable answer is “‘at least 

as many points as the number of boxes of the histogram”. This implies that in a 10 

dimensional space at least 10'° points will be required. 

Thus, even if the dimensionality of the space is relatively modest, the number of data 

points required is enormous, and obviously gets much worse as the dimensionality 

increases. This is a severe practical problem since real world system identification 

problems commonly have about 10 inputs, but to be able to provide 10'° examples is 

impractical. When a NN application is developed, the number of training examples is 

in general “small” (less than 10,000). 

That is why, as we shall see later on, to improve the performance of a NN, the greatest 

care should be taken in order to reduce the dimensionality of the problem considered. 

Indeed, even if reducing the dimensionality causes a loss of information, it may also be 

synonymous with a significant reduction in the complexity of the problem to be solved, 

hence the NN function performance may increase. 
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5. Developing a NN application: Key issues 

5.1. Are NN the solution? 

First of all, as emphasised previously, if an efficient algorithmic solution exists that 

solves the problem, then it should be preferred to a data-driven approach. 

Secondly, as for every project, a feasibility study is necessary. Indeed, even if 

theoretically NNs are universal approximators that does not mean that this theory is 

always applicable for real world problems. For instance, among the main limitations, 

there are: 

the computational requirements”, 

e the problems of data availability. This can occur when high accuracy is required, 

little relevant prior knowledge is available, and it is difficult to collect sufficient 

quantities of data samples. 

Developing a NN application is not easy. One should be aware that embedding a NN 

component in a software application is not a magic wand which solves all the 

conceptual problems. On the contrary, developing a successful NN application 

requires expertise, hence problems of feasibility could emerge according to the 

available financial resources or the technical knowledge of the developers. 

5.2. Specification 

5.2.1. The problem 

The specification for a NN application is analogous to a Requirements Specification in 

aconventional application. The specification should define clearly and unambiguously 

the required characteristics of the application. Wherever possible, these should be 

expressed in terms of performance limits together with some testable probabilistic 

statement about acceptable failure rates. (For example, the statement ‘there should be 

at most one major mode failure per 100 million hours of operation’ is a suitable 

specification of failure rate) The specification is the reference throughout the 

4 For example, certain training algorithms require considerable computing resources (of the order of 

several hours training on high performance workstations). 
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development of the application as well as for the validation and maintenance 

operations”. 

However, a detailed functional specification for a NN application is not possible, since 

the exact function to be modelled is not known. Besides, although the exact function 

is defined on a continuous space, this function is learned by the NN using a finite set of 

(possibly) noisy data points, and so the NN can only provide an approximation of this 

ideal function. 

5.2.2. Good practice rules 

Currently there is no well-founded standard method of specifying a NN application. 

Nevertheless, the following information is the minimum that should be contained in the 

specification: 

° A high-level functional specification in natural language (e.g. recognise hand- 

written characters with a probability of error less or equal to 1%). 

e Concerning the inputs: 

Whenever possible, the type and the range of possible values should be given for 

each input variable. In general, it is very difficult to specify the relevant data 

space, since it is a multidimensional space, and we should expect correlation 

between the input variables. In addition, certain regions of the space may 

correspond to impossible states of a system. Consequently the actual space 

covered by the input data may be much smaller than the space defined as the 

Cartesian product of the different input ranges. 

Finally, input values that can lead to an unsafe state for the equipment under 

control (EUC)”® should be specified (the specification of the EUC should be the 

starting reference point). 

° Concerning the outputs: 

Even if it is not possible to provide a formal definition of each output, a 

definition in natural language should be given (e.g. in case of hand-written 

25 4 more thorough definition of the specification can be found in [1]. 
© See [1], part 4. 
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recognition system, the definition of an output might be the probability of that 

the input letter is a ‘w’). 

In addition, since NNs are probabilistic models, the specification should define 

what accuracy is expected for the outputs. Thus, the maximum allowable error 

bounds and failure rates should be specified. Note that these values need not be 

the same for the entire data space. At safety critical operating points, we would 

expect the allowable error bounds to be much smaller than in regions of normal 

operation (e.g. the amplitude of the error bars must not exceed 1% of the 

predicted value for inputs corresponding to a temperature greater than 100°C, 

and 5% otherwise). 

All the identified ranges of values of the outputs capable of leading (directly or 

indirectly) the EUC to an unsafe state should be specified. 

If the NN function is safety related” then the safety function should be defined, 

together with the expected safety integrity level. The implications of this for the 

required accuracy of the NN predictions should be defined. 

The required speed and timing performance should be specified, if applicable. 

Note that for the speed and timing performance, the specification methods used 

in conventional software are still applicable with NN applications. 

Every invariant property identified should be included in the specification. 

Every other specific property the NN that should satisfy, should be stated in the 

specification (e.g. self-checking properties such as the control of the validity of 

the inputs in operation). 

5.2.3. Difficulties/Questions: 

What could be done to make this specification as formal as possible? Could new 

formal or semi-formal methods be defined? 

One of the main practical difficulties is to determine what are the failure modes 

of the EUC and translate these failure modes into requirements in terms of error 

27 See [1], part 4. 
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bars on NN outputs. This is made more difficult if the NN outputs are 

propagated through other functions (which may not be statistical in nature). 

5.3. Data issues 

One of the most important differences between NN applications and conventional 

software applications is that the NN model is data driven, which implies that when 

developing a NN application great care should be spent on addressing the data issues. 

Indeed in the NN context more than ever, the old computer science saying “Garbage 

In Garbage Out” can be applied. 

Thus, when developing a NN application, one should expect to spend 30-40% of the 

overall time development on the data issues. 

5.3.1. Data collection 

> SAy The problem 

There are mainly two types of data to be collected: the data sampled from the system 

to be modelled, and the prior knowledge concerning this system. 

The quality of the data is in general closely related to its origin and the way it has been 

collected. 

One should not expect to develop a successful NN application by only using the data 

points collected and presenting them in their raw form to the NN to be trained. To 

develop a successful application, the data usually needs to be pre-processed before 

being presented to the NN unit and sometimes specific NN architectures have to be 

developed (e.g. shared weights to capture invariance). Prior knowledge is a key factor 

to enable an efficient pre-processing of the data, or to choose an appropriate 

architecture. 

S:gib 2) Good practice rules 

e The greatest care should be taken to collect some relevant prior knowledge. 

e The data origin (prior knowledge and data samples) should be reliable. 

e If the data has been collected on a long period of time, the history of the collection 

process should be studied. For instance, in order to check that the data is 

homogeneous (e.g. a change in the measurement methods can alter the data 

homogeneity). It should be ensured that the data is homogeneous, in the sense that, 
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all the data points have been collected in the same conditions. If this is not the case, 

the data samples are not necessarily comparable. Moreover, these collection 

conditions should be the conditions in which the NN application will be used. 

e If the data quality is high enough, then the more data that is available the better. 

The idea is that the more complex is a NN, the more flexible it is, and the more 

complex functions it can model. However, this greater flexibility must be controlled 

to avoid overfitting, and this is the role of the training data. The more data there is 

available, the greater the NN complexity can be without overfitting, and hence the 

greater the potential accuracy. 

e Suitable means should be used to extract a representative data set of the problem 

from the data samples collected (or at least to enable a representative test of the NN 

function). This means for instance, that the data set should include data points 

corresponding to every relevant failure mode. This also means that the data density 

corresponding to the system in operation can be determined. 

To ensure a good coverage of the relevant data space, techniques such as failure 

mode analysis can be helpful. To model the data density of the system in operation, 

the simplest (but not always possible) solution is to collect data from the system in 

operation condition during a ‘sufficient’ period of time. The data collected can then 

be used to fit a data density model. 

5.3.2. Data analysis 

Sale The problem 

Good quality data is a rare commodity. Accordingly, it is of fundamental importance 

to understand the characteristics of the available data in order to use it efficiently. 

Moreover, if the quality of the data is not high enough, the performance of the NN is 

likely to be poor. So the purpose of a data analysis or audit of the data is to evaluate 

the data quality and to provide the means to select and correct the data, and thus 

improve its quality. 

The data analysis must be undertaken before the design phase, since the results of this 

audit may significantly influence the design. 

As in other phases of the life cycle, the methods appropriate to time series data are 

different from those appropriate to static data. This is because the data set is ordered 

54



and we cannot make the assumption that the patterns are all independently sampled 

from the underlying data generator. 

Finally, this data analysis is necessary since, as with classical software, it is much more 

cost effective to detect problems” at an early stage of the life cycle than, for instance, 

at the testing stage. 

3:3,2:2. Good practice rules 

° It should be checked that the data is representative of the problem. For example, 

the coverage of the data space can be assessed by using visualisation techniques. 

This can, for instance, enable to detect possible holes in the data space coverage 

° The function to be modelled may be multi-valued. If this is not detected then an 

inappropriate model will be used which will necessarily have low accuracy. 

Indeed, if the NN has been designed to model a single-valued function (both 

MLP and RBF regression networks are of this type), at each input it will 

compute the mean of the output values, which may differ dramatically from a 

possible output value. Multi-valued functions may arise in inverse problems” 

(see fig. 10). 

?8 For instance the function to be modelled may be multi-valued, see section 5.3.2.2. 
?° Specific NN architectures can be used to deal with inverse problems (e.g. mixture density network; 
see [3] pp. 212-222, and [7]). 
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Figure 10.a: Example of a multi-valued function. 
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Figure 10.b: This figure illustrates the typical result coming from a learning 

process that uses a single-valued mapping to model a multi-valued function. For 

each input, the NN predicts the mean of the target values, and thus gives poor 

predictions. 
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Whenever the dimensionality of the input data space is not small compared to the 

number of data samples available, feature extraction should be carried out. The 

main reason for doing this is the curse of dimensionality: in high dimensions, 

large numbers of data points are needed to model the density accurately (see 

section 4.7). 

The goal of feature extraction is to reduce the dimensionality of the input data 

space by selecting a set of new input variables for the NN (the features) whose 

size is lower than the dimensionality of the initial input data space. 

The simplest method consists of suppressing the less relevant input variables 

(e.g. variables with no or little relevance to the problem, almost constant 

variables, or variables with small correlation with the outputs). 

More elaborate techniques construct new variables (the ‘features’) from subsets 

of the initial variables. For speed and simplicity, linear techniques, such as 

Fisher’s discriminant (also known as canonical variates), Principal Component 

Analysis, and factor analysis, are commonly used. 

However, whatever the technique used to select the features, it should include at 

least two components: a criterion to compare the candidate sets of features and 

select the best ones, and a systematic procedure to search through the candidate 

sets of features (see [3] pp. 105-112). 

Note 1: feature extraction is typically the kind of operation that can be 

performed by a pre-processing unit. 

Note 2: feature extraction cannot increase the amount of information contained 

in the data but can decrease it. So, a compromise must be found between the 

loss of information generated by the feature extraction and the greater data 

density resulting from the reduction of the dimensionality. Often, the only way 

to find the best compromise is to train NNs on several different feature sets and 

compare their performance. 

Problems of missing data should be considered with the greatest care. Several 

options exist when dealing with missing data. 
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The simplest method is to discard all data with missing field(s). This poses two 

major problems. First, if little data is available it may be impractical to discard 

data. Second, the cause of these missing values may be correlated with the data 

itself, hence discarding data could mean discarding relevant information. An 

example of the latter case would be a sensor that did not return a reading if the 

variable it was measuring was greater than a certain value. 

Other techniques try to complete the data. However, no method can ensure a 

perfect reconstitution of the data. One of the simplest methods consists of filling 

in the values of the missing fields by the average values of the corresponding 

field; this average value being computed using the data points for which this 

value is present. This approach may lead to very poor estimates of the actual 

values of the missing fields and, therefore, may introduce “errors” in the data, 

and consequently “errors” in the training process. These errors may not be 

detected if the same approach has been applied to the validation and testing data 

sets. More principled techniques are based on modelling the input data density 

and imputing the missing values given the known values for a data point. 

Whatever technique is applied, the problem of missing data is critical, and the 

knowledge of a domain expert should be used to assist and validate the 

operations. 

Lastly, note that there are several types of missing data*® and that, the relevance 

of the methods used depends on these types (see [17]). 

° Variable types and encodings should be determined. 

There are three main types of variables: continuous, ordinal and categorical*’. 

A variable is said to be continuous, if it can be measured as a real number and 

applying arithmetic operations (such as addition and multiplication) makes sense. 

For example, the yearly quantity of oil transported by a tanker is a continuous 

variable. On the other hand, if an object’s colour is measured as ‘blue’, ‘green’ 

or ‘red’ and then encoded as values ‘0’, ‘1’ and ‘2’, the colour is not a 

3° For example: missing at random data, missing completely at random data, observed at random data. 
See appendix A for further information. 

31 In the literature, a wide variety of terminology is used to refer these different types of variables. 
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continuous variable, since it does not make sense to add two values. Usually, 

continuous variables arise directly from objective measurements. Feed-forward 

NN models use real valued inputs and outputs, and hence continuous variables 

cause no special problems. 

An ordinal variable takes on a finite set of possible values, usually small (less 

than 20). These values are ordered, but the normal arithmetic operations and do 

not apply. Typically, such variables arise through the discretization of an 

underlying continuous variable (for example, the Beaufort scale for wind speed). 

They are usually mapped onto numeric values with the correct ordering. 

Because NNs are non-linear models, the exact values chosen in this mapping are 

not critical. 

However, it should be noted that, as such variables result from a discretization of 

a continuous value, they are by definition approximate. The coarser is the 

discretization, the greater is the approximation. This problem should not be 

neglected, since using an extra variable as an input of a NN, implies an increase 

in the dimensionality. If this variable does not carry enough relevant 

information, its use may be synonymous with a decrease in the performance (see 

section 4.7). 

Such variables may also result from a human evaluation and then can be very 

subjective (e.g. to appraise the wear of an equipment the human operator can 

have to choose between the following set of values: ‘no wear’, ‘light wear’, 

‘normal wear’, ‘serious wear’, ‘critical wear’). Consequently, before being used, 

such variables should be carefully analysed and their utility should be evaluated. 

Even, if in general these problems are not critical, they exist. 

A categorical variable is one where there is no order between the different 

values that it takes (e.g. the variable ‘colour’ above mentioned). Owing to their 

nature, categorical variables can be the cause of serious problems when used 

with data-driven models. For instance, they often stem from a subjective human 

evaluation (e.g. ‘purple’ may be classified as ‘red’, or ‘blue’), which means that 

they are often intrinsically approximate, and therefore, not always suitable when 

a high accuracy is required. 
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Another problem with categorical variables, is that they require specific encoding 

techniques. For instance, let us suppose a categorical variable having a numeric 

form. If this variable is presented to the NN without being encoded, the NN will 

interpret the numeric values of the variable as actual numbers and then will 

assign an order on these values. But this order is completely artificial and should 

not be used as an information during the NN training. 

Accordingly, encoding problem should not be neglected with categorical 

variables. One of the most common and suitable ways to deal with this problem 

is to isolate the modalities of the variable by creating a new variable for each 

modality. These variables are Boolean, and disjunctive one from another. This 

procedure is called ‘disjunctive coding’. 

° Outliers should be identified and discarded. For instance, if the sum of squares 

error function is used then, as this error function is very sensitive to outliers, a 

single outlier may affect severely the training process and so the performance. 

Accordingly, to detect outliers, data density modelling techniques should be used 

in conjunction with prior knowledge concerning the data (e.g. expert opinion). 

However, it is advisable to be cautious. For instance, data points corresponding 

to failure modes occurring rarely may have all the characteristics of outliers, yet 

they should not be considered as such and should not be discarded. Indeed, if 

the NN is not trained on these cases, it will not be able to recognise them in 

operation and will extrapolate and then provide unreliable predictions. Under 

such circumstances prior knowledge should be used to decide which data points 

to discard. 

Note that the detection of outliers should not been done on pre-processed data, 

since the pre-processing function may map outliers to ‘non-outliers’ values (e.g. 

if a dimensionality reduction has been carried out). 

e It should be checked that the data is not too noisy, and hence reliable. 

Here again, the number of available data points is a fundamental parameter. To 

illustrate this, let us consider an over-simple case. Suppose that the function to 

» This encoding is often called ‘1-of-c coding’. For further information, see [3] p. 300, and [25] pp. 

217-218. 
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be modelled is the straight-line defined by h(x) = x (x being the input variable), 

that the training data set is constituted of two data points corrupted by a zero- 

mean Gaussian noise with a unit standard deviation, and that the two data points 

are? (-1,0) and (1,0). 

Figure 11.a: 2 noisy data points 
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Figure 11.a: This figure shows that if too few data points are available compared 

to the magnitude of the noise then, the model is unable to capture the linear 

relationship between the inputs and the targets. 

If a linear relationship is sought for this particular data set, then the result will be 

that there is no relationship between the input and the target values (see fig. 

11.a), since the target values are equal to the constant zero whatever the value of 

x. This is due to the fact that too few data points are available compared to the 

magnitude of the noise. If, for the same noise magnitude, the data set used is 

large enough, then the model becomes able to capture the underlying linear 

relationship between the inputs and the targets (see fig. 11.b and fig. 11.c). 

> The first component of each pairs is the input, and the second the target (that is, h(x)+€). 
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Figure 11.b: 5 noisy data points 
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Figure 11.b: This figure shows if more data points are available, then the effect 

of the noise can be reduced. 

Figure 11.c: 800 noisy data points 
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Figure 11.c: As figure 11.b, this figure shows that the effect of the noise can 

nearly be suppressed by a sufficient increase in the size of the data set. 
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Time series data: 

Most of the issues related to static data are still applicable to time series data. 

However, it should be noted that time series data has two specific features: First, 

it has a temporal aspect, secondly, fewer data samples are generally available 

than with static data sets. This raises extra problems: 

- Outliers and time series: 

It often happens (independently of measurement or typing mistakes) that there 

are outliers in a time series. 

These outliers cannot be discarded as easily as with static data. As the data 

points are not independent and supposed to be equally spaced in time, 

suppressing one of them would create a kind of hole in the time series, and all 

the data points later than the point suppressed would be shifted back in time. 

This could severely alter the time series structure. On the other hand, leaving an 

outlier in the data set when this data set is a small one, can result in a poor 

prediction performance. 

Hence, with time series, outliers should be considered as missing data that must 

not be discarded, and usual techniques to complete missing data can be used to 

replace outlier values by more relevant ones. 

- Time spacing: 

The temporal nature of time series data raises specific extra problems concerning 

its homogeneity. It is implicitly assumed that the time interval between two 

consecutive observations is constant. With real-world data this requirement may 

introduce extra difficulties. 

For instance, if the time series represents the monthly values of a given variable, 

then it is advisable not to use these values directly to model the time series. For 

example, values for the month of March (i.e. 31 days) may not be comparable 

with the ones for February (i.e. 28 or 29 days). 

These problems should not be neglected, since they can significantly distort the 

time series structure and, therefore, affect the NN performance. 
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- Detrending: 

The time series may have an underlying trend, such as a steady increase. If that 

trend is not removed, then, when predicting on inputs beyond the training data, 

the NN will be forced to extrapolate™, and therefore, will have a poor 

performance. 

Such a problem can be reduced by trying to model the trend by using a simple 

model (e.g. a linear model), and subtracting the values predicted by this model 

from the data. The NN is then trained on the transformed data. This procedure 

is called detrending. 

Note that if a detrending technique is applied to train the NN unit, the same 

detrending technique must be applied in operation to pre-process the data. 

An underlying trend in a time series should be detected in the early stages of the 

development (e.g. by plotting the time series or by using statistical tools). 

§.3:23. Difficulties/Questions: 

e Uncertainty in the data: 

When missing data problems occur, whatever the method that is used to 

reconstitute a “complete data set”, approximations are made. Consequently, if such 

methods are used we can wonder: 

. whether corrected data should not systematically be excluded from the testing sets. 

Indeed, if a testing set includes such data, in what extent is the generalisation error 

obtained on this test set reliable? 

. whether the approximations made to complete the data could not be taken into 

account and incorporated as uncertainty on the input data (e.g. by using the concept 

of noisy input data”). 

The same type of problem of approximation exists with categorical variables, and to 

a lesser extent with ordinal variables. 

+4 Indeed, in the case of a steady increase, the values of the time series after the ones of the training 
set, are, roughly speaking, greater than those of this training set. Consequently, they do not lie in the 
training data space area, which is a typical case of extrapolation. Time series with that type of trend 
are special cases of non-stationary time series (see section 5.7). 
35 Usually only noisy outputs are considered. Currently, the problem of noisy inputs is at a research 
stage.



The higher the safety integrity level required, the more sensitive this kind of 

problem becomes. 

© Noise: 

We can wonder whether a rule of thumb could not be found to estimate the 

maximum tolerable level of noise. For instance, this maximum could be, defined as 

a function of the data mean value, the data standard deviation and the size of the 

training set. 

5.3.3. Constitution of the training, validation and testing sets 

Sgesils The problem 

ANN learns from data samples, consequently if the data used to train the NN is not 

representative of the function to be modelled, then the results may be very different 

from the expected ones (see fig. 7). That is why a good training set is crucial. 

Usually, several different NN configurations are trained and the best ones are selected 

according to their generalisation capabilities. In other words they are selected 

according to their ability to give accurate predictions on data distinct from the training 

data. Hence, to evaluate the generalisation capacities of the different configurations, 

an independent data set of the training set is used. This data set is called the validation 

set’®, 

Finally, a third data set, the testing set, is used to validate the selected configurations. 

The use of this third independent set is required since the validation set has already 

been used to select the best configurations and, therefore, is not independent of them. 

As these three sets have different functions, the criteria to be considered for their 

constitutions are different. 

Note: in the Bayesian framework this distinction between the training and the 

validation set does not exist. 

53:31:25 Good practice rules 

e The distribution of the data points, in terms of quantity, between the three sets 

should be carefully considered. Indeed, the more training data is provided, the 

36 Tp [22], the author uses an other terminology: the ‘validation set’ is called the ‘acceptance set’, and 

the ‘testing set’ is called the ‘validation set’. 
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better the NN can learn the function to be modelled*’. Nevertheless, enough data 

should be allocated to the validation and testing sets in order them to be 

representative of the problem and enable a dependable test of the NN. 

Note: To guide this distribution, rules of thumb can be used. For instance, for two- 

class classification problems, the Widrow's rule of thumb gives a lower bound for 

Ww 
the size of the training set (N ,,,,) required if a MLP is used: N,,,=— , where W 

€ 

is the total number of weights in the NN, and € the maximum percentage of 

misclassification tolerated on the testing set (see [2] p. 152, see also [3] p. 380 and 

[14] p. 156). 

e This second level of data issues, the selection of the models to be trained, and the 

selection of the training techniques should be addressed conjointly: 

- The number of data points available should influence the choice of the complexity 

for the models to be trained. For instance, for classification problems, the rule of 

thumb given just above can be used to determine an upper bound for the NN 

complexity. 

- The model and the training techniques selected should influence the splitting of 

the initial data set into training, validation and testing sets. For example, cross- 

validation can be used if the model is complex compared to the number of data 

points available. In this case, the splitting criteria are radically different. 

e As the accuracy of the NN predictions in an area of the input data space is inversely 

proportional to the data density in this area, if a higher accuracy is required in 

specific areas of the data space, then the training set can be provided with more data 

points in these areas. 

e The testing set is the ultimate reference to evaluate the generalisation ability of the 

system in operation. Accordingly, this set should be representative of the system in 

operation: that is, representative in terms of data space coverage, but as well, in 

terms of data density. If this last criterion is not fulfilled, and if no adjustment of the 

generalisation error evaluation is undertaken, then the generalisation error obtained 

37 Furthermore if biased error bar techniques are used, increasing the size of the training set has an 

interesting side effect, since it reduces the bias (see appendix A; definition of ‘biased estimate’). 
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on the testing set can differ significantly from the true generalisation error of the 

NN in operation and, therefore, cannot be considered reliable (see also [22]). 

Note: to compensate for the possible difference between the testing data density, 

and the data density of the system in-operation the way the generalisation error is 

computed can be changed. The simplest method is to weight each testing point by 

the ratio between the data density (at the considered point) for the system in 

operation and the data density (at the considered point) for the testing set. 

e The validation set should be representative of the problem to be modelled. Indeed, 

as with the testing set its role is to test the generalisation capabilities of the NN in 

operation conditions. 

e This distinction among the training, validation and testing sets should always be 

done**. 

e The training, validation and testing sets should be independent, that is, (i) the 

training, validation and testing set should have a null intersection, (ii) a suitable 

randomisation method should be used to split the initial data set. 

As a caricatural example consider the case where only one data set has been used 

simultaneously as a training, validation and testing set. In this case overfitting 

cannot be detected. 

e For classification problems, the training data set should approximately contain the 

same proportion of data points from each class. 

For instance, consider a two-class classification problem. Suppose that the 

proportion of training data points of the first class (healthy patients) is much higher 

than for the second class (patients with a tumour). If no specific error function is 

used, the data points corresponding to healthy patients will have a higher 

contribution in the value of the error than the points for patients with a tumour. In 

consequence, the NN will tend to learn to classify all the data points as 

corresponding to healthy patient instead of learning the characteristics of the 

discriminant information between both classes*”. 

38 Exceptions to this rule exist; e.g. in the Bayesian framework no validation set is needed to select 
the best models. 
> For regression problems, a similar recommendation is often given: that is, the variables should be 
deskewed. However, it seems that this recommendation is more based on empirical results than on 

well established theoretical results. 
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This artificial distribution of the different classes into the training set may be 

dramatically different of the natural distribution. This ‘distortion’ of the distribution 

should be corrected. Provided the prior probabilities of each class (i.e. the natural 

proportion represented by each class) are known, it is a simple matter of using 

Bayes’ theorem to rectify the posterior probabilities provided by the NN. 

Data should be normalised before being presented to the NN unit. For example: 

- this suppresses scaling effects that can stem, for instance, from the difference of 

units associated with each variable, 

- this reduces rounding problems, and therefore, enables to work with a better 

numerical accuracy, 

- this can simplify weight initialisation. 

Categorical variables (see section 5.3.2.2) should be encoded properly. 

If little data is available, resampling techniques should be considered (e.g. cross 

validation). 

Note that, if cross-validation is used, then the data set used should be representative 

of the system in operation, or, suitable means should be used to ensure that the 

generalisation error obtained is representative. This is due, first, to the way the 

generalisation error is computed with cross-validation, and secondly, to the fact that 

the validation error should be representative of the system in operation. 

Time series: 

- One of the major problems with time series is to choose, first, the lag (that is the 

time increment between each input), and secondly the number of previous inputs to 

be considered 

For example, consider a time series representing the daily turnover of a shop. If, for 

instance, the problem is to predict the turn over for the following Saturday, it may 

be more efficient to take into account the turnover of the previous Saturday (that is, 

a lag of 7 days) than the turnover of the previous day (i.e. Friday, that is, a lag of 

one day). Similarly, it may be more efficient to consider the two previous Saturdays 

than only the previous one. 

Even if determining these two parameters usually requires empirical optimisation, 

several techniques may be used as a guidance. For instance, a linear model can be 
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fitted and these parameters selected on the basis of the best fit (e.g. fitting an 

autocorrelation function for different lags, see [16] pp. 54-75). 

Nevertheless, these techniques only give a rough approximation of what could be 

the values of the parameters. Accordingly, these values should be refined on the 

NN model. 

- One can wonder whether it may be interesting to add extra variables (external 

factors) as inputs to the NN. Indeed, providing the NN with extra information, may 

help it in its predictions. However, evaluating the quality of this type of variables 

and their correlation with the time series is often difficult. Furthermore, usually 

with time series, little data is available. Therefore, the rule should be: if little data is 

available, and if the quality of the considered extra variable is not very high, then it 

should not be used as an input to the network (see section 4.7, section related to the 

curse of dimensionality). 

- Two main strategies exist to split the data set into a training, validation and testing 

sets: 

. selecting the data randomly. 

. Splitting the data set into three contiguous sequences of data points: one sequence 

for the training set, one for the validation set, and one for the testing set. 

In principle, the second method is better since data points that are temporally close 

are more likely to be correlated. Moreover, this ensures that the sets are as 

independent as possible. 

If this solution is retained, another problem remains, which sequence should be 

associated with the training, the validation and the testing set. There are several 

approaches. The first one considers that is better to test the NN on the most recent 

data points, since it is more likely to provide a better estimate of how well the NN 

will perform with future data. On the other hand, if the NN is trained with the most 

recent data, it is more likely to be more appropriate to future data. 

Note: This problems mostly exists, because there is no real-world problem that is 

perfectly stationary. 

- Smoothing: 

With a time series application it may be necessary to smooth the data in order to 

obtain a good performance. This problem is closely related to the size of the 
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available data set. Indeed, if enough data is available, a NN is able to cancel the 

noise of the data. With time series, data points are often few and far between, 

hence, the NN is not necessarily able to cancel the noise properly. Nevertheless, it 

is advisable to be extremely cautious when applying smoothing techniques. Indeed, 

smoothing can introduce a bias (see [24] p. 650), or suppress relevant structure in 

the data (i.e. oversmoothing). 

5.4. Design issues 

5.4.1. Classical linear methods 

If the project is considered as feasible, then before trying to use NN technology, it 

should be verified that classical statistical techniques (e.g. linear techniques such as 

linear regression) are not adequate. Indeed, we have the following (simplified) 

relationship: the more complex is the software solution provided to solve a problem, 

the more difficult it will be to prove the correctness of this solution”, and the more it 

will cost to develop such a solution. Linear models are easy and fast to train, they can 

constitute good benchmarks, and sometimes they can provide suitable solutions. 

If linear models were not a suitable solution, most of the work which would have been 

carried out (e.g. data analysis, see section 5.3.2) would not be lost and would be 

reusable with NNs, since this kind of work applies to every data-driven model and 

therefore to NNs. 

5.4.2. Modularity 

D429 The problem 

The choice of the architecture is another very important issue in order to develop a 

successful NN application. In addition, as a classical software application, a good NN 

application should be modular, since: 

e As the problem to be solved by each module is simpler than the original one, it can 

be done more easily. 

This modularization may lead to a significant decrease of the dimensionality, since 

generally, each module has fewer inputs than for the initial problem. This means for 

“° e.g. proving that the solution allows the fulfilment of the safety integrity level required. 
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instance more possibilities to improve the accuracy of the results, since the power of 

the NN can be concentrated on a less difficult problem, and by doing so the 

accuracy can be improved. 

This decomposition of the approximation problem into several less complex ones 

corresponds to the well-known principle of “divide and conquer’. Intuitively this 

corresponds to the idea it is easier to understand 2 problems of difficulty 6, than 

one problem of difficulty 25. 

e The decrease in the complexity of the problems to be modelled means that the 

training process is facilitated*’. 

e Each module is defined over a smaller data space and, therefore, is easier to test. 

e All the above advantages are again met when maintenance operations are needed, in 

particular the diagnosis and the correction of the problems are easier. 

Modularity in the NN context provides most of the advantages it provides in the 

classical software development context. Nevertheless, one of the main problems raised 

by the concept of modularization is to find an efficient decomposition of the problem, 

since in the NN context this does not depend on the same criteria as in classical 

software development context. 

3:4.2:2, Good practice rules 

The first rule to respect should be that any part of the problem that can be tackled 

easily with classical programming techniques should be tackled with classical 

programming techniques (e.g. input normalisation). Indeed, a NN only provides an 

approximation of the function modelled, and when a high accuracy is required every 

unnecessary approximation should be avoided. Furthermore, this makes the work 

easier for the NN and allows it to concentrate its power on the actual approximation 

problems. 

A good decomposition of the initial problem should ensure that as little information as 

possible is lost. Several approaches are possible to achieve a good modularization of 

the problem: 

*! The models used, and the error functions to be minimised are simpler. We conjecture that the 
training time required is far from being merely proportional to the number of weights of the NN, since 
the minimum of the error function is searched in a weight space whose size increases exponentially 

with the number of weights in the NN (see section 4.7). 
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e Using prior knowledge (see next section 5.4.3). Indeed, the domain knowledge 

may suggest a natural decomposition of the problem, according to the relationships 

existing between the variables in the “real-world”. For instance, there may be a 

natural decomposition of the initial NN function into several ones. 

e Using mixture of experts: partitioning the data space into subspaces and assigning 

one expert NN to each subspace. 

¢ With classification problems, a multistage recognition approach can be used. That 

is, using a cascade of NNs that carries out successive refinements of the 

classification of the inputs. 

Such an approach has been applied successfully to solve a problem of hand-written 

character recognition [9]. For this application two levels of networks were used; 

the first level performed a broad classification of the characters, whereas the second 

level refined this classification. 

Note: In a way, these techniques of successive refinements can be viewed as a 

special case of a mixture of experts. 

e With classification problems posterior probabilities should be provided. These 

probabilities can be used to explain the decision (e.g. a probability of having cancer 

equalling 50.1 % is different from a probability of 99.9%). Such posterior 

probabilities can provide a rejection option. Consequently, the discriminant 

function should be separate from the NN unit. 

There are other advantages to this modular approach. For example, if a loss matrix 

is used and it is decided to change this loss matrix the modifications needed will be 

minor, and no retraining of the NN will be needed. 

© Using stacked generalisation” or a committee of NNs: the idea being to have more 

NNs but with a lower input dimensionality (see also 5.4.3.2). 

e Except if it is shown appropriate, outputs that are not mutually related*® should not 

be gathered in the same NN unit. For instance, let us consider a MLP with one 

hidden node layer, and whose outputs are not mutually related. In this case, the 

result of the optimisation process for the first weight layer, is a compromise that 

tries to simultaneously minimise the error for all the outputs. As, these outputs may 

*® See appendix A; definition of ‘stacked generalisation’ . 
* Output variables corresponding to probabilities related to a same problem are examples of mutually 

related outputs. 
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have completely contradictory requirements, this compromise may be synonymous 

with a significant loss of accuracy. 

e When real time requirements must be met, before starting the training of a 

modularised architecture, an estimation of its speed should always be carried out. 

Indeed, a modularization may imply a degradation of the speed performance of the 

NN function in operation. 

Note: This notion of modularization is closely related to the notion of feature 

extraction (see section 5.3.2.2). 

5.4.2.3. Difficulties/Questions: 

We can wonder what the impact of the modularity is on the computation of possible 

error bars. 

For example, let us consider a NN application with two NN modules m, and mp, 

whose outputs are inputs to a third NN module M (i.e. M is a kind of mixing NN). 

Given that m, and m; provide error bars on their predictions, we can wonder how error 

bars for M can be computed, as, for instance, nothing guarantees that M maps a 

monotonic function between the error bars. 

Once again, this raises the problem of what could be done with noisy inputs (see 

section 5.3.2.3). 

Note: A possible solution to this problem is discussed in appendix C. 

5.4.3. Incorporation of prior knowledge 

5.4.3.1. The problem 

The incorporation of prior knowledge is a fundamental issue that can, if tackled 

properly, dramatically increase the performance of NN applications. The main idea is 

that it is easier to solve a problem when relevant hypotheses have been made, than to 

solve the same problem without any hypothesis. 

Prior knowledge can be used advantageously throughout the life cycle. For instance: 

e It can be used as a guidance during the data collection, to ensure, for instance, that 

data has been collected from all the relevant areas of the data space (e.g. data 

corresponding to every faulty state known). 

e During the data analysis, for instance, it can be used: 
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- to differentiate outliers to be discarded from atypical points that should not be 

discarded (e.g. rare faulty states), 

- as a guidance to facilitate feature extraction. 

The following simple example illustrates how prior knowledge can be used to 

reduce the dimensionality. If we consider a NN with 5 input variables, and if we 

know that there is an invariant property defined by: the sum of the 5 inputs always 

equals a constant value, then, only 4 inputs of them are actually required, since the 

5" can always be computed from the other 4. For instance, this can occur if the 

input variables are probability measures that always sum to 1. 

e During the design stage: 

- an invariant property is a typical example of prior knowledge that, if suitably 

incorporated in the design, may lead to a dramatic increase in the NN performance 

(see section 4.5), 

- prior knowledge may help to achieve an efficient decomposition of the problem 

into sub-problems (see section 5.4.2). 

More generally, the incorporation of prior knowledge is a central issue that may mean 

that a NN application that was impracticable becomes practicable if prior knowledge is 

suitably taken into account. 

5:4.3:2. Good practice rules 

A thorough study of the system to be modelled should be done to collect prior 

knowledge: 

© The specification of the system should be the first source of information. 

e Experts of the system (e.g. its main users) should be consulted**. 

e All the relevant prior knowledge (e.g. invariant properties) should be taken into 

account, and incorporated in the NN application. 

Note: Some invariant properties can be built into the pre-processing unit or in the 

NN structure itself (e.g. by using shared weights techniques**). 

e Prior knowledge can be viewed as a special case of hypothesis, and as such, its 

correctness should be checked (see section 5.6.1). 

# Brainstorming techniques should be considered since being always a good way to gather 

knowledge. 
43 Such an approach has already been successfully applied in a hand-written ZIP code recognition 
application, see [3] pp. 324-326, and [14] pp. 139-141. Pp PP. 
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5.4.3.3. Difficulties/Questions: 

It would be probably interesting to develop a standard and systematic methodology 

to collect prior knowledge, and in particular to identify the invariant properties of a 

system. 

5.4.4. Diversity 

5.4.4.1. The problem 

Diversity means using simultaneously and independently different means to perform 

the same function“*. In the NN context, these different means can typically be different 

NNs, differentiated for instance by their types (MLP or RBF), the number of hidden 

units, the type of the training data (e.g. rational data”, or random data‘*), Such a 

combination of NNs is usually called a committee. 

Diversity is a simple and powerful means to improve the performance of a NN 

function. This notion of diversity is very similar to the notion of synergy. That is, if 

the members of the committee are complementary (i.e. roughly speaking, there is at 

least always one committee member that provides an accurate prediction), then the 

average performance of the committee can be better than the average performance of 

any of its member. Accordingly, the key factor to build an efficient committee is to 

ensure that the probability of simultaneous failure of the committee members is low. 

This remark is perfectly illustrated in [22] where the author considers a classification 

problem, explains the principle of majority voting for three NNs, and defines as the 

central parameter of the voting the probability that two out of three NNs fail 

simultaneously to classify an input . 

The same study [22] has provided the following empirical results: 500 different 

configurations of NN were trained to solve a classification problem. These 

configurations differed from one another in, at least, one of the following: the type of 

NN used (RBF or MLP), the number of hidden units, or the type of training set 

(rational or random). Among these 500 configurations the best 15 had been selected 

46 This idea is used with hardware to limit the probability of hardware failure (see [1] parts 2 and 6). 

‘7 A rational training data set is a data set that is focused on sensitive areas of the data space. For 
instance, for a classification problem, a rational training set would typically include a large proportion 

of data points near to the decision boundaries. 

48 A random data set, by opposition to a rational data set, is a set for which there is no particular 
concentration of the data in the sensitive areas of the data space. 

75



according to their generalisation performance*’. These 15 were all MLPs. Then, it has 

been shown experimentally that if the 5 best ones were replaced by 5 RBF 

configurations, the average of the individual generalisation ability performances fell 

from 97.90% to 95.08% but the majority vote performance increased from 98.48% to 

98.51%. 

Two main ideas arise from these results: 

- Majority voting improves the generalisation performance. Indeed the generalisation 

performance of the “best” NN was 98.40%, whereas using majority voting the 

generalisation: was 98.51%. 

- Even if at first sight these results do not seem impressive, they become very 

important when a very high accuracy for the prediction is required and difficulties to 

comply with the requirements specification are met. Indeed, these results show that, 

without trying to optimise the different NN architectures (which may be very costly, 

since it may be very difficult to overcome the last 100" of per cent of error), the 

performance can be improved only by combining non-optimal NN architectures. 

These results show that diversity constitutes a very simple and powerful extra means to 

improve the accuracy of the results. 

5.4.4.2. Good practice rules 

¢ Diversity should always be considered when difficulties to fulfil the specification in 

terms of accuracy occur. 

e For regression problems, the prediction of a committee should correspond to a 

weighted average of the predictions of the committee members. In [3] (pp. 365- 

369) the author gives a method to determine the weighting coefficients that takes 

into account the possible correlations between the committee members (i.e. the 

correlation of the residuals). 

Note that techniques exist to compute the error bars associated with a committee 

prediction (see [28] p. 18). 

e For classification problems: The prediction of a committee should be based on 

voting principles. Various strategies exist [22]. 

*° In that case the generalisation performance was the percentage of correct classification on new data. 
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e Using stacked generalisation. The idea of stacked generalisation is very similar to 

the one of committee, except that the averaging of the predictions of the committee 

members is performed by an extra NN’. 

Note: If there is no real time requirement, Bayesian techniques are an interesting 

solution since they enable a very natural implementation of diversity. 

5.4.4.3. Difficulties/Questions 

We can wonder: 

e whether PAC learning results that are currently applicable to a single network, 

could be extended to a committee of NNs. 

e whether committees consisting of feed-forward NNs and other technologies (e.g. 

fuzzy logic model) fall in the scope of this project. 

¢ whether an intermediate solution between the committee of NNs and stacked 

generalisation could not be propounded. This solution would take into account the 

correlation between the committee members and, to improve the accuracy of the 

predictions, would also take into account the amplitude of the error bars of each 

committee member for the considered input point. In this way the weighting 

coefficients would not be constant but would adapt themselves the input data 

points. 

5.4.5. Other good practice rules related to the design 

e With classification problems, in doubtful cases (i.e. input data point very near to 

decision boundary), in order to minimise the risk of misclassification, the NN should 

have the possibility of answering “I do not know”. Thereby, this gives a reject 

option to a possible human operator. For instance this reject option principle is 

widely used with NN application related to medical diagnostic. 

Note that this requirement may be impossible to satisfy and depends on the 

application considered (e.g. this may be impossible when real time requirements 

exist). 

e With regression problems, the NN function should produce error bars. Moreover, 

if the error bar techniques used are biased*’, a solution should be provided to detect 

°° See appendix A; definition of ‘stacked generalisation’. 
*! For example, error bars based on an estimate of the variance stemming from the maximum 
likelihood approach are biased. 
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when the error bars should not be considered as dependable. For example, a natural 

solution is to model the training data density, and provide simultaneously the error 

bars and the training data density for the considered input” a 

e The choice of the error function is problem dependent. Thus, for regression 

problems the sum of squares error function is usually used, whereas for 

classification problems cross-entropy error function is more appropriate. 

Nevertheless, these error functions implicitly assume, for instance, that the data 

points are not correlated, yet it may not be the case (e.g. with time series data) and, 

therefore, specific error functions may have to be considered. 

5.5.Training and model selection issues 

5.5.1. The problem 

Even if the quality of the NN architecture and the data set are high, if the training 

issues are neglected, the performance of the NN may be poor and the specification 

requirements impossible to fulfil. An appropriate architecture and high quality data, 

only provide the potential to obtain an efficient NN function, but nothing more. 

To perform an efficient training, two main pitfalls must be avoided: 

© being trapped in a bad local minimum, 

© overfitting, 

No algorithm is able to always avoid these two pitfalls. Worse than that, there is no 

best method to train a NN, and the optimal method to be used is problem dependent. 

Different types of optimisation algorithms exist: some can escape from local minima, 

others cannot. Some converge very quickly, others converge much slower and can 

even diverge. Unfortunately, algorithms that generally converge the fastest are also 

those that cannot escape from local minima. 

Generally, several distinct NN architectures are trained’? and the best ones are 

selected. This selection is mainly based on the generalisation capabilities of the NN 

architectures. 

*? When the error bars are based on a variance estimate stemming from the maximum likelihood 
approach, the bias decreases as the training data density increases. 
°° With pruning and growing techniques there is one architecture whose complexity evolves during 
training. 
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5.5.2. Good practice rules 

e All the training tools and more generally the whole conventional software used in 

the NN function should be validated before being used (e.g. the back-propagation 

procedure). 

e Suitable techniques should be used to avoid overfitting. The most commonly used 

are: regularisation techniques (i.e. modifying the error function in order to penalise 

NN mappings with too a high curvature), early stopping (i.e. stopping the training 

process when the generalisation error starts to increase), pruning techniques™. 

e Avoiding being trapped in a bad local minima: 

There is no optimisation algorithm that ensures that the global minimum of the error 

function is found at the end of the training process. The solution found by the 

algorithm depends on the initial starting conditions (e.g. initial values of the 

weights). Consequently, whatever algorithm is used, the training process should 

always be repeated with different initial conditions and include a stochastic 

component (e.g. multiple random initialisations of the weights). 

e Great care should be taken concerning numerical problems (e.g. rounding errors). 

If neglected they can introduce approximations that can lead to a very sub-optimal 

solution. For example, with RBFs, to determine the second layer of weights, 

instead of using classical matrix inversion it is better to use singular value 

decomposition® * that can overcome some of the problems related with near-singular 

matrices. 

e As the notion of best optimisation algorithm is problem dependent, several 

optimisation algorithms should be tried. 

e If RBFs are trained, suitable techniques should be used to determine the basis 

function parameters (e.g. clustering techniques) (see section 4.3.2). 

e Selection of the model(s): 

- several different NN configurations should always be tried. 

*4 All these techniques are more precisely described in appendix A. 
°5 See appendix A. 

19



- the main criterion should be the generalisation ability of the model, and so, the 

choice of the model should only depend on the results obtained on the validation 

5 set”, 

5.5.3. Difficulties/Questions 

It might be interesting to give approximate rankings of the different existing main 

optimisation algorithms. These ranking should be based on different criteria such as: 

the quality of the solutions found (i.e. the generalisation capability of the trained 

model) or the convergence speed. They should compare the different algorithms for a 

wide range of problems: from toy problems to real-world problems. At the moment 

such benchmarks do not exist [23]. 

5.6. Testing issues 

5.6.1. Correctness of the hypotheses made 

5.6.1.1. The problem 

As a logician would say “false implies true”. 

During the development of a NN function, various assumptions are made (e.g. 

distribution of the noise, smoothness of the underlying function). Therefore, the 

validity of the NN function obtained relies on the validity of these assumptions. 

Hence, these assumptions should be shown as valid, or at least suitably justified. 

To illustrate this, consider the two following examples related to the hypotheses 

concerning the noise: 

(i) A usual assumption is to consider a zero-mean Gaussian noise, but in a safety 

critical context such an assumption should be verified. For instance, the sum of 

squares error function allows to provide an estimation of the mean and the variance of 

the conditional distribution for the output variables. Given these two parameters 

(mean and variance) error bars can be determined. Nevertheless, for instance, 

according to the noise distribution, the error bars can be different: if a Gaussian noise 

is assumed then the predicted error bars are symmetric around the mean value, but if 

the true distribution of the noise is a Poisson distribution, then the true error bars may 

*6 The Bayesian framework does not need any validation set to select the best model; the selection is 
based on the notion of evidence (see [19] and [28] p. 3). 
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be significantly asymmetric around the mean value. In this case, the predicted error 

bars are not reliable. 

(ii) in-operation error bar techniques generally assume that the variance of the noise is 

constant all over the data space. However, this assumption can be false and, 

consequently, the error bars not reliable*’. 

5.6.1.2. Good practice rules 

Every important assumption made should be checked, or at least, justified, the rule 

being “the sooner the better”: 

e Hypotheses concerning the noise should be checked. For instance, a possible 

solution is to perform several samplings for each input value and observe the 

distribution of the targets. Note: Observing the distribution of the residuals can also 

be useful. 

e It should be checked that the assumptions the model is based on are actually 

verified. For example, in the Bayesian framework, it has been shown that when the 

number of weights is greater than the third of the number of training points, then the 

Gaussian approximation, that is one of the main approximations made in this 

framework, breaks down*® [28]. 

e The validity of the prior knowledge should be checked*’. For instance, it should be 

checked that the possible invariant properties are really invariant and not almost 

invariant. 

Note: Sensitivity analysis is a very general technique that can be used to evaluate the 

relative importance of the assumptions made (e.g. it could be used to determine in 

what extent the choice made concerning the possible missing data can be affect the 

model). 

57 Sometimes, specific techniques can be considered. For example, if the noise is proportional to the 

target values, a solution is to pre-process the data by taking the logarithm of the target values. The 

variance of the noise that corrupts the logarithm of the targets can be considered as constant. 

** This statement applies to the implementations of Bayesian techniques using a Gaussian 

approximation to the posterior distribution of the weights (see appendix A, ‘Bayesian techniques’). 

* This may require the knowledge of a domain expert. 
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5.6.2. Correctness of the implementation 

5.6.2.1. The problem 

The correctness of the implementation is at least as important as with conventional 

software: on one hand, to train the NN unit conventional software tools are used, on 

the other hand, the trained NN function may contain a significant amount of 

conventional software (e.g. in the pre-processing unit). 

5.6.2.2. Good practice rules 

e It should be ensured that the tools that have been used to deal with the data issues 

have been correctly implemented (e.g. algorithms used to normalise the variables, 

algorithms to deal with the possible missing values). 

e It should be ensured that the optimisation algorithm and each of its components 

have been correctly implemented (e.g. back propagation procedure, error function) 

e It should be ensured that the prior knowledge has been correctly incorporated in the 

design. For instance it should be checked that the possible invariant properties are 

satisfied. 

e Each unit (i.e. pre-processing unit, NN and post-processing units) should be 

individually tested. 

e Every interface should be tested. That is, interfaces between the different units of 

the NN function, but as well interfaces between the NN function and some possible 

conventional software. 

All the above aspects are classical software testing aspects, and consequently 

validation and verification techniques used with classical software are still applicable. 

e It should be checked that the training, validation and testing data sets have the 

expected properties. For instance: (i) they should be independent (see section 

5.3.1.2 and section 5.3.3.2), (ii) the validation and testing set should be 

representative of the problem. 

5.6.3. Compliance with the specification 

5.6.3.1. The problem 

The fact that the different algorithms used to train the NN have been implemented 

correctly and that the data issues have been properly addressed does not necessarily 
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imply that the performance specification requirements (in terms of speed and accuracy) 

are fulfilled. 

5.6.3.2. Good practice rules 

e For regression problems, when “in-operation error bars” are used™, it should be 

checked that these error bars stay in the limits fixed by the specification for all the 

relevant data space. 

- To test the validity of the error bars, it should be checked on the data available 

that the targets “usually” lie within the error bars (e.g. two standard deviation error 

bars should contain targets 95% of the time). 

- The compliance of the error bars amplitude with possible specification 

requirements (see 4.2.2) can be tested on the data points available. Note: In 

appendix C, we propose a procedure that may be used to perform a more stringent 

test if a high safety integrity level is required. 

e Ifthe NN performance (speed or accuracy) does not comply with the specification, 

then a precise diagnostic of the problem should be given. This diagnostic should 

identify precisely what are the specification requirements that are not fulfilled. 

Hence, this implies that the testing stage should be completed (even if a problem is 

detected from the outset of this testing stage). The findings from this diagnostic 

should then be used to select the appropriate stage of the life cycle to go back to 

(e.g. it may be decided to come back to the data collection stage). 

Note: If the speed requirements are not met, it should then be tried to simplify the 

architecture. If not sufficient, then the only remaining solution is probably to use 

hardware components. 

e Normalised error functions should be used during the testing phase, since they allow 

an interpretation of the generalisation error value obtained (e.g. relative error). 

e Testing data should not be used before the testing stage, and should be considered 

as a means to provide a ultimate validation of the NN function. 

e Every specific property the NN function is to satisfy should be shown to be satisfied 

(e.g. novelty detection property). 

© Time series: 

® Error bars for classification problems raise extra difficulties that are currently at a research stage. 
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When testing a NN function used to model a time series, another important aspect 

should be taken into account: the temporal aspect of the time series. 

Thus, it is important to know how the quality of the NN predictions evolves 

through the time. 

Mainly, two families of techniques exist: 

- Testing the evolution of the residuals (that is the differences between the 

prediction and the actual value) through the time. Among the aspects that may be 

useful to consider, there are: 

. the mean of the residuals (one should expect them to have zero-mean) 

. the correlation of their amplitude with time. Such a correlation can be detected 

for instance by performing tests of randomness”! or by trying to fit a simple model 

on the residuals (e.g. a linear model). An increasing amplitude means that it is likely 

that the predictions will deteriorate with time™. 

. their distribution (it can be estimated for instance by constructing an histogram). 

If it is not symmetric, that may indicate that the NN has a consistent bias, and so 

will have a trend to over or under estimation. 

- A more stringent test consists of using the NN as a multiple step-ahead forecaster. 

That is, to make it predict values and reuse these values, as if they were actual 

values, to predict the next ones, and so on... Usually the error increases very 

quickly since errors are accumulated. Note: When it is required to predict a long 

time in the future, it is better to consider a model with a larger lag. 

5'6:3:35 Difficulties/Questions 

¢ Currently, no standard technique exists to test the compliance of “in-operation error 

bars” with specification in the whole of the relevant data space. A procedure is 

propounded in appendix C. It is based on the fact that the relevant area of the data 

space where such tests should be done, is ‘more or less’ the area where the available 

data points lie (this implicitly assumes that the data set is representative of the 

problem in terms of coverage of the data space). 

a Ideally, if a model has perfectly learned the underlying function the only error in the prediction 

should be the one due to the noise. 
© If this trend cannot be suppressed, a more frequent retraining of the network will be needed. 
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e When developing a NN function, data density modelling techniques can have 

various applications (e.g. to test if the validation and testing sets can be considered 

as representative of the problem, see section 5.3.3.2). Nevertheless, these 

techniques are by definition unsupervised techniques. Consequently, even if the 

quality of the processes that have been used to develop the model can be assessed, 

testing the quality of the results obtained using these techniques, is a hard issue. 

This is discussed further in appendix C. 

e How to compute an overall failure rate for regression problems? As no framework 

seems to address this problem, we propose a solution in appendix C. 

5.7. Stationarity issues 

5.7.1. The problem 

Roughly speaking, a process is said stationary, if the function that describes it, does 

not involve in time. 

For the class of NNs we consider in this project, the NN function is fixed and has no 

adaptive capability. So if the underlying function that is modelled is not stationary then 

the predictions provided by the NN may become incorrect®’. That is why the greatest 

care should be taken to ensure that the system to be modelled is stationary. 

Note 1: problems of non-stationarity can for instance arise owing to the wear of the 

equipment. 

Note 2: The goal of this project is not to provide solutions to solve the problems raised 

by the non-stationarity, but to provide criteria to assess the measures used to detect if 

the underlying function is non-stationary. 

5.7.2. Good practice rules 

The problems of non-stationarity can be minimised by combining preventive measures. 

For instance: 

e A suitable on-line monitoring mechanism should be used in-operation to control 

that: 

- The data density remains relatively constant. 

® The possible error bars do not take into account such problems of non-stationarity. 
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- The performance of the NN remains in compliance with the specification. For 

instance, by monitoring the value of the error bars and check that the actual values 

of the function modelled lie within the error bars of the NN in conformity with the 

specification. 

Note: It may also be interesting to monitor the residuals: e.g. to detect possible 

trends towards under- or over-estimation in the predictions. Such trends mean that 

the function computed by the NN does not correspond to the function associated 

with the system modelled, and therefore, that errors have been made during the 

development of the NN application. 

e The wear of the equipment should be controlled regularly. 

e Systematic impact analysis should be undertaken if any modification or renewal of 

the EUC or the input suppliers for the NN were to be performed. 

e Ifthe system is shown as being weakly stationary, and if the degree of control over 

the data collection is low, then continuous on-line data collection techniques should 

be considered. 

e It might be interesting to check that the conditions when the data has been collected 

are the same as those conditions just before the commissioning of the E/E/PES. 

5.8. Documentation issues 

§.8.1. The problem 

Throughout the development of the application, special care should be taken 

concerning the documentation of the data since, as for classical software, it constitutes 

a crucial issue that must be carefully considered throughout the development of the 

application. 

A good documentation can be advantageously be used throughout the life cycle of a 

NN application: 

e It is useful during the development phase. Formalising problems improves their 

understanding and thus can enable an earlier detection of possible mistakes. 

Moreover owing to the iterative nature of a NN function development, it is likely 

that problems faced in an earlier stage of the development have to be faced again. 

Under such circumstances, it is useful to know exactly what the problems are, what 
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approaches had been tried to solve them, what the motivations for these approaches 

were, as well as the possible assumptions that had been made. 

e It makes information accessible to anybody (e.g. this can be vital if the project team 

loses members). 

e [tis acentral element in the verification, or the validation of a NN function, 

e Itis crucial to maintain the NN function. 

5.8.2. Good practice rules 

A good documentation should: 

© possess all the usual qualities required for a documentation: it should be accurate, 

concise, easy to understand, easy to access and maintain™. 

¢ be suitable for audit trails. 

For instance: it should include a report of the data analysis, it should also mention 

every relevant prior knowledge information that has been used and show the way it 

has been used. 

More generally, every major decision should be reported in the documentation, the 

tule being; “the sooner the better”. 

e include the list of all the hypotheses made (e.g. hypotheses concerning the noise) as 

well as the procedures used to check these hypotheses. 

e enable each major version of the NN function to be easily rebuilt. In particular, it 

should be possible to retrain any major NN configuration and reproduce the results. 

This implies, first, that each relevant configuration should be clearly described in the 

documentation (e.g. the type of NNs used should be stated as well as the 

arrangement of these NNs). Secondly, the re-execution of the algorithms used to 

train these configurations should lead to exactly the same results. For instance, this 

means that all the parameters of these algorithms should be recorded (e.g. learning 

rate, stopping criteria) and also that the possible stochastic aspects should be 

mastered (e.g. recording of the random initialisations of the weights, see section 

5:5): 

¢ include the training, validation and testing sets. 

© Further information is given in [1] annexe G. 
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e include an estimation of the density function of the data sets used (i.e. training, 

validation and testing sets), and estimations of the actual data density functions for 

the system in operation. 

¢ report all serious numerical problems that have occurred during the training phase 

(e.g. ill-conditioning). 

e provide information concerning the different algorithms that have been used to 

develop the NN function. This includes the algorithms used to analyse the data, to 

split the initial data set into the training, validation and testing sets and, the 

algorithms to train and to test the NN. 

This documentation is comparable to the type of documentation that is expected 

when dealing with conventional software. This implies that this documentation 

should also specify the version identification of the algorithms used, include the 

code of these algorithms, as well as all the parameters used for these algorithms 

(e.g. the learning rate in the case of the gradient descent optimisation algorithm). 

e describe how the NN function outputs are used by the rest of the system. For 

example, it should describe possible human factors and answer, for instance, to 

questions such as: What are the roles of the possible human operators in the 

monitoring of the neural system? What kind of control decision (having a link with 

the NN application) may they have to take? 

e if a high safety integrity level is required, the working machine precision should be 

mentioned in the documentation (e.g. precision used for the weights values). 

5.9. Other issues 

In safety critical context, security problems should not be neglected. For instance, a 

malevolent modification of the NN function parameters (e.g. the weights values) 

can change dramatically the function produced by the network. 

e Reusability. 

The algorithms used to develop the NN solution are generally reusable (e.g. 

optimisation algorithms). 

¢ Replication. 

The replication of a NN function is problematic since, as said previously, the class 

of NNs we consider has no adaptive property. Consequently, if the environment 
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where the replication is planned is not the same as the original, then the NN 

prediction may not be reliable. This means that before replicating a NN function, it 

should be checked that the destination environment can be considered as identical 

with the original. If in doubt, a retraining and ‘retesting’ of the NN component 

should be performed. 

© Maintenance issues. 

The NN unit may need to be retrained at least for the two following reasons: 

a) new relevant data points have been encountered in operation. Under such 

circumstances, this new data and the old data together can be used to retrain the 

NN. 

b) the system may be slightly non-stationary, which may require periodic retraining 

of the NN. In this case, data that is too old should not be used to retrain the NN. 

5.10. Summary 

Owing to the problem of curse of dimensionality (see section 4.7), the task a NN has 

to solve is a generally a very hard one. Hence, everything should be tried to simplify 

this task. 

The keyword is: the data, and everything should be done to have a better 

understanding of the data. 

If the data is not understood a NN function is a kind of black box with all the 

drawbacks that represents. 

If the data is better understood, then a NN function looks more like a glass box. 
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6. Results and future work 

6.1. Results 

6.1.1 Introduction 

From the good practice rules discussed in the previous chapter and from the life cycle 

proposed in the section 3.2, guidelines to assess NN applications have been developed. 

The efficiency of these guidelines has been tested against two cases studies. Some 

understandable problems of confidentiality (see section 1.2.1) prevent us from 

including the guidelines in this thesis. For the same reasons we have not included the 

detailed results of the application of these guidelines to the case studies. Nevertheless, 

thereafter we report the main findings for both case studies, furthermore, an extract of 

the report for one of them is given in the appendix B. 

The first project has been developed by Oxford University in collaboration with Oxford 

Instruments. This project was aimed at enabling sleep disorder detection. It was 

completed and in a commercialisation phase. The second project is currently 

developed by Aston University in collaboration with SAGEM and is related to ignition 

timing calibration. At the moment of the case study, this project was only in its early 

stages, that is, its feasibility had been shown on a sub-problem. 

As with conventional software, providing a formal proof of the correctness of a NN 

application is in general impossible. However, both case studies suggest that if a NN 

application is developed in a sensible way and properly tested, then it should be 

possible to validate and verify it with an efficiency at least comparable to what is 

obtained in conventional software. 

6.1.2. Findings 

6.1.2.1. CONCERNING THE PROJECTS ASSESSED 

e Both case studies have shown that during the development of a NN function, two 

types of issues seem to be generally neglected: the documentation and specification 
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issues. For instance, for both applications no quantitative target was defined in the 

specification. With conventional software, these issues are crucial. 

The 2 main reasons are probably that: 

- as NN technology corresponds to a novel and very different way of viewing 

software, no standard currently exists. For instance, there is no clear definition of 

what should appear in a specification for a NN function. 

- Although NN technology is currently moving from research to products, most NN 

applications are developed by academics. While these latter generally have a very 

good understanding of the technology, they usually do not have the same objectives 

and the same experience in software development as software houses. 

Consequently, we can wonder whether these problems, and more generally, the 

research nature of NN applications development, are relevant problems or 

temporary problems due to the relative youth of NN technology. If we glance 

through conventional software history, the second interpretation is the more likely. 

The case studies have emphasised the highly iterative nature of NN application 

development. Thus, for both projects a quick loop through the life cycle has been 

performed to evaluate the project feasibility. This is mainly due to the fact that there 

is currently no technique that enables to foresee the accuracy of the prediction of an 

NN function before testing it. Therefore, developing a NN function is a ‘trial and 

error’ process. 

6.1.2.2. CONCERNING THE GUIDELINES 

e The cases studies have enabled the detection of minor deficiencies of the guidelines. 

They have been corrected. 

e Globally, the draft guidelines, were adequate to assess both projects. 

e The guidelines have enabled to the discovery of technical mistakes committed 

during development of both projects (e.g. see appendix B). 

6.1.2.3. PRINCIPLES OF VALIDATION AND VERIFICATION FOR NEURAL SYSTEMS 

Both case studies appear to demonstrate that the basic principles used to validate and 

verify conventional software are applicable to NN technology, that is: 

e checking that the NN function has been developed in a sensible way (i.e. quality of 

the processes and methodology used). 

e checking that the NN function has successfully passed the tests and complies with 

its specification. 
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It should be noted that none of these two aspects, if used alone, is sufficient to 

validate and verify a NN function. However, when used together, they are 

complementary and we can expect the validation and verification of a NN function to 

be at least as stringent as with conventional software. 

Intuitively, this means that if the NN function has been properly tested, and has passed 

the tests, then if the development has been rigorously carried out, it is very likely that 

the NN function does comply with its specification. 

6.2. Future work 

For completeness, note that for some of the good practice rules given in chapter 5, no 

standard technique enabling their application has been found in the literature. In 

appendix C, we propose procedures that we have created to enable their application. 

We do not pretend to give definitive procedures but rather an idea of the feasibility of 

such procedures and a possible basis for further investigations. 

Note that the good practice rules given in chapter 5 consider safety critical NN 

functions. For non-safety critical NN functions the development can be less stringent. 

Anyway, the idea is: the more stringent the development, the more likely the NN 

function is to be safe for use and to operate in conformity with its specification. 

Basically, the future work consists of refining what has been done during this MSc 

project and extending it to: 

e NN as controllers, 

e unsupervised techniques (e.g. data density modelling, mixture density models), 

© non-stationary time series. 
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CONCLUSION 

As was the case in the early days of conventional software development, there is in the 

NN technology context a need for standardisation. The use of standard methodologies 

such as the life cycle proposed in section 3.2 could be an important step in this 

direction. 

There are several motivations for standardisation: 

1. Providing guidelines to develop successful NN applications makes NN technology 

more accessible. 

2. The development of an application is easier to control if it is done in a systematic 

way. Moreover, a better control over development is synonymous with a higher 

dependability. 

3. A standardised development methodology enables standardised verification and 

validation methodologies. The findings of the case studies appear to demonstrate that 

validation and verification of neural systems are possible and can probably be as 

stringent as with conventional software. 

The lack of standardisation in NN technology is probably the main obstacle in the way 

of its mass generalisation. Let us hope that the small contribution made by this project 

will help it to progress in the right direction. 
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Appendix A: Definitions 

Foreword 

This appendix is aimed at: 

e defining the technical vocabulary used in the main text of this thesis, 

e giving a further insight into a few important notions or techniques, 

© providing references to source of further information. 

So far, in the NN technology context, no genuine standardisation effort has been made 

concerning the terminology. Accordingly, the terminology used is not always 

consistent and may be a source of ambiguities. For example, although [3] and [14] are 

two references in the NN literature, some discrepancies between them exist concerning 

the terminology related to basic notions. 

In this appendix we have tried to use a terminology consistent with the one used in [3]. 

Definitions 

e Activation function (also called ‘gain function’, ‘transfer function’ or ‘squashing 

function’) 

One activation function is associated with each hidden node, and each output node. 

The activation function computes a transformation (linear or non-linear) of the input 
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values entering the node®’. The result of this computation (which is called the 

activation of the node) is either used as an output of the NN (if the node is an output 

node) or used as an input value to the following layer if the node is a hidden node (see 

[3] pp. 82). 
The non-linear modelling properties of NNs, and hence their power, stem from their 

activation functions that are their only non-linear components. 

Note: Usually, the same function is used for every node of a node layer, thus most of 

the time, with MLPs, the same sigmoidal activation function (see ‘sigmoidal activation 

function’) is generally used for every hidden node, and the same function is used for 

the output nodes (generally the identity function for regression, and for classification, 

according to the number of outputs nodes, either the logistic or the softmax activation 

function). 

¢ Activation of a node 

See ‘Activation function’. 

e AR model (or ‘AutoRegressive model’) 

See ‘autoregressive model’. 

e Autocorrelation 

The autocorrelation for a lag k and a time series S, is defined as the linear correlation 

coefficient between the data points S,_, and the data points S, for i>k (See [16] 

pp. 52, see also section 5.3.3.2). 

e Autoregressive model (or ‘AR model’) 

s Input nodes are a bit peculiar since they do not compute any transformation of the single input they 

receive, and transmit it unchanged to the next node layer. 
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The autoregressive model is a linear model used for stationary times series modelling 

(see section 4.2.3). The basic idea is that the value to predict at time f (S,) can be 

computed using a linear combination of the 71 previous values of the time series. That 

is, S,=a,.S,,+a,.S,,+..+a,.S,,, , where the a,’s are constant coefficients (i.e. 

independent of f), and 1 is the order of the model (see [16] pp. 62-63, pp. 65-68 

and [24] p. 573). 

e Back-propagation 

Most non-linear optimisation algorithms (see ‘non-linear optimisation techniques’) 

used to train MLPs (see ‘multi-layer perceptron’) use gradient information (that is, the 

derivatives of the error function with respect to the weights, see ‘gradient’). The 

Back-propagation procedure is an efficient means of computing an accurate 

approximation of this gradient (see [3] pp. 140-148). The term ‘back-propagation’ 

stems from the fact that a step of the procedure consists of propagating information 

backwards through the NN (that is, from the output nodes to the input node). 

Alternative approaches to back-propagation exist, but are less efficient. One of the 

simplest consists of using finite differences (see ‘finite differences’ and [3] p. 147). 

There are several limitations to the use of back-propagation: 

- Back-propagation is not normally used to train RBFs, other techniques exist (see 

section 4.3.2, see also ‘clustering techniques’ and ‘singular value decomposition’). 

- Back-propagation cannot be applied directly to recurrent NNs and must before be 

extended. It is then called *back-propagation through time’. 

- Back-propagation assumes that the activation function is differentiable (e.g. it cannot 

be applied when threshold activation functions are used, see ‘threshold activation 

function’). 

Note: The term ‘back-propagation’ is often used to refer to the gradient descent 

algorithm. Although this practice is very common, it is improper. Indeed, even if the 

gradient descent algorithm uses the back propagation procedure to compute the 

gradient information, the back-propagation procedure can also be applied with any first 

or second order optimisation algorithm. 

°° Back-propagation procedure can also be used to compute the Hessian (see ‘Hessian matrix’). 
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e Back-propagation framework 

We term back-propagation framework, the one in which the classical approach of NN 

development is applied, that is, using a non-linear optimisation algorithm based on the 

back-propagation procedure. 

Note: Other frameworks exist to train NNs (e.g. the Bayesian framework, see 

‘Bayesian framework’), however so far, the back-propagation framework has been 

used the most commonly. 

e Batch learning 

When applying a learning algorithm to determine the parameters of a model, we speak 

of batch learning if the parameters are updated only once all the training data points 

have been presented (see also ‘sequential learning’ and ‘gradient descent’). 

e Bayesian posterior probability 

See ‘Bayes’ theorem’. 

e Bayesian framework 

Assume that we have some data generated according to a probabilistic model whose 

parameter values are unknown. To determine the parameter of this model, there are 2 

main classes of statistical approach: the frequentist approach and, the Bayesian 

approach. 

A frequentist approach consists of estimating a single value for the parameter by using 

the data. For example, if we consider the problem of tossing a coin, the parameter to 

be determined could be the probability of obtaining head. Given a set of coin tosses, to 

estimate this probability, a frequentist typically evaluates the proportion of heads and 

uses this proportion as an estimate of the probability. 
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By contrast, a Bayesian approach does not try to obtain a single estimate of the 

parameter but a distribution over all the possible values of the parameter. The 

principle is rather simple: the first step consists of defining a prior distribution over the 

possible values of the parameter. If we have a belief about the likely possible values for 

the parameter, this can be expressed through this prior (e.g. for the problem of tossing 

a coin, if the coin seems balanced and if we do not have any additional information 

concerning the coin, it is natural to choose a prior distribution for the probability of a 

head symmetric around 0.5 and with a maximum at 0.5). If we do not have any belief 

at all about the likely value of the parameter then this can be expressed by using a non- 

informative prior (e.g. for the problem of tossing a coin, a uniform distribution on 

[0,1]). This prior can be used as a way of incorporating prior knowledge in the model 

(see section 5.4.3). 

The second step consists of observing the results of several experiments and using 

these results to update the prior distribution, that is, giving a posterior distribution. 

Intuitively, this means that we had an belief concerning the possible values of the 

parameter, and that we have updated our belief after having observed the results of 

experiments. This update is done according to the laws of probability, and is 

performed by applying Bayes' theorem (see ‘Bayes’ theorem’). This Bayesian view of 

learning is generally referred as ‘Bayesian inference’. 

One of the main advantages of the Bayesian approach over the frequentist approach is 

that the result is a distribution over the possible values for the parameter. Indeed, the 

frequentist approach tries to estimate the expectation (i.e. a single value) of the 

parameter by using a finite number of experiments. This can lead to erroneous 

conclusions. For example, let us consider again the problem of tossing a coin, and let 

us suppose that in two tosses we obtain two heads. If the probability of obtaining 

heads is evaluated using a frequentist approach, then the conclusion will be: the 

probability of obtaining head is equal to 1, which is likely to be wrong. 

On the other hand, if a Bayesian approach and a non-informative prior are used, then 

the resulting distribution will be peaked around 3/4 and the shape of the distribution 

obtained will be relatively smooth (see [20] pp. 6-7). This distribution is a more 
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realistic result since it expresses the uncertainty in the result due to the low number of 

experiments. Moreover, this means that no value (and in particular the true value of 

the parameter) is discarded and that, roughly speaking, a degree of belief is associated 

to each possible value. 

One of the main criticisms of the Bayesian approach is the use of the prior distribution 

to initiate the learning. Indeed this prior influences the results, whereas it may be 

chosen more or less arbitrarily. 

Nevertheless, note that for an infinite number of data examples both approaches 

converge to the same result. 

With the Bayesian approach, to make predictions, all the possible values of the 

parameter are taken into account. The value predicted is a weighted average of the 

predictions for all the possible parameter values and the weighting coefficients are the 

degree of belief associated with each parameter value. This is formally expressed by: 

pQlD)= J pOlw) pow! D)dw, where D is the data, p(ylw) is the prediction made by 

the model for the parameter w and p(wlD) is the posterior distribution of w (i.e. the 

degree of belief in w given the data). This integration is usually referred as 

marginalisation. Note that thanks to this principle of marginalisation, Bayesian 

techniques are a very natural implementation of diversity (see section 5.4.4)” since 

even the least likely models are taken into account to provide predictions. 

If we apply these principles to NN technology, the parameters to be determined are the 

variables of the NN unit, that is, the NN architectures to be used and the associated 

weight values. Here again the same distinction between the frequentist and the 

Bayesian approaches can be made. Roughly speaking, the frequentist approach 

corresponds to the selection of a single NN configuration in the maximum likelihood 

framework (i.e. selecting the best architecture with the best set of weights with respect 

to the generalisation error), whereas for the Bayesian approach the goal is to find the 

distribution over the sets of weights, and over the architectures considered. 

°7 In the NN context it can be related to the notion of committee of NNs (see ‘committee of NNs’). 
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There are two main implementations of Bayesian techniques. These implementations 

correspond to two ways of carrying out marginalisation. The first one is based on a 

Gaussian approximation for the posterior distribution of the parameters (see [3] pp. 

397-398, [19], [28]) whereas the second one uses Monte Carlo methods (see [20] pp. 

61-109). 

Last but not least, note that the main drawback of the Bayesian techniques is probably 

that they may be computationally demanding in operation. This can make them 

inapplicable when a high safety integrity level is required and real time requirements 

exist (see also ‘Bayesian error bars’). 

e Bayesian error bars 

We define Bayesian error bars to be error bars used in the Bayesian framework (see 

‘Bayesian framework’). 

Usually, in the maximum likelihood framework (see ‘maximum likelihood principle’, 

see also ‘back-propagation framework’), to provide error bars over the NN 

predictions, the variance V of the NN predictions is estimated®*, and then, assuming 

that the distribution of the targets is Gaussian (with a mean equalling the NN 

prediction and a variance equalling V), error bars are provided. 

In principle, in the Bayesian framework the approach is different. As the application of 

Bayes’ theorem gives the posterior distribution for the weights and, as in theory, the 

distribution of the weights being known the distribution of the targets can be 

determined, “exact” error bars can be given. However, in practice the things are not 

so simple. Indeed: 

- the quality of the approximation of the posterior distribution of the weights to the 

true posterior depends on the initial prior distribution that has been chosen and on the 

number and quality of the data points used. 

- it is generally impossible to determine "exact" error bars analytically, 

°8 Tt is often carried out by using the Hessian and gradient information at a given input point (see 

‘Hessian’ and ‘gradient’) or by using predictive error bars (see ‘predictive error bars’). 
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- Although numerical sampling techniques can be used to avoid analytical problems, as 

the dimensionality of the weight space is generally high (greater than 20), serious 

problems of accuracy and computation time exist. 

Hence, this potential can generally not be exploited fully. 

To avoid these problems, some techniques try approximate the posterior distribution of 

the weights by a function easy to handle. One of the most popular is the Gaussian 

approximation, that is, approximating posterior distribution by a Gaussian at the peak 

of the distribution (see [3] pp. 397-398, [19] and [28]). 

Finally, note that in the back-propagation framework and for classification problems, 

assigning error bars to the posterior probabilities produced by the NN unit is highly 

problematic, two of the main reasons are that: 

1) The activation functions associated to the output nodes are often highly non-linear. 

For example, softmax activation function or, sigmoidal function, 

2) The Gaussian assumption for the distribution of the targets does not hold (since the 

distribution over the posterior probability is generally not symmetric). 

In principle, in the Bayesian framework this is a natural problem, which could be 

solved by using sampling techniques (see appendix C, section C.6). 

e Bayes’ theorem 

The Bayes’ theorem is defined as: Pais) == > Where P(A) and 

P(B)are the prior probabilities, P(BIA) is the conditional probability of B 

(conditioned by A), and P(AIB) is the conditional probability of A (conditioned by 

B) and is called the Bayesian posterior probability (see [3] pp. 17-23 and [25] pp. 12- 

14). 

Note: This theorem is a central element in the Bayesian framework (see “Bayesian 

framework’). 

Note: Bayes’ theorem can also be applied with density function (instead of 

probabilities), for example, typically for a classification problem we have: 
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P(CIx) = p(xlC, )P(C,) 

P(x) 

where P(C,) is the prior probability that a point belongs to the class C,, p(x) is the 

unconditional probability (the distribution density of the input data), p(xIC,)is the 

conditional distribution of x, P(C,lx) is the conditional probability of C, 

(conditioned by x) and is called the Bayesian posterior probability. 

e Biased estimate 

An estimate of a parameter is said to be biased when the expectation of this estimate is 

different from the value of the parameter. In other words, if each experiment provides 

an estimate of the parameter and if an infinite number of experiments is performed, 

then, the average value of these estimates will be different from the value of the 

parameter (see [3] p. 41 and [25] p. 286). 

For example, the variance estimate stemming from the maximum likelihood approach 

is biased. One of the most important implications of this in NN context, is that error 

bars based on this estimate of the variance are also biased. Nevertheless, one 

important feature of this bias is that it fades away when the number of data points 

increases. Thus, if a large number of data points is used to train the NN, the bias can 

be neglected™. 

The bias for this estimate of the variance is expressed by: 

Net : : 7 * 
e(o uz) =o’, where 6 ,,,_ is the estimate of the variance obtained by the 

N 

maximum likelihood approach, €(.) is the expectation operator, N is the number of 

data points, and o? is the true value of the variance”. 

e Bias node (also called ‘bias unit’, ‘threshold node’ or ‘threshold unit’) 

® To be more rigorous; as the amplitude of the error bars depends on the input point considered, if the 

number of training data points is large, then the bias can be neglected in the area of the data space 

where the training data density is “high enough” (see section 4.4.2 and ‘density function’). 

7 When this variance estimate is used to provide error bars on the NN prediction, N is the number 

of data points in “the neighbourhood of the input point considered (see section 4.4.2 and ‘density 
function’). 
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A bias node is a node that does not receive any connection from other nodes. 

However this kind of node is fundamentally different from an input node, since it is not 

associated with any input variable and its value is usually fixed to the constant ‘1’ (see 

fig. 2, see also ‘input node’, ‘hidden node’ and ‘output node’). 

¢ Bias weight (also called ‘threshold weight’) 

A bias weight is a weight connecting a bias node to either a hidden or an output node 

(see fig. 2, see also ‘bias node’, *hidden node’ and ‘output node’). Unlike a bias node, 

a bias weight is an adjustable parameter whose value can vary during training. 

Note: In case of linear output units, the bias weights of the last weight layer 

compensates for the difference there is between the mean of the targets and the mean 

of the NN predictions that would have been obtained without these bias weights (see 

[3] p. 342). 

© Bootstrapping techniques 

See ‘resampling techniques’. 

¢ Broyden-Fletcher-Goldfarb-Shanno procedure (also called ‘BFGS procedure’) 

The BFGS procedure is a quasi-Newton optimisation method (see ‘quasi-Newton 

methods’, see also [3] p. 288 and [24] p. 397, pp. 426-430). 

© Cascade correlation 

Cascade correlation is a special case of a growing technique (see ‘growing techniques’, 

see also [3] pp. 357-359 and [14] p. 160). 

e Categorical variable (also called ‘nominal variable’) 
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A categorical (or ‘nominal’) variable is one for which there is no order between the 

different values that it takes (see section 5.3.2.2, see also ‘continuous variable’ and 

‘ordinal variable’). 

Owing to their nature, categorical variables can be the cause of serious problems when 

used with data-driven models. For instance, (i) they often stem from a subjective 

human evaluation, which means that they are often intrinsically approximate, and 

therefore, not always suitable when a high accuracy is required (see section 5.3.2.2, [3] 

p. 300 and [24] pp. 628-629, see also ‘continuous variable’ and ‘ordinal variable’), (ii) 

they require specific encoding techniques (see ‘disjunctive coding’). For instance, let 

us suppose a categorical variable having a numeric form. If this variable is presented 

to the NN without being encoded, the NN will interpret the numeric values of the 

variable as actual numbers and then will assign an order to these values. But this order 

is completely artificial and should not be used as an information during the NN 

training. 

e Clustering techniques 

Generally the distribution of a data set in the data space is far from being uniform and 

clusters of data points exist. The goal of clustering techniques is to allow the 

localisation of these clusters (see [3] pp. 187-189, see also ‘K-means algorithm’). 

Note: Clustering techniques are often used to assign RBF centres (see ‘radial basis 

functions’). The idea being that it is better to have the best response of the basis 

functions where there are the most number of data points. 

e¢ Committee of NNs 

The basic idea of a committee of NNs is that instead of selecting only the best model to 

provide predictions, several models are selected. The underlying principle is that if the 

members of the committee are complementary (i.e. roughly speaking, there is at least 

always one committee member that provides an accurate prediction) then the average 

performance of the committee will be superior to the average performance of the best 

model (see [3] pp. 364-369 and pp. 422-424, see also section 5.4.4). 
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¢ Complexity of a NN 

The complexity of a NN can be defined as the number of its free parameters’! and so, 

broadly speaking, the number of its weights. 

To be rigorous, it should be noted that usually, correlations exist between the weights 

(e.g. the weights of the second layer are not independent from the weights of the first 

layer). Hence the actual number of free parameters is in fact lower than the number of 

weights (see [10] for a further discussion). 

Note: Sometimes, the complexity is defined as the number of weights that are 

significantly different from zero. Then, for a given architecture, the complexity is not 

constant and varies during the training process (see ‘early stopping’ and [3] pp. 343- 

345). 

¢ Conditional distribution 

See Bayes’ theorem. 

e Conditional probability 

See Bayes’ theorem. 

e Confidence interval (also called ‘error bars’) 

See ‘error bars’. 

e Confusion matrix 

Confusion matrices are used with classification problems. Such a matrix enables an 

interpretation of the overall misclassification rate obtained. It gives the percentage 

obtained for each type of classification and misclassification. The labels for the rows 

7 The free parameters are sometimes also called degrees of freedom. 
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and the columns of the matrix are the same and correspond to the different classes of 

the problem. 

For example, the element at the i" row and j” column represents the percentage of 

points of class ‘i’ that have been (mis)classified as belonging to class ‘j’, whereas the 

element at the i” row and i" column indicates the percentage of points of class ‘i’ that 

have been correctly classified. 

Note: There is no established convention concerning the respective roles of the rows 

and the columns. Thus, the opposite convention is often used, that is, the element at 

the i” row and the j" column represents the percentage of points of class ‘j’ that have 

been (mis)classified as belonging to class ‘i’. 

e Conjugate gradients 

Conjugate gradients algorithm is a second order optimisation method (see ‘non-linear 

optimisation techniques’). One interesting aspect of this algorithm is that it does not 

require an explicit computation of the Hessian matrix (while being a second order 

method). Several variations of this method exist and experience seems to indicate that 

the ‘Polak-Ribiere version’ is generally superior (see [3] pp. 274-282, [14] pp. 125- 

127 and [24] pp. 396-397). 

e Contingency table analysis of two distributions 

Contingency table analysis is a statistical technique to detect and measure the (linear or 

non-linear) correlation between two variables. In theory this type of technique is only 

applicable to pairs of ordinal or categorical variables, however it can easily be adapted 

to continuous variables (by discretizing them) (see [12] pp. 29-30, p. 54, [24] pp. 628- 

636 and [25] pp. 150-157). 

Continuous variable (also called ‘quantitative variable’) 
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A variable is said to be continuous (or quantitative), if it can be measured as a real 

number and applying arithmetic operations (such as addition and multiplication) makes 

sense. 

For example, the yearly quantity of oil transported by a tanker is a continuous variable. 

On the other hand, if the colour of an object colour is measured as ‘blue’, ‘green’ or 

‘red’ and then encoded as values ‘0’, ‘1’ and ‘2’, this is not a continuous variable, 

since it does not make sense to add two values. Usually, continuous variables arise 

directly from objective measurements. Feed-forward NN models use real valued 

inputs and outputs, and hence continuous variables cause no special problem (see 

section 5.3.2.2, [24] pp. 628-629, see also ‘categorical variable’ and ‘ordinal 

variable’). 

e Cost matrix (also called ‘loss matrix’) 

See ‘loss matrix’. 

e Cross-entropy error function 

The cross-entropy error function is in principle the most appropriate for classification 

N 
problems. It is defined as: E = -> (in yor" x, +(1 -t,)In(1 -yw".x))), where N 

i=l 

is the size of the data set, w" the NN weight vector, y(w’,x,) the prediction for the ia 

input data point, and ¢, the corresponding target (see [3] pp. 230-240). 

© Cross-validation 

Cross validation is a special case of resampling technique (see ‘resampling 

techniques’). It consists of splitting the data set into N disjoint subsets. For each 

subset S; train a model on the remaining N-1 subsets and test the model on S;. The 

generalisation performance of a model trained on all the data is then the average test 

error on S), ..., Sy (see [3] pp. 372-375). 
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Cross-validation is especially convenient when little data is available, as it uses the 

same data set both to train the NN and to evaluate its generalization performance. On 

the other hand, its main drawback is that it requires the training to be repeated N times, 

and therefore, may be computationally very demanding. 

e Curvature driven smoothing 

Curvature driven smoothing is a regularisation technique (see ‘regularisation’). The 

basic idea is that overfitting is generally synonymous with high curvature” for the 

function produced by the NN. Hence, for this technique the regularizer is a measure of 

the curvature (see [3] pp. 345-346). 

e Data density modelling 

The purpose of the data density modelling is to approximate the true unconditional 

data density using a model and data samples. 

There are broadly three main classes of techniques : the non-parametric (e.g. 

histograms, kernel based methods, K-nearest neighbours), the parametric (e.g. the 

single Gaussian model, whose parameters are its mean and its variance) and the semi- 

parametric (e.g. Gaussian mixture models) (see [3] pp. 33-74, see also ‘density 

function’). 

The main advantage of non-parametric techniques is that they are extremely flexible 

and, therefore, can potentially give a good representation of the true density function, 

on the other hand they are generally computationally very intensive in operation and 

require large storage capacities (see [3] pp. 49-59). Parametric techniques are 

computationally less demanding but are not very flexible and hence may give a poor 

representation of the true data density (see [3] pp. 34-39). Semi-parametric techniques 

(e.g. the Gaussian mixture model) usually represent an advantageous compromise 

between parametric and non-parametric techniques (see [3] pp. 59-73). 

” The curvature of a function is given by the second derivatives of the function with respect to its 
inputs. 
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e Data normalisation 

The most common form of data normalisation is to transform the data set so that each 

variable has zero mean and unit variance. To perform such a normalisation the mean 

and the standard deviation of each variable are first computed. Then, for each sample 

point, the mean value is subtracted and the result is divided by the standard deviation 

value (see also ‘data whitening’). 

There are several advantages to normalise the data, for instance: 

- it reduces rounding problems and, therefore, enables to work with a better numerical 

accuracy (see [24] p. 353), 

- it suppresses scaling effects (see section 5.3.3.2 and [3] p. 298), 

- it simplifies weight initialisation (see ‘weight initialisation’). 

Note: In principle, the data presented to the NN unit should be normalised (see 

sections 4.5 and 4.3.3.2). 

e Data space 

The data space is the space spanned by the input variables. 

e Data whitening (also called ‘whitening’ or ‘sphering’) 

Data whitening is a special case of data normalisation (see ‘data normalisation’). It 

consists of making variables zero mean and unit variance. However, it is slightly more 

sophisticated than the classical data normalisation, since it takes into account the 

possible correlations between data examples. That is, the data is transformed in such a 

way that the input variables are independent from one another and have unit variance 

(i.e. unit covariance matrix) (see [3] pp. 299-300). 

e Decision boundary 

When considering classification problems the decision boundary is the area of the data 

space where it is impossible to decide to which class the data points belong since their 
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probabilities of belonging to the most probable classes are equal (e.g. equal to 0.5 in a 

two-class classification problem) (see [3] pp. 23-27). 

e Density function 

By definition, the value of the density function at a data point, measures the data 

density in the area of this data point. In other words, if the data density function is 

known then the distribution of the data in the data space is also known (see [25] pp. 

261-283, see also ‘distribution of a continuous variable’). 

The integration of the data density over an area of data space gives the probability that 

a data point belongs to this area. As a density function is normalised, its integration 

over the whole data space is equal to one. This corresponds to the natural result that 

all the data points of the data space lie in the data space. 

Finally, note that a low data density in an area of the data space does not necessarily 

mean that there are very few data points in this area, but rather the number of data 

points in this area is very small compared to the total number of data points available 

(see also ‘data density modelling’). 

Note 1: The Gaussian density function is one of the most popular. 

Note 2: Typically when training a NN, data space areas corresponding to a high data 

density in the training set are favoured by the training process. Indeed the error 

function is a sum of terms, such that each term is associated with the prediction error 

related to one training data point. Consequently, areas of the space with more data 

points in the training set have a greater contribution in the value of the error function 

than areas with fewer data points. Accordingly, the minimisation of the training error 

is mainly focused on these areas of high density”. This gives an intuitive explanation 

to the fact that the amplitude of the error bars in an area is approximately inversely 

proportional to the training data density in this area. 

™ This can be annoying when very little data is available in the areas of the data space where the 

required accuracy is the highest (e.g. areas corresponding to risks of entering a faulty state). 

Measures can be taken to suppress this effect (e.g. by modifying the error function, and weighting 

each term by a function of the training data density in the corresponding area, see also section 

5.3.3.2). 
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e Detrending (also called ‘trend removal’) 

See section 5.3.2.2, see also [16] pp. 32-34, pp. 43-45 and p. 173. 

e Dimensionality of a space 

The dimensionality of a space is the number of independent vectors that span the 

space. 

In the NN context, the dimensionality of the space considered is usually the 

dimensionality of the data space, that is, the number of input variables (see also 

‘intrinsic dimensionality of a data space’). 

Note: When considering the problem of minimising an error function, it is generally 

referred to the dimensionality of the weight space, that is, the number of weights in the 

considered NN. 

¢ Disjunctive coding (also called ‘1-of-c coding’) 

Disjunctive coding is used to encode categorical variables (see ‘categorical variable’). 

Given a categorical variable V , the disjunctive coding consists of creating a new 

variable for each value of V. These variables are Boolean, such that for each value of 

V there is one and only one Boolean variable that is set to ‘1’ (see [3] p. 300 and [25] 

pp. 217-218). 

¢ Distribution of a continuous variable 

The distribution of a continuous variable is closely related to the notion of density 

function (see ‘density function’). The basic distinction between both is that a density 

function takes as an input a value of the variable and provides as an output a measure 

of the density for this value. If we see the distribution of a variable as a function, we 

can say that the distribution takes as an input a variable and produces as an output a 

density function for this variable. For instance, when a variable is said to have a 

Gaussian distribution, this means that the density function associated is a normalised 

Gaussian function. 
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e Early stopping 

Early stopping is an alternative to regularisation techniques to reduce overfitting 

problems (see ‘overfitting’). The intuitive idea is to stop the NN training process 

before the NN starts to learn too accurately the training data (ic. when the 

generalisation ability of the NN starts to decrease, that is, when the validation error 

starts to increase). This can be achieved by monitoring the evolution of the 

generalisation error (see fig 5.a and [3] pp. 343-346). 

A more precise explanation relies on the fact that during the training process, for a 

given NN architecture, the actual number of free parameters (that is, roughly speaking, 

the number of weights whose value is significantly different from 0) increases and so 

do the model complexity and the risk of overfitting. Hence, the training process 

should be stopped before this number becomes too large. 

Note: Often the term ‘cross-validation’ (see ‘cross-validation’) is used to refer to 

‘early stopping’, yet both techniques are different. 

e EM algorithm (or ‘Expectation Maximisation algorithm’) 

The EM algorithm is an iterative procedure to solve non-linear optimisation problems. 

To use the EM algorithm, the problem to be solved is first expressed in terms of a set 

of coupled recursive equations. Then, the EM algorithm can be applied to find an 

approximate solution of the problem (i.e. an approximation of the fixed point of the 

equations). 

The algorithm alternates calculation of posterior probabilities and maximisation steps 

and is guaranteed to converge to a local minimum. It is efficient when the 

maximisation step is easy (e.g. solution of linear equations) models. Finally, note that 

it does not use gradient information, and that it is often used to fit Gaussian mixture 

(see [3] pp. 65-72 and p. 301, see also [5]). 

Finally, note that the EM algorithm is a very general and very important technique to 

determine maximum likelihood estimate to complete data (see section 5.3.2.2 and 

(17). 
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e Error bars (also called ‘confidence interval’) 

When an estimate of a parameter is given, error bars for this estimate can sometimes be 

determined. These error bars constitute a range of values around the estimate where 

the true value of the parameter is likely to be. This does not ensure that the true value 

lies within the error bars, but gives a probability that the true value lies within them. 

For instance, in the case of Gaussian error bars, if we consider two standard deviation 

error bars around the estimate (i.e. the interval [Y.-2.6,Y,42.6], where Y, is the 

estimate of Y, and othe standard deviation of this estimate), then there is a 

probability of approximately 0.95 that the true parameter value (Y) lies inside the 

error bars. 

Note: For regression problems, in-operation error bars characterise the conditional 

distribution of the targets and express the uncertainty concerning the output values 

produced by the NN. Roughly speaking, this uncertainty has two main origins: the 

uncertainty on the weights (due to a lack of training data points in the vicinity of the 

input point) (see [3] pp. 399-401) and the uncertainty due to the noise on the targets”, 

e Expectation Maximisation algorithm (or ‘EM algorithm’) 

See ‘EM algorithm’. 

e Extrapolation 

See section 4.4.2. 

e Fast Fourier Transform (or ‘FFT’) 

A computationally more efficient version of the Fourier transform (see ‘Fourier 

transform’, [16] pp. 174-175 and [24] pp. 496-608). 

™ Th fact the distinction between both is not so clear cut since the noise makes the task of the NN 
harder, and thus contributes in the weight uncertainty (see also fig. 11) 
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e Feature extraction techniques 

When data is collected, the number of inputs variables is often large. However, owing 

to the curse of dimensionality (see section 4.7), not all these input variables should be 

used directly as such by the NN unit. 

Accordingly to develop a successful NN function the number of inputs has to be 

reduced. This can be done either by discarding input variables judged as less relevant, 

or creating a smaller set of new input variables from the initial one. This selection of 

the variables to be used as NN input variables is called feature extraction (see also 

‘principal component analysis’, ‘Fisher’s discriminant’, ‘Fourier transform’, section 

5.3.2 and [3] pp. 304-318). 

e Feed-forward NN 

A feed-forward NN is a NN whose nodes can be ordered in such a way that, first, 

there is no connection joining node ‘j’ to node ‘i’ if ‘j’ appears after ‘i’ in the order, 

and secondly, there is no connection joining any node to itself. 

Intuitively this means that there is no (direct or indirect) loop in the NN architecture. 

Note: An example of feed-forward NN is given in figure 2. The NN presented has two 

layers of weights, three input nodes, two hidden nodes, three output nodes and two 

bias nodes. 

e Finite differences 

The use of finite differences is an alternative to back-propagation procedure (see 

‘back-propagation’) to evaluate gradient information (see ‘gradient’). Its main 

drawback is its relative inefficiency compared to back-propagation. On the other hand 

its implementation is straight-forward. In consequence, it can provide a powerful 

means to check the correctness of any implementation of the back-propagation 

procedure. 
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There are mainly two forms of finite differences; the simple form, and the symmetrical 

one. Generally the symmetrical form provides more accurate results and is defined as: 

dE _ EW, te)- EW,-€) 

aW, 2e 
  +O(e*), where O(¢ *) is the accuracy order 

(see [3] p. 147, p. 158 and [6] p. 13). 

e First layer of weights 

In the case of a multi-layer NN, the first weight layer is the one that connects the input 

nodes to the first layer of hidden-nodes. 

According to the type of NN considered, the first weight layer has a different 

functional interpretation: For a RBF, the weight values of this layer represent the 

positions of the basis functions (see ‘formal definition of the outputs of a RBF’), 

whereas for a MLP, this weight layer is an ordinary one and hence constitutes a set of 

linear weighting coefficients (see ‘formal definition of the outputs of a MLP’ and 

section 4.3.1). 

e First order methods 

See ‘local quadratic approximation’. 

e Fisher’s discriminant 

See ‘canonical variates’. 

e Canonical variates 

Canonical variates is a technique aimed at reducing the dimensionality of the data, in 

such a way that as little information as possible is lost. This technique is specifically 

intended to classification problems. 

As PCA (see ‘principal component analysis’), this is a linear technique that finds a set 

of linear components that minimise the loss of information. However, unlike PCA, the 
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useful information to be preserved is not the variance of the data, but the discriminant 

information between classes. Consequently, to select the best linear components, the 

Canonical variates uses a criterion based on the overlapping between classes (see [3] 

pp. 105-112, p. 227). 

Canonical variates is principally used for high dimensional data visualisation (see 

‘visualisation techniques’) and feature extraction (see ‘feature extraction’). 

Note that when canonical variates is applied to two-class problems it is often termed 

Fisher’s discriminant. 

e Formal definition of the outputs of a MLP 

d 

ral Soae{ So}, where y, is the k" output of the NN, A and g are 
a i 

activation functions, the w,,’s the weights of the first weight layer, the w,,’s the 

weights of the second weight layer, and x an input vector in the form (ree ) (see 

also fig. 2). 

Note that d_ is called the dimensionality of the data space (see ‘dimensionality of a 

data space’). Note also that g is generally a sigmoidal activation function (see 

‘sigmoidal activation function’) and h is usually the identity function for regression 

problems and the logistic activation function for classification problems. 

e Formal definition of the outputs of a RBF 

Y= Ywy P(X) , Where y, is the k" output of the NN, the w,,’s the weights of the 

i 

second weight layer, and x is an input vector, and ®, a basis function. 

e Fourier transform 

The Fourier transform is based on the fact that any time series can be approximated to 

arbitrary accuracy by a linear combination of sinusoidal functions (e.g. in electricity 
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pulse signals can be approximated by linear combinations of sinusoidal functions) (see 

[16] p. 161 and [24] pp. 496-608, see also ‘fast Fourier transform’). 

When considering stationary time series the Fourier transform can be used as a feature 

extraction means (see ‘feature extraction’) or as a smoothing technique (see 

‘smoothing’ ). 

¢ Genetic algorithms 

The main idea is based on an analogy with the evolution theory where the species that 

survive are those the most adapted to the environment. In the NN context, the 

configurations (i.e. the set of weight values) are coded as binary strings (the 

chromosomes). The best chromosomes are then selected (according to the error for 

the corresponding NNs) and pairs of chromosomes are combined to form new 

chromosomes, and so on... Thus in principle, the population is gradually improved. 

The main advantage of genetic algorithms is that they discount the gradient 

information and, therefore, are not easily fooled by the problem of local minimum (see 

section 4.4 and section 5.5). Nevertheless, genetic algorithms require a large storage 

capacity, and as they discount the gradient information, they are computationally 

demanding. Hence, genetic algorithms are often used in combination with techniques 

taking into account the gradient information. In [14] the authors consider that “an 

initial genetic search followed by a gradient method might be an appropriate 

compromise” (see [13] and [14] pp. 128-129, p. 157). 

e Gradient (also called ‘jacobian matrix’) 

The gradient of a function is the matrix of its first partial derivatives with respect to 

each of its input variables. In the NN context, the function is generally the error 

function and the “input variables” are the weights of the NN. 

Note that most of the multi-dimensional non-linear optimisation methods (see ‘non- 

linear optimisation techniques’) make use of the gradient information. The basic idea 

being that at the minimum of a function the gradient is equal to zero. Hence, these 
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methods try to find the minimum of the error function by cancelling out the gradient 

(see section 4.4). 

Finally, note that if the NN unit has a single output this matrix is a vector, and is often 

called ‘gradient vector’ or ‘jacobian vector’. 

e Gradient descent 

Gradient descent algorithm has been, and still is, one of the most popular optimisation 

algorithms. 

The principle of gradient descent is, at each step, to move in the direction of the 

negative gradient information” (i.e. the direction of steepest descent”). The length of 

the move is determined by a learning rate. 

Usually the learning rate is a constant. If this learning rate is too high then the 

algorithm may diverge (overshooting the solution), whereas if it is too small the 

algorithm may need a tremendous number of steps to converge to a minimum (since at 

each iteration the NN makes very little progress). Hence, when applying gradient 

descent algorithm, the main difficulty is the choice of this learning rate. 

Several variations of the standard gradient descent have been proposed to reduce these 

problems (e.g. momentum, adaptive learning rate, see [3] pp. 263-272), however, none 

of them significantly improves the efficiency. Second order methods are generally 

preferred since being usually much more efficient (see ' non-linear optimisation 

techniques’). 

Note 1: Two ways of applying the gradient descent exist: the sequential version 

performs an update of the weights after the presentation of each data point, whereas 

the batch version performs a global update of the weights once all the points of the 

data sets have been presented to the NN (see [3] p. 263 and [14] p. 119). In [14] the 

authors consider that the sequential version is generally the most efficient of the two. 

75 Most of the time the gradient information is computed using back-propagation procedure (see 'back- 
propagation’). 

’° Tn the literature there are sometimes terminology problems concerning the steepest descent. Indeed, 
sometimes it is considered as another name for gradient descent [3], at other times it is a gradient 

descent procedure where there is no constant learning rate anymore but with a ‘built-in line search 
optimisation procedure’ [14] (see also ‘steepest descent’). 
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¢ Growing algorithms 

Growing algorithms attempt to optimise the network architecture by starting with a 

relatively small NN and adding new weights or nodes during the training process (see 

[3] pp. 353-364), see also ‘pruning algorithms’). 

Note: More advanced techniques are usually much more efficient. 

e GTM algorithm (also called ‘Generative Topographic Mapping’) 

The GTM algorithm is based on the same idea as the Kohonen map (see ‘Kohonen 

topographic mapping’), that is, trying to represent the data of a high dimensional space 

into a low dimensional space (the latent space). The GTM algorithm overcomes most 

of the deficiencies of the Kohonen map (see [8], see also [5]). For instance: (i) as the 

GTM algorithm is based on the EM algorithm, it is guaranteed to converge, (ii) unlike 

the Kohonen map, the GTM algorithm can be used as a data density modelling 

technique (see ‘data density modelling’). 

Note: As the GTM algorithm is often used as a visualisation technique (see 

‘visualisation techniques’), the dimensionality of the latent space is generally two and 

sometimes three (see also ‘dimensionality of a data space’ and ‘intrinsic dimensionality 

of a data space’). 

e Hessian matrix (also called ‘Hessian’) 

The Hessian is the matrix of the second partial derivatives (see [3] pp. 150-160). In 

the NN technology context, it is generally the second partial derivatives of the error 

dE 
function with respect to the weights, that is: H(W ——_ ( aW,.aW, Wy )= i? 

The Hessian matrix has various important applications in NN technology, for instance: 

(i) it is essential for second order optimisation algorithm (see ‘non-linear optimisation 

techniques’ and ‘linear quadratic approximation’), (ii) its inverse can be used to assign 

in-operation error bars (see section 4.6) to the prediction provided by a NN. 
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e Hidden node (also called ‘hidden unit’) 

A hidden node is a node that is neither an input nor an output node and, therefore, 

hidden nodes exist only for multi-layer NNs (see fig. 2, see also ‘input node’, ‘output 

node’, and ‘bias node’). 

e Hyperbolic tangent activation function 

See ‘sigmoidal activation function’. 

e Input node 

Each input node corresponds to one input variable. Such a node simply propagates the 

values of its associated input variable unchanged (see fig 2, see also ‘hidden node’, 

‘output node’, and ‘bias node’ ). 

¢ Interpolation 

See section 4.4.2. 

e Intrinsic dimensionality of a data space 

One should distinguish the dimensionality of a data space (see ‘dimensionality of a data 

space’) and the intrinsic dimensionality of this data space. The intrinsic dimensionality 

of a data space can be defined as the minimum number of variables needed to specify 

non-ambiguously any data point in that space. The intrinsic dimensionality of a data 

space is no greater than the dimensionality of the data space (see [3] pp. 313-314). 

For instance, let us consider a circle in a three dimensional space. In that case, the 

intrinsic dimensionality is the number of variables needed to specify any data point on 

this circle. The dimensionality of the data space is three, yet, if we consider that this 

circle is entirely defined in a plane, we can define this circle using only two variables 

(two co-ordinates in this plane). Furthermore, given that the centre of the circle is a 
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constant point in the plane, if we choose another constant point belonging to the circle 

as a reference point, then we can define any point P of the circle using only one 

variable: the angle between the lines joining the centre and the reference point and the 

centre and P. 

Thus we see that although the dimensionality of the data space is three, the intrinsic 

dimensionality of the circle is in fact one. 

Note: This notion of ‘intrinsic dimensionality’ is closely related to the one of ‘feature 

extraction’ (see ‘feature extraction techniques’). 

e Inverse problem 

A problem is said to be inverse, if, given a function ( f ) and an output value (y) for 

this function, the problem consists of finding what is (or what are) the input(s) x,, 

such that f(x,,)=y, . Typically, for a single value of y there may be several possible 

values for x,,. Modelling inverse problems with a NN requires extra precautions (see 

section 5.3.2.2). 

e Kohonen topographic mapping (also called ‘Kohonen map’, ‘Kohonen network’, 

‘SOM’, ‘self organising map’, or ‘self organising feature map’) 

The Kohonen map tries to find a representation of high dimensional data in a lower 

dimensional space (the latent space), in such a way that this representation preserves 

the data structure as much as possible (see [14] p. 218, pp. 236-246). 

The Kohonen map is often used as a visualisation technique (see ‘visualisation 

techniques’), hence the dimensionality of the latent space is generally two (sometimes 

three). 

Nevertheless, the Kohonen map suffers from various deficiencies. For example, (i) it 

can not be used as a data density modelling technique (see ‘data density modelling 

techniques’) (ii) there is no guarantee of convergence, (iii) the smoothness of the map 

has to be arbitrarily chosen (e.g. by using prior knowledge). 
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Note: the Kohonen map is also sometimes used as a clustering technique (see 

‘clustering techniques’) to assign the centres of RBFs (see [3] pp. 188). 

Note 2: The GTM algorithm (see ‘GTM algorithm’) is a principled alternative to 

Kohonen map that overcomes most of its deficiencies. Note that it has been shown 

that the Kohonen map can be seen as an approximation of the GTM algorithm. 

e Linear unit 

We term linear unit, any unit (i.e. input, hidden, or output unit) having a linear 

activation function (in general the identity function) (see also ‘activation function’). 

e Line search 

Line search means: optimisation of a function in a one input dimensional space and a 

one dimensional target space (see [3] pp. 272-274 and [24] pp. 394-412). 

e Local quadratic approximation 

The local quadratic approximation of a function in the vicinity of a point in its input 

space, corresponds to a Taylor expansion of order two in the vicinity of this point. 

Such a Taylor expansion is supposed to provide a good approximation of the 

behaviour of the function in the vicinity of the point considered. When dealing with 

non-linear functions this approximation is very convenient. Indeed a Taylor expansion 

has a polynomial form, hence it benefits from all the analytical properties of 

polynomials (e.g. finding the minimum of a second order polynomial is 

straightforward) (see [3] pp. 257-259 and [24] pp. 425-426). 

This approximation of the real function may be very rough. That is why practical 

optimisation algorithms are not entirely based on it. 

Note 1: For NNs the function is generally the error function, and the input space is the 

weight space. 

Note 2: Optimisation methods using Taylor expansion of order two are called second 

order methods, whereas methods using an expansion of order 1 are called first order 

126



methods (see ‘non-linear optimisation techniques’). Thus, a second order method uses 

both gradient and Hessian information, whereas first order methods use only gradient 

information (see also ‘Hessian matrix’, and ‘gradient’). 

e Logistic activation function 

See ‘sigmoidal activation function’. 

e Loss matrix (also called ‘cost matrix’) 

Loss matrices are used with classification problems. Such a matrix define the loss 

associated with each type of misclassification. Indeed, the different types of 

misclassification may have dramatically different consequences. For instance for health 

screening, it is less grave to diagnostic a cancer when the patient is healthy than to 

state the patient is healthy when he does have a cancer. The loss matrix can be then 

used to weight the conditional probabilities in a simple way to arrive at the optimal 

decision. The class with the smallest expected loss (given by the product of the 

conditional probability and their associated misclassification loss) is the best prediction 

(see [3] p. 22, see also section 5.4.2.2). 

Note: The elements of a loss matrix are examples of prior knowledge. 

e MAR data (or ‘Missing At random Data’) 

See ‘missing at random data’. 

e Maximum likelihood principle 

Given a data set D and a probabilistic model having @ as a parameter, the likelihood 

of 8 (L@)), isa function of @ and Dand is defined as L(0)= P(DI6). That is, the 

likelihood that the model whose parameter is 8 has generated D. 

Then, the maximum likelihood principle consists of finding the value of 6 that 

maximises the likelihood function (see [3] pp. 39-42, p. 195 and [25] pp. 301-302). 
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For NN technology this typically means trying to find the best architecture with the 

best set of weights. 

Note: Most usual error functions (e.g. sum of squares error function, cross-entropy 

error function, see ‘sum of squares error function’ and ’cross-entropy error function’) 

are motivated by the maximum likelihood principle. 

e MCAR data (or ‘Missing Completely At Random data’) 

See ‘missing completely at random data’. 

¢ Misclassification 

For classification problems, a misclassification corresponds to assigning an input data 

to a wrong class (see also ‘loss matrix’ and ‘confusion matrix’). 

e Missing At Random data (or ‘MAR data’) 

We speak about MAR data when the probability of missing value is dependent on the 

input variables but not on the output variables (see [17] pp. 14-17). 

¢ Missing Completely At Random data (or ‘MCAR data’) 

We speak about MCAR data when the probability of missing value is independent of 

the input variables and the output variables. In this case the observed values for the 

outputs form a random subsample of the sampled values of the outputs (see [17] pp. 

14-17). 

¢ Mixture density networks 

The mixture density network model is a NN model that has been designed to represent 

general conditional probability density and in particular multi-modal distributions. This 

makes it suitable to model of multi-valued functions. This model is the combination of 
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a NN and a parametric density model (e.g. Gaussian mixture model, see ‘data density 

modelling techniques’). The role of the network is, for each input data point, to 

predict the appropriate values of the density model parameters. Given these values, 

the density model predicts the conditional distribution of the outputs for the considered 

input data point (see [6]). 

Note: As the predictions of the NN function are given by a data density model (that is 

by definition trained by using unsupervised techniques), we have considered mixture 

density networks as falling outside the scope of this MSc project (see section 2.3, see 

also section 4.1). 

e Mixture of experts 

The characteristics of a function (e.g. its smoothness) may significantly differ 

according to the area of the input space considered. The basic idea of the mixture of 

experts is to assign one NN (an expert) to each of the these areas. In this way, instead 

of having a single NN that tries to satisfy contradictory requirements, for each 

characteristic area of the data space, there is one specialised NN. This enables to 

improve the accuracy (see [3] p. 214 and pp. 369-371, see also section 5.4.2.2). 

Note that generally there is one (or several) NN (called the gating NN) that, given an 

input, selects the appropriate NN (i.e. the appropriate expert) to predict the value of 

the function for the considered input (see [27]). This decomposition of the input space 

is not determined by hand but found automatically during the training process. 

e MLP (or ‘Multi-Layer Perceptron’) 

See ‘multi-layer perceptron’. 

¢ Momentum 

To improve gradient descent algorithm (see ‘gradient descent’) a momentum term is 

added. This momentum increases the inertia of the algorithm and, thereby, reduces the 
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number of useless oscillations. This results in a greater efficiency (see [3] pp. 267-268 

and [14] p. 123). 

e Multi-layer perceptron (or ‘“MLP’) 

See section 4.3.1, [3] pp. 116-163 and [14] pp. 115-162, see also ‘formal definition of 

the outputs of a MLP’. 

e Newton’s method 

Newton’s method is a second order optimisation method (see ‘non-linear optimisation 

techniques’). It is not very much used because it is computationally very demanding, 

since it requires the computation of the Hessian and its inverse (see [3] pp. 285-287). 

Note: Quasi-Newton methods are computationally more efficient versions of the 

Newton’s method (see ‘quasi-Newton methods’). 

e n-layer NN 

An-layer NN, is a feed-forward NN with n layers of weights. 

Note: Sometimes in the literature, ‘n’ corresponds to the number of layers of nodes. 

This convention is arguable, since it considers a simple perceptron (see ‘perceptron’) 

as a multi-layer NN. 

e NN function 

See section 4.5, see also ‘NN unit’. 

e NNunit 

A NN function is constituted of three units: the pre-processing unit, the post- 

processing unit and the NN unit (see section 4.5). The NN unit is the unit that 
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contains the NN technology, that is, one or several NNs (e.g. committee, mixture of 

experts, see ‘committee of NNs’ and ‘mixture of experts’). 

e Non-linear optimisation techniques 

Non-linear optimisation techniques are aimed at finding the minimum (or the 

maximum) of a non-linear function (e.g. an error function). They can be roughly be 

divided in three categories: first order methods, second order methods (see [3] pp. 

253-292, [14] pp. 125-129 and [24] pp. 394-455), and others (e.g. genetic algorithms, 

see ‘genetic algorithms’). 

Even if second order methods are generally more efficient than first order methods, 

this is not always the case and it is very problem dependent. In general second order 

methods converge more quickly, however they cannot escape from local minima 

whereas gradient descent (for instance) can. In addition, there are currently very few 

quantitative results measuring the relative efficiency of the different optimisation 

methods for real-world problems. This problem has not yet been studied thoroughly 

and, this finds expression in very few relevant related publications [23]. 

Examples of first order methods: all the versions of gradient descent (see ‘gradient 

descent’). 

Examples of second order methods: conjugate gradients, scaled conjugate gradients, 

Newton’s methods, quasi-Newton methods, the Levenberg-Marquardt algorithm (see 

‘conjugate gradients’, ‘scaled conjugate gradients’, ‘Newton's methods’, ‘quasi- 

Newton methods’ and ‘Levenberg-Marquardt algorithm’). 

Note: These methods are generally used for MLP training. For RBFs (see ‘radial basis 

functions’) specific techniques exist. 

e Novelty detection 

The reliability of the predictions made by a NN function depends on the novelty of the 

input considered. In other words, if the input is novel compared the data points the 

NN function has been trained on, then NN function is forced to extrapolate and, 
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therefore, is not dependable. Hence, a novelty detection system is aimed at detecting 

novel inputs (see [7], [26], see also section 4.4.2.). 

e Number of symmetries in a NN 

Let us consider a fully connected two layer NN, with M hidden units. As usually all 

the hidden units have the same activation function and that this function is odd, it can 

be easily shown (see [3] pp. 132) that a two layer NN with M hidden units has a 

symmetry factor of 2”.M! That is, for each weight configuration there are 

(e* ave 1) other different weight configurations that are equivalent. 

Consequently, for a given problem and a two-layer NN with M hidden units there are 

at least 2”.M! equivalent global minima for the error function. 

Note: For instance for a two-layer NN with 5 hidden units, there are at least 3840 

equivalent global minima! 

e¢ OAR data (or ‘Observed At random Data’) 

See ‘Observed at random data’. 

e Observed At Random data (or ‘OAR data’) 

We speak about OAR data when the probability of missing value is independent of the 

input variables (see [17] pp. 14-17). 

e Ordinal variable 

An ordinal variable takes on a finite set of possible values’’. These values are ordered, 

but the normal arithmetic operations and comparisons do not apply. Typically, such 

variables arise through the discretization of an underlying continuous variable (for 

example, the Beaufort scale for wind speed). They are usually mapped onto numeric 

7” This set is usually small: less than 20 different values. 
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values with the correct ordering (see section 5.3.2.2, [24] pp. 628-629, see also 

‘categorical variable’ and ‘continuous variable’). 

¢ Outlier 

Roughly speaking, an outlier is a data point which has an atypical position is the data 

space with respect to the other data points. In general outliers are not generated by 

the system to be modelled, and result for instance, from errors during data acquisition. 

Note that giving an exact definition of what is an outlier is a difficult problem; the same 

kind of problem that exists when trying to distinguish between interpolation and 

extrapolation (see section 4.4.2). 

¢ Output node (also called ‘output unit’) 

An output node is a node whose outputs is an output of the NN (see fig. 2). 

e Overfitting 

Typically a NN is said to overfit the training data when the error obtained on the 

training set is very low, whereas the testing error is high. Overfitting is synonymous 

with poor generalisation capabilities (see section 4.4.1). 

e Oversmoothing 

See ‘smoothing’. 

e PAC learning theory 

See section 4.6. 

e Partition 
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A partition of a set S is a set of subset of S, such that the reunion of the subsets is 

equal to S, and every pair of subsets has null intersection. 

e Perceptron 

A perceptron is a NN with a single layer of weights. In consequence, it can only be 

used to solve linear problems (see also ‘multi-layer perceptron’). 

e Polak-Ribiere’s formula 

The Polak-Ribiere’s formula provides a variation of conjugate gradients algorithm (see 

‘conjugate gradients’). Experience has shown that this variation is sometimes 

significantly better than the others (e.g. Hestenes-Stiefel’s or Fletcher-Reeves’ 

variation) (see [3] pp. 280-282, [14] p. 126 and [24] p. 396, p. 422). 

¢ Posterior probability 

See ‘Bayes' theorem’. 

e Post-processing 

See section 4.5 and [3] pp. 296. 

e Predictive error bars 

We term ‘predictive error bars’ error bars produced by an extra NN that has been 

trained to predict the standard deviation of the error for the predictions provided by 

the NN function. 

test 
This can be carried out by measuring for each input point x", of the test set, the 

absolute value of the error (e“) for the corresponding prediction. Then, another NN 
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test 
HD is trained on the data set formed by the pairs (x‘',e) (the x"\’s being used as 

abs » 
i inputs and the e“”,’s as targets). 

e Pre-processing 

See section 4.5, [3] p.6, pp. 296-298 and [14] p. 144, p. 181, see also ‘NN unit’. 

e Principal Component Analysis (or PCA) 

PCA is a technique aimed at reducing the dimensionality of high dimensionality data in 

such a way that as little information as possible is lost. PCA is a linear technique, 

therefore, it only captures linear structure in the data. 

In the NN context, the two main applications of PCA are high dimensional data 

visualisation (see ‘visualisation techniques’) and feature extraction (see ‘feature 

extraction’) (see [3] pp. 310-313, pp. 454-456 and [25] pp. 159-186). 

Note: PCA is generally used for regression problems. For classification problems 

specific techniques exist (e.g. Fisher’s discriminant, see ‘Fisher's discriminant’). 

e Pruning algorithms 

One of the fundamental problems when designing a NN function, is to choose an 

appropriate complexity. The traditional method consists of testing several NN 

architectures corresponding to different complexities, and select the best one among 

them. This technique is computationally very demanding, since it must be performed 

as many training processes as there are architectures tested. Pruning algorithms start 

from a relatively complex NN (i.e. a NN with a large number of nodes and weights) 

and allow the suppression of weights and nodes during the training process (see [3] pp. 

353-364, see also ‘growing algorithms’). Obviously, criteria are required to determine 

which weights or nodes should be deleted (see [3] pp. 359-364, see also [10]). 

Note: Sometimes pruning algorithms and weight decay techniques are combined (see 

‘weight decay’ and [14] pp. 157-158). 
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e Quantitative variable (also called ‘continuous variable’) 

See ‘continuous variable’. 

© Quasi-Newton methods 

Quasi-Newton methods are second order optimisation techniques (see ‘local quadratic 

approximation’). They rely on the same principle as Newton’s method (see Newton’s 

method’), but they use an approximation of the inverse of the Hessian that do not 

require the explicit computation of the Hessian and its inverse. Hence, they are much 

more efficient that Newton’s method (see [3] pp. 287-290, and [24] p. 397, pp. 425- 

430). 

e Radial basis functions (or ‘“RBF’) 

See section 4.3.2, [3] pp. 164-193 and [14] pp. 143, pp. 248-250, see also ‘formal 

definition of the outputs of a RBF’, ‘clustering techniques’ and ‘singular value 

decomposition’. 

e¢ Random training data set 

A random data set, by opposition to a rational data set (see ‘rational data set’), is a set 

for which there is no particular concentration of the data in the sensitive areas of the 

data space (see section 4.7.2, section 5.4.4.1 and [22]). 

e Rational training data set 

A rational training data set is a data set that is focused on sensitive areas of the data 

space. For instance, for a classification problem, a rational training set would typically 

include a large proportion of data points near to the decision boundaries (see section 

4.7.2, section 5.4.4.1 and [22], see also ‘random data set’). 
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e RBEF (or ‘Radial Basis Functions’) 

See ‘radial basis functions’. 

e Recurrent NNs 

In contrast to a feed-forward NN, a recurrent NN is a NN such that whatever the 

order of the nodes, there is always at least, one connection joining node ‘j’ to node ‘i’ 

such that either ‘i’ and ‘j’ are the same, or ‘j’ is after ‘i’ in the order. 

Intuitively this means that, there is at least one (direct or indirect) loop in the NN 

architecture, and that values do not flow in only one direction through the NN (see 

[14] pp. 163-196). 

Note: Recurrent NNs pose specific and difficult problems for validation (e.g. training 

techniques that are used with feed-forward cannot be applied with recurrent NNs, and 

owing to the circular aspect of a recurrent NN architecture, the techniques to be used 

have to cope with stability problems). 

e Regularisation 

Regularisation is a technique aimed at reducing overfitting problems. It incorporates 

some prior knowledge concerning the smoothness of the function to be modelled into 

the error function. Thereby, the training process is somewhat reoriented and 

automatically controls the smoothness of the function produced by the NN. 

Such an incorporation is achieved by adding a penalty term (called a regularizer) 

expressing this prior knowledge to the error function. 

Thus, if E is the ‘unregularised’ error function (e.g. sum of squares error function) 

then the regularised error function is defined as: E,=E+v.Q, where Q. is the 

regularizer and v_ is a multiplicative coefficient used to control the relative 

importance of the regularizer’’. This multiplicative coefficient plays an important role. 

If its value is too small then the contribution of the regularisation term in the error is 

8 In the back-propagation framework (see ‘back-propagation framework’) this coefficient is 
empirically adjusted. In the Bayesian framework (see ‘Bayesian framework’), this coefficient is 

automatically adjusted. 
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negligible and, therefore, some overfitting risks appear again. If its value is too high 

then the values of the weights are too constrained, the model is not flexible enough 

and, therefore, gives a poor representation of the function to be modelled (see [3] pp. 

171-175). 

Examples of techniques related to regularisation: weight decay, training with noise 

added to the inputs, soft weight sharing, curvature driven smoothing (see ‘weight 

decay’, ‘training with noise on the inputs’, ‘soft weight sharing’ and ‘curvature driven 

smoothing’). 

Note 1: For a two-layer MLP one should always distinguish between the different 

types of weights (weight of the input layer, weights of the output layer and bias 

weights) and assign a specific coefficient to each of these weight subsets (see [3] pp. 

338-343 and p. 396). 

Note 2: As the minimisation of the error function is mainly based on the cancellation of 

its derivatives, the derivatives of this penalty term should be efficiently computable (see 

[3] pp. 338-353). 

e Relative error function 

By opposition to, for instance, the sum of squares error function, the relative error 

function is normalised. That is, its value does not increase with the number of data 

points and spans [0,1]. One important consequence is that its value is interpretable. 

Thus, if the relative error is nil then this means that the NN predicts perfectly the data 

set, whereas if it is equal to 1 then the NN always predicts the mean value of the 

targets of the data set” (see [3] pp. 197-198°°, see also section 5.6.3.2). 

™ Every value between zero and one is possible. 
®° Tn [3] the relative error function is improperly called ‘root-mean-square error’. 
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Span") 
It is defined as: E gg,=—j-——_ 

Sp 
NN weight vector, x, the i” input data point, y(w",x,) the value predicted by the ce P Se ak 

, where N is the size of the data set, w" the 

NN function at x, , t; the target value at x, , and 7 the average value for the targets. 

e Relevant data space 

We term relevant data space the area of the space where the data lies. 

e Resampling techniques (also called ‘bootstrapping techniques’, or ‘recutting 

techniques’) 

Given a data set, if data points have to be sampled from the data set to carry out an 

experiment, then instead of performing only a single sampling and a single experiment, 

several samplings and several experiments are carried out. From these multiple 

samplings and experiments various information can be extracted. 

The two most interesting ones are the average of the results obtained for the different 

experiments and their variance. 

For instance: by using the variance and the average values, error bars can be computed 

concerning the results of the experiment (see section 4.6). Resampling techniques can 

also be used to avoid overfitting through the estimation of the generalisation error (see 

‘cross-validation’). 

e Residual 

A residual is the difference between the prediction provided by the model at a given 

input point and the target for this input point. 
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e Scale conjugate gradients 

Scale conjugate gradients algorithm is a version of conjugate gradients (see ‘conjugate 

gradients’) that does not use a linear search. Experiments indicate that the algorithm 

can sometimes give a significant improvement in speed on the conventional conjugate 

gradient algorithm (see [3] pp. 282-285). 

¢ Second order methods 

Second order methods are optimisation methods based on a local quadratic 

approximation of the error function (see ‘local quadratic approximation’ and ‘non- 

linear optimisation techniques’). 

e Self organising map (or ’SOM’ also called ‘self organising feature map’, 

“Kohonen topographic mapping’, ‘Kohonen map’ or ‘Kohonen network’) 

See ‘Kohonen topographic mapping’. 

e Sensitivity analysis 

Sensitivity analysis is a very general method to test the importance of the hypotheses 

made to develop a model. The basic idea is to see in what extent small changes on the 

hypotheses affects the results. 

If, for an hypothesis, the results are significantly affected, then this means that the 

model is very sensitive to the hypothesis. This implies that the validity of this 

hypothesis is particularly important and should be checked. 

e Sequential learning 

We speak of sequential learning when applying a learning algorithm to determine the 

parameters of a model, the parameters are updated after the presentation of each 

training data point (see also ‘batch learning’ and ‘gradient descent’). 
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e Sigmoidal activation function 

There are mainly two kinds of sigmoidal activation functions: the hyperbolic tangent 

activation function and the logistic activation function (see [3] pp. 126-132 and [14] 

pp. 27-28). One of the most important features of these functions is that they are 

continuously differentiable and hence back-propagation procedure can be used (see 

‘back-propagation’). Finally, note that they are termed ‘sigmoidal functions’ owing to 

their S-shapes (see also ‘activation function’). 

Note: Kanter and Le Cun have shown that using hyperbolic tangent activation function 

speeds up the training process compared to the logistic activation function. 

e Sigmoidal unit 

We term sigmoidal unit, any unit (ie. hidden or output unit) having a sigmoidal 

activation function (see ‘activation function’). 

e Simulated annealing 

Simulated annealing is used to reduce the problem of ‘bad* local minima (see [14] pp. 

75-16, p. 122, p. 130, p. 168 and [24] pp. 444-455). 

Simulated annealing principle stems from an analogy with thermodynamics theory. 

The idea is to add a random component to the training process. This random 

component allows the training process to sometimes go uphill, and thus sometimes 

escape from local minima. The effect of this random component is progressively 

decreased to zero (by analogy with a temperature) as the training process progresses. 

e Singular value decomposition (or ‘SVD’) 

Singular value decomposition is a technique generally used with RBFs to determine the 

second layer of weights. Singular value decomposition is a method used for matrix 

inversion that overcomes some of the numerical problems related with near singular 

matrices (see [24] p. 33 and p. 59, see also section 5.5.2.). 
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e Smoothing 

Smoothing techniques are aimed at reducing the irregularities of a function. Such 

irregularities can, for instance, stem from noise that corrupts the function (see [16] pp. 

168-179 and [24] pp. 650-655). In this case, these irregularities should be suppressed 

since they are, by definition, unpredictable and spoil the quality of the data. 

There is no ‘universal smoothing technique’ and the result of the application of a 

smoothing technique is largely conditioned by smoothing parameters. The value of 

these parameters has to be chosen in such a way that the function is sufficiently 

smoothed, but not too much (oversmoothing). Indeed, oversmoothing could suppress 

some relevant structure in the data (see [3] fig. 2.8 and fig. 2.9). 

Note 1: Data density modelling requires the adjustment of smoothing parameters (see 

‘data density modelling’). 

Note 2: When a NN is trained by using a regularisation technique, the regularizer can 

be seen as a smoothing parameter. 

e Softmax function 

The softmax function is used when modelling conditional probabilities. It ensures that 

the outputs of the network behave like probabilities, that is, they are positive and sum 

to 1 (see [3] p. 215, pp. 238-240 and section 4.2.1, see also ‘activation function’). 

¢ Soft weight sharing 

Soft weight sharing can be seen as a regularisation technique (see ‘regularisation’) and 

is, therefore, aimed at reducing overfitting problems. Overfitting appears when the 

model used has too many free parameters comparatively to the complexity of the 

problem to be modelled. The basic idea of this technique is therefore to reduce the 

number of free parameters by encouraging some groups of weights to have similar 

values. This is achieved by using a specific regularizer (see [3] pp. 349-353). 
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e Stacked generalisation 

Stacked generalisation is closely related to the one of committee of NNs (see 

‘committee of NNs’). For stacked generalisation, there is a first level of NNs (i.e. a 

committee of NNs) that are trained on the problem to be solved. Then, the outputs of 

the NNs of this first level are used as inputs to a kind of “gathering NN” that performs 

akind of “non-linear average” of these inputs. In contrast to a standard committee of 

NNs the weighting coefficients to average the predictions of the committee members 

are not constant and depend on the inputs. The result of this average (i.e. the output 

of the gathering NN) is then used as the output of the NN unit (see ‘NN unit’). 

Wolpert [31] suggests, first, that an important feature of the committee should be its 

diversity, and secondly, that the gathering NN should not be very complex and thereby 

provide a relatively smooth mapping (see [3] pp. 375-376 and [31], see also section 

5.4.2.2). Various means exist to ensure the diversity of the committee members. One 

of them can be to gather inputs that are correlated in the same NNs. To detect (linear 

or non-linear) correlations between the inputs, a method can be to study the 

correlation of every pair of inputs by using statistical tests (e.g. contingency table 

analysis). 

Finally note that to train such an architecture a technique close to ‘cross-validation’ is 

used (see ‘cross-validation’). 

e Standard deviation 

The standard deviation is the average deviation of the data points from the mean of the 

1 
data set. It is defined as: 6 = (i (<3) , where © is the standard deviation, 

  

N is the size of the data set, x its mean, and x, its i" data point. 

e Static data (also called ‘cross-sectional data’ or ‘sampled data’) 
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We speak of static data by opposition to time series data (see section 5.3.2.2). Each 

data point is sampled independently of the other data points and is considered to be 

uncorrelated with the rest of the data. 

e Steepest descent 

Steepest descent is another example of ambiguity of terminology used in the NN 

technology context. There is at least one common point between the various 

definitions: steepest descent algorithm is related to the gradient descent algorithm (see 

*gradient descent’). However, sometimes ‘steepest descent’ is merely considered as a 

synonymous of ‘gradient descent’ (see [3] p. 263). At other times, it is considered as 

an improved version of the gradient descent algorithm. That is, instead of moving 

along the gradient direction on a distance conditioned by a more or less arbitrary 

constant (i.e. the learning rate), a line search (see ‘line search’) is performed to move 

directly to the minimum of the error function along the gradient direction (see [14] pp. 

125-126 and [24] p. 421). 

The best way to suppress this ambiguity is probably to distinguish the ‘standard 

gradient descent’ from the ‘gradient descent using a line search procedure’. 

e Sum of squares error function 

It is the sum of the squared differences between the target values and the values 

predicted by the NN. The sum of squares error function is mostly used with regression 

problems. It may be used with classification problems, but more suitable error 

functions exist for this latter type of problems (see ‘cross-entropy error function’). 

N re 2 

The sum of squares error function is formally defined as: E=)(s(w',x,)-1)) ; 
ist Te 

where N is the size of the data set, w” the NN weight vector, x, the i® input data 

point, y(w’,x;) the value predicted by the NN function at x, , and ¢, the target value 

at X; 
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Note: This error function is very sensitive to outliers and can be source of problems if 

used without any precaution with multi-valued functions (see section 5.3.2.2). 

e Supervised learning 

See section 4.1, [3] p. 10 and [14] p. 10, see also ‘unsupervised learning’. 

e Testing error 

The testing error is the value of the error function obtained on the testing data set. 

This error is a measure of the global discrepancy between the predictions made by the 

NN for the inputs of the testing set and the targets of this testing set. The testing error 

is aimed at evaluating the generalisation capabilities of the NN. 

e Threshold activation function (also called ‘heaviside function’ or 'step-function’) 

The threshold activation function is an activation function (see ‘activation function’) 

formally defined as: g(a) = 0, when a <0, and 1 otherwise. As this function is not 

continuous, it is not differentiable and, therefore, cannot be used with back- 

propagation (see ‘back-propagation’). 

e Time series data 

Time series data consists of parameters measured over time. In this case, we expect 

that data later in the time series will be dependent on data measured earlier: i.e. there is 

an ordering to the data that must be respected (see also section 4.2.3 and ‘static data’). 

e Training error 

The training error is the value of the error function obtained on the training data set. 

This error is a measure of the global discrepancy between the predictions made by the 

NN for the inputs of the training set and the targets of this training set. The different 
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optimisation algorithms are aimed at minimising the training error (see ‘non-linear 

optimisation techniques’ ). 

e Training process 

The training process is the process that uses data to adjust the NN parameters. 

With the type of NNs we consider in this project, the training process is iterative and 

consists of minimising an error function by cycling through the data of the training set 

(see training error’). 

A good training process should lead to good generalisation abilities for the NN having 

been trained. To achieve this objective, the training process must be able to avoid two 

main difficulties: overfitting, and being trapped in bad local minima (see also ‘non- 

linear optimisation techniques’ and section 4.4). 

e Training with noise on the inputs 

The basic idea is to add a little noise on each input presented to the NN. In this way, 

even if each input is presented several times to the NN during the training process, this 

input will be different each time. Thus, it is much harder for the NN to learn the data 

set, which may prevent it from overfitting. 

Note: It can be shown that learning with noise is closely related to regularisation 

techniques and requires specific training algorithms (e.g. double back-propagation, see 

also ‘regularisation’ and [3] pp. 346-349). 

¢ Unbiased estimate 

An estimate of a parameter is said to be unbiased when the expectation of this estimate 

is equal to the value of the parameter (i.e. if an infinite number of experiments was 

performed then the average value of the estimates obtained for each of these 

experiments would be equal to the value of the parameter). For example the mean 

estimate stemming from maximum likelihood approach is unbiased (see [25] p. 286, 

see also ‘biased estimate’). 
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e Unsupervised learning 

The goal of unsupervised learning is to adjust the parameters of a model to find a new 

representation of the data that captures its underlying structure (see [3] p. 10, pp. 318- 

319 and [14] p. 10, pp. 217-250). In contrast to supervised techniques (see 

‘supervised learning’) no target is provided to guide the learning process*'. 

The meaning of ‘structure’ is very problem dependent. For example a simplistic model 

to describe the data structure could be the pairs formed by the mean and the standard 

deviation of the data. A much more interesting example in the NN context, is the 

evaluation of the distribution of the data in the whole data space, that is, the data 

density. 

e Validation set (sometimes also called ‘acceptance set’) 

The validation set is independent of the training set and is aimed at measuring the 

generalisation ability of the model trained (see section 5.3.3). 

Note: In [22] the author uses a different terminology: the ‘validation set’ is called the 

‘acceptance set’, and the ‘testing set’ is called the ‘validation set’. This terminology is 

probably more appropriate, since the role of the validation set is then to validate the 

final configuration. However the ‘terminology validation/testing set’ is now widely 

accepted, that is why we have kept it. Note: This constitutes another example of 

ambiguity in the terminology. 

e Visualisation techniques 

In the NN technology context, the dimensionality of the input space is generally high 

(i.e. greater than 3). If the data is not transformed, it is generally impossible to 

visualise the data without loosing important information concerning its structure. The 

goal of visualisation techniques is to transform the data to enable its representation in a 

low dimensional space (generally a two dimensional space). This transformation must 

5! For this reason it is difficult to evaluate the quality of the modelling. 
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be such that as little information as possible is lost (see also ‘principal component 

analysis’, ‘Fisher’s discriminant’, ‘GTM algorithm’ and ‘Kohonen topographic 

mapping’). 

o Wy 

Wi, represents a weight from the node ‘i’ to the node ‘j’. 

Note: sometimes in the literature, the opposite convention is used (e.g. in [3]). 

e Weight 

The weights are the adjustable parameters of a NN. 

For a MLP, the different weights have all the same function, that is, being weights in 

the linear combination of the node activations (see ‘activation of a node’ and ‘formal 

definition of the outputs of a MLP’). 

For a RBF, there are 2 categories of weights: the weights of the first layer and the 

weights of the second layer. The weights of the first layer are the co-ordinates of the 

RBF centres. The weights of the second layer, are weights in the linear combination of 

the activations of the hidden nodes (see ‘activation of a node’ and ‘formal definition of 

the outputs of a MLP’ and fig. 2). 

e Weight decay 

Weight decay is a regularisation technique (see ‘regularisation’). Overfitting is 

generally synonymous with high curvature. To obtain high curvature large weight 

values are required. Consequently, the regularizer (i.e. the penalty term added to the 

error function) is the sum of the NN weights squared. 

Nevertheless, this approach is often too simplistic. Thus, for instance, when both input 

and output variables have been normalised, the regularizer should be a little more 

sophisticated and, for instance, distinguish between the different weight layers (see [3] 

pp- 340-342). 
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¢ Weight initialisation 

The weight initialisation can be defined as affecting to the weights an initial value in 

order to enable the optimisation procedure to start. 

As there is no optimal optimisation procedure to train a NN and as these procedures 

are very sensitive to the initial conditions, the weight initialisation should not be 

neglected. Several techniques exist. In general these techniques include a stochastic 

component. In [3] (pp. 261-262), the author gives a method to initialise the weights 

when the data has been normalised in such a way that it has zero mean and unit 

variance (see ‘data normalisation’, see also ‘non-linear optimisation techniques’ and 

section 5.5.2). 

Note: genetic algorithms (see ‘genetic algorithms’) can sometimes be considered as a 

weight initialisation procedure. 

e¢ Weight vector 

A weight vector is a vector whose size is equal to the number of weight in the 

considered NN, and such that the value of each its component corresponds to the 

value of a weight in the NN. 

e Whitening (also called ‘data whitening’) 

See ‘data whitening’. 

e Widrow's rule of thumb 

For classification problems, the Widrow's rule of thumb gives a lower bound for the 

size of the training set ( N ,,,,) required if a MLP is used: N,,,.= Ws , where W is the 
€ 

total number of weights in the NN, and € the maximum percentage of 

misclassification tolerated on the testing set (see section 5.3.3.2 and [2] p. 152, see 

also [3] p. 380 and [14] p. 156). 
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APPENDIX B: Case_study (Detection of sleep 

disorders) 

B.1. Objectives of the case study 

The main objectives were: 

evaluating the efficiency of the draft guidelines for assessment, by testing them on a 

real NN application developed independently of them. 

e using this experience to refine the guidelines. 

© performing technology transfer from Aston University to LR, 

© providing the (Oxford University) project team with an independent assessment of 

the quality of the application. 

B.2. Project assessment 

B.2.0. Adequacy level of the project for assessment 

e The project was not a toy problem, but a live application involving real-world data. 

Accordingly, every difficulty related to NN application development may have 

occurred, which made the project interesting to be assessed. 

However: 

e The project has not been developed with a view to be assessed and certified. 

e Atthe beginning, this project was considered as a research project: its feasibility and 

its targets were not completely known. 

B.2.1. Project description 

B.2.1.1 PROJECT PRESENTATION 

The project has been developed by Oxford University and financed by Oxford 

Instruments. The goal of this project was to develop a sleep analysis tool to assist 

clinicians in the detection of sleep disorders. Generally such analysis is performed by 
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using hypnograms. Hypnograms give a representation of the evolution of the sleep 

through the time. Six main sleep states corresponding to progressively deeper sleep 

stages are usually distinguished: wakefulness, rapid-eye-movement (REM), stage 1, 

stage 2, stage 3, stage 4. Given an electroencephalogram (EEG) and other 

complementary information [21], rules are used to determine the sleep stage to be 

associated with the epoch considered and thereby hypnograms are built. These rule- 

based hypnograms have various drawbacks: 

. their resolution in time and accuracy are insufficient and not adapted to the notion of 

sleep continuum (e.g. some disorders , such as micro-arousal lasting a few seconds 

cannot be detected) and consequently they give a coarse representation of the sleep 

wakefulness continuum. 

. subjectivity when applying the rules. For instance: if two clinicians get to a consensus 

80% of the time, then this is considered as very good. 

Accordingly, the objective of this project is to produce a continuous (in time and sleep 

state) version of hypnogram, by (i) benefiting from the speed of a computerised 

version (manual classification requires a lot of time) to improve the time resolution (1 

second epoch instead of 30 second epochs, 1 second epoch having been considered as 

sufficient to detect any possible disorder and hence the time scale can then be 

considered as continuous) (ii) benefiting from the interpolation properties of NNs to 

provide a continuous sleep state resolution. 

Note: for further information see [21]. 

B.2.1.2 CHARACTERISTICS OF THE SELECTED ARCHITECTURE 

e Pre-processing: to reduce the dimensionality of the problem, feature extraction has 

been performed by using a linear model: the AR model [21]. Thus for each second 

of EEG the coefficients of the corresponding AR model are computed and used as 

features. These coefficients are normalised before being presented to the NN unit. 

Note: In fact two types of AR models are used (tenth and third order), this is 

related to robustness issues (see next bullet point) 

e NN unit: to improve the robustness®” of the NN function, an elementary mixture of 

experts is used. This mixture is constituted by two experts (both MLPs); the first 

®2 For instance, the EEG data can sometimes be corrupted by muscular artefacts. 
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expert has ten inputs (the coefficients of a tenth order AR model), six hidden units 

and is responsible for the classification of normal EEG data, the other one has three 

inputs (the coefficients of a third order AR model) and is responsible for the 

classification of corrupted EEG data (e.g. the corruption can stem from muscular 

artefacts). Both experts have three outputs corresponding to the probability of 

being in each of the relevant sleep stages (among the six main sleep stages, three 

have been shown as sufficient to provide a good explanation of the sleep 

wakefulness continuum [21]. These stages are: wakefulness, stage 4, and REM). 

The gating of the mixture is carried out by a third NN and can be seen as a binary 

switch between both experts (i.e. according to the input data the gating NN selects 

the outputs of one of the two experts). 

e Post-processing unit: the NN unit outputs are transformed to produce as an output 

to the NN application the continuous hypnogram. 

e The whole software related to the NN technology used in this application has been 

developed by the Oxford University project team. Note: This represents a total 

estimated at 700 lines of code. 

B.2.2. Outcomes of the project assessment 

B.2.2.1. MAIN QUALITIES OF THE PROJECT 

e The necessity of using a NN component has been suitably justified. 

e Globally the project has been developed in a sensible way, and no grave mistake has 

been discovered during the assessment. 

e The developer seemed to have a suitable knowledge of the field relevant to the 

application (e.g. he was aware of the risks associated with a NN prediction failure) 

and sensible means had been used to have a better understanding of the data and 

check the validity of the prior knowledge (e.g. to understand the dynamics of EEG 

during sleep and compare it with prior knowledge, the data has been visualised by 

using Kohonen mappings [21]). 

e Prior knowledge seems to have been correctly used and incorporated in the design 

to facilitate the development of the application and improve the performance. For 

instance: it is known that the age, sex or health state of a person does not influence 

the fundamental characteristics of the EEG relevant for the application. This 
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knowledge has been used to simplify the data collection: the data has been obtained 

from only young healthy and voluntary women. 

e Great care has been taken with the pre-processing of the data in order to reduce the 

problems related to the curse of the dimensionality (e.g. AR model for feature 

extraction). 

e The testing (unit and integration testing) seems to have been carefully carried out. 

Note: At least for the final version, the results are reproducible (e.g. the random 

initialisation of the weights has been recorded, consequently the NN unit can be 

retrained in the same conditions). 

e Several models have been tried for the NN unit (MLPs, RBFs and linear models). 

Note: no RBF configuration appears in the final architecture, because as RBFs 

needed a larger number of hidden units they were significantly slower than MLPs 

and were too slow to fulfil the speed performance required. 

Note: For the pre-processing unit several different options have also been tried (AR 

models, Fourier transforms, band-pass filtering). 

e Management of the project: There were monthly meetings to evaluate the project 

progress. These meetings involved: the project manager and the main developer of 

Oxford University, and some specialists from Oxford instruments. 

B.2.2.2. MAIN DEFICIENCIES OF THE PROJECT 

e A relatively systematic recording of the information has been carried out, but a 

significant lack of structure and standardisation of this recording has been noticed: 

e.g. (i) very few cross-references, (ii) the information is spread out in the 

documentation, (iii) no real version management has been used. 

e A significant lack of documentation concerning the prior knowledge used has also 

been noticed (e.g. some prior knowledge used to develop the application is not 

stated, and the origin of the prior knowledge stated is not systematically 

mentioned). 

¢ A specification for this application exists” but it is a functional specification in 

which no performance target for the accuracy and timing aspects, is numerically 

stated. 

®3 “Questar functional specification, version 1.0”, this document has been written by M J Laister. 
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e The absence of quantitative target can make one wonder whether the project was 

“under control”. For example, during the assessment the main developer has 

asserted that the specification had not been used much. 

e Even if at first sight the application (sleep disorder detection) did not seem to be 

safety critical, it should have been considered as such. Indeed, somebody suffering 

from sleep disorders often also suffers from drowsiness problems in the daytime, 

and this can be fraught with consequences (e.g. when driving). 

e Different recorders are used to collect the data, but no test has been done to 

evaluate the measurement variations between the different types of recorders nor 

between the recorders of a same type. In terms of NN implications, this means that 

as for a same input the measurements made may differ significantly, there is a risk of 

inaccuracy when predicting in operation (see section 5.3.3.2). 

Note: Error bar techniques do not take into account the fact that the training data 

does not capture all the potential variation. Consequently, such a problem can 

remain undetected in operation while altering the predictions. 

e The NN function does not include any real novelty detection system to prevent it 

from extrapolating. 

¢ With classification problems it is preferable to have an equal proportion of data 

points from each of the class. This rule has been applied for the project. 

Nevertheless, as this distorts the true data distribution, this should be rectified. If 

the prior probability are known then to obtain the correct posterior probability, it is 

a simple matter of applying Bayes’ theorem. This has not been done. An 

acceptable justification has been given, but it does not appear in the 

documentation™. 

e Two possible improvements of the architecture can be suggested: 

- It would be preferable to use a cross-entropy error function instead of a sum of 

squares error function. Indeed the former is more appropriate for classification 

problems (see [3] pp. 230-236). 

- It would be preferable to use hyperbolic tangent activation functions instead of 

logistic activation functions. It has been shown (Kanter and Le Cun) that using the 

* The idea was to implicitly use a loss matrix. 
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hyperbolic tangent generally speeds up the training process compared to using the 

logistic function (see [3] p. 127). 

B.3. Adequacy level of the draft guidelines 

The guidelines raised the key problems related to the development of the application 

assessed. 

Their level of detail seemed to be appropriate for this application. 

This case study has enabled the detection of minor deficiencies in the guidelines, 

and, therefore, enabled to refine them. 
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APPENDIX C: Applicability of the good_practice 

rules 

C.1. Testing the error bars amplitude 

C.1.0. The problem 

Some requirements concerning the amplitude of the error bars may be stated in the 

specification: e.g. the amplitude of the error bars must not exceed 1% of the predicted 

value for inputs corresponding to a temperature greater than 100°C, and 5% otherwise 

(see section 5.2.2). 

If the data available is representative of the problem in terms of data space coverage, 

then it can be checked on this data that the amplitude requirements are fulfilled. 

However if the data set is small, or if a high safety integrity level is required, a more 

stringent test may be needed. In the next section we propose a procedure to perform 

such a test over the entire relevant data space. 

C.1.1. Proposed procedure 

Note that this procedure is not aimed at checking the validity of the error bars, but 

only checking that their amplitude complies with the specification requirements. 

Accordingly, we assume that the validity of the error bars has been previously checked, 

and, therefore, the target values are not required for the test (see section 5.6.3.2). The 

basic idea of this procedure is that the relevant area of the data space is the one where 

the data lies. The procedure requires 3 steps: 

1. Let Sp be a set of input points representative of the problem in terms of data space 

coverage, 

2. A large number of points is randomly generated in the vicinity of every input point 

of Sp. 

3. For each point thereby generated, it is checked that the error bars produced by the 

NN function comply with the specification requirements. 
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To randomly generate a point in the vicinity of a data point Psr belonging to Sp (see 

step 2 above), we have defined the following algorithm: 

2.1. Identify the N, nearest points (in terms of Euclidean distance) to Psr. Let us call 

Sy the set constituted by Psg and its N, nearest neighbours'. 

2.2. For each input variable, the average spacing between the points of Sy is 

computed. 

2.3. A point can then be randomly generated from Psg by adding to each input co- 

ordinate of Psp, a random value drawn from a zero-mean Gaussian distribution 

having a standard deviation equals to the half of the average spacing for the 

corresponding input variable (see step 2.2). 

C.1.2. Discussion 

e As the target values are not required, the amplitude of the error bars can be tested 

for an arbitrarily large number of data points in the input data space. 

e This procedure requires the data set to be representative of the problem in terms of 

data space coverage, but it does not need to be representative in terms of data 

density. 

e An alternative solution could be to use an estimate of the data density to generate 

the points at which error bars amplitude can be tested. Nevertheless various 

problems arise. For instance, this solution implicitly assumes that the data density 

estimate is dependable, which is a harder condition to ensure than that the data set 

(Sp) correctly covers the input data space. Moreover, the probability of generating 

a point lying in an area of low data density is (by definition) low. As, these areas 

are typically the one for which the amplitude of the error bars is the highest, such a 

test is likely to be very optimistic. This can be problematic when low density areas 

are in the vicinity of failure mode areas. 

e The choice of a Gaussian distribution may be arguable (see step 2.3). However, the 

main problem is to have a means of generating data points in the vicinity of another 

data point, in such way that the region of the data space defined by Psp and its Np 

"Np is an arbitrary and small and integer constant. 
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nearest neighbours is correctly covered by the test, and that points belonging to 

areas outside the relevant data space are unlikely to be sampled. 

C.2. Overall failure rate determination for regression 

problems 

C.2.0. The problem 

In a safety critical context, one of the most important measures is the overall failure 

rate of a system. This applies with equal force to conventional software applications 

and, therefore, should also apply to NN applications. Currently no technique seems to 

be available to determine the overall failure rate of a NN function for regression 

problems. 

This failure rate is, roughly speaking, the probability that the EUC enters into a failure 

mode without the NN function having enabled the detection of this failure mode. In 

other words the error bars of the NN function lied entirely into the normal mode 

subspace whereas the true value of the function lies in the failure mode subspace (see 

fig. 12.c and fig. 12.d). In this section we propose a method to compute such a failure 

rate. 

To develop such a procedure the error bars produced by the NN function (see fig. 

12.a, fig. 12.b and fig. 12.c) are essential. 
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C.2.1. Example and principles 

Figure 12.a 
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Figure 12.a: This Figure illustrates the notion of error bars and shows how the 

amplitude of these error bars can vary in the input data space. On this figure the 

error bars are defined as + 2 standard deviations around the NN prediction. 

Hence, if the error bars are valid then the true values of the function lie within 

the error bars approximately 95% of the time. 
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Figure 12.b: conditional distribution of the target values 
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Figure 12.b: This figure gives an equivalent three dimensional representation of 

figure 12.a, and explicitly represents the conditional distribution of the targets. 

In this case, for each x, the target distribution (i.e. p(tlx)) is Gaussian (see fig. 

12.c). 

Note: The perspective effects are slightly misleading: The middle line (i.e. the NN 

predictions) does go along the peak. 
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Figure 12.c: conditional distribution of the target values 

  

  

2.5 + NN predictions 

>> error bars 

7 — cond. distrib.   
  

P(t
lx)

 

  

x (inputs) t (targets) 

Figure 12.c: This figure is the same as fig. 12.b except that, to facilitate the 

visualisation, the conditional distribution of the targets has been draw for fewer 

(5) input points (see fig 12.b). 
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Figure 12.d: conditional distribution of the target values 
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Figure 12.d: This figure shows the same conditional distribution, but the joint 

space (i.e. the two dimensional space spanned by the input and the target 

variables) has been partitioned into two subspaces: one corresponding to the 

normal modes of operation of the EUC, and one to the failure modes. For this 

example, a point belongs to the failure mode subspace if the value of its target is 

greater than 1.6 (an example of such a constant threshold could be, the 

maximum number of rpm that an engine can endure before breaking down, 

since it is independent of the gear engaged). 
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Figure 12.e: failure rate determination (undetected failure modes) 
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Figure 12.e: This figure considers the same conditional distribution but 

restricted to the points corresponding to possible undetected failure modes (the 

dashed area). Note that a failure mode is undetected if the error bars lie entirely 

within the normal mode subspace. Finally, note that this restricted distribution 

is referenced as p(t;|x) thereafter. 
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Figure 12.f: failure rate determination (zoom) 
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Figure 12.f: This figure is the same as figure 12.e, except that the input data 

density is represented on this figure and that the scale for p(tlx) has been 

changed to enable a better visualisation. 

The restricted conditional distribution of the targets and the input data density are the 

two key elements to determine the probability of failure undetected by the NN (see 

figure 12.f). This failure rate can be obtained by integrating, over all the failure mode 

subspace, the conditional probabilities of the undetected failure points, weighted by the 

input data density. Formally it is defined as: 

fj p(t,Ix) p(x) dt,. dx, 

where tr is a variable that spans all the possible target values t such that: (x,t) 

corresponds to an undetected failure mode ( (x,t) being a point of the joint space). 

In order to understand the idea behind the mathematics, the following can be 

considered: 
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e A failure mode is not detected if the error bars lie entirely inside the normal mode 

subspace. On the other hand, if the error bars lie (at least) partially in the failure 

mode subspace, the (possible) failure mode is detected (see fig. 12.d and fig. 12.e). 

e To compute the probability of undetected failure for an input value (x;), we have to 

consider all the undetected failure mode points for this input, and sum their 

probabilities of occurrence (namely p(tlx;)). 

¢ This has to be done for each possible input value. Then, the global probability of 

undetected failure is computed by performing a weighted sum of the ‘local 

probabilities of undetected failure’ (i.e. the probability of undetected failure for a 

particular input data point). This sum is weighted by the probability of occurrence 

of the different input data points (namely, p(x)) (see also fig. 12.f). 

Note: The terminology used in the above explanation was deliberately not very 

rigorous to facilitate the understanding (e.g. ‘probability’ has been used instead of 

‘density’). 

C.2.2. Proposed procedure 

The next stage is to pass from the mathematical expression of the failure rate to a 

practical procedure. 

To create such a procedure, the main problem is to adapt the formula defined on a 

continuous input space to an input space represented by a finite number of data points. 

Several solutions exist. A natural one is to use a set of input points representative of 

the input space (e.g. the testing set) and then, for each point of this data set, compute 

the probability of undetected failure (i.e. J pet,lx,) dt, y. As the data set is 

representative, it is also representative in terms of density. Hence, a simple average of 

the probability of undetected failure obtained for each input point gives the overall 

probability of undetected failure. This is formally defined by: 

1 N 

Paxsoet tere Ty Dy fre, Ix,)dt, , where N is the size of the data set, x, is the 
i=l 

i” input of this data set, and t , 4 Variable that spans all the possible target values 

such that the point (x,,t)corresponds to an undetected failure mode. 

? This integral does not pose major problems, and can be performed by using classical numerical 
technique or mathematical tables for the Gaussian distribution (see [25] p. 448). 
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C.2.3. Discussion 

© We have only considered one-dimensional target spaces, which should expect to be 

the most common case for regression problem (see section 5.4.2.2). For a higher 

dimensionality the integration eel PAE ose ash Xp) dt;...dt? (1, being a vector of 

n target values) may be more problematic. 

e Here again (see section C.1), the target values of the data points are not needed. 

An important consequence is that the application of this procedure is not 

constrained by the quantity of data points available, which makes it very flexible. 

For example, we can constitute the data set by sampling an arbitrarily large number 

of input points from the input data density. 

e The adaptation of the procedure to compute, for instance, the probability of 

undetected normal mode is straight forward. Even if this is of lesser interest, there 

may be possible applications, since a ‘dummy faulty state detection’ may have an 

important associated cost. 

e The procedure can readily be extended to take into account more sophisticated 

boundaries between the normal mode and the failure mode subspaces (e.g. the 

failure mode boundary for the targets might be defined as a linear function of the 

input value). 

C.3. Multi-valued function detection 

C.3.0. The problem 

Trying to fit a NN model to a multi-valued function generally leads to very poor results 

(see section 5.3.2.2). Sometimes prior knowledge of the problem to be solved is 

enough to detect such multi-valued functions before the beginning of the design phase, 

yet this is not always the case. In this section, an idea of procedure to detect multi- 

valued functions is provided. 

Up to two dimensional input space, plotting the function to be modelled generally 

enables the detection of multi-valued functions (see fig. 13.a). If the dimensionality is 

greater than 2, then using such visual techniques is no longer possible. An alternative 

solution is to observe the residuals associated with a trained NN; if they are multi 

modal then the function is likely to be multi-valued. 
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This means that if the dimensionality of the input space is greater than 2 (i.e. most of 

the time), then the multi-valued aspect of the function cannot be detected before the 

training has been completed. In such a case, the time spent to design the architecture 

(e.g. design of the pre-processing unit) and the time used to train the network is lost. 

A solution has to be found. Basically, the idea we propose reduces the dimensionality 

of the space to enable a visual detection of multi-valued functions. 

Figure 13.a: multi-valued function 
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Figure 13.a. Illustration of a multi-valued function. 

C.3.1. Terminology 

e The only distance we consider thereafter is the Euclidean distance. 

e Let S bea set of input data points. Let P be an element of S. Let P, be the 

nearest neighbour of P in S. Then, we define as the A value for P the distance 

between the target of P and the target of P,,. 
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C.3.2. Example and principles 

Ifthe data set is representative of the function to be modelled, and if this function is 

single-valued and relatively smooth, then we can expect the A values to be mainly 

due to the noise (on the targets). Accordingly, they are likely to be small and their 

distribution likely to be strongly dependent on the noise distribution. 

Indeed, if the distribution of the noise is known then it should be possible to 

evaluate the expected distribution for the A values: e.g. if the noise if Gaussian, and 

if we consider a one dimensional target space, then we can expect that the 

distribution of the A values will be half the shape of a Gaussian distribution for 

positive input values (see fig. 13.b, fig. 13.c and fig. 13.d). 

Figure 13.b: single—valued function 
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Figure 13.b: Illustration of a single-valued function. 

Note: The slightly multi-valued nature of the function in this figure is owing to 

the noise, and therefore this function can be considered as single-valued. 
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Figure 13c: single-valued function 
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Figure 13.c: This figure corresponds to the function represented in figure 13.b. 

In this figure, the length of the lines joining the points corresponds 

approximately to the A values. Here, as the function is single-valued, the A 

values are relatively small in the whole input space. 

Figure 13.f: single-valued function 
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Figure 13.d: This histogram represents the distribution of the delta values for the 

single-valued function whose A values are represented in fig. 13.c. As the noise 

on the target is Gaussian, the shape of this histogram should be half the shape of 

a Gaussian distribution for positive input values, and the magnitude of the A 

values should be comparable to the standard deviation of the noise. As this is the 

case, this gives a good confidence in the single-valued nature of the function. 
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e If the function is multi-valued, then even if it is relatively smooth on each branch 

and the data set is representative, we can expect that a large number of points will 

have a high A value (since their nearest neighbours in the input space may have their 

targets on the another branch of the function). 

Thus, typically, we can expect (at least) two main ranges of A values: The ones 

related to the noise in the data (low A values) and the one related to the multi- 

valued aspect of the function (high A values) (see fig. 13.e). More generally we can 

expect the distribution of the A values to be different from the expected one (see fig 

13.f). 

Figure 13.e: multi-valued function 
  

t (
tar

get
s) 

° 

=1 

-2-     
  

  

-15 
x (inputs) 

Figure 13.e: This figure corresponds to the multi-valued function represented in 

figure 13.a. As in figure 13.c, the length of the lines joining the points 

corresponds approximately to the A values. For the inputs where the function is 

single-valued the A values are small, whereas for the inputs where the function is 

multi-valued the A values can be large. 
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Figure 13.f: multi-valued function 
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Figure 13.f: This histogram represents the distribution of the delta values for the 

multi-valued function represented in fig. 13.a. As the noise on the target is 

Gaussian, the shape of this histogram should be half the shape of a Gaussian 

distribution for positive input values. As this is not the case, the function is very 

likely to be multi-valued. 

C.3.3. Proposed procedure 

The main idea consists of computing the A values, and comparing their distribution 

with the expected one (e.g. by using histograms or statistical tests’). 

If both distributions differ from each other, or if the A values are abnormally large 

compared to the standard deviation of the noise, then the function is likely to be multi- 

valued. 

If the standard deviation of the noise is not known, then only using the shape of the 

distribution can be misleading. Indeed, there are probably multi-valued functions such 

that the shape of the distribution of the A values is near to the expected one. Such 

functions would fool the test. This problem is mainly due to the fact that the 

histograms give an overall distribution of the A values, but do not consider the local 

distribution of the A values (i.e. the distribution of the A values in the vicinity of a 

particular input point). For example, for the figure 13.g we could expect to obtain 

3 See [25] pp. 331-341. 
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locally 2 clusters of A values; one related to the noise, and one related to the multi- 

valued aspect of the function. On fig. 13.h we can see that if we consider a global 

distribution of the A values this information is lost (i.e. the distribution is not bimodal). 

Furthermore, a function may be multi-valued in only a small area of the input space, 

which may not distort significantly the shape of the A values distribution. 

This loss of information can be reduced by plotting the distribution of the A values as a 

function of the inputs. 

Figure 13.g: multi-valued function 
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Figure 13.g: Another example of multi-valued function. In this figure, most of 

the time, for a given area of the input space, there are 2 ranges of A values. 

Hence, we may expect the distribution of the A values to be bimodal. However, 

this is not the case (see fig. 13.h). 
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Figure 13.h: multi-valued function 
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Figure 13.h: Although the A values are locally bimodal, this does not appear on 

the histogram. This loss of information is owing to the fact that this histogram is 

not input dependent and gives a global distribution of the delta values. 

Typically, the solution that uses principal component analysis and that is 

discussed later on, would enable to reduce this problem dramatically. 

To enable an easy visualisation of such a distribution, a means of reducing the 

dimensionality of the inputs has to be found. The idea we propose is to perform a 

principal component analysis (PCA), and project the input points onto the first 

principal component. In this way the distribution of the A values is a function of the 

inputs, this distribution can easily be visualised since involving only 2 input dimensions 

(the A values and the co-ordinates of the inputs on the first principal component). 

C.3.4. Discussion 

e Although the use of PCA may improve significantly the procedure, it can still be 

fooled, since information is lost when projecting on the first component’. 

e Very few tests have been performed on this procedure. Moreover, the tests 

performed concerned toy problems involving low dimensional synthetic data. So 

we can wonder whether the procedure is robust enough to be efficient with real- 

world data. 

* The percentage of variance explained by the first principal component can be used to evaluate the 

quality of the projection. 
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e We have not tested the version of the procedure using PCA. 

e Even if this procedure may be unable to detect some multi-valued functions, it can 

have other applications. For instance, points with an abnormally large A value 

should be considered with great care: a large A value may be synonymous with 

outlier presence (see section 5.3.2.2) or holes in the input data distribution (see 

section 5.3.2.2). 

e This procedure should not be computationally very demanding 

e This procedure is not supposed to be the ultimate one but only to give an idea of 

the feasibility of the problem. 

C.4. Data density modelling and representative data sets 

C.4.0. The problem 

In chapter 5 the need of data density modelling is repeatedly emphasised. This is a 

crucial issue, especially if high a safety integrity level is required, since the compliance 

with the specification is based on the representative aspect of the testing set. The main 

difficulty with this kind of techniques is their unsupervised aspect. 

C.4.1. Procedure 

To model a data density, the life cycle defined in section 3.2 is still applicable and there 

are various common points with the development of a NN function. 

As for a NN function, several models of different complexity should be tried. 

However the goal of the training process is not to minimise an error function® but to 

maximise the likelihood of the model parameters with respect to the data set. 

As for NN function, problems of overfitting and local minimum exist, and the main 

quality criteria for a model should be its generalisation ability, that is, the likelihood of 

the model with respect to a testing set should be relatively high. 

Some of the techniques used are also quite similar to those used with NN models. For 

instance, to reduce the risk of overfitting and select the complexity of the model cross- 

validation can be used. 

* i.e. a global measure of the discrepancies between the NN predictions and the target values. 
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C.4.2. Discussion 

e Provided great care has been taken concerning overfitting and local the problems of 

minimum, a suitable modelling of the data density can be performed (see [3] pp. 33- 

73): 

e Currently data density modelling techniques do not fall into the scope of the 

guidelines developed. Adapting these guidelines to enable the assessment of data 

density modelling techniques should not be very difficult, but could raise extra 

problems that time constraints have prevented us from addressing: e.g. we can 

wonder whether confidence measures (e.g. error bars) could be associated with a 

data density modelling. 

e Provided the true data density is known and the relevant data space is correctly 

covered by the data, building a representative data set of the system, or, simulating 

a representative data set®, should not pose major problems. The main problem is to 

get the first representative data set from which the true data density can be 

modelled: 

- the problem of coverage of the relevant data space can partially be solved by using 

techniques such as ‘failure mode analysis’. Nevertheless, it is in general impossible 

to ensure that data for every failure mode is present in the data set. 

- the most difficult problem is probably to ensure that the data set is representative 

in terms of density, that is, the natural distribution of the data points is respected by 

the data set. 

Anyway, to model perfectly the data density an infinite number of data points would 

be needed. In consequence, the best we could do is probably to develop a 

methodology for the data collection that maximises the representative aspect of the 

data set collected. 

° As said in section 5.3.3.2, the way the generalisation error is computed can be changed by weighting 

each testing point by the ratio between the data density (at the considered point) for the system in 

operation and the data density (at the considered point) for the testing set. 
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C.5. Error bars and modularity 

C.5.1 The problem 

e As said in section 5.4.2.3, modularity may pose problems to the computation error 

bars (see section 5.4.2.3). For example, we can wonder how to compute error bars 

on the predictions of the NN function when stacked generalisation is used. 

C.5.2. The procedure 

Among the different error bars techniques, predictive error bars are probably currently 

the only ones that enables to overcome this problem. 

Predictive error bars are determined by using an extra NN to model the variance of the 

standard deviation of the NN unit residuals. As to carry out such a modelling, only the 

target values and the overall NN unit predictions are required, error bars for the whole 

NN unit can be given without having to give error bars for the outputs for every NN of 

the NN unit. 

C.5.3. Discussion 

e This solution relies on the quality of the modelling produced by the extra NN, which 

introduced a possible extra source of error. 

e No extra specific theoretical result is needed. 

C.6. Error bars and classification problems 

C.6.1. The problem 

As with regression problems the accuracy of the prediction decreases with the training 

data density, therefore, one should be able to provide a measure of the confidence over 

the NN predictions. It has been shown that when the training data density is low, a 

NN tends to gives overconfident predictions (see [3] pp. 405-407), whereas one 

should expect the NN to give probabilities near to uncertainty (e.g. near to 0.5 for a 

two-class problem). Intuitively this means that instead of answering “this point 

belongs to class B” a ‘reasonable NN’ should answer “I think this point belongs to 

class B, but I have not enough information to be sure of it”. 
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No practical technique has been found in the literature, during this project, to provide 

error bars for classification problems. 

C.6.2. Ideas of solutions 

e As the accuracy of the NN predictions is positively correlated with the training data 

density, a simple solution could consist in providing both: the NN prediction and the 

training data density (or any appropriate novelty measure) in the area of the input 

data point. 

While this correlation does exist, this solution does not give any means to convert 

the data density into an interpretable accuracy measure. Accordingly, if such a 

solution were to be retained, the conversion should probably be determined 

empirically, which may be incompatible with high safety integrity levels. 

e More principled solutions try to reduce the over-confidence in low data density 

area. Mainly there are 2 ways of addressing this problem: using Bayesian 

techniques or down-weighting all predictions uniformly by an empirically 

determined factor (see [11] and [19]). Note that even if these techniques provide 

more dependable predictions for low data density, they do not give any confidence 

interval concerning these predictions. 

e A natural, but computationally demanding solution, can be to use sampling 

techniques in the Bayesian framework to evaluate the distribution of the posterior 

probability. That is, sampling sets of weights according to the weight posterior 

distribution and predicting the posterior probability using each different set of 

weights. Thus, the posterior probability distribution can then be approximated. 

C.6.3. Discussion 

Let us recall that global failure measures can be provided (see section 4.6), and 

therefore, this problem of confidence over the prediction may be a complementary 

aspect that may be relevant only for high safety integrity levels. 
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