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SUMMARY. 

Nonlinear differential equations can be solved by a 

variety of methods. One such technique is to transform the 

differential equations into a set of algebraic equations. 

The thesis describes the methods available at present 

for solving large systems of algebraic equations. The methods 
act to be ext satis fae 

described are found to be defieient and therefore a new tech- 

nique for solving algebraic equations is presented. The tech- 

nique is specifically developed for solving large systems of 

equations whilst simplifying the computation and minimizing the 

storage requirements. 

Next, a study has been made to provide a suitable 

standard of comparisons between the various methods. 

Finally, an industrial problem is solved using the 

new technique. Comparisons show that the above technique 

provides an adequate solution at reduced computational effort.
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The study of nonlinear systems has been increasing 

in importance as engineers design equipment to perform at 

greater efficiency than had been hitherto possible. New and 

expensive materials as well as a greater understanding of the 

physical system are contributory factors in this direction. 

The physical characteristics of a number of nonlinear systems 

have been examined and recorded by the ingenious instrumentation 

techniques of engineers. This, in turn, has lead mathematicians 

to suggest techniques to solve a number of problems related to 

nonlinear systems. However, in many instances, the methods 

developed cannot be readily applied to the general class of 

nonlinear problems. 

In view of this gap that exists between theoretical 

analysts and engineers, it is felt that this present thesis 

could serve a useful function by co-ordinating an aspect of 

the range of mathematical methods available with the basic re- 

quirement of simple applicability to a class of nonlinear 

problems. 

The class of nonlinear problems examined is taken from 

the field of nonlinear vibrations and, in particular, the 

harmonic responses resulting from such a system. Predominantly 

harmonic responses are most often required from even highly 

nonlinear problems, All the methods examined were considered 

with the view of its ease of application and suitability on a 

digital computer, This would certainly fulfill some, if not all, 

of the requirements demanded by practising engineers. 

Method of Approach. 

There is a large variety of methods that exist in the
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field of optimization and root-finding for a system of algebraic 

equations. Thus it is felt that it, would certainly be desirable 

to exploit these techniques foy the solution of the set of 

differential equations which describe a nonlinear system. Thus 

Ene method of approach to solve a nonlinear vibration problem 

falls into two phases. The first phase is to transform the 

set of nonlinear differential equations into a corresponding 

algebraic equivalent and the next phase is to solve the resulting 

algebraic system by a variety of root finding methods. 

In addition the thesis suggests a standard by which 

comparisons may be made between the various methods in spite of 

their different requirements. The suggestion of a standard 

available for comparative purposes is considered desirable and 

could very well provoke other standards to be offered. 

Structure of Thesis, 

Chapter 1 outlines a basic problem in the field of 

nonlinear vibration problems am gives a macro view of the 

method of approach to obtain a harmonic response resulting fron 

a nonlinear vibration problem. The structural content of the 

thesis is also presented. 

Chapter 2 gives a survey of the class of methods used 

in nonlinear vibration problems. A detaileddescription of a 

number of existing root finding methods are presented and dis— 

cussed, 

Chapter 3 specifies the class of vibration problems 

examined and the particular approach adopted by the author. 

Chapter 4 presents a new method of root finding. The 

method is described in detail and applied to a number of test 

examples.
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Chapter 5 makes a comparative study of the relative 

merits and demerits of the root finding methods. Test examples 

are used to indicate how the various methods performed in the 

light of the suggested standard for comparative evaluations. 

Chapter 6 is concerned essentially with the phase 

of transforming the nonlinear differential equations into its 

algebraic equivalent. The Ritz-Averaging method, the Harmonic 

Balancing method and the Energy Balancing method were used to 

transform a nonlinear rotor dynamic problem into its algebraic 

equivalent. 

Chapter 7 is concerned with solving an industrial 

problem and the performance of the method presented. 

Chapter 8 discusses the type of stability that 

exist in nonlinear systems. Reference is made to the particular 

problem considered. 

Chapter 9 suggests future developments for the 

method presented and also recent developments in the field. 

Finally future developments on the solution of nonlinear 

differential equations are commented on.
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Introduction. 

Many physical systems can often ba represented by 

sets of simultaneous differential equations. These differ- 

ential equations can be divided into those that are linear 

and those that are nonlinear. When the equations are linear 

analytic solutions are often possible while nonlinear systems 

are invariably solved by non-analytic or numerical methods. 

In the linear case the solution for the system is an exact 

and general solution. However, the solution for a nonlinear 

system is not a general solution but only a particular solution 

in a specific range of values. 

If the nonlinearities in the differential equation 

are small and the equations are of a special type, analytic 

methods may be used to yield sufficiently accurate results. 

Often assumptions can be made which lead to simplification and 

pseudo-linearization of these equations. In such cases, classical 

methods may be applied to obtain a solution. While the simplified 

equations do not describe the problem exactly they do, however, 

represent the salient features of the physical system. The 

aeuay of these modified equations will give information which 

can be used to give starting values for a more comprehensive 

study of the nonlinear equations, 

if the nonlinearities are large then solution may 

only be possible by non-analytic methods. These methods of 

solution vary considerably in their approach to the problem 

and they can be separated into two distinct categories. 

Continuous methods of solution fall into thts first category 

whilst discrete methods of solution form this second category. 

Analogue computer simulations and phase-plam methods are 

examples of the first type of method giving solutions in the 

complete field of operation. The phase-plane methods are
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essentially graphical in their implementation and are 

suitable for systen consisting of one or two parameters. 

For large systems the construction af the graphs becomes 

cumbersome and the interpretation of the graphs becomes 

difficult. The philosophy of analogue computer methods of 

solution is one of continuous integration. Computing elements 

in analogue machines are inherently only accurate to within 

certain limits. Care has to be taken to ensure that these 

elements operate within certain specified values to avoid 

inaccuracies that will creep in eG) ote low and high end of 

the voltage range. In addition, as the steady state solution 

is the required solution, the analogue computer has to be run 

until the transient solution has disappeared. This may cause 

drift errors. However with proper time scaling these drift 

difficulties can be minimized. Analogue computers themselves 

may be simulated on digital computers using programming 

languages such as Slang‘ *) or Kaldas‘#), These languages and 

others like them do not suffer from Limitations of equipment 

or drift errors. The simulation of the integration process of 

such methods do, however, pose a problem. The integration 

process on a digital machine has to be performed in a discrete 

manner and in certain cases instability can ari se due to th 

integration process rather than the instability of the system. 

However, this problem is not exclusive to languages such 

as Slang and Kaldas but an inherent problem in all digital 

simulations. 

Nonlinear differential equations can be reduced 

to a set of algebraic equations by using the Ritz-Balancing 

method, Harmonic Balancing and others, The set of algebraic 

equations can then be solved by a variety of methods but most
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of these methods will only generate particular solutions. 

Solution to these algebraic equations can be 

found by finding the maximum or minimum of the objective 

function subject to the constraint that all the functions 

are zero at the solution. General methods of optimization 

which find these maxima or minima do net eee ocate the 

roots of these algebraic equations. In this context they are 

considered to be less efficient than the methods now presented. 

A Taylor series expansion for a simple function 

of a single variable takes the fom 

£(Gsh) = £6) + be") +e ore ae 

and ignoring terms of second and higher order gives 

£(xth) = £(x) + h f'(x) (223) 

Kets 
Now at the solution x e say, £(x* *) is zero 

+1. so that if ot = xth, then using equation (2.1) with 

He oe 
x =x gives 

k 
okt = x ae fe ) (2.2) 

E £'(x*) 

which is Newton's one dimensional method for solving an 

algebraic equation. The derivative in equation (2.2), 

£1(x%), can be expressed analytically or can be evaluated 

using function approximations given by equation (2.1). This 

means that equation (2.2)can now be written as 

k. k 7; kta _ Jk f(x") = f(z k tt = xf [ects = 200) H 22) (2.3) 

k 
where h = gts - x. It is possible to choose h differently 

Ios. 
than above, for ifh = x +. x then
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ke ky" kta _ k £(x"*) - e(x k, 
x =x°- = —* £2) (2.4) 

which is the secant method. The n-dimensional generalizations 

to these one dimensional methods and the modifications of 

these generalizations are now to be considered, 

Newton's method’®) , 

Suppose a set of n functions in n unknowns takes 

the form 

OAC ERE AS Gh Werks! is reese) =0 

false, = 28 sEip ee 9) =0 

fi(Hs%e2 se + sXjy 2 ee oX,) =O 

fy(xas%ay 2 0s sXys ee + 9X) = 0 

If the first function is expanded using a Taylor 

series expansion about the point (x1,%, o2 09%) the following 

equation is obtained 

ofa fa (xa tha ,%a+ha y60ex;+h,, +X ,th,) = fy (a1 5% p05 eX +-%,) tas 

  

ho See en, See en Se 
Oka i ox, ox, 

if terms of the second and higher order are ignored. Similarly 

if we expand fg,...f. zoe tf, the following system is generated 

fa(xathy, 00 +X, thy oe -x,+h,) =f4 (xa. 2Xpe a) whe . engi oh oy 
Lex. n Ox 
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or in vector form 

  

fy fa ha 

fa Pa ha 

oe =i Verein fo 

fy fy hy 

ee o oe 

£, h 
ee (x+h) my a 

The (n x n) matrix is the Jacobian matrix, J, 

so that the above can be rewritten 

£(e+b) = £(z) +A@)b (2.5) 

where £ is the vector of functions f1,f2 ... fy X is the 

vector of variables x1,XQ ee. x and h is the vector of 

differences hi,ha see hoe 

Pees ‘ 5 iS Kea 
Again if the solution is at the point x", say, 

s 
so that £(z**) is zero and eo = % +h then using equation 

(2.5) with x = x then 

et =x - r+) 2 (2.6) 

which is Newton's n-dimensional method. Newton's method as 

expressed in equation (2.6) suffers from serious disadvantages 

from the point of view of practical calculation. Major problem 

centre round the calculation of the Jacobian matrix and its 

inverse. Lohr and Rali‘4) suggested that the Jacobian should 

be evaluated only once every few iterations instead of an 

evaluation at every iterative step as is strictly required. This 

variant, however, requires the complete evaluation of the Jacobian 

matrix. Broydent 5) describes a class of methods in which the 

partial derivatives are not estimated or evaluated directly, 

but corrections to an approximate inverse of the Jacobian matrix 

are computed from values of the vector function £.
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Broyden's Method. 

Broyden makes a simple modification to Newton's 

method so that there is a greater circle of convergence, 

For each increment in Newton's method it is necessary to 

calculate the Jacobian matrix and obtain its inverse. To 

avoid a full matrix inversion Broyden suggests that it was 

more convenient to estimate an estimate for the inverse 

Jacobian, J *, and shows he can obtain it relatively simply. 

If a vector p is defined such that 

p=-8*E£ (227) 

where £ is the vector of functions and B is an estimte for 

the Jacobian J, then Newton's method can be rewritten as 

itt x et (2.8) 

Convergence will only occur if we are close enough to the 

solution so a simple modification to equation (2.8) will 

give xt by 

zc =x" +t pe where 

+ is a scalar chosen to prevent the process diverging. Let 

us now define the variable x as 

BB +t 

where z, e will have particular values and t is a variable 

quantity. The vector £ will now be functions of the variable 

t and Broyden shows that it is possible to use the functions 

to obtain an estimate of the Jacobian, The Jacobian matrix 

contains terms which take the form ey but the f's are now 
Ox, k 

functions of the single variable + so that only derivatives 

of the form ae are available. Using the chain rule’ ®) 
dt
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n 

=i so) ey san j=1l...n 
ox, dt 

sae 

we now have the following relationship 

Ses (2.9) 
at Kos 

It is now required to obtain an approximation to 

g at the point fae so if each - is expanded as a Taylor 

series about the point + 

A e df. e 
£,(t"-s) a £,(¢°) -s ae + 0(s?) 

snaeiees lee Sei) a £(g* ey ee ra = £(t*) 

and the vector £ are functions of t alone, then 

: : ag 
£(t-s) =£%* - 5 = (2.10) 

From equations (2.9) and (2,10) we obtain 

gay =o eae leo (2.11) 

At the aes iterate Broyden uses the notation BE as 

the approximate Jacobian J. To improve on the approximation 

Broyden uses equation (2.11) and suggests that a better 

approximation to the Jacobian J is now Be This results in 

the following equation 

Ata iva i 
p Bes =£ - eS B (2.12) 

a ‘ ‘ 4 
where s is a particular value of s chosen at each iteration 

to minimize the error of the estimate of a - Broyden stated 
dt 

that his philosophy was to find an estimate to the inverse 

Jacobian ee and not an estimate to the Jacobian. If we now
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define an estimate to the inverse Jacobian H, say, as 

g = Gy" 
and we also define a vector, a such that 

x =e g(t" = s) 

then using equation (2.12) we obtain the following relationship 

2 ete 
Bp yes (2.15) 

Using equations (2.7) and (2.13) we can now obtain the 

relationships 

and. eo ce s=eee Be 

which defines a class of methods, based upon Newton's method 

for solving nonlinear algebraic equations. 

Broyden now describes a particular class of methods 

which results when different assumptions are made on 

Hee or oe +t and s. He makes comparisons between these 

various methods using standard test examples and concludes 

that one particular method is superior to the other variations. 

He calls this particular method the full step reducing 

variation. In this ee is chosen to reduce the norm, If the 

first value of ot chosen results in the norm being reduced 

then it is the only possible value for en if there are going 

to be no further function evaluations. If the first is not 

chosen then a choice for = is possible but experience shows 

that s” " t* is the best choice for a reducing step method. 

When s* = t™ the increment is called a "full-step". It remains 

to place restrictions on Be so that it can be defined uniquely 

in equation (2.13). As no information is available about the
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change in £ when x is changed in a direction different from 

ita 
that of vector pus B is chosen so that the change in { 

predicted by se in the direction g which is orthogonal 

to Oo) is the same as that which would be predicted by &. 

That is to say 

pe q ze Be ao 

ee 
where (a) p- =0 

together with equation (2.12) defines Soe uniquely as 

ee 
go gt wi - Bee) 

st (i)” 
  

It is now possible to use Householder's formula’ 7 

to express oe the inverse of se in the same terms as 

above giving 

(sigh + HY y*)(p) (2.14) 
TT aaesuE A 

() Bx 
Equation (2.14) now defines the full step reducing 

  

method which can be expressed in the following algorithm:- 

1. Obtain an initial estimate x° to the solution. 

2, Obtain an initial value H°, the iteration matrix, 

3. Compute es = £(x') 

4. Computer eo a x e 

5. Select a value t* such that the norm of 

e(ziettg? is less than the norm of ee). 

£(x'**) will be calculated during this step. ae ng 

4 
6. Test if gt is a solution point. Yes, go to step 10. 

7. Computer Yr = a = er
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8. Compute Hoo =o 

9. Return to step 4. 

10. Stop. Solution has been found. 

2h) Wolfe's n-dimensional secant method. 

The one dimensional secant method derived previously 

is o4 

£(x*) 

in 1959, Wo1fes =) developed a secant method based 

  

on the property of a straight line. If we consider the one 

dimensional method as shown in Fig.l. 

—-——— x 

  

Fig: 1 

then the next estimate to x is obtained by drawing the secant 

through f(x1) ani f(xg) and evaluating the point at which this 

line crosses the x-axis. The general form of this line is 

y = mx + c where m is the gradient and c is a constant. Using
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the above equation with the two starting values x, and xg 

it can be easily shown that 

~ f(x f 
ag a fa) ™ ~fGa) - fa) @ 

or X = 4X4 + TaXa 

In addition we can also derive, the following relationships 

Tm + Ta =1 

and maf(x2) + taf(x2) = 0 

Wolfe now generalizes these relationships to obtain 

his n-dimensional secant method. This means he defines a 

vector g such that 

n+4 

‘ m2 (2.15) 

Jd=4 

nt+a 

and » 7; £(x°) = 0 

dea 

which will lead to a new set of trial solutions given by 

A 7 " 
where some x is to be replaced by x for which ll =| is 

maximal according to 

n 

tI “ le,(9)7 for §= 0 wen 
i=.
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Computationally Wolfe expressed this in a simple 

scheme of four steps. The first step is to form the 

(n+l) by (n+1) matrix A given by 

aE 

A. = #a(e") Jad, wow (uel) 

J £0") 

noting the column with the largest norm. Solve for s and 

use the fact 

(Gs Os enen0)) from (2.15) it Ad 

u calculate g-=£,* (1,0 oo 0)” 

It is now possible to calculate a new point 

wm. ) Ney j 
x = % ts % as the secoml step and test if the norm is 

less than the tolerance. The third step is to form a column 

vector p, of the form &y to be inserted in A in place of 

the column with the largest norm. It is possible to calculate 

* 
the new inverse, oe required by using the relationships 

*, 
Ag =) CS he j= yy = A ps % j=1, 

(*),5- 4) 8 

(n+1) 

  

u 

*, 
A el 2 s i 

*)s 3 ife 

gam dt ise (n+1) 

where q = se p.» If we now note the column with the largest 

* 
norm in A we can return to calculate a new g and continue 

the iteration. 

The three methods that had just been presented are
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all simple applications of a Tylor series expansion. They 

all approach the solution by considering a vectorial in- 

crement of the dependent variables. A method in which each 

variable is considered separately is going to be considered. 

Brown and Conte's Method. 

Brown and Contes ®) suggest a method which considers 

each variable and generates each increment to that variable 

separately. They calculate expressions for increments using 

Taylor series expansions. When expressions for each increment 

become available, the method uses the Gauss-Seidal technique 

to solve for the independent variables. The value of a norm 

at this new point, oe can now be calculated and tested for 

convergence. The method is described by the following algorithm:- 

Step 1. 

Expand fi(x), where x is the solution point, using 

a Taylor series expansion about the point x retaining only 

first order terms and thus obtaining the linear approximation 

fa(x)~fa(z")+ ats (¢") ta ats (%") Yo +) scat ata (z") one (2.16) 
0X4 O%q ay 

As x is the solution point and the nearest approxi- 

mation is x” then 

n n 
%=8 +h 

which means that (2.16) can be rewritten as 

ats (z") n #1(8") af (z") & 
fa(z)~ f1(z>) + eae gag 888) 0 et eo) (2a 

Equate the right hand side of (2.17) to zero and 

solve for that variable (2g, say) whose corresponding partial 

derivative is largest in absolute value. Thus
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Nea Bale) Pale) 
n a. n. ee = bs atc os n. 2.18 xy = Hy ee (x; *s ) afa(x \/ ay (2.18) 

ata(z") jaa 

af1/ ax, fa 
The constant terms ya » d = 1,00,N-1 and OF /Oxy are 

saved for future use. The left hand side of (2.18) is now re- 

named as by a function of (xa,xa +s. xy.) giving 

Nea n. n, 
=x2 afa(z )/ax. fa(z) dy (ieee) = Xy * : j Ges a (2.19) 

FL tale )/axy ats( Z°)/amy 

and also 

Xy = Dy (4 oe see Xy.1) 

Step 2. 

If this expression for Xy is substituted into the 

second equation fg a new function gg say, of (N-1) variables 

Xt y eoeXy is defined as 

eae fa (xa eee 7y49 by) 

If the procedure described in the first stekp is now 

followed and gg is expanded, using a Taylor series, this time 

n 
about the point (a sees x.) then solving for the variable, 

Xe, 887s whose corresponding partial derivative is largest in 

magnitude we obtain the expression 

N-2 
n dga/ ax. ( n 8a eg Xx.) = Ne. = *Nea 2, tei, Jd O62 / Oy, 

Jet 

Again if we rewrite the left hand side this time as 

b. » a function of N-2 variables, we have 
Noa
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N-2 
2 2/ OX . ya ore eg) = ee +) ES gt A) 5 ere, 

J=4 

ene aes by (He es yg) 

aga/ a. 
Again the ratios formed, Ta Ty 9 dS Ly cons TE2 

aa. 

are saved for future use. 

  

The expression for yea is now substituted into fs 

to give a definition to gs, at function of Ka geeeXy » as 

Gs = fo(xa,%e oo XyL9? Dy_, »Py) 

where Dy a? by are defined by (2.20), (2.19). This process 

is repeated until the igen step is reached. At this stage there 

is 

8y = f(a sda Ds eee dy) 

where the b,'s are obtained by back substitution in the (N-1) 

triangularized linear system which takes the form 

N-i poe g. 
by = x= y ae, /2x (xj,") - A (2.21) 

jen 8 q N-ita 6 ;/ 2 Neita 

Now expanding, linearizing and solving for x, yields 

8y 
2 x a OBy/ Oa 

We use the point x, thus obtd ned as the improved 

approximation a to the first component of the root xa and 

call it ba. Back-solve the bs system (2.12) to obtain approxi- - 

mations to the other components. We note that the most recent 

information available is used immediately in the construction of
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e 
the next component, as in the Gauss-Seidal process‘ 0) . Having 

calculated a new point we can test for convergence or if 

further iterations are required retum to Step 1. 

Brown has shown that under the hypothesis for Newton's 

method this process is well defined and it is considered that 

this method offers a suitable alternative to the other methods 

which have been presented. 

A summary of the general methods of solution for 

nonlinear differential equations is given in Fig.2.



  
  

        

          
    

 



  
 



The differential equations which describe a vibration problem 

will in general contain inertia, damping, restoring forces and 

excitation terms. When the stiffness and damping terms are 

linear the equations of motion can be solved by the classical 

analytic methods. However, if the stiffness and/or damping 

terms are nonlinear then the resulting nonlinear equations of 

motion can, in general, only be solved by approximate methods. 

In a few special cases, however, these can be solved by con- 

ventional analytic techniques. The general type of nonlinear 

differential equation expressing these problems can be expressed 

in general mathematical terms as 

Ee .& .€) = 9 

where F, x, x, X% are all vectors. 

Typical methods for solving equations of this type is 

to use the Ritz-Averaging method or Harmonic Balancing method to 

generate a set of corresponding algebraic equations which take 

the form 

£(&) =Q 

The number of independent variables in the algebraic 

equations is dependent upon the order of accuracy required in 

the solution. To obtain a solution to these algebraic equations 

one can apply a number of root finding techniques some of which 

have been described in the previous chapter. Consideration from 

the general engineering viewpoint to these methods of solution 

is such that a considerable effort has to be put into the under- 

standing and application of these algebraic methods which is not 

necessarily justified from the practical standpoint. These 

criticisms are relevant to the methods previously described. 

Newton's method is regarded as the traditional method
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of solution for these algebraic equations. The method cannot 

guarantee convergence to a solution and if a solution is successfully 

found progress towards the solution could be erratic. The computational 

effort required by the method is prohibitive as every step in the 

iteration process requires the evaluation of a Jacobian and its in- 

version, both of which are very costly numerical processes, Generally, 

although Newton's method suffers from these drawbacks, it is still 

used because of the simplicity of application. 

Broyden made several modifications to Newton's method 

to ensure convergence and at the same time reduce the computational 

effort. A Jacobian is uneconomic to evaluate at every step of the 

iteration so Broyden, after having obtained an initial estimate to 

the inverse of the Jacobian, improves his previous estimate to the 

inverse of the Jacobian rather than calculate a new one. It is 

important to note that while Broyden avoided evaluating a new inverse 

Jacobian his method still requires a significant computational effort 

in making his estimate to the inverse of the Jacobian. Nevertheless, 

this still represents a reduction in the computational effort with 

respect to a full inversion. Noting that Newton's method cannot 

guarantee convergence and its path towards finding a solution can be 

unpredictable, Broyden decided that his method must converge to a 

solution in a more uniform manner, This is achieved by calculating 

a norm value at every iXation, this norm having to satisfy the 

condition that it has been reduced after every step of the iteration. 

Wolfe's method of solution is similar to Broyden's 

being the development of the secant method where Broyden is the 

development of Newton's method. Wolfe, in his method, does not 

calculate the inverse of the Jacobian, but merely updates the inverse 

Jacobian from its previous value. Wolfe's method has an inherent 

norm reduction facility since it is based on simple interpolation 

techniques. Although Wolfe's method has desirable characteristics it
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cannot be considered as good as Broyden's method. In the first 

place Wolfe's method requires a number of starting values rather 

than one starting value as with the other methods. Secondly its 

rate of convergence is slow compared to Broyden's method because 

the secant method on which Wolfe is based has a significantly 

slower rate of convergence than Newton's method on which Broyden 

is based. 

Brown's method is another variant of Newton's 

method but this particular method does not require the evaluation 

of a Jacobian matrix. In view of the fact that Brown's method 

does not require the use of a Jacobian matrix a considerable amount 

of storage space has been saved. However, Brown's method, requires 

the construction of intermediate or axuiliary functions. The 

construction of these functions is complicated, involving the 

removal and substitution of a variable in every stage of the 

iteration process. It does not seem possible to program Brown's 

algorithm conveniently in-a high-level scientific language like 

Fortran IV though it may be a feasible proposition in PL1. However 

PL1 language is not readily available and is confined to only a 

small family of computers. This, of course, is not an attractive 

alternative to an engineer. When all the intermediate functions 

have been constructed a Ganse-Seidgl iteration is used to solve for 

the variables. Back substitution is used in the Gauss process so 

half the storage saved in having no Jacobian will be used for the 

back substitution. Convergence to a solution is not guaranteed 

but care is taken in the construction of the intermediate function 

to reduce the erratic tendancies of Newton's method. 

In this thesis an alternative method of solution 

for these nonlinear simultaneous algebraic equations is presented. 

The method of solution is a modification of Newton's method and the 

desirable characteristics of the methods already discussed so far
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have been incorporated into the structure of the method. As in 

Brown's method the method presented does not require the evaluation 

of the Jacobian matrix. This type of approach means there is a 

significant reduction in the storage requirements and that there 

are no lengthy calculations centred around the construction and 

inversion of a Jacobian matrix. Linear interpolation is used to 

improve the iterated values at every stage of the iterative process 

thus inducing a steady convergence towards the solution. These 

improved values are used at the time they are calculated unlike 

Newton's method which does not use improved values until all the 

variables have an improved value. Again this contributes to im- 

proving the convergence to the solution. Norm reduction, as in 

Wolfe and Broyden's methods at the end of every iterative step is 

considered to be desirable as it ensures a predictable convergence 

to the required solution. 

Every individual section of the algorithm presented 

was developed separately, thus enabling comparisons as to the 

effectiveness of cach modification to be undertaken. Following 

this comparisons were made between the method presented and the other 

four methods. Four specific test examples were used, all of which 

had been designed to test the characteristics and convergence factors 

of the method. These results were used to show the general 

characteristic of the method presented. An industrial problem was 

then solved using the Ritz method to generate the algebraic equations 

and then solving these equations by the method presented. This 

application enables a comprehensive appreciation of the technique 

to be undertaken.
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Introduction, 

The methods already described for solving nonlinear 

simultaneous algebraic equations can, in theory, be used for 

very large systems. These Quasi-Newton methods attempt to 

increase their circle of convergence by modifications to 

Newton's method. In these methods every itration generates 

an update for the vector x using the elements of the inverse 

Jacobian or a suitable estimate to the inverse Jacobian. This 

matrix which is used only once per iterative step causes con- 

siderable problems in the large amount of storage it requires. 

The object of this chapter is to develop a method 

which is reliable and which possesses a rate of convergence 

equal to that of existing methods whilst attempting to minimize 

on storage requirements for a large systen. 

Description of the me thod. 

It is required to solve the system of equations 

£(%) =Q. The method makes use of auxiliary functions which 

take the form 

* s 
Ae Ae fy Ais rscs sn (4.1) 

* 
where Ag = 0 and where AS is an auxiliary function, n is the 

number of variables and AL is the most recent value of the 

* 
previous auxiliary function, A; |. If we expand (4.1) then;- 

* 
Ag = fa 

* 
Ag = Ag+ fo 

* 
As = Ag + fy 

* 
An Att, 

At the solution £(z) = 0, A(x) will also be zero. 

Thus we can solve the equations
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A(z) = 9 

instead of £(x) = Q. The following algorithm describes the 

method. 

Step 1. 

* 

Expand Ay(x) using a Taylor series expansion about 

the point x to obtain a unidirectional expansion in m. If 

we retain only first order terms then 

* * ny a n i@~de)+ SP x   

n n : 
where X = X +h so we can rewirte the above as 

*)_n, 
az (x) * * n. 

Aa(x) ~ As(e) + aa (xa-xa™) (4.2) 

Equating the right hand side of (4.2) to zero and solving 

for the variable x, gives 

A) n 

mE aha (e")/ara 
This gives an improved value for x, which gives 

a vector (x1™** xq” eee ca)e This vector is used to calculate 

a new value for Ay. If there is no change in the sign of the 

auxiliary function after the iterative step or the auxiliary 

function has been successfully reduced to zero then it is 

possible to proceed to the next step. On the other hand if 

there has been a change in sign so that 

n+4 sign[As (xa™**,x2")] # signlAr(m"jx0" ... x,")] 
then linear interpolation is performed such that
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n+ n n, (+4) ny 
| As (xa * xa 96) | (xe 127) (ta) (Nea) n la 

Xa = x4 - 9. 
new old * 

[a (x2™** x0 "60 0x,.")|+| Aa (xa eee x.) | 

and this new value for x, is used to replace xan. The use of 
ererthost 

linear interpolation is an attempt to prevent the selution 

point of the variable x overskeeting. At the end of the first 

step two values will be available:- 

(4) a new value x,™** 

(44) a new value Ai (xa™* yey n ny 
s¥a wee Xp eee X, ) 

Step 2. 

It is now required to construct the auxiliary 

* 

function Ag. This will take the form 

* n nm n n n. n n. Be (ut aan eet,, )= Aa(Xt* 4%s 4% oe-K, ) fa (aa yam woo, ) 
* 

It is now possible to expand Ag(x) using a Taylor 

nt. 
series about the point (x pyueeem, ) to obtain a uni- 

directional expansion in xg. Retaining first order terms only 

* Gee Gant epee. 2) 

  

  

  

* *, N+, 0 n. n 
Aa (%) ~ Aa (x1 2% 00%, + Oe he 

where x =x" + a so we can rewrite the above as 

*, Nts on n 
Oa (xa Xa eeex, ) * * ea 4a(z) ~ da(ma™** 20" ..0x,") + = =~ (xa-xa") (4403) 

Equating the right hand side of (4.3) to zero and solving for 

the variable x, gives
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* O(a ts ae a =) 

ahg/ ta 
  

This gives an improved value for x, giving a 

vector Ge ae This vector is used to calculate 

anew value for Ag. Again linear interpolation is used if there 

is a change in the sign of the auxiliary function. At the end 

of this step a vector of the form (xg BS eg Oe peezn) is avail- 

able and a value for Ag using this vector. This procedure is 

th 
followed until we reach the n“ step. On entry to the nth step 

n+. 
a vector (Gi ae wee ee eu) will be available together 

with a value of AL. a using this vector. 

th 
n~ step. 

* 
Again we require the auxiliary function An to be 

evaluated. This takes the form 

a er +4. nt nH op 
s i (8 pea ne x 2) = =A wee jerk oh He, (% oe eX 9%, ) 

* 

It is now possible to expand AL) using a Taylor 

“ ; : nt: n+4 
series about the point (x1 me    

a - . 
2X, ) to cbtain a uni~ 

n=4 

directional expansion in x Retaining first order terms 

. *, nt = 
A) ~ A oR 

n n nt . where hy =%, 7 Xs This means the above can be rewritten as 

n+, 

* ecae | OM ge ARs eee aa) (eae) (eh) 
1) ~ AG ssa a8) «SE eat om) 

n 

Equating the right hand side of (4.4) to zero and
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solving for the variable x gives 

*)_ nea ats vg. 

SB Ante wee Hoh) = eee 
n 

an, / ex, 

This gives an improved value for Xn giving e 

4, : n+: n+: * * 
Ros za *) or z"**. this vector is used to vector (xa™ 

calculate a new value for AL and linear interpolation is used 

if there has been a change in sign with a A vector zs 

is now available. 

The method now requires that the value of a norm, 

3e?, at the new point zt is less than the value of the same 

norm at the starting point z 1.6%. 

ea") < Ile@")| 

If this condition has been satisfied then it is 

possible to return to the first step immediately but if it is 

not the norm is reduced by a simple reduction procedure. If 

there has been an increase in the norm the assumption made is 

that one or more of the variables has overshot their solution 

points, This reduction process constructs a ratio of the two 

norms, less than one, and every variable is moved to a position 

inbetween its starting and finishing value in the ratio of the 

norm so that 

ie begin 
es = Norm G “2 ..) 

end end end begi. 

If the variables have overshot its solution then this interpolation 

procedure will have the desired effect of reducing the norm. 

In the majority of cases this is what has happened when the new 

norm is greater than the old norm, If no variables have overshot
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its solution then the method appears to have found a point at 

which it can reduce the norm no further. This type of point is 

called a local solution. When such a position has been found the 

reduction procedure used above is again invoked returning the 

iteration process to the value at the start of that particular 

iteration x « When this has been achieved a different pro- 

begin 

cedure is used which is described in one of the following sections. 

When the norm has been successfully reduced it is possible to 

test if x"** is the solution and if not return to start the 

process over again. 

Developments and Modifications. 

Tests on simple examples shows that general improve- 

ments can be incorporated into the method with very little extra 

calculation or modification. Several minor modifications are made 

and each one is discussed separately together with an example. 

4.3.1) Construction of the increment. 

From the Taylor series expansion 

Auxiliary Function (405) 
increment =- Doivative of the Auxiliary Function 

It can be seen from this expression that if ay becomes 

oS 
small then the value of the increment will become very 

large. The increment could then be modified by a linear 

interpolation procedure if there is a change in the sign 

of the Auxiliary Function, If linear interpolation is used 

the value of the increment will become very small returning 

that particular variable to its value at the beginning of 

the iteration. If interpolation is not used the increment
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is large and will overshadow the other increments directing 

the course of the iteration which is totally undesirable, Hence, 

at this stage, two types of increment have been tried, An in- 

erement of the form 

increment = - Auxiliary Function 
  

Ca 

{ten of derivative] {absorute value (4,) +Absolute vaiue(Es)} 

3 f 

is now used. The value of this increment is approximately one 

(if the derivative is zero then the increment is one) and this 

is an intermediate value for the increment. This form of increment 

is only used when there has been three successive increases in the 

value of the increment given by (4.5). An example of the use of 

this modification is shown in the following 

f, = xy9xq + xg?- 6 

fa 2x09 4 ey P hh: 05 

The derivative of the auxiliary function A, with respect to x 

is zero at the point (0,-3) so if the process uses the starting 

point (-2,-2) then with no modification the following results 

are obtained. 

  

  

                
  

| Xa. x2 inca incg fy fo NORM 

-2.00 | ~2.00 - - 14.00 25.00 821.0 
=1.42 2.48 0.58 0.48 Tek? 13.85 243.03 

“0.94 | 3.14 0.48 0.66 6.42 | - 4.10 58.0 
0.16 | -3.05 0.78 -0.08 5035 | = 3.39 22.6 
0.15 | -3.05 0.01" 0.00 3.31 | = 3.31 21.9 

-0.15 | -3.05 15.10 0.00 3.31 - 3.31 21.9 

Fig: 3 

*Here the auxiliary function Ay, changed sign so linear interpolation 
was used, The actual calculated value of the increment before inter 
polation was 15.00.
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As the increment for x, is so large no further progress 

can be made. 

process proceeds as follows:- 

If the modification is now used the iteration 

  

  

                

which now converges to the solution (1,-3). 

Norm reduction. 

solution straddles 

Xa XQ ines incg fy fa NORM, 

=2.,00 |-2.00 - - 14.00 25.00 821.0 

1.42 | -2.48 0.58 | -0.48 Toll 13.85 243.03 

0.94. | 3.14 0.48 | -0.66 6.42 4.10 58.0 

-0.16 |~-3.09 0.78 0.04. 5.59 4058 53.9 

-0.16 |-3.05 | 0.01" | 0.04 3.32 3.33 22.1 
0.78 |-3.04 0.94, 0.01 1.76 1.77 6.2 

1.00 |-3.00 0.22 0.04. 0.01 0.02 50x10" * 

Fig: 4 

Norm reduction is used to overcome overshoot if the 

the two calculated vectors. It becomes 

particularly noticeable towards the latter stages of the iteration 

process when the calculated vector is relatively close to the 

solution. 

illustrated by a change in the sign of the increments, the 

value of the increments changing sign is halved. 

In an effort to overcome this oscillation, usually 

If this 

oscillation is persistent in the process then the number of 

total iterations is reduced if this modification is employed. 

If there is no oscillation and the increment is halved, the 

iteration process will still tend towards the solution making 

good the loss in the next iterative step. 

illustrates the success of halving the increment. 

The following example 
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Pes 5k. +X + 2x57 = 35 

fa =— 3x4 +5x%Q7+ 2x4xs- 1 

fg = 25x,xg+ 20xg + 12 u 

  

  

  

      
  

Number of iterations 

Braritng Pore Before Adjustment After Adjustment 

-1, -1, 0 31 Uy. 

0, -1,-1 27 8 

QO, 0,-1 9 aE 

05. 6, 0 9 10 

Fig: 5 

Local solution. 

When a local solution has been found usually the value 

of the incremsnt is not large enough to find a point where the 

norm at the new point is less than the norm at the local solution. 

It is possible to illustrate this situation by considering a diagram 

of the norm as drawn below 

  

NORM 

4 

| 

| 

| 

tr = = a ~~ ry 

| 1 N(x) 
| 

0 =F ee aa p ~~ 

Fig: 6 

If the iteration is in the region 0+ a then it is
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very probable that the process will converge to the point A 

which has the smallest value of the norm in this range. However, 

the correct solution is at the point B. The value of the increment 

will be too small to move the vector x corresponding to point A 

away from point A. In this case the method, as stated, breaks 

donw. The technique to overcome this problem is to make a search 

for a value where the norm is smaller than its present value. At 

present, the technique used to overcome this difficulty is to use 

Newton's method for one iteration to move the point away from the 

local solution. This has the effect of allowing the iteration 

process to continue in the normal manner. Incorporating these 

modifications into the basic method, the method present can be 

expressed by the following algorithn. 

Step 1 Obtain an initial estimate x° to the solution. 

a 
° ° 2 

Step 2 Calculate ze ) and the corresponding norm zs) 

dea 

Step 3 Calculate increments for the variables using the 

Auxiliary functions. At each stage use linear inter— 

polation, if required, to combat overshoot. 

Step 4 Compute ae = £(xi** 

aA a 
Step 5 Compute the new norm an a(x") . 

Step 6 Test if grt is satisfactory solution. Yes, go to Step 9. 

Step 7 Test if norm is less than previous norm. Yes, go to Step 3. 

Step 8 Use norm reduction to satisfy Step 7 and then go to Step 3. 

Step 9 Stop. Solution has been found.
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Results of Modifications. 

De 

In the next chapter comparisons are made between the 

method presented and methods des eribed earlier. In this section 

a comparison is made between the basic method and the method in- 

corporating the various modifications with reference to the rate 

of convergence, Consider the example:— 

fa = 3x. + Xe 

fa = ~3x, + 5x2? 

fg = 25x1xat+ 20x3 

Starting point (0,-1,0) 

+ 2xa* - 3 

- 2x4x%3 - 1 

+ 12 

Solution point (1.1, -0.8, 0.5) 

  

| Method presented with No.of iterations No.of function calls 
  

No modification 

Interpolation of x values (1) 

Norm reduction (2) 

Norm reduction halving increment 

(3) 

Modifications (1) and (3) 
together 

FAIL 

31 

3h, 

13 

dy     

FAIL 

279 

238 

91 

140   
  

Fig: 7 

It can be seen that the modifications to the method make 

a considerable improvement in reducing the number of function 

evaluations required. 

A comparison of function evaluations, 

It is considered that the evaluation of a derivative 

is equivalent to a function evaluation. In the worst possible 

case there will be (n+l) number of applications of the interpolation 

routines to overcome overshoot consisting of one interpolation for
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for each variable and one for the norm, This means the maximum 

number of function evaluations for each iteration is (3n+l). 

Theoretical considerations of other methods, see Appendix (1), 

are shown below 

  

NEWTON BROYDEN WOLFE NEW 
  

BROWN. 

wo BW (20? + N) (2N+1) (N+1) 
ON? 4N)m s m 

4 @ " 2) + 3Nm +(3N+1)m a               
N is the number of variables and m is the number of iterations. 

Conclusions. 

A new technique for finding a solution of a set of 

nonlinear algebraic equations has been presented which offers 

an attractive alternative to other available methods because 

of the simplicity of the method. The use of auxiliary functions 

reduces storage requirements. The construction of these 

auxiliary functions is the simplest possible according to the 

prerequisite of the method, that is, it Ys easy to use. Inter- 

polation and norm reduction are used to overcome the problem 

of overshoot and to improve convergence. This has the effect 

of reducing the computational time. 

At present the procedure for overcoming a local 

solution is by means of a Newtonian step. Whilst this over 

comes the problem it may not be the best solution. Perhaps 

further work can be developed to overcome the difficulty. 

Search techniques could be used provided they do not involve 

a large amount of computational time. In the final analysis 

irregardless of what technique is used to overcome this
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Introduction. 

The selection of a method to solve a system of 

algebraic equations is one of the most difficult problems. 

The difficulty results from the diverse characteristics and 

storage requirements of each method. To the best of the 

author's knowledge there appears to be no adequate criteria 

available to select the most suitable method. Suggestions 

have been made with regard to computational efficiency based 

on the total number of iterations required to achieve the 

desired solution. This criterion is obviously inadequate as 

it takes no account of the varying complexities of each 

iterative step. An improved criterion was to consider the total 

number of function evaluations to achieve the desired solutions. 

This is certainly a more accurate estimate of the computational 

efficiency of the method but it still takes no account of the 

degree of computational complexity of each function. Yet 

another basis for comparisons is to usé run-time timings. This, 

perhaps, is the most accurate of the three provided the computer 

system can offer an accurate logging of the execution time. The 

main objective of this chapter is to present a more suitable 

criteria to evaluate the relative overall qualities of the diverse 

methods used. A weighted value has been suggested to account for 

the storage requirements in addition to computational efficiency. 

Standards adopted for Comparison. 

A direct method of comparison between the methods is 

not possible sinceeach method of solution requires a different 

number of function evaluations, a different degree of complexity 

for the construction of each incremental step and a different 

storage requirement. 

Run-time timings will encompass all these facts but
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unfortunately this is unavailable on the University Computer. 

The computer is an ICL 1905 machine and there are multi- 

programming facilities which are used by the University. This 

means that at any particular time up to four programs may be 

being processed by the machine making the time required for one 

particular program difficult to estimate accurately. There- 

fore, it is not possible to undertake any direct time comparisons. 

The concept that the number of iterations required 

toreach a suitable solution in a method can form a basis for 

evaluating the efficiency of the method, should be examined 

more closely. In the simplest case of a one parameter system 

the number of iterations is probably an adequate basis for com- 

parisons between various methods. In a many parameter system 

this will not be the case for the number of iterations will not 

provide a fair comparisons as there will be many additional 

calculations hidden in a step of the iteration process, A more 

accurate basis for comparison is the number of function evaluations 

performed. Even this may not provide an accurate basis of com— 

parison because the function evaluations in each method will have 

varying degrees of complexity. 

The theoretical number of function evaluations 

in each iterative step of the methods described has been 

calculated in the previous chapter. However, during the test runs 

itwas noted that the theoretical maton and actual values for 

the number of evaluations in the method presented did not entirely 

agree. This is because, generally speaking, if linear interpolation 

was performed on each variable, norm reduction was not performed 

and vice-versa, except in a few cases. Thus it was considered 

that a more accurate estimate to the maximum number of function
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evaluations in each iteration should be 3N and not (3N+1), 

where N is the number of variables, Fig. 8 shows the 

function evaluations now required for a 2, 35 and n variable 

system, m being the total number of iterations performed. The 

derivation of these values is shown in Appendix 1. 

TOTAL NUMBER OF FUNCTION EVALUATIONS 

  

  

  

        
  

FUNCTION EVALUATIONS IN SYSTEM 

METHODS 

2 Variable 3 Variable n Variable 

Method Presented 6m 9m 3nm 

Brown 5m 9m (#) nm 

Broyden 10 + 6m 21 + 9m (2n+1)n+ 3nm 

Newton 10m 21m (2n+1) nm 

Wolfe 15 + 7m 28 + 10m (2n+1) (n+1)+(3n+1)m 

Fig: 8 

Next @ comparison of the storage requirements of each 

method should be considered. A direct comparisons is unrealistic 

since the method presented only requires a vector for storing 

the auxiliary functions whilst all the other methods require the 

storage of a Jacobian or a similar equivalent. A more accurate 

comparison is considered to be that if there are two methods whose 

storage requirements are m; and mg then the weighted storage ratio, 

8S, will be calculated as 

Sad + lego ie ) provided m4 > mg 

The weighted storage ratio, S, should satisfy the 

following basic criteria:-
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(i) 

and (ii) 

ratios for S together with the reason for dis carding. 

In a one parameter system S = 1 

as the number of variables increases S is kept 

within a reasonable bound. 

The table in Fig. 9 gives a sample of the possible 

ms, 

is taken to be the storage requirement for a method which 

requires a Jacobian and mg is the storage requirements for the 

method presented. 

SAMPLE OF STORAGE RATIOS. 

  

  

  

  

            

they do not satisfy the basic requirement. 

i 

RATIO NUMBER OF VARIABLES IN SYSTEM REASONS FOR 

DISCARDING 

1 50 

(mi—mg) 0 2450 4, ai 
m/e BA 50 ii 

limy—ma 0.0 1.Uy. #50 i, ik 

ms ik 4 as 1.0 Lely a7 ii 

oe 2.8 7.39 5.2x 1074 4, it 

olts/ta 2.8 3.13 1.1x 108 i, ii 

1 + Logo (m,-ma ) 1.0 1.30 439 ae 

1 + 1ogio(m1-ms ) 1.0 2715 2.70 Possible 
1 + logao(ms/ma) 1.0 1.30 2.70 Bouma ae 

1+ oer) |B 1.0 1.15 1.85 
| Hig 

Fig: 9 

Most of the ratios in the table cannot be used because 

The final choice of 

S between the reamining ratios is from the viewpoint of a uniform 

rate of change as there is an increase in the number of variables 
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present. The ratio which satisfies this criteria best is 

the one S=1+ Logso nes If the method presented is taken 
2 

as having an S values of 1.0 then the following table, Fig.10 

can be built up for S. 

S-VALUES FOR OTHER METHODS 

  

  

        

| 

NUMBER OF BROYDEN ,WOLFE 
VARIABLES BROWN NEWTON 

2 1.10 1.15 

5 1625) 162k 

5 ee soo) 

50 1.72 1.85 

100 1.85 2.00 

Fig: 10 

Test Examples. 

Four specific examples are used to compare the 

difference between each method. These examples have been 

presented in other papers and all possess special characteristics 

which make them difficult to solve. Also, each example 

tests the different facilities incorporated in the method pre- 

sented to see if they enhance the method. 

5.3.1) Test Function 1. 

fg = oa" Soe 

fa = xa(x1-1) 

This pair of equations form a parabolic valley
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similar to Rosenbrook's banana function‘**), However, 

there are two solution points, one at (0,0) and the other 

at (1,1). At the solution point (0,0) the auxiliary function 

and the derivative of the auxiliary function for the variable 

%, are zero. It is possible that this will cause problems 

for the method presented. 

Test Function 2 Brown‘®) 

fa = 3xa + xa + 2Oxs? - 3 

fg = -3x, + 5x_7+ 2x,%_- 1 

fg = 25x,Xe+ 20x53 + 12 

This test function has been presented in a paper 

by Brown and Conte where it was used to indicate the rate of 

convergence of their method. There are two solution points 

one at (1.1, -0.8, 0.5) and the other at (0.29, 0.687, -0.849). 

Test Function 3 Kuo‘ +?) 

$=. xj°xg 1+ xq" = 6 

fa = 2x,? + x* 4 25 

This test function has been presented in a paper 

by Kuo. There is one solution point at (1,-3). This example 

demonstrates the use of a modified increment if the derivative 

of the auxiliary function is zero. 

Test Function 4 Wolfe(®) 

fp = x2 + Se - xe™ 41 

f, = x,(1 + 2x ) 

The final example was presented in a paper by Wolfe.
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There is only one solution point at (-0.5, 0.866). Again 

the derivative of the auxiliary function for x, is zero at 

the solution point as in the first test function. 

Description of programs. 

All the methods under consideration were pro- 

grammed in Fortran IV with the exception of Brown's method. 

As previously explained in Chapter 3 it is not possible to 

program Brown in a high level language so every test function 

solution using Brown's method was achieved by using a desk 

calculator. Four different programs had to be written but 

each method had some common calculations to perform and so these 

similar sets of calculation were performed by a subroutine which 

was stored in a personal subroutine library ready for immediate 

use, This, for example, meant that there was a subroutine for 

the evaluation of the Jacobian in the library. In addition, 

the remaining details of each method were stored on magnetic 

tape rather than directly input into the computer for every 

solution run, The benefit of this is twofold; the user has only 

to specify his function and run the program and secondly, when 

the program contains a great number of instructions as in Broyden 

or the method presented there is no danger of the cards being 

lost or the order changed, All the methods posed no programming 

difficulties once one had appreciated the theory of the methods. 

Broyden's paper was particularly useful in providing utine 
‘nna, Prog rernmnn Ad freublay a oe 

for norm reduction ning thatthe difficult p. 
withed G removed 

Broydens—nethed—had beer removed. aul programs were provided 

  

with the same terminating constraint namely all the f,'s a1 

and the value of the norm being less than 10°. The detailea 

listings of Broyden and the method presented are to be found in 

the appendices,
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Variables 

-1,000 

| =0,660 

-0.458 

| =0.323 

| -0,230 

|. ~0, 167 

-0.122 

-0.090 

=0.070 

-0,050 

-0.040 

-0.030 _ 

-0,020 

0,015 

oe bes 

0.004 

0.002 

0.002 

0.001 

0,000 

0,000 

0.000 
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Norn 

Bi 

4.000 
0.800 

0.040 

4.0 &e4 

6.0 &5 

3.0 &5 

METHODS 

Sone ~ BROYDINT Resse 

vastanies <4 

ae | 
-1,000 1.000 

-1,000 0,200 

| -0.320 -0.070 

-0,160 © 0,010 

-0.090 0.000 

=0,052  -0.002 

0.031 0,000 

0.013 0,000 

-0.016 0.000 

-0.010 0,000 

0,005 0,001 

0.007 0.000 

{ 

1.0 8 

aig oe 
Taiabies ta | 

x, Xp N 1 

|=1,000 1,000 4,000 

| =0,600 0,200 0,128 | 

-0.330 0,030 0,008 

~0,170- 0,004 6,0 &=4 | 

-0.090 0,003 5.0. &5 | 

0.040 0.000 1.6 &=5 | 

=0,020 0,000 2.2 &7 | 

-0.010 0,000 4.4 &8 | 
a ee | 
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BROW 

Yorn Variables | Norm 
| N . xy 4 xn 

“4,000 | -1,000 1.000 4.000 

0.890 0,600 0,200 0,128 | 

0.154 | -0.320 0,020 0.007 

0.031. | -0.180 0.008 7.0°&4 | 

0.007 | -0,150 0,020. 5.0 &-4 : 

0.002 | -0.080 -0.040 0,004 | 

5.0 &e4 | -0,040 0,000 4,0 &-5 | 

1.0 &-4 | -0,034 0,000 1,0 &6 

410 &5 0.024 0,002 5,0 &=6 | 

1,0 &=5 | -0,012 0,000 1,0 &=8 

| 

oie ds i te tee nti ees 
  

Bs err eer 27 | 
WOLFE 

Variables 

X4 5 Xp 

=-1.000 1.000 

-0,500 1,000 

-1,000 0.500. 

-0,500 0.250 

-0,360° - 02048 

-0,300 0,029 

-0,170 0.003 

=2.460 05153 

-0.153 -0,001 

0,030 0.005 

0.187 0,002 

0,285 0,000 

-0.056 0,000 

-0,050 0.000 

-0.010 

| Norm | 
ee : 
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METHODS 

METHOD PRESENTED | puoi. gl fee Se emmormmmr awe [ee eee 

ees fie to ele et cae See re Po tects a | No | alae me | 
4 [= 1% {| * [x | | % ¥ Peet mee oe N 3 1% | % Nv x, aT eee | 

1 < - _ 

0.000 6,000 0,000 154.000 | 0,000 0,000 0.000 154.000. | 0.000 0.000 0,000 154.000 0.000. 0,000 0,000 154.000 0.000 0.000 0,000 154.000 

| 1,000 0.200. -0.600 49.200 | 2.160. 3.480 0.360 31351.000 |-0.110 1.020 -0.210 51,000 | -0,330 3.980 -0.600 7398.000 | 1.000 0,000 0,000 160,000 

| 0.850 0.590 -1.050 31.000 | 1.180 -1.730 0.020 1345.000 (-0,340 0.900 -0.210 26,800 | -0,110 2,000 -0,860 496,000 0,000 1.000. 0,000 164.000 

0.070 0.560 -0.810 11,800 1,280 -1,000 1.000 4118,000 0.370. 0.700 -0.750 13.000 0.080 1.070 -0.920 38.200 0.000 0,000 -1.000 66.000 

    

0.220 0.640 -0.880 4.460 | 1.170 -0,810 0,580 0.160 0.340 0.730 0.900 0.140 0.240 0.730 -0.880 2,080 0.440 0.470 -0.600 30.300 ¢ 

0.270 0,670 -0,850 0.220 | 1,100 -0,800 0.500 0,007 0.290 0.690 -0,850 0,010 0.290 0,690 -0,850 0,004 0.160 1.230 -1,230 116,000 

0.300 0.690 -0.850 0.004 | 1.100 -0.800 0,500 1.0 &8 0,290 0.688 -0.850 0,002 0.290 0.687 -0.849 2.0 & 9 0.310 0,570 -0,820 0.760 | 

| 0.290: 0.687 ~0.850 0,001 | ~~~*~CS 0290) 0688-04849 3.0 6 | Tae 0,386 0.590)-07826 = 6, 40u | 

0.290 0.688 -0.850 2.0 Gnd | 0.290 0.687 -0,849 1.0 fn 0.290 0.720 -0,850 0.100 

0.290 0.687 -0.849 7.0 &-5| | : 0.290 0.680 -0,849 0,002 | 

| 0.290 0.687 -0,849 1.0 &5) : | 0,290 0.690 -0,851 0.006 

| | 0.290 0,687 -0.849 4.0 &e6 | 0.290 0.687 -0.849 5.0 et 
    

FIGURE 12
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| Variables | Norm — Variables — Norm fe ee Norm oe or 

salt | ee eee 
[21,000 -2.000 361.000 | -1.000 -2,000 361.000 | -1,000. = 4000 361,000 =1.,.000 Le 000 

|-1,000 -2.680 74.700 0.033 -3.240 101.500 | -1.000 -2.930 33.800 | 0.033, -3.240 

10.520 -3.080 28.400 -160.500 -1,600 1.0 &12 | 0.530 -2.990 12.800 1162.900 -2.300 

1,030 -3,040 0.840 8.5 &4 8.300 2.4 &31 | 0.260 =2, 890 6.670 | ser. 500 =3.500 

1,020 -3.000 0.090 Eten ders Weer 19,910 =2.950 1.450 lai 000 =5.200 

0.998 -2.998 0.002 | 0.990 -2.960. 1.110 | 222,200 -7.100 

0.999 -3.000 3.0 &e4 | 0.999 -2.990 4.0 &-5/ -14.800 -7.100 

1,000 -3.000 1.0 &=5 1,000 =3.000 4.8 &6 -10.500 -6.100 

4.000 -3.000 1,0 &7 be AR BOE A Ps600 =5.200 

eo in aN ae ; | 5.400 -4.400 

-3.800 -3.800 

-2.700 -3.400 

. | 21.800 3.100 

=1.130 -2,990 

. | -0.540 -2.920 

| | 0.490 -2.860 

| ; | 1.890. -3.060 

| | i | 1.370 3.040 

. | 1,100 -3,010 

| 1.010 -3.000 

| ee Bt 000 000, 
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Variables 

ae 
“}=1,000  -2,000 

=2,000 -2,000 

| -2.000 =1,000 

Be) 

| =0.240  -2..690 

0.710 =3.290 

-0.130  =3. 360 

2,080 -3.030 

0.310 -2.940 

0.920 2,810 

1.050 =2.860 

4.290 =3.010 

0.720 =2.980 

0.930  =2.990 

/ 1,060  -3,000 

| 0.980 - -3,000 

1,000 =3.000 

| 

Norm 

N 

361,000 
821,000 

1033.000 

549.800 

32.500 

104.700 

209,300 

610.100 

6.700 

37.000 

15.700 

12,400 

3.400 

0.330 

0.320 

0,020 
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} 

| 
| | 
| 
| | 

1.4 &=6 
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METHODS 
pe ape ne a pb pe a ence sl igre le age pe ae e e ed 

] (OD PRESENTED | BROWN BROYDEN | WOLFE | 
eee an Sealine ie RTT ao eT Ee ea Ee, Sen 5 iy sterieerneenn oe’ oe Saeed 

| Variables zi Norm Variables Norm | Variables | Norm | Variables Norm | 

f Peet eine re fees art j Pete 2 | 
OMe oe tS oe eel Ae eta ete (ee wr tet ed eee 

| 

  

4,400 1.520 | -0,600 1.400 1.520| -0,600 1.400 1.520 |'=0.600 1,400 1.520. | -0,600.. 1,400 1.520 

-0, 300 1,100 0.370 | -0.790 0.830 0,260 | -0.500 1.000 0,063) -0.477 0.870 0.002 | -0.530 0.970 ~ 0,040 

      

0,660: 0,830 0,080" | — O67 3 =0,500'- 0,866 4,0&-7| 0.500 0.870 1,0 4|-0,600 1,100 0,250. | 

~0.400 0,980 0.080 vans ane 40.500 0,866 9.0 &9|-0.500 0,866 1.3 &9 | -0.520 0.920 0,010 | 

~0.450 0.910 0.014 | oe eee Ser ste SE. ea gbo8e *40/870, “eeu onk4 | 

-0.470 0.880 | 0.004 -0.501 0,867 4.0. &6 | 

-0.480 0.860 0,001 | -0.500 0.866 3.0 &a9 
| : on 

| 
  

=0.480 0.866 0,001 

-0.499 0.850 5.0 &-4_ 

| 
| 

| 
| 

| | | 
0,500 0.859 2.0 &-4. 

04499 01864 2.0 &e5) 

-0,500 0,865 1.2 ws 

0.500 0.865 1.1 &6) | 

pote Wed ee eID aS ie es Soe ee ee



5.5) Results. 

facilitate ease of comparisons. 

4B. 

The results are presented in a tabular form to 

Each table shows the values 

of the individual variables and the norms at every iterative 

step in the computational process. 

function evaluations is given in Fig.15. 

NUMBER OF FUNCTION EVALUATIONS 

A summary of the number of 

  

  

  

  

                
  

5.6) Discussion. 

the methods in solving the test functions. 

THOD 

aw PRESENTED | BROWN | BROYDEN | NEWTON | WOLFE 

TEST 1 8h. 45 76 70 99 

TEST 2 99 5h EE) 126 108 

TEST 3 48 FAIL 52 200 113 

TEST 4. 78 FAIL 28 30 43 

Bigs 15 

The following comments relate to the performance of 

Comparisons are made 

between the individual methods with particular reference to their 

ability to obtain a solution, rate of convergence, and ease of 

programming. 

5.6.1) Test Function 1. 

This example was solved successfuly by all methods. 

there were no general problems for any method but all had 

a slow convergence to the solution notably in the variable 

Xt
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5.6.2) Test Function 2. 
Again all methods found a solution. Brown's 

method located a different solution to the other methods 

due to the increment in xg following a different direction 

vector. It is possible for the other methods to locate the 

alternative root by using a different starting value for 

Xg. This example illustrates the differing area of conver- 

gence for Brown's method. 

5.6.3) Pest Function 3. 

In this example a failure was experienced in 

Brown's method. His method was totally unstable and each 

variable overshot its solution value, the method being 

totally inadequate at attempting to control the overshoot. 

Newton's method also behaved erratically but did successfully 

find the solution, All the remaining methods were extremely 

successful. 

5.6.4) Test Function 4. 

Another failure by Brown's method was experienced 

in solving this example. This was because the construction 

of an intermediate function for one of the variables, x4 

in this case, it was necessary to divide by a zero value 

meaning that the function was indefinable, The method 

presented did not perform particularly well but did find the . 

solution. The other three methods experienced no difficulties 

whatsoever in obtaining the solution. 

5.7) Comparison Index. 

It is now possible to form a basis as to the 

relative merits of each method. If there are two methods
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which require ny and ng function evaluations to solve a set 

of equations and their storage requirements have resulted in 

a weighted storage ratio, S, then the comparison index, C, is 

defined as 

Cro - 1 where o = 

a
l
r
 

In this case the relative merits of the methods 

considered were referenced from the method presented. This is 

consistent with the calculation of the weighted storage ratio 

$8, as shown in Fig.10. The interpretation for the value of C 

is if C is zero the method being compared with the method 

presented is considered to be equally good, if C is less than 

zero then the method in relation to the method presented is 

inferior, and if C is greater than zero then the method in 

relation to the method presented is superior. The table, Fig.16, 

shows the values of C for each of the methods in solving the 

test functions. 

COMPARISON INDEX 

  

  

  

  

  

'THOD 

FUNCTION PRESENTED | BROWN | BROYDEN | NEWTON WOLFE 

TEST 1 0.00 0.70 -0.03 0.03 -0.28 

TEST 2 0.00 0.60 0.14. -0.28 0.24. 

TEST 3 0.00 FAIL -0.20 -0.80 -0.60 

TEST 4. 0.00 FAIL Leds 1.00 0.56                 

Conclusions. 

It is now possible to consider the methods which 

are more suitable and those which are not so adequate for solving
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a set of algebraic equations. Before commenting on the various 

methods it is first necessary to consider the importance of a 

norm reduction characteristic. If a method demands that at every 

iteration the norm is reduced then convergence towards a solution 

point is guaranteed provided there is no local solution. If 

norm reduction is employed this may result in an increase in 

computational effort. 

It is considered desirable to find a solution at 

the expense of a little extra computation rather than not find 

a solution, This viewpoint is reflected in the following dis- 

cussion on the particular methods under consideration. 

Brown's method is the most difficult to assess 

due to there being two failures in solving the test examples. 

In solving the other two examples Brown's method had the best 

comparison index in each case so it is not really possible to 

have any definite conclusions only to say that further tests 

should be undertaken, Whilst drawing no definite conclusions 

it is possible to make a few general observations. Brown does 

not require the storage of a Jacobian matrix. Intermediate 

functions are used to construct the incremental steps but their 

construction is of such a type that a high-level scientific 

programming language cannot be used for constructing them as there 

will be very limited character handling facilities, These inter— 

mediate functions whilst being difficult to construct do reduce 

the erratic tendancies found in Newton's method on which Brown's 

method is based. Finally, Brown's method has no norm reducing 

facility so there is no guarantee of convergence towards a solution. 

Wolfe's method is the only method which requires 

additional starting values. Apart from this minor drawback the
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method proved to be adequate. Although its rate of conver~ 

gence is slow, as reflected in the comparison index of table, 

it did successfully solve all the test problems. However, a 

matrix based on the Jacobian matrix is needed by the method 

so storage requirements are large. 

Newton's method, the traditional method of 

solution, has no norm reducing facility. Progress towards a 

solution can be erratic and the computational effort for every 

ye / ee ae 

step of the iteration is enermeus. The Jacobian is evaluated 

at every step and then inverted, both of these calculations are 

very costly numerical processes. Newton's method, however, 

has the best theoretical convergence rate to the solution and 

because of this and the ease of programming it is still a popular 

method used for solution. 

Broyden's method is mathematically more elegant 

than the other methods presented here. It was developed as an 

improvement to Newton's method by reducing the total computation 

involved in an iterative step. An approximation to the inverse 

Jacobian is stored and this is modified after every step so that 

it becomes a better approximation to the inverse Jacobian. Broyden 

also demanded that norm reduction was enforced so that convergence 

towards a solutionwas in a uniform manner, The price of these 

modifications is that the rate of convergence is slower than 

Newton's but as can be seen from the comparison ratio table his 

method is shown to be superior to Newton's method. 

The method presented is an alternative approach 

to reducing the prohibitive calculation and storage require- 

ments of Newton's method. The method does not require the use 

of a Jacobian and perhaps the main characteristic of the method 

is norm reduction to ensure convergence towards the desired
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solution, It is not possible to derive a rate of convergence 

for the method since linear interpolation is used to overcome 

overshoot but it is only used when there has been no significant 

improvement made by the iterative step. However, it performs 

well in solving the test examples and is comparable with Broyden's 

method. A general observation is that as the solution approaches 

the order of convergence becomes slower and an improvement in this 

area would be desirable. 

It would be unwise to say categorically that any 

one method is superior to another. However, it is reasonable 

to say that the method presented offers a suitable alternative 

method of solution. Furthermore, the method is easily pro- 

grammable and ths relative stability of obtaining a solution 

from a reasonable starting point does recommend it.



CHAPTER 6. 

DERIVATION OF A SYSTEM OF ALGEBRAIC EQUATIONS.
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Introduction. 

In the preceding chapters the discussions have 

been concerned with the solution of a set of nonlinear algebraic 

equations. In practice the solution of these algebraic equations 

is only an integral part of a method of solution for a set of 

nonlinear differential equations, 

In this chapter the problem of transforming a set 

of differential equations to a form where it is possible to use 

the new method and existing methods is discussed. Three possible 

methods of achieving the transformation are discussed, the Ritz- 

Averaging Method‘ 28) Harmonic Balancing Method'*4) and the 

Energy Balancing Methoat 15) , Having successfully completed the 

transformation phase it is possible to use the methods discussed 

to solve the system of algebraic equations which will have been 

generated, 

Nonlinear differential equations. 

Met A THAT tA Et AT + Ae waa yo 

thy AV + Aen 3 thc Pe ase RH + Ae met A wy 

hee yy + As xy = me*r coswt = (6.1.1) 
soy 

M+ A et Avy tAsatA yt A ee the +h 

Aye Pt de P+ Ase ryt A et Ae aye Ae ay 

+ es yy = mu*r sinwt - (6.1.2) 

The pair of second order differential equations 

written above, equations (6.1.1) and (6.1.2) ,have been obtained 

from private communications with R.H.Bannis ter(*®) | They describe 

the dynamics of a rigid rotor system running on journal bearings. 

The hydrodynamic coefficients were obtained experimentally and
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new measurable terms were introduced into the system. The 

coefficients are read as follows: Any? for example, is the 

force induced in the direction x at the centre of the rotor 

due to unit displacement in the direction y. Thus, it can be 

seen that not only nonlinear but also cross-coupling terms 

exist in the system, 

The system of equations which has been adopted 

to test the method presented offers two principal advantages. 

Firstly, the coefficients used were extremely large and they do 

represent an industrial type of problem. Next, since the system 

of equations were processed from experimental data, solutions 

could be compared easily. 

Application ¢ Ritz Method to nonlinear vibrations. 

In nonlinear vibration problems the equation of 

motion in the general case has the form 

% + 2nge(x) + p? £(x) = F(t) = (6.2) 

where g(x), f(x) and F(t) are given functions of velocity, 

displacement and the disturbing force per unit mass, n and ? 

are constant defining the magnitude of the resisting force and 

the restoring force per unit mass of the system. 

In equation (6.2) the various forces can be viewed 

as in a state of dynamic equilibrium in which the excitation 

force is balanced by the resisting force, the spring force and 

the disturbing force, The work done by this system of forces 

on any virtual displacement 6x must vanish and hence 

[x + 2ng(x) + p? f(x) - F(t)] ax =0 -(6.3) 

Ritz method assumes an approximate solution for 

the steady-state vibration in the form of a series
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x = aa f1(t) + a2 da(t) + as P(t) + oe - (6.4) 

in which ga(t), ¢e(t), so. and a,,a9, ... minimize the number 

of terms to x. Virtual displacements then have the form 

bx = 8, $, (+) ~ (6.5) 
Substituting equation (6.4) and (6.5) into equation (6,3) it 

will usually be found that some work on the assumed virtual 

displacement is produced since the series is an approximation 

for x not an exact solution. To obtain an accurate approximation 

the parameters 81,42, «se. are selected so as to make the average 

value of the virtual work per cycle vanish. This will result in 

équations of the following form 

it 

[fe + 2ng(x) + p? f(x) - F(+)] $,(+) at =0 

° 

in which the series for x has to be substituted and then the 

integration performed over the period of one cycle r. In this 

way as many algebraic equations as number of terms in the series 

are obtained and by solving we then find the values for all the 

parameters 41,82, see 

6,3.1) Ritz method applied to rigid rotor problem. 

To solve the set of equations (6.1), assume 

a solution of the form 

x =a sinwt + b coswt 

y=c sinwt + d coswt. 

Then the nature of the differential equation is such 

that with this form of solution terms of even order 

disappear, since integrals of the type
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7 aT 

i x coswt dt=0O 3; i x sinwt dt =0; etc 

oO oO 

will always be zero. Since terms of even symmetry can be 

neglected the equations of motion can now be represented 

by the following 

ca + > q " 

“ z, a 
eo ay mor coswt 

oo fee yt. x+ Ae y = mor sinwt 

x= a sinwt + b coswt 

x= aw coswt — bw sinwt 

x = -aw" sinwt - bw? coswt 

y=c sinwat + d coswt 

y = ecw coswt —- dw sinwt 

¥ = -cw? sinwt - dw* coswt 

Substitution yields 

2 os 2 s s 
—M 2u sinwt-M bu’ coswt+A, 2 singt + Alb coswt + AL c sinwt 

“4° cosut + As aw coswt = ae bw sinwt + AL ew coset 

“AS dw sinwt - mw*r coswt = 0 

wilco” sinwt - Mdu®coswt + Ay, sinwt + A, beoswt + Ayye sinut 

+Ay yo coswt + ae aw coswt - Aye bw sinwt + ae cw coswt 

wAye dw sinwt - nu*r sinwt = 0 

which can be rearranged as
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“ Pya - . i . i [(A. M_w*)a , bo +A c= A+ dw] sinwt 

a - mee 4S 
+fA wa + (A. Mow )b + e we + a nor lcoswt 0 

[a2 - a + ( Ay? )e - A god - mo*r] sinwt 

+[A, p08 e Aye + A, gue oe Ce - Mu )aleoswt =/0 

Fi sinwt + Fg coswt = 0 

Fg sinwt + F, coswt = 0 

If we now apply Ritz method we require 

aT 

i (Fa sinwt + Fk coswt) sinwt d(wt) 

o 

it ° 
at 

i (Fa sinwt + Fg coswt) coswt d(wt) 

oO 

" ° 

at 

| (Fs sinwt + F4 coswt) sinwt a(wt) tt ° 

° 

aT 

° (Fs sinwt + F4 coswt) coswt a(wt) = 

which is the same as Fy,F2,Fs,F4 = 0. 

Hence it is required to solve 

(Arlo) HA, go Ay ~Aga a | 0 

* ° 2 AL sw (Age Mo”) Ago Key b] _ | m@r 

oso g 2 a 2 ee AW Ay Mw ) Ag c mor 

* + wd 2 Aygo Aon Aw (yy Mw*)| [a 0 

which will be referred to as Equations (A) throughout the re- 

mainder of the thesis. This set of equations can be solved by
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direct matrix inversion of the (nxn) matrix, Ritz method 

is a general approach but if a harmonic solution is assumed 

then the Ritz method gives the same solution as the method 

of Harmonic Balance, which is developed in the next section. 

The principle of harmonic balance. 

Oscillations in a nonlinear system are rarely simple 

harmonic functions of time but are often periodic. A periodic 

oscillation can be expressed as a Fourier series of sine and 

cosine components. In many cases the fundamental frequency 

together with perhaps one oriere higher harmonics provides a 

significantly accurate approximation to the true oscillatory 

motion. Accordingly the principle of harmonic balance asserts 

that the criterion for an approximate oscillatory solution is 

thet the fundamental component is adjusted to satisfy all terms 

of fundamental frequency in the equation. Better approximations 

may be obtained, for if in addition to the fundamental component 

higher order components are also accounted and adjusted to satisfy 

all terms at their respective frequencies. This principle 

follows directly from the Ritz method when applied to an 

oscillatory system. If an assumed solution of the form 

x = A, coswt + AD cos(nwt + 6.) 

can be applied to the equations of motion 

X + wots g(x, x, t) =0 

then the Ritz method will result in the following equations 

aT 

? [x + wo®x + g(x, %, t)] As coswt d(wt) = 0 

°o 

and
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am 

i [z + wo? x + g(x, x, t)]a, cos nwt d(wt) = 0 

° 

Because of the orthogonality of the circular trigono- 

metric functions the sum of coefficients of the terms coswt 

must each be equal to zero in the above integral equations. 

This is precisely the requirement for the principle harmonic 

balance. If we now consider the two applications of harmonic 

balancing to the pair of simultaneous differential equations 

(6.1), this will provide two different cases to consider 

dependent upon the initial solution assumed. The first case 

will use only the linear terms of the equation whilst the 

second will contain all the terms linear and nonlinear. 

6.4.1) Linear Case. 

If a solution of the form 

x = a sinwt + b coswt ul 

y= c sinwt + d coswt 

is assumed then all the square and cross-product terms of 

equations (6.1) will disappear when harmonic balancing is 

applied. Consider, for example, the term xx then 

xx = a7 sinwt coswt + abw cos*wt-abw sin®wt-b?w sinwt coswt 

and using the simple trigonometric identities this becomes 

xx = $(a®—b? )wsin2wt+Sabw(1+cos2wt)—babw(1-cos2wt) 

It can be seen that there are no terms in sinwt and 

coswt, and thus no contribution will be made by this term in 

the balanced equations. A similar situation arises in all the 

square and cross-product terms so it is possible to reduce 

equations (6.1) to the following set of equations
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o . ee oli 
Ms x tA tA YrAsx+ A y = mw r coswt 

My +A + Ay + Ak + Aly = muPr sinwt 

Assuming the following solution 

1 

x=a sinwt + b coswt 

x= aw coswt - bw sinwt 

= -aw* sinwt- bw*® coswt Me
 

1 

ye=c sinwt + 4d coswt 

y= cw coset = dw sinwt 

y =-cw® sinwt - dw* coswt 

Substitution into the previous set of equations yields 

-¥, (au* sinut+bw” cosut) +A, (asinutrbeosut) +A, (esinwt+dcosut) 

+4, ;(aucoswt-bwsinut) +A, «(cweos wt-dusinut ) = mer coswt 

-M (co? sinwt+dw* coswt) +A sinwt+beoswt)+A_ (csinwt+dcoswt al + J, (a Dea ) 
+A, 2 (aucosut-businut) +A» (cweoswt-dusinut) = mo®r sinwt 

Collecting like terms in sinwt and coswt, the following equations 

are obtained 

-) 2 ~ . - . = M aw tala tA c Als bu As dn = 0 

2 “Mb + Ab +A 

xy 

a + A sau + 08 = mor 

-M_cw* + A A c-A sbo~ A+ = mu? poe a ae ex? ae mo" r 

ul ° 

a aM do’ + Ax? + Ay + oo + roe 

Rearranging and expressing these equations in matrix 

form we obtain the equations from the application of the Ritz 

principle, equations (A), as predicted. Again we can solve 

for the vector [a,b,c,d] by direct matrix inversion. 

Nonlinear case. 

If a solution of the fam
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X= @> + a,Sinwt + ag coswt 

y = bo + ba sinwt + be coswt 

is now assumed all the terms of equations (6.1) will have 

to be considered, All the square and cross-product terms 

are expressed as simply as possible before substituting 

them into equations (6.1). 

Using xX = aot a, sinwt + ag coswt 

x= a1w coswt — agw sinwt 

X= aso? sinwt - aaw*coswt 

and y = bo + ba sinwt + ba coswt 

y 3 baw coswt = baw sinwt 

y = ~bi0* sinwt - bew*coswt 

the square and cross-product terms can be evaluated as 

xP =a0"+2a941 sinwt+2azagsinwtcoswt+2a9agcoswt+aa* sin*wt+ag*cos*wt 

y? =bo?+2bobasinwt+2b4 be sinwtcoswt+2bobs coswt+ba* sin? wt+be*cos*wt 

xy=aobotasbosinwt+agbocoswt+acbasinwt+as,basin? wt+aabasinwtcos wt 

+aobacoswt+asbasinwtcoswt + agbgcos*wt 

% = aso? cos*ut - 2asaaw*sinwt coswt + aa*w* sin*wt 

o = 7a cos*wt — 2bsbg sinwt coswt + be*u*sin® wt 

RY = asbsw*cos* wt-(arbatagbs) o*sinwtcoswt+agbau*sin* wt 

x = Agaawcoswt+as* wsinwtcoswt+asaaWcos* wt-agag wsinwt 

28g wsin*® wt-ag?wsinwt coswt 

x» = aobswcoswtt+asbawsinwt coswt+agbswcos* wt—aobgwsinwt 

~asbawsin®wt - agbaw sinwt coswt 

xy = asbowcoswt+asb4 wsinwtcoswt+a1beweos* wt-agbowsinwt 

-agbswsin*wt-aabaw sinwt coswt 

Y¥ = bobsweoswt+bs7wsinwt coswt + babawcos?wt-bobawsinwt 

-babgusin*wt - ba?w sinat coswt 

Using the simple trigonometric identities
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sinwt coswt = $ sin2wt 

cos*wt = £(1+cos2wt) 

sin?wt = $(1-cos2wt) 

and neglecting terms in 2wt then 

x? = ao* + 2a0a4 sinwt + 2a0aa coswt + fas” + daa? 

y® = bo® + 2bobs sinwt + 2boba coswt + $b1? + tba? 

xy = aobo + a4bo sinwt+a2bocoswt+aobssinwt+aob,coswt+sa1ba 

+ daaba 

? = $ar7o? + dag7u? 

y? = $b1?a? + dpa?u? 

xy = fasbaw? + tagbau” 

xX = aoaaw coswt aoagW sinwt 

yx = agbowcoswt + $asbaw — agbow sinwt - faab.sw 

XY = Aobsw coswt + dagbsw — aobaw sinwt - Sa,bew 

yy = bobs coswt = Dobsw sinwt 

Substituting these equations into equation (6.1.1) will yield 

after collecting and balancing of terms three equations one 

for the constant terms, one for the terms in sinwt and one 

for the terms in coswt. 

Constant terms. 

2 A, 0+A,ybotA,a(a0°+304°+gba")+A a(bo®+sba ‘+bb2”) 

+ py, (2obotbbaaatsaaba) +A, 2a (bas uP +haa u#)A 2a (Sb. W"+hba7u?) 

tase (faabsw*+aabau) 1 (faabso~hasbaw) 

+A 2, (saabaw - taabiw) = 0 - (B.1) 

Sinwt terms 

(AM oi” asta, bamA, saa A guba + 2h, 220aa+2A,abobs 

+higgy(aabotaobs)-A,_ cuacaa-A, + aaabomA, subobanA, swaoba =0 (3.2) 

Coswt_ terms. 

(Agcit 0?) aath bath sasurd, xb 1UF2N 22 oagt2A, aboba
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+A ( ag bo+taoba ) FE ei n0d eons re daobs tk eho ba 

= mu*r -(B.3) 

Similarly substitution into equation (6.1.2) will again yield 

a further three equations, 

Constant terms 

A, fot, doth lyn? (G07+2047+3007) +h, (bo +gbs*+3ba”) 

hy (aobo+sasb1+saaba) +A, sa (fan? w+ha27 0? deh oa (Boa? w* +4b27 4?) 

Zt 4 

+A, oo (SasbsuPeboabau® eae (Ja,B,0-gasbaw) +4,» (beabow-gea baw) 

=0 - (B.A) 

Sinwt terms, 

= ° = * -. . (A yy Ybatd, a Ay ga4 A gue A pubat ek abosst2A. abode 

aa agbot+agbs J-A,.g0208a-A, suboba-A. euaabo 

wA, pivaoba = mo*r - (B.5) 

Goswt terms 
iL 2 + - < 2 (4,7 M )ba Ay Seth, suasth wwbs + 2h, 42208 t2Ayy*boba 

+A, «7 (2abo+aoba) +A gidoaa+Aeubobs +A, 2WaoBa 

+A *wasbo = 0 - (3.6) 

Hence we have obtained a set of nonlinear algebraic 

equations, (B.1) to (B.6), to solve for 80581 ,42,b0,b, and ba. 

This set of equations will be called equations (B), and they 

have been solved by using the method presented and Broyden's 

method. 

6.5) Method _of Energy Balance. 

As well as developing a set of algebraic equations by 

Harmonic Balancing it is also possible to develop a set of 

equations by using Energy Barencines The energy in the system is 

constant so it can be represented by a simple energy component 

which will be constant in the system. If we again substitute
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into the equations of motion, equations 1, we will obtain a set 

of nonlinear equations which can be solved for the various com- 

ponents. Consider 

ke y coswt + x; sinwt 

al
 u xo sinwt + x, sinwt 

are Xu? coswt = Xu? sinwt 

HK ty yy coswt = YR sinot 

Y = -Y.o sinwt- Y,w coswt 
a R 

es 2 os Ys Yu? coswt * Rw sinwt 

Now, if wt = 0 then 

> ul wt
 K u wy 

Be 

X= Xo Y= -Yo 

= “Ku? Y= -Y ie 

and if wt = -¥ 

ka- kX Y=, 

X= xe Y= Yio 
oul m es 
X= x0 Y= Y,w 

Substituion into the equation of motion (1a) will yield two equations 

in the horizontal direction which take the fom 

—M ot” +A oR, bya A A oY, w+A poe By +h, bey? 

22 2,2 ee . AL Apt tA go ty wP +A. Ley? Ye +A sek, o(- area ake 

~A, Xp Rot oY. (yy Rl) +A ve sX,Yiw = mor - (C.1) 

and 

2 2 M hi oe a +A, bo Re Vs ord, a Bs Mah ale 

~A, og aR Ag Ry wth al, PoP +h seu mh bo eo 

+A, vagy (“Xy) (¥,0) tA YR wt RY =0 - (C.2)
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Similarly substitution into the equation of motion, equation 1b, 

will yield two equations in the vertical direction which take 

the form 

3 * MY, 0 Sila Me + ae oy o- ae YR +A. yet 

2 i a . 27 RAs 2 +A yyata ee yeh oP +A, ya oe A ook Yad + 

4m ae aed, ap RR or, yaa o=0 - (C.3) 

and 

ito PY, RA Hy YptA Re + yy et Ay 2 hy tA ata” 

mAh sey a +A oY? Rise A, eV tw 

HR Ohh Ae ype =0 — (C4) 

Hence, a set of nonlinear algebraic equations, (C.1) to 

(C.4), has been obtained for XY »X,,¥,- This set of equations 
R 

will be referred to as equations (C). Again they have been solved 

by using the method presented and Broyden's method. 

Conclusions. 

In this chapter three different sets of nonlinear 

algebraic equations have been obtained. Each set was derived from 

a different method of transformation. 

The first set of equations (A) were obtained by two 

different methods of transformation, Ritz-Averaging and Harmonic 

Balancing. The reason is in the approximation to the solution 

which takes the form (a sinwt + b coswt) and the differentiation 

and integration properties of the circular functions, sine and 

cosine, Therefore, in this case application of two different 

methods of transformation result in the same equation. 

The second set of equations (B) are generated from an 

approximation to the solution which takes the form (a+bsinwt+coswt).
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This approxation contains more terms than the previous ones and 

therefore should be more accurate. In this case all terms, 

linerand nonlinear, are used by the approximation. 

Finally, the last equations (C) are obtained from 

Energy Balancing. A solution of the form (a coswt+b sinwt) is 

assumed but unlike case (A) all terms, linerand nonlinear, are 

included in the equations by this particular method. As only 

four terms not six, as in the case of equations (B), are used 

the solution will not be as accurate as case (B). 

The following table relates the identification of 

the sets of algebraic equations with each of the methods used 

to generate them. 

DERIVATION OF SETS OF ALGEBRALC EQUATIONS. 

  

METHOD OF HARMONIC BALANCING ENERGY 

DERIVATION | RITZ \Linear Nonlinear BALANCING 
    
  

EQUATIONS ik 
GENERATED       A B c     
  

Fig: 17



  

CHAPTER 

SOLUTION OF RIGID ROTOR SY! . 
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Introduction, 

Here the three different sets of algebraic equations 

developed in the Harmonic chapter are to be solved by the methods 

described in Chapters 2 and 4. The first set of equations (A) 

is a linear set of equations and can be solved by a direct matrix 

inversion method. The second and third sets, equations (B) and 

(C), are nonlinear in structure and must be solved by non-analytic 

or iterative methods of solution. 

Two different sets of values for the coefficients were 

obtained experimentally, This initial data is substituted into 

equations (A), (B) and (C). There will be three different forms 

of solution available for each of the two cases. 

Finally, there is a discussion on the physical inter— 

pretation of these results and on the agreement between the 

different forms of solution. 

Methods of Solution. 

There are three different sets of equations to be 

solved, one linear and the other two nonlinear. The first set 

of equations (A) is the linear case obtained from the Ritz 

Averaging Method. To solve these equations direct matrix inversion 

is used. 

The second set, equations (B), is the nonlinear 

case obtained from the Harmonic Balancing Method. In this 

particular case the solution to this set of equations was not 

known. Therefore, two different methods of solution, Broyden's 

and the method presented, were used. 

Finally the last case equations (C) is another non— 

linear case obtained from the Energy Balancing Method. Here 

Broyden's method is used to confirm results obtained by the 

new method.
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In the casa of the second set of tests data, ex 

perimental results were available for equation (C). As the 

solution point was previously known, a spread of values around 

the solution point were used to examine the behaviour of the 

new method. 

7-3) Case I. 

The values of the coefficients are 

My = 1.5 w = 125.0 mo*r = 125.0 

Ay 352000.0 — = 1174000.0 

a - 129000.0 eg 783000.0 

AF 1300.0 ae 1520.0 

se 1520.0 be 8300.0 

Ane = 202500000 .0 aaa 170000000 .0 

AGP = = 95300000.0 ce) = 157000000.0 

ee 235000000.0 Sees 849000000 .0 

Ala = Abe 7 A = 2hed 

a= 962.0 Ag = 2120.0 

2 = 783.0 ay = 604.0 

As 115500.0 see = 1386000.0 

GS 1-77000.0 We 2310000.0 

ae = 1200000 .0 ao = 2310000.0 

As = 923000.0 a 6460000.0 

7.3.1) Solution of Equation (A) 

This is the linear case so only the coefficients 

which refer to linear terms are required. The calculated 

solution point is 

x (-0.08141 sinwt + 0.34600 coswt) x 107° 

y = (-0.11380 sinwt - 0.35922 coswt) x 107°



noe) 

70. 

contd, 

which results in a maximum amplitude of 

x 3 max = 0239545 x 10 

y 0.37682 x 10°° 
max 

7.322) Solution of Equations (B). 

These equations were solved by Broyden's method 

and the method presented. Both used the same starting point 

and reached the same solution point 

Starting Point 

  

  

        

z & 

-12.1 O.4 x 104 

30.4 ley ene 

38.0 0.5x 10% 

10.7 0.3 10°* 

- 48.7 = 0.3 x 105° 

aoa 7 - 0.4 x 10°% 

Fig: 18 

which leads to the solution point 

  

  

z z 

0.0 0.32878 x 1074 
0.0 ~ 0.76053 x 104 

0.0 0.34361 x 10°° 

0.0 - 0.58543 x 107° 

0.0 - 0.11129 x 16° 

0.0 - 0.35070 x 10°       eS Se ee 

Fig: 19 

The solution can be expressed as
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x " 

J 

and expressing this result interms of double amplitudes 

Snag = 0935192 x 109 

Vinay = 036792 x 10° 

Solution of Equations . 

These equations were obtained from Energy Balancing. 

( 0.03288 - 0.07605 sinwt + 0.34361 coswt) x 107° 

(-0.00585 ~ 0.11129 sinwt - 0.35070 coswt) x 1078 

The solution was unknown and as a consequence Broyden's method 

was used to check the results obtained by the method presented. 

Again the same starting point was used by both methods and they 

both reached the same solution point. 

Starting Point 

  

  

      
  

  

  

z = 

0.0 0.0 
-125.0 0.0 
-125.0 0.0 

0.0 0.0 

Fig: 20 

and this leads to a solution 

z£ = 

0.0 -0.06078 x 107° 

0.0 0.21021 x 107% 

0.0 0.31234 x 10° 

0.0 0.16722 x 10°         

Fig: 21 

Hence we can express the solution as 

x 

v 

(-0.06078 sinwt + 0.31234 coswt) x 107° 

(+0.21021 sinwt - 0.16722 coswt) x 107%
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leading to a maximum amplitude of 

a 3 ance 0.351293 x 10 

y. = 0.26861 x 10° 
max 

7.34) Summary 

The figure (22) shows the values of the maximum 

amplitude calculated for each of the three different 

solutions. 

VALUES OF SCALED MAXIMUM AMPLITUDE. 

  

  

TABLE 

EQUATION xx 10-2 x 1052 

A Linear 0.35545 0.37681 

B Nonlinear 0.35192 0.36792 

C Nonlinear 0.31293 0.26861         
Big: 22 

74) Case II. 

The values of the coefficients in this case are
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MoS she5e w = 282.00 

ea te 44,6000 a 

= 100 589 oe 

As = 1078 as xx yx 

o = 2085 Ay 

ie 291000000 A ya? 

43 = 45400000 A yy? 

aa 000000 a 57500 ay 

A eS 1552. A 

Aya = 4,655 A 

Ae iS 4.985 Say 

f= 1468000 Aa 

ALS = 4080000 ae 

Ak = 1570000 ae 

Ava 3320000 Be 
wy IY, 

Solution of Equations (A). 

are required. 

x 

vw 

" 
u 

Again only the terms associated with linear terms 

u 
" 

mo*r = 300.00 

1481600 

24,7000 

2070 

1125 

427000000 

1503000000 

181,0000000 

2653 

9190 

9920 

1970000 

7920000 

3855000 

14,0000 

The calculated solution point is 

(0.46274 sinwt + 1.13000 coswt) x 10° 

(-0.35740 sinwt - 0.34843 coswt) « 107° 

with a maximum amplitude of 

x 1.22108 x 10° 
max 

Ynax 

" 

0.49913 x 107° 

Solution of Equations ) 

The two methods of solution were again used to solve 

this set of equations. Each method used the same starting 

point and reached the same solution point 

736
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Starting Point. 

  

  

    
  

£ & 

125.0 -0.25 x 10% 

48.8 0.10. x 107 

122.7 0.55 x 107% 

BLE oh 0.30 x 10° 

127.7 -0.10 x 10° 

108.4. 0.20 x 10° 

Fig: 23 

and this leads to the solution point 

  

  

        

£ & 

0.0 0.09009,x 10°® 

0.0 0.37325 x 10° 
0.0 1.03640 x 10°° 

0.0 0.02418 x 107° 

0.0 -0.30434 x 107° 

0.0 -0.32806 x 10° 

Fig: 24 

The solution can be expressed as 

" (0.09009 + 0.37325 sinwt + 1.03640 coswt) x 107% 

y = (0.02418 - 0.30434 sinwt - 0.32806 coswt)x 10° 

and expressing the result in terms of double amplitudes 

= 7s Xnax = 110160 x 10 

it 3 Vnag = On4ATHB x LO” 

Solution of Equations (C¢ 

This particular set of equations had already been 

solved by experiment and so the solution values were known. 

Therefore a spread of values about the solution point were 

used as starting values for the iteration. Again,Broyden
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and the method presented were used as methods of solution. 

Two tables of results are presented one for the 

method presented. 

Summary. 

The figure (27) shows the values of the maximum 

amplitude calculated for each of the three different solutions 

VALUES OF SCALED MAXIMUM AMPLITUDE. 

T 
VARIABLE | 

a | = 
EQUATION Rx doe” fry x0 

A Linear 1.22108 0.49913 

B Nonlinear | 1.10160 OATHS 

C Nonlinear | 1.15493 0.43303 

Fig: 27 

Results. 

The two figures (22), (27) showed that the amplitudes 

calculated for each test case shared a measure of agreement, In 

the cases where the solutions included nonlinear terms the 

amplitudes was smaller than the linear case. This is to be expected 

as nonlinear terms are usually components of restoring and/or 

damping forces. 

The results quite clearly indicate that nonlinearities 

exist and do contribute to a significant degree in the results. 

However the perturbations were not undly large as evident by the 

solution of the linear and nonlinear cases. The experimental 

results have already shown that this in fact was true. 

Conclusions. 

A feasible method for solving a set of differential
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Starting Point | Norm Solution Point Number of | Number of 

1o7> 1073 «1073 ~— 1074 | 1073 1073 1073 1074 Iterations Functions Evaluations 
pe AGE apg a ge ie tens i eg Bets S. | sues 

00 0.0 0.0 0.0 180000. sj v v ~ ) 45 | 450 

1 Og0ii," 0,5" O60 0.0 3760000 | wv v ee < 47 564 

0.0 0.0 1.0 0.0 4170000 < “ Mea de cab 384 

0f0:1. G00 Ores = 100. 516000 | 4 v7. ~ 44 5268 

0.0»20.0 0,0 “10,0 8340000 =1,300 -0,993  =1.290 19,493 58 696 

be'120 060) «0.0 0.0 2480000 | ~0,669 “1.371 0,169 8.786 | 26 312 

bPot oes 130 150 133000 7 4 4 “ 14 168 

10, Ms0ds HAaO! 2420 7660000 4 << a se “1 492 

14.0% 0.5 1.0 1.0 713000 Ze C ~ — “1 492 

| 405 120% 140 1.0 41100000 | ¥ v “ x 34 408 

0108 221-0 080 0.0 | 18700000 PATLURE _ —— 

| “1,0 0.0. 050. =10,0 | 9950000 | FAILURE “= — 

| 0.0 =-0.5 0.0 10,0 | 3630000 | FAILURE | _ oon 

0.0 -1.0 0,0 -10.0 | 1820000 | FATLURE j= | a 

| FAILURE _ ae 

  

“1,0 0,0  =10.0 | 4230000 

FIGURE 25



s Peete Poiat Norm | es ‘goueccn maint ae: 5 | Number of . sae oe eae 

to 1073 1073 = 1074 | 4073 1o3 1073 1o4 | Tterations Functions Evaluations 

| 0,0 +.0.0 a.0 0.0 | 1180000 | v v ee Me 13 | 188 

| 0.0 0,5 0,0 0,0 |. 3760000: |) ¥. og 4 v 17 : 236 

F 2090.25 0.0," 1.0. 0.0 1. 4170000 ve Marat Me er 12 176 

Pepe eo Moog eto 516000 Vv v v v 15 212 

436), 4 O60=5-.040 0.0 2480000 o Vv ey se 26 | 344 

010% 50,07. 2050. 31050 8340000 --0,669 --1.371. 0.169 ~—--8.786 24 320 

1:0: 045 121,055 1,0. 133000 Oe a Ae — 8 128 

1508150" 2 440. -1,0 7660000 v “ ~ ~ 15 : 212 

He, 100" 0.5.0) 120 1.0 713000 V Ee ~ we 10 152 
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equations is to transform them to a set of algebraic equations 

and then solve these equations. 

The method presented prove satisfactory in solving 

these algebraic equations. Broyden's method was also shown 

to be satisfactory and was, infact, slightly superior, For 

example, in Case 2 Equations (C) Broyden's method finds solution 

points from every starting point whereas the method presented 

suffers several failures. In fact, this illustrates a general 

point made throughout the thesis that no one method of solution 

can be said to be the best method to use in all cases. In this 

particular case Broyden's method proves to be the more successful, 

There is agreement between the theoretical and experi- 

mental results for the rigid rotor problem. Equations (B) 

should give the more accurate solutions as they include all 

terms linear and nonlinear and more terms are included in the 

initial approximation to the solution. Equations (C) offer 

reasonable solution values but still not be as accurate as (B) 

since the initial approximation to the solution contained fewer 

terms, Equations (A) are remarkably close to the solution con- 

sidering that only linear terms were present in the approximate 

solution, Hence this would seen to indicate that the contributions 

of the nonlinear terms are small and also the assumptions made 

concerning the nonlinearities are valid.
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Introduction. 

In general the question of stability is concerned 

with the determination of conditions of equilibrium, be it 

dynamic or otherwise, and with what happens if the system is 

disturbed slightly near an equilibrium condition. Any disturbance 

near an unstable equilibrium condition leads to a larger and 

larger departure from the original position. Near a stable 

equilibrium condition any small disturbance leads to a return to 

the original position. It is usually not difficult to define 

exactly what is meant by stability in a linear system, but because 

new types of phenomena arise in a nonlinear system, it is not 

possible to use a single definition for stability which is meaning- 

ful to every case. 

Structural Stability. 

A concept known as structural stability is sometimes 

introduced in discussion of physical systems ari is used in a 

sense somewhat different from the more general concept that might 

be called dynamic stability. The observation is made tmt the 

coefficients in equations describing physical systems are generally 

not known to a high degree of accuracy. These coefficients are 

the results of experimental measurenents which are always subject 

to error. Particularly in the case of nonlinear systems, where 

the coefficients are functions of the operating conditions, it is 

difficult to determine values of the coefficients to a high degree 

of accuracy, Furthermore, the physical parameters are often subject 

to change with such ambient conditions as time, temperature and 

humidity which is difficult to control accurately. Changes of 

this sort are probably not included in equations describing the 

system. As a result, coefficients in the equations are invariably 

subject to considerable uncertainty.
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The mathematical solutions for nonlinear equations 

can usually be found only approximately. Depending upon the 

nature of the nonlinearity and the method employed, the 

solution may or may not be of a high degree of accuracy and 

hence some uncertainty about the solution would arise. Because 

of this uncertainty as to whether or not the numerical values 

of coefficients are actually valid for the physical system being 

studied, there is reason to question whether or not the solution 

finally obtained actually applies to the physical system under 

study. 

Structural stability, then, so that property of a 

physical system such that the qualitative nature of its operation 

remains unchanged if the parameters of the system are subject to 

small variation. The properties of the mathematical solution for 

equations describing the system are unchanged if small variations 

occur in coefficients of the equations. Because of the inherent 

uncertainty in relating mathematical solutions to physical systems, 

it is desirable to require that the system be arranged in such a 

way that it possesses the property of structural stability. 

Dynamic Stability. 

A physical system may be described by a set of simultaneous 

differential equations of the form 

a . 
oa = Sam faye x,) 

oe = Xp = £5 (m5 <0- x,) 

dx * 
aon) = n= EACet sees =) ae 5 Fe n 

where t is the independent variable, x1,X2,ee. X, are the n dependent 

variables, ani the functions f,,f. ... f,, are nonlinear functions



8.3) 

81. 

contd. 

of the dependent variables. 

The simplest equilibrium, or singular, points are 

those points where all the derivatives 34 Ka sees zy are 

simultaneously zero. The system is accordingly at rest, since 

all the dependent variables are constant and not varying with 

time. These functions form a set of nonlinear algebraic equations 

corresponding to 

G11X%4 + A49%_ + cove an oO 

ag1X1 + @gaX_ + coe Ba, OF 0 

$9 Meech Sl Saran eae oc ee te tal 

a%1 + 8, Xa t ooo. ax = 0 

when the system is at rest. These nonlinear equations may be 

satisfied by values for the variables Osta ose x, which are 

non-zero, the equilibrium point in the linear ease, and more 

than a single set of values may exist. Nonlinear systems, there- 

fore, may have many equilibrium points. 

In investigating the stability of a system near a chosen 

equilibrium point, essentially what is done is to perturb the 

system slightly by changing all the values of the vector & from 

their equilibrium values. If, as t increases indefinitely and 

the values of the vector x return to their original equilibrium 

values then the system is said to be asymptotically stable. On 

the other hand, if the values of the vector & depart further from 

their equilibrium values with increasing t, then the system is said 

to be dynamically unstable. In a few special cases, the values of 

the vector x may neither return to their original values nor depart 

from them. A system with this property is said to be neutrally, or 

temporarily stable, For a nonlinear system, it is necessary to 

require that the initial disturbances of the values of the vector
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X be small enough to keep them in the region controlled by the 

equilibrium point in question. If the initial disturbances are 

too large, the vector x may then be located in a region, con- 

trolled by some other singular point. 

In addition to the possible appearance of many 

equilibrium points, the operation of a nonlinear system may be 

complicated by new phenomena associated with the appearance of 

limit cycles. Limit cycles are steady state periodic oscillations 

with their properties determined entirely by mrameters of the 

system. Because the variables in the system are undergoing con- 

tinuous periodic changes in these cases, a different definition 

may be required. 

The most rigid definition for the stability of an 

oscillating system is similar to the definition of asymptotic 

stability. According to this test for stability, the values 

of the vector x of the system are perturbed slightly from their 

steady state motion. If the differences between the vector x 

and the ensuing motion and the original undisturbed motion 

ultimately return to zero, the system is said to be asymptotically 

stable. If the differences neither vanish or increase, the systen 

is neutrally stable. 

in many applications, a change of period, accompanying 

only a small and nonvarying change in amplitude, does not seem 

to fit the usual connotations of instability. For this reason, 

yet another definition, that of orbital stability, is made. The 

solution for a system having a steady-state oscillatory motion 

may be represented as a closed curve in the phase-plane. If a 

small disturbance applied to the system results in a curve which 

ultimately returns to the first curve, the system is said to have 

orbital stability. If the small disturbances results in a curve
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which leaves the first curve, the system is orbitally unstable. 

The definition here is related only to the amplitude and not 

the period of oscillation. 

Rigid Rotor Systen, 

In the preceding sections we have been discussing 

the stability of nonlinear systems. Two entirely different 

concepts of stability, structural and dynamic, have been pre- 

sented. In the following sections we are going to show these 

two concepts in relation to the rigid rotor problem. 

Structural Stability. 

The nonlinear equations which have been presented 

were derived from a study of the characteristic of a rigid 

rotor running in a journal bearing. The coefficients, AL 

et cetera, of these equations have been measured experimentally. 

Therefore, although precautions were taken to ensure the co- 

efficients were measured as accurately as possible they will 

nevertheless still contain a degree of experimental error. When 

the rotor is operating heat, vibration and the like can cause 

changes in the operating characteristics of the rotor. Again, 

coefficients of the equations will be subject to change and 

their values will be uncertain . 

If a solution to the equations is asymptotically 

stable but does not appear to be correct practical solution 

then the inherent variation in the coefficient might be one 

of the causes. Also, if no finite solution can be found it may 

be that the deviations in the coefficients has rendered the system 

of equations unsolvable and unstable.
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Dynamic Stability. 

Dynamic stability is concerned with actual solutions 

obtained from a set of equations. There are several different 

methods for classifying the stability of a solution, Method 

of D-partitioning’*?) , Routh-Hurwitz method‘ +s) , Liapunov 

Methods‘*®) and others. : 

If a solution point is stable then the equations 

of the process under consideration are in a region of stability 

where the process has been defined accurately and is behaving 

as expected. However, if a solution point is unstable then the 

equations of the process under consideration are in a region 

of instability and the system of equations has not represented 

the process correctly. 

The problem of instability in a nonlinear system is 

more significant than the corresponding linear situation for, 

in the nonlinear case, instability will usually mean that the 

equations become difficult to solve. Accordingly a degree of 

consideration to the question of both the stability of the co- 

efficients and of the system must be included in a general 

solution of a nonlinear set of equations. However, this is not 

a simple matter for stability can be regarded as a separate 

discipline rather than a subset of any particular subject.
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Comments on the method of approach. 

The discussion in the thesis has been concerned 

with the available root finding techniques for solving algebraic 

equations, theix merits and their limitations. A comprehensive 

study of the existing techniques was undertaken to ascertain the 

requirements of a root finding method. Four different methods, 

those of Brown, Broyden, Newton and Wolfe, were considered and a 

definite gap was found to exist in general root finding techniques 

for the solution of a set of algebraic equations. It was felt 

that the above mentioned techniques owe their original conceptual 

form to numerical rather than the engineering and/or computational 

viewpoint. That is to say that the methods available at present 

require a considerable effort to be put into their understanding 

and application, 

The major aim of the thesis has been to develop a 

root finding technique which is simple to understand, is easily 

programmable, has a rate of convergence equal to that of existing 

methods and has small storage requirements. 

The technique is of the simplest possible form with 

its origins coming from Newton's method. The desirable 

characteristics of existing methods have been incorporated into 

the structure of the method. Undesirable characteristics have 

been eliminated as much as possible. For example, a Jacobian 

matrix would cause considerable storage problems if there are a 

large number of variables and therefore the method presented is 

constructed in such a way which does not require the evaluation 

of the Jacobian matrix. Linear interpoltation is used at every 

stage of the iterative process inducing a steady convergence to- 

wards the root. Finally, norm reduction is used to ensure conver— 

gence to the required solution. 

Theoretical comparisons between the various methods
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of solution to solve several test examples are undertaken, 

Unfortunately, there is no simple technique available for a 

direct comparison to show which techniques offer the better 

methods of solution. It is possible to use the number of 

iterations, the number of function evaluations or run-time 

timings but each one has its own failings. Therefore, a 

secondary but nevertheless important objective has been to 

develop a simple ratio which can be used for comparison purposes. 

The results show that the method presented can offer a suitable 

alternative as a method of solution. Broyden's method is shown 

to be the best of the methods available at the present time. 

Newton and Wolfe's methods are shown to be techniques which will 

find a solution point but their order of convergence and prohibitive 

computational requirements reduce their effectiveness as methods 

of solution. No definite conclusions are made regarding Brown's 

method as the comparison ratio showed the method to be in the 

extreme, in other words extremely good or bad. 

Finally, comparisons between the method presented 

and Broyden's method to solve an industrial problem are under 

taken. Results show that Broyden's method offers a better 

method of solution for this particular problem. 

From these comparisons the method presented can be 

said to offer an attractive alternative to the methods available 

at present. Problems of a particularly difficult nature may 

dead to failure of the method presented. In such a case Broyden's 

method, because of its mathematical foundation and derivation, 

is the method which should be employed to find a solution point. 

In conclusion, a direct comparison between the two 

methods would, perhaps, find Broyden's method as superior but in 

defence of the method presented the prohibitive numerical search
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and storage requirements weigh heavily against Broyden's method 

as a numerical method of solution. 

Suggestions for future developments of the method presented. 

In several areas the method of solution which has been 

presented has proved to be inadequate or in the worst possible 

case has broken down, - 

The most obvious area for development is when the 

method finds a local solution. At the present time, Newton's 

method is used to calculate an increment which will move the 

vector x away from the local solution. Whilst this has proved to 

be an adequate solution as an interim measure the prohibitive 

calculation required by Newton's method is undesirable. Further 

work should be undertaken to overcome this difficulty. Search 

techniques can be used to overcome this particular problem provided 

they do not involve too large a computational effort. At present 

the search techniques used are proving to be a costly process from 

the computational viewpoint. 

When comparisons between the various methods were under- 

taken it was seen that as the root was approached by the method 

present the rate of convergence became less than quadratic. If 

the functions are concave near the solution point then convergence 

became even slower. We know that if the functions we wish to solve 

are convex then convergence to the solution point is guaranteed. 

However, if the functions are concave this is not the case. Here 

it is possible to draw a comparison between Newton and Broyden's 

method. Broyden modified the Newtonian step by a further 

t, O< +t <1, so that 

ita ss eae 
x =x * t’pt 

Broyden restricted his value of t such that he obtained
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a Newtonian step if the functions were convex, i.e. t = 1, but 

he improved his convergence ratio compared with Newton if the 

functiom were concave by allowing t to be less thanl. It is 

this step of Broyden's method which causes the prohibitive cal- 

culation of his norm reducing search. 

If a simple test could be developed which showed whether 

functions are concave the incremental step of the method pre- 

sented could be modified as was Broyden's to improve convergence. 

Recent developments on root finding techniques. 
  

There have been two new methods of solution proposed 

recently which should be mentioned. 

In 1970 Broyden‘?°) proposed a new method of solving 

nonlinear simultaneous equations. He used a particular form of 

his method of 19656 5) coupled with a m thod of solution proposed 

by Davidenko‘?*+) ° “In this recent method Broyden abandoned the 

norm reduction approach but otherwise the basic method of 

solution is the same as previously. This modified Broyden method 

is used to solve the subproblem but Davidenko's method requires 

where previously Newton's method had been used. The early results 

show that this type of approach is superior to the previous 

Broyden method. 

All the methods presented so far will converge to a 

particular solution but since 1971 interest has been shown in a 

method presented by Branin‘??), for finding multiple solutions 

to a set of algebraic equations. The early indications are that 

methods of this type will become increasingly popular as they can 

produce all the solutions from an arbitrary starting point.
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Future developments on nonlinear differential equations. 

A method of solution for algebraic equations is only 

an integral part of a more general problem of solving nonlinear 

simultaneous differential equations. The entire process of 

solution is in three separate phases, First there is a trans— 

formation from differential to algebraic equation, then the 

solution of these algebraic equations and finally consideration 

about the stability of the systen. These types of method may 

be adequate at the present time but in the future they will be 

used to a lesser degree for they are long and involved processes 

and can induce errors into the solution. A much more ideal situation 

is to solve the equations directly. Unfortunately, the numerical 

techniques available at present offer worse solutions than trans— 

formation methods. Also there are theoretical limits to the 

accuracy of the numerical process. 

Simulation languages are in their infancy but will be 

used increasingly in the future. The integration process is 

difficult to simulate and languages such as Slang usually ex- 

perience difficulties at that particular stage in the calculation. 

An improvement in the expression of the integration process would 

enhance the simulation but the process is still cumbersome and 

expensive computationally. A simulation can be viewed as a digital 

computer being made to function like an analogue machine. Direct 

analogue computer methods of solution are a time consuming process. 

Analogue machines are difficult to program and are subject to 

errors during their usage. 
computers 

Hybrids, combinations of analogue and digital machines, 

can be used to offer a more feasible and controllable method of 

solution, The analogue section can be used to integrate whilst 

the digital machine can perform the simple mathematical calculation 

and adjust values of potentiometers in the analogue computer to
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reduce the variation in values and reduce drift errors during 

the running time. Whilst this process is feasible with today's 

machinery it should be remembered that large amounts of storage 

and crude usage of the connecting links of the hybrid system 

make this method of solution uncommercial., In the future as 

hybrid systems are developed a process for solving nonlinear 

differential equations should become a much more attractive 

alternative. It is here that future developments should prove 

to be most fruitful.
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Introduction. 

The number of function evaluations for each method 

of solution is different. Although most methods use a form 

of Jacobian each method uses a different technique to update 

the Jacobian, resulting in a different number of function 

evaluations each iteration. In all cases the evaluation of a 

derivative is considered to be equivalent to one function 

evaluation. Hach method is considered separately and in all 

cases an N variable system is investigated. 

Newton's Method. 

In Newton's method there are three different cal- 

caulations which contribute to the total number of function 

evaluations. The functions are evaluated once, the Jacobian has 

to be calculated and then an inversion is performed on the Jacobian. 

Hence, the total contribution to the number of function evaluations 

is as follows 

N for the function 

NW for the Jacobian 

and. aN for the inversion of the Jacobian leading to 

a total of (2N+1)N function evaluations per iteration. 

Brown's method. 

Examination of Brown's method shows that at the first 

step (N+1) function evaluations are required. At the following 

step, the second step, N function evaluations are required until 

at the last or nth step 2 function evaluations are required. 

Hence, in all 

[(N+1) + N+ ... + 3 + 2] function evaluations are required. 

The sum of the first natural N number is nin) so
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(MeL woe -1 function evaluations are required 

or # + a function evaluations per iteration. 

Broyden's method. 

In Broyden's method there are two distinct phases in 

the calculation of the number of function evaluations. The 

first iteration is a direct application of Newton's method and 

hence will require (2N?+4N) function evaluations. Subsequent 

iterations will require the following number of function 

evaluations 

N for the evaluation of the increment of 

N for the functions f, 

and N for the estimate of the inverse Jacobian ¥ 

which leads to a total number of 3N function evaluations per 

iteration. Hence the total number of function evaluations is 

found by adding 

(2N? 4) for the first iteration 

and 3N for each subsequent iteration. 

Wolfe's Method. 

Wolfe's method is similar to Broyden's in that there 

are two distinct phases. In the first iteration it is necessary 

to construct the estimate to the Jacobian and invert this estimate. 

Hence, an additional N(N+1) + (N+1)? function evaluations are 

required. Every iteration requires the following function 

evaluations 

a for the new function 

an to calculate the vector p and g
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and N to calculate a new value for A, the Jacobian 

estimate. 

Hence to calculate the total number of function 

evaluations the following quantities are added 

(2N4+1 (N+1) for the first iteration 

and (3N+1) for subsequent iterations. 

New method, 

In the New method three different calculations con- 

tribute to the total number of functionmevaluations. The 

Auxiliary functions and their derivatives have to be evaluated 

every iteration. Linear interpolation and Norm reduction may 

or may not contribute to the function evaluations so the worst 

possible case is considered where both have to be included. 

Therefore, the total contribution to the number of function 

evaluations is as follows 

N for the Auxiliary Functions A 

N for the Derivatives of the Auxiliary Functions 

N+l for Norm reduction and Linear interpolation. 

Hence the total number of function evaluations per iteration 

is found to be (3N+1) .
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The program developed for the new method used to 

solve the examples presented in the thesis is listed in this 

appendix. It is written in Fortran IV and is of a form which 

reduces the user's participation to a minimum. 

The University's computer has the facility of storing 

programs on magnetic tape which can be called to the computer 

when a run is required, Therefore, a user is only required to 

supply his function, a suitable starting point and call the 

program to produce results.The listing given is a copy of the 

program which is stored on magnetic tape. 

The program has a small master section and seventeen 

subroutines,each one responsible for a particular section of 

the calculation. 

Master Section. 

In this routine all arrays used in the program are 

given dimensions, a requirement afFortran IV, and the starting 

values are read. The arrays used are as follows 

AF in which the Auxiliary Functions A are stored 

DER used by the DERivatives of the Auxiliary Functions 

al
e 

DERL used by the Jacobian in Newton's method 

F the values of the functions £ 

INC the values of the INCrement in x 

ISIGN,LTEST,L5,M1 used in various subroutines for calculation 
purposes 

OLDINC the values of the prévious or OLD INCrement 

P used to store increment values for Newton's method 

X in which the vector x is stored 

Y in which the previous values of the vector x is stored
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The values read by this routine are 

N2 the number of starting points 

N the number of variables x1 ws. xy 

MODE the output requirements (0 for values at every 
iteration 1 for the vector x only) 

EPS the tolerance of the norm 

EPSL the tolerance upon the function values 

x the starting values of the vector x 

After reading these initial values the routine calls 

the subroutine JOINIMETHOD. 

Subroutine JOINTMETHOD. 

This subroutine organises the different sections 

of the calculation. No specific calculation is performed in 

this routine. All arrays and values read in the master routine 

are transferred to this subroutine. 

Subroutine NORM. 

In this subroutine norm reduction is performed if 

required. If a local solution is found then the routine to 

overcome this situation is called from this subroutine. If the 

iteration is unsuccessful at overcoming the problem of moving 

from the local solution an error message routine is called from 

this subroutine and the iteration terminated. The values passed 

to this routine are AF, DER, EPS, F, INC, OLDINC, X, Y, N and 

ANORM the value of the norm. 

Subroutine LOCALSOLUIION. 

This routine is used to move away from a local solution 

point. In this routine a Newton method of solution can be called 

for one iteration. The input values required by this subroutine are
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AF, EPS, IN, OLDINC, N and OLDNORM the previous value 

of the norm, 

Newton's method and related subroutines. 

If Newton's method is required for one iteration 

the following suite of subroutines are used, NEWTONSMETHOD, 

JACOBIAN, MINV and NOUTPUT. 

NEWIONSMETHOD directs the iteration and calculates 

the increment values stored in the array P. The input to this 

subroutine is the values of the vector x. 

JACOBLAN calculates the values of the Jacobian matrix. 

Again the values of the vector x are required. The Jacobian 

is stored in the vector DER] on return to the subroutine 

NEWLONSMETHOD, 

MINV is an inversion routine to calculate the inverse 

of the Jacobian. The input required is DER1, the Jacobian. On 

exit the inverse is stored in DER1, the value of the determinant 

of the inverse matrix is returned and stored in D. 

Finally, NOUTPUT output the values of P, F and X to- 

gether with ANORM at the end of the Newton iteration. 

Subroutine CLEAR. 

This routine sets the values of an array to zero. The 

call requires an array and the number of elements of the array. 

Example, CLEAR (INC,N) will set the values of the array INC 

to zero. 

General output routines. 

There are four routines to output the values which 

have been calculated.
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InpvUr outputs the starting values of F,X and ANORM 

OUTPUT outputs the values of AF, DER, INC, F,X and ANORM 
after every iteration 

ERRORMESSAGE output the values at the local solution when 
the iteration can move no further, The values 
output are AF, DER, OLDINC, INC, F, X and 
ANORM. 

FINALOUTPUT outputs the values of F,X and ANORM at the 
solution point. 

Subroutine STARTNORM. 

In this routine the value of the norm, 3 f,7, is 

calculated, The input required is F and the value of the 

norm, in ANORM, is available on return, 

Subroutine GDAF. 

The nmenonic GDAF means Generate the Derivative 

of the Auxiliary Function, The routine requires the values 

of AF, F and X and the derivative DER is available on return, 

Subroutine G1X. 

The nmenonic G1X means Generate Increment in X. 

The routine requires the values of AF, DER and X ani on return 

the value of the increment is available in INC and the value 

of the previous increment in OLDINC. 

Subroutine INTERPOLATION. 

This routine is ued to perform linear interpolation 

of x values thereby preventing overshoot. Input values re- 

quired are AF, F, INC and X and on exit INC and X contain the 

ealculated interpolated values, 

A2.13) Subroutine GAF. 

The nmenonic GAF means Generate Auxiliary Function.
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The routine requires F and X and on exit AF contains the value 

of the auxiliary function. 

Calculating Arrays. 

There are four arrays ISIGN, LTEST, L5 and Ml used 

by various subroutines to hold values calculated during the 

iteration. ISIGN is used to test for a change in sign of the 

increment. LTEST is used to store a count walue, between 1 

and 3, of the number of successive increases in the value of 

the Derivative of the Auxiliary Function. If the value decreases 

LTEST is set to 0. L5 and Ml are used by the inversion routine 

MINV for storing counts of the row and column numbers of the 

elements of the array being inverted,
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MASTER CUNTRIL JT? 
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DIMENST IN AP ON) DER CN) SDERT CNT) SF ON) > TNCON) > ISIGNON SLIEST ONY 2LOON 

1d oML ON) s ILDINC ON) SPONDS KONI SY OND 

m=) 
CALL TUNCTIINGRs xX5N) 
CALL STARTNIRMCANIRM oF aN) 
CALL TNPUT CAN IRMsFs x¥oMIDESND 

Paet=1 
DJ 2 KI=1loN 

CALL GDAF CAF DER oF »¥sYs15N) 
CALL GI*XCAF ZDERSEPS Fs INC 2 11 DIN As 1,LI ESTs MN) 
CALL INTERPILATIINGOFSEPS2FoINCs %s19N) 
=1+t 

2 CINTINIE 
CALL NIRMCAF ZAN IMs DERs DER] -EPSoF »INCsISIGNsL TEST oS 5Ml sULDINC oP 
1XeYoMeM JOEs Ns NI > 

TF MO 450) s0 
M=M+1 

TF ANCMIDED 2553. 
CALL OUTPUT CAF sANIRMs DER sF os INC s Xa Ma N) 

3 IF CANIRM-GI-EPS1) GJ Ti) 1 
CALL CLES CINCSN) 
CALL FINALJITPIT CAN IRMSF 2X obey) 

4 RETURN 
END



100. 

SUBROUTINE NORMCAF sANIRMsDER2DER] »EPS>FsINCsISTGNsLTEST »L5o™1 sULDI 

INC sP2%s¥oMsMIDEsNsNID 

REAL INCsMODI 
DIMENSTIIN AF CN) sDERCN) »DERI CNT) sF CN) s TNCON) » ISTGNCN) sLTEST CN)» 

1L5 ON) »M1E CON) sLDINC ON) sP OND 2 KON) 2 YCND 

ISECiND=0 
ITERNUMBER=0 
ILDNIRM=ANURM 

1 TNORM=0 
LITERNUMBER=0 

ITITAL=0 
LICAL=0 
TOTAL=0 -0 
CALL CLEARCISIGNsN) 

DU. 2 LelsN 
IF CABSCINCCL))-LT-EPS) GU Ti 2 

IF CCULDINCCLIZINCCL))-GE-0-0) GJ TU 2 

INC CLI=INCCL)I72 +0 
XCLI=XCLI-INCCL) 

INURM=TINIRM41 

2 CINTINUE 
Ae st 
L4=1 
DQ 3° L=laiN 

IF CABSCINCC(L))-GI-EPS) GJ TU 4 

L4=L4+1 
3 CUNT TINUE 

L4=L4-1 
TEST=x¢(L4) 
Go Ta? 

4 TEST=XC€L4)-INCC(L4) 

TEST1=xX¢L4) 
EP. JECTESTASTEST Vek Eo 0ie00 Ss) 

5 CALL FUNCT ININGFs%sN) 

CALL STARTNURMCANIRMsF sN) 
IF COLDNIRM-GE-ANJRM) Gil TO 9 
MOD T= LDNIRMZANIRM 

L2=1 
IF €CABSCXCL4)-TEST))-LT-EPS) GO TO 7 
IF (CXCL4)-TEST) «LT -0-0) L2=-1 
TE (E241 9! 720797) 
RAT 1D=¢€¥4(L4)-TEST YZ INCCL4) 

DJ 6 L=lsN 
XCLY=XCLI-RATIO*INC CL) 

6 CUNTINUE 
LITER NUMBER=LITERNUMBER 41 
IF CLITERNUMBER-20) Solio)
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DU 8 L=lsN 

IF CABS CINCCL))-LT-EPS) GU TO 6 
XCLI=XCLI- C1 -0-MODT* INC CL) 

CONTINUE 
LITERNUMBER=LITERNUMBER+1 
IF (LITERNUMBER-20) Ssllsll 
IF COLDNOIRM-GT-ANURM) GU TO 12 
IF CCTINIRM-NE +0) AND + CILDNURM-GE *ANORM)) RETURN 

IF CCKCLAD<TEST) «LT -EPS) GU. FO 11 

RATID=CXCL4)-TESTIZINCCL4) 
DI) 11 Le1sN 

XCLI=XCLI-RAT IG* INC CL) 

CUNTINUE 
CALL LICALSILUTIONCAF sDER sDERI1 sEPSsF»INC»L52™1 sULDINCsLONURMsP >TO 

TALsXs¥sISIGNs TTUTALsLUCALs MIDEs Ns NID 

CALL FUNCTI\INGCFsx3N) 

INJRM=0 

ITER NUMBER=ITERNUMBER+1 

IF CITERNUMBER=-20) 5514.5 
IF €CCABS(X(L4)-TEST)) GT -EPS) -UR + (CABS CILDNIRM-ANURM)) -GT -EPS)) 
RETURN 

=1 

DU 13 KI=lsN 

CALL GDAF CAF sDERsF s%sYsTsN) 

CALL GIXCAF sDERsEPSsFsINC sILDINCs %s IsLTEST »sMsN) 

CALL INTERP JLATIUNCAF 2EPS oF sINCsx»sTsN) 

CALL GAF CAF sFsxs12N) 

I=1+1 
CINTINUE 

ITERNUMBER=ITERNUMBER +41 

IF CITERNUMBER-20) 15050 

TITAL=0 «0 

DD 14 L=1lsN 

TITAL=TUTAL+ABS CINC (LD) 

CONT TINUE 
IF CISECUND) 1650516 

IF (TITAL+EQ-1-0) TATAL=N 

VALUE=TITAL/N 

DY 15 Lat en 
IF CINCCL)-EQ-0-0) INCCL)=1 -0 

INC CLO =SIGNCVALUE »s INC CL) 

CUNT TINUE 
ISECIND=ISECUND +41 
GU TH1 
CALL ERRIRMESSAGE CAF sANURMsDERsF » INCs JLDINCs ¥»N) 
Me} 
RETURN 
END 
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SUBRIUTINE LICALSOLUTIINCAF sDERsDER) sEPSsF » INC >L55™M1 » LOINC sULDNUOR 
1MsPs TOTAL» Xs Ys TISIGNs TT ITALSEXIT »LUCALsMsMIDE»Ns NI) 
REAL INC 
DIMENSTIN AF ON) sDERCN) sDERI CNIDsF CN) » INCON) s ISIGNCON) sL5 ON) 5M1 ON) > 
TULDINC ON) sP ON) 5 XONI YON) 
ICJUNT=1 
Li=1 
DO 2 L=lsN 
IF CABS CAF CLI %eLT «EPS) GO TU 6 
LI=L1 +1 
CUNT INUE 
CALL NEWTUNSMET HID CILDNURMsDERI sEPSsEXITsF sPsXsY¥obSoMsMUDE SMI sNoNI 

1) 
IF (LICAL-1) 45450 
Dd 3 L=leN 

PCL)=-PCL) 
CUNT INJUE 
CONTINUE 
DO) 5 4 
INC CL 
CUNTIN 
LUCAL=LIJCAL +1 
ICQUNT=5 
GOT" 19 
IF CABS CINCCL1))-LT-EPS) Gi) TO 16 
ISIGN(L1I=ISIGNCLI +41 
TF CISTGNCEL I= 13" 99.950 
DET CLTAND iO 1 att 
L2=L1 +1 
L1=L2 
DU & L=L2sN 
IF CABS CAF CL))-LT-EPS) GJ Td 10 
LI=L1 +1 
CINTINJUE 
GOTO 11 
TNC CLI Y=-INCCLI) 
ITUTAL=ITITAL+) 
TUTAL=TITAL+ABS CLNC CLI) 
GU TO 20 
ISIGNCLI =ISIGNCL1)+41 
IF CISIGNCLI)-1) 959,47 

aN 

CL) 
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12 
13 

22 
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CALL NEWT INSMETHIDCOLDNUORMsDERI] sEPSsEXIT»F oP 2X2 Y¥2L5oMsMUDEsM1 »NoNI 
i 

IF CLICAL-1) 1351350 
dO 12 L=1>N 
PCLI=-PCL) 
CNT TINUE 
CUNT INJE 
bo 14 Le1sN 
ING CL)=P CL) 
CONTINUE 
LOCAL=LICAL+1 
ICHUNT=5 
TUTAL=0 «9 
DU 15 LelsN 
IF CABS CAF CL))-LT-EPS) TOTAL=TUTAL+ABSCINCCL)) 
CONTINUE 
GO Ti) 20 
IF CCABSCINCCL1)) «LT EPS) -AND-CABSCOLDINCCLI))+LY*sEPS)) GO TO 17 
INC CLI 2=QLDINC CLI > 
GQ TO 20 
STUTAL=0 0 
DU 18 L=1sN 
STUTAL=STUTAL+ABS CINC CL?) 
CUNT TINUE 
CUNT TINUE 
IF (STOTAL+EQ-0-0) STOTAL=N 
SVALJE=STITALZN 
IF CINCCLI)-E0+0-0) INCCLI)=1 +0 
INC (LI) =SIGNCSVALUEs INC CLI) 
DJ 21 L=1sN 

XCLI=XCL)+INCCL) 
CONTINUE 
IF (EXIT+EQ+1-0) RETURN 
CALL FUNCTIOINCR »xsN) 
CALL STARTNURMCTEST oF aN) 
IF CABS COLDNURM-TEST)+GT-EPS) RETURN 
IF CCICUUNT-5)-GE-0) RETURN 
ICHUNT=IC JUNT + 
DY 22 L=lsN 
XCLI=EXCLI-INC CL) 
CUNTINUE 
GiTd 41 
END 
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SUBROUTINE NEWTUNSMETHID CILDNIRMs DERI sEPS EXIT oF oP 9%s¥ol5oMaMUDEs 
IMl>NsN1) 

DIMENSTIN DERI ONI)>F ON) sP OND 2 XCN) 2 YON) os LOCN) 9 MICND 

1 CALL JACIBIANCDERI »F »XsYsNsN1) 

CALL MINVCDERI sNsDsL5.M1 » NID 

TF CD93) O16. si 
D1 3 IT=lsN 
K=I 

PCID=0 -0 

DJ 2 J=loN 

PCI) =-DERI CK) *F CU) 4P CT) 
K=K+N 

2 CONT TINUE 

3 CONTINUE 

IF CILDNORM+GT +) +0032 RETURN 

DI 4 T=loN 

XCTI=XC1T)+P CT) 

4 CONTINUE 

CALL FUNCTIINCRsXsN) 

CALL STARTNORMCOLDNIRMsF sN) 

IF CJLDNORM-EPS) 55550 

M=M+1 

IF (MODE) tsQol 
CALL NOUTPUT CILDNORMsF »PsXsMeN) 
Gil TO 

5 CALL FINALUUTPUT CULDNIRMs Fs XsMsN) 
EXIT=1-0 

RETURN 
6 WRITE ¢23600) 

RETURN 
600 FURMAT (4/7/7750 %s25H THE JACURIAN IS SINGULAR) 

END 
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SUBRIUTINE JACIBIANCDERI oF »%s ¥s2NoN1) 
DIMENSTIIN DERI ONI)sF OND sXON) 5 YON) 
K=0 
K1=0) 
DO 1 LElsN 

YC(L)I=* CL) 

CONT TINUE 
DU 9 L=lsN 

K=K1 +1 

KI=L*N 

IF ¢XCL)-NE-0-0) GU TU 2 
YCL)=0-001 
GO! THs 

YCLI=XCLI*1 6001 

CALL FUNCTIUNCFRsY2N) 
DI 4 K KsK1 

K3=K2+N-L#N 

DER1 (K2)=F CK3) 

CONT TINUE 

CALL FUNCTIINCGF sXsN) 

IF CXCL)-NE--0) GU TI 5 

YCLI=0 -f 

GO Tih 2 

ECL = CRS s'0D 1 

DY 6 K2=Kskl 

K3=K2+N-L#N 
DER! CK2)=CDERI CK29-F (KBD) #1000 -072%¢0L) 

CUNT INUE 
Go TO 9 
DU & K2=KsK1 

K3=K2+N-L#N 

DERI] CK2=(DERL CK2)-F CK3 2) *1 000 «0 

CUNT TINUE 
CONTINUE 
RETURN 
END 
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SUBROUTINE MINVCAsNsDsL5o™M1 NI) 
DIMENSIIN ACNI)sL50N)5M10N) 
D=1 -0 

NK=-N 
DU 10 K=lsN 
NK=NK+N 
LS (CK) =K 
M1 CK) =K 
KK=NK+K 
BIGA=A CKK) 
DJ 1 J=KsN 
TZ=N*CJ=1 ) 
DO 1 T=KsN 
IJ=1Z+1 
IF CABS (CBIGA)-ABSCACT JI) Dslol 
BIGA=ACIJ) 
LSCKI=T 
MICKIEJ 

CONT TINUE 
J=LS CK) 
LP CJ=Kow 3532.0 

KI=K-N 

DU 2 I=lsN 
KI=KI4+N 

HILD=-A CKT) 
JI=KI-K+J 
ACKID=ACIT) 
ACJT=HULD 
T=M1 (K) 
IF CI-KI055530 
JP=N¥CT=1) 
DJ 4 J=lsN 
JK=NK+J 

JT=JP+J 
HILD=-ACUK) 

ACJIK CJT) 

ACJID=HILD 

IF (BIGA) 631156 
D=0 +0 
RETURN 
DO. TF I=)oN 
IF (I-K) 05720 
IK=NK+I 
ACTKY=ACTKI/(-BIGA) 
CUNTINUE 
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13 

DO 8 I=lsN 
TK=NK+1 
IJ=I-N 
DI & JEleN 
TJ=ITJ+N 
IF C€I-K) 05820 
IF CJ-K) 05850 
KJ=IU-1+Kk 
ACTIJIV=AA CI KI FA CKII+ACI J) 
CONTINUE 
KJ=K-N 
DJ 9 J=loN 
KJ=KI+N 
IF €J-K) 05950 
ACKJI=ACKJ)IZB IGA 
CUNTINUE 
D=D*BIGA 
ACKK)=1 -1/7BIGA 
CONTINUE 
K=N 
K=(K~-1) 
TE CK) PSa9S 50 
I=L5¢K) 
IF SChSKI Lashes. 
JO=N* CK-1) 
JR=N*CI-1) 
DO 12 J=lsN 

  

ACJIK ACJI) 

ACJI)=HILD 

J=M1 CK) 

IF CU-K) Ibsolls0 

KI=K-N 

DI 14 =SlaN 

KI=KI+N 

HILD=4 (KI) 

JI=KI-K+J 

ACKI)=-ACJI)D 

ACJI)=HILD 
GO TW 11 
RETURN 

END 
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108. 

SUBROUTINE CLEARCINCsN) 
REAL INC 
DIMENSTUN INC CN) 
DV 1 L=1sN 
INC (L)=0 -0 
CONTINUE 
RETURN 
END 

SUBRIJUTINE INPUT CANIRMsF sXsMIDEsN) 
DIMENSTON FON) »xCN) 
WRITE C2 5.200) 
WRITE C23201) 
DO 1 T=1>N 
WRITE C2's202) FCI) sxKCT) 
CONTINUE 
WRITE (23203) 
WRITE (23204) ANIRM 

IF (MIDE) 25052 
WRITE (22205) 
RETURN 
FIIRMAT CLHI 251X%s25H NEW SET UF STARTING DATA) 
FORMAT C750 X%216H FUNCTION VALUES25X%29H x VALUES) 
FURMAT (51 XsF10+5s6x%sF 10-5) 
FURMAT C/60%s11H NIRM VALUE) 
FURMAT (61%5F10-5) 
FORMAT C/15X%s20H AUXILIARY FUNCTIUNSs5%912H DERIVATIVESs7xXs10H INCR 
TEMENT s5%s16H FUNCTION VALUES:9%s9H X VALUES) 
END 

SUBROUTINE DUTPUT CAF sANIRMsDERsF » INCsXsMsN) 
REAL INC 
DIMENSTUN AF CN) sDERCN) sF ON) sTNCCN) s XON) 
WRITE (23300) M 
DU 1 I=1sN 
WRITE (25301) AF CI) »DERCI)Ds ENC CI) sF C1)sxC1) 
CUNT INUE 
WRITE (25302) ANORM 
RETURN 
FORMAT C///57X%s11H ITERATION 513) 
FURMAT CIS X%sF16¢553XsF16 +527 XsF 11 eSo6XoF 11 sSollXsF 11 5) 
FORMAT C/57X%212H NIRM VALUE=s5F 10-5) 
END
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SUBRIIUTINE ERROIRMESSAGE CAF sANURMsDER oF s LINC s ILDINC 2 Xs N) 
REAL INC 
DIMENSION AF CN) sDERCN) oF CN)» TNC CN) s ILDINC CN) 9 XCN) 
WRITE (22400) 
WRITE (23401) 
WRITE (25402) 
WRITE (25403) 
WRITE (22404) 
WRITE (25401) 
WRITE (25400) 
WRITE (25405) 
DO t L=lsN 
WRITE €25406) AFCL)sDERCL) s\IILDINCCL)sINCCL) oF CLD 2xXCL) 
CONTINUE 
WRITE (25407) ANIRM 
RETURN 
FURMATCS5C1H 2) 
FURMAT C40 Xs 42 C1 H*)) 
FORMAT C40 %+42H* THE METHJD HAS FUUND A LUCAL *) 
FURMAT C40 %s42H* SOLUTION AND IS UNABLE TO MUVE *) 
FORMAT (40 %s42H* FROM THE POSITIUN GIVEN BELOW *) 
FORMAT C/7X%s20H AUXILIARY FUNCTIUNSs5%s12H DERIVATIVESs7X213H ULDIN 
ICREMENTs7X210H INCREMENT »5X516H FUNCTIUN VALUESs9X%29H X VALUES) 
FURMATC7XsF16¢523X%sF16¢529X%sF 11 So TKaF 11 eS 26X%oF 11 eSoll XeF 11 +5) 

FURMAT C751%212H NORM VALUE=sF10-5) 

END 

SUBROUTINE FINALOUTPUT CANIRMsF sXsMsN) 

DIMENSTUN FON) sXCN) 

KITER=3*M*N 

WRITE (25500) 
WRITE C22501) 

DO 1 I=1sN 
WRITEC255012) FCI) sxX¢Id 

CONTINUE 
WRITE €25503) 
WRITE C2 5504) ANORM 
WRITEC2,505) M 
WRITE (25506) KITER 
RETURN 
FORMAT €/7/7/52%s26H FINAL VALUES UF VARIABLES) 

FORMAT C/50X%916H FUNCTIUN VALUESs5X%29H X VALJES) 
FORMAT CS1X%sF10+558X%sF10-5) 

FORMAT (C760X%s11H NIRM VALUE) 

FORMAT (61 %5F 11-5) 

FORMAT C/53x%s21HNUMBER (JF ITERATIUNS=,5 12) 

FURMAT (748% s31HNUMBER OF FUNCTIUN EVALUATIONS=s13) 
END



700 
701 

SUBROUTINE NOUTPUT CANURMsF sP 2 XsM2N) 
DIMENSTIN FON) sP OND sX OND 
DO). LehsN 
WRITE (25700) PCI)sFC1I)sx%C1) 
CUNT INJE 
WRITE €25701)2 ANIRM 
RETURN 
FURMATCSTXsF11+5s6%sF 11 -¢Ssl1XsF1l +5) 
FORMAT (757X%s12H NORM VALUE=sF 10-5) 

END 

SUBRUUTINE STARTNIRMCANURMosF oN) 
DIMENSTON FON) 
ANIRM=0 -0 
DJ 1 LeleN 
ANURM=F CL) *F CL) +ANIRM 

CUNT INUE 
RETURN 
END 

SUBROUTINE GDAF CAF sDERsFs Xs YsIsN) 

DIMENSION AF CON) sDERCN) sF ON) 2X ON) 9 YCND 
DIC =, 
YCLI=XCL) 
CONTINUE 
IF CXCI)D-NE-0-0) GU TH 2 
y(T)=0-001 
GOT S 
YCID=XC1I)*1 -001 
CALL GAF CAF oF 2¥sT»N) 
DER CI 7=AF CI) 
CALL GAF CAF sF sX»T»N) 
IF (XC1)«NE-0-0) GI Ti) 4 
Y¥CID=0-0 
GO TOS 
YCID=¥C1)71 001 
DER CID=CDERCI)-AF CID *1N00 -07xKC1) 
RETURN 
DER CID=CDERCI)-AF CI) ) *1000 -0 
RETURN 
END 

110.
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SUBROUTINE GIXCAF »DERsEPSsF s INCsLDINCs Xs 1sLTEST »MsN) 
REAL INC 
DIMENSION AF CN) sDERCN) sF ON) s INCON) sULDINC CN)» X(N) sLTEST CN) 
TUTAL=AF C1) 
OLDINC C1) =INCCI) 
IF (DER(1)-EQ-0-0) GO TU 4 
INC C1) =-TOTALZDERCT) 
IF CINCCI)-EQ-0-0) GO TO 1 
IF (M) 05120 
IF CABS CULDINC(1))-LT-ABSCINCCI))) GO TO 3 
LTES? C13 =73. 
ACTV=ACII+1INCCI) 
RETURN 
LIEST ¢E) =LTEST< 19+! 
IF (LTEST(I)) 25032 
Le=t 
IF (DERCI)-LT-0-0) L2=-1 
INC CID =-TUTALZ¢ CABS (TUTAL)+ABS CDERCI)))*L2E) 
GHe TO 2 
END 

SUBROUTINE INTERPOLAT IINCAF sEPS oF» INCs%s1sN) 
REAL INC sNEWsNINC 
DIMENSTIIN AF CN) sF ON) » INC CN)» XON) 
ILD=AF C1) 
CALL GAF CAF sF sXs1IsN) 
NEW=AF CT) 

IF (CABS CNEW) «LT-EPS)-OR- CABS COLD) -LT -EPS)) RETURN 
      

IF (CCOLD/NEW) -GT-0+1) RETURN 
NINC= (ABS CNEW)*INC C1) 97 CABS CNEW)+ABS (OLD) ) 
XCT)=XCII-NINC 
INC €I)=INCCI)-NINC 
RETURN 
END 

  

SUBROUTINE GAF CAF sF»Xs1»N) 
DIMENSTON AF CN) sF ON) 5xX€N) 
CALL FUNCTIUNCFs XN) 
SUM=0 0 
DO 1 L=loI 
AF CI) =F CL) +SUM 
SUM=AF CI) 
CONTINUE 
RETURN 
END
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Introduction. 

The program presented in this section is Broyden's 

method of solution, 19656 Fa) . It is written in Fortran IV 

and is structured the same as the previous program of Appendix II. 

Again there is a small master routine but this time there are 

only nine subroutines. 

Master routine. 

The master routine dimensions the arrays used, reads 

in the starting values and organises the subroutines used in 

the calculation. The arrays used are 

FI to store the function values £ 

B to store the incremental values for the vector x 

x to store the values of the vector x 

» to store the differences in the function values 
for successive iterations i.e.y = £(z,,,)-£@,) 

H to store the Jacobian J 

with the starting v alues 

H the number of variables 

EPS the tolerance upon the norm 

xk the starting values of the vector x 

The arrays COL, MK, ROW, SUM1 and SUM2 are for 

storing intermediate values in the calculation. 

Subroutine NEW. 

This subroutine is used to calculate the increment,P. 

The routine requires the values of FI, H and X. On output a new 

value for X is available together with a value for P. This sub- 

routine calls the routine QUADMIN, used to reduce the value of 

the norm.
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Subroutine INITIALH, 

At the beginning of the iteration a Newton method 

iteration, which will require an estimate of the inverse 

Jacobian matrix, is performed. This subroutine calculates the 

initial estimate to the inverse Jacobian. The input required 

is the value of FI and X. During the evaluation of the estimate, 

an inversion routine, INVERT, is called, On exit the matrix, H, 

contains the values of the inverse Jacobian. 

Subroutine HNEW. 

In this subroutine the values of the estimate to the 

inverse Jacobian are updated using the latest information. The 

required input values are H, P and T and on return the matrix 

H contains the latest estimate to the inverse Jacobian. 

Subroutine NORM. 

This routine calculates the value of the norm 

n 
a tae The input required is FI and the value of the norm, 

isa 

in ANORM, is available on return, 

Subroutine YNEW. 

This subroutine calculates the difference between 

the function values, that is to say y = £(xi,,) - f(x,). 

The input values required are FI, P, T and X and on retum Y 

will contain the difference between the function values. 

Subroutine OUTPUT. 

in this routine the values P, Y, FI, ANORM and X 

are output. This routine is called at the end of every 

iteration,
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14. 

Other routines. 

Finally, there are three routines remaining INVERT, 

QUADMIN and SET. The routines QUADMIN and SET were developed 

by Broyden in his paper’ 5) and are adequately documented. 

The remaining subroutine , INVERT, is a general routine for 

inverting a matrix.
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MASTER BROYDEN JRIGINAL 
REAL MK 
INTEGER COLsROW 
DIMENSTIIN COL¢€2)5F102)5MKC2) »P (2) sRUWC2)5SUMI (2) sSUM2(2)5XC2)5YC2) 
CUMMUN H(252) 
N2=1 
READ (15100) Ns EPSsxX 
CALL INITIALH(CILsFIsMKsRUWs Xs YoN) 

1 CALL NEWCANORMsF1sPsXsT oN) 
IF CANURM-EPS) 23250 
CALL YNEWCFIsPsTsX%sYsN) 
CALL HNEWCPsSUM1 »SUM25T »YsN) 
CALL FUNCTIUNCFIs%sN) 
CALL MUTPUT CANORMsFIsPsXsYsNsN2) 
N2=N2 +1 
60 TO 1 

2 CALL OUTPUT CANIRMsFIsPsXsYsNsN2) 
100 FORMAT CIO>s3F0-0) 

STUP 
END 

SUBRUUTINE NEW CANURMsFIsP2XsTsN) 
DIMENSTON FICN) sPON)sXON) 
CUMMIN HC2.2) 
CALL NOIRMCANURMsFIsN) 
DO 1 T=lsN 
PCID=0 -0 
DO 2 J=1lseN 
PCTI=-HCTsJ)*F16J)+P C1) 
CONT INUE 
ACTI=XCTI +P C1) 

1 CONTINUE 
CALL QUADMINCANIRMsFIsPsT>XsN) 
RETURN 
END 

~
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SUBROUTINE INITIALHCCOLsF 1sMKsRUWs x2 YoN) 
REAL MK 
INTEGER COLsROW 
DIMENSIUN CULCN) sFICN) sMKON) sRUWCND s KON) 2 YON) 
CUMMON H(2s2) 
DO 1 T=lseN 
YCT)=XCT) 
CUNT INUE 
DQ 8 J=1sN 
IF (XCJ)-NE-0-0) GO TU 2 
YCJ=0 -001 
Go) TO 3 
Y¥CJ=XCJ)¥1 -001 
CALL FUNCTIUNCFIsY2N) 
DD 4 T=12N 
HOT, J=F ICT) 
CONT TINUE 
CALL FUNCTIUNCFIs XsN) 
IF ¢(xXCJ)+NE+0+0) GO TO 6 
Y¥CJ)=0 +0 
DOS T=1lsN 
HCIsJ=CHCIsJ)-FICT))*1000 -0 
CONTINUE 
GU TO & 
YCD=¥CIIZ71 -001 
DO 7 T=lsN 
HCTs J = CHC so JI-F ICT *1000 -07xXCU) 
CUNT TE NUE 
CUNT TINUE 
CALL INVERT (COLsMKsR Ws ND 
RETURN 
END 
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CONTINUE 

    

sum (=o. 0 
SUM2 (J =0 +0 
DO 2 K=1sN 
SUMI CID=HCTsK)*Y¥CK)+SUMI CID 
SUM2 CJI=P CKI*HCKs JD +4SUM2 05) 

    

SUMI CL) =SUMIL CI) =P C1) 4T 
SUM2 CJ =SUM2 CJ) /SUM3 

} CINTINUE 
DO 4 I=1s5N 
DO 4 J=loN 

Ts J)=HCTsJ)-SUMI C1) *SUM2 CJ) 

RETURN | 
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SUBROUTINE NORMCANURMsF IsN) 
DIMENSTON FICN) 
ANURM=0 -0 
DU 1 I=1ls5N 
ANURM=F 1C1T)*F 1 C1) +ANDRM 

1 CONTINUE 
RETURN 
END 

SUBROUTINE YNEWCFI>PsT»%s oN) 
DIMENSIUN FICN) sPON)sXON)»s YON) 
DD 1 T=1l>N 
XCTIEXCTII-“P CLIT 
MGI =F ECE) 

1 CONTINUE 
CALL FUNCTIUNCR Is xsN) 
DU 2 IT=lsN 
YOT) =YiOhy Fl C1 
KCI I=XCI) +P CL ¥T 

2 CONTINUE 
RETURN 
END 

  

SUBRIUTINE JUTPUT CANIRMsF lsPs%s YsNsN2) 
DIMENSTIIN FICN) sP ON) sXKON) 2 YON) 

IF (N2-1) Dalal 
WRITE ¢€25200). 

1 WRITE ¢25,201). N2 
DO 2 T=1sN 
WRITE (25202) PCI) sY¥CI)sF ICT) sANORMs XC C1) 

2 CONTINUE 
RETURN 

200 FORMAT CLHI s/77/7/37% s4HP C1) s6X%24HY C1095 Xe THF ICI +12 33X%95H NURMZ6%96H 
1xcT+1)) 

201 FORMAT C/55%se11H ITERATIONS, 12) 
202 FORMAT C33X%s5F10-5) 

END



400 
300 

SUBROUTINE [INVERT CCOLsMKsRiWs ND 
REAL MK 
INTEGER CULsROW 
DIMENSTON COLON) sMKCN) sRUWCN) 
COMMUN H(2s2) 
“3=1-0 
DO 100 T=15N 
ROWCT) sCOLCID=1 
DO 200 I8=15N 
12=RUW C18) 
13=COL¢18) 
16s17=18 
AL=HCI25713) 
DU 300 T1l=T8s5N 
T4=ROwWCT1) 
DO 400 I9=18sN 
IS=COLCT9) 
x2SHC1 4915) 
IF (ABSCX2)+LE-ABS(X1)) GY 
~1=X2 
12=14 
13=15 
16=11 
I7=19 
CONTINUE 
CONTINUE 
IF (I18-+EQ+I6) GO TU 
ROW CT6.=RIWCI 8) 
ROW CTS) =12 
IF (CI&eEQ-17) GO 
COLCI7)=COL¢18) 
CULCT&)=13 
IF (ABSCX1/X3)-GE- -SE-8) GU 
WRITE (2s1) X1s1& 
FORMATC//7522H MXINViPIVOT RATIO 
AB=X1 
DO 500 I9=15N 
HC12sT9=HCI2s 19)7X1 

TQ 400 

10 

Td 20 

TU 30 

= 9F6045/56H STAGE 213 

119.



  

10 

210 CONTI 

 



   

SUBRUUTINE QUADMINCANIRMsFI2P2T»%2N) 
DIMENSTUN FICN)sP ON) > X(N) sPHIC3)2VI 63) 
ANURM1 =ANIRM 
TLAST= 
T=0-0 i 
IT=0 
IT=IT#1 
CALL FUNCTININCFIsXsN) 
CALL NURMCANIRMsFIsN) ¢ ie (anoat. ar. Awonnt) RETURN 
IF €CCABSCT-TLAST))-GT + (0 +01*ABSC(T)) -AND-CIT+LE+10)) UR + CIT+EQ+2)) 
Gd TO 2 
RETURN 
IF CIT.NE-19 GU TO 3 
vt “0 
VTC3) “0 

PHIC1)=ANJRMI 
PHI(€3)=ANJRM 

XX=ANORM/ANURMI 
SORT C1 6046 60 *XX)-1 009763 0 ¥XXD 

        

Mae 
CALL SETCX%sVT»PsNsoTsTLAST s1151) 
CGE TSE 
PHICI1)=ANURM 
XW=VT (2)-VT C3) 
XKSVTC3)-VT C1) 
xY=VTC1)-vTPc2) 
AW=- CPHI C1) *#XW+PHI C2) *XX+PHIC3I*XY) 7S CKWHXKEXY 
XA=CPHI C1 D-PHIC2))7XY¥-XAWACVT C1) 4VT C2) ) 
TLAST=T 
IF (XW-GTs0-0) GO TO 5 
IF CPHI(M)-GI*PHICK)) GO TU 4 
T=3 -0*VT OM) -2 ef VT CL) 
GQ TO 6 
T=3 of ¥VT CK) -2-0*VT CL) 
GU TO 6 

 



CALL SET CXsVTsPsNsTsTLAST a 11. 
Go TO 1 ; . 

8 IF «T-LE-VTCL)) GO TO 9 
“ERK mA 

K=L 
Let 
CALL SETCXsVTsP2NsTsTLASTsI15L) 
GO Td 1 

9 TSM 
MeL 
L=I 
CALL SET CXsVTsPsNsTsTLASTs 11 sl) 
GUETO 1 +, 
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Introduction, 

The subroutine in this appendix is an example 

of a user definition of a function, In this case the function 

defined in Case 1 Equation B of the industrial problem solved 

in Chapter 7. The routine is written in FORTRAN IV to be 

inserted in the main program.
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SUBRIUTINE FUNCTIMUINCR Isx5N) 
DIMENSTUIN FICN) sx CN) 

REAL MS sMwWe 

  

AXXD=1300 «0 
AXYD=1520 +0 
Axxsa=2N2500000-0 

  

AxYSO=-95300000 -0 
Axry=235000000 -0 
AXFNSO=244 67 

AX YDSO=962 «0 

AXXDYD=763 -f 

AXXKD=115500-0 
AX*XYD=1477000 0 

AXYYD=923000 -f 

AyYXO=1200000-0 

AY*=1174000 -0 

AYY=783000 -0 
AY*D=1520 -0 

AYYD=83N0 -9 
AYXSQ=170000000 -0 
AYYSQO=157000000 «0 

AYXY=649000000-0 

AYXDSO=24-5 
AYYDSQ=2120 -0 
AYXDYD=614 -1 

AYXXD=-13 86000 1) 

AY*XYD=2310000 -0 

AYYYD=6460000 «f 

AYYXD=2310000 «0 

FIC) V=AXK#X OL DFAXY*RK C4) FAXXSO# CHOI AKL I 4+C OK C2) ¥X C2042 039*2%63)) 72 © 
TFA XKYSO* CX C4dD#K C44 COCKS DK CSI +X 66D *KC6) 72 DIDI FARK YA CK CLI AACAD+C 
2OXC29*X C5 +X C3 *% 06972 ofl IFAKADSO#WSO*( OXC2I*XC294X03)*% 03977260) 

StAXYDSO*WSO* COXCS )*X€5) 4% (6 *K 06) 172 00 DtAXXDYD*WSO* CCX CAI ¥*X (5) 4X(3 

4V*¥ C6) 172 oD DAAXKYD RW COX C3 #2 OS I-H%(C2)*X (6922 1 FAXXD YEW COOK C2) #2 

562-%(3)*K(5))72-11) 

FIC2I=CAXKX-MS¥WSQ)#XC204AX YEA CS) -AXADEWHA CB I-AKYD* WHER COD FAKXKSO* (2 © 

VEX CLI *XC2d0 FAXYSO#2 @ 1X04 VEX CS IFAXKY* OX C2 DX C4 4% C1 DEX CS) P-AKAXD AW 

Q*RX CLIX CB I-AXXDYFWHEX CS) AK C4 -AKYYDAWHX C4) *% C6) -AXKYD WH CL XK CO) 

FIC3)=CAXK=MSAWSOD*X CBI 4AKY*K (6) FAXKD #W HR C2 4AKYDEWEXCS) tAXKXSO*2 o ® 

VXCLI*XC3IFAKYSO #2 oD *KC4AI*K C6 DFA Y* CK C3 IX CAD FRCL IAA CBO) FAXKAD RW 

Q2OLI*KCAIFAKKYD WH CL IER CSI FAXXDY*WHK (20 *% 04) AKT YD EWE C4) FX CS) - MWD 

PIC4=4AY XK C1 FAY Y*X C4) FA YXSO* OKC) EXCL IFC OK C22 ¥X C20 42% 0(32 47037) 72 © 

LIIFAYYSO* CX C4) *K C404 0OCX OS FY O59) 4K CHI EXCH) I72 DI IFAYKY* CXC] DHA C4D +6 

2OKC2#KCS +X CBI*X CH) 72 of) 1 FA YADSO#WSO* COX C2 *% C2 4K 637 ¥2 03972 oD 

BtAYYDSO*WSO* CCK CS I*KCSI +X (6 #06) 972 DFA YADYDAWSO4 ( CXC2IEKCS I+ KCS 

4V¥X (C6) 72 0 FAY XYD HW COCK C3 DEK CS = X02) 4K 6) 72 1D FAYAD YEW CCH C2 DAC 

56 -xX€3)*xXC5))72 fd 

FICS)=CAYY-MS#WSO)#% 05) +A YX4X C2) -AY XD WX (BI -AYYDAWHX C6) FAYXSO* (2 © 

L#X CLI *XC2 VI FAYYSO#O 1 *XC4I#K CSI FAY AY* CK C2 #K C4) +X C1 ¥*K CS) V-AYAD *W 

QaXC1I*X CB I-AYXDYAWHX CBI¥*X C4I-“AYVYYDEWEAKC4) EXCH I-AY KYO *WEX CL FR CEI M 

SW2 

FIC6=AYX*X C32 + CAYY-MS#WSQ)¥% C6) FAY AD AW EX C2 FAY YDAWEK CS) FAY XSO%2 2 * 

1XC1LI*XC3IFAYYSO¥S 00 ¥*XK C4) *K CED FAYXY*CKC3BI*AC4 EXCL VK CO) FAY AXD HWHK 

2CL IK CA IFAYXYDEWEK CL EK CS FAY XD YRWHK C2) *X C4 FAV YYDRWHX C4) X05) 

RETURN 

END 
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A5.1) Introduction. 

It is required to solve the system of equations 

£() = Q 
using a method which is defined by 

ea A 
x} =X Ue, (v.21) 

where A; is an auxiliary function. 

A5.1.1) New Method. 

In this method the auxiliary function is defined 

by 

At = fa 

4, = An +f, 

Each auxiliary function is dependent upon the 

previous auxiliary function, This meant that cross coupling 

is introduced and therefore the elements of the vector x 

become linearly dependent. Therefore, convergence to a 

solution is forced. 

A5.1.2) Simplest Auxiliary Function. 

The auxiliary function defined in 5.1.1. is not 

the simplest combination possible. The simplest combination 

is 

aa P= £2) 

Ap = fp 

Each auxiliary function is independent so on 

iteration A, is a function off,alone, and so on. Therefore
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A5.1.2) contd. 

using equation V.1 to define an iteration method means 

that each variable can converge separately to its own 

limit and therefore not converge to a solution point,
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