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SUMMARY,

Nonlinear differential equations can be solved by a
variety of methods. One such technique is to transform the
differential equations into a set of algebraic equations.

The thesis describes the methods available at present
for solving large systems of algebraic equations. The methods

wt % be u'ti.n-d.j satis{ae
described are found to be defieient and therefore a new tech-
nique for solving algebraic equations is presented. The tech-
nique is specifically developed for solving large systems of
equations whilst simplifying the computation and minimizing the
storage requirements.

Next, a study has been made to provide a suitable
standard of comparisons between the various methods.

Finally, an industrial problem is solved using the
new technique., Comparisons show that the above technique

provides an adequate solution at reduced computational effort.
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1%2)

Qutline of Problem,

The study of nonlinear systems has been increasing
in importance as engineers design equipment to perform at
greater efficiency than had been hitherto possible. New and
expensive materials as well as a greater understanding of the
physical system are contributory factors in this direction.

The physical characteristics of a number of nonlinear systems
have been examined and recorded by the ingenious instrumentation
techniques of engineers, This, in turn, has lead mathematicians
to suggest techniques to solve a number of problems related to
nonlinear systems. However, in many instances, the methods
developed cannot be readily applied to the general class of
nonlinear problems.,

In view of this gap that exists between theoretical
analysts and engineers, it is felt that this present thesis
could serve a useful function by co-ordinating an aspect of
the range of mathematical methods available with the basic re-
quirement of simple applicability to a class of nonlinear
problems.

The class of nonlinear problems examined is taken from
the field of nonlinear vibrations and, in particular, the
harmonic responses resulting from such a system. Predominantly
harmonic responses are most often required from even highly
nonlinear problems. All the methods examined were considered
with the view of its ease of application and suitability on a
digital computer. This would certainly fulfill some, if not all,

of the requirements demanded by practising engineers,

Method of Approcach.

There is a large variety of methods that exist in the
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field of optimization and root-finding for a system of algebraic
equations, Thus it is felt that iﬁ_would certainly be desirable
to exploit these techniques foy the solution of the set of
differential equations which describe a nonlinear system. Thus
The method of approach to solve a nonlinear vibration problem
falls into two phases. The first phase is to transform the

set of nonlinear differential equations into a corresponding
algebraic equivalent and the next phase is to solve the resulting
algebraic system by a variety of root finding methods.

In addition the thesis suggests a standard by which
comparisons may be made between the various methods in spite of
their different requirements. The suggestion of a standard
available for comparative purposes is considered desirable and

could very well provoke other standards to be offered.

1.3) Structure of Thesis,

Chapter 1 outlines a basic problem in the field of
nonlinear vibration problems and gives a macro view of the
method of approach to obtain a harmonic response resulting from
a nonlinear vibration problem. The structural content of the
thesis is also presented.

Chapter 2 gives a survey of the class of methods used
in nonlinear vibration problems. A detaileddescription of a
number of existing root finding methods are presented and dis-
cussed.

Chapter 3 specifies the class of vibration problems
examined and the particular approach adopted by the author.

Chapter L presents a new method of root finding. The
method is described in detail and applied to a number of test

examples.
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Chapter 5 makes a comparative study of the relative
merits and demerits of the root finding methods. Test examples
are used to indicate how the various methods performed in the
light of the suggested standard for comparative evaluations.

Chapter 6 is concerned essentially with the phase
of transforming the nonlinear differential equations into its
algebraic equivalent. The Ritz-Averaging method, the Harmonic
Balancing method and the Energy Balancing method were used to
transform a nonlinear rotor dynamic problem into its algebraic
equivalent,

Chapter 7 is concerned with solving an industrial
problem and the performance of the method presented.

Chapter 8 discusses the type of stability that

exist in nonlinear systems. Reference is made to the particular

problem congidered.

Chapter 9 suggests future developments for the
method presented and also recent developments in the field.
Finally future developments on the solution of nonlinear

differential equations are commented on.
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2.1) Introduction.

Many physical systems can often bs represented by
sets of simultaneous differential equations. These diffler-
ential equations can be divided into those that are linear
and those that are nonlinear. When the equations are linear
analytic solutions are of'ten possible while nonlinear systems
are invariably solved by non-analytic or numerical methods.

In the linear case the solution for the system is an exact

and general solution. However, the solution for a nonlinear
system is not a general solution but only a particular solution
in a specific range of values.

If the nonlinearities in the differential equation
are small and the equations are of a special type, analytic
methods may be used to yield sufficiently accurate results.
Of'ten assumptions can be made which lead to simplification and
pseudo-linearization of these equations. In such cases, classical
methods may be applied to obtain a solution. While the simplified
equations do not describe the problem exactly they do, however,
rep?esent the salient features of the physical system. The
stﬁdy of these modified equations will give information which
can be used to give starting values for a more comprehensive
study of the nonlinear eguations.

If the nonlinearities are large then solution may
only be possible by non-analytic methods. These methods of
solution vary considerably in their approach to the problem
and they can be separated into two distinct categories.
Continuous methods of solution fall into £;§s first category
whilst discrete methods of solution form this second category.
Analogue computer simulations and phase-plane methods are

examples of the first type of method giving solutions in the

complete field of operation. The phase-plane methods are
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contd.
essentially graphical in their implementation and are
suitable for system consisting of one or two parameters.
For large systems the construction of the graphs becomes
cumbersome and the interpretation of the graphs becomes
difficult. The philosophy of analogue computer methods of
solution is one of continuous integration. Computing elements
in analogue machines are inherently only accurate to within
certain limits. Care has to be taken to ensure that these
elements operate within certain specifiied values to avoid
inaccuracies that will creep in a&i?%e low and high end of
the voltage range. In addition, as the steady state solution
is the required solution, the analogue computer has to be run
until the transient solution has disappeared. This may cause
drift errors. However with proper time scaling these drif't
difficulties can be minimized. Analogue computers themselves
may be simulated on digital computers using programming
languages such as Slangci) or Kaldas‘®), These languages and
others like them do not suffer from limitati ons of equipment
or drif't errors. The simulation of the integration process of
such methods do, however, pose a problem. The integration
process on a digital machine has to be performed in a discrete
manner and in certain cases instability can ari se due to the
integration process rather than the instability of the system,
However, this problem is not exclusive to languages such
as Slang and Kaldas but an inherent problem in all digital
simulations,

Nonlinear differential equations can be reduced
to a set of algebraic equations by using the Ritz-Balancing

method, Harmonic Balancing and others. The set of algebraic

equations can then be solved by a variety of methods but most
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of these methods will only generate particular solutions.
Solution to these algebraic equations can be

found by finding the maximum or minimum of the objective

function subject to the constraint that all the functions

are zero at the solution. General methods of_optimization

weceop

which find these maxima or minima do not ususddy locate the

roots of these algebraic equations. In this condkext they are

considered to be less efficient than the methods now presented.

A Taylor series expansion for a simple function

of a single variable takes the fom

Flaah) = £(2) »+ b 2H5) +l§ 2h(x) by o %

and ignoring terms of second and higher order gives

f(x+h) = £(x) + h £'(x) (2.1)
Now at the solution xt* say, f(xk+i) is zero
so that if 2 = x+h, then using equation (2.1) with

ko
X =X gives

ot o £ (2.2)
£1(x)

which is Newton's one dimensional method for solving an

algebraic equation. The derivative in equation (2.2),

f'(xk), can be expressed analytically or can be evaluated

using function approximations given by equation (2.1). This

means that equation (2.2)can now be written as
-
U P N ). Kk
= h J £(x)

X = X

(2.3)

k
where h = xk+1 - X . It is possible to choose h differently

k=
than above, for ifh = x - xk then
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Con’td-
k kT
K41 k P>(x*) - £(x k
gMtdis ot o ik""‘ 3 " (=) £(x) (2.4)

which is the secant method. The n-dimensional generalizations
to these one dimensional methods and the modifications of

the se generalizations are now to be considered.

Newton's methodl®) .

Suppose a set of n functions in n unknowns takes

the form
fi.(x:l.)xﬂj . . . J‘xij . s e sxn) =0
Balxa %, » o o b :xn) =0
£, (%a%as + o v 2%y o o0 %) =0
fn(xﬂ.jxﬂj " s @ ,Xi, . o @ ,Xn) =0

If the first function is expanded using a Taylor
series expansion about the point (x4,Xa, ...,xn) the following
equation is obtained

af
f1 (x4 +hy ;X3 +h3 e s .xi+hi, Ve .}:n+hn) = £3(%4,%3 500 Xjen 'xn)+h"3_xf

ha'@&"‘ oo--ﬁ-."’é"i:'a"l‘...'l"h.;ﬂ'g:'t:a

0Xg i Ox. ax
i n

if terms of the second and higher order are ignored. Similarly

if we expand fg,.e.f:

i see fn the following system is generated

i af
fa(xa+hyiyeee X, +h, o0 .xn+hn) =f4 (X1 "X .xn) +h,_—‘-?&-i~+ 4 I 9 coh Sk

:l.axi n axn

T, (Xa+hyyeeeX. +h, eeeX +h )=F. (X14¢eX; eeX )+hy afi+..h.afi+..h oty

< o il i s By} e = 7 —

d%Xq ax. ax

i n

13 af af af
fn(xi'l'hj_,t-xi+hiaoxn+hn)—fn(xioaxic oxn)+h1 p PR .hl axn +¢-hn

Lq
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or in vector form

[£4] [£4] ofy |, 9%y oty hs
fa fg axi axi axll’.'l ha
fi fi axXq axi axn hi
L -e L]
L e e i R
L n | | X4 ax. gx L n|

4(x+h) L Fx

The (n x n) matrix is the Jacobian matrix, J,

so that the above can be rewritten

£z +h) =£& +Ib (2.5)

where f is the vector of functions f1,fa es. fn’*5 is the
vector of variables Xj,X3 eee X and h is the vector of

differences hy,hg ..e hn'
= e : ; : k41
Again if the solution is at the point ¥ ~, say,

1
S0 that,£(§k+1) is zero and,gk* = X + b then using equation

(2.5) with ¥ = ¥ then

ez -0 ) (2.6)
which is Newton's n-dimensional method. Newton's method as
expressed in equation (2.6) suffers from serious disadvantages
from the point of view of practical calculation. Major problem
centre round the calculation of the Jacobian matrix and its
inverse. Lohr and Rall(4) suggested that the Jacobian should
be evaluated only once every few iterations instead of an
evaluation at every iterative step as is strictly required. This
variant, however, requires the complete evaluation of the Jacobian
matrix. quyden‘s) describes a class of methods in which the
partial derivatives are not estimated or evaluated directly,
but corrections to an approximate inverse of the Jacobian matrix

are computed from values of the vector function f.
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2.3) Broyden's Method.

Broyden makes a simple modif'ication to Newton's
method so that there is a greater circle of convergence,
For each increment in Newton's method it is necessary to
calculate the Jacobian matrix and obtain its inverse. To
avoid a full matrix inversion Broyden suggests that it was
more comnvenient to estimate an estimate for the inverse
Jacobian, J°*, and shows he can obtain it relatively simply.

If a vector p is defined such that

p=-E*% (2.7)
where £ is the vector of functions and B is an estim te for

the Jacobian J, then Newton's method can be rewritten as

PR A ! (2.8)

Convergence will only occur if we are close enough to the

solution so a simple modif'ication to equation (2.8) will

give ~1+i Ty
P =z ++ p where
£t~ is a scalar chosen to prevent the process diverging. Let

us now define the variable x as

E=F +tp
where ,gi, ﬁ,c’:i will have particular values and t is a variable
quantity. The vector f will now be functions of the variable
t and Broyden shows that it is possible to use the functions

to obtain an estimate of the Jacobian, The Jacobian matrix

contains terms which take the form afj but the f's are now
0%
k

functions of the single variable t so that only derivatives

of the form dfj are available. Using the chain rulel &)
dat
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n
Boymm e
d

we now have the following relationship

E - _J pl (2‘ 9)
dt ™~

It is now required to obtain an approximation to
J at the point ,31“‘, so if each fj is expanded as a Taylor

series about the point £

i i az (¢
fj(t -8) o fj(t ) = s ——(‘170——- + 0(s?)
andl phuse £i+:l. :i('giﬁl-i) - f(_g_ci + ti Pl) :f(ti)

and the vector f are functions of t alone, then

; : ag
£(t'=s) =™ -5 3= (2.10)

From equations (2.9) and (2.10) we obtain

Py ottt Lo g b (2.11)

L)

At the ith iterate Broyden uses the notation jéi as
the approximate Jacobian J. To improve on the approximation
Broyden uses equation (2.11) and suggests that a better
approximation to the Jacobian J is now gi”*. This results in

the folloving equation

i+1 <l

ge'es) =g - st B

it 1 (2.12)

Ca)

() . n :
where 8~ is a particular value of s chosen at each iteration

to minimize the error of the estimate of E « Broyden stated
dt

that his philosophy was to find an estimate to the inverse

Jacobian “J_:'i and not an estimate to the Jacobian., If we now
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define an estimate to the inverse Jacobian H, say, as

o=y’
and we also define a vector,,xi, such that
xi ='£i+1 “-f(ti " si)
then using equation (2.12) we obtain the following relationship

O e |
B p

Y o= (2.13)

s

Using equations (2.7) and (2.13) we can now obtain the

relationships

: . i3
and o ye—n g
which defines a class of methods, based upon Newton's method
for solving nonlinear algebraic equations.

Broyden now describes a particular class of methods

which results when different assumptions are made on

Ei+1 or.§i+1, ti and si. He makes comparisons between these
various methods using standard test examples and concludes

that one particular method is superior to the other variations.
He calls this particular method the full step reducing
variation. In this ti is chosen to reduce the norm. If the
first value of ti chosen results in the norm being reduced
then it is the only possible value for si if' there are going
to be no further function evaluations. If the first ti is not

chosen then a choice for s  is possible but experience shows

that s* = t= is the best choice for a reducing step method.

When s* = t the increment is called a "full-step". It remains

to place restrictions on_§1+1 so that it can be defined uniquely

in equation (2.13). As no information is available about the
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change in f when x is changed in a direction different from

that of vector pl, ,Elﬂ is chosen so that the change in f

predicted by glﬂ in the direction ,g_l which is orthogonal

to pl, is the same as that which would be predicted by ,@1.

That is to say

.«Bi+1 q-:I.. . El ql

- ~

s T 3
where (ql) pl =0

~ ~

together with equation (2.12) defines B * uniquely as

- - " - 2 T
& -8 B p)(p)
Si ( i)T pi

~

Bl‘l'i il
~

=B +

It is now possible to use Householder's formulal?
to express ﬁl+i, the inverse of ;@lﬂ', in the same terms as
above giving

¥ % o . I
b S A I 73
. o B+ H ) B (2.14)
Hl"‘i:Hl_ ~ ~ A ~ ~

Equation (2.14) now defines the full step reducing

method which can be expressed in the following algorithm:-

1., Obtain an initial estimate x° to the solution.
2, Obtain an initial value H°, the iteration matrix,

3. Compute 5‘1 = £( )

4, Computer pi =B
5« Select a value t* such that the norm of

P(x +t p~) is less than the norm of £(x7).

£(x**) will be calculated during this step.
P T ng

6. Test if ,5“1 is a solution point. Yes, go to step 10.

i+ . fi

~

7+ Computer zl =1
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2.3) contd. o L b ey
g+t p))E

L)

8. Compute o A ol

- R S
() E ¥
9. Return to step 4.

10. Stop. Solution has been found.

2.4) Wolfe's n-dimensional secant method.

The one dimensional secant method derived previously

1s -1
k=1 k
£(x 7)) - f£(x )

xk+1 = xk - { xkri_ xk f(xk)

In 1959, Wolfecs), developed a secant method based
on the property of a straight line. If we consider the one

dimensional method as shown in Fig.l.

= e adl .4

Figs 1

then the next estimate to x is obtained by drawing the secant
through f(xs) am f(xa) and evaluating the point at which this
line crosses the x-axis, The general form of this line is

¥y =mx + ¢ where m is the gradient and ¢ is a constant. Using
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the above equation with the two starting values x; and x3

it can be easily shown that

» f(xg f(xq4)
x"‘(—)(‘)'(—fm—fxi)x* T flxa) - f(x) @

or X = TT4X4 + TigXg

B f(xa I ~f (%)
Where. | 1= f{xng-fgxz) amd M = Fa) - flxL)

In addition we can also derive, the following relationships

e + 73 = 1

and maf(xs) + mf(xs) = 0

Wolfe now generalizes these relationships to obtain
his n-dimensional secant method. This means he defines a

vector g such that

n+4

Z 7y =1 (2.15)

J=1

N+1

and Z Trj i(xa) =0

J=1

which will lead to a new set of trial solutions given by

. . :
where some x’ is to be replaced by x for which Il 22| is

maximal according to

s’ Z £, GHIP for =0 e n

i=1
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2.4) contd.
Computati onally Wolfe expressed this in a simple
scheme of four steps. The first sftep is to form the

(n+1) by (n+l) matrix A given by

1

3 e e

fnc;;'i)

j = l’ e (n+1)

noting the column with the largest norm. Solve for ,gf'i and

use the fact

it

Ag= (1,0, oo 0)T  from (2.15)

calculate g =& (1,0 eee 0)"

"

It is now possible to calculate a new point

1+

[T

SO j
x = 2_/ n'j x° as the seconl step and test if the rorm is

J:

ey

less than the tolerance. The third step is to form a column
vector p, of the form ‘éj’ to be inserted in A in place of
the column with the largest norm. It is possible to calculate

*.
the new inverse, A ~*, required by using the relationships

#
A-i 0 = A‘-‘i : Jj 4= see
( )pJ Cypie a, J =, esefnil)

*
Wit = ") o i £
(9,5~ W), 0, iAs

]

W2y,
g 10— L s (n+1)

where g = 4 © p. If we now note the column with the largest

o

&*
norm in A we can return to calculate a new g and continue

the iteration.

The three methods that had just been presented are



16.

2.4) contd.
all simple applications of a Tylor series expansion. They
all approach the solution by considering a vectorial in-
crement of the dependent variables, A method in which each

variable is considered separately is going to be considered.

2.5) Brown and Conte's Method.

Brown and Conte‘®) suggest a method which considers
each variable and generatés-each increment to that variable
separately. They calculate expressions for increments using
Taylor series expansions. When expressions for each increment
become available, the method uses the Gauss—Seid%l technique
to solve for the independent variables. The value of a norm

144

at this new point, ¥ =, can now be calculated and tested for

convergence, The method is described by the following algorithm:-
Step 1.

Expand f1(X), where x is the solution point, using
a Taylor series expansion asbout the point‘ép retaining only

first order terms and thus obtaining the linear approximation

RENCINAC P ffffﬁfz hy ora (x) B e o:(5") hNn (2.16)

e J%g aFN

As x is the solution point and the nearest approxi-
mation is % then
o %
X=X +4
which means that (2.16) can be rewritten as

of1(x") o #a(x?) " ofs (") e,
5 (%a=%e (%033 ) +0 o et——(x%)) (2.1

e oy

Equate the right hani side of (2.17) to zero and

£1(x0~ £2(x)) +

solve for that variable (xN say) whose corresponding partial

derivative is largest in absolute value. Thus
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N=1 afi ('@ ) f:r_, (an)

n ax. n
WA ), e O e O
J=1 W et
2y

ofs/ox . 1

m‘]— 3y 0 =1,ee,N-1 and af,jaxm are

saved for future use. The left hand side of (2.18) is now re-

The constant terms

named as by a function of (X1,%Xa ee. XN;z) giving

N—z % b
Blmsesty J = <) Fiaim o Ca Sas)

o ey O 0 an( ) ey

and also

xN = bN(X:L:xG vee xN—l)

Step 2.
If this expression for Xy is substituted into the

second equation fa a new function gz say, of (N-1) variables

JC&., ...JCN-i is definEd as

B3 = fZ(xﬂ. “ee XN."'.‘.L" bN)

If the procedure described in the first steNp is now
followed and gg is éxpanded, using a Taylor series, this time
about the point (Xi" eees xﬁ;i) then solving for the variable,
-, 58, whose corresponding partial derivative is largest in

magnitude we obtain the expression

N—2
8a

R dga/ox. n
Nes = Fey "Z ﬁ—La: T S 9ga/ 0%y

J=1
Again if we rewrite the left hand side this time as

b » & function of N-2 variables, we have

N~z
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N—2
_ B dga/ ox . e .
b (X1 ees xN_Q) =Xy - Z — axNJ_itxj jn) Ej%ﬁi (2.20)

ena s = bNF1(x1 2 xN;a)'

oga/ax,
Again the ratios formed, A axN S Al
=y

and —%—— are saved for future use.
%a/ By,

Step 3.

The expression for Xyos is now substituted into f

to give a definition to gs, at function of XageeeXy o 85

ga = fa(xi,xa sse xN-——g’ bN—i’bN)

where by, by are defined by (2.20), (2.19). This process
is repeated until the Nth step is reached. At this stage there
is
gy = fN(xi,ba,ba... bN)
where the bi's are obtained by back substitution in the (N-1)

triangularized linear system which takes the form

N=i
by o= x e )} 3gi/6x. (x.—x.n) - -
i - iy ) ) | ag /
81/ XN 341 i S

(2.21)

j=1

Now expanding, linearizing and solving for x; yields

&y

e m c e

We use the point x4 thus obtd ned as the improved

UL £o the first component of the root xi and

approximation xg
call it bi. Back-solve the bi system (2.12) to obtain approxi- -

mations to the other components. We note that the most recent

information available is used immediately in the construction of
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L) Having

the next component, as in the Gauss-Seid:l process
calculated a new point we can test for convergence or if
further iterations are required returm to Step 1.

Brown has shown that under the hypothesis for Newton's
method this process is well defined and it is considered that
this method offers a suitable alternative to the other methods
which have been presented.

A summary of the general methods of solution for

nonlinear differential equations is given in Fig.Z2.
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The differential equations which describe a vibration problem
will in general contain inertia, damping, restoring forces and
excitation terms. When the stiffness and damping terms are
linear the equations of motion can be solved by the classical
analytic methods. However, if the stiffness and/or damping
terms are nonlinear then the resulting nonlinear equations of
motion can, in general, only be solved by approximate methods.
In a few special cases, however, these can be solved by con-
ventional analytic techniques. The general type of nonlinear
differential equation expressing these problems can be expressed

in general mathematical terms as

sk 3) =8

where F, x, x, x are all vectors.

Typical methods for solving equations of this type is
to use the Ritz-Averaging method or Hammonic Balancing method to
generate a set of corresponding algebraic equations which take
the form

&) =2

The number of independent variables in the algebraic
equations is dependent upon the order of accuracy required in
the solution. To obtain a solution to these algebraic equations
one can apply a number of root finding techniques some of which
have been described in the previous chapter. Consideration from
the general engineering viewpoint to these methods of solution
is such tlmt a considerable effort has to be put into the under-
standing and application of these algebraic methods which is not
necessarily Jjustified from the practical standpoint. These

criticisms are relevant to the methods previously described.

Newton's method is regarded as the traditional method
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of solution for these algebraic equations. The method cannot

guarantee convergence to a solution and if a solution is successfully
found progress towards the solution could be erratic. The computational
effort required by the method is prohibitive as every step in the
iteration process requires the evaluation of a Jacobian and its in-
version, both of which are very costly numerical processes. Generally,
although Newton's method suffers from these drawbacks, it is still

used because of the simplicity of application.

Broyden made several modifications to Newton's method
to ensure convergence and at the same time reduce the computational
effort. A Jacobian is uneconomic to evaluate at every step of the
iteration so Broyden, after having obtained an initial estimate to
the inverse of the Jacobian, improves his previous estimate to the
inverse of the Jacobian rather than calculate a new one, It s
important to note that while Broyden avoided evaluating a new inverse
Jacobian his method still requires a significant computational effort
in making his estimate to the inverse of the Jacobian. Nevertheless,
this still represents a reduction in the computational effort with
respect to a full inversion. Noting that Newton's method cannot
guarantee convergence and its path towards finding a solution can be
unpredictable, Broyden decided that his method must converge to a
solution in a more uniform manner, This is achieved by calculating
a norm value at every i::::::.tion, this norm having to satisfy the
condition that it has been reduced after every step of the iteration.

Wolfe's method of solution is similar to Broyden's
being the development of the secant method where Broyden is the
development of Newton's method. Wolfe, in his method, does not
calculate the inverse of the Jacobian, but merely updates the inverse
Jacobian from its previous value. Wolfe's method has an inherent
norm reduction facility since it is based on simple interpolation

techniques. Although Wolfe's method has desirable characteristics it
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cannot be considered as good as Broyden's method. In the first
place Wolfe's method requires a number of starting values rather
than one starting value as with the other methods., Secondly its
rate of convergence is slow compared to Broyden's method because
the secant method on which Wolfe is based has a significantly
slower rate of convergence than Newton's method on which Broyden
is based.

Brown's method is another variant of Newton's
method but this particular method does not require the evaluation
of a Jacobian matrix. In view of the fact that Brown's method
does not require the use of a Jacobian matrix a considerable amount
of storage space has been saved. However, Brown's method, requires
the construction of intermediate or axuiliary functions. The
construction of these functions is complicated, involving the
removal and substitution of a variable in every stage o the
iteration process. It does not seem possible to program Brown's
algorithm conveniently in .a high-level scientific language like
Fortran IV though it may be a feasible proposition in PL1., However
PL1 language is not readily available and is confined to only a
small family of computers. This, of course, is not an attractive
alternative to an engineer. When all the intermediate functions
have been constructed a Gauss-Seidgl iteration is used to solve for
the variables. Back substitution is used in the Gauss process so
half the storage saved in having no Jacobian will be used for the
back substitution. Convergence to a solution is not guaranteed
but care is taken in the construction of the intermediate function
to reduce the erratic tendancies of Newton's method.

In this thesis an alternative method of solution
for these nonlinear simultaneous algebraic equations is presented.

The method of solution is a modification of Newton's method and the

desirable characteristics of the methods already discussed so far
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have been incorporated into the structure of the method. As in
Brown's method the method presented does not require the evaluation
of the Jacobian matrix, This type of approach means there is a
significant reduction in the storage requirements and that there
are no lengthy calculations centred around the construction and
inversion of a Jacobian matrix,., Linear interpolation is used to
improve the iterated values at every stage of the iterative process
thus inducing a steady convergence towards the solution. These
improved values are used at the time they are calculated unlike
Newton's method which does not use improved values until all the
variables have an improved value. Again this contributes to im-
proving the convergence to the solution. Norm reduction, as in
Wolfe and Broyden's methods at the end of every iterative step is
considered to be desirable as it ensures a predictable convergence
to the required solution.

Every individual section of the algorithm presented
was developed séparately, thus enabling comparisons as to the
effectiveness of cach modification to be undertaken. Following
this comparisons were made between the method presented and the other
four methods. Four specific test examples were used, all of which
had been designed to test the characteristics and convergence factors
of the method. These results were used to show the general
characteristic of the method presented. An industrial problem w as
then solved using the Ritz method to generate the algebraic equations
and then solving these equations by the method presented. This
application enables a comprehensive appreciation of the technique

to be undertaken.
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4.1) Introduction,

The methods already described for solving nonlinear
simultaneous algebraic equations can, in theory, be used for
very large systems. These Quasi-Newton methods attempt to
increase their circle of convergence by modifications to
Newton's method. In these methods every itration generates
an update for the vector x using the elements of the inverse
Jacobian or a suitable estimate to the inverse Jacobian. This
matrix which is used only once per iterative step causes con-
siderable problems in the large amount of storage it requires.

The object of this chapter is to develop a method
which is reliable and which possesses a rate of convergence
equal to that of existing methods whilst attempting to minimize

on storage requirements for a large system.

4o2) Description of the m thod.

It is required to solve the system of equations
£(%) = 0. The method makes use of auxiliary functions which

take the form

Ai = Ai—.‘l. + fi firg =L R ) (4.1)

¢
where Ag = 0 and where ﬁi is an auxiliary function, n is the
number of variables and Ai—i is the most recent value of the

*
previous auxiliary function,Aini. If we expand (L4.1) then:-

*

A1 . fd,
#

Ay = Ay + fg
*

As = Az + fg

*

A An_1+fn

At the solution £(x) = 0, A(x) will also be zero.

Thus we can solve the equations
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Ax) = 0
instead of £(x) = Q. The following algorithm describes the
me thod e

Step 1.
%
Expand As(x) using a Taylor series expansion about

the point,z;n to obtain a unidirectional expansion in x. If
we retain only first order terms then

ailz)

* *
A (%) ~ As(x) + s

n n .
where X = X + l so we can rewirte the above as

ahs (%)

6x1

Ay (x) ~ A (g™) + (xa=xa") (42)

Equating the rignt hand side of (4.2) to zero and solving

for the variable x; gives

o,
n —Mlx)
X4 = X3 - ﬁ&:_(}gn)/a}tl
This gives an improved value for xi which gives

+i,xan s xnn). This vector is used to calculate

a vector (xi"
a new value for As. If there is no change in the sign of the
auxiliary function after the iterative step or the auxiliary
function has been successfully reduced to zero then it is

possible to proceed to the next step. On the other hand if

there has been a change in sign so that

sign[Ai(nnﬂ,xan)] # sigan:(X;n,xan 5 Jrnn)]

then linear interpolation is performed such that
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n+1 n oy (n+a) -
|As (2™ )20 enex ) [ (%2 - x1)
x1(n+i) o 31(n+1) P 2 n old

new old

n+4

P Coa P A I THEANRE ]|

and this new value for x; is used to replace x;n. The use of
nu-s’q.k
linear interpolation is an attempt to prevent the selutien

peind of the variable Xi oversheeding. At the end of the first

step two values will be available:-

(i) & new value x, ' *

(ii) a new value As(xs @ *,Xa" eee xin s xnn)

Step 2.

It is now required to construct the auxiliary

&
function Ag. This will take the form

Dy

n+a ,xan...xnn)+fa(xf+i,xan...xnn)

* n n n+d
Aﬂ(xd. JJCR .len )= A:L(Xd.. i ,}CQ
*
It is now possible to expand Ap(x) using a Taylor
series about the point (xanfi,xan...xnn) to obtain a uni-

directional expansion in X3, Retaining first order terms only

=
dAg (xﬂ.n+i ’xﬂn- - .xnn)

#* *
AB(J\S) ~ -Ba(xd.n-'-igxﬂntuoxnn) + axa e han

n n .
where X = X + 1 s0 we can rewrite the above as

%
aAﬂ (xd.n-'-d. ,Xan. . .xnn)
dxg

8 ~ da(x™m . ") (xa=%")  (4.3)

Equating the right hand side of (4.3) to zero and solving for

the variable xg gives
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¥, D4g

Ag (%1
aha/ g

" n)
y X2 n

This gives an improved value for xp giving a

vector (xin*i,xan+i,... xné). This vector is used to calculate

a new value for Az, Again linear interpolation is used if there
is a change in the sign of the auxiliary function. At the end

of this step a vector of the form (x1n+i,xnn+i ...xnn) is avail-

able and a value for Az using this vector., This procedure is
followed until we reach the nth step. On entry to the nth step

n n n+ e . A
a vector (x +1,xa e xr“:, X, ) will be available together

with a value of An > ugsing this vector.

n step.

*
Again we require the auxiliary function An to be

evaluated, This takes the form

*,_ nés  n+s N e il R e
An(xa ot ¥ )=Anr1(x1 ""xh-z’xn)+fn(xi e N )

*
It is now possible to expand AnLg) using a Taylor

. . : n+ n+a n . g
series about the point (xg gh PO 2%, ) to cbtain a uni-
n—

directional expangion in X e Retaining first order terms

*. N4 milon
* s N4 n+q n 3An)3‘:|. ek o2 ,xn ) h n
An(lc) ~ An(xd_ ...Xn_i,;g;n ) < ax:n Ti=d,

n n I :
where hn =X, = xn « This means the above can be rewritten as

x n+1 Nty n
* n+4 a-A- (xi sseX = ,x ) - n
An(E)-v A;(x1n+i"‘xh,1’xnn) Tt - n-1’"n (xn X ) (Led)

n

Equating the right hand side of (L4.4) to zero and
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solving for the variable X, gives

¥, D+ Bt s
An(x.‘l. sen xn—:_’xﬂ )

g

n

This gives an improved value for x, giving a

n n+ " 4
vector (X Ll . X, ") or ,gnﬂ. This vector is used to

calculate a2 new value for An and linear interpolation is used
5 ; . ; * n+4
if there has been a change in sign with An' A vector x
is now available.

The method now requires that the value of a norm,

3®, at the new point x '~ is less than the value of the same

norm at the starting point‘gn i.e.

I D1 < 1l £&H]

If this condition has been satisfied then it is
possible to return to the first step immediately but if it is
not the rorm is reduced by a simple reduction procedure. If
there has been an increase in the norm the assumption made is
that one or more of the variables has overshot their solution
points. This reduction process constructs a ratio of the two
norms, less than one, and every variable is moved to a position
inbetween its starting and finishing value in the ratio of the

norm so that

o begin
B o= X P e e n)
end end end begi

If the variables have overshot its solution then this interpolation
procedure will have the desired effect of reducing the norm,

In the majority of cases this is what has happened when the new

norm is greater than the old norm., If no variables have overshot
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its solution then the method appears to have found a point at
which it can reduce the norm no further. This type of point is
called a local solution. When such a position has been found the
reduction procedure used above is again invoked returning the
iteration process to the value at the start of that particular

iteration x « When this has been achieved a different pro-
begin

cedure is used which is described in one of the following sections.
When the norm has been successfully reduced it is possible to
test if 7% is the solution and if not return to start the

process over again,.

Developments and Modifications.

Tests on simple examples shows that general improve-
ments can be incorporated into the method with very little extra
calculation or modification. Several minor modifications are made

and each one is discussed separately together with an example,

4.3.1) Construction of the increment.

From the Taylor series expansion

Auxili ary Function ( L. 5 )
Derivative of the Auxiliary Function -

increment = -

It can be seen from this expression that if ffi becomes
small then the value of the increment will szime very
large. The increment could then be modified by a linear
interpolation procedure if there is a change in the sign

of the Auxiliary PFunction, If linear interpolation is used
the value of the increment will become very small returning

that particular variable to its value at the beginning of

the iteration. If interpolation is not used the increment
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is large and will overshadow the other increments directing
the course of the iteration which is totally undesirable. Hence,
at this stage, two types of increment have been tried. An in-
crement of' the form

increment = - Auxiliary Function

%

[Sign of derivative} {Absolute value(Ai)+Absolute value(?Ai)]
5 e

is now used. The value of this increment is approximately one

(if the derivative is zero then the increment is one) and this

is an intermediate value for the increment. This form of increment
is only used when there has been three successive increases in the
value of the increment given by (4.5). An example of the use of

this modification is shown in the following

Pq = %% ¢ %3%= 6

fa

2x1? + x® + 25
The derivative of the auxiliary function A; with respect to Xy
is zero at the point (0,-3) so if the process uses the starting

point (-2,-2) then with no modification the following results

are obtained.

X4 Xg incs incg fq ga NORM
=-2,00 | =2.00 - - 14,00 25.00 821.0
=142 248 0.58 ~0.48 TeX7 13.85 2343
=0.94 | =3.14 0.48 ~0.66 642 | - 4,10 58.0
-0.16 | =3.05 0.78 -0,08 333 | = 3.39 22.6
0a5 | -3.05 |° e.o2" 0.00 3.3 | =33 21.9
-0.15 | =3.05 | 15.10 0.00 3.31 | = 3.31 21.9

Fig: 3

*Here the auxiliary function A; changed sign so linear interpolation
was used, The actual ealculated value of the increment before inter-

polation was 15.00.
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can be made,

52

Ag the increment for x; is so large no further progress

process proceeds as follows:-

If the modification is now used the iteration

which now converges to the solution (1,-3).

Norm reduction,

solution straddles

X3 X inca incg 4 fa NORM
-2.00 |=2.00 - - 14,00 25400 821.0
=1.42 |=2.48 0.58 | -0.48 Tal] 13.85 24343
=094 | =31k 0.48 -0.66 642 4410 58.0
=0,16 |=3.09 0.78 0.04 3459 4..58 339
20,16 |<3.05 |- v.0i” | “v.on 3,32 3.33 22.1

0.78 |-3.04 0.9 0.01 1.76 5 6.2
1.00 |-3.00 0.22 0.04 0.01 0.02 5.0x10™ 4
Fig: 4

Norm reduction is used to overcome overshoot if the

the two calculated vectors. It becomes

particularly noticeable towards the latter stages of the iteration

process when the c alculated vector is relatively close to the

solution.

illustrated by a change in the sign of the increments, the

value of the increments changing sign is halved.

In an effort to overcome this oscillation, usually

If this

oscillation is persistent in the process then the number of

total iterations is reduced if this modification is employed.

If there is no oscillation and the increment is halved, the

iteration process will still tend towards the solution making

good the loss in the next iterative step.

illustrates the success of hal¥ing the increment.

The following example




4a3.2)

4e3.3)

33

contd.
Fi & 53X + %3 ¢ 2% = 3
fa ==3x; +5%3°%+ 2x4xg- 1
fa = 25x,xa+ 20xg + 12

Number of iterations
Stariing Foint Bef'ore Adjustment After Adjustment
-1, =1, 0 Ea 14
0, =1,-1 27 8
0, 0,-1 9 11
0y 0, O 9 10
Fig: 5

Local solution.

When a local solution has been found usually the value
of the increment is not large enough to find a point where the
norm at the new point is less than the norm at the local solution.,
It is possible to illustrate this situation by considering a diagram

of the norm as drawn below

NORM

LS

Fig: 6

If the iteration is in the region 0 » a then it is
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very probable that the process will converge to the point A
which has the smallest value of the norm in this range. However,
the correct solution is at the point B, The value of the increment
will be too small tc move the vector X corresponding to point A
away from point A, In this case the method, as stated, breaks
donw, The technique to overcome this problem is to make a search
for a value where the norm is smaller than its present value, At
pregent, the technique used to overcome this difficulty is to use
Newton's method for one iteration to move the point away from the
local solution. This has the effect of allowing the iteration
process to continue in the normal manner. Incorporating these
modifications into the basic method, the method present can be

expressed by the following algorithm,

Step 1 Obtain an initial estimate x° to the solution.

n
Step 2 Calculate g(_ggo) and the corresponding norm Z ,ﬁ(g;o)a
i=g
Step 3 Calculate increments for the variables using the
Auxiliary functions. At each stage use linear inter—
polation, if required, to combat overshoot.

Step 4 Compute £7* =,§(xi+i

Y 2
Step 5 Compute the new norm 21J,£(31+1) .

Step 6 Test if,51+1 is saLisfactory solution., Yes, go to Step 9.

Step 7 Test if norm is less than previous norm. Yes, go to Step 3.
Step 8 Use norm reduction to satisfy Step 7 and then go to Step 3.

Step 9 Stop. Solution has been found,
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In the next chapter comparisons are made between the

method presented and methods des

cribed earlier. In this section

a comparison is made between the basic method and the method in-

corporating the various modifications with reference to the rate

of convergence, Consider the example:=

fa = =3x%4 + 5x%
fa = 25xi%a+ 20xs

Starting point (0,-1,0)

-+ 2.)!32 - 3
- 2X4Xg = 1L

+ 12

Solution point (1.1, -0.8, 0.5)

Method presented with

No.of iterations

No.of function calls

No modif'ication
Interpolation of x values (1)
Norm reduction (2)

Norm reduction halving increment

(3)
Modifications (1) and (3)

together

FATL
31
3h
13

14

FAIL
279
238

o1

140

Fig: 7

It can be seen that the modificaticns to the method make

a considerable improvement in reducing the number of function

evaluations required.

A comparison of function evaluations.

It is considered that the evaluation of a derivative

is equivalent to a function evaluation.

In the worst possible

case there will be (n+l) number of applications of the interpolation

routines to overcome overshoot consisting of one interpolation for
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for each variable and one for the norm. This means the maximum
number of function evaluations for each iteration is (3n+l).
Theoretical considerations of other methods, see Appendix (1),

are shown below

NEWTON BROWN BROYDEN WOLFE NEW

N? p) (2Na+ N) (2N41)(N+1)
2N° +)m = o m
( ) (2 * 2N>“ i +(3N+ ) (3N+1)

N is the number of variables and m is the number of iterations.

4.6) Conclusions.

A new technique for finding a solution of a set of
nonlinear algebraic equations has been presented which offers
an attractive alternative to other available methods because
of the simplicity of the method. The use of auxiliary functions
reduces storage requirements. The construction of these
auxiliary functions is the simplest possible according to the

oloudd e
prerequisite of the method, that is, it is easy to use. Inter-
polation and norm reduction are used to overcome the problem
of overshoot and to improve convergence. This has the effect
of reducing the computational time,

At present the procedure for overcoming a local
solution is by means of a Newtonian step. Whilst this over—
comes the problem it may not be the best solution. Perhaps
further work can be developed to overcome the difficulty.
Search techniques could be used provided they do not involve
a large amount of computational time. In the final analysis

irregardless of what technique is used to overcome this
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Introduction,.

The selection of a method to solve a system of
algebraic equations is one of the most difficult problems.
The difficulty results from the diverse characteristics and
storage requirements of each method. To the best of the
author's knowledge there appears to be no adequate criteria
available to select the most suitable method. Suggestions
have been made with regard to computational efficiency based
on the total number of iterations required to achieve the
desired solution. This criterion is obviously inadequate as
it takes no account of the varying complexities of each
iterative step. An improved criterion was to consider the total
number of function evaluations to achieve the desired solutions.
This is certainly a more accurate estimate of the computational
efficiency of the method but it still takes no account of the
degree of computational complexity of each function. Yet
another basis for comparisons is to use run-time timings. This,
perhaps, is the most accurate of the three provided the computer
gsystem can offer an accurate logging of the execution time. The
main objective of this chapter is to present a more suitable
criteria to evaluate the relative overall qualities of the diverse
methods used. A weighted value has been suggested to account for

the storage requirements in addition to computational efficiency.

Standards adopted for Comparison.

A direct method of comparison between the methods is
not possible sinceeach method of solution requires a different
number of function evaluations, a different degree of complexity
for the construction of each incremental step and a different
storage requirement.

Run-time timings will encompass all these fac®ts but
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unfortunately this is unavailable on the University Computer.
The computer is an ICL 1905 machine and there are multi-
programming facilities which are used by the University. This
means that at any particular time up to four programs may be
being processed by the machine making the time required for one
particular program difficult to estimate accurately. There-
fore, it is not possible to undertake any direct time comparisons.
The concept that the number of iterations required
tormach a suitable solution in a method can form a basis for
evaluating the efficiency of the method, should be examined
more closely. In the simplest case of a one parameter system
the number of iterations is probably an adequate basis for com-
parisons between various methods. In a many parameter system
this will not be the case for the number of iterations will not
provide a fair comparisons as there will be many additional
calculations hidden in a step of the iteration process. A more
accurate basis for comparison is the number of function evaluations
performed. Even this may not provide an accurate basis of com-
parison because the function evaluations in each method will have
varying degrees of complexity.
The theoretical number of function evaluations

in each iterative step of the methods described has been
calculated in the previous chapter. However, during the test runs
it was noted that the theoretical max;mum and actual values for
the number of evaluations in the method presented did not entirely
agree, This is because, generally speaking, if linear interpolation
was perflormed on each variable, nomm reduction was not performed
and vice-versa, except in a few cases. Thus it was considered

that a more accurate estimate to the maximum number of function
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evaluations in each iteration should be 3N and not (3N+1),
where N is the number of variables, Fig. 8 shows the
function evaluations now required for a 2, 3 and n variable
system, m being the total number of iterations performed. The

derivation of these values is shown in Appendix 1.

TOTAL NUMBER OF FUNCTION EVALUATI ONS

FUNCTION EVALUATTIONS IN SYSTEM
METHODS
2 Variable 3 Variable n Variable
Method Presented 6m 9m 3nm

Brown 5m 9m (%%é nm

Broyden 10 + 6m 21 + 9m (2n+1)n+ 3nm
Newton 10m 21lm (2n+1)nm

Wolfe 15 + 7m 28 + 10m (2n+1) (n+1) +(3n+1)m

Fig: 8

Next a comparison of the s torage requirements of each
method should be considered. A direct comparisons is unrealistic
since the method presented only requires a vector for storing
the auxiliary functions whilst all the other methods require the
storage of a Jacobian or a similar equivalent. A more accurate
comparison is considered to be that if there are two methods whose
storage requirements are my and mg then the weighted storage ratio,

8, will be calculated as

m
S =1 + logso (,ﬁiz) provided my > mg

The weighted storage ratio, S, should satisfy the

following basic criteria:-
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and (ii)

ratios for S together with the reason for dis carding.

In a one parameter system S = 1

as the number of variables increases S is kept

within a reasonable bound.

The table in Fig. 9 gives a sample of the possible

My

is taken to be the storage requirement for a method which

requires a Jacobian and mg is the storage requirements for the

me thod presented.

SAMPLE OF STORAGE RATIOS.

they do not satisfy the basic requirement,

|
| P NUMBER OF VARIABLES IN SYSTEM REASONS FOR
DISCARDING
1 50
(mi"ma) 0] 214-50 i, i
my/ma g4 50 ii
;\’mi—mg 0.0 dedl 2 50 i, 2T
Ji'li 1.0 1,14 a 7 ii
Mg
amﬁ"/ma 2.8 7439 5.2x 10%% L
VER 2.8 3.13 1.1x 10° i, ii
1 + lOgj,O(mi—mQ) 100 1030 4.59 ii
1 + logio(mi-mg) 1.0 1.15 2.70 Possible
1 + logio(ms/us) 1.0 1.30 2,70 R ne
1+ logq_ol—@' 1.0 1.15 1.85
AF™ |
Fig: 9

Most of the ratios in the table cannot be used because

The final choice of

S between the reamining ratios is from the viewpoint of a uniform

rate of change as there is an increase in the number of variables
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present. The ratio which satisfies this criteria best is

the one S = 1 + logigJﬁi. If the method presented is taken
]

as having an S values of 1.0 then the following table, Fig.10

can be built up for S.

S=VALUES FOR OTHER METHODS

NUMBER OF BROYDEN ,WOLFE
VARTABLES BROWN NEWTON
2 L.10 Lel5
3 1.15 1.24
5 1.2 La3D
50 1,72 1.85
100 1.85 2,00

Fig: 10

Test Examples.

Four specific examples are used to compare the
dif'ference between eachlmethod. The se examples have been
presented in other papers and all possess special characteristics
which make them difficult to solve. Also, each example
tests the diffeerent facilities incorporated in the method pre-

gented to see if they enhance the method.

5.3.1) Test Function 1.

f1=X12-X2

fa = xa(x1-1)

This pair of equations form a parabolic valley
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similar to Rosenbrook's banana function(iij.

However,

there are two solution points, one at (0,0j and the other

at (1,1). At the solution point (0,0) the auxiliary function
and the derivative of the auxiliary function for the variable

Xy are zero. 1t is possible that this will cause problems

for the method presented.

Test Function 2 Brownt®)

fi = 3%1 + Xa + 2%X3° = 3
fo = =3x; + 5x32+ 2X4Xg=- 1
fg = 25x; X+ 20xg + 12

This test function has been presented in a paper
by Brown and Conte where it was used to indicate the rate of
convergence of their method. There are two solution points

one at (1.1, -0.8, 0.5) and the other at (0.29, 0.687, -0.849).

Test Function 3  Kuof®2)

fi = %% @ %%~ 6

I

fa 2%, 2 + xa®+ 25

This test function has been presented in a paper
by Kuo. There is one solution point at (1,-3). This example
demons trates the use of a modified increment if the derivative

of the auxiliary function is zero.

Test Function 4 Wolfel®)
Pi= Py ;s - mP 1
fa = x(1+2x)

The final example was presented in a paper by Wolfe.
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There is only one solution point at (-0.5, 0.866). Again
the derivative of the auxiliary function for x; is zero at

the solution point as in the first test function.

5.4) Description of programs.

A1l the methods under consideration were pro-
grammed in Fortran IV with the exception of Brown's method.
As previously explained in Chapter 3 it is not possible to
program Brown in a high level language so every test function
solution using Brown's method was achieved by using a desk
calculator. Four different programs had to be written but
each method had some common calculations to perform and so these
similar sets of calculation were performed by a subroutine which
was stored in a personal subroutine library ready for immediate
use., This, for example, meant that there was a subroutine for
the evaluation of the Jacobian in the library. In addition,
the remaining details of each method were stored on magnetic
tape rather than directly input into the computer for every
solution run. The benefit of this is twofold; the user has only
to specify his function and run the program and secondly, when
the program contains a great number of instructions as in Broyden
or the method presented there is no danger of the cards being
lost or the order changed. All the methods posed no programming
difficulties once one had appreciated the theory of the methods.

Broyden's paper was particularly useful in providing utine
omal. d\. fl‘nimﬁ h‘gglm.lha f 13-..

f'or norm reduction mesni

with the same terminating constraint namely all the fi's < 1078

and the value of the norm being less than 10"%. The detailed

listings of Broyden and the method presented are to be found in

the appendices.
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0.020

-0.040
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0.000
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Variables | Norm
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0.007
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0.004
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. Norm
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21,000 1.000 4,000 |

0,330 0,890
0.167 . 0,154
0,085 0,031
0.045 0,007
0.024  0.002
0,013 5.0 &-4
0,007 1.0 &4
0,004 4.0 &5
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0.001

0,000 |
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&8 |

2
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~ pRovmN
3 f’ariables = % Norm
L
| =1.000  1.000  4.000
| =1.000 0,200 0,800
f -0,320 -0.,070 0,040
| =0.160 0,010 4.0 &-4
-0.090 0,000 6,0 &-5
-0.052 = ~-0.002 3.0 &-5
0.031 0,000
0.013  0.000
-0.016  0.000
-0,010 0,000
0.005 0,001 \
0.007 0,000 1,0 &-8
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X, l X, N '? x1'_ i X,

| -1.000 1,000 4,000 S -1.000 1,000

f -0,600 0,200 0,128 f -0,500 1,000

0,330  0.030 0.008 | -1.000 0,500

| -0.170, © 0,004 6.0 &-4 | -0,500 0,250

-0.090 0,003 5.0 &5 | -0.360 0.048

-0.040 0,000 1.6 &=5 | -0,300 0,029

0.020 0,000 2.2 &7 | -0.170  0.003

-0.010 - 0,000 1.4 &-8 | =2.450 - 0,153

Pl A ; -0,153  =0.001

0.030 0,005

| 0.187 0,002

. % -0,285 0,000

# | 20.056 0,000

| l -0,050 0,000

:J._.T.“mh_vw.____ﬂ_._"“ | =0.010 0,000
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f1 -3:1+1:2+2x3 -3

2
fz--3x1+512 +2:1x3-1
f3-25x1_x2+20x3-1 2
METHODS

METHOD PRESENTED j BROWI ? BROYDEN NEWTON _ WOLFE .
= .1 i i S - - agds s - b - - iyl AT L T e — - A ———— — I _g.- g SR e ._1
f Variables f Norm Variables Norm Variables Norm ‘ Variables | Norm | Variables | Norm “.
: e : __ ; : -. : b : _ |
X, ‘fZ | x| ¥ 4ox I x, l X3 N x | x, i %y N X i x| % N o X, | X3 i |

70.000 0,000 0,000 154,000 | 0,000 0,000 0,000 154,000 | 0.000 0,000 0.000 154,000 1 0,000 0,000 0,000 154,000 | 0,000 0.000 0,000 154,000
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i e —— e e e

. 0,290 0,687 =0,849 5.0 &=T '
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METHODS
SR *_mﬁﬂ*,._h_.ﬂhéﬁoﬁgfh AN l , e _4"éﬁmmiﬁ{‘ e
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5.5) Results.

facilitate ease of comparisons.

45,

The results are presented in a tabular form to

Each table shows the values

of the individual variables and the norms at every iterative

step in the computational process,

function evaluations is given in Fig.l5.

NUMBER OF FUNCTION EVALUATIONS

A summary of the number of

5.6) Discussion,

the methods in solving the test functions.

between the individual methods with particular reference to their

THOD
H;;;;;ISﬁg‘““-~H PRESENTED | BROWN | BROYDEN | NEWTON | WOLFE
TEST 1 8L, 45 76 70 99
TEST 2 99 5l 93 126 108
TEST 3 48 FAIL 52 200 113
TEST 4 78 FAIL 28 30 L3
Fig: 15

The following comments relate to the performance of

Comparisons are made

ability to obtain a solution, rate of convergence, and ease of

programming.,

5.6.1) Test Function 1.

there were no general problems for any method but all had
a slow convergence to the solution notably in the variable

Xde

This example was solved successfuly by all methods.




LS.

5¢6.2) Test Function 2.

Again all methods found a solution. Browan's
method located a different solution to the other methods
due to the increment in x3 following a difflerent direction
vector. It is possible for the other methods to locate the
alternative root by using a different starting value for
Xa. This example illustrates the differing area of conver—

gence for Brown's method.

5.6.3) Test Function 3.

In this example a failure was experienced in
Brown's method. His method was totally unstable and each
variable overshot its solution value, the method being
totally inadequate at attempting to control the overshoot.
Newton's method also behaved erratically but did successfully
find the solution., All the remaining methods were extremely

successful.

5.6.4) Test Function 4.,

Another failure by Brown's method was experienced
in solving this example. This was because the construction
of an intermediate function fot* one of the variables, x4
in this case, it was necessary to divide by a zero value
meaning that thé function was indefinable. The method
presented did not perform particularly well but did find the .
solution, The other three methods experienced no difficulties

whatsoever in obtaining the solution.

5.7) Comparison Index,

It is now possible to form a basis as to the

relative merits of each method. If there are two methods
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contd.
which require nys and ng function evaluations to solve a set
of equations and their storage requirements have resulted in
a weighted storage ratio, S, then the comparison index, C, is

defined as

- 1 where o

-

In this case the relative merits of the methods
considered were referenced from the method presented. This is
consistent with the calculation of the weighted storage ratio
S, as shown in Fig.l0., The interpretation for the value of C
is if C is zero the method being compared with the method
presented is considered to be equally good, if C is less than
zero then the method in relation to the method presented is

inferior, and if C is greater than zero then the method in

relation to the method presented is superior. The table, Fig.l6,

shows the values of C for each of the methods in solving the
test functions.

COMPARISON INDEX

5.8) Conclusions .

THOD
FUNCTLON PRESENTED | BROWN | BROYDEN | NEWTON WOLFE
TEST 1 0.00 0.70 -0.03 0.03 -0.28
TEST 2 0.00 0.60 ~0.14 -0.28 -0.2
TEST 3 0.00 FAIL -0420 -0.80 -0.60
TEST 4 0.00 FATL 1ohh 1.00 0.56
Fig: 16

It is now possible to consider the methods which

are more suitable and those which are not so adequate for solving
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5.8) contd.

a set of algebraic equations. Before commenting on the various
methods it is first necessary to consider the importance of a
norm reduction characteristic. If a method demands that at every
iteration the norm is reduced then convergence towards a solution
point is guaranteed provided there is no local solution, If
norm reduction is employed this may result in an increase in
computational effort.

It is considered desirable to find a solution at
the expense of a little extra computation rather than not find
a solution. This viewpoint is reflected in the following dis-—
cussion on the particular methods under consideration,

Brown's method is the most difficult to assess
due to there being two failures in solving the test examples.
In solving the other two examples Brown's method had the best
comparison index in each case so it is not really possible to
have any definite conclusions only to say that further tests
should be undertaken. Whilst drawing no definite conclusions
it is possible to make a few general observations. Brown does
not require the storage of a Jacobian matrix. Intermediate
functions are used to construct the incremental steps but their
construction is of such a type that a high-level scientific
programming language cannot be used for constructing them as there
will be very limited character handling facilities. These inter-
mediate functions whilst being difficult to construct do reduce
the erratic tendancies found in Newton's method on which Brown's
method is based. Finally, Brown's method has no norm reducing
facility so there is no guarantee of convergence towards a solution.

Wolfe's method is the only method which requires

additional starting values. Apart from this minor drawback the
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method proved to be adequate. Although its rate of conver-
gence is slow, as reflected in the comparison index of table,
it did successfully solve all the test problems. However, a
matrix based on the Jacobian matrix is needed by the method
so storage requirements are large.

Newton's method, the traditional method of
solution, has no norm reducing facility. Progress towards a
solution can be erratic and the computational effort for every

Mc/uw
step of the iteration is emermous. The Jacobian is evaluated
at every step and then inverted, both of these calculations are
very costly numerical processes. Newton's method, however,
has the best theoretical convergence rate to the solution and
because of this and the ease of programming it is still a popular
method used for solution.

Broyden's method is mathematically more elegant
than the other methods presented here. It was developed as an
improvement to Newton's method by reducing the total computation
involved in an iterative step. An approximation to the inverse
Jacobian is stored and this is modified after every step so that
it becomes a better approximation to the inverse Jacobian. Broyden
also demanded that norm reduction was enforced so that convergence
towards a solution was in a uniform manner. The price of these
modifications is that the rate of' convergence is slower than
Newton's but as can be seen from the comparison ratio table his
method is shown to be superior to Newton's method.

The method presemted is an alternative approach
to reducing the prohibitive calculation and storage require-
ments of Newton's method. The method does not require the use
of a Jacobian and perhaps the main characteristic of the method

is norm reduction to ensure convergence towards the desired
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solution. It is not possible to derive a rate of convergence
for the method since linear interpolation is used to overcome
overshoot but it is only used when there has been no significant
improvement made by the iterative step. However, it performs
well in solving the test examples and is comparable with Broyden's
method. A general observabion is that as the solution approaches
the order of convergence becomes slower and an improvement in this
area would be desirable.

It would be unwise to say categorically that any
one method is superior to another. However, it is reasonable
to say that the method presented offers a suitable alternative
method of solution. Furthermore, the method is easily pro-
grammable and the relative stability of obtaining a solution

from a reascnable starting point does recommend it.



CHAPTER 6.

DERIVATION OF A SYSTEM CF ALGEBRAIC EQUATIONS.
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6.2)

Ske

Introduction,.

In the preceding chapters the discussions have
been concerned with the solution of a set of nonlinear algebraic
equations. In practice the solution of these algebraic equations
is only an integral part of a method of solution for a set of
nonlinear differential equations,

In this chapter the problem of transforming a set
of differential equations to a form where it is possible to use
the new method and existing methods is discussed. Three possible
methods of achieving the transformation are discussed, the Ritz-
Averaging Method¢%®) , Harmonic Balancing Method!**) and the
Energy Balancing Method¢28) , Having successfuliy éompleted the
transformation phase it is_possible to use the methods discussed
to solve the system of algebraic equations which will have been

generated,

Nonlinear differential equations.

Ll - 3
M, ox o+ Axx X + Axy v o+ Axi X + Axy y o+ Axx? x° + Akyg v
+szyxy + A?i? x> +Az§3 §B+ Aki& Xy + Axx% xx + AXK& x§
2

+Axy§ yy + Aﬁﬁy'iy = mw°r coswt s

My + AYx X + Ayy ¥+ Ayi x + Ay§ v+ Ayx? = ¢ Ayya y* o+ Ayxy Xy

A sa 2 + Ajsa 72+ A2 Xy + Boct XX + bos, Xy + Aot xy

. Ayyi ¥y = me®r sinwt - (6.1.2)

The pair of second order differential equations
written above, equations (6.1.1) and (6.1.2),have been obtained

from private communications with R.H.Bannister(28),

They describe
the dynamics of a rigid rotor system running on jéurnal bearings.

The hydrodynamic coefficients were obtained experimentally and
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new measurable terms were introduced into the system. The
coefficients are read as follows: Axy’ for example, is the
force induced in the direction x at the centre of the rotor
due to unit displacement in the direction y. Thus, it can be
seen that not only nonlinear but also cross-coupling terms
exist in the system.

The system of equations which has been adopted
to test the method presented offers two principal advantages.
Firstly, the coefficients used were extremely large and they do
represent an industrial type of problem, Next, since the system
of equations were processed from experimental data, solutions

could be compared easily.

6.3) Application & Ritz Method to nonlinear vibrations.

In nonlinear vibration problems the equation of

motion in the general case has the form

x + 2ng(X) + p® £(x) = F(t) - (6.2)
where g(x), f(x) and F(t) are given functions of velocity,
displacement and the disturbing force per unit mass, n and p°
are constant defining the magnitude of the resisting force and
the restoring force per unit mass of the system.

In equation (6.2) the various forces can be viewed
as in a state of dynamic eguilibrium in which the excitation
force is balanced by the resisting force, the spring force and
the disturbing force, The work done by this system of forces

on any virtual displacement &x must vanish and hence
[x + 2ng(x) + p® £(x) - F(t)] 8x = 0 -(6.3)
Ritz method assumes an approximate solution for

the steady-state vibration in the form of a series
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L= 84 (}')l(t) + ag qﬁa(‘t) + ag QS(t) * aee - (6-4)

in which ¢1(t), ¢2(t), eee and a1,82, «ee minimize the number

of terms to x. Virtual displacements then have the form

8x = say ¢ (t) - (6.5)
Substituting equation (6.4) and (6.5) into equation (6,3) it
will usually be found thet some work on the assumed virtual
displacement is produced since the series is an approximation
for x not an exact solution. To obtain an accurate approximation
the parameters ai,83, ... are selected so as to make the average
value of the virtual work per cycle vanish, This will result in

equations of the following form
T
[ [% + 2ng(x) + 2* £(x) = F(+)] ¢,(4) at = 0
0

in which the series for x has to be substituted and then the
integration performed over the period of one cycle v. In this
way as many algebraic equations as number of terms in the series
are obtained and by scolving we then find the values for all the

parameters 81,23, eee

6,3.1) Ritz method applied to rigid rotor problem,

To solve the set of equations (6.l1), assume

a solution of the form

X = a sinwt + b coswt
¥ = ¢ sinwt + d coswt.
Then the nature of the differential equation is such

that with this form of solution terms of even order

disappear, since integrals of the type
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will always be zero. Since terms of even symmetry can be

neglected the equations of motion can now be represented

by the following

e - -— 3
Ms x5 Axxx 4 Axyy + Axi X + Ak& ¥V = mw®r coswt

-

M,y + A x + ﬂyyy s X + Ay§ ¥ = mPr sinwt

a sinwt + Db coswb

o
1

X = aw coswt - bw sinwt

x = —aw® sinwt - bw® coswt

¥y =c singt + d coswt
§ = cw coswt - dw sinwt

¥ = =cw® sinwt - dw® coswt
Substitution yields

a_ .- 2 2 ;
—Msam 51nmt-MBbw coswt+Axxa sinwt + Axxp coswt + Axy'c sinwt
+Akyd coswt + Axi aw coswt = Axi bw sinwt + AK§ cw coswt

-AX§ dw sinwt - me®r coswt = O

-Mscw2 singt - Msdmacoswt + Ayxa sinwt + Ayxpcosmt + Ayyc sinwt
d coswt & - . i A .
+Ayy wt + Ayx aw coswt Ayx bw sinwt + - cw coswb
—Ay§ dw sinwt - mw®r sinwt = 0

which can be rearranged as
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[(a

2 . 2 A i
) Msw Ja - %xx bw + AXYC Axy dw] sinwt

2 . Lo \
+[Axx wa + (Axx Mo )b + ILW we + Axyd mw?r]ecoswt = 0

. - 2 i
[Ayxa - Ayﬁ + ( T MswP)c - Ayywd me®r] sinwt

3 -
+[Ayiga + A xp + #yﬁwc + (Ayy - Msw Ydlecoswt = 0

i
Fs sinwt + Fg coswt =0
Fg sinwt + Fu coswt = 0

If we now apply Ritz method we require

am
j'(Fi sinwt + Fa coswt) sinwt d(wt)

(o]

]
o

2T

/‘ (F1 sinwt + Fa coswt) coswt d(wt)
o]

]
o

27
j. (Fs sinwt + F4 coswt) sinwt d(wt)

]
(e ]

(o]

am

o

(Fs sinwt + F4 coswt) coswt d(wt) =

which is the same as Fy,F3,F3,F4 = 0.
Hence it is required to solve
(A M ) A 40 Ao =450 a 0
- . 2
A sw e -Mswa) Ayym AXY b me®r
— - — 2 — a
A A sw (Ayy Mo ) Ayyw c mer

- - ] 2
i Ajso ol Ayyw (Ayy Mo®)lla]l [ o |

which will be referred to as Equations (A) throughout the re-

mainder of the thesis. This set of equations can be solved by
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direct matrix inversion of the ( n x n) matrix. Ritz method
is a general approach but if a harmonic solution is assumed
then the Ritz method gives the same solution as the method

of Harmonic Balance, which is developed in the next section,

6.4) The principle of harmonic balance.

Oscillations in a nonlinear system are rarely simple
harmonic functions of time but are often periodic. A periodic
oscillation can be expressed as a Fourier series of sine and
cosine components. In many cases the fundamental frequency
together with perhaps one or.two higher harmonics provides a
significantly accurate approximation to the true oscillatory
motion, Accordingly the principle of harmonic balance asserts
that the criterion for an approximate oscillatory solution is
that the fundamental component is adjusted to satisfy all terms
of fundamental frequency in the equation. Better approximations
may be obtained, for if in addition to the fundamental component
higher order components are also accounted and adjusted to satisfy
all terms at their respective frequencies. This principle
follows directly from the Ritz method when applied to an

oscillatory system. If an assumed solution of the form

x = Ag coswt + A cos(nwt + 6.)

can be applied to the eguations of motion

X + wok+ #(x, x, t) = 0

then the Ritz method will result in the following equations
am

[X + wox + #(x, x, t)] Az coswt d(wt) = 0

and
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2T
]. [ + wo® x + ¢(x, %, t)]Am cos nwt d(wt) = 0
(8]

Because of the orthogonality of the circular trigono-
metric functions the sum of coefficients of the terms coswt
must each be equal to zero in the above integral equations.
This is precisely the requirement for the principle harmonic
balance., If we now consider the two applications of harmonic
balancing to the pair of simultaneous differential equations
(6.1), this will provide two different cases to consider
dependent upon the initial solution assumed. The first case
will use only the linear terms of the equation whilst the

second will contain all the terms linear and nonlinear,

6eltel) Linear Case.

If a solution of the form

X a sinwt + b coswt

1]

¢ sinwt + d coswt

Il

J

is assumed then all the square and cross-product terms of
equations (6.1) will disappear when harmonic balancing is
applied. Consider, for example, the term xx then

2

L] . . .
xx = a?w sinwt coswt + abw cos?wt-abw sinwt-b%w sinwt coswt

and using the simple trigonometric identities this becomes
xx = +(a?=b?)wsin2wt+rabw(l+cos2wt)—=sabw(l-cos2wt)

It can be seen that there are no terms in sinwt and
coswt, and thus no contribution will be made by this term in
the balanced equations. A similar situation arises in all the

square and cross-product terms so it is possible to reduce

equations (6.1) to the following set of equations
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- - - . 2
Ms X o+ Axxx + A v + Axxx + Ay = mw°r coswt

M, y o+ AYxx + Ayyy + Ayii + A?§§ = m®r sinwt

Assuming the following solution

x=a sinwt + b coswt

% = aw coswt = bw sinwt

X = —aw® sinwt- be® coswt
Yy =c¢ sinwt + d coswt

¥ = cw coswt = dw sinwt

; ==cw® sinwt - dew® coswt

Substitution into the previous set of equations yields
-MS(am?sinmt+bm9coswt)+Axx(asinwt+bcosmt)+Axy(csinmt+dcoswt)

+Axi(aucoswt-bmsinwt)+kx§(cmcoswt—dwsinwt) = me®r coswt

—Ms(cmasinwt+dwacoswt)+Ayx(asinwt+bcoswt)+Ayy(csinmt+dcosmt)
+Ay%(awcoswt—bwsinwt)+Ay§(cwcoswt—&wsinwt) = mo®r sinwt

Collecting like terms in sinwt and coswt, the following equations

are obtained

-M aw® + A a+A c-A+bow=-Aedw=0
s XX pros Xy

Xy
2 ~ = 2
—Msbw + Axxb + Axyd + Axiaw + Axycw = mw*r
“Mcw? +A a+A ¢=A oby=A «dw = mPr
8 Jx ¥ gx ¥
2 =
-Msdw - %yxb + Ayyd + %yiam + Ay§cw =0

Rearranging and expressing these equations in matrix
form we obtain the equations from the application of the Ritaz
principle, equations (A), as predicted. Again we can solve

for the vector [a,b,c,d] by direct matrix inversion.

6.4.2) Nonlinear case,

If a solution of the fam
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X = ap + aisinwt + ag coswt

bo + bg sinwt + bg coswt

 f

is now assumed all the terms of equations (6.1) will have
to be considered. All the square and cross-product terms
are expressed as simply as possible before substituting

them into equations (6.1).

Using x = ao+ a4y sinwt + az coswt

E asw coswt = azw sinwt

it o 2

2 -a1w"” sinwt = azw®coswt
and ¥y = bo + ba sinwt + bz coswt

-

= biw coswt = bgw sinwt

Il—' a3 3

¥ = ~biw”sinwt - bgw“coswt

the square and cross-product terms can be evaluated as

2cos?uwt

x?:aoa+2aoaisinwt+2aiagsinwtcoswt+2aoaacoswt+a12sinawt+aa
y2=bo?+2bobasinwt+2bs basinwtcoswt+2boba coswt+b1®sin®wt+ba®cos?wt
xy:aobo+&1bosinwt+a3bocoswt+aobisinmt+a1bisin3wt+aabisinmtcosmt

+aobacoswt+a4ibasinwtcoswt + azbacosawt

X = a120® cos®wt - 2asazw®sinwt coswt + a2®w?® sinuwt
*23 ; .
¥ = biaw? cos®wt = 2bsby sinwt coswt + ba?wPsinwt

Xy = aibiwacosawt—(aibz+aab1)wasinwtcoswt+aabgwasinawt

=% = aoaimcoswt+a12wsinmtcoswt+a1aawcosawt—aoaawSinmt
—-a183wsin® wt-ag®ysinwt coswt

Xy = apbswcoswt+asbiwsinet coswt+agbiwcoswt~aobawsinwt
~asbawsin®wt = agbsw sinwt coswt

Xy = aibowcoswt+aibswsinwtcoswt+asbgwcos®wt-agbowsinwt
—azbiwsinamt-aabaw sinwt coswt

yy = bobswcoswt+bsi®wsinwt coswt + babawcos® wt-bobzwsinwt

~bibawsin®wt - bz%w sinwt coswt

Using the simple trigonometric identities
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sinwt coswt = & sin2wt

costwt = $(1l+cos2wt)

sinwt = F(1-cos2wt)

and neglecting terms in 2wt then

x® = ao® + 2aca1 sinwt + 2acas coswt + Sa1? + Faa®
2 e

y® = bo® + 2bobs sinwt + 2boba coswt + bs® + Tba?

6

Xy = aobo + a1bo sinwt+asbocoswt+aobisinwt+acbacoswt+fasbs
+ Saaba
-
xa = %&12&!2 + ‘12‘8.320}2

-
3

y2 = 301%0® + 1ba%0°

= La.ba® + la-bat’
Xy = 281Daw" + agbaw
XX = aopaiw coswh =apdg W sinwt

-

yX = a4boWwcoswt + Saibaw = agbow sinwt — fagsbiw
Xy = aobsw coswt + Sagbiw — apbaw sinwt - Saibgw

= bobiw coswt - bobiﬂ.l sinwt

>

Substituting these equations into equation (6.1.1) will yield

after collecting and balancing of terms three equations one

for the constant terms, one for the terms in sinwt and one

for the terms in coswte.

Constant terms.

Axxao+Axybo+Axx?(a02+%a12+%h19)+Axyg(boa+%b12+%has)

2 3
+Axxy(30b0+%b131+%aab2)+Ax£?(%312WP+%&B wz)Ak§3(%b1 w2 +Eba?w?)

+A}C§."§ (%mb1ﬁ12+12'3.3b3 wa ) +AXJQ." (%aab:.m—%a;baw)

+.ﬁ.mfw(1§ag,baw - —12'&3331{;1) =0

Sinwt terms

2 . - 2
(AH—MSN )a,_+AWb1-AEwaa Awtdba + Q.Anaaoai-b%}wabobi

+Axxy(aibo+aobi)—Akxiwaoaa—Axiymaabo-Axyiwbobg—Axxiwaoba

Coswt terms.

(Axx¢Msw?)aa+Axyba+AXiaiw+Ax§b1w+2Axxaaoaa+2Axyahoba

- (B.1)

=0 (B.2)
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+A}Dcy( agbo+aoba ) +Amwaoai+Awwaobi+Aﬁwwaob "+A};y3.rwb° by
= mwr g (B . 5)
Similarly substitution into equation (6.1.2) will again yield
a further three equations,

Constant terms

A aoth bo+h a2 (ao®+Fas®+5ag? )-I-Ayya (bo?+iba2+5ba?)
+£ny(aobo+%a1b¢+%aabg)+Ayi?(%a12w2+%a33m3)+Ay§3(%h1302+%bgawa)
1 i 1
+Ay' « (Za1bswP+5anbaw® )+Ayx3'r (fa,b,0~381b3w) +Ayyx %21Da 0=5a2b10)
= 0 - (B o)-l-)

Sinwt terms,

-M _o®)b —A *ai-A ewag-A eubg+2A bob

(Ayy Ms&) ) 1+Ayxa1 Ayxa.i ﬁy_x&.laz yyb) a+ yxsa-oa-i'l'ZAyya oD1

a1bo+apby )=A ewapag=A eswbpbo=A . b
+AyXy( 4bo+aoby ) iz e08a yyyw 003=F, 2wazbo

-A__ewagbg = mulr - (B.
gy @80 Ps (B.5)
Goswt terms
QA g 2

(Ayy—Msw )bga Ayxag+Ayiwai+Ayywb,_+2Ay 28082+2477°bobg
+AYX.Y (aabo+aoba ) +A -waoa1+AW3-rwbob1+Ay§&waob¢

+Ayy:-cma1bo =0 - (B.6)

Hence we have obtained a set of nonlinear algebraic
equations, (B.l) to (B.6), to solve far ap,as,as,bo,bs and bg.
This set of equations will be called equations (B), and they
have been solved by using the method presented and Broyden's

method .

6.5) Method of Energy Balance.

As well as developing a set of algebraic equations by
Harmonic Balancing it is also possible to develop a set of
equations by using Energy Balancing., The energy in the system is
constant so it can be represented by a simple energy component

which will be constant in the system. If we again substitute
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into the equations of motion, equations 1, we will cbtain a set
of nonlinear equations which can be solved for the various com-
ponents. Consider

X

XR coswt + Xi sinwt

-
I

Lo sinwt + X.0 sinwt

X = —XRwa coswt - Xiwa sinwt

e Yi coswt = YR sinwt
Y = -Y.w sinwt-= Y_w coswt

< R
¥i= -Yiwacoswt + YRma sinwt

Now, if wt = O then

b
1l
S
=<
1]
o]
[

X = XibJ Y = —'YR&'.'

.e ol 2 e i E -
= XRw Y = Yiw

and if wt = --"é-T

X = == X:L Y = YR

X = XRw s Yiw

P by 2 . AN a

I = Xim Y= YRw

Substituion into the equation of motion (la) will yield two equations

in the horizontal direction which take the fomm

2 . .
"'Mswa +Aan+A Yl+AHle—A Y w+A xanR 2 3

LW S JEY X2 P +A - IR2w2+Am§Xiw(~YRw) +A, XX 0
_Am&xRYRmAin(—YRw) L 6 ST mw®r - (C.1)
and

R

.Y 3,2 v 3.2 e <
—Ax_)qyxiYR+A HQXR w*+A xyBYi W +chu AmXinw

2 3 } 2 2
Msxiw _Amxi+AWYR+AmXRw+A}WYiM+A s Xi +AX§Y2Y

+Amq-r(—xi)(Yiw)+AmIRYiw+A}5WXRYRw =0 - (C.2)
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Similarly substitution into the equation of motion, equation 1b,
will yield two equations in the vertical direction which take

the form

=M Y 1 21A xR+A Y + A -X W - A oY w+Ayx?Xh

+A yy;. 5 24A XRY +A x W2 +A WBY awa—.&yzf;};x YRw +

Ay}&xﬂxiw-AmYl w—A XRY w+A Y. X.0 =0 - (C.3)

and

—MtaY Ay A Yo +A me+AmeAfx +Ay_yaY3

2 = 2 o a_ -
Ayxy 1 TptA xR W2 +A WBY:.L ma-l-AyxyXRYiw AyHYinw

+A mYRYlw-Ayxi;XlYlmA YpXow =0 - (C.4)

Hence, a set of nonlinear algebraic equations, (C.l) to
(Cu4), has been cbtained for XY ,X.,Y.. This set of equations
R
will be referred to as equations (C). Again they have been solved

by using the method presented and Broyden's method.

Conclusions .

In this chapter three different sets of nonlinear
algebraic equations have been obtained. Each set was derived from
a different method of transformation.

The first set of equations (A) were obtained by two
different methods of transformation, Ritz-Averaging and Hammonic
Balancing., The reason is in the approximation to the solution
which takes the form (a sinwt + b coswt) and the differentiation
and integration properties of the circular functions, sine and
cosine, Therefore, in this case application of two different
methods of transformation result in the same equation,

The second set of equations (B) are generated from an

approximation to the solution which takes the form (a+bsinwt+coswt).
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This approxation contains more terms than the previous ones and
therefore should be more accurate. In this case all terms,
linexrand nonlinear, are used by the approximation.

Finally, the last equations (C) are obtained from
Energy Balancing. A solution of the form (a coswt+b sinwt) is
assumed but unlike case (A) all terms, linexand nonlinear, are
included in the equations by this particular method. As only
four terms not six, as in the case of equations (B), are used
the solution will not be as accurate as case (B).

The following table relates the identification of
the sets of algebraic equations with each of the methods used

to generate them.

DERIVATION OF SETS OF ALGEBRAIC EQUATIONS.

METHCD OF HARMONIC BALANCING ENERGY
DERIVATION | RITZ Linear Nonlinear BALANCING

EQUATIONS A

GENERATED : > ¢

Fig: 17
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Introduction,.

Here the three different sets of algebraic equations
developed in the Harmonic chapter are to be solved by the methods
described in Chapters 2 and 4. The first set of equations (A)
is a linear set of equations and can be solved by a direct matrix
inversion method. The second and third sets, equations (B) and
(C), are nonlinear in structure and must be solved by non-analytic
or iterative methods of solution,

Two different sets of values for the coefficients were
obtained experimentally, This initial data is substituted into
equations (A), (B) and (C). There will be three different forms
of solution available for each of the two cases.

Finally, there is a discussion on the physical inter-
pretation of these results and on the agreement between the

different forms of solution,

Methods of Solution.

There are three different sets of equations to be
solved, one linear and the other two nonlinear. The first set
of equations (A) is the linear case obtained from the Ritz-
Averaging Method. To solve these equations direct matrix inversion
is used.

The second set, equations (B), is the nonlinear
case obtained from the Harmonic Balancing Method. In this
particular case the solution to this set of equations was not
known., Therefore, two different methods of solution, Broyden's
and the method presented, were used.

Finally the last case equations (C) is another non-
linear case obtained from the Energy Balancing Method. Here
Broyden's method is used to confirm results obtained by the

new method.
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In the case of the second set of tests data, ex-
perimental results were available for equation (C). As the
solution point was previously known, a spread of values around
the solution point were used to examine the behaviour of the

new method,

7.3) Case I.

The values of the coefficients are

M, = 1.5 w = 125.0 mw®r = 125,0
A, = 352000.0 gyx = 1174000.0
AGEE - 129000.0 Ao = 783000.0
A, = 1300.0 Ayi = 1520.0
Ax§ = 1520.0 A = 8300.0
A a = 202500000.0 A, o 170000000.0
A2 = = 95300000.0 Ayyg = 157000000.0
Axxy = 235000000.0 Ayxy = 849000000.0
Axi? = 2hli a7 Ayiz = 2L..5
Axﬁa = 962.0 Ayﬁg = 2120.0
AX%% = 78340 Ayi& = 60440
A s = 115500.0 Ayxi = - 1386000.0
Axx§ = 1477000.0 Ayx§ = 2310000.0
Axyi - 1200000.0 Ayyi = 2310000.0
A tenw 923000.0 Ayy§ = 6460000.0

7+3.1) Solution of Equation (A)

This is the linear case so only the coefficients
which refer to linear terms are required. The calculated
solution point is

X

(-0.08141 sinwt + 0.34600 coswt) x 10”2

y = (<0.11380 sinwt - 0.35922 coswt) x 10~ 2
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which results in a maximum amplitude of

x = 0.35545 x 107 °

max

yma.x

0.37682 x 10" %

Solution of Eguations (B).

These equations were solved by Broyden's method
and the method presented. Both used the same starting peint

and reached the same solution point

Starting Point

£ X
~12.3 Osd x 104
30e4 - 1,7 %10
38.0 0.5 x 10”2
10.7 0.3 x 1074
. LI-B.? - 015 > 10-3
- 39.7 - 0oy x 10°°
Fig: 18

which leads to the solution point

£ z

0.0 0.32878 x 10™4
0.0 ~ 0.,76053 x 10”4
0.0 0.34361 x 10° 2
0.0 - 0.58543 x 10°°
0.0 - 0.11129 x 10°®
0.0 - 0.35070 x 10°°2

Fig: 19

The solution can be expressed as
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X

1l

J

and expressing this result in terms of double amplitudes

[t}

xma.x

1

ymax

0.35192 x 10°°®

0.36792 x 10" °

7+3.3) Solution of Equations (C).

( 0.03288 - 0.07605 sinwt + 0.34361 coswt) x 10™°

(-0.00585 ~ 0.11129 sinwt = 0.35070 coswt) x 108

These equations were obtained from Energy Balancing.

The solution was unknown and as & consequence Broyden's method

was used to check the results obtained by the method presented.

Again the same starting point was used by both methods and they

both reached the same solution point.

Starting Point

[L
< x
0.0 0.0
-125.0 0.0
-‘12500 0.0
0.0 0.0
Fig: 20
and this leads to a solution
£ x
0.0 -0,06078 x 10”2
0.0 0.21021 x 10" %
0.0 0.31234 x 10°°®
0.0 -0,16722 x 10”2

Fig: 21

Hence we can express the solution as

X

y

(-0.06078 sinwt + 0.3123)4 coswt) x 10" 2

(+0.21021 sinwt = 0.16722 coswt) x 1072
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leading to a maximum amplitude of

¥ -3
X s = 0.312935 x 10

y  =10.26861 x 10°°
mazx

7.3.4) Summary
The figure (22) shows the values of the maximum
amplitude calculated for each of the three different

solutions.

VALUES (F SCALED MAXTMUM AMPLITUDE.

R

EQUATION xx 10°° B 50 TG
A  Linear 0435545 0.57681
B Nonlinear 0.35192 0.36792
C Nonlinear 0.31293 0.26861

Figs: 22

7.4) Case II.

The values of the coefficients in this case are
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M
s

‘gﬁ- 2{? i: : nf"ﬁh- ﬁh*

.

A)L;{&
Az
A .

XXy

by -

A
yy

= 1.52

14,6000
58900
1078

2085
294000000
45400000
575000000
1332
4655
4985
1468000
4080000
1570000

3320000

Solution of Equations (4).

are required.

X

¥

with a maximum

Il

]

Again only the terms associated with linear terms

I

mw®r = 300.00

1481600
2447000
2070

1125
427000000
1503000000
1840000000
2653

9190

9920
1970000
7920000
3855000
14440000

The calculated solution point is

(0.46274 sinwt + 1.13000 coswt) x 10 °

(-0.35740 sinwt - 0.34843 coswt) ~ 10 °

X
max

1}

amplitude of

1.22108 x 10°°

y = 0.49913 x 10°°®

mazx

Solution of Equations (B).

this set of equations. Each method used the same gtarting

13

The two methods of solution were again used to solve

point and reached the same solution point
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Starting Point.

£ ps
-125.0 =0.25 x 10 ®
48.8 0.10 x 10" %
<190 9 0.55 x 10°®
346 4 0.30 x 10°
1977 -0.10 x 1G°°
108.4 -0.20 x 10°°
Fig: 23

and this leads to the solution point

£ s

0.0 0.09009 x 10~ 2
0.0 0.37325 x 10”2
0.0 1.03640 x 10~ °
0.0 0.02418 x 10”2
0.0 ~0,3043L x 10°°2
0.0 -0.32806 x 10 2

Fig: 24

The solution can be expressed as

i
1

(0.09009 + 0.37325 sinwt + 1.036L40 coswt) x 1072

]

y = (0.02418 - 0.30434 sinwt — 0.32806 coswt)x 10”2

and expressing the result in terms of double amplitudes

_ —3
X o = 1.10160 x 107,

— a
y = 044748 x 107

Solution of Equations ( C)

This particular set of equations had already been
solved by experiment and so the solution values were known.

Therefore a spread of values about the solution point were

used as starting values for the iteration. Again,Broyden



5e

T+he3) contd,

and the method presented were used as methods of solution.

Two tables of results are presented one for the

method presented.

Telie) Summary.
The figure (27) shows the values of the maximum

amplitude calculated for each of the three different solutions

VALUES OF SCALED MAXTMUM AMPLITUDE.

VARTABLE !

EQUATION x x 100° |y X 35"
A Linear 1,22108 0.49913
B Nonlinear 1.10160 0.44748
C Nonlinear 1.15493 0443303

Fig: 27

7.5) Results.,

The two figures (22), (27) showed that the amplitudes
calculated for each test case shared a measure of agreement, In
the cases where the solutions included nonlinear terms the
amplitudes was smaller than the linear case, This is to be expected
as nonlinear terms are usually components of restoring and/or
damping forces.

The results guite clearly indicate that nonlinearities
exist and do contribute to a significant degree in the results.
However the perturbations were not undly large as evident by the
solution of the linear and nonlinear cases. The experimental

results have already shown that this in fact was true.

7.6) Conclusions,

A feasible method for solving a set of differential
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o s

Starting Point
1073 1073 1073
0,0 0.0 0.0
| 0.0 " 0.5 0.0
- 0.07 0,0 10
0.0 0.0 0.0
0.0 0.0 0.0
TI00: 040 i O
£,0005 150
1.0°. 150~ ‘140
1,07 0,5 1.0
1.0 1.0 1.0
| “0:0, 1.0 2050
042D 90,054 bl
0,0 0.5 0,0
00" 72105+ 0,0
S50 1,074 70,0
P P Gl T P

10™4

0,0
0.0
0.0
-1.0
-10,0
0.0
-1.0
-1.0

1.0

0.0
-10,0
-10.0
-10.0

-10,0

| 4230000

- Norm

180000
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equations is to transform them to a set of algebraic equations
and then solve these equations,

The method presented prove satisfactory in solving
these algebraic equations. Broyden's method was also shown
to be satisfactory and was, in fact, slightly superior. For
example, in Case 2 Equations (C) Broyden's method finds solution
points from every starting point whereas the method presented
suffers several failures, In fact, this illustrates a general
point made throughout the thesis that no one method of solution
can be said to be the best method to use in all cases. In this
particular case Broyden's method proves to be the more successful.

There is agreement between the theoretical and experi-
mental results for the rigid rotor problem. Equations (B)
should give the more accurate solutions as they include all
terms linear and nonlinear and more terms are included in the
initial approximation to the solution. Equations (C) offer
reasonable solution values but still not be as accurate as (B)
since the initial approximation to the solution contained fewer
terms. Equations (A) are remarkably close to the solution con-
sidering that only linear terms were present in the approximate
solution., Hence this would seem to indicate that the contributions
of the nonlinear terms are small and also the assumptions made

concerning the nonlinearities are valid.
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Introduction.

In general the question of stability is concerned
with the determination of conditions of equilibrium, be it
dynamic or otherwise, and with what happens if the system is
disturbed slightly near an equilibrium condition. Any disturbance
near an unstable equilibrium condition leads to a larger and
larger departure from the original position, Near a stable
equilibrium condition any small disturbance leads to a return to
the original position. It is usually not difficult to define
exactly what is meant by stability in a linear system, but because
new types of phenomena arise in a nonlinear system, it is not
possible to use a single definition for stability which is meaning-

ful to every case.

Structural Stability.

A concept known as structural stability is sometimes
introduced in discussion of physical systems am is used in a
sense somewhat different from the more general concept that might
be called dynamic stability. The observation is made tlat the
coefficients in equations describing physical systems are generally
not known to a high degree of accuracy. These coefficients are
the results of experimental measurements which are always subject
to error. Particularly in the case of nonlinear systems, where
the coefficients are functions of the operating conditions, it is
difficult to determine values of the coefficients to a high degree
of accuracy. Furthermore, the physical parameters are often subject
to change with such ambient conditions as time, temperature and
humidity which is difficult to control accurately. Changes of
this sort are probably not included in equations describing the

system. As a result, coefficients in the equations are invariably

subject to considerable uncertainty.
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The mathematical solutions for nonlinear equations
can usually be found only approximately. Depending upon the
nature of the nonlinearity and the method employed, the
solution may or may not be of a high degree of accuracy and
hence some uncertainty about the solution would arise. Because
of this uncertainty as to whether or not the numerical values
of coefficients are actually valid for the physical system being
studied, there is reason to question whether or not the solution
finally obtained actually applies to the physical system under
study.

Structural stability, then, so that property of a
physical system such that the qualitative nature of its operation
remains unchanged if the parameters of the system are subject to
small variation., The properties of the mathematical solution for
equations describing the system are unchanged if small variations
occur in coefficients of the equations. Because of the inherent
uncertainty in relating mathematical solutions to physical systems,
it is desirable to require that the system be arranged in such a

way that it possesses the property of structural stability.

8.3) Dynamic Stability.

A physical system may be described by a set of simultaneous

differential equations of the form

d_ .
E‘l‘cl =Xg = £4(Xay000 xn)
dt = ;[2 = fa(xil.-. Xn)
dx .

n =z =F (xi,..- X )
_d.t n n

where t is the independent variable, Xi,Xa,ees x, are the n dependent

variables, and the functions f,,f, ... f,, are nonlinear functions
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of the dependent variables.

The simplest equilibrium, or singular, points are
those points where all the derivatives X;,Xa,... in are
simultaneously zero. The system is accordingly at rest, since
all the dependent v ariables are constant and not varying with
time. These functions form a set of nonlinear algebraic equations

corresponding to

814X4 + 849X5 + sses a;nxh = 0
821Xy + daggXg + ssss aanxn = 0
I R T N T el o B R B
8 % * 8 Xa + eeee & ¥y = O

when the system is at rest. These nonlinear equations may be
satisfied by values for the variables X1,% eee X which are
non-zero, the equilibrium point in the linear case, and more

than a single set of values may exist. Nonlinear systems, there-
fore, may have many equilibrium points.

In investigating the stability of a system near a chosen
equilibrium point, essentially what is done is to perturb the
system slightly by changing all the values of the vector x from
their equilibrium values. If, as t increases indefinitely and
the values of the véctor x return to their original equilibrium
values then the system is said to be asymptotically stable. On
the other hand, if the values of the vector x depart further from
their equilibrium values with increasing t, then the system is said
to be dynamically unstable., In a few special cases, the values of
the vector x may neither return to their original values nor depart
from them. A system with this property is said to be neutrally, or
temporarily stable, For a nonlinear system, it is necessary to

require that the initial disturbances of the values of the vector
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X be small enough to keep them in the region controlled by the
equilibrium point in question. If the initial disturbances are
too large, the vector x may then be located in a region, con-
trolled by some other singular point,

In addition to the possible appearance of many
equilibrium points, the operation of a nonlinear system may be
complicated by new phenomena associated with the appearance of
limit cycles. Limit cycles are steady state periodic oscillations
with their properties determined entirely by p rameters of the
system. Because the variables in the system are undergoing con-
tinuous periodic changes in these cases, a diffeerent definition
may be required.

The most rigid definition for the stability of an
oscillating system is similar to the definition of asymptotic
stability. According to this test for stability, the values
of the vector x of the system are perturbed slightly from their
steady state motion. If the differences between the vector x
and the ensuing motion and the original undisturbed motion
ultimately return to zero, the system is said to be asymptotically
stable., If the differences neither vanish or increase, the system
is neutrally stable.

In many applications, a change of period, accompanying
only a small and nonvarying change in amplitude, does not seem
to fit the usual connotations of instability. For this reason,
yet another definition, that of orbital stability, is made. The
solution for a system having a steady-state oscillatory motion
may be represented as a closed curve in the phase-plane., If a
small disturbance applied to the system results in a curve which
ultimately returns to the first curve, the system is said to have

orbital stability. If the small disturbances results in a curve
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which leaves the first curve, the system is orbitally unstable.
The definition here is related only to the amplitude and not

the period of oscillation.

Rigid Rotor System.

In the preceding sections we have been discussing
the stability of nonlinear systems. Two entirely different
concepts of stability, structural and dynamic, have been pre-
sented. In the following sections we are going to show these

two concepts in relation to the rigid rotor problem,

8.4.1) Structural Stability.

The nonlinear equations which have been presented
were derived from a study of the characteristic of a rigid
rotor running in a Jjournal bearing. The coefficients, AXX
et cetera, of these equations have been measured experimentally.
Therefore, although precautions were taken to ensure the co-
efficients were measured as accurately as possible they will
nevertheless still contain a degree of experimental error. When
the rotor is operating heat, vibration and the like can cause
changes in the operating characteristics of the rotor. Again,
coefficients of the equations will be subject to change and
their values will be uncertain ,

If a solution to the equations is asymptotically
stable but does not appear to be correct practical solution
then the inherent variation in the coefficient might be one

of the causes. Also, if no finite solution can be found it may

be that the deviations in the coefficients has rendered the system

of equations unsolvable and unstable.
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Dynamic Stability.

Dynamic stability is concerned with actual solutions
obtained from a set of equations. There are several different
methods for classifying the stability of a solution, Method
of D-partitioning'*?, Routh-Hurwitz method(®), Liapunov
Methods®) and others.

if g solution point is stable then the equations
of the process under consideration are in a region of stability
where the process has been defined accurately and is behaving
as expected. However, if a solution point is unstable then the
equations of the process under consideration are in a region
of instability and the system of equations has not represented
the process correctly.

The problem of instability in a nonlinear system is
more significant than the corresponding linear situation for,
in the nonlinear case, instability will usually mean that the
equations become difficult to solve, Accordingly a degree of
consideration to the question of both the stability of the co-
efficients and of the system must be included in a general
solution of a nonlinear set of equations. However, this is not
& simple matter for stability can be regarded as a separate

discipline rather than a subset of any particular subject.
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Comments on the method of approach.

The discussion in the thesis has been concerned
with the available root finding techniques for solving algebraic
equations, their merits and their limitations. A comprehensive
study of the existing techniques was undertsken to ascertain the
requirements of a root finding method. Four different methods,
those of Brown, Broyden, Newton and Wolfe, were considered and a
definite gap was found to exist in general root finding techniques
for the solution of a set of algebraic equations. It was felt
that the above mentioned technigues owe their original conceptual
form to numerical rather than the engineering and/or computational
viewpoint, That is to say that the methods available at present
require a considerable effort to be put into their understanding
and application,

The major aim of the thesis has been to develop a
root finding technique which is simple to understand, is easily
programmable, has a rate of convergence equal to that of existing
methods and has small storage requirements.

The technique is of the simplest possible form with
its origins coming from Newton's method. The desirable
characteristics of existing methods have been incorporated into
the structure of the method. Undesirable characteristics have
been eliminated as much as possible. For example, a Jacobian
matrix would cause considerable storage problems if there are a
large number of variables and therefore the method presented is
constructed in such a way which does not require the evaluation
of the Jaccbian matrix, Linear interpoltation is used at every
stage of the iterative process inducing a steady convergence to-
wards the root. Finally, norm reduction is used to ensure conver-
gence to the required solution,

Theoretical comparisons betwesn the various methods
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of solution to solve several test examples are undertaken,
Unfortunately, there is no simple technique available for a
direct comparison to show which techniques offer the better
methods of solution. It is possible to use the number of
iterations, the number of function evaluations or run-time
timings but each one has its own failings. Therefore, a
secondary but nevertheless important objective has been to
develop a simple ratio which can be used for comparison purposes.
The results show that the method presented can offer a suitable
alternative as a method of solution. Broyden's method is shown
to be the best of the methods available at the present time,
Newton and Wolfe's methods are shown to be techniques which will
find a solution point but their order of convergence and prohibitive
computational requirements reduce their effectiveness as methods
of solution. No definite conclusions are made regarding Brown's
method as the comparison ratio showed the method to be in the
extreme, in other words extremely good or bad.

Finally, comparisons between the method presented
and Broyden's method to solve an industrial problem are under—
taken. Results show that Broyden's method offers a better
method of solution for this particular problem.

From these comparisons the method presented can be
said to offer an attractive alternative to the methods available
at present. Problems of a particularly difficult nature may
lead to failure of the method presented. In such a case Broyden's
method, because of its mathematical foundation and derivation,
is the method which should be employed to find a solution point.

In conclusion, a direct comparison between the two
methods would, perhaps, find Broyden's method as superior but in

defence of the method presented the prohibitive numerical search
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and storage requirements weigh heavily against Broyden's method

as a numerical method of solution.

Suggestions for future developments of the method presented.

In several areas the method of solution which has been
presented has proved to be inadequate or in the worst possible
case has broken down,

The most obvious area for development is when the
method finds a local solution. At the present time, Newton's
method is used to calculate an increment which will move the
vector x away from the local solution, Whilst this has proved to
be an adequate solution as an interim measure the prohibitive
calculation required by Newton's method is undesirable. Further
work should be undertaken to overcome this difficulty. Search
techniques can be used to overcome this particular problem provided
they do not involve too large a computational effort. At present
the search techniques used are proving to be a costly process from
the computational viewpoint.

When comparisons between the various methods were under-
taken it was seen that as the root was approached by the method
present the rate of convergence became less than quadratic, If
the functions are concave near the solution point then convergence
became even slower. We kaow that if the functions we wish to solve
are convex then convergence to the solution point is guaranteed.
However, if the functions are concave this is not the case. Here
it is possible to draw a comparison between Newton and Broyden's
method. Broyden modified the Newtonian step by a further
t, 0 <t €1, 86 that

it g T.&
s =X + tp

Broyden restricted his value of t such that he obtained
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a Newtonian step if the functions were convex, i.e, t = 1, but

he improved his convergence ratio compared with Newton if' the
functiom were concave by allowing t to be less than 1. It is
this step of Broyden's method which causes the prohibitive cal-
culation of his norm reducing search.

If a simple test could be developed which showed whether

functions are concave the incremental step of the method pre-

sented could be modified as was Broyden's to improve convergence.

9.3) Recent developments on root finding techniques.

There have been two new methods of solution proposed
recently which should be mentioned.

In 1970 Broyden(ao} proposed a new method of solving
nonlinear simultaneous eqﬁations. He used a particular form of
his method of 1965(5) coupled with a m thod of solution proposed
by Davidenko(3%) , ‘In this recent method Broyden abandoned the
norm reduction épproach but otherwise the basic method of
solution is the same as previously. This modified Broyden method
is used to solve the subproblem but Davidenko's method requires
where previously Newton's method had been used., The early results
show that this type of approach is superior to the previous
Broyden method.

All the methods presented so far will converge to a
particular solution but since 1971 interest has been shown in a
method presented by Branint®2), for finding multiple solutions
to a set of algebraic Equafioﬁs. The early indications are that
methods of this type will become increasingly popular as they can

produce all the solutions from an arbitrary starting point,
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9.4) Future developments on nonlinear differential eguations.

A method of solution for algebraic eguations is only
an integral part of a2 more general problem of solving nonlinear
gimult aneous differential equations. The entire process of
solution is in three separate phases. First there is a trans-
formation from differential to algebraic equation, then the
solution of thege algebraic equations and finally consideration
about the stability of the system. These types of method may
be adequate at the present time but in the future they will be
used to a lesser degree for they are long and involved processes
and can induce errors into the solution. A much more ideal situation
is to solve the equations directly. Unfortunately, the numerical
techniques available at present offer worse solutions than trans-
formation methods. Also there are theoretical limits to the
accuracy of the numerical process.

Simulation languages are in their infancy but will be
used increasingly in the future. The integration process is
difficult to simulate and languages such as Slang usually ex-
perience difficulties at that particular stage in the calculation.
An improvement in the expression of the integration process would
enhance the simulation but the process is still cumbersome and
expensive computationally., A simulation can be viewsd as a digital
computer being made to function like an analogue machine, Direct
analogue computer methods of sgolution are a time consuming process.
Analogue machines are difficult to program and are subject to
errors during their usage.

compulirs

Hybridé, combinations of analogue and digital machines,
can be used to offer a more feasible and controllable method of
solution. The analogue section can be used to integrate whilst

the digital machine can perform the simple mathematical calculation

and adjust values of potentiometers in the analogue computer to
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reduce the variation in values and reduce drift errors during
the running time. Whilst this process is feasible with today's
machinery it should be remembered that large amounts of storage
and crude usage of the connecting links of the hybrid system
make this method of solution uncommercial. In the future as
hybrid systems are developed a process for solving nonlinear
differential equations should become a much more attractive
alternative. It is here that future developments should prove

to be most fruitful.
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A1.1) Introduction.

The number of function evaluations for each method
of solution is different. Although most methods use a form
of Jacobian each method uses a different technique to update
the Jacobian, resulting in a different number of function
evaluations each iteration. In all cases the evaluation of a
derivative is considered to be equivalent to one function
evaluation. Each method is considered separately and in all

cases an N variable system is investigated.

A1.2) Newton's Method.

In Newton's method there are three different cal-
caulations which contribute to the total number of function
evaluations. The functions are evaluated once, the Jacobian has
to be calculated and then an inversion is performed on the Jacobian,
Hence, the total contribution to the number of function evaluations
is as follows

N for the function
N  for the Jacobian
and N  for the inversion of the Jacobian leading to

a total of (2N+1)N function evaluations per iteration.

A1.3) Brown's method.

Examination of Brown's method shows that at the first
step (N+1) function evaluations are required. At the following
step, the second step, N function evaluations are required until
at the last or Nth step 2 function evaluations are required.
Hence, in all

[(F41) + N+ oo + 3 + 2] function evaluations are required.

The sum of the first natural N number is'£§2+1§ 55
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(Ml 1;+l+1 -1 function evaluations are required
N 2N ! { ' ,
or B ST function evaluations per iteration,

Broyden's method.

In Broyden's method there are two distinct phases in
the calculation of the number of function evaluations. The
first iteration is a direct application of Newton's method and
hence will require (2N®+N) function evaluations. Subsequent
iterations will require the following number of function
evaluations

N for the evaluation of the increment fi

N for the functions ,ii,
and N for the estimate of the inverse Ja.cobia.n,@i
which leads to a total number of 3N function evaluations per
iteration. Hence the total number of function evaluations is
found by adding

(2N?4N) for the first iteration

and 3N for each subsequent iteration.

Wolfe's Method,

Wolfe's method is similar to Broyden's in that there
are two distinet phases. In the first iteration it is necessary
to construct the estimate to the Jacobian and invert this estimate.
Hence, an additional N(N+1) + (N+1)® function ewaluations are
required. Every iteration requires the following function
evaluations

1 for the new function

2N to calculate the vectorg and g
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and N to calculate a new value for A, the Jacobian
estimate.
Hence to calculate the total number of function
evaluations the following quantities are added
(2N+1(N+1) for the first iteration

and (3N+1) for subsequent iterations.

New method.

In the New method three different calculations con-
tribute to the total number of functiomsevaluations. The
Auxiliary functions and their derivatives have to be evaluated
every iteration. Linear interpolation and Norm reduction may
or may not contribute to the function evaluations so the worst
possible case is considered where both have to be included.
Therefore, the total contribution to the number of function
evaluations is as follows

N for the Auxiliary Functions A

N for the Derivatives of the Auxiliary Functions

N+1  for Norm reduction and Linear interpolation.
Hence the total number of function evaluations per iteration

is found to be (3N+1).






A2,1) Introduction,

The program developed for the new method used to
solve the examples presented in the thesis is listed in this
appendix. It is written in Fortran IV and is of a form which
reduces the user's participation to a minimum,

The University's computer has the facility of storing
programs on magnetic tape which can be called to the computer
when a run is required. Therefore, a user is only required to
supply his function, a suitable starting point and call the
program to produce results.,The listing given is a copy of the
program which is stored on magnetic tape.

The program has a small master section and seventeen
subroutines,each one responsible for a particular section of

the calculation.

A2.2) Master Section.

In this routine all arrays used in the program are
given dimensions, a requirement d Fortran IV, and the starting
values are read. The arrays used are as follows

AF  in which the Auxiliary Functions A are stored

DER used by the DERivatives of the Auxiliary Functions

Sl

DER1 used by the Jaccbian in Newton's method
F  the values of the functions §
INC the values of the INCrement in x

ISIGN,LTEST,L5,M1 used in various subroutines for calculation
purposes

OLDINC the values of the previous or OLD INCrement
P used to store increment values for Newton's method
X in which the vector x is stored

Y in which the previous values of the vector x is stored
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The values read by this routine are

N2 the number of starting points
N the number of variables Xi ees X
MODE the output requirements (0 for values at every
iteration 1 for the vector ¥ only)
EPS the tolerance of the norm
EpPS1 the tolerance upon the function values

X the s tarting values of the vector x
After reading these initial values the routine calls

the subroutine JOINTMETEOCD.

A2.3) Subroutine JOINTMETHOD .

This subroutine organises the different sections
of the calculation. No specific calculation is performed in
this routine. All arrays and values read in the master routine

are transferred to this subroutine,

A2.4) Subroutine NORM.

In this subroutine norm reduction is performed if
reguired. If a local solution is found then the routine to
overcome this situation is called from this subroutine. If the
iteration is unsuccessful at overcoming the problem of moving
from the local solution an error message routine is called from
this subroutine and the iteration terminated. The values passed
to this routine are AF, DER, EPS, F, INC, OLDINC, X, Y, N and

ANORM the value of the norm.

A2,5) Subroutine LOCALSOLUTION.,

This routine is used to move awagy from a local solution

point. In this routine a Newton method of solution can be called

for one iteration. The input values required by this subroutine are
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AF, EPS, INC, OLDINC, N and OLDNORM the previous value

of the norm,

Newton's method and related subroutines.

If Newton's method is required for one iteration
the following suite of subroutines are used, NEWTONSMETHOD,
JACOBIAN, MINV and NOUTPUT.

NEWTONSMETEOD directs the iteration and calculates
the increment values stored in the array P. The input to this
subroutine is the values of the vector x.

JACOBIAN calculates the values of the Jacobian matrix.
Again the values of the vector x are required. The Jacobian
is stored in the vector DERL on return to the subroutine
NEWTONSMETHOD, '

MINV is an inversion routine to calculate the inverse
of the Jacobian. The input required is DER1, the Jacobian. On
exit the inverse is stored in DER1, the value of the determinant
of the inverse matrix is returned and stored in D.

Finally, NOUTPUT output the values of P, F amd X to-

gether with ANORM at the end of the Newton iteration,

Subroutine CLEAR.

This routine sets the values of an array to zero. The
call requires an arrgy and the number of elements of the array.
Example, CLEAR (INC,N) will set the values of the array INC

to zero.

General output routines,

There are four routines to output the wvalues which

have been calculated.
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INPUT outputs the starting values of F,X and ANORM

OUTPUT  outputs the values of AF, DER, INC, F,X and ANCRM
after every iteration

ERRORMESSAGE  output thée values at the local solution when
the iteration can move no further, The values
output are AF, DER, OLDINC, INC, F, X and
ANQRM .

FINALOUTPUT  outputs the values of F,X and ANORM at the
solution point.

Subroutine STARTNORM .

In this routine the value of the norm, 3 fis, is
calculated, The input required is F and the value of the

norm, in ANCRM, is available on return,

Subroutine GDAF.

The nmenonic GDAF means Generate the Derivative
of the Auxiliary Function., The routine requires the values

of AF, F and X and the derivative DER is available on return,

Subroutine G1lX.

The nmenonic GlX means Generate Increment in X.
The routine regquires the values of AF, DER and X ani on return
the value of the increment is available in INC and the value

of the previous increment in OLDINC.

Subroutine INTERPOLATION.

This routine is wed to perform linear interpolation
of x values thereby preventing overshoot. Input values re-
quired are AF, F, INC and X and on exit INC and X contain the

calculated interpolated values.

A2.13) Subroutine GAF.

The nmenonic GAF means Generate Auxiliary Fuuction,
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The routine requires F and X and on exit AF contains the value

of the auxiliary function.

Calculating Arrays.

There are four arrays ISIGN, LTEST, L5 and M1 used
by various subroutines to hold values calculated during the
iteration. ISIGN is used to test for a change in sign of the
increment. LTEST is used to store a count value, between 1
and 3, of the number of successive increases in the value of
the Derivative of the Auxiliary Function. If the value decreases
LTEST is set to O. L5 and M1 are used by the inversion routine
MINV for storing counts of the row and column numbers of the

elements of the array being inverted.,
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CALL JGINTMETHID (AR sDERSDER] sEPS>EPS) sF s INC> ISIGNSLTEST sL5 5 MUDE »
llvli:M”.'.]]NC:I”?I)YJF\;NI) £
1 CrINT TNUE
ST
100 FRMAT (310 2F0 <N
101 F IRMAT(SNFD (1)
END

SUBRIIT INE  HIINTMETH IDCAF s DER sDER | sEPSSEPS) »F 5 INCs TL I GNsL ESTeieSs
MODE> M1 2 ILDINC P2 YsNs N1 D)
REAL TNC
DIMENSTDIN AF (NI SODERCN) DERT CNT D) oF (R) 5 INCAN)» ISTIGNON Y S LIESTONY 2 LS N
YoMl CNI s JLDINCONI P ONY s KON s Y OND
V=1
CALL TUNCTTUNGR 2 XaN)
CALL STARTNIRMOAN RN F s N)
CALL INPJI CANIRNF»7MIDESN)
Pl = '
2] 2 Ki=lasN
CALL GDAF AR 3DERSF s 7Y 1,N)
CALL Gl XCAF »DEREPSSF » INC 5.1t DINCGs X 1sLTEST s M)
CALL ENTERPUILAT NINCAF 2EPS 2F 5 IANC s %s LoD
=1+1
2 C:INTINIE
CALL MNIRMCAF >AN L IMsDERSDER] LEPS»F s INCs 1S IGN L FEST LS sME > (ILDTINC 2P
Z3YsNMaM JOE s Ns NI 2
IF €)Y 450.0
M=M+]
IF (M IDE) 3.0,3
Catl THITRPUT CAF AN ISV DERsF s INC s 2sMsN)
3 IF CANIRMGT EPS]1 )Y G Ti) ]
CALL CLEZ% (INCaN)
CALL FINALJITPUT CANIRMF 5 ¥ Ma )
4 ETURN
D

—
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SUBRIJUTINE NIRMCAF sANIRMs DER>DER] sEPSsF > INC» ISIGNsLTESTsL55M1 s LD I
I NCs>P s XaYsMasMIDEsNsNI D

REAL INC,MIDI

DIMENSTIN AF CN)sDERCN) »>DERI (N1 sFCN) > INCCN) s ISIGNC(N) 5 LTESTCND »
TLS CND M1 CNY 5 JLDINCEN) 5P CNY s XCN) 2 Y CIND
ISECIIND=0

ITERNUMBER=0

JLDNIRM=ANIRM

INIRM=1

LITERNUMBER=

1TiTAL=N

L CAL=0

raraL=0 .0

CALL CLEARCISIGNsN)

DI 2 L=1sN

IF: CABS CINCELID) JLT-ERSY Gt} Tu 2

IF COOLDINCCLYZINGCL)Y) <GEBD «0 ) GU) T 2
INCCLY=INCCL)/Z2 1)

KLY =X L) =T NG CLD

INORM=TN JRM+]

CONT I NUE

Ll=1

La=1

Pt} 3 L=1aN

IF CABS CINCCLY)SGT.EPS)Y G Tu 4
La=L4a+1

CUNT INUE

La=L4-1

TEST=KC(L4)

6L T

TEST=XCL4)-INCCL4)

TEST1=x(L4)

IF CCTESTI-TEST)«LT D02 LIl==1

CALL FUNCTIVINCF s X3sN)

CALL STARTNIRMCANIRMsF sN)

IF COLDNIRM«GE-ANIRMY GI} TO 9

MOD T =1LDNIRMZANIIRM

L2=1

T LCCABS CROLA)-=TEST ) )n L kP SD  GU TU
IF CCXCLAY-TEST)Y«LT 0023 L2==1

 if O ) e ) I R B ¢ e

RAT F=CXCL4)=-TESTI/INCCLA)

DIl & L=1sN

XCLY=XCL)Y=RATII]*INCCL)

CUNT INUE

LITERNJUMBER=LITERNJMBER +1

IF (LITERNUMBER=-20) 5511211
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12

15

16

D) & L=1sN

IF CABSCINCCLIDSLT «EPS)Y GU T &

XCLI=XCLY=C1 «0-MIDI)*INCCL)
CUNT INUE
LITERNUMBER=LITERNUMBER+1

IF C(LITERNUMBER=20) S5s11,11

IF CJLDNIRM.GT-ANIRM) GU Ti) 12

IF CCINIJRMeNE o)« AND o CLJLDNURM«GE s ANURM) ) RETURN
1P ICCRCLEAY=TESTY « LT s ERPSY Gt Bl

RATTI=CXCL4)=-TEST)ZINC CL4)
DI1 11 L=1sN
XCLY=XCLY=-RAT I*INC (L)
CINT INUE
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CALL LIOCALS/ILUTIONCAF sDERsDER1SERPSSF 5 INC2L52M]1 s ULDINC»TJLDNUORMP 5 TL)

TAL» XsYs ISIGNsITIITALSLIICALsMIDE >Na NI D

CALL FUNCTIIINCF »XxsN)
INCIRM=(]
ITERNUMBER=ITERNUMBER+1
IF CITERNUMBER-=-20) 551455

IF C(CCABSCXCLLI=TEST) ) «GT «EPS) el e ( (ABS CLILDNIIRM=ANUIRM) ) «GT «EPS))

RETURN

[=1

DIl 13 Kl=1]sN

CALL GDAF(AF sDERF 2 72YsT1sN)

CALL GIXCAFsDERSEPS>F»INCsIILDINC>Xs I2LTEST sMaN)
CALL INTERPIJLATIUNCAF sEPSsF>INCsX>12N)

CALL GAF (AF sF a2 xs15N)

I=1+1

C INT I NUE
ITERNUMBER=ITERNUMBER +1

IF CITERNUMBER=-20) 15020
THATAL=D 0

DI 14 L=1asN
FITAL=TUTAL+ABS (INC (L))
CINT INUE

IF CISECIIND)Y 16s0516

I[F C(TIOTAL«EQ«0«0) TulTAL=N
VALUE=TIJTALZN

D 15 L=1sN

IF CINCCL) sEQsDaD) INCICLY=] «f
INCCLY=STIGNCVALUE » INCCL))
CUNT INUE
ISECIND=ISECIIND +1

Gl T 1

CALL ERR/JRMESSAGE (AF s ANIRMsDERsF s INC» JLDINC 5 ¥ 5 N)

M==1
RETURN
END
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SUBRIJUTINE LUICALSIILUT IINCAF >DERsDER] sEPSsF 2 INCs LS sM1 210 )LD I NC 2 LJLD NI
IMsP s TIITALS XsY> ISIGN> T1 JTALSEXTTsLICALsMsMIDEsNs N1 )

REAL TINC

DIMENSTIIN AF CNYSDERCNISDERLI (NIDXF (NI s INCCN) s ISIGNCNI LS CNIsM] CN)Y »

IULDINCENI P EN) s XCN) s Y CND)

ICIHUNT =]

Ll=1

Pl 2 L=1sN

IF CABSCAF (LYYLT«<EPS)Y Gil Til 6

Ll=L1+]

CIUNT INUE

CALL NEWTIUNSMETHID CILDNIIRMsDER]I s EPSSEXITsF 5P s X YsLSsMeMUDEsME s N N

1)

IF CLICAL=1) 4s4:10

DU 3 L=1"sN

RGLY==RC1)

CUNTINUE

CINT INUE

DO S L=1sN

INCCLY=P (L)

CHUNT INUE

LiCAL=LIICAL+]

ICIIUNT =5

% 8 R I B

IF CABSCINC CL1 Y)Y -LT-EPSY Gi) T1] 186
ISIGNCL1IDY=ISIGNCL] )+]

IF CISIGNCLI)=1) 959,
LES O] =ND 40 2101 %14
L2=L1 +1

Ll1=L2

Dl & L=L2sN

IF CABS CAF (L)) LT EPS) G Tu 10
L1=L1+1

CONT INUE

BENSTELE

INCCL]I d==INCCL])
ITUTAL=ITIITAL+]
TUTAL=TIITAL+ARBS CINC CL1))
GU T 20
ISIGNCLI D) =ISTIGNCL] )+

IF CISIGNCLIA=1) 95,9,7
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11 CALL NEWT INSMETHIIDCHLDNIRMsDER1 sEPSSEXT T 2F 5P s Xs YL SaMsMUIDE s M1 s Nso N1
1)
IF €LOCAL=1) 1351350
DO 12 L=1aN
PCL)==PCL)
12 CINT INUE
13 CINT INJE
D!] 14 L-_-l N
INCCLY=P (L)
14 CINT INUE
LOCAL=LIICAL+]
[CUUNT =5
TJTAL=0 0
DI S LN
IF CABSCAF (L)) «LT«EPS) TUTAL=TIITAL+ABSCINCCL))
15 CUONT INUE
GO Tl 20
16 IF CCABSCINC (LI D)<LT «EPS)«AND + CABSCULDINCCLI ) LT «EPS) )Y GO T 17
INCCL] D)={ILDINCCL] ) g
G T 20
17 STUTAL=05%0
DR E =N
STUTAL=STUTAL+ABSCINC (L))
18 CUNTINUE
19 CIONT INUE
IF (STITALEQ+0+0) STOTAL=N
SVALUE=STUTALZN
IF CINCCL])«EQeD«N) INCCLI)=1 40
INCCL]1)=SIGNCSVALUE, INCCLL))
20 DI 21 L=1sN
XELY=XCL)+INCCL)
21 ClONTINJE
IF (EXIT+EQ+1+0) RETURN
CALL FUNCTIVINCF »%5N)
CALL STARINIRMC(TEST sF s N)
IF (ABS CILDNURM-TEST) +GT +EPS) RETURN
IF CCICHUNI=5)«GE «) RETURN
ICHUNT=TC JUNT +1
DI 22 L=1sN
XOLY=SXOL)= INCCL)
22 CUNTINUE
Gil Ti) 1
END
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SUBRIUTINE NEWTUNSMETHUID CILDNIRMDERY sEPSsEXI I sF sP X5 YsLSsMaMIUIDE »
1M1 > NsNI D

DIMENSTUN DERICNI)sF CN)sPCN) s XCN) > Y OCN) 2 LSCN) s MI CND
CALL JACIIBTAN(C(DERI] sFsXsYsNsN1)
CALL MINV(DERI] >N»DsLS>MI 5 N1 )

IF (DY NDasbs)

Dl 3 I=1asN

K=1

PCIXY=0 0

R 2 J=1asN
PCI)Y==DERI] CK)*F (J)+P (1)

K=K+N

CIINT INUE

CUNT INUE

IF CILDNIRMGT «01 «003) RETURN

DI 4 T=1-N

XCI)=XCI)X)+P (1)

CIINT INUE

CALL FUNCTIINCF »XsN)

CALL STARTNIKMCILDNIEMsF 5 N)

IF CIHLDNURM=-EPS) 55550

M=M+1

IF (MUODE ) 12021

CALL NOUJTPUT CGILDNIRMF 3P s XsMsN)
2T M 1 |

CALL FINALUJUTPUT CIILDNIRMsF 2 XsMsN)
EXIT=1 .0

RETURN

WRITE <¢2s:600)

RETURN

FIURMAT (/777750 %s25H THE JACUBIAN IS SINGULAR)
END
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; pa 4 Ka-xaxl
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4 GBNTLNUE
© CALL FUNCT I INCF»XsN)
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SUBRUUTINE MINV (AsNaDsL52M1 2 N1)
DIMENSTIN ACNI)sLSCNY M1 CND
N=1 .0

NK==-N

DU 10 K=1sN
NK=NK+N

LS (K)=K

Ml (K)=K
KK=NK+K
BIGA=A(KK)
D1 1 J=KsN
IZ=N%(J-1)
D] 1 I=KasN
IJd=1Z+1

IF (ABS(BIGA)Y-ABS(ACTIJ))) D]l
BIGA=ACTJ)
LS K ¥
Ml1{K)=J

CUNT INUE

J=LS (K)

IF (Jd=K) 3,320
Ki=K=-N

PR 2 I=1sN
KI=KI+N
HUILD==-ACKI?)
JI=KI=-K+J
ACKI)=ACJT)
ACJId=HIILD
[=M] (KD

1F Cli=K2u5y 501
JP =N*CI=10D

DU 4 J=1N
JK=NK+.J
JI=Jdr+J
HlLD==-ACJK)
ACJKI=ACJIT)
ACJII=HIILD

IF (BIGA)Y 6106
D=0 0

RETURN

DO 7 I=1sN

IS CI=KY 070
ITK=NK+1
ACTKI=ACTKI/(-BIGA)
CUNT INUE
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153

12
13

14

]

DIl 8 I=1sN
ITK=NK+]1

Id=1-N

D 8 J=1sN
Td=1TJ+N

IE ICT=K) B a8s0
IF (Jd=K) {1,850
Kd=1dJd=1+K
ACTD=ACTK)*A(KJI+ACT J)
CINT INUE
KJ=K=N

pL 9 J=1sN
KJ=KJ+N

IF CJ=K) 0,950
ACKJI=A(KJI/BIGA
CUONTINUE
D=D*BI1GA
ACKK)=1 «[1 /7B 1GA
CIANT INUE

K=N

K=(K=-1)

e CKAY 1501 351
I=L5(K)

FE CT=KY 13330
JO=N*x(K=12
JR=N*(]=1])

O 12 J=F»N
JK=Ja+J
HILD=A ¢ JK)
JI=JR+J
ACJKI==A(JI)
ACJI)=HILD
J=M1 (KD

[ AR 3 o OGS o 1503 W 4Ll )
KI=K-N

D] 14 =]lasN
KI=KI+N
HILD=AC(KI)
JI=KT =K+

ACKRT ¥==A GITD
ACJII=HILD

Gl TiF 11
RETURN

END
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SUBRIJJUTINE CLEARCINCsN)
REAL INC
DIMENSTIN INCCN)
DAY L=1aN
INCCLY=0 .0
1 CIONTINUE
RETURN
END

SUBR JUTINE INPUT CAN]RMsF » XoMIDE s N)

DIMENSTIIIN FON)sZCN)

WRITEC2,2010)

WRITE(2:201)

DO T d=] s'N

IRITEC2'2202) FOI)X>XCT)

1 CIUNTINUE

WRITE(25203)

WRITE(2:204) ANIRM

IF (MIDE) 2502

WRITE(2:,245)

2 RETURN

200 FURMAT C1H1 251 X%X,25H NEW SET UF STARTING DATA)D
201 FURMAT CZ50Xs 1'6H FUNCTIUN VALUES»S5Xs9H X VALUES)
202 F'JI"EMQI(S] FesF 10 5:,B%X2F105)
213 FIIRMAT(/760¥s11H NIkM VALUE)
204 FIIRMAT (A1 XsF 10 «5)
205 FIRMAT(/15%,20H AUXILIARY FUNCT IIINS»>5%s12H DERIVATIVES»7X»10H INCR

TEMENT »5%s16H FUNCT IIIN VALUES>9%,9H X VALUES)

END

SUBRIUTINE UTPUT (AF AN TRMsDERsF » INCs XsMsN)
REAL TNC
DIMENSTUN AFC(N)sDERCNYF CN)»> INCCN) s XCND
WRITE (2s300) M
RU1 I=1.N
WRITE (253012 AF (I)-DERCIIs ENCCI)sF €Y s XCI )
1 CUINTINUE
WRITE (2,302) ANIRM
RETURN
300 FORMATC///57%s11H ITERATIUIN 5139
301 FORMATCISXsF16e553%X5F16e5:7%X5F 11 «956XsF11 551 1%5F119)
AN2 FiRMATC/STXs12H NIRM VALJE=,F10 «5)
END
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SUBRIJUTINE ERRIRMESSAGE (AF sANIJRMsDER>F s INC5 JLDINC > x5 N)
REAL INC
DIMENSION AF CNY sDERCN) sF CNY > INC CN) s JLDINC CND 5 XCN)
WRITE (€2,400)
WRITE (25401
WRITE (25,402)
WRITE (25403)
WRITE (2,404)
WRITE (25401)
WRITE (2,400)
WRITE (2,405)
DIJ 1 L=1sN
WRITE (2,406) AF (L) >DERCL) >(JLDINCCL) s INCCL) »F (LY > %X (L)
1 CINTINUE
WRITE (25407) ANIJIRM
RETURN
400 FIRMAT(SCIH )
401 FURMAT (4N X542 C1 H%))

4N2 FORMAT (40 72, 42H* THE METHID HAS FUUND A LUCAL * )
403 FIRMAT (40 X5 42H* SOLUTION AND IS UNABLE T MUVE * )
404 FURMAT C40) Xs 42 H* FRIOM THE PUSITIIN GIVEN BELW *)

405 FUORMATC(/T77%s20H AUXILIARY FUNCTIUNS»S5Xs12H DERIVATIVES»7X»13H ULDIN
ICREMENT 27 %X5s10H INCREMENT 25%Xs16H FUNCTIUIN VALUES»9%s9H X VALUES)
4N6 FURMATCT X sF 16 ¢553%3F 16 539%sF 11 «5577X3F 11 556%X5F 11 «5511XsF11«5)
407 FURMATC/51%512H NJRM VALUE=5F10 «5)
END

SUBRUUTINE FINALOUTPUT CANIIRMsF s XsMsN)
DIMENSTIIIN FON)sX(N)
KITER=3%M*N
WRITEC22500)
WRITE(2s501)
bl 1 I=12N
WRITEC2,502) FCIDdaXCID
1 CUONTINUE
WRITEC2,503)
WRITEC(22504) ANIRM
WRITE(C2,505) ™
WRITE(2s506) KITER
RETURN
500 FURMAT C/////52%:26H FINAL VALUES UF VARIABLES)
501 FORMAT(/50Xs16H FUNCTIUN VALUESSSX>9H X VALJES)
502 FIRMATC(S517ZsF 10 «558X5F105)
5N3 FIIRMAT(/Z60%s11H NIlIEM VALUE)
504 FORMAT (61 XsF 10«52
505 FURMAT(/53%:21 HNUMBER [IF ITTERATILUNS=,12)
506 FIRMAT (/48X s31HNUMBER UUF FUNCTIUN EVALUATIONS=513)
END



700
7M1

SUBRNUTINE NIUTPUT CANIRMsF 3P > X5 MasN)
DIMENSTUN FON) P (NY» XCN)D

DO 1 I=1sN

WRITE (2,700) PCL)sFCI)sXCI)

CUINT INUE

WRITE (2,701 ANIRM

RETURN

FIIKMAT (ST X3F 11 «556XsF 11 5511 %sF115)
FIIRMAT(/S5T7%s12H NIRM VALUE=5F10+5)
END

SUBRUUTINE STARTNIRMCANIRMsF 2 N)
DIMENSTUN F CiN)

ANITEM=0 «l)

D1 1 L=1sN

ANTRM=F (L) *F (L) +AN]IRM

CINT INUE

RETURN

END

SUBRMAUTINE GDAF CAF sDERsF 2 XaYs15N)
DIMENSIIIN AFCNISDERCNI sF CNY» XN s Y(N)
RAr L=la M

Y(L)=XCL)

CUNT I NUE

IR CRGT) o NE « ey Gl T 2

YCID)=0 001

GL T 3

YCIDd)=XCI)*] «001

CALL GAF (AF sF >YsIsN)

DERCII=AF LI )

CALL GAF (AF sF > x5 15N)

IF (X([)-NEOUOU) G} TI] 4

YCI)=0 «0

G0 T 5

YCIdX=YCI12/]1 <001
DERCID=(DERCII=AFCIX)*10N0 0/ ACI)D
RETURN
DERCIDI)=(DERCII=AFCI))*1000 -0
RETURN

END
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SUBRIUTINE GIX(AF sDERSEPSsFsINCsIJLDINC> %> 1sLTEST 2MsN)
REAL INC

DIMENSTIN AF CN)SDERCNISFCN) s INCCN) >IJLDINCCN) s XCND) 5 LTEST (N)
TAOTAL=AF CI)

OLDINCCT)=INCCI)

IF (DERCI)«EQ«D+0) G T 4

INCCID)==-TITAL/DERCI)

IF CINCCI).EQ-.0.0) G Ti] 1

IF €M) Ds1-0

IF (ABSACOLDINCCI)Y«LT«ABSCINCCI))Y)) GU T 3

LTEST (L2==3

ZCI)=XCI)+INCCI)

RETURN

LTESTCID)=LTESTC(I)+]

LE CCLTESTICOLY) 250%2

L2=1

IF (DERCIY «ET (] «02 L2==1
INCCIDX)==TUTALZC((ABSCTUTAL)Y+ABS(DERCID)))*L2)

GE T 2

END

SUBRUOUT INE INTERPULAT IIINCAF sEPSsF > INCs Xs 1 sN)
REAL INCs>NEW>NINC

DIMENSTIIN AF CN) sF CN) s INCON) s X (N)

ILD=AF (1)

CALL GAF(AF»FsXs15N)

NEW=AF (1)

IF (CABSOCNEW) «L T «EPS) «[JR« C(ABS CLILD ) «LT «EPS)) RETURN
IF CCILD/NEWY «GT o0 «1 ) RETURN
NINC=CABSINEWI*INCCI))/ (ABS(NEWI+ABSCULD)Y)
XCID)=XCI)=NINC

INCCID=INCCIX>-NINC

RETURN

END

SUBRMUTINE GAF(AF>F»%Xs15N)
DIMENSTIIN AF (N)>F CNY s XCND
CALL FUNCTIUINCF »XsN)
SUM=0 «0N

0,(1 8 T e A

AFCEY=F (LY +SUM

SUM=AFCI)

CUNTINUE

RETURN

END

LTI
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A3.1) Introduction.

The program presented in this section is Broyden's
method of solution, 1965( ), It is written in Fortran IV
and is structured the same as the previous program of Appendix II.
Again there is a small master routine but this time there are

only nine subroutines.

A3.2) Master routine.
The master routine dimensions the arrays used, reads
in the starting values and organises the subroutines used in

the caleculation. The arrays used are

FL to store the function values f

= to store the incremental values for the vector x
X to store the values of the vector x

X to store the differences in the function values

for successive iterations i.e.y = i(gi_'_i)-—,t(;gi)
H to store the Jacobian J

with the starting v alues

H the number of variables
EPS the tolerance upon the norm
X the starting values of the vector g

The arrays COL, MK, ROW, SUM1 and SUM2 are for

storing intermediate values in the calculation,

A3.3) Subroutine NEW.

This subroutine is used to calculate the increment,P.
The routine requires the values of FI, H and X, On output a new
value for X is available together with a value for P. This sub-
routine calls the routine QUADMIN, used to reduce the value of

the norm.
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A3.5)

A3.6)

A3.7)

A3.8)
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Subroutine INITIALH,

At the beginning of the iteration a Newton method
iteration, which will require an estimate of the inverse
Jacobian matrix, is performed. This subroutine calculates the
initial estimate to the inverse Jacobian. The input required
is the value of FI and X. During the evaluation of the estimate,
an inversion routine, INVERT, is called. On exit the matrix, H,

contains the values of the inverse Jacobian.

Subroutine HNEW.

In this subroutine the values of the estimate to the
inverse Jacobian are updated using the latest information, The
required input values are H, P and T and on return the matrix

H contains the latest estimate to the inverse Jacobian.

Subroutine NORM .

This routine calculates the value of the norm
n
2 fia. The input required is FI and the value of the norm,
i=1

in ANORM, is available on return,

Subroutine YNEW.

This subroutine calculates the difference between
the function values, that is to say y = f(xi+1) - f(xi).
The input values required are FI, P, T and X and on retum Y

will contain the difference between the function values.

Subroutine QUTPUT.

In this routine the values P, Y, FI, ANORM and X
are output., This routine is called at the end of every

iteration.



A3.9)

l:u'!--

Other routines.

Finally, there are three routines remaining INVERT,
QUADMIN and SET. The routines QUADMIN and SET were developed
by Broyden in his paper(a ) and are adequately documented.
The remaining subroutiné, iNVERT, is a general routine for

inverting a matrix.
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MASTER BRIUIYDEN ORIGINAL

REAL MK

INTEGER CllLsRW

DIMENSTIUIN CIOLC2)sFI1C(2)sMK(2) 5P (2)5rR0W2)sSUMI (2)SUM (2 XC(2)sY(2)

CUMMIIN H(2,2)

Ne=1

READC]I »100) N>EPS»X

CALL INITIALHC(CIL>FI»MKsRIWsZAsYsN)
1 CALL NEWCANIRMsFIsPsX2T N

IF CANIRM-EPS) 2521

CALL YNEWCFIsPsTsX2YsN)

CALL HNEW(PsSUM] »SUM2 T sYasN)

CALL FUNCTIINCFI»XsN)

CALL (MUTPUT CANIRMsFIsPsXsYsNsN2)

N2 =N2 +1

G T 1
2 CALL (JUTPUT CANIIRMsFIsPsXsYsNaN2)

100 FURMATCINDL3F0 0
ST{R
END

SUBRUUT INE NEW CANUIRMsF I 2P sXsTsN)
DIMENSIIIN FICNI P (N)»XON)
COMMIN H(2,2)
CALL NIRMCANIRMsF I,N)
DY 1 I=1asN
PCI)=0«0
D} 2 J=1sN
PCI)==HCI> JJ)*F I CJI+PCI)
CONT INUE
XCIX)=XCIX+P (1)
1 CIONTINUE
CALL QUADMINCANIRMsFIsP»T »XsN)
RETURN
END

no
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SUBROUTINE INITIALHCCOLF T sMKsRIIWsX5YsN)
REAL MK

INTEGER CULsRUW

DIMENSTIUN CULCNIsFTCNYsMKON) s RUWEND) 2 XCND) 5 Y CN)
CUMMIIN H(252)

PR 1 I=1.N

YCI)=XCI)D

CUNT INUE

D] B J=12N

IF (XCJ)«NE-D0) GO Tl 2
YCJr)=0.001

GlII =3

Y(JY=xX(J)*] 001

CALL FUNCTILNCFI »YsN)

D) 4 T=1,N

H(I»J)=FIFCI)

CUNT INUE

CALL FUNCT IIINCF I s X2N)

IF CXCJ)«NE=Q=0) G0 TO 6
YC(J)=0 1]

P S I=1sN
HCIsJ)=CHC(TI>J)=FI1CI23%1000.0
CUNT INUE

G T &

YCJI=Y(CJ)/Z1 001

DO 7 I=1sN
HCIsJ)=C(HCT)=FICID)I*10000/XCJ)
CIINT I NUE

CIINT I NUE

CALL INVERT CClIL>MKsRIOWsN)
RETURN

END
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D2 K lxN
SUMICII=HCIsKI*Y(K)+SUMI CT)
SUMR CJ) =P CK)*H(Ks J)+5UM2 (J)
2 CINTINUE A
SUMICII=SUMICI)=PCI)*T
sumaw:—suma GJ)/SUMS
3 CIONTINUE '
DO 4 I=1,N
oo B0 A = ai .
DA, HtI:J)@H(I J)-SUMI(LI*SUMQ(J)
4 CINTINUE
 RETURN ke
END BN, S e el

s
i
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SUBRINUTINE NIRMCANIRMsFIsN)
DIMENSTUN FION)
ANIJRM=0 .0
D] 1 I=1sN
ANIRM=F I C(I)*F I CIY+ANIRM
1 CONTINUE
RETURN
END

SUBRIOUTINE YNEWCFIsPsTsxsYaN)
DIMENSTIN FICNI>PON)sXON)sYON)D
DIl 1 I=1sN
ZCIXY=XCI)=PCI2*T
¥YCId=FTCL)
1 CUNTINUJE
CALL FUNCT IUUNCF I»XsN)
D2 Il N
YOO =Y QL= ¢T3
BT Y=KCTIX+PCI D+
2 CUNTINUE
RETURN
END

SUBRIJUTINE JUTPUT CANIJRMsF I1sPsXsYsNaN2)
DIMENSTUIN FICNISPON)» ZCN)Y»YCN)
IE CN2=110 058 ]
URITE ¢2,20023
1 WRITE 252012 N2
D 2 1=1sN
WRITE (2,5202) PCI)sYCI)sFICI)sANIRM»XCI)
2 CUNT INUE
RETURN
200 FUIORMATCIHL»77/77/3TFs4BPCI)s6Xs4HYCI)sSXsTHFICI+]1)53Xa5H NIKMsbAsEH
EXCE+£L Y )
201 FORMATC(/55%s11H ITERATION=,12)
202 FIRMAT (33X,5F105)
END
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SUBRUOUT INE INVERT(CILsMKsRiIWs ND
REAL MK
INTEGER CllLsRIW
DIMENSTIN CHILCN) s MKCN) s RUWON)
COMMIN H(2,2)
£3=1 .0
DO 100, I=1sN

100 ROWCI)CaLeId)=1
Did 200 IB=1.N
I2=RUOWCI&)
[3=CiILCIR)
[617=18
X1=HC(I2,13)
pL 300 I1=T8sN
14=RIOWCI1)
D 400 I9=18aN
I15=CILCI9)
Y2=H(145,15)
IF (ABSC(X2)LE.ABSC(X12>) GO T adi
X1=r2
I2=14
13=15
I6=11
I7=19

400 CIUINT INUE

300 CONTINUE
IF (I18.EQ«162 GO TO 10
ROWCIEI=RIIWCIR)
ROWCIBY=I2

Y0 IR L IBSsERITY G T3 210
CHLCITI=C{IL 18D
COLCIL8I=I3

20 IF (ABS(X1/7X3) «GE« «SE=8) Gi) TuU 30
WRITE (2512 X518

1 FUORMATC/A//7222H MXINV:PIVOT RATIO = sF6.43/58H STAGE »13)

30 ¥3=Xx1
DU 500 I9=1sN

500 HCI2,19)=H(I2519)/X%1



BTN o= 1;N

110
800

Kl -CDL( 12)

K2 =RIWC12)

HCI1 5Kl ) =MK(K2)
CE]NTINUE

DO "'3{-1 0 'I':2".=51: s N

i MK(IE)"HfIQs!l)‘

Kl‘BﬂL(Ia}

WE=RUWCES)
H(K1 5 T1)=MK(K2)
d.cuNTINua_ '




SUBRIUTINE QUADMINCANIRMsFIsPsT s%xsN)
DIMENSTUN FICN)>PI(N)sXCN)sPHIC3) 5V (3)

ANIRMI =ANIRM

TLAST=1 0

T=0.0

1T=0

IT=1T+1

CALL FUNCTILINCFIsXsN)

CALL NIRMCANIRMsFIsN) o (p (ANoRM.&T. ANoRML) #ETURN

IF CCCABSCT-TLAST)) «GT « €0 «D1*ABSCT)) cAND e (IToLE«10))«lJR«CIT«EQ+2))
60 T 2

RETURN

IF CITNE+12 GO TO 3

VT C1)=0 <0

VT (3)=1 <00

PHIC1)=ANIRMI

PHI(3)=ANIRM

XX=ANIRM/ANIRMI

T=CSORTCl 0 +6e0%XX)=1e0)/C3eN*XX)

T e il e

=0
W= N

L SETC(XsNT 2P sN»TH>TLAST > [1L 21D

E4I0 B )( 0 |

PHICI] )=ANIRM

XW=VT(2)-VT (3)

KX=NTC3D)=VECLD

XKY=VT C12=VT(2)

AW==(PHI (L )k XW+PHI(2) kXX +PHIC3 )% XY ) Z CRKUW*xXX*XY)
AE=CPHIC1 )=PHI(2) Y/ XY= XKW* VTl I+YT (23
TLAST=T

I CXWeGT s0«02 GO T0O 5

IF (PHICM) «Gl «PHICK)Y) GO Tl 4
T=30%yTIM)=2 «[)*%yT (L)

GIHT 6

T=3:0%VT(KI=-20%yT (L)

Gl TO 6



CALL ‘SET ¢XsVTsP%sNsTsTLAST, ITK),
IGE T \

IF KTSLEVTAL))> G TO 9
L=1 .
CALL SET(XsVTsPaNsT>TLAST>115L)
Le]:2 g o P

I=M

M=

L=1

CALL SET(XsVTsPsN»T»TLAST>115L)

60 10 1
END
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Introduction.

The subroutine in this appendix is an example
of a user definition of a function. In this case the function
defined in Case 1 Equation B of the industrial problem solved
in Chapter 7. The routine is written in FORTRAN IV to be

inserted in the main program.
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SUBRJJTINE FUNCTTUNCFI»XsN)

DIMENSTIIN FICN)»X(N)

REAL MS,Mw2

W=125 «f]

WSQ=W*k

MW2=125 «0]

ME=1e5 .

A¥X¥x=35200040

AZY==12900T0 «0

ArXyD=1300 «0

AXYD=1520 -0

AXXSQ=2N2500000 «0

AXYSO==-95300000 «0

AXXY=235000000 «0

AXEDSO=244 .7

A7ZYDSN=962 ()

AXXDYD=TER ()

AXZXD=115500 0

AZXYD=1477000 <0

AXYYD=9230010 «11

AXYrD=1200000 <0

AYr=1174000 «0

AYY=TE3DND <0

AYXD=1520 «0

AYYD=83N0 .0

AYXSA=170000000 <0

AYYSQA=157000000 «0

AYZXY=849000000 <1

AYZXDS50=24 .5

AYYDSO=2120 «0

AYZXDYD=604 .0

AYXXD==13E6001) «1)

AYXYD=2310000 «0

AYYYD=6460001 «1)

AYYXD=23100010 «0

FITC]l)=AXXEXC] IFAXYXRACA4I+FAXASHFCXCTIFXCL I+ OX(2IFX(2I+X(3I*k1C3ID/2
FY)Y+AXYSQX (X CA) R XA+ XD 2L+ X (HI*kX(E)I/2 ]IV FAXEY*FLCXC] IR CL4) +
PUX2)XF(S)+X ARk CEIIL2 NI IFARZDSO*LSOHC CXC2I*X(2I+X I *Y(3))/7200)
F+AXYDSO*USQRCCXLSIFELESDEX(H YR KX 06) ) /2 Y+AXXDYD*WSAHFCCX2I*XCS)+X(3
4Y*pCAHE)I/2 NI FAXZYD*WHCC X (I IR XIDI=A(2)%R2X(E)I/A2(1D+A X DY *WF ( (X2 %) (
S6)I=X(3)%XK (531720 )
FIC2)=0AXX-MS*WUSQIXX2IFAYXY®X(D)-AXFKD*WH*A(T)-AXYD* kX CHEI+AXESEQ* (2 »
1 271 I*XC2II+AXYSO*R2 (I *F X (4) %X (5IFAXXYF (X (2)FX(4)+7C] I XX (5) I=-AXKXXD XU
PxFCII*F(BI-AXFDY* L X(I3I XX CA)=AXYYO* UK (4D *X(H6)=AXXYDXWHxR (] I *X(6)
FI(3)=(AXX=MS*kUSODIXX(II+AZY*X(E6) +AXZDXWHEX (2I+AZXYD*WEK(S) +AXXE)*2 o %
1 XCI Y% XC3)+AEYSON*2 N * LA X X(E)I+FAXFY X (X (B3I * X C4)+7 (| D %2 (A ) +A XX XD > % 7
2U1)*X(2)+AXXYDFUHxX (] IR X (DI +AXXDY **d x(2) %X (4)+AF YYD RU*XX(4)*X(5)=MW2
FIC(4)Y=aYXx*X(] )+AYY*X(4)+AY XSO (XN IXXC] I+ CX2I X 2I+X(II*ACIII/2
I Y+AYYSO* CXC4Ix X CAYFCLRADIRYESIFXCHIXRXCEHDI I A2DIIFAYKYXCK L YEACH )+ (
PXI2IFXISI+XCII.RX(EII/2NII+AYXDSDFWSDHECCXC2I*RXN2I+XCII*E(Z)IL260)
F+AYYDSOXWSAXCCXSI*FCEI+X(H6I*X(E)I/20)+AY2DYD*USTHCCXC2I®kX(5)+XK(3
H4IKFCEII/2 N I+AYXYDHLF CCXCIIRACHI=XK(2IFZCEDI/2 )X +AY KDY FUF (X2 ¥ (
56)=X(3)%X(5))/2.0)
FIC5)=CAYY-MS*USOI*X (5 +AYXF X (2) =AY XD *WHX (B3I =AY YD*WHXCH) +AY XSO (2 .
1 #2720 DA (2 II+AYYSO*2 N %X (4K X(SIFAYAYR (CK(2IFXCAI+ XD RIS I-AXY XKD *W
PRACIIEY(RI-AYXDYFUFXC3I R X (4)=AYYYDHFW* XA R X(A)=AY XYD*W*X (1 )*) () =M
W2
FIE)=AYX*Z(3I+CAYY-ME*WUSUI*¥XCB)+AYZD XU * 2 (2)+AYYD®UXX(5) +AYXE0*2 o %
1 XCL)*=X(3)FAYYSO*2 (I ¥ X (4I X XEI+AY YR (ACBIX XA+ X (1 D *XCHB)I+AYKED* W X
201 2*X2)+AYZYD*WREXCI DX X (S I+AYXDYRWH X (2I kA CA)+AYYYD*WE X C4) %X (5)
RETURN

E N
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A5.1) Introduction,

It is required to solve the system of equations

£ =9
using a method which is defined by

R A
X, =X, mi (V.1)

where Ai is an auxiliary function,

A5.1.,1) New Method.

In this method the auxiliary function is defined

by
Ay = i

&
I
:
+
o

An = An-:l. + fn

Each auxiliary function is dependent upon the
previous auxiliary function, This meant that cross coupling
is introduced and therefore the elements of the vector x
become linearly dependent. Therefore, convergence to a

solution is forced.

A5.1.2) Simplest Auxiliary Function.

The auxiliary function defined in 5.l.l. is not

the simplest combination possible. The simplest combination

is
A = fa
Ap = I3

Bach auxiliary function is independent so on

iteration A, is a function of f; alone, and so on. Therefore
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A5.,1,2) contd,
using equation V.l to define an iteration method means
that each variable can converge separately to its own

limit and therefore not converge to a solution point,
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