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SUMM 

  

The growth of demand for electrical power has led to large 

increases in the unit ratifigs of turbine-generators; typically, maximum 

“2-pole ratings have increased from 100 MW 20 years ago, to 660 MW today, 

with 1300 MW units being seriously considered. 

The growth in unit output has been made possible by major improve- 

ments in design, particularly the introduction of direct cooling of the 

windings, which has allowed the electric loading to be greatly increased. 

The end-region flux densities have inbreased in consequence, and core end- 

heating and end-winding forces are major factors to be considered in the 

design. It is thus essential to be able to calculate end-zone fields 

accurately. 

This thesis describes a finite-element method of predicting fields 

in the air space, allowing for complexities of boundary geometry. To 

economise in computer store, it is assumed that all functions vary sinu- 

soidally in the peripheral direction, so that the 3-dimensional problem can 

be treated by a "quasi-3-dimensional" method, involving radial and axial 

distances only. The solution is obtained as a scalar potential distribution, 

from which the component flux densities can be derived. 

Following proving of the method by application to problems for 

which analytic solutions exist, flux density distributions have been calcu- 

lated for a short-core replica of a 500 MW generator and a production 660 MW 

generator. Agreement with test results is good. 

Finally, the value of the method has been demonstrated by appli- 

cation to problems arising in the end-zone design of superconducting field 

and fully slotless generators.
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CHAPTER 

1.1 General Remarks 
  

The increasing demand for electric power has led to the pro- 

duction of turbine-generators of larger unit rating. The dramatic 

increase in turbine-generator capacity over the last thirty years is 

shown in Fig. 1.1: 
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In 1940, the rating of new sets was 30 MW; by 1960 this had 

risen to 270 MW, and at present 660 MW units are being commissioned in 

the United Kingdom, with serious thought being given to 1300 MW sets. 

The increase has been made possible by major advances in design, 

particularly in the cooling of windings: this has led to a decrease in 

the active weight per unit power, also shown in Fig. tet. 

The improvements made in cooling have allowed the electric 

loading to treble in the last ten years, and normal design methods have 

11.



12 

not always been adequate to deal with the problems associated with the 

higher loadings. 

Problems associated with the Rnd-region 

cular 

cause 

The higher outputs and electric loadings have created a parti- 

design problem in the end-region, shown in Fig. 1.2. The main 

is the increase in the fringe and leakage fluxes, due to the 

larger air-gap and stator currents respectively. The increase in 

fluxes has the following effects in the end-region:- 

Gi) 

(i) 

(aii) 

The eddy current losses in the stator core end-iron are a conse- 

quence of end-region fluxes normal to the core end-surface. 

These losses are mainly associated with the toothed region, since 

the core-back portion of the laminations is usually protected 

from the fluxes by a copper screen, as shown in Fig. 1.2. 

Excessive temperatures have occurred in the stator core due to 

these fluxes, and in some cases partial rebuilding of the core- 

end has been necessary. The losses increase still further on 

leading power factor operation, as is now required, at times, for 

turbine-generators connected to the 400 kV system. 

The end-winding forces, which are proportional to the product of 

local leakage flux density and current, and hence to (current) ?, 

have increased considerably with the higher electric loadings. 

The forces exerted on the end-windings of a 500 MW generator, 

under short-circuit conditions, can be as high as 400.ki/m, which 

is about 7 times the value for generators built ten years ago. 

As a result of these exceptionally large forces, and fatigue 

failures associated with the much smaller normal load forces, the 

end-winding bracing system has had to be re-designed. 

The end-winding leakage reactance contributes about 25% and 15% 

to the sub-transient and transient reactances respectively, and 

is directly dependent upon the leakage flux distribution. . It is 

important that these reactances are accurately known, so that the 

12.
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(iv) 

to be 

maximum switchgear ratings and the system stability can be 

determined. 

Losses caused by eddy currents flowing in individual strips, and 

between strips, of the stator winding will increase as a result 

of the higher leakage fluxes. 

If the eddy current losses, end-winding forces and reactances are 

controlled, it is essential to derive accurately the flux distri- 

bution within the end-region, allowing for the distributed winding, 

geometrically complicated boundaries, different types of boundary 

conditions, and internal conducting members, such as screens, clamping 

plates, etc. 

1.3 Review of Previous Work 
  

1.3.1 

1.562 

General 

There are several possible approaches to the solution of the 

field distribution within the end-region, viz.: 

(i) analytic 

(ii) Analogue 

(iii) Numeric 

Analytic 

The mathematical approach involves the solution of Laplace's 

equation between two concentric cylinders, normally the outer 

casing and rotor shaft. Some examples are described in 

Refs. 2- 9, where the main differences in approach are in the 

treatment of the stator and rotor windings and the surface 

boundary conditions. 

4n early contribution was made by entre) whose object was 

to calculate the end-winding reactance of turbine-generators. He 

used the scalar magnetic potential approach, and the winding 

currents were represented by current sheets having axial and 

peripheral currents only. These currents were simulated by a 

potential difference between the surface of a magnetically 

14.



insulating shell, which divided the end-region into two zones. 

The potential difference distribution was represented by a double 

Fourier series, as the separation of variable method was used to 

solve Laplace's equation for the potential in each zone. All 

outer boundaries were assumed to be infinitely permeable, except 

the stator core-end-surface, which was treated as a screen to 

magnetic flux. 

344 
Honsinger used a similar treatment to establish relation- 

ships for the end-winding eae tares of an induction motor; 

however, all boundaries were treated as infinitely permeable, and 

the results were presented in the form of generalised curves. An 

approximate allowance was made for finite conductor dimensions. 

Reece and Pramanik? followed e similar approach, but pointed 

out inaccuracies in both the Smith ana Honsinger treatments of 

the potential difference set up by the current sheet. They 

derived the flux distribution within the end-region, using a 

scalar potential approach with all the outer boundaries treated 

as infinitely permeable; it was mentioned that the core-end- 

surface could also be treated as a screen to magnetic flux. Air-— 

gap fringing was allowed for approximately by the use of 

fictitious coils on the core-end-surfaces. 

Hammond and aenwortye used a vector potential approach to 

give the potential distribution due to "coils" with axial, radial, 

or peripheral currents. The windings were modelled from a series 

of cylindrical- and disc-shaped coils, and their individual 

fields added to give the resultant. However, in this approach, 

all iron boundaries were ignored. Tegapoulos" extended this work 

by allowing approximately for all containing boundaries. 

Lawrenson® determined the flux density within the end-region 

by summing the contribution of small elements of the end-winding, 

using the Biot-Savart law. This technique allows the end-winding 

15.



1.5.3 

shape to be treated accurately, but it is difficult to take 

account of boundaries other than the plane formed by the core- 

end-surfaces. The method is essentially a computer method, 

since numerous calculations are required to determine the density 

within the end-region. Tegapoulos? reduced the number of calcu- 

lations required by approximating the shape of the end-windings. 

Analogue 

Analogue studies have generally used an electrolytic tank or 

conducting paper (teteneitoay: but hand flux-plotting techniques 

have been used, for example, by Darrieus !?, Wanonesters | 

modelled the assumption of sinusoidal variation of all functions 

around the periphery by a wedge-shaped electrolytic tank, with 

source voltages on the sides of the wedge. The screen and 

clamping plate were represented, and losses in the screen were 

obtained. Although Teledeltos paper has been used for many years, 

Hawley et ig were the first to publish any extensive work on 

its application to the end-region of the turbine-generator. 

Results showed reasonable agreement with test values. 

Overreti'? improved the analogue representation of the end- 

region by simulating the magnetic non-linearity of the stator 

core and eddy currents with a network consisting of semiconductor 

diodes, capacitors and resistors. 

Numeric 

‘ With the availability of large fast digital computers, 

numerical methods have tended to replace both the analytical and 

the rather cumbersome analogue methods. One of the first 

attempts to use the numerical approach for ine end-region studies 

was made by Sarma et ale The paper describes a 3-dimensional, 

vector potential solution for the distribution of fluxes in the 

end-region of a homopolar machine. Although the boundaries and 

the excitation windings were represented reasonably accurately, 

16.



it was difficult to specify the boundary conditions on the outer 

surfaces, because of the use of the vector potential. A major 

disadvantage of shis approach was the large number of nodes, 

about 12,000, which were needed to represent the end-region in 

detail. This proved expensive because the computer times 

involved were large. 

Okuda!? made use of Winchester's assumption of sinusoidal 

variation of all functions peripherally to reduce the numerical 

study from three to two dimensions. This greatly reduced the 

number of nodes required to detail the end-region, as only the 

radial-axial plane needed defining. A finite-difference approach 

was used to determine the vector potential distribution, but the 

outer boundary conditions had to be simplified, as in the work of 

Sarma et al. This problem was overcome by meaven oh who formu- 

lated the same problem in scalar potential terms. 

1.4 Solution Method selected 

If larger unit rating turbine-generators are to be built with 

confidence, designers must be able to determine accurately the distri- 

bution and magnitude of the end-zone fluxes. 

Analytical approaches have proved useful in the past, but they 

can only deal with problems with simple boundaries, and therefore, in 

general, cannot give the accuracy required. Whilst analogue methods 

can readily deal with mixed boundary conditions and irregular 

boundaries, they tend to be expensive, and an experienced operator is 

essential. The numerical method is normally more convenient than the 

analogue method, and complicated boundaries and internal members can be 

represented without much difficulty. Although the full 3-dimensional 

numerical solution of the end-zone would be very expensive, substantial 

economy can be obtained by using Winchester's assumption of sinusoidal 

variation of all functions peripherally, i.e. by a quasi-3-dimensional 

approach. This reduces the problem to a 2-dimensional study. 

17.



The quesi-3-dimensional scalar potential numerical approach is 

the basis for the work described in this thesis, with the finite- 

element method being preferred to the finite-difference method used by 

Nomura. The advantages of the finite-element method are: 

(i) Regions of particular interest, such as the stepped portion of 

the stator-core end-surface, have to be greatly refined er as to 

determine accurately the rapidly varying distribution of flux 

densities caused by irregularities in the boundary surfaces. 

This refinement is not needed in less daeuitent regions, and can 

be avoided by the finite-element method, as shown in Fig. 123i: 

No. of \/ | No. of ' ' 

L nodes = 255 1 , to ee nodes = 141 
  

        
  

  

  NY
 

        

  

      

    

  

      

Pig 153 Finite-element Finite-difference 
representation representation 

(ii) Non-radial and axial boundaries can be easily represented without 

special treatment. 

(iii) Iron-air boundaries can be simply represented by allocating the 

appropriate permeability to the elements on either side of the 

boundary concerned. 

1.5 Purpose of Thesis 

The thesis describes the development of a method for determining 

the distribution of flux densities in the end-region of a turbine- 

generator. Although vector potential and flux density solutions are 

considered, the method chosen is a quasi-%-dimensional scalar potential 

formulation, solved numerically by a finite-element approach. 
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Boundaries are treated as being infinitely magnetic or infinitely con- 

ducting. Internal regions of finite permeability are also represented. 

The method has been tested on problems for which analytical 

solutions are available. As a further check, end-zone flux densities 

calculated by the method have been compared with some experimental 

values obtained on a replica of a 500 MW turbine-generator and a 660 MW 

production generator. The variation with power factor of flux density 

normal to the core-end-surface of a 660 MW generator is given. 

The flux densities normal ss the stator-core end-surface of 

superconducting field and fully slotless generators have also been 

obtained using this method.



CHAPTER 2 

THE END-REGION AND ITS MATHEMATICAL REPRESENTATION 

2.1 General 

It was concluded in the previous chapter that a quasi-3- 

dimensional numerical treatment is the most suitable for determining 

the flux density distribution in the end-region of a turbine- 

generator. 

Before establishing the numerical ‘form of the electromagnetic 

equations, the end-region will beldescrsbed® and the assumptions needed 

to enable mathematical modelling discussed. 

2.2 End-region Description 

The end-region, shown in Fig. 1.2, contains the stator and rotor 

end-windings, and is bounded by the stator and rotor end-surfaces, the 

shaft, the outer casing, and the end cover. (In this study, the end- 

region is regarded as extending into the air-gap, to a position where 

the axial flux is zero, i.e. where the effect of fringing is 

insignificent. ) 

The main components within the end-region which influence the 

flux distribution will be described in the following sections:- 

2.2.1 Stator winding 

The stator windings are normally of the 2-layer type, short- 

pitched, with two conductors per slot. The coil-ends are 

~— 
  

p-
 

Po
le
 

pi
tc

h 

  

  

      

    

  ; Rotor i 
oe = & : 

Fig. 2.1: Stator winding end-turn 
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Fig. 2.3: Rotor end-winding of a large turbine generator 

Ts



252.5) 

comvosed of short straight sections where the coil-sides emerge 

from the slots, joined by involute sections lying on the surface 

of a cone. Fig. 2.1 shows a developed view of a single stator 

conductor. 

The complete assembly of conductors forms the conical shape 

as shown in Fig. 2.2. : 

Winding support members may be ignored, since they are non- 

magnetic and, in the main, non-conducting. 

x 
Rotor winding and end-ring-- 

Fig. 2.3 shows the layout of the rotor coils, which are of 

the concentric type, lying on a cylindrical surface, and 

approximately rectangular. 

The rotor end-windings experience large centrifugal forces, 

and movement radially outwards is restrained by a large metallic 

cylinder (the end-ring) normally shrunk onto the rotor end; the 

other end of the end-ring is supported on a magnetic ring (the 

end-ring cover). The end-ring is normally constructed from a 

non-magnetic material, to reduce rotor leakage and end-zone 

fluxes. 

Clamping plate and support fingers 

The combination of clamping plate and support fingers is 

used to compress and hold rigid the stator core, so as to reduce 

the core vibration set up by the main flux. Fig. 2.4 shows the 

      

  

  

position of the support fingers, | 

which are recessed into the inner Stator lamping 

core 1 plate 
rim of the clamping plate and follow i! 

Bottom of | t 
the profile of the stator teeth, as “Stator * 

f slot | {Support 
shown in Fig. 2.5. The fingers are fingers 

  

constructed from a non-magnetic 
Fig. 2.4: Support finger 

material, such as Nodumag, and are arrangement



  

Fig. 2.5: Support fingers on a large turbine generator 

  Fig. 2.6: Clamping plate on a large turbine generator



extended to the full depth of the stator core, behind the 

clamping plate, by thick radial members. 

Fig. 2.6 Rpaseatee the arrangement of clamping plate and 

support fingers. The clamping plate may be of magnetic or non- 

magnetic material. 

2.2.4 Screens 

To prevent flux penetration fate the end-laminations and the 

clamping plate (it magnetic), a copper screen is shaped around : 
. 

the clamping plate, as shown in- 

     

  

  

Clamping 
Fig. 2.7. This tends to deflect plate 

the flux away from the stator- Stator 
core Screen 

core end-region, and reduces the 

overall loss in the structural Support 

{| | fingers 
members, although substantial cums 

losses occur within the screen 

itself. Fig. 2.7: Screen arrangement 

Losses in the clamping plate can also be reduced by a high 

resistivity laminated flux diverter. This construction has been 

used by Westinghouse, but gives increased end-winding reactance. 

2.3 Mathematical Representation of the End-region 

2.3.1 General description 

The method of end-field determination used in this thesis is 

based on the work of Nomura, but is solved numerically by the 

finite-element technique. 

The reduction of the end-region from three dimensions to two 

dimensions is based on the assumption that the excitation 

currents, flux densities, etc., are sinusoidally distributed 

around the periphery. The validity of this assumption has been 

investigated experimentally by measurement of flux density around 

the periphery of the end-winding of a short-core replica of a 

24.
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500 MW turbine-generator. The variations of measured flux 

densities normal to the inner stator winding surfaceare shown in 

Fig. 2.8, andare*reasonably sinusoidal: 

Axial distance 
from core-end 

. Axial distance 
from core-end 

  

  

   
= 0.1m = 0.4m 

5.0 

245 

0 90° a 49 

-2.5 

-5.0 =5.0 

-7.5 12D 

Fig. 2.8: Measured flux densities normal to the 
inner surface of the stator winding 

This assumption reduces the problem to a 2-dimensional 

numerical solution of scalar potential within the end-region 

shown in Fig. 2.9: 

  

  

     Clamping 
plate 

      

Stator 

end-winding      

  

   

Screen 

  
Stator 

    a eer ree er Ge 
End-ring a    
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cover     

  

   

Rotor end-winding 
  

  

“Rotor shaft. 

Fig. 2.9: Outline of end-region for solution purposes 
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The electromagnetic equations may be formulated in terms of: 

(a) Vector potential 

(b>) Flux density 

(c) Scalar potential 

2.3.2 Vector potential solution 

2.5.3 

2.5.4 

The vector potential approach was initially selected so that 

the excitation windings could be accurately represented, but a 

full analysis, given in Section 8.1, brought several 

disadvantages to light: tuees are: 

(i) Three solutions are required to obtain the components of 

vector potential, which give directly the values Bo, 3, and 

B.. 
6 

(ii) To calculate Ays a gradient tern, BA, /e2, is needed so that 

discretisation errors from the A, solution are introduced 

into the determination of AL 

(iii) The boundary condition on the external surfaces cannot be 

defined in terms of any one component of potential, and, 

unless an iterative scheme is used, approximations are 

necessary. 

Flux density solution 

Formulation in terms of flux density eases the problem of 

specifying boundary conditions, but leaves the other 

disadvantages of the vector potential approach: this was not 

pursued further. A brief description of this approach is given 

in Section 8.2. 

Scalar potential solution 

The etieection of the scalar potential approach is the ease 

with which boundary conditions can be specified, and the economy 

resulting from the need to determine only one distribution. A 

disadvantage of the method is that current-carrying conductors 
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cannot be as accurately represented as with the vector potential 

approach, but it will be shown in Section 3.4.1 that this diffi- 

culty can be satisfactorily overcome. This was the method chosen 

to determine the distribution of fluxes within the end-region. 

2.3.5 Equation of the end-region 

In addition to the assumption of sinusoidal variation peri- 

pherally, the following assumptions are needed to enable the 

problem to be represented in a mathematical form:- 

(i) Boundaries are represénted as 

either (a) infinitely permeable (the Dirichlet condition), 

or (bo) infinitely conducting, i.e. 3U/én = 0 (the 

Neumann condition). 

(ii) Surfaces with induced currents are treated as infinitely- 

conducting surfaces. 

(iii) Saturation of magnetic structures, such as the stator core, 

clamping plate, etc., is ignored. 

Since there are no magnetic sources within the end-region, 

the divergence of flux density is zero, i.e. 

DivB = 0 

In cylindrical co-ordinates, this expands to: 

  

= 0 Dereon (2 ait) 
; s 

where: B =B_ sin pd 
Zz. r 

A . 
Be BL sin pd 

A 
Bo = By cos pé 

p = number of pole pairs 

Scalar potential UY is related to B by: 

H - grad U! ; eaueree (252) 

Molr H aajaieoatey Ces) wl
 

t 
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From Egns. (2.2) and (2.3) the following are derived:- 

eu! 
Boe) = Hollis samseencos 4) 

Hole BU! : By = - Mt 5 serie aee(ec5) 

a 

eee = How SE seinen (ae6) 

Eqns. (2.4) - (2.6) are substituted in Fan. (2.1) to give 

the scalar potential equation for the end-region as: 

2yr 1 » 92ye 2yr 

pone | So oe +450 oe) =_.0 = ar? * r Or * re 80 ++ (2.7)   

The term HoHr can be ignored if the region is homogenous, 

but in the end-region there are regions of different permeability, 

and for generality pour is retained. 

The scalar potential, U’, can be written as: 

U’ = U(r, z) sin pe 

Eqn. (2.7) can then be reduced to its quasi-3-dimensional 

form, viz.: 

elu 4 ou pe a} Holr fey. ig nye i =<50) ean (aes) 

This is the partial differential equation which describes 

the potential variation in the end-region. 

2.4 Conclusions 

The scalar potential approach has been selected to determine the 

flux distribution in the end-region because of the ease with which it 

can represent boundaries and the economy obtained in having to solve 

for only one component. A quasi-3-dimensional relationship has been 

derived for the scalar potential in the end-zone. This relationship is 

to be solved numerically by the finite-element method, and the 

following chapter details the development of the numerical equations. 
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CHAPTER 3 

NUMERICAL FORMULATION 

3.1 General 

The partial differential equation describing the end-region 

scalar potential distribution has been derived in the previous chapter. 

This chapter derives the corresponding numerical equations for the 

finite-element solution, and describes the treatment of excitation 

windings and boundaries. 

3.2 Finite-element Theory 

5.2.4 Variational principle 

The finite-element approach uses the Calculus of Variations 

to establish, from the governing differential equations, an 

integral, X, which, when extremised, gives the correct solution. 

The integral, which is a function of the unknown poate 

potentials, is known as the "functional". 

This can be written for the end-region problem in scalar 

potential terms as: 

ze 
Xo [If * fs. Gas Ul a oe aj 7 oP de 6 alight (3.1) 

ONG 

The equation for the function inside the integral is 

obtained from the governing differential equations by using 

Euler's theoren. 

This theorem, which is derived fromthe Variational Principle 

(Frank1in'”), states that the volume integral X will have a 

stationary value if the unknown function, U(r, z, 6), satisfies 

the following equation:- 

er 

Determination of the functional for the end-region 

The functional for the end-region problem is determined from 

Euler's theorem, as described in Section 8.3, giving: 
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= [f[fuouel (aur , four , 1 (aur Xe if 2 [ ar) + au) + F(R vr dr dz d6 .... (3.3) 
Vv. a J 4 

If correct, this should reduce to the energy equation for 

the end-region: this can be verified by recasting Eqn. (3.3) in 

terms of flux density, i.e.: 

Gage ee 
1 Or) * “Cour ¥ 

ane are 

(82) " Gour x 

2 

i_fery 2 %6 
pe 1.80 (opr )* 

Therefore substituting in Eqn. (3.3) gives: 

2 2 2 B B B 
Pa Tt. = + a + 8 Na eaeeeo 

I}! (2G@our) * 2uour) * 2(vonr 5 
v 

which is the stored magnetic energy of the end-region. 

Egn. (3.3) is the functional for a fully 3-dimensional 

region, whose scalar potential distribution is described by 

Egn. (2.7) However, the assumption made in Section 2.3.1 allows 

the end-region equations to reduce to the 2-dimensional form of 

Egn. (2.8), giving: 

Ti (eure Gane pt er] eee i Hole e oe! epee ae r dr dz ae ee (S24) I ie | ar { 82} r* | 

(The term fo introduces a constant, 7, in the above equation, 

but can be ignored, as shown in Section 5.5245) 

3.2.3 Extremised functional 
  

The functional, Eqn. (3.4), is extremised by differentiating 

it with respect to the variable, U, and equating to zero: 

oe i Wour 2.) (aur , (aur , ve AL au = gua |ilory)  josy) tah Y | aa ceE= 10 _ veeiseee (S25) 
The problem becomes one of deriving a variation of the 

unknown potential, U, in terms of r, z and 6, such that it satis— 

fies Eqn. (3.5). This variation is solved numerically by the 
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finite-element method, and the following sections describe the 

development of these numerical equations for the end-region. 

3.3 Numerical Formulation? 

3.3.1 General 

The finite-element approach for determining the potentials 

requires a longitudinal section through the end-region to be sub- 

divided into elemental areas, such as triangles, rectangles, etc. 

A potential variation, defined by the corner node co-ordinates 

and potentials, is assumed ‘over the elements. The numerical 

representation of the potential distribution is substituted into 

the functional equation, (3.4), which is then extremised with 

respect to potentials at all nodes, giving the numerical form of 

Eqn. (3.5). This results in an equation for every node, and the 

potential variation is determined by solving 'n' simultaneous 

equations with 'n' unknowns. 

3.3.2 Element sub-division 

The element used to sub-divide the end-region can be of many 

shapes, the simplest form being a triangle. This element is 

flexible enough to fit most irregular boundary shapes, and finer 

elements can be readily used where the potential field varies 

rapidly. Because there are only three nodes to consider, the 

  

   

    

  

   

  
  

    

General 
Stator triangle 

a i,j 

Stator r 
end-winding 

Rotor | 
end-—winding 0. Zz     
  

  

Fig. 3.1: Sub-division of an end-region by tri 
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3.3.5 

computational time required to determine the coefficients 

associated with the element is less compared with other types of 

element. This element is the type used in solving problems 

arising within this thesis, and Fig. 3.1 shows the triangular 

sub-division of an end-region. 

Derivation of potential variation over an element 

It is necessary to assume a function to describe the 

variation of potential within the element. This function is 

termed the "shape function®, and is represented by a polynomial 

of an order consistent with the number of nodes available along 

any edge of a triangle, e.g. a linear polynomial requires two 

nodes per side, a quadratic three nodes per side. The higher the 

order of polynomial, the more complex become the numerical 

equations, but greater accuracy is obtained. Therefore, a 

balance of cost against accuracy must be achieved, and for a 

2-dimensional study with simple boundary conditions, the linear 

polynomial suffices. 

The linear variation of potential over a triangular element 

may be written as: 

Ui = a + Gar + asz eniatets e 5A0)) 

where a, a2 and as are coefficients related to the nodal 

co-ordinates and potentials of the triangle concerned. These 

coefficients can be derived by substituting into Hgn. (3.6) the 

co-ordinates and potentials at each vertex, giving, for the 

general triangle of Fig. 3.1, the following:- 

U, = @ + Ger. + azz. a iat aoe 

U, = @ + Gar. + 32. 
J J 

Ui, = & + Ger + azz 4 an ae 
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Solving for a, gives: 

  

  

  

a, = 

Therefore: S 

isis U2, - zr) + U(r, - Zr) + U(2.r, - 2,r,) 

2,07; = 7) + a = r;) + 2 5(r; = Em) 

a.Us+aU. +a U 
2 tc a nm 
i 2A 

where: A «= area of the triangle 

{2(r, ate 2, (rn. - r,) + 2 ,(r, ras 

5 2 

a, = eee ra 

a, = 27, 2s 

&. = £2 = 2.x 
n yi ig 

Similarly for a2 and as: 

b.U, + b.U. + dU 
a a he ee rc nm 

ai 2A 

where: b= Zo 2 
i a m 

tbe cai ome 

bo= 4-2 
m A: 5 

and: 

e.U, hielU, + o..0: 
eal ce ii mm 

2A 

wheres 1. =) = 7) 
n J 

CA =e 
SI a m 

33



3.5.4 

Thus, if a1, a2 and as are substituted into Eqn. (3.6), the 

potential distribution within any triangle becomes: 

fa, + bir + o,2)U, + (a, + bor a c42)U, + (a ,+brte zu} 

2A 
  Us 

wale (Sen) 

(a, + bares z) 
where the terms On are called the shape functions 

(n= i, jor n). . 

Numerical equivalent of the extremised functional 

The numerical equivalent of Eqn. (3.5) is obtained by sub- 

stituting Eyn. (3.7) into the functional equation (3.4) and 

extremising with respect to potentials at all nodes. Thus 

extremisation at node tit of the general triangle in Fig. 3.1 is 

obtained by differentiating with respect to Ui summing similar 

equations formed from connected triangles with node $7*) ‘end. 

equating to zero, i.e.: 

ee 
- Aue no Sepsis oS eS)) 
cu 1 

where y represents the summation of all connected triangles. 

The following example illustrates this: 

Consider node ‘if in Fig. 3.2, then the complete variational 

equation for this node is: 

OX, , Ww, 0X4 ne OX+2 + Oko 
ou, “ oU. " aU. * OU. or, ou. 
ae ab i i i: Be 16nj 2 

axe : 0 : - & 
Fig. 3.2: Element array 

1 c 

15 
iw 
12 
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_ The variational becomes, when expanded: 

a >, ff aU 8 (ay) , Wa fav) as lor j = ou; i, or ou; da OU. Zz J 

  

which gives, when substituting for U from Ayn. (3.7): 

ou. 
i 

= [[eeP (o,0, + dU, + d,U,) b 

‘i 7 & 

+xr(c.U, +eU,+¢U)c, +P(a. + dr + c.2) 
a. oh ae nn 1 x a: x 1 

x {(s, + birt e527) U, + (a, + bart °j2) uU, 

+ (a nye + eye) ty] ar a 
m m m m 

+ the contributions from the other associated triangles 

= 0 vousaiss (959) 

The integral over the area of the triangle is evaluated, as 

described in Section 8.4, and leads to the following numerical 

equation :- 

axe Hobr 
9 (2A)e fooj*F A+ S58 Ay pa, w+ pb, 3A 

+ pre,* S+ 2p? by a,4 + 2p a,c, Q+ apd; ey ZA) 

XU, + (db, db, r A+ ce, ¢, 7 A+ pea, a, W 

4 PE, bg he pr ec cass ps. be +p a, doh 

+p? dy co, % A+ pec. b, 2 A+ pre, a, Q 

HI
 2 A oe 2 +p 8,0; Q) U, + (b, b, +e, ce rA+ pa aw 

+p*b, b rA+pe,c S+p b.a A+p?a,b A 
Pe me Pes on P in P im 
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2 = 2 i 2 +p boc, 2A+ P ofA ec, a, Q 

2 oe op . 
imil 6x: ss s fi ThP a, - au, + similar pression: ‘or 

other associated triangles 

oe, One cease Set 0) 

5 Bs r, +r, +2 
where; Q = [[2 ax dz r= +2 

fas 2 
1 Bt 2+ 3,4 2 

We [te az Po een 
r . 5 

. 

s 
2 

[[F aes 
r 

(From Eqn. (3.10) it can be seen that if one of the connecting 

triangles has a different p,, then it is wrong to ignore this 

term, whereas the fo and the 7 from the fe are common to all 

triangles, and can be ignored.) 

3.5.5 Development of matrix equation 

An expression similar to Eqn. (3.10) is obtained for each node 

within the end-zone, so a set of simultaneous equations of nt 

unknowns are formed which can be represented in matrix form as 

  

          
  

follows :- 

414 Ate Us Vs 

B24 Be2 Up 

az4 a3j 

S51 ete ars ers. . Ui} = Va 

Ann Un Vn 

Coefficient array Unknowns Source 
array 

The matrix formed from the finite-element expressions is 

symmetric about the leading diagonal, as illustrated by the 
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following example:- 

An equation similar to (3.10) 

is formed when extremising 

about node 1 of Fig. 3.3. 

This can be written in the 

  

following terms as:- 

a, Uy + ay2U2 + ay5U3 + a,4U, + a, Uy + awolyo + AisUys = 0 

where a,, is the leading diagonal coefficient, and Bye eee Bays 
. 

are the sub-coefficients. Similarly, when considering node 2: 

821i + az2U2 + aesUs + A277 + 82,50, + &2,45U;5 = O 

where az2 is the leading diagonal coefficient, and 8245 B25 oe 

@2 45 are the sub-coefficients, but because the coefficients ayo 

and az, are both dependent upon the same nodal positions 1 and 2, 

it can be easily shown from Hyn. (3.10) that: 

a3, = Be 

and, similarly: 

83, = 5, etc. 

This gives a symmetric matrix which facilitates the solution 

process. 

The source terms of the matrix are derived from the end— 

winding excitation, and from nodes which form the boundary 

surfaces. These terms are discussed in the following section. 

3.4 Winding Representation and Boundary Conditions 

3.4.1 Stator and rotor. winding currents 

The scalar potential approach cannot treat the finite 

thickness of the conductor, but assumes that the excitation 

winding can be represented by an infinitely thin current sheet 

situated at the mid-depth of the actual conductor. (The depth of 

the conductor can be approximated by a series of such current 

sheets distributed across the depth.) 
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“The current sheet is represented by an infinitely thin, 

magnetically insulating shell having a scalar potential 

difference (AU) between the shell surfaces. This is illustrated 

in Fig. 3.4 by the example of a single coil per pole. The coil 

is represented by a magnetically insulating shell, and the coil 

current is allowed for by making the outer and inner surfaces of 

the shell differ in potential by an amount corresponding to that 

produced by the coil. This is shown in Fig. 3.5, where the peak 
. 

fundamental potential difference is given by: 

  

      

      

  

  

  
    

  

Anne 
AU « a I sin pd 

Scalar 
oo” S potential 

difference | | 
AU ae 

ZA ee 

Single Sn A a 
coil/pole a 

Magnetic 

shell 
aA 3 be Je 

Fig. 3.4: Single coil per pole Fig. 3.5: Scalar potential equivalent Fig. 3.4 g- per pi q 
of the single coil 

The expressions for the ampere-turn distribution of the more 

complex stator and rotor end-windings of a turbine-generator have 

been derived by Negapoulos ~, and are as follows:- 

(i) Stator winding 

The expression for AU 

is derived for a single 

current sheet, representing 

the 2-layer end-winding, as 

  

shown in Fig. 3.6. 

The peak stator ampere-turns for the evolute section are givenas: 

ie 2.7 + Tong + Ton + Bq + 9in lexs, [oe as)) 
io poles 2 dw 3 

Geenccon lai) 
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(43) 

(iii) 

axial length of straight portion of winding 

where: I = stator terminal current rms 

an = turns per phase 

Ki = distribution factor 

p?! = coil pitch factor _ 

ds = 

daw = axial length of evolute portion of winding 

Similar expressions, having sine and cosine components 

respectively, can be derived for the individual layers. 

. 
This simple extension is discussed ‘in Section 8.5. 

Rotor windings 

The peak rotor ampere-turns 

erEeZ Cys) Late la aia is 
22 az 

(AvT/pole) Riots eet 

rotor fundamental mmf 
oe ect rotor peak mnf 

i, = rotor current 

qT = rotor turns per pole 

dr = 

winiing 

axial length of bent portion of rotor 

Numerical representation of winding currents 

To represent the stator or rotor currents in finite- 

element form, nodes on triangles (Fig. 3.7) lying along 

either side of the magnetically insulating shell must not 

be linked in any way, except by the scalar potential 

difference AU. Thus: 

uy (outer) = UL (inner) tau 

(+ or - is used, depending on 

current polarity): UL and u 

are potentials of adjacent 

nodes on either side of the 

insulating magnetic shell used 

to simulate the current sheet 

39.   
Fig. 3.7: Numerical represen- 

tation of winding



3.4.2 Outer boundary - except air-gap bowdary line 

The nodes on the outer boundary can be expressed as a known 

scalar potential (the Dirichlet condition) related to the ampere- 

turns appearing across the air-gap. (The exception to this is 

where the boundary is treated as a screen.) 

(i) Stator excitation only 

(ai) 

have a maximum WS Po eae 
: U=0 

  

In the air-gap region the difference of potential 

across the. gap will be equal to the peak ampere-turns pro- 

duced by the stator winding. Thus the stator surface up to 

the winding can conveniently be defined as having a 

potential equal to the mmf present on the straight surface 

of the winding, whilst the other surfaces will have a zero 

potential. The potential difference across the winding 

surface will fall off in accordance with Eqn. (3.11). 

  

Fig. 3.8 shows that the ; U0 

U=01 Stator end-winding 
boundary line A-B will 

~   potential specified, AB 

and the boundary C-Da D 

U= o| U=0 
zero potential. = 

Fig. 3.8: Outline of end-region for 
stator only excitation 

  
Rotor excitation only 

Similarly, the peak ampere-turns produced by the rotor 

will set up a difference of potential, Eyn. (3.12), across 

the air-gap. Again, one surface can be expressed as a zero 

potential, and the other (rotor surface) assigned a 

potential equal to the rotor ampere-turns. The potential 

difference across the rotor winding falls off, as defined by 

Egn. (3.12). 
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3.4.3 

3.4.4 

-Fig. 3.9 shows the v=0 

maximum potential 

     
  

boundary as line C-D, Tiseo v=0 

and the zero in 
Sal 

zt * Ue F Rotor potential line as t a nm end vind ne 

A-B. B] vU=0      
Fig. 3.9: Outline of end-region for 

rotor only excitation 

Air-geap boundary line ~ 

The air-gap boundary line is taken at a position so far 

removed axially from the ends of the core that 3 can be taken as 

zero. 

ez Z 

= 0 

It can be shown that the side of the triangular element 

lying along this type of boundary will automatically adopt the 

condition of s, = 0 if the nodes are treated as unknown 

potentials. 

Screens 

Since the screen is assumed to be infinitely conducting, the 

flux will flow parallel to the screen surface. The normal flux 

density is zero at this surface therefore. 

_@ 4 = 
on n 

=O (equivalent to an infinitely conducting surface) 

  

Flux penetration into a practical § 
oe 
H screen can be allowed for approximately 2 

by situating the sides of the triangle, 
Yi 

representing the screen boundary, at a D ane 

depth equivalent to d/V2, as suggested Fig. 3.10: Numerical 
19 treatment 

by Dreyfus ~“-see Fig. 3.10. of screen 
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3.4.5 

3.4.6 

The structural components which are represented by the 

screen-type boundary within the end-region are those members with 

induced currents circulating in them. For the fundamental field 

the copper screen, clamping plate and the aluminium baffle-guides 

on the outer boundary can be approximated to by a screen surface. 

‘For the harmonic fields, most conducting surfaces within and 

enclosing the end-region are treated as screens. 

Internal iron members 

These are structural members within -the end-region which can 

be treated as magnetic components with negligible eddy currents 

circulating within then. 

(i) Infinitely permeable iron, u = 0 

The flux flows normally into this type of member, thus 

the tangential flux density is zero, 

i Bu ise. - 3 ae 0: 

This condition is obtained within the finite-element 

solution by allowing all nodes on the surface to have the 

same scalar potential value. 

(ii) Finite permeable iron, u = your 

The correct density boundary conditions at the iron/air 

interface are given simply by specifying elements within 

this region and allocating the finite permeability to the 

elements. 

End-rings 

As the end-rings are normally non-magnetic, they only need 

consideration when investigating stator-produced harmonic fields. 

Magnetic end-rings would be represented by a region of finite 

permeability. 
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3.5 Conclusions 

The numerical equations used to determine the scalar potential 

distribution in the end-region have been developed from the finite- 

element approach. Possible ways of dealing with the excitation and 

boundary conditions have been discussed. 

From the numerical study of the end-region problem, a large 

number of simultaneous equations are formed; it is the aim of the 

following chapter to look into possible methods for solving these 

x 
equations. 
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CHAPTER 4 

   SOLUTION OF LARGE SPARSE SYMMETRICAL MATRICES 

4.1 General 

The finite-element determination of the scalar potential in 

turbine-generator end-zones leads to a large set of simultaneous 

equations of the type given by Eyn. (3.10). In matrix form they may be 

written as: 

  

  

          
  

aq, Bip U; V4 

S21 fa U, 

as, 855 

a Bi 23 ers. Uy ii, Vi 

aan a. Us 

Coefficient array Unknowns Source 

array 

The coefficient terms, Cia are determined from the algebraic 

expressions associated with the unknown terms, U, in Eqn. (3.10), and 

the source term coefficients, Vi, are formed from the excitation and 

boundary conditions of the end-region. 

The coefficient matrix is symmetric about the leading diagonal, 

and as the numerical formulation produces relatively few non-zero 

coefeicients: the matrix is said to be sparse. 

The following sections briefly discuss possible methods of 

solving large sparse symmetric matrices, and describe the method 

selected for the present study. 
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4.2 Types of Matrix Solution 

4.2.1 

4.2.2 

4.2.3 

Iterative methods 

Iterative methods, of which Gauss-Seidel iteration, 

successive Scien and line iteration are examples, have 

been used extensively for solving large sparse matrices. They 

have the advantage that only the non-zero coefficients have to be 

stored, so that large matrices can be solved on a relatively 

small computer. However, the disadvantages are that the number 

of iterations required for a reasonably accurate solution is 

dependent on the method of iteration chosen, the initial starting 

values, and the convergence characteristics of the equations. 

Direct methods 

Two methods for solving the matrix equation, (4.1), are: 

(i) Transforming the matrix equation, such that Ca ~x= BI 

becomes x = fa] : [a ae 

(ii) Eliminating the unknown values, x, until all the 

coefficients below the leading diagonal are zero: the 

values, x, are then determined by back-substituting. A 

method using this approach is the Gaussian elimination 

scheme. 

Both approaches are suitable for solution by a large fast 

digital computer, but the inversion process of Method (i) tends 

to give a longer computer time because more arithmetic operations 

are needed. 

Selection of method 

Although iterative methods are more economical in computer 

storage, the direct approach overcomes the uncertainty of con- 

vergence. Past experience has shown that the direct method 

developed by Jennines~, which is a modified version of the 

Gaussian elimination, is an efficient and economical method for 

solving large sparse symmetrical matrices of up to 3,000 unknowns, 
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provided the computer storage is available. The number of nodes 

that are required for an end-zone study ie wilivery to exceed 

1,000. For the solution of more than 3,000 unknowns, the 

iterative solution is far superior. 

To show the advantages of this method, known as the "Compact 

Storage Scheme", it is compared with the Gaussian Elimination 

Method. 

4.3 Gaussian Elimination Method 

  

Let: 

Bia % + Bok + As %y + vee + Aym%m + eee + Bin™m = Vy -.- (422) 
84% + 20% + BpsXs + s0. + Bom%m toes F Bent = Yo «ss (4.3) 

(a) Bat % + 8ne% + Ons%y tee + Ont, + +o # Ye +s (4.4) 

Sia%y Spake Ft Gos %s + ees + ake + cee Ayn my = Jp ose (465) 

be a system of 'n' linear equations, where: 

8, 8,5» 8,5, etc. are the coefficient terms 

X,» %» X;, etc. are the unknown terms 

¥y: Yo» Ys, etc. are the source terms 

The process starts by eliminating x, from all equations but (4.2); 

then x, from all but (4.2) and (4.3), and so on, until only x, is left. 

To eliminate x, from Eqn. (4.3), it is necessary to add Eqn. (4.3) 

to Eqn. (4.2) multiplied by (- 854/844 ), or, in general terms, add the 

mee equation to Eqn. (4.2) multiplied by € @n,/a,,), where m= 2 on. 

Thus the equations of System (A) are reduced to System (B): 

Byghy F Seeks + 8,57, to -- Plat yb beet Bye, = Y; 

(1) (1) (1) (1) Gj 
Bz2% + Bp5%y + +--+ F Oy ,%p + +--+ + 84%, = Ye ce (4.6) 

0 AG 
(B) oe ae we asain as hee mie = y wn (AT) 

G) 4) (1) Gy math} 
Bnet. + AnsXs +--+ + OLX, + oe. + Sethe | Vass (4.8) 
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(1) a 
where: a.. 

id 

| 

@) al, 
Yese ie a ae ape) 

Similarly, to eliminate Xp Tb below (4.6) are added, 
1 é 

in turn, to (4.6) multiplied by (- a,,/a,,), where m = 5 hee). 

The equations reduce to System (C): 

Oe) ieee ease eee oe ar = y, 

Ope) Gr) *() (1) 
BeoX, + &,5%5 + ese + Bok m + coe + BanXy = Yo 

(2) (2) (2) (2) 
(c) B55%, +--+ + AS nXy +--+. + OspX = Ys 

(2) (2) (2) (2) 
ansXs + cee + am m + oe oe aanXn = Yn 

@) (2) @ — @) 
Gs + vee + Bom m + ove + BnnXn = 5, 

1 
(abe Cagis) where: 8; = #5 > (1) 785 

aes 

By 8) a) 
ys Yi -T) Ye Gye4 = 5,149 65.0) 

Bon 
This procedure is repeated until the upper triangular matrix is 

formed as: 

Baas + By a%y + Oy5Xs + eee + yak gy + ee + BynX, = Vy 

(1) (1) (D) (1) (1) Bp aX + B8p5%5 + +22 + Agghy +e + 85,2, = > 

(2) (2) (2) Mi (2) 
435%, $060 t 85 Xm + <8 i+ 8snXp q oT wu 

(m-1) (m-1) 
eontm Nive ey a eon*n = 

© M i 
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This gives: 

(n-1) 

n n-1 

fon 

and x ao to x, can be obtained by back substitution, 

  

(n-2) (n-2) 
7 Ws kces Sere = 
ieew x)= (2) 

ans, nt 

This is repeated until x, 8 determined. 

Although this method is suitable for Soliton by computer, it 

does not make the best use of storage and symmetry. 

4.4 Compact Storage Scheme 

4.4.1 Storage 

This method makes use of the fact that the coefficients 

formed by a finite-element solution give a symmetrically diagonal 

matrix, so only half the coefficients are considered. Of these, 

only the coefficients after and including the first non-zero, up 

to the leading diagonal, are stored. 

In the following example of a coefficient array, Fig. 4.1, 

  

  

  

  

                

the coefficients are stored as otol, olo 

2, 1, 1, 0, 3, 1, 4, 2, 0, 0, 2. The correct o{1}0 2 

V1 OHS 1410 
addressing sequence of the coefficients is 

27 (83) a ee Fo) 
retained by forming a one-dimensional array, ol2tolol2 

whose values specify the position of the first Fig. 4.1 

non-zero coefficient numbered from the diagonal; this is termed 

the "bandwidth matrix", and for Fig. 4.1 can be written as: 

  

Te | Sie | se 
              

The positions of the leading diagonal coefficients in the 

coefficient array are given by summing the bandwidths, i.e.: 

Bandwidth matrix: 15:°515 95) 25-4 
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Running sum: ome, an tome lt (coefficient position 

in coefficient array) 

Coefficients of the 
leading diagonals: ees oe aes 

4.4.2 Reduction process 

The process is best explained by the reduction of the 

following set of four simultaneous equations:- 

  

  

  

  

Bey PSee | Mis | Bix * 

Bo4 | M22 | Bos | Fea *, ; oe 

a3, Bs_ ass as, = b, 

P44) |) See | as | Pan X4 by             
  

The coefficient array is: 

                                
a a a 

as ary 22 3s as ess 44 Bae Bas Bia De BS by DF 
  

In the reduction process, a double asterisk, **, indicates a 

reduced coefficient, and a single asterisk, *, indicates a 

coefficient held in temporary computer storage. 

4.4.2.1. Reduction of the ist row 

The leading diagonal is reduced to unity by dividing 

the first row by 8,4, giving: 

ee Be hh HE 

1 Binoy s ealetd b, 

Bo5 a2 a5 B24 b, 

¥e ago re 
where: ao = ae etc. are the reduced coefficients. 

14 

These double asterisk values cannot be stored until 

other rows are reduced, but the value t/a, , over-writes 

the leading diagonal value, a,,. The coefficient array 

and R.H.S. becomes: 
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  1 | Main Sot f ea 251 Pxe | Gas Seq | Aee | Fes lees | cone,           
  

  

by | by | by | b, | R-H.S. storage         
  

4.4.2.2 Reduction of 2nd row 
  

* 

5, = 8; 

* - . 
&,, is held in a temporary store 

This now releases the storage location filled by az, 

ee 
so the reduced coefficient aqo = By 0/8443 which, by 

* 

symmetry, becomes Bea eaas and over-writes the ao, 

location. In eliminating the x,, the following occur:- 

* Re * 

Boe 8725 121834 

* ex 
Bes = (8o5 84s 824 

* Be € 

Seg = 84 - 844 8 os 

* ms 6% 

by be -— by Aa, " 

* 
The leading diagonal, a,,, is reduced to 1 by 

* * 

dividing by &.., and the value Tags over-writes a5>. 

The reduced coefficients become 

ie * ar * ee * 

a. = 323, 2 = 424, bc ae 
2 * 24 i *? ¥: se * 

Be2 P22 S20 

5 ee ee é. 
Again the values Oo: Sey cannot be calculated until 

Rows 3 and 4 are reduced: the arrays are now as follows:- 

  4 He 4 = I Main 
Bro * | 835 | B32 | S35] Sas | Fa0| a3 | Fae storage 

            
  

  

        

  

ee % 

b, b, | b; b, | R.H.S. storage 

* 

85, | Temporary store       
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4.4.2.3 Reduction of 3rd row 

To eliminate x, and x, from the 3rd row, the pro- 

i . 
cedure is as follows:- 

* 

Os irae 54 

. s * : 
This over-writes a,, in the temporary store, and 

ee * a = bs 

aqs= Pelee, over-writes a;,in the main store. 

* ee * 

Geel ose est ote 

and is stored in the temporary store. j 

This releases the store held by a,,, and, because 

ee * * ee 
of symmetry, 8,,;=832/az2. Thus a2, over-writes a3, in 

the main store: the other values are: 

  

* * eK ee 
eee Ess @siits = ose "25 

* * ee * RK 
Gs4 © 8s, — Ase B44 — S32 S20 

* ee xe 
by, = bs - a3, by - 3p be 

* 
The diagonal a,, is reduced to 1 by dividing 

* * 
throughout by 4,,, and the value 1/ass over-writes a,,. 

ee * * ee * * 

The reduced values are a,, = aa /agey and b, = b,/8, 5. 

RE 

The ay cannot be calculated until the fourth equation 

has been reduced. 

The state of the arrays after the third reduction 

  

a i | Main 
23 41 | 242] 24s |%44! store 

  

  

          

  

* * * * x 

oS
 

oO
 oy
 

uw o a R.H.S. store       

  

* 

a a Temporary store         
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4.4.2.4 Reduction of 4th row 
  

As before, in eliminating xX,» X, and xs the pro- 

cedure is: 

* A * 

@,, = 4,, and over-writes a,, 

aE = a 3 
a,, = —“* and over-writes a 

ayy 41 

aes * ee a * 

B40 = 842 — 84, 8&5 and over-writes a,,, 

= 

aay “ ; 
thus a,,= =e can now be stored in the a location 

#22 

* eRe * HR 3 
Qyy = Ay - 8g, 2y3- Ayo &25End stored in the temporary store 

ee a, 

thus a,, = = can be stored in the a,, location 

835 

* * ee * EE * Be 

Oe = 4g ay aS See Bees Bes B55 

= = - = 
The value 1/a,, is stored in a,, location. 

* ee * ee * ee 

be = by — &y by -— &> BL - &s bs; 

eH : ot = the 
4 " * 

B44 

  

  

              

  

  
  

    

ee 4 xe | xe 4 xe | ee | Re 4 om 
Stare tsi eee (oS es | eee 

* oS 4._} Store 

ee | xe | ee | Fe 
b, | b, | Db, |] b, | R.H.S. store 

¥ 
a, a, a 

44 42 | 43 | Temporary store       

¥e 
1 ase 

1   
The final reduced matrix is: 

  

ae ee ee 
aaa ora * De 
#e BE 2% 
G5 F4) .|%] ~ |e 

ee xx 
1 as, by 

Be 

i =e 4 

523



To obtain Xi XS x, and Xs back-substitution is 

used, i.e. 

AE 

x4 = 0, 

et Be 

XxX; = bs - 4,, X, 

etc. 

4.4.3 Merits of the Compact Storage Method 

Besides the advantage of storage as mentioned in 

Section 4.4.1, the reduction process of the coefficient array is 

more efficient than the Gaussian Ei imination Method, since there 

is less "jumping" around within the main sequence store. This is 

shown in Fig. 4,2: 
  

  — 
    

          
  

    

            
    

      

                

  

Fig. 4.2: Typical coefficient array of a sparse matrix 

Fig. 4.2 shows diagrammatically the coefficient arrangement 

for a typical sparse matrix. Considering the Gaussian 

Elimination first, at some stage the coefficients of column PR 

will be eliminated by using the coefficients of row PQ. In order 

to discover which rows are affected, the address sequence for the 

whole of the latter part of the matrix will have to be inspected, 

and the appropriate rows operated on. However, in the Compact 

Storage Scheme the elimination of one row - DE (Pig. 4.2) - is per- 

formed by referring to the coefficients within the square DEFG. 
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4.5 Solution by the Compact Storage Scheme 

  

The method is used to solve the following equations :- 

2x + 2y + Oz + Qw = 14 

ax+ yt 2t+Ow = 7 

Ox+ y+2z+Ow = 8 

aw + Oy + Oz + Bw = 14 

The storage is as follows :- 

  

    
2H 2 1 1 2 |]2 | 0) 0 | 3 | Main store 

      

  

14] 7 | 8 | 14] R.H.S. store             

After the reduction of the 1st row: 

      

1 deel > Oka x 7 

25a y 7 

Olt 26 Z 8 

2010 30.3 Ww 14 

+]2}1]4]2]21]0]0]3 | Main store 
      

  

      4 7 8 14 | R.H.S. store 
  

After the 2nd row reduction: 

  

4 1 Ons x 7 

fF aif 2 y 7. 

Ot 250 ; Zz i 8 

conaO) OF 5 Ww 14 

et alto 2 ; 210 1|0 | 3 |Main store           

  

7|7 | 8 | 14 |R.H.S. store         

      2 | Temporary store 
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After the 3rd row reduction: 

1 1 eet x 

3
 

Pa. tye: y 

p up
 

N vey
 

  

{1 [-1]/-1] $ | 2] 0 ]0 | 3 | Main store         
  

  

7 |7 | 41] 14) R.H.S. store     
  

      1 Temporary store 
  

After the 4th row reduction: 

              

  

Aare Ori x ie 

tt =t 2 y 1 

1 -$ z 4 

1 w 4 

4 1 3 z e | |=1|-1|)5 11 2\4 77 | Main store 

71714 | 4 |R.H.S. store     

      2 |-2]-2 | Temporary store       
The solution to the above reduced matrix is: 

4.6 Conclusions 

End-zone studies can adequately be represented by 1,000 nodes or 

less, and for this size of problem experience has shown that the 

Compact Storage Direct Method is simple and economical to use. 

A computer program has been written, and all the end-region 

problems studied within this thesis have been solved using this method. 

55.



CHAPTER 5 

VERIFICATION OF THE FINITE-ELEYENT METHOD 

5.1 General 

The finite-element approach has been formulated in numerical 

terms, but before solving a generator end-zone problem, it a) 

desirable to demonstrate the working of the method, and to indicate its 

accuracy compared with an analytical approach. Two examples for which 

analytical solutions are obtainable will be considered: viz.: 

(i) Scalar potential distribution in a rectangular sheet with a 

specified potential on one edge and zero potential on the other 

three. 

(ii) Scalar potential distribution between two concentric cylinders, 

with a specified potential varying sinusoidally round the peri- 

phery on one, and zero potential on the other (applicable to the 

open-circuit condition in the air-gap of a machine). 

5.2 Rectangular Plate 

5.2.1 Finite-elemsnt solution 

The problem is illustrated in Fig. 5.1, and is symmetric 

about the line 'AA', 

  ‘0 x 

  

Fig. 5.1: Rectangular plate 

The potential within the plate is described by Laplace's 

equation, which in cartesian co-ordinates is: 

9 1
9 pe Ue ae Z oxt * ay? = 0 agers (1) 
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. The functional corresponding to Eqn. (5.1) is obtained by 

applying Euler's equation, as described in Section 8.3: 

Gee Bh al 2a 
sei 8x} 5 Bu 0 Ox jiox 

x 

au (au 
leads to [, = es offs] 

_ yaw 
i {a 

Similarly: 

au: 
iene {5 

giving the functional a: 

(ieee 
The functional is extremised by differentiating Eqn. (5.2) 

(5.2) 

  

with respect to U, and equating to zero. This gives: 

‘Bx a) _a-(au) (eu) ala 
aU aa ii ie wu; La * (Z| au | [2 Jo= dy 

s 

=O wooo (55) 

  

To solve Eqn. (5.3) numerically, the rectangular plate is 

divided into triangular elements, as shown in Fig. 5.2, and the 

  

    

potential is assumed to vary Fe alee 

a 0.8 
linearly over each triangle. = 1279 48 

u ® 

This can be written as: & is 0.4 

a 26 (20) = i 4 U = G+ Geox + asy { 3S ©! 0 

which, expressing the 6 0. T Jom 

coefficients qin terms of the Fig. 5.2: Element sub-division 

nodal potentials and co-ordinates of the general triangle i, j, nm, 

gives: 

ae Ute on fle, + d;x + e,y)U, + (a, Pe bx a c5y)U, 

+ an + bo + ov U, See Bee eae oe 
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where: a, = X5Vin ~ ny? be ¥e = ¥5 ©, Sx = xg 
J m 9 i aD m i 1 3 

a, = at - %3Y oe = av, - Vie c5 = x; - a 

Sn Wek Sibert eas Oi 52 on tho oe 

In the mecca treatment, the functional is extremised with 

respect to potentials at all the nodes. Thus, for node 'i' of 

the general triangle (Fig. 5.2) extremisation is carried out by 

differentiating Eqn. (5.2) with respect to U,, summing similar 

equations formed from all Serianeles connected with node 'i', and 

equating to zero; i.e. 

ax BU} a (au) , aw} | 
oF ys If [(} a (| {er} on {er} | ks 

= 0 Seeeeen (5.5) 

  

w 

where bi represents the summation. of all connected triangles. 

Substituting for U from Eqn. (5.4) gives the final 

numerical equation as: 

axe tr 2 2), 
a au, = » ZA fo, +e, du; + (o,>, + ee), 

a 
(v.b + c.c Ju ! 

in in a) 

SOBs UD tne an iee phere the eran eae) ots (5.6) 

It 

For the example in Fig. 5.2, the extremisation of the 

functional leads to the following equations:- 

pn, eG Dee Ba as oe RN Aire eh. ; Nodes Fos Ucayali; fide oun. ou, ne (5.7) 

ex. ox. OX OX, OX. ex. . eh oes £23 £410. ont. Le2 _ Node 2: ae + Bue ne Us + Ue BUs + a0. = (oy es (ey) 

, O% , O%s | Whe _ Node 3: aUs + aus + aoa ee 0 galas ear! (5.9) 

Node 4: S42 , Se, 8% _ 9 «awenx (5010) aus 60s 80; 
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(Nodes 3 and 4 actually lie on the line of symmetry, where the 

boundary condition is aux = 0, but, as discussed in 

Section 3.4.4, heen can be treated as unimown values.) 

Each component of Eqns. (5.7) - (5.10) is given by the 

general equation,(5.6), and from the dimensions of Fig. 5.2, 

they reduce to: 

  

  

  

  

Poli en besine: Cole = Gury Be 

-1.25U; + 4.95U2 - 0.6U3; + 0.0U, = 250 

. 
0.0U, - 0.6U, + 2.475U3-- 0.6250, = “125 

=O:SUe 40500, = 0.625024 2-050,12 0 

In matrix form these become: 

At \=1250|90 -0.8 U; 0 

-1.25 4.95 | -0.6 0 Ue 250 

0 -0.6 2.475 | -0.625 Us 125 

-0.8 0 -0.625| 2.05 Us 0                   
  

sinseeeat (5.11) 

(The coefficient matrix is symmetrical about the leading 

diagonal. ) 

Solving Eqn. (5.11) gives: 

gue a 27, 

Cues (60-5 

U, = 75.6 

Up Seated 

  

to be made with finer mesh systems. Fig. 5.3 shows two degrees 
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of sub-division, one having 121 nodes, and the other 286. The 

latter has small elements concentrated in the area of rapidly 

changing potential. 

121 nodes 286 nodes 

        
   

Fig. 5.3: Finer sub-divisions of the rectangular plate 

U = 100 U = i00 

  

  

Fig. 5.4: Scalar potential distribution 

The resulting scalar potential plots are given in Fig. 5.4. 

5.2.2 Analytical solution 

The problem to be solved is illustrated in Fig. 5.1. 

The potential has a constant value of U, on the upper 

surface, but goes to zero at the vertical edges. This can be 

represented by a Fourier series of half-wavelength 'a’ and odd 

harmonics only, since U is symmetrical about a/2. 

©. 
: Ue nim 

- Ue 2 sin 
™0n a 

n=1,3,5,.. 

The potential within the plate is obtained by substituting 

Ue U‘(yv) sin ae 

into Eqn. (5.1), giving: 

a*ur n 2a? 

Te ee 
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for which the solution is: 

N=1,3,5,° 

Constants A and B are determined from the following boundary 

conditions :- 

Aty= 0, U'= 0 

yeb, Ui = Uo 

These give: 

i= eA 2s — ee. 
7 nib : nib 

sinh : sinh e 

The final equation is: 

N=1 53 55900 

Fgn. (5.12) was used to calculate the potential at nodes 

corresponding to those used in the finite-element studies. 

Results are compared in the following section. 

5.2.3 Comparison 

The potentials at the four nodes indicated in Pig. 5.2 are 

used to assess the accuracy of the numerical study. 

  

  

  

Node Finite-element Study 

No. | Analytic [Total number of nodes 
12 421 287 

4 ZT et 27.0 | 27.78 | 27.74 

2 70.4 69.5 | 70.2 | 70.3 

3 76.6 71506 | 76.57 | 76.6 

4 34.8 31.4 | 34.77 | 34.78               
Table 1 

The results of the numerical and analytical methods agree 

  

well, even for the coar with only four internal nodes. 
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5.3 Concentric Cylinders 
  

This problem corresponds to the situation in the air-gap of a 

turbine-generator if the following assumptions are made:- 

(i) 

(ai) 

(iii) 

(iv) 

(When 

Slotting on stator and rotor surfaces is ignored. 

The stator iron and rotor iron are infinitely permeable. 

The stator and rotor are infinitely long. 

The potential is sinusoidally distributed around the periphery, 

and has no axial variation. 

comparing the numeric and analytic solutions, a peak scalar 

potential of 100 is assumed on the inner cylindrical surface, and zero 

on the outer surface. The radii used for the inner and outer cylinders 

are 0. 573m and 0.7m respectively: values typical of a large turbine- 

generator.) 

5.3.1 

5.3.2 

Finite-element solution 
  

Using the quasi-3-dimensional approach, the peripheral 

variation of potential is built into the functional, and since 

there is no axial variation of potential, the problem reduces to 

the numerical solution of Laplace's equation in the region shown 

Stator in Fig. 5.5. This region was divided Rae 7 
-7m   

into 36 triangular elements, and the 

equations derived in Section 3.3, 

were used to determine the potential 

distribution. 

  

    Variation of peak scalar potential OS 

= = 0.573 m 
across the gap between the cylinders Rotor 

is shown in Fig. 5.7. Fig. 5.5: Zlement division 

Analytic solution 

The assumptions of Section 5.3 reduce the analytic problem 

to the solution of Laplace's equation between two concentric 

cylinders, as shown in Fig. 5.6. 
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Laplace's equation in cylindrical 

co-ordinates is: 

  

au 1 1 ay pf 
or? + > @ tr? got = OP en 

Stator 
Using Assumption (iv) leads to: Fig. 5.6: Concentric 

cylinders 

Ste iba os : TED See oe = 0 Re ces 1 9) 

where: U=U‘ sin p68 

p = number of poles 
. 

The solution of Eqn. (5.13) is: 

Ue Saree) sin p06 

n= 
The constants A and B are determined from the following 

boundary conditions :- 

At r=R,, U=0 

1 At r=R,, U= WW sin pé 

giving the final solution as: 

2 

Uy ic - ze | sin pe 
De sae pS EN EN Od ie a oe naeceetein (5. 14) 

Bag 1 
Substituting for the values given in Section 5.3 gives the 

distribution of potential as shown in Fig. 5.7. 

5.3.3 Comparison 

Fig 5.7 compares the numeric and analytic values of 

potential across the gap, and shows very satisfactory agreement. 

1007 0. 

oO ©. 
1 1 1 

0.56 0.6 0.64 0.68 0.72 Radial D 

Analytical 

° ° o Numerical 
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a
l
a
r
 

P
o
t
e
n
t
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a
l
 

  

ance (m) 

Fig. 5.7: Comparison of analytical and numerical potentials 
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5.4 Conclusions 

The two relatively simple examples considered have demonstrated 

that the results obtained from the finite-element numerical approach 

give good agreement with the analytically-derived values. This 

encourages confidence in the method which, in the next chapter, will be 

applied to the calculation of end-zone fluxes in conventional and novel 

forms of generators. 
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6.1 

CHAPTER 6 

APPLICATION OF THE FINITE-ELEMENT METHOD TO MACHINE PROBLEMS 

  

General 

The earlier chapters have shown how the finite-element approach is 

formulated and applied to geometrically simple problems. The results 

were found to compare well with analytical values. 

This chapter establishes the validity of the method for machine 

end-region problems by comparison.of test and calculated results on the 

following machines :- 

(i) A short-core replica of a 500 MW turbine-generator, where the flux 

density normal to the inner winding surface has been measured. 

(4i) A 660 MW turbine-generator, where the flux density normal to the 

support fingers has been measured. 

The method is also applied to open-circuit, short-circuit, and 

load conditions on a 660 MW turbine-generator, with particular attention 

being given to the calculation of the flux density normal to the stator- 

core surface. The effect of power factor variation on core-end-surface 

flux densities is shown. 

Examples are also given of the determination of end-region flux 

distributions on the following machines:- 

(a) A generator with a rotating superconducting field winding. 

(b) A fully slotless turbine-generator. 

Short-core Replica of a 500 MW Turbine-generator 

6.2.1 Machine details 

The radial dimensions vee the same as for a production 

500 MW generator, but the core length was only 0.3m and there was 

no rotor. One end-winding was conical, the other cylindrical: 

the arrangement of the replica is shown in Pig. 6.1. 

The aa was tested, several years ago, to investigate the 

behaviour of the end-winding bracing under short-circuit 
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conditions, but only a limited number of flux density values were 

obtained. Of these, the values measured normal to the inner 

surface of the end-winding conductors nearest the stator bore will 

be used for comparison purposes. 

The measurements were made with the stator windings excited, 

as shown in Fig. 6.2: this 

gives a stationary pulsating 

field. The flux densities 
. 

were measured with low stator i Ln 

currents, but, to indicate 

Fig. 6.2: Stator winding exci- 
the levels arising in service, tation used in tests 

they were scaled up for the rated stator phase current of a pro- 

duction 500 MW generator. Fig. 6.3 shows the resulting flux 

density distribution: 
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Fig. 6.3: Comparison of numerical with measured values of 
y normal to the inner surface of th     
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6.2.2 Finite-element solution 

Before solving by the finite-element method, certain simpli- 

fying assumptions had to be made, viz.: 

(i). The stator-core end-surface from the bore to the innermost 

part of the clamping-plate was considered as infinitely 

permeable (p = 0). 

(ii) Both clamping-plate and screen form part of the outer 

boundary, and were assumed to be infinitely conducting. 

(iii) As the replica had no duter casing or end-cover to form 

natural boundaries for the numerical study, infinitely- 

permeable magnetic boundaries were assumed sufficiently far 

away for their influence in the vicinity of the stator 

winding to be small. (The axial outer boundary was situated 

at a distance equivalent to 2} times the end-winding length, 

and the radial outer boundary at a distance equivalent to 

twice the average end-winding radius.) 

(iv) In the absence of a rotor, the centre-line of the machine was 

treated as an equipotential surface, i.e. H = a. 

(v) The air-gap boundary line was set at the axial centre of the 

stator core where the axial flux density was zero, giving the 

boundary condition of dU/én = 0. 

(vi) The stator windings were represented by either 

(a) a single current sheet situated between the two layers 

of the end-winding; or 

(bv) current sheets situated at the mid-depth of each end- 

winding layer. 

With these approximations, the end-region reduces to the out- 

lines as show in Figs. 6.4 and 6.5: 
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Stator - Stator 

   En 
—<U Stator Bete, < Stator 

end-winding end-winding 
      

        
Fig. 6.4: Single-layer représen- Fig. 6.5: 2-layer representation 

tation of end-winding of end-winding 

In each study the end-region was divided into 845 elements, 

and contained (with boundary points) 521 nodes. The element 

distribution is shown in Figs. 6.6 and 6.7, with concentration in 

the vicinity of the winding area so as to obtain accurate results 

for comparison with the measured values. 

Solutions were obtained for a stator excitation equivalent to 

the rated stator current of the production machine. Flux 

densities normal to the inner surface of the stator winding were 

calculated from the scalar potential distribution, as shown in 

Fig. 6.8. 

6.2.3 Comparison with measured values 

Fig. 6.3 compares normal flux densities from the finite- 

element studies with the measured values. The agreement is good, 

with the 2-layer representation giving slightly better results. 

6.3 660 MW Production Turbine-generator 

Scalar potential distributions were calculated for thé end-region 

of the production 660 MW turbine-generator of Fig. 1.2 for the following 

excitations :— 

(i) Open-circuit - rotor only excited. 

(ii) "Ideal" short-circuit - equal and opposite excitation on stator 

and rotor windings. 
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(iii) Load - for a variation of power factors from 0.85 lag to 

0.85 lead. 

These studies gave: 

(a) Open-circuit flux density normal to the support fingers for com— 

parison with measured values. 

(b) Flux densities normal to the stator-core end-surfaces for all 

excitation conditions. 

(ec) Comparison of open-circuit potential distributions of the quasi-3- 

dimensional study with a 2-dimensional finite-element study. 

6.3.1 Open-circuit study 

The open-circuit test is part of the Works test, and gives 

information on magnetisation, losses and temperature rises. 

The following assumptions were required, in addition to those 

given in Section 2.3.5:- 

(i) The outside boundary of the screen and clamping-plate were 

combined £0 form one large screen surface, and assumed to be 

infinitely conducting. 

(ii) Eddy current and saturation effects in the stator core were 

ignored, 

(aii) The end-ring cover was taken as a magnetic region, of 

Hr = 500. 

(iv) The effect of rotor and stator slotting was allowed for by 

increasing the air-gap by Carter's coefficient, which was 

1.086. 

The potential difference, AU, between the magnetic shell 

representing the rotor winding current sheet is calculated in 

accordance with Egn. (3.12). The peak ampere-turns of potential 

difference must be sufficient to give an air-gap flux density 

consistent with the open-circuit terminal voltage. 

With these additional assumptions, the end-region is reduced 

to that of Fig. 6.9: 

13.



  

  

= oar 
Screen and 

clamping plate 

ou 
- ant 0 

RS =0 
U = 

—<_ max Variation of AU ae 
across rotor 

\ magnetic shell 

| 
et 

  

|_ End-ring cover fee pss overeat eeeest soe 
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rs Bent portion of 
n= rotor winding Lae etO       

Fig. 6.9: Outline of the end-region of a 660 MW generator 
for solution purposes 

The end-region was divided into 456 elements by 302 nodes, 

including the boundary nodes, as shown in Fig. 6.10. 

The scalar potential distribution for this study is shown in 

Fig. 6.11, and the comparison of calculated with measured flux 

density normal to the support fingers is shown in Fig. 6.12: 

    

  

    

    

  

  

      

>0 tor core Note: In this and sub- 

3 7 — Support sequent figures 

oy fingers relating to the 
Ne ‘ 660 MW generator 

<d Homerieal flux densities 

1] 0.2 are normalised, 

b x Measured with rated 

os voltage, open- 
¢ eircuit air-gap 
3 density as 

5 0.1 reference. 

B 
q 
a 
6] 0 
a On7 0.8 0.9 1.0 

Radial Distance (m) 

Fig. 6.12: arison of numerical with 
measured values of flux density 

normal to the support fingers 
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6.5.2 

The core-end heating is dependent upon the magnitude and 

distribution of the axial flux density along the core end-surface: 

Fig. 6.13 shows this variation, together with the radial density 

variation along the stator bore: 

= 4 3 

a 
0.865) 

£3} 
| 

10.82 8 
0] 

Stator al 
core 0.78 4 

3 Pe 
‘a 
fon     

Sanh 
2.2 1.8 1.4 1.0 

/ Axial Flux Density (p.u. ) 

= The dashed lines indicate 
that the values will not 
be correct for a practical 

machine as ventilation 
i ducts are ignored. 

0.04 0.08 0.12 0.16 
Axial Distance (m) 
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Fig. 6.13: Variation of open-circuit flux density 
normal to the stator-core end-surface 

"Ideal" short-circuit excitation 

This excitation requires the stator winding ampere-turns to 

be equal, but of opposite sign, to the rotor winding ampere-turns. 

This differs from the Works short-circuit test in that no 

allowance is made for the induced voltage needed to overcome the 

stator leakage reactance volts drop. All calculations for this 

excitation are done for rated stator winding current. 

To solve numerically, using the finite-element method, the 

assumptions of Section 6.3.1 were adopted.- The stator winding was 

represented by a single current sheet situated mid-way between the 

end-winding layers, and the potential difference distribution 

TT.



simulating the effect of the winding current was given by 

Fgn. (3.11). Similarly, for the rotor winding, the potential 

difference distribution was given by Eqn. (3.12). 

The element division was the same as for the open-circuit 

study, and the resulting potential distribution is given in 

Fig. 6.14. 

6.5.3 Load study 

The load flux densities within the end-region can be obtained 

for any power factor by adding vectorially the appropriately 

scaled values of flux fenel oy from the opén-circuit and short- 

circuit studies. An example is given in Fig. 6.15 for a power 

factor of 0.85 lagging: 

Armature 
reaction 

  

    

    

   
Open- 

circuit 
mnf 

pies ee ee,      
Fig. 6.15: Vector diagram for obtaining load flux densities 

" Phe calculated flux density normal to the stator-core end- 

surface is plotted in Fig. 6.16 for a range of power factors for 

a constant power output. These results show clearly the detri- 

mental effect of leading power factor operation, since the axial 

fluxes increase, leading to higher stator core temperatures: 

78.



UOTZV{TOXO 
YTNOATO-yIOYS 

,,TVIPT,, 
O
F
 

10, 
vI10UEe#-ouTQmy 

MW 
099 

@ 
JO 

uoT#ea—-pue 
oy} 

UTYITM 
UOTINGTAISTp 

TeT}USz0d 
aeTeog 

77] 
=
 

 
 

  

S
u
t
p
u
t
a
 

    

 
 

  

 
 

=pue 
a
 

ou 
ZaA00 

W
i
n
 

S
u
t
s
-
p
u
y
 

       

  

 
 

    ueszos pue eyeTd 
Surdmeto Jo uot eutquog 

 
         

 
 

oa 
ZozOY 

t
o
z
e
y
s
 

19.



6.3.4 

p.
u.
) 

Bld. 0.9- ae 
Fe 0.716m 

ala] 0.8 ee 
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ae ah, Cale 

0. 
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al 

Sra 0.84m 

2a 

Bee 0.97n   tt 

0.85 0.9 0.95 1.0 0.95 0.9 0.85 
lag Lead 

Power Factor 

Fig. 6.16: Variation with power factor of flux density 
normal to the stator-core end-surface 

dimensional 
al approach 

Comparison of the         

  

The governing differential equation, (2.7), for the quasi-3- 

dimensional solution reduces to the axially symmetric case by 

substituting p= 0: this eliminates the peripheral term. This 

approximation is similar to that made in Teledeltos studies, where 

peripheral leakage is also ignored. 

The open-circuit scalar potential distribution was calculated 

for the 2-dimensional approach and compared (see Fig. 6.11) with 

the ‘quasi-3-dimensional potential distribution. The difference 

between the two distributions is small near the air-gap region, 

but increases towards the ends of the winding. This is because 

the peripheral leakage flux is dependent upon the ratio of peri- 

pheral flux path length to path length in the longitudinal plane. 

Thus, in the air-gap region, the peripheral distance is about 2.2m, 

compared to a "within-plane" distance of only 0.2m, which leads to 

smal] peripheral fluxes. 
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6.4 660 MW Generator with a Rotating Superconducting Field Windin 

A design concept of considerable interest for very large unit 

ratings is the rotating superconducting field generator, where the con- 

ventional rotor is replaced by a superconducting winding mounted on an 

insulating core. Since there is no rotor iron, very high excitation 

ampere-turns are needed to provide the working density in a Nee much 

increased air-gap. (These ean, of course, be provided with almost 

negligible loss.) The design of such a generator is described by 

ore > = 

Compared with the conventional perenater Ture higher field 

excitation and the increased air-gap tend to give much higher flux 

densities normal to the core end-surface. In an attempt to reduce these 

flux densities, the rotor end-winding was moved into the "air gap". 

The open-circuit flux densities were calculated, using the finite- 

element method, for two rotor end-winding positions. Fig. 6.17 shows 

the boundary outline of the generator end-region, and the element 

division was such that both studies could be solved with a minimal 

change in data: 

    

      

The region was sub-divided by 
577 elements 
345 nodes 

om
 

    Conventional generator 
Stator stator end-winding 

    
Overhang 

Position 1   

Superconducting field winding —--~ Position 2     i 
Fig. 6.17: End-region of a 660 MW rotating Superconducting field generator 
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Fig. 6.18 compares the variation 

    

  

  

core 5 
of flux densities normal to the | | 3 

stator core-surfaces for both radial axial : 

rotor winding positions; it can lo 

be seen that the second rotor Case 1 

winding position reduces the =—==— Case 2 

flux density greatly. This is 

because the flux density normal 

, 

to the core-end laminations are 

  

    
  

a consequence of fringing and 2, | 

flux due to the peripheral rotor i i 

end-winding currents. Thus, in a fe x i 

Case 2, the fringe flux is  ouaeaeeieiiae Sarma 5 or 
m, axial 

reduced because the rotor 
Fig. 6.18: Variation of flux density 

winding ampere-turns fall off normal to the stator-end- 
surface (from discussion 

towards the stator core-end, and of Ref. (1)) 

since the rotor end-winding is mainly inside the stator core, the core 

end-surface is effectively shielded from the fluxes due to the peri- 

pheral currents. The rotor winding position of Case 2 gives a slight 

reduction in generator voltage, since the average radial air-gap density 

is lower. 

The 2-dimensional approach was also used to determine the scalar 

potential distribution for Case 1, and the values of flux density normal 

to the stator core surfaces are compared in Fig. 6.18. It shows that 

there is a very large discrepancy between the two approaches: this is 

the result of neglecting peripheral leakage flux in the 2-dimensional 

approach. This can be explained by considering the transverse section 

at the axial centre of the generator, as shown in Fig. 6.19. Because 

  the 2-dimensional method neglects the peripheral variation, the flux 

distribution is forced to that shown in Fig. 6.19. The actual distri- 
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bution, which can be derived analytically, is shown in Fig. 6.20: 

_Stator ee stator 

Jf 
¢ 

   
            

. Flax A¢Super- _* Flux 
lines conducting ‘lines “SL pomae®” conducting 

rotor rotor 

Fig. 6.19: Flux distribution inthe Fig. 6.20: Flux distribution in the 
core of a rotating super- core of a rotating super— 

conducting generator, conducting generator, 
assuming no peripheral allowing for peripheral 

flux flux 

6.5 660 MW Fully Slotless Generator 
  

The effect of chamfering the corner of the stator-core-end of a 

fully slotless generator, so as to reduce the normally directed fluxes 

entering the core, was investigated by using the finite-element method. 

Fig. 6.21 shows a simplified section of the end-region of a 660 MW 

fully slotless generator: 

The region was sub-divided by 
770 elements 

466 nodes 

Slotless stator winding 

  Slotiess rotor winding 

Rotor 

  

  SE Sr es 

Fig. 6.21: End-region of a 660 MW fully slotless generator 
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6.6 

Studies were made for the normal end-surface outline, and also 

with the corner chamfered. Fig. 6.22 compares the flux densities 

normal to the stator core, and shows that the effect of chamfering is to 

force the densities to decay more rapidly, though the peak values are 

not greatly reduced. 

Ra
di
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Di
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2.0 1.0 oO 
Peak Axial Density (T) 

2a) Square corner 

(>) Chamfered corner 

  
0.2 0.4 

Axial Distance (m) 

Fig. 6.22: Comparison of open-circuit flux densities normal to the 
stator-core end-surface of a 660 MW fully slotless generator, 
for (a) square corner, and (b) chamfered corner 

Conclusions 

The finite-element method has been used to determine the end- 

region flux distributions within two full-size turbine-generator end- 

regions, for which some measured values of flux density are available. 

In both cases the agreement with the measured values was good, giving 

confidence in the approach. 

The method has also been applied to the end-region of a production 

660 MW generator for several excitation conditions, and the load study 

showed how the core-end flux density; and hence heating, increases as 

the power factor varies from lag to lead. 
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The value of the method in design work on novel machines has been 

demonstrated by studies on a 660 MW generator with a superconducting 

field winding and on a 660 MW fully slotless generator. 
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CHAPTER _7 

CONCLUSIONS 

General 

The previous chapters have detailed the development of the Finite- 

element Method for determining the flux distribution within the end-zone 

of turbine-generators, and have shown it to be an accurate and extremely 

flexible approach. This method allows for irregular boundary surfaces, 

mixed boundary conditions on the game surface, screens and clamping- 

plates, internal iron regions of finite permeability (such as the end- 

ring cover), and distributed windings. The advantages of the Finite- 

element Method compared with the Finite-difference Method (Section 1.4) 

have been demonstrated. 

The major disadvantage of the method is the cost of data 

preparation: the following section discusses possible ways of réducing 

this, and further improvements in the treatment of eddy current effects 

and iron saturation. 

Possible Improvements 

7.2.1 Data preparation 

For a solution by the Finite-element Method, the computer 

program requires the radial and axial co-ordinates of all nodes 

and the node numbers of the trianguler elements: this results in 

avast amount of data. So far, the data has been prepared by 

hand, but this has proved expensive, as shown by the example of 

the 660 MW generator study, where the manpower cost for preparing 

the data exceeded £150, compared with a solution cost of £5. 

To reduce the cost of data preparation, it is desirable to 

generate the geometric and element data by a computer program. A 

program has been written, but has proved inadequate to cover all 

  

the variations in screen and winding shapes, rotor positional 

changes, etc., that are required when trying to optimise the end- 
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7.2.3 

region design. A more general program could be written, but 

unless studies need to be made frequently the large development 

costs would outwéigh possible savings in running cost. 

A compromise between the hand-prepared and computer-generated 

data is to prepare -the co-ordinates by using a "digitiser". A 

drawing of the end-region, with element division, is required: on 

positioning a probe over a node the co-ordinate data is punched 

onto paper tape. The element data can be prepared by hand, or 

generated automatically by & computer prencen such a program has 

been written by Frederick et aie Using this approach, the data 

for the 660 MW generator study could probably be produced for 

about £40. 

Eddy current effects 

The circulating eddy currents in conducting members have been 

simulated by an infinitely-conducting surface. One possible 

improvement being investigated is to express the flux density 

normal to the conducting surface in terms of the eddy current 

relationships beneath the surface. This would allow better repre- 

sentation of permeability, resistivity and frequency effects. 

Because the expressions are in terms of complex variables, a 

complex matrix solution is necessary. Providing computer storage 

is available, this could prove advantageous, as problems with a 

multi-layer winding representation or load excitation could be 

solved with one study. 

Saturation effects 

The saturation of the stator-core end-laminations can have a 

significant effect on the magnitude of the flux densities normal 

to the core-end-surface. At present, only the extreme boundary 

conditions of infinite permeability or infinite conductivity ere 

possible. To incorporate approximately the saturation effect of 

the stator-core-end laminations into the end-zone solution would 
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require a knowledge of the ampere-turn distribution within the 

stator core. This is provided from a separate solution of scalar 

potential distribution in the stator core, using boundary fluxes 

calculated from the end-zone program: iteration between the "end- 

iron" and "end-zone" programs would continue until convergence of 

boundary potentials was obtained. 

So far, only internal iron regions of finite permeability 

have been considered, but an approximation can be made for the 

non-linear magnetisation characteristics (by re-calculating the 

permeability of the elements) within the iron region, based upon 

the initial scalar potential distribution, and re-solving with the 

new values. This procedure would be repeated until convergence of 

all permeabilities is achieved. 

7.3 Concluding Remarks 

Although further improvements are possible, the method as 

described is a considerable advance on methods previously available to 

designers for the solution of end-zone problems. The method will also 

prove invaluable in the design of advanced forms of generators where 

previously existing techniques have been inadequate. 
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CHAPTER 8 

8. APPENDICES 

8.1 Appendix I: Vector Potential Solution of the End-region Problem 

8.1.1 Assumptions © 

In deriving the vector potential distribution within the 

end-region, the following assumptions were made :— 

(i) All functions are sinusoidally distributed peripherally. 

(ii) In the gap region, stator and rotor currents are repre- 

sented by a thin current sheet on the stator and rotor 

surfaces. 

(aii) All external iron boundaries are infinitely permeable. 

(iv) Eddy currents are ignored. 

8.1.2 Derivation of the end-region vector potential equations 

The vector potential distribution in the end-region is 

described by Poisson's equation, which is: 

Vl 2 owes Pe seseen (8.1) 

From Assumption Gy 5 

4 7 = J. sin poxr+ J, cos pox +4, sin pOxz 

i = A, sin pOx r+ 4, cos pox 8+ 2, sin poxz 

Also: 

DivA = 0 

which in terms of the peak quantities is: 

AL BA oA, 

Be 8 +>4% = 0 
or re 82 - (8.2) 

  

From the above the following component equations are 

derived (all vector potentials and current densities are peak 

values ):- 

eA, 1 on 2A, (4+ p>) 2 
ont tS op est Ze A + FB hy = = Wo J, ++ (8.3) 

  wt -Ho Jg «-. (8.4)



+3 

27a, Cham Oe An a 
net oni es ee - Ho J, Ase iets (8.5) 

Eqn. (8.3) can be rearranged by substituting for 

Eqn. (8.2). The resulting equation is: 

Fakes 28). . 2 _ 38 Bi ste a, Gre 2 oe 8 
or r or oz r ox Ton 02 

This can be more conveniently expressed by writing 

A‘e=r AL giving: 

    

rf 

aa! a OTA ee 204, 

ter er te ea gg 8 
Thus A, can be solved directly from Eqn. (8.5), which then 

makes possible the solution of As from Egn. (8.6), because 

aa, fox can be determined. Ay is then obtained either from 

Eqn. (8.2) or Eqn. (8.4). 

Numerical formulation r 

To solve Bans. (8.4), (8.5) and (8.6) by the finite- 

element method, the end-region is divided into a number of 

triangular elements, with the radial and axial co-ordinates of 

the corners knowm. It is assumed in this analysis that the 

vector potential function is linearly distributed over each 

element, so that A within the element can be expressed as: 

at 
2h Baie {(e, +b.r+ c.z)A. + (a. + bur + c.z)A. 

+ i a eh J J J 9 

+ (a, + voi + cat Ma} aires ts (8.7) 

  

ee eee c,2) 
Oh = Ny (linear shape function) 

also: A = A orA, or A. 
Zz 6 os 

ays bis cys etc. are in terms of r and z as defined in 

Section 3.3.3. 

The finite-element method is based upon the minimisation 

or maximisation of stored energy within the region considered, 
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and requires the establishment of a "functional", which can be 

regarded as describing the stored energy relationships within 

the end-region. 

; The derivation of the functional from the application of 

Euler's equation is detailed in Section 8.3.. 

The functionals corresponding to Eqns. (8.5), (8.6) and 

(8.4) respectively are: 

ref Pay PAY]. ta: 
We ae + 52) +o AL ~ toe 3, A} av ae 

    

ce 

tees (8.8) 

(Cts ‘ 2 aes 1\2 
fe zr Pas 

=e = {: ls Dion . 

aA, 
ws P42 va,! ar ae Soest (8.9) 

Before x, ean be solved, 3a, /Oz is required. 

- ley 
=| Jog + 2 4]> 46} ae de Ne *iieee (8.10) 

Before Xo can be solved, An is required. 

Since the procedure for obtaining the final numerical form 

of the equations is the same for Ay A, and Aj, only the 

solution of AL is described. 

The numerical form of x, is obtained by substituting 

Eqn. (8.7) into Eqn. (8.8). 

x, is extremised by differentiating with respect to the 

nodal vector potential for all triangles associated with the 

nodal vector potential: 
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= 0 : eeaivicsienl(Bat1) 

  

For example, if node 6 is associated with elements 10, 50, 74, 

96 and 107, then Eqn. (8.11) is written as: 

    

Aone oe a iy, oer iLL EaaGE | ea a = 0 eee ee tSate)) 
Z6 26 Z6 £3 26 

Thus, when all nodes are operated on in accordance with 

Eqn. (8.11), a complete set of simultaneous equations is formed, 

defining the distribution of axial vector potential Ale 

A typical component part of Eqn. (8.11) is given as: 

  

ox 
Sele eed os 2 2 2 2a ar ais {(, pA oor Ae peas a Witep, Dey iA 

i 

2 2 2 2 oe 
Hep Cy S + 2p b, a, A+ 2p bie, az 

2 7 — or: 2 rs 
+ 2p ae Me me ie a a, a,W 

2 = 2 2 2 
+p ey cea © Oe ee ary o 

+p’ b,c, 244 p%c, db, zA+p2c. a, Q 
Des ais al od) 

2 nie: =e 2 +? ier a oe eee, a, a, W 

2 = 2 2 2 A A +p bib, r A+p ec cust p bia, +) a, by 

2 ah 2 ies 2 +p bie, 2 A+p c, bz At+p c, a, Q 

2 - eceseee oT +p a,c, Q)A, (.)] (8.13) 
nm 

rt tt Se 
a Gis AE EE heres; ro = = 3 

Z,4+¢2,+ 2 
Say es i m 

3 

pp ete 
ioe “ae Hor J, dr dz 

i 
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These terms are only present when the node considered lies on 

or within the stator or rotor winding areas. 

S,; Wand Q are areas of integration for the functions described 

in Section 8.4. 

Boundary conditions 

Because the air-gap has to extend back into the co Bae 

problem arises in defining boundary condition. In okudats 

work, the core end-surface and rotor were taken as an 

infinitely permeable continuous surface. “nis allows the 

method of images to be applied, and leads to the simple con- 

dition that A, = 0. However, the present study is particularly 

concerned with fluxes near the gap end, and thus it is unwise 

to make this assumption. 

Fquating the boundary in full gives: 

(i) Radial infinitely permeable iron surfaces 

(e.g. stator end-surface 

oi aa, 
Baga Sloot = 0 (from B = curl A) ....... (8.14) 

aA, 2A, 

Bg “Povey oe ee) 

  

(ii) Axial infinitely permeable iron surfaces 

(e.g. stator bore) 

  

if2 BL = : {Or (r ty) - > A} = 0 

dA, 2A, 
he Sea = 0 oparas ~ (8.17) 

The extreme boundary of the air-gap can be regarded as 

having the radial flux component only present, i.e. 

A, = Ay 2 O, and A, is calculated from 2-dimensional theory. 

The conditions above do not allow a solution to be 

obtained. It appears that the assumption made by Okuda is 

necessary for the solution to be formulated. 
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The assumption made is that the stator and rotor end- 

surfaces are infinitely permeable and form one continuous 

straight boundary. Based on this assumption, the mirror image 

currents can be set up as shown in Fig. 8.1: 

   

  

   
     

Stator end- 
winding turn 

Ima, 
current 

“ Winding 

current 

     
  

  

        

  

Image 
current 

mage 
current       

Fig. 8.1: Mirror image currents 

Thus on surface OB the axial component of the vector potential 

vanishes, giving AY = 0. Similarly, on the axial surfaces the 

radial component vanishes, giving A, = 0. 

This leads directly to the following boundary conditions:- 

(a) Radial surfaces (core end-surface, etc.) 

A 20 
Z 

OA 
a =O «.- from (8.14) 

OA 
pace 2.0 «+. from (8.15) 

(o) Axial surfaces (rotor shaft, etc.) 

oA, = 
or = 0. ... from (8.17) 

6 
ap & 4g) = 0 ... from (8.16) 
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8.1.5 Advantages of vector potential 

Current in the stator and rotor windings can accurately be 

represented in amplitude and distribution; also, the actual 

thickness of the winding can be considered. 

8.1.6 Disadvantages of vector potential 

(i) Three solutions are required for Ay» A, and Ag. 

(ii) To derive Ale the term 8a, /o2 is required; thus any 

error in the A, solution is transferred to the AL and Ag 

solutions. To reduce this effect, a finer mesh would be 

required, thus increasing the store requirements. 

(aii) The boundaries on the radial and axial surfaces have to 

' be approximated so that a avec co1ation is possible. 

The effect of this assumption is not known. 

(iv) Although the winding currents are accurately represented, 

the considerable amount of calculation makes the solution 

costly. 

8.2 Appendix II: Flux Density Solution of End-region Problem 

8.2.1 Derivation of end-region flux density equations 

Because of the difficulty of defining boundary conditions 

for the vector potential solution, the problem was formulated 

in terms of flux density, for viich boundary conditions are 

much more definite. The equation describing the flux density 

in the end-region is: 

DivB = 0 

and expanding gives: 

B. oB. 1 OB, eB 
Zz —_— -——_ om = pe 

rt or ‘roo * dz * © 

Also: curl B = Ho s (in the winding regions) 

This gives the following relationships (all flux densities 

and current densities are peaks of quantities varying 
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Greece 

sinusoidally in the peripheral direction) :- 

  

ore ee oe p aa 
Oi et) On eit Temas bee oo, 7 nt 

Wee (Baia) 

. t < fe. 
and if Bo & r Bo: 

2°Be’ —, 8By’ «OB 2 
  

      

aCe! eee ' 2 
or® +r Or * o2% ~ r® 26 = bo 3, (J, 4) + Ho J, 

ou, 
Ho P By cette (8.19) 

. 
and if B’ = rBi 

o a 

orp cea! 8c 8! Z ag, aB, 
au yy aes pea SE 2 ae 

fr? *r or * 2° ce ean iag pie oy 2a 

aaeee (8.20) 

These equations are similar to Eqns. (8.3) - (8.5) of 

Section 8.1, and thus the solution procedure is the same. 

Numerical formulation 

The flux density is assumed to vary linearly over the 

triangular elements, thus giving: 

1 
B= 2h Ky + bir + c,2) By + (a; + be + ez) 25 

a (a, naan c,2) 2, | ee oe (8220) 

where: B = Bor B.’ or By’. 
z £ 

The functionals for Eqns. (8.18) - (8.20) are: 

    

[fz (Fe ‘ (=) e 
Vs ) = ees ee Bo x, | L2 Or *\ 3. cpa BY Ho Jy Bet pyHo " B. 

aJg 

to ® Ge B, Jar ae enw ose (8s22); 

7 | (BY VY ey oe ee 
a cs a t 

x ci Ie dr | t\ dz + or BL Pome sd B. 

» %e 2B, 
+ Ho © “an Bae - oe an," } ar dz Dee ee (Gees) 
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Ik
 

    

nm 

‘ap. \2 OB ‘ 4 
6 8 Doe re ’ 
ees tis 3 fo Homre a eS 

Th roe I| 

22, 6 i) a — z = vi Ho > By’ + Hor 3e (x J,) Bo ied dele.) (S24) 

Egns. (8.22) - (8.24) are reduced to the finite-element 

form by substituting for Hyn. (8.21), and extremising as 

- described in Section 8.1.3. 

8.2.3 Boundary conditions . 

(i) Axial surfaces (Hu = 0) 

Bo = By = 0 

*, from Div B = o, & (3) = 0 

OB! 
: r 

ear Or: 
  = 0 

(ii) Radial surfaces =o 

Bi‘ = By = 0 

= 0 

Bea 0 

Be is determined from 2-dimensional theory for the flux 

density variation between two concentric cylinders. 

(iv) Corners on outside boundaries 
  

(a) Internal corners: Both B /and BY are taken as zero. 

(>) External corners: Since the values of Band B. 

cannot be defined, values are 

chosen consistent with saturation 

levels at the corners. 

8.2.4 Advantages of the flux density solution 

  

(i) Flux density conditions on e outer boundaries can be 

specified exactly, except at the corner points. 
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(ii) Current sources can be accurately represented. 

8.2.5 Disadvantages of the flux density solution 

(i) When deriving BL ‘, che axial gradient of 5 is required, 

thus any errors in Be are transmitted to By AS 

(ii) In myn. (8.18), for BL the R.H. side contains a term 

Jy fer. The distribution of this term is such that the 

derivative gives a zero value over the radial width of 

the winding, but an infinite value on the boundaries of 

the winding. This\leads to difficulty in the finite- 

element formulation, and it is necessary to approximate 

the true distribution by one for which the gradient is 

finite on the winding edges. This involves extra 

computation. 

8.3 Appendix III: Determination of the "FKmetional" from Euler's Equation 

It is required to find the functional, X, corresponding to the 

differential equation (2.7): 

‘Onde inet! Aheoaut ou! ae, 
a) gor p06 ae Se 

  

For convenience, the above equation can be written as: 

O50 Woe! eel ae a?u’ 
£-gr +3, + So ger f 5 oe = 0 erate (8.25)   

The general form of the functional is as follows:- 

ps
 v [[[@ dr dz dé Reidel sy: tees (8.26) 

-<(8.27) 

  

au! aut aut 
Or’ @2’ 00 

where:Q = f fr, zy OU! 

From Euler's theorem, the necessary condition for X to be the 

functional for Eqn. (8.25) is that Eqn. (8.28) should be identical to 

the differential equation to be solved, viz. (8.25): 

eos |e sei 8 Pee teks ye ea aa seas) ag ® a a) aa 0 (8.28) 
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Comparing Egns. (8.28) and (8.25) term-by-term, it follows 

that: 

Slpamooma|| © po et0G) saute pen (even!) or wy | = rope + oe ae | ne mor (8.29) 

or! _| 

Or [fauagn || Ne eu daa \iaun 
30 3 Pe r oo" = FY 00 a 

00 

uaa [ts ogems | ayes OSL Ueromtauls 
oz af) 82? ez } Oz 

oa 4 

Bony 
aie 

Thus the values of Q (say, Qi, Qe, Qs and Q) for all four 

parts of Fyn. (8.25) are: 

  

Similarly: 

A fau)? 
Cates ey 

r (au’ 2 

a (| 

Qs = 

  

°o
 

then Q = Q, + Qo + Qs + Q,, and a check will indicate that this 

value of Q satisfies the Euler condition. 

From Egn. (8.26) the required functional becomes: 

i z a: (2) Bis (2 7 
a [LE * Vee * or \ 36 ree ee 

8.4 Appendix IV: Evaluation of Area Integrals 

When formulating the numerical expressions of the extremised 

functional equation, (3.10), terms arise which are of the form: 

[fe 2) ar az 
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In deriving the final numerical equations, it is necessary to 

evaluate these functions over the area of the triangle being considered. 

To describe the integration procedure, the function 

r(r, 2) = + 

is evaluated, 

i evawas [fe az 

The integration over the area of the triangle is performed by taking 

each side in turn and adding their contributions. _(the sequence of 

integration must be consistent with that used for deriving the general 

distribution of scalar potential over the triangle, i.e. clockwise. If 

this is not done, a sign error will appear, giving incorrect numerical 

equations. ) 

Considering side ij (Fig. 8.2): 

This line can be expressed in terms of the nodal co-ordinates, 

   

a (rj2, = 242,) 

1.6. 2-2) a+ br where: gr cee = re 

mn j i 

bi (2, = 2.) 

Beeline oa 
m j i 

4 
. W = — dr dz 

zg 

a 
- | 2 ar 

= 

r, 
i 

qd 

r; a 
7 br) a 3 = 7 (a+ br) dr a 

a 
i se 

re 
J 

m 
# [+ 10, +>» | 

2 

a, . 
= ~%, log, Da log, Ty ale Oo Axial 

: Triangle over which 
the area integrals 
are calculated 
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This procedure is repeated for the sides jk and ki respectively, and 

these components added to the expression for side ij, giving: 

  

(since {(2, - 2) + (2, - 2) + (2, - 2,)} = 0.) 

The other functions arising in the numerical equations are evaluated, 

using the same procedure, and are as follows:— 

    

    

3 . 
Qe I[z dr dz Ma 

ae a, ry, a,? rj a.? re 

ae (33 2108. + Be = 18 pf Be 2 1O8e =i 
m £ m j a 

ie eaten bi? ees 
{2 (i +rj)+ (e ae. (r; +7,) + c. Ce m i 

dae a. Be 
+cb (r +r.) 4 a 

4c. = oe 
J J 

and s = 

a a ra 

is 106. tga 8 1985 a n 3 a 

  

b, 

m 1m o 
  

2 (r, 5 r,) ey 

  

Bob. 
2 at 2 oe eee 5 (rq +74) + 8; } 

8.5 Appendix V: Two-layer Representation of the Stator End-winding 

Section 3.4.1.1 has shown how a single current sheet can be used to 

represent the end-winding, but for more accurate studies it is possible to 

represent the winding by two current sheets, one for each winding layer. A 

difficulty arises because the mmf distributions set up by each current 

sheet are displaced peripherally relative to each other, although their 
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magnitudes are the same. Thus a single solution is not possible, as the 

quasi-3-dimensional study does not allow for a peripheral phase shift in 

potentials at different positions throughout the end-region. 

This difficulty is overcome by resolving the individual mmfs into i 

sine and cosine components, and solving for these distributions separately. 

The final solution is obtained by adding vectorially the potentials from 

the two numerical studies. 

The potential difference, AU, across the magnetically insulating 

shell, which represents the current aes, is given directly from the mf 

distribution relationships. 

These equations are given by Nomura, but for convenience they are 

    

   

    
   

listed below: Evolute 

tion 
The layout of a typical end-turn is a 

shown in Fig. 8.3, and only the 

Straight 
fundamental component of potential section 

  

    Wh 
difference is considered. E p a 

Fig. 8.3: Stator end-winding turn 

(a) Cosine potential difference distribution 

(i) Straight section: 0 <2 < ds 

755 5A Be : 
re 129% Eee on * Ba 7 x AU = soles cos (1 - p’) > 

(ii) Evolute section: d, <2 <a, 
  

  

1.35 x I x Py ek t(a-a 

AU = = 28 oe cc cos = is f 2) +1 
ie poles 2 dw 

(b) Sine potential difference distribution 

(i) Straight section: 0<2< dg 

A595 x0 
= ee? dae Ea ih i CRE 

AU = poles sin (1 - p’) 2 

(4i) Evolute section: dg < 2 <¢ ag 

  

159 XE xT x Ky pt (z - a.) 
rms ph an $f aa} 

je poles dw 

(The plus and minus signs apply to the inner and outer layers Stic ) 
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