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SUMM 

  

The growth of demand for electrical power has led to large 

increases in the unit ratifigs of turbine-generators; typically, maximum 

“2-pole ratings have increased from 100 MW 20 years ago, to 660 MW today, 

with 1300 MW units being seriously considered. 

The growth in unit output has been made possible by major improve- 

ments in design, particularly the introduction of direct cooling of the 

windings, which has allowed the electric loading to be greatly increased. 

The end-region flux densities have inbreased in consequence, and core end- 

heating and end-winding forces are major factors to be considered in the 

design. It is thus essential to be able to calculate end-zone fields 

accurately. 

This thesis describes a finite-element method of predicting fields 

in the air space, allowing for complexities of boundary geometry. To 

economise in computer store, it is assumed that all functions vary sinu- 

soidally in the peripheral direction, so that the 3-dimensional problem can 

be treated by a "quasi-3-dimensional" method, involving radial and axial 

distances only. The solution is obtained as a scalar potential distribution, 

from which the component flux densities can be derived. 

Following proving of the method by application to problems for 

which analytic solutions exist, flux density distributions have been calcu- 

lated for a short-core replica of a 500 MW generator and a production 660 MW 

generator. Agreement with test results is good. 

Finally, the value of the method has been demonstrated by appli- 

cation to problems arising in the end-zone design of superconducting field 

and fully slotless generators.
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CHAPTER 

1.1 General Remarks 
  

The increasing demand for electric power has led to the pro- 

duction of turbine-generators of larger unit rating. The dramatic 

increase in turbine-generator capacity over the last thirty years is 

shown in Fig. 1.1: 
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In 1940, the rating of new sets was 30 MW; by 1960 this had 

risen to 270 MW, and at present 660 MW units are being commissioned in 

the United Kingdom, with serious thought being given to 1300 MW sets. 

The increase has been made possible by major advances in design, 

particularly in the cooling of windings: this has led to a decrease in 

the active weight per unit power, also shown in Fig. tet. 

The improvements made in cooling have allowed the electric 

loading to treble in the last ten years, and normal design methods have 

11.
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not always been adequate to deal with the problems associated with the 

higher loadings. 

Problems associated with the Rnd-region 

cular 

cause 

The higher outputs and electric loadings have created a parti- 

design problem in the end-region, shown in Fig. 1.2. The main 

is the increase in the fringe and leakage fluxes, due to the 

larger air-gap and stator currents respectively. The increase in 

fluxes has the following effects in the end-region:- 

Gi) 

(i) 

(aii) 

The eddy current losses in the stator core end-iron are a conse- 

quence of end-region fluxes normal to the core end-surface. 

These losses are mainly associated with the toothed region, since 

the core-back portion of the laminations is usually protected 

from the fluxes by a copper screen, as shown in Fig. 1.2. 

Excessive temperatures have occurred in the stator core due to 

these fluxes, and in some cases partial rebuilding of the core- 

end has been necessary. The losses increase still further on 

leading power factor operation, as is now required, at times, for 

turbine-generators connected to the 400 kV system. 

The end-winding forces, which are proportional to the product of 

local leakage flux density and current, and hence to (current) ?, 

have increased considerably with the higher electric loadings. 

The forces exerted on the end-windings of a 500 MW generator, 

under short-circuit conditions, can be as high as 400.ki/m, which 

is about 7 times the value for generators built ten years ago. 

As a result of these exceptionally large forces, and fatigue 

failures associated with the much smaller normal load forces, the 

end-winding bracing system has had to be re-designed. 

The end-winding leakage reactance contributes about 25% and 15% 

to the sub-transient and transient reactances respectively, and 

is directly dependent upon the leakage flux distribution. . It is 

important that these reactances are accurately known, so that the 

12.
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(iv) 

to be 

maximum switchgear ratings and the system stability can be 

determined. 

Losses caused by eddy currents flowing in individual strips, and 

between strips, of the stator winding will increase as a result 

of the higher leakage fluxes. 

If the eddy current losses, end-winding forces and reactances are 

controlled, it is essential to derive accurately the flux distri- 

bution within the end-region, allowing for the distributed winding, 

geometrically complicated boundaries, different types of boundary 

conditions, and internal conducting members, such as screens, clamping 

plates, etc. 

1.3 Review of Previous Work 
  

1.3.1 

1.562 

General 

There are several possible approaches to the solution of the 

field distribution within the end-region, viz.: 

(i) analytic 

(ii) Analogue 

(iii) Numeric 

Analytic 

The mathematical approach involves the solution of Laplace's 

equation between two concentric cylinders, normally the outer 

casing and rotor shaft. Some examples are described in 

Refs. 2- 9, where the main differences in approach are in the 

treatment of the stator and rotor windings and the surface 

boundary conditions. 

4n early contribution was made by entre) whose object was 

to calculate the end-winding reactance of turbine-generators. He 

used the scalar magnetic potential approach, and the winding 

currents were represented by current sheets having axial and 

peripheral currents only. These currents were simulated by a 

potential difference between the surface of a magnetically 

14.



insulating shell, which divided the end-region into two zones. 

The potential difference distribution was represented by a double 

Fourier series, as the separation of variable method was used to 

solve Laplace's equation for the potential in each zone. All 

outer boundaries were assumed to be infinitely permeable, except 

the stator core-end-surface, which was treated as a screen to 

magnetic flux. 

344 
Honsinger used a similar treatment to establish relation- 

ships for the end-winding eae tares of an induction motor; 

however, all boundaries were treated as infinitely permeable, and 

the results were presented in the form of generalised curves. An 

approximate allowance was made for finite conductor dimensions. 

Reece and Pramanik? followed e similar approach, but pointed 

out inaccuracies in both the Smith ana Honsinger treatments of 

the potential difference set up by the current sheet. They 

derived the flux distribution within the end-region, using a 

scalar potential approach with all the outer boundaries treated 

as infinitely permeable; it was mentioned that the core-end- 

surface could also be treated as a screen to magnetic flux. Air-— 

gap fringing was allowed for approximately by the use of 

fictitious coils on the core-end-surfaces. 

Hammond and aenwortye used a vector potential approach to 

give the potential distribution due to "coils" with axial, radial, 

or peripheral currents. The windings were modelled from a series 

of cylindrical- and disc-shaped coils, and their individual 

fields added to give the resultant. However, in this approach, 

all iron boundaries were ignored. Tegapoulos" extended this work 

by allowing approximately for all containing boundaries. 

Lawrenson® determined the flux density within the end-region 

by summing the contribution of small elements of the end-winding, 

using the Biot-Savart law. This technique allows the end-winding 

15.



1.5.3 

shape to be treated accurately, but it is difficult to take 

account of boundaries other than the plane formed by the core- 

end-surfaces. The method is essentially a computer method, 

since numerous calculations are required to determine the density 

within the end-region. Tegapoulos? reduced the number of calcu- 

lations required by approximating the shape of the end-windings. 

Analogue 

Analogue studies have generally used an electrolytic tank or 

conducting paper (teteneitoay: but hand flux-plotting techniques 

have been used, for example, by Darrieus !?, Wanonesters | 

modelled the assumption of sinusoidal variation of all functions 

around the periphery by a wedge-shaped electrolytic tank, with 

source voltages on the sides of the wedge. The screen and 

clamping plate were represented, and losses in the screen were 

obtained. Although Teledeltos paper has been used for many years, 

Hawley et ig were the first to publish any extensive work on 

its application to the end-region of the turbine-generator. 

Results showed reasonable agreement with test values. 

Overreti'? improved the analogue representation of the end- 

region by simulating the magnetic non-linearity of the stator 

core and eddy currents with a network consisting of semiconductor 

diodes, capacitors and resistors. 

Numeric 

‘ With the availability of large fast digital computers, 

numerical methods have tended to replace both the analytical and 

the rather cumbersome analogue methods. One of the first 

attempts to use the numerical approach for ine end-region studies 

was made by Sarma et ale The paper describes a 3-dimensional, 

vector potential solution for the distribution of fluxes in the 

end-region of a homopolar machine. Although the boundaries and 

the excitation windings were represented reasonably accurately, 

16.



it was difficult to specify the boundary conditions on the outer 

surfaces, because of the use of the vector potential. A major 

disadvantage of shis approach was the large number of nodes, 

about 12,000, which were needed to represent the end-region in 

detail. This proved expensive because the computer times 

involved were large. 

Okuda!? made use of Winchester's assumption of sinusoidal 

variation of all functions peripherally to reduce the numerical 

study from three to two dimensions. This greatly reduced the 

number of nodes required to detail the end-region, as only the 

radial-axial plane needed defining. A finite-difference approach 

was used to determine the vector potential distribution, but the 

outer boundary conditions had to be simplified, as in the work of 

Sarma et al. This problem was overcome by meaven oh who formu- 

lated the same problem in scalar potential terms. 

1.4 Solution Method selected 

If larger unit rating turbine-generators are to be built with 

confidence, designers must be able to determine accurately the distri- 

bution and magnitude of the end-zone fluxes. 

Analytical approaches have proved useful in the past, but they 

can only deal with problems with simple boundaries, and therefore, in 

general, cannot give the accuracy required. Whilst analogue methods 

can readily deal with mixed boundary conditions and irregular 

boundaries, they tend to be expensive, and an experienced operator is 

essential. The numerical method is normally more convenient than the 

analogue method, and complicated boundaries and internal members can be 

represented without much difficulty. Although the full 3-dimensional 

numerical solution of the end-zone would be very expensive, substantial 

economy can be obtained by using Winchester's assumption of sinusoidal 

variation of all functions peripherally, i.e. by a quasi-3-dimensional 

approach. This reduces the problem to a 2-dimensional study. 

17.



The quesi-3-dimensional scalar potential numerical approach is 

the basis for the work described in this thesis, with the finite- 

element method being preferred to the finite-difference method used by 

Nomura. The advantages of the finite-element method are: 

(i) Regions of particular interest, such as the stepped portion of 

the stator-core end-surface, have to be greatly refined er as to 

determine accurately the rapidly varying distribution of flux 

densities caused by irregularities in the boundary surfaces. 

This refinement is not needed in less daeuitent regions, and can 

be avoided by the finite-element method, as shown in Fig. 123i: 

No. of \/ | No. of ' ' 

L nodes = 255 1 , to ee nodes = 141 
  

        
  

  

  NY
 

        

  

      

    

  

      

Pig 153 Finite-element Finite-difference 
representation representation 

(ii) Non-radial and axial boundaries can be easily represented without 

special treatment. 

(iii) Iron-air boundaries can be simply represented by allocating the 

appropriate permeability to the elements on either side of the 

boundary concerned. 

1.5 Purpose of Thesis 

The thesis describes the development of a method for determining 

the distribution of flux densities in the end-region of a turbine- 

generator. Although vector potential and flux density solutions are 

considered, the method chosen is a quasi-%-dimensional scalar potential 

formulation, solved numerically by a finite-element approach. 
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Boundaries are treated as being infinitely magnetic or infinitely con- 

ducting. Internal regions of finite permeability are also represented. 

The method has been tested on problems for which analytical 

solutions are available. As a further check, end-zone flux densities 

calculated by the method have been compared with some experimental 

values obtained on a replica of a 500 MW turbine-generator and a 660 MW 

production generator. The variation with power factor of flux density 

normal to the core-end-surface of a 660 MW generator is given. 

The flux densities normal ss the stator-core end-surface of 

superconducting field and fully slotless generators have also been 

obtained using this method.



CHAPTER 2 

THE END-REGION AND ITS MATHEMATICAL REPRESENTATION 

2.1 General 

It was concluded in the previous chapter that a quasi-3- 

dimensional numerical treatment is the most suitable for determining 

the flux density distribution in the end-region of a turbine- 

generator. 

Before establishing the numerical ‘form of the electromagnetic 

equations, the end-region will beldescrsbed® and the assumptions needed 

to enable mathematical modelling discussed. 

2.2 End-region Description 

The end-region, shown in Fig. 1.2, contains the stator and rotor 

end-windings, and is bounded by the stator and rotor end-surfaces, the 

shaft, the outer casing, and the end cover. (In this study, the end- 

region is regarded as extending into the air-gap, to a position where 

the axial flux is zero, i.e. where the effect of fringing is 

insignificent. ) 

The main components within the end-region which influence the 

flux distribution will be described in the following sections:- 

2.2.1 Stator winding 

The stator windings are normally of the 2-layer type, short- 

pitched, with two conductors per slot. The coil-ends are 

~— 
  

p-
 

Po
le
 

pi
tc

h 

  

  

      

    

  ; Rotor i 
oe = & : 

Fig. 2.1: Stator winding end-turn 
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Fig. 2.3: Rotor end-winding of a large turbine generator 

Ts



252.5) 

comvosed of short straight sections where the coil-sides emerge 

from the slots, joined by involute sections lying on the surface 

of a cone. Fig. 2.1 shows a developed view of a single stator 

conductor. 

The complete assembly of conductors forms the conical shape 

as shown in Fig. 2.2. : 

Winding support members may be ignored, since they are non- 

magnetic and, in the main, non-conducting. 

x 
Rotor winding and end-ring-- 

Fig. 2.3 shows the layout of the rotor coils, which are of 

the concentric type, lying on a cylindrical surface, and 

approximately rectangular. 

The rotor end-windings experience large centrifugal forces, 

and movement radially outwards is restrained by a large metallic 

cylinder (the end-ring) normally shrunk onto the rotor end; the 

other end of the end-ring is supported on a magnetic ring (the 

end-ring cover). The end-ring is normally constructed from a 

non-magnetic material, to reduce rotor leakage and end-zone 

fluxes. 

Clamping plate and support fingers 

The combination of clamping plate and support fingers is 

used to compress and hold rigid the stator core, so as to reduce 

the core vibration set up by the main flux. Fig. 2.4 shows the 

      

  

  

position of the support fingers, | 

which are recessed into the inner Stator lamping 

core 1 plate 
rim of the clamping plate and follow i! 

Bottom of | t 
the profile of the stator teeth, as “Stator * 

f slot | {Support 
shown in Fig. 2.5. The fingers are fingers 

  

constructed from a non-magnetic 
Fig. 2.4: Support finger 

material, such as Nodumag, and are arrangement



  

Fig. 2.5: Support fingers on a large turbine generator 

  Fig. 2.6: Clamping plate on a large turbine generator



extended to the full depth of the stator core, behind the 

clamping plate, by thick radial members. 

Fig. 2.6 Rpaseatee the arrangement of clamping plate and 

support fingers. The clamping plate may be of magnetic or non- 

magnetic material. 

2.2.4 Screens 

To prevent flux penetration fate the end-laminations and the 

clamping plate (it magnetic), a copper screen is shaped around : 
. 

the clamping plate, as shown in- 

     

  

  

Clamping 
Fig. 2.7. This tends to deflect plate 

the flux away from the stator- Stator 
core Screen 

core end-region, and reduces the 

overall loss in the structural Support 

{| | fingers 
members, although substantial cums 

losses occur within the screen 

itself. Fig. 2.7: Screen arrangement 

Losses in the clamping plate can also be reduced by a high 

resistivity laminated flux diverter. This construction has been 

used by Westinghouse, but gives increased end-winding reactance. 

2.3 Mathematical Representation of the End-region 

2.3.1 General description 

The method of end-field determination used in this thesis is 

based on the work of Nomura, but is solved numerically by the 

finite-element technique. 

The reduction of the end-region from three dimensions to two 

dimensions is based on the assumption that the excitation 

currents, flux densities, etc., are sinusoidally distributed 

around the periphery. The validity of this assumption has been 

investigated experimentally by measurement of flux density around 

the periphery of the end-winding of a short-core replica of a 

24.
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500 MW turbine-generator. The variations of measured flux 

densities normal to the inner stator winding surfaceare shown in 

Fig. 2.8, andare*reasonably sinusoidal: 

Axial distance 
from core-end 

. Axial distance 
from core-end 

  

  

   
= 0.1m = 0.4m 

5.0 

245 

0 90° a 49 

-2.5 

-5.0 =5.0 

-7.5 12D 

Fig. 2.8: Measured flux densities normal to the 
inner surface of the stator winding 

This assumption reduces the problem to a 2-dimensional 

numerical solution of scalar potential within the end-region 

shown in Fig. 2.9: 

  

  

     Clamping 
plate 

      

Stator 

end-winding      

  

   

Screen 

  
Stator 

    a eer ree er Ge 
End-ring a    

  

    

End-ring 
cover     

  

   

Rotor end-winding 
  

  

“Rotor shaft. 

Fig. 2.9: Outline of end-region for solution purposes 
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The electromagnetic equations may be formulated in terms of: 

(a) Vector potential 

(b>) Flux density 

(c) Scalar potential 

2.3.2 Vector potential solution 

2.5.3 

2.5.4 

The vector potential approach was initially selected so that 

the excitation windings could be accurately represented, but a 

full analysis, given in Section 8.1, brought several 

disadvantages to light: tuees are: 

(i) Three solutions are required to obtain the components of 

vector potential, which give directly the values Bo, 3, and 

B.. 
6 

(ii) To calculate Ays a gradient tern, BA, /e2, is needed so that 

discretisation errors from the A, solution are introduced 

into the determination of AL 

(iii) The boundary condition on the external surfaces cannot be 

defined in terms of any one component of potential, and, 

unless an iterative scheme is used, approximations are 

necessary. 

Flux density solution 

Formulation in terms of flux density eases the problem of 

specifying boundary conditions, but leaves the other 

disadvantages of the vector potential approach: this was not 

pursued further. A brief description of this approach is given 

in Section 8.2. 

Scalar potential solution 

The etieection of the scalar potential approach is the ease 

with which boundary conditions can be specified, and the economy 

resulting from the need to determine only one distribution. A 

disadvantage of the method is that current-carrying conductors 
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cannot be as accurately represented as with the vector potential 

approach, but it will be shown in Section 3.4.1 that this diffi- 

culty can be satisfactorily overcome. This was the method chosen 

to determine the distribution of fluxes within the end-region. 

2.3.5 Equation of the end-region 

In addition to the assumption of sinusoidal variation peri- 

pherally, the following assumptions are needed to enable the 

problem to be represented in a mathematical form:- 

(i) Boundaries are represénted as 

either (a) infinitely permeable (the Dirichlet condition), 

or (bo) infinitely conducting, i.e. 3U/én = 0 (the 

Neumann condition). 

(ii) Surfaces with induced currents are treated as infinitely- 

conducting surfaces. 

(iii) Saturation of magnetic structures, such as the stator core, 

clamping plate, etc., is ignored. 

Since there are no magnetic sources within the end-region, 

the divergence of flux density is zero, i.e. 

DivB = 0 

In cylindrical co-ordinates, this expands to: 

  

= 0 Dereon (2 ait) 
; s 

where: B =B_ sin pd 
Zz. r 

A . 
Be BL sin pd 

A 
Bo = By cos pé 

p = number of pole pairs 

Scalar potential UY is related to B by: 

H - grad U! ; eaueree (252) 

Molr H aajaieoatey Ces) wl
 

t 
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From Egns. (2.2) and (2.3) the following are derived:- 

eu! 
Boe) = Hollis samseencos 4) 

Hole BU! : By = - Mt 5 serie aee(ec5) 

a 

eee = How SE seinen (ae6) 

Eqns. (2.4) - (2.6) are substituted in Fan. (2.1) to give 

the scalar potential equation for the end-region as: 

2yr 1 » 92ye 2yr 

pone | So oe +450 oe) =_.0 = ar? * r Or * re 80 ++ (2.7)   

The term HoHr can be ignored if the region is homogenous, 

but in the end-region there are regions of different permeability, 

and for generality pour is retained. 

The scalar potential, U’, can be written as: 

U’ = U(r, z) sin pe 

Eqn. (2.7) can then be reduced to its quasi-3-dimensional 

form, viz.: 

elu 4 ou pe a} Holr fey. ig nye i =<50) ean (aes) 

This is the partial differential equation which describes 

the potential variation in the end-region. 

2.4 Conclusions 

The scalar potential approach has been selected to determine the 

flux distribution in the end-region because of the ease with which it 

can represent boundaries and the economy obtained in having to solve 

for only one component. A quasi-3-dimensional relationship has been 

derived for the scalar potential in the end-zone. This relationship is 

to be solved numerically by the finite-element method, and the 

following chapter details the development of the numerical equations. 
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CHAPTER 3 

NUMERICAL FORMULATION 

3.1 General 

The partial differential equation describing the end-region 

scalar potential distribution has been derived in the previous chapter. 

This chapter derives the corresponding numerical equations for the 

finite-element solution, and describes the treatment of excitation 

windings and boundaries. 

3.2 Finite-element Theory 

5.2.4 Variational principle 

The finite-element approach uses the Calculus of Variations 

to establish, from the governing differential equations, an 

integral, X, which, when extremised, gives the correct solution. 

The integral, which is a function of the unknown poate 

potentials, is known as the "functional". 

This can be written for the end-region problem in scalar 

potential terms as: 

ze 
Xo [If * fs. Gas Ul a oe aj 7 oP de 6 alight (3.1) 

ONG 

The equation for the function inside the integral is 

obtained from the governing differential equations by using 

Euler's theoren. 

This theorem, which is derived fromthe Variational Principle 

(Frank1in'”), states that the volume integral X will have a 

stationary value if the unknown function, U(r, z, 6), satisfies 

the following equation:- 

er 

Determination of the functional for the end-region 

The functional for the end-region problem is determined from 

Euler's theorem, as described in Section 8.3, giving: 
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= [f[fuouel (aur , four , 1 (aur Xe if 2 [ ar) + au) + F(R vr dr dz d6 .... (3.3) 
Vv. a J 4 

If correct, this should reduce to the energy equation for 

the end-region: this can be verified by recasting Eqn. (3.3) in 

terms of flux density, i.e.: 

Gage ee 
1 Or) * “Cour ¥ 

ane are 

(82) " Gour x 

2 

i_fery 2 %6 
pe 1.80 (opr )* 

Therefore substituting in Eqn. (3.3) gives: 

2 2 2 B B B 
Pa Tt. = + a + 8 Na eaeeeo 

I}! (2G@our) * 2uour) * 2(vonr 5 
v 

which is the stored magnetic energy of the end-region. 

Egn. (3.3) is the functional for a fully 3-dimensional 

region, whose scalar potential distribution is described by 

Egn. (2.7) However, the assumption made in Section 2.3.1 allows 

the end-region equations to reduce to the 2-dimensional form of 

Egn. (2.8), giving: 

Ti (eure Gane pt er] eee i Hole e oe! epee ae r dr dz ae ee (S24) I ie | ar { 82} r* | 

(The term fo introduces a constant, 7, in the above equation, 

but can be ignored, as shown in Section 5.5245) 

3.2.3 Extremised functional 
  

The functional, Eqn. (3.4), is extremised by differentiating 

it with respect to the variable, U, and equating to zero: 

oe i Wour 2.) (aur , (aur , ve AL au = gua |ilory)  josy) tah Y | aa ceE= 10 _ veeiseee (S25) 
The problem becomes one of deriving a variation of the 

unknown potential, U, in terms of r, z and 6, such that it satis— 

fies Eqn. (3.5). This variation is solved numerically by the 
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finite-element method, and the following sections describe the 

development of these numerical equations for the end-region. 

3.3 Numerical Formulation? 

3.3.1 General 

The finite-element approach for determining the potentials 

requires a longitudinal section through the end-region to be sub- 

divided into elemental areas, such as triangles, rectangles, etc. 

A potential variation, defined by the corner node co-ordinates 

and potentials, is assumed ‘over the elements. The numerical 

representation of the potential distribution is substituted into 

the functional equation, (3.4), which is then extremised with 

respect to potentials at all nodes, giving the numerical form of 

Eqn. (3.5). This results in an equation for every node, and the 

potential variation is determined by solving 'n' simultaneous 

equations with 'n' unknowns. 

3.3.2 Element sub-division 

The element used to sub-divide the end-region can be of many 

shapes, the simplest form being a triangle. This element is 

flexible enough to fit most irregular boundary shapes, and finer 

elements can be readily used where the potential field varies 

rapidly. Because there are only three nodes to consider, the 

  

   

    

  

   

  
  

    

General 
Stator triangle 

a i,j 

Stator r 
end-winding 

Rotor | 
end-—winding 0. Zz     
  

  

Fig. 3.1: Sub-division of an end-region by tri 
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3.3.5 

computational time required to determine the coefficients 

associated with the element is less compared with other types of 

element. This element is the type used in solving problems 

arising within this thesis, and Fig. 3.1 shows the triangular 

sub-division of an end-region. 

Derivation of potential variation over an element 

It is necessary to assume a function to describe the 

variation of potential within the element. This function is 

termed the "shape function®, and is represented by a polynomial 

of an order consistent with the number of nodes available along 

any edge of a triangle, e.g. a linear polynomial requires two 

nodes per side, a quadratic three nodes per side. The higher the 

order of polynomial, the more complex become the numerical 

equations, but greater accuracy is obtained. Therefore, a 

balance of cost against accuracy must be achieved, and for a 

2-dimensional study with simple boundary conditions, the linear 

polynomial suffices. 

The linear variation of potential over a triangular element 

may be written as: 

Ui = a + Gar + asz eniatets e 5A0)) 

where a, a2 and as are coefficients related to the nodal 

co-ordinates and potentials of the triangle concerned. These 

coefficients can be derived by substituting into Hgn. (3.6) the 

co-ordinates and potentials at each vertex, giving, for the 

general triangle of Fig. 3.1, the following:- 

U, = @ + Ger. + azz. a iat aoe 

U, = @ + Gar. + 32. 
J J 

Ui, = & + Ger + azz 4 an ae 
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Solving for a, gives: 

  

  

  

a, = 

Therefore: S 

isis U2, - zr) + U(r, - Zr) + U(2.r, - 2,r,) 

2,07; = 7) + a = r;) + 2 5(r; = Em) 

a.Us+aU. +a U 
2 tc a nm 
i 2A 

where: A «= area of the triangle 

{2(r, ate 2, (rn. - r,) + 2 ,(r, ras 

5 2 

a, = eee ra 

a, = 27, 2s 

&. = £2 = 2.x 
n yi ig 

Similarly for a2 and as: 

b.U, + b.U. + dU 
a a he ee rc nm 

ai 2A 

where: b= Zo 2 
i a m 

tbe cai ome 

bo= 4-2 
m A: 5 

and: 

e.U, hielU, + o..0: 
eal ce ii mm 

2A 

wheres 1. =) = 7) 
n J 

CA =e 
SI a m 
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3.5.4 

Thus, if a1, a2 and as are substituted into Eqn. (3.6), the 

potential distribution within any triangle becomes: 

fa, + bir + o,2)U, + (a, + bor a c42)U, + (a ,+brte zu} 

2A 
  Us 

wale (Sen) 

(a, + bares z) 
where the terms On are called the shape functions 

(n= i, jor n). . 

Numerical equivalent of the extremised functional 

The numerical equivalent of Eqn. (3.5) is obtained by sub- 

stituting Eyn. (3.7) into the functional equation (3.4) and 

extremising with respect to potentials at all nodes. Thus 

extremisation at node tit of the general triangle in Fig. 3.1 is 

obtained by differentiating with respect to Ui summing similar 

equations formed from connected triangles with node $7*) ‘end. 

equating to zero, i.e.: 

ee 
- Aue no Sepsis oS eS)) 
cu 1 

where y represents the summation of all connected triangles. 

The following example illustrates this: 

Consider node ‘if in Fig. 3.2, then the complete variational 

equation for this node is: 

OX, , Ww, 0X4 ne OX+2 + Oko 
ou, “ oU. " aU. * OU. or, ou. 
ae ab i i i: Be 16nj 2 

axe : 0 : - & 
Fig. 3.2: Element array 

1 c 

15 
iw 
12 
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_ The variational becomes, when expanded: 

a >, ff aU 8 (ay) , Wa fav) as lor j = ou; i, or ou; da OU. Zz J 

  

which gives, when substituting for U from Ayn. (3.7): 

ou. 
i 

= [[eeP (o,0, + dU, + d,U,) b 

‘i 7 & 

+xr(c.U, +eU,+¢U)c, +P(a. + dr + c.2) 
a. oh ae nn 1 x a: x 1 

x {(s, + birt e527) U, + (a, + bart °j2) uU, 

+ (a nye + eye) ty] ar a 
m m m m 

+ the contributions from the other associated triangles 

= 0 vousaiss (959) 

The integral over the area of the triangle is evaluated, as 

described in Section 8.4, and leads to the following numerical 

equation :- 

axe Hobr 
9 (2A)e fooj*F A+ S58 Ay pa, w+ pb, 3A 

+ pre,* S+ 2p? by a,4 + 2p a,c, Q+ apd; ey ZA) 

XU, + (db, db, r A+ ce, ¢, 7 A+ pea, a, W 

4 PE, bg he pr ec cass ps. be +p a, doh 

+p? dy co, % A+ pec. b, 2 A+ pre, a, Q 

HI
 2 A oe 2 +p 8,0; Q) U, + (b, b, +e, ce rA+ pa aw 

+p*b, b rA+pe,c S+p b.a A+p?a,b A 
Pe me Pes on P in P im 

35.



2 = 2 i 2 +p boc, 2A+ P ofA ec, a, Q 

2 oe op . 
imil 6x: ss s fi ThP a, - au, + similar pression: ‘or 

other associated triangles 

oe, One cease Set 0) 

5 Bs r, +r, +2 
where; Q = [[2 ax dz r= +2 

fas 2 
1 Bt 2+ 3,4 2 

We [te az Po een 
r . 5 

. 

s 
2 

[[F aes 
r 

(From Eqn. (3.10) it can be seen that if one of the connecting 

triangles has a different p,, then it is wrong to ignore this 

term, whereas the fo and the 7 from the fe are common to all 

triangles, and can be ignored.) 

3.5.5 Development of matrix equation 

An expression similar to Eqn. (3.10) is obtained for each node 

within the end-zone, so a set of simultaneous equations of nt 

unknowns are formed which can be represented in matrix form as 

  

          
  

follows :- 

414 Ate Us Vs 

B24 Be2 Up 

az4 a3j 

S51 ete ars ers. . Ui} = Va 

Ann Un Vn 

Coefficient array Unknowns Source 
array 

The matrix formed from the finite-element expressions is 

symmetric about the leading diagonal, as illustrated by the 
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