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.SUMHARY

The growth of demand for electrical power has led to large
increases in the unit ratifigs of turbine-generators; typically, maximum
‘2-pole ratings have increased from 100 MW 20 years ago, to 660 MW today,
with 1300 MW units being seriously considered.

The growth in unit output has been made possible by majof improve-
ments in design, particularly the introduction of direct cooling of the
windings, which has allowed the electri; loading to be greatly increased.
The end-region flux densities have intreased in conseqﬁence, and core end-
heating and end-winding forces are major factors to be considered in the
design. It is thus essential to be able to calculate end-zone fields
accurately.

This thesis describes a finite-element method of predicting fields
in the air space, allowing for complexities of boundary geometry. To
economise in computer store, it is assumed that all functions vary sinu-
soidally in the peripheral direction, so that the 3-dimensional problem can
be treated by & "quasi-3-dimensional™ method, involving radial and axial
distances only. The solution is obtained as a scalar potential distribution,
from which the component flux densities can be derived.

Following proving of the method by application to problems for
which analytic solutions exist, flux density distributions have been calcu-
lated for a short-core replica of a 500 MW generator and a production 660 MW
generator. Agreement with test results is good.

Finally, the value of the method has been demonstrated by appli-
cation to problems arising in the end-zone design of superconducting field

and fully slotless generators.
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LIST OF SYMBOLS

(S.I. Units are used)

Iy - vector magnetic potential

ﬁ;,j,m - peak vector magnetic potential gt the nodes of the general
triangle

ir,z,e - peak radial, axial and peripheral components, respectively, of
vector magnetic potential

B - flux density X

Br,z,a - instantaneous radial, axial and peripheral flux densities
respectively

ﬁl - peak load flux density

%n - peak normal component of flux density

ﬁoc - peak open-circuit flux density

%r,z,e - vpeak radial, axial and peripheral components, respectively, of
flux density

ﬁsc — peak short-circuit flux density

¢, _ Xrotor fundamental mmf

: rotor peak mmf

E - induced voltage (rms)

H - magnetic field intensity

f - peak conductor current

Irms - stator winding current (rms)

Ir - rotor winding current

3 - current density

3r,z,6 - peak radial, axial and peripheral current densities, respectively,
in the stator or rotor windings

Kﬁ - distribution factor

K} - winding factor

R - stator resistance

R, - rotor radius



R, - stator radius

Tph - turns per phase

Tr - rotor turns per pole

0] - peak scalar magnetic potential

v’ - instantaneous value of scalar magnetic potential

Ui,j,m - peak scalar magnetic potential at the nodes of the general
triangle

'} — terminal voltage

Xl —~ stator leakage reactance

X — functional in terms of scalar magnetic potential

Xr,z,e - functional in terms of the radial, axial and peripheral
components, respectively, of vector magnetic potential

aij -~ general term in coefficient matrix

d — depth of penetration {% /——2—-}

Holirw

dr - axial length of bent portion of rotor winding

ds — length of straight portion of stator end-winding

dw — @axial length of evolute of stator end-winding

n — number of unknown scalar magnetic potentials

P - pole pairs

T — radial distance

r, ey radial co-ordinates of nodes i, j and m, respectively, of the
yds

general triangle

Fg - unit radial vector

v - ha?monic order

X — distance in 'x' direction

v — distance in 'y' direction

z - axial distancé

Zi,j,m - axial co-ordinates of nodes i, J and m, respectively, of the
general triangle

z - unit axial vector



AU

Ho

Hr

area of triangle

scalar magnetic votential difference

peripheral distance

unit peripheral vector

permeability of free space, 47 x 10™ '

relative permeability of magnetic material or screen

resistivity of screen material

fractional coil pitch

angular velocity
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CHAPTER 1

INTRODUCTION

1.1 General Remarks

The increasing demand for electric power has led to the pro-
duction of turbine-generators of larger unit rating. The dramatic
increase in turbine-generator capacity over the last thirty years is

shown in Fig. 1.1:
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In 1940, the rating of new sets was 30 MW; by 1960 this had
risen to éTO MW, and at present 660 MW units are being commissioned in
the United Kingdom, with serious thought being given to 1300 MW sets.

The increase has been made possible by major advances in design,
particularly in the cooling of windings: this has led to a decrease in
the active weight per unit power, also shown in Fig. 1.1;

The improvements made in cooling have allowed the electric

loading to treble in the last ten years, and normal design methods have

11



132

not always been adequate to deal with the problems associated with the

higher loadings.

Problems associated with the BEnd-region

The higher outputs and electric loadings have created a parti—

cular design problem in the end-region, shown in Fig. 1.2. The main

cause

is the increase in the fringe and leakage fluxes, due to the

larger air-gap and stator currents respectively. The increase in

fluxes has the following effects in the end-region:-

(1)

(ii)

(iii)

The eddy current losses in the stator core end-iron are a conse-
quence of end-region fluxes normal to the core end-surface.

These losses are mainly associated with the toothed region, since
the core-back portion of the laminations is usually protected
from the fluxes by a copper screen, as shown in Fig. 1.2.
Excessive temperatures have occurred in the stator core due to
these fluxes, and in some cases partial rebuilding of the core-
end has been necessary. The losses increase still further on
leading power factor operation, as is now required, at times, for
turbine-generators connected to the 400 kV system.

The end-winding forces, which are proportional to the product of
local leakage flux density and current, and hence to (current)?,
have increased considerably with the higher electric loadings.
The forces exerted on the end-windings of a 500 MW generator,
under short-circuit conditions, can be as highéﬁ3400-kﬂﬁm, which
is abéut 7 times the value for generators built ten years ago.

As & result of these exceptionally large forces, and fatigue
failures associated with the much smaller normal load forces, the
end-winding bracing system has had to be re-designed.

The end-winding leskage reactance contributes about 25% and 15%
to the sub-transient and transient reactances respectively, and
is directly dependent upon the leaksge flux distribution. . It is

important that these reactances are accurately known, so that the
125
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(iv)

to be

maximum switchgear ratings and the system stability can be
determined.

Losses caused by eddy currents flowing in individual strips, and
between strips, of the stator winding will increase as a result
of the higher leakage fluxes.

If the eddy current losses, end—windiﬁg forces and reactances are

controlled, it is essential to derive accurately the flux distri-

bution within the end-region, allowing for the distributed winding,

geometrically complicated boundari;s, different types of boundary

conditions, and internal conducting members, such as screens, clamping

plates, etec.

1.3 Review of Previous Work

1.3.1

1a5.2

General

There are several possible approaches to the solution of the

field distribution within the end-region, viz.:
(i) Analytic
(ii) Analogue

(iii) Numeric
Analvtic

The mathematical approach involves the solution of Laplace's
equation between two concentric cylinders, normaily the outer
casing and rotor shaft. Some examples are described in
Refs. 2 — 9, where the main differences in approach are in the
treatment of the stator and rotor windings and the surface
boundary conditions.

An early contribution was made by Smithz, whose object was
to calculate the end-winding reactance of turbine-generators. He
used the scalar magnetic potential approach, and the winding
currents were represented by current sheets having axial and
peripheral currents only. These currents were simulated by a

potential difference between the surfzce of a magnetically

14.



insulating shell, which divided the end-region into two zones.
The potential difference distribution was fepresented by a double
Fourier series, ;nd the separation of.variable method was used to
solve Laplace's equation for the pofential in each zone. All
outer boundaries were assumed to be infinitely permeable, except
the stator core-end-surface, which was treated as a screen to
magnetic flux.

Honsinger3’4 used a similar treatment t? establish relation-
ships for the end-winding réactance of an "induction motor;
however, all boundaries were treated as infinitely permeable, and
the results were presented in the form of generalised curves. An
approximate allowance was made for finite conductor dimensions.

Reece and Pramanik5 followed & similar approach, but pointed
out inaccuracies in both the Smith ana Honsinger treatments of
the potential difference set up by the current sheet. They
derived the flux distribution within the end-region, using a
scalar potential approach with all the outer boundaries freated
as infinitely permeable; it was mentiorned that the core-end-
surface could also be treated as a screen to magnetic flux. Air-
gap fringing was allowed for approximately by the use of
fictitious coils on the core-end-surfaces.

Hammond and Ashworth6 used a vector potential approach to
give the potential distribution due to "coils" with axial, radial,
or peripheral currents. The windings were modelled from & series
of eylindrical- and disc—shaped'coils, and their individual
fields added to give the resultant. However, in this approach,
all iron boundaries were ignored. Tegapoulos7 extended this work
by allowing approximately for ail containing boundaries.

Lawrenson8 determined the flux density within the end-region
by summing the contribution of small elements of the end-winding,

using the Biot-Savart law. This technique allows the end-winding

15.



1.3.3

1.3.4

shape to be tregted accurately, but it is difficult to take
account of boundaries other than the plane formed by the core-
end-surfaces. The method is essentially a computer method,
since numerous calculations are required to determine the density
within the end-region. Tegapoulosg reduced the number of calcu-
lations required by approximating the shape of the end-windings.
Analogue

Analogue studies have generally used an electrolytic tank or
conducting paper (Teledelto;), but hand fiux—plotting techniques
have been used, for example; by Darrieus1o. Winchester11
modelled the assumption of sinusoidal variation of all functions
around the periphery by & wedge-shaped electrolytic tank, with
source voltages on the sides of the wedge. The screen and
clamping plate were represented, anq losses in the screen were
obtained. Although Teledeltos paper has been used for many years,
Hawley et 8112 were the first to publish any extensive work on
its application to the end-region of the turbine-generator.
Results showed reasonable zgreement with test values.

Oberretl13 improved the analogue representation of the end-
region by simulating the magnetic non-linearity of the stator
core and eddy currents with a network consisting of semiconductor

diodes, capacitors and resistors.

Numeric

" With the availability of large fast digital computers,
numerical methods have tended to replace both the analytical and
the rather cumbersome analogue methods. One of the first
attempts to use the numerical approach for ihe end-region studies
vas made by Sarma et al14. The paper describes a 3-dimensional,
vector potential solution for the distribution of fluxes in the
end-region of & homopolar machine. Although the boundaries and

the excitation windings were represented reasonably accurately,

16.



it was difficult to specify the boundary conditions on the outer
surfaces, because of the use of the vector potential. A major
disadvantage of shis approach was the large number of nodes,
about 12,000, which were needed to reﬁresent the end-region in
detail. This proved expensive because the computer times
involved were large. |

| Okuda15 made use of Winchester's assumption of sinusoidal
variation of all functions peripherally to reduce the numerical
study from three to two digfnsions. This_gréatly reducéa the
number of nodes required to detail the end-region, as only the
radial-axial plane needed defining. A finite-difference approach
was used to determine the vector potential distribution, but the
outer boundary conditions had to be simplified, as in the work of
Sarma et al. This problem was overcome by Nomura16, who formu-
lated the same problem in scalar potential terms.

1.4 Solution Method selected

If larger unit rating turbine-generators are to be built with
confidence, designers must be able to determine accurately the distri-
bution and magnitude of the end-zone fluxes.

Analytical approaches have proved useful in the past, but they
can only deal with problems with simple boundaries, and therefore, in
general, cannot give the accﬁracy required. VWhilst analogue methods
can readily deal with mixed boundary conditions and irregular
boundaries, they tend to be expensive, and an experieﬁced operator is
essential. The numericel method is normally more convenient than the
analogue method, and complicated boundaries and internal members can be
represented without much difficulty. Although the full 3-dimensionzl
numerical solution of the end-zone would be very expensive, substantial
economy can be obtained by using Winchester's assumption of sinusoidal
variation of all functions peripherally, i.e. by & quasi-3-dimenzional
approach. This reduces the problem to a 2-dimensional study.

17.



The quesi-3-dimensional scalar potential numerical approach is

the basis for the work described in this thesis, with the finite-

element method being pfeferred to the finite-difference method used by

Nomura.

The advantages of the finite-element method are:

(i) Regions of particular interest, such as the stepped portion of

the stator-core end-surface, have to be greatly refined so as to

determine accurately the rapidly varying distribution of flux

densities caused by irregularities in the boundary surfaces.

~
This refinement is not needed in less important regions, and can

be avoided by the finite-element method, as shown in Fig.
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(ii) Non-radial and exial boundaries can be easily represented without

special treatment.

(iii) Iron-air boundaries can be simply represented by allocating the

appropriate permeability to the elements on either side of the

boundary concerned.

1.5 Purpose of Thesis

The thesis describes the development of a method for determining

the distribution of flux densities in the end-region of a turbine-

generator.

considered,

Although vector potential and flux density solutions are

the method chosen is a quasi-%-dimensional scalar potentisal

formulation, solved numerically By a finite-element approach.

18,



Boundaries are treated as being infinitely magnetic or infinitely con-
ducting. Internal regions of finite permeabilitf are also represented.
The method has been tested on problems for which analytical
solutions are available. As a further check, end-zone flux densities
calculated by the method have been compared with some experimental
values obtained on a replica of a 500 MW turbine-generator and a 660 MW
production generator. The variation with power factor of flux density
normal to the core-end-surface of a 660 MW generator is given.

The flux densities normal tg the stator-core end-surface of

superconducting field and fully slotless generators have also been

obtained using this method.

19.
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2.2

CHAPTER 2

THE END-REGION AND ITS MATHEMATICAL REPRESENTATION

General

It was concluded in the previous chapter that a quasi-3-
dimensional numerical treatment is the most suitable for determining
the flux density distribution in the end-region of a turbine-
generator.

Before establishing the numq;ical.fdrm of the electromagnetic

equations, the end-region will be described, and the assumptions needed
to enable mathematical modelling discussed.

End-region Description

The end-region, shown in Fig. 1.2, contains the stator and rotor
end-windings, and is bounded by the stator and rotor end-surfaces, the
shaft, the outer casing, and the end cover. (In this study, the end-
region is regarded as extending into the air-gap, to a position where
the axial flux is zero, i.e. where the effect of fringing is
insignificant.)

The main components within the end-region which influence the
flux distribution will be described in the following sections:-

2.2.1 Stator winding

The stator windings are normally of the 2-layer type, short-

pitched, with two conductors per slot. The coil-ends are

X
Pole pitch

&___ﬂ_:: Rotor E

-

Fig, 2.1: Stator winding end-turn
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2.2,

comvosed of short straight sections where the coil-sides emerge
from the slots, Jjoined by involute sections lying on the surface
of a cone. Fig..2.1 shows a develOped view of a single stator
conductor.

The complete assembly of conductors forms the conical shape
as ghown in Fig. 2.2,

Winding support membefs may be ignored, since they are non-
magnetic and, in the main, non-conducting.

~

Rotor winding and end-ring--

Fig. 2.3 shows the layout of the rotor coils, which are of
the concentric type, lying on a cylindrical surface, and
approximately rectangular.

The rotor end-windings experience large centrifugal forces,
and movement radislly outwards is restrained by a large metallic
cylinder (the end—ring) normally shrunk onto the rotor end; the
other end of the end-ring is supported on a magnetic ring (the
end-ring cover). The end-ring is normally constructed from a
non-magnetic material, to reduce rotor leakage and end-zone
fluxes.

Clamping plate and support fingers

The combination of clamping plate and support fingers is
used to compress and hold rigid the stator core, so as to reduce

the core vibration set up by the main fluz. PFig. 2.4 shows the

position of the support fingers, TEEEESS :
which are recessed into the inner . Stator | : Clamping
core 1 t““‘“1)18.1:&

rim of the clamping plate and follow |

l?roi:i:omc:f__"l
the profile of the stator teeth, as “stator |

: slot | ./Support

shown in Fig. 2.5. The fingers are A [fingers

amesev e}

constructed from a non-magnetic
Fig, 2.4: Support fingsr
material, such as Nodumag, and are arrangement
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Support fingers on a large turbine generator

Fig. 2.5

Clamping plate on a large turbine generator

Fig. 2.6:
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extended to the full depth of the stator core, behind the
clamping plate, by thick radial members. |

Fig. 2.6 inJicates the arrangemeﬁt of clamping plate and
support fingers. The clamping plate may be of magnetic or non-
magnetic material. ‘

2.2.4 Screens

To prevent flux.penetration inta the end-laminations and the

clamping plate (if magnetic), a copper screen is shaped around .

~
the clamping plate, as shown in-

1 | Clamping
Fig. 2.7. This tends to deTlect i [l 1 plate
|
the flux away from the stator- iAo
core | Screen
core end-region, and reduces the {'J
overall loss in the structural ' Support
fingers
members, although substantial p——
losses occur within the screen
itself. Fig. 2.7: Screen arrangemen

losses in the clamping plate can also be reduced by a high
resistivity laminated flux diverter. This construction has been
used by Westinghouse, but gives increased end-winding reactance.

2.3 Mathematical Representation of the End-region

2.3.1 General description

The method of end-field determination used in this thesis is
based on the work of Nomura, but is solved numerically by the
finite-element technique.

The reduction of the end-region from three dimensions to two
dimensions is based on the assumption that the excitation
currents, flux densities, etc., are sinusoidally distributed
around the periphery. The validity of this assumption has been
investigated experimentally by measurement of flux density around

the periphery of the end-winding of & short-core replica of a

24.
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Peak Normal Flux Densit

500 MW turbine-generator. The variations of measured flux
densities normal to the inner stator winding surfaceare shown in

Fig. 2.8, and are®reasonably sinusoidal:

. Axial distance ' Axial distance
from core-end e from core-end
= 0.1m g = 0.4m

O X ! - 1 i ey u o
0 90 18" 270" Zzb“ 0 90 . 188 210 0
| 5.5 Per\pheral Distghce [ 2.5
- ~5.0 - -5.0
- =T7.5 ~=Te5

Fig. 2.8: Measured flux densities normal to the
inner surface of the stator winding

This assumption reduces the problem to a 2-dimensional
numerical solution of scalar potential within the end-region

shown in Fig. 2.9:

P T T S S e g _— = =i - E s

Clamping
plate

Stator

: end-winding
Screen

;———— —— o — e —

S

End-ring !

Rotor end-winding

Fig. 2.9: Outline of end-region for solution purposes

25.



2.3.2

2.3.3

2:5.48

The electromagnétic equations may be formulated in terms of:
(a) Vector potential

(b) Flux density

(c) Scalar potential

Vector potential solution

The vector potential approach was initially selected so that
the excitation windings could be accurately represented, but a
full analysis, given in Section 8.1, brought several
disadvantages to light: th;se are:
(i) Tﬁree solutions are required to obtain the components of
vector potential, which give directly the values gz’ ﬁr and
B .
6
(ii) To calculate Ar, & gradient term, BAz/az, is needed so that
discretisation errors from th? AZ solution are introduced
into the determination of Ar.
(iii) The boundary condition on the external surfaces cannot be
defined in terms of any one.component of potential, and,
unless an iterative scheme is used, approximations are

necessary.

Flux density solution

Formulation in terms of flux density eases the problem of
specifying boundary conditions, but leaves the other
disadvantages of the vector potential approach: this was not
pursued further. A brief description of this approach is given

in Section 8.2.

Scalar potential solution

The attracéion of the scalar potential approach is the ease
with which boundary conditions can be specified, and the economy
resulting from the need to determine only one distribution. A

disadvantage of the method is that current-carrying conductors
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cannoi be as accurately represented as with the vector potential
approach, but it will be shown in Section 3.4.1 that this diffi-
culty can be satisfactorily overcome. This was the method chosen
to determine the distribution of.fluxes within the end-region.

Equation of the end-region

In addition to the assumption of sinusoidal variation peri-
pherally, the following assumptions =re needed to enable the
problem to be represented in a mathematical form:-

(i) Boundaries are represénted as
either (a) infinitely permeable (the Dirichlet condition),
or (b) infinitely conducting, i.e. 8U/an = 0 (the
Neumann condition).
(ii) Surfaces with induced currents are treated as infinitely-
conducting surfaces.
(iii) saturation of magnetic structures, such as the stator core,
clamping plate, etc., is ignored.

Since there are no magnetic sources within the end-region,
the divergence of flux density is zero, i.e.

DivB = O

In cylindrical co-ordinates, this expands to:

aBr Br 1 aBe aBz
AL e e ey 0 et te -
B .’ gl p a0 T Bz , (2.1)
A
where: B = Br sin pé
ﬁ .
Bz * B sin po
A
Bg = By cos pb
P = number of pole pairs

Scalar potential U is related to B by:

Ll

- grad Ui _' .
Ry b )

H

H

td |
It

Holr
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From Egns. (2.2) and (2.3) the following are derived:-

au’
BI‘ = = Holr ar e (2-4)

Moy BU’ '
Be _=: r ae s (2-5)

]

S :
Bz = - HoMlr aaUZ I " e e ana (2.6)

Eqns. (2.4) - (2.6) are substituted in Egqn. (2.1) to give

the scalar potential equation for the end-region as:

2%y’ 1 3w :
“°”'{'ar2 &+ 8r_+‘;§ 362 +-1£F;]‘ = 0 S scas L2

The term popr can be ignored if the region is homogenous,
but in the end-region there are regions of different permeability,
and for generality popr is retained.

The scalar potential, U’, can be written as:

U = U(r, z) sin pb

Eqn. (2.7) can then be reduced to its quasi-3-dimensional

form, viz.:

2’y 18U _ p? .a"*rq
Holtr [érz B T f? U + apt (I F 0 S

=

L=

This is the partial differential equation which describes
the poténtial variation in the end-region.
2.4 Conclusions

The scalar potential approach has been selected to determine the
flux distribution in the end-region because of the ease with which it
can represent boundaries and the economy obtained in having to solve
for only éne component. A quasi-3-dimensional relationship has been
derived for the scalar_potential in the end-zone. This relationship is
to be solved numerically by the finite-element method, and the

following chapter details the development of the numerical equations.
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CHAPTER 3

NUMERICAL FORMULATION

3.1 General

The partial differential equation describing the end-region

scalar potential distribution has been derived in the previous chapter.

This chapter derives the corresponding numerical equations for the

finite-element solution, and describes the treatment of excitation

windings and boundaries.

3.2 Finite-element Theory

e e

Variational prineciple

The finite-element aporoach uses the Calculus of Variations
to establish, from the governing differential equations, an
integral, X, which, when extremised, gives the correct solution.
The integral, which is a function of the unknown scalér
potentials, is known as the "functional".

This can be written for the end-region problem in scalar

potential terms as:

i N
X = /‘/-/‘ : [I‘, el Z, U’ %El -g-[el, 'Ea:_lzj-j s 5 s L B e (3'1)
L

The equation for the function inside the integral is
obtained from the governing differential equations by using
Euler's theoremn.

This theorem, which is derived from the Variational Principle
(Franklinw), states that the volume integral X will have a

stationary value if the unknown function, U(r, z, 6), satisfies

the following eguation:-

%5'“58?3_(%)] '585[3_(%] 56-[-@-)-} T
z

or 06
Determination of the functional for the end-region

The functional for the end-region problem is determined from

Euler's theorem, as described in Section 8.3, giving:

29.



= 8 /:ff&éi[(g—‘?z +(2_2T +;¥-fg—éqz:]r dr dz d0 .... (3.3)
v g J J i

If correct, this should reduce to the energy equation for
the end-region: this can be verified by recasting Eqn. (3.3) in

terms of flux density, i.e.:

2
%
';ar__j 3§ oMr
2
BUT e
19z _Goprj N
2
L ([ FLR e Py
?Lae “ t#opr‘jz

Therefore substituting in FEgn. (3.3) gives:

Gl S f{' Br + B§ + BOZ ] ¥ &r dz &6
= ) {2Qkorr) T 2(uonr) 2(pope ) |

-
which is the stored magnetic energy of the end-region.

Eqgn. (3.3) is the functional for a fully 3-dimensional
region, whose scalar potential distribution is described by
Eqn. (2.7). However, the assumption made in Section 2.3.1 allows

the end-region equations to reduce to the 2-dimensional form of

Egn. (2:8), giving:

[ (au?  (a0?  p2 .71
ST [{‘%’LL[S—% + gJ +-§7U2J r dr dz R R L

(The term‘/ﬁe introduces a constant, w, in the above equation,
but can be ignored, as shown in Section 3.3.4.)

3.2.3 Extremised functional

The functional, Egn. (3.4), is extremised by differentiating
it with respect to the variable, U, and equating to zero:
oX _ /' dopr O | (BUF  faUP = p? =
au 2 au| |or *azj'*r’-'uerdz‘lr"o
.r8 - LR B ] (3'5)

The problem becomes one of deriving a variation of the
unknown potential, U, in terms of r, z and 0, such that it satis-
fies Byn. (3.5). This variation is solved numerically by the

30.



finite-element method, and the folldwing sections describe the

development of these numerical equations for the end-region.

3.3 Numerical Formulation®

3'3-1

e

General

The finite-element approach for determining the potentials
requires a longitudinal section through the end-region to be sub-
divided into elemental areas, such as triangles, rectangles, etc.
A potential variation, defined by the corner node co-ordinates
and potentials, is assumed:ove? the elementé. The numerical
representation of the potential distribution is substituted into
the functional equation, (3.4), which is then extremised with
respect to potentials at all nodes, giving the numerical form of
Egn. (3.5). This results in an equation for every node, and the
potential variation is determined by solving 'n' simultaneous
equations with 'n' unknowns.

Element sub-division

The element used to sub-divide the end-region can be of many
shapes, the simplest form being a triangle. This element is
flexible enough to fit most irregular boundary shapes, and finer
elements can be readily used where the potential field varies

rapidly. Because there are only three nodes to consider, the

General
S o triangle
~ i,j,m
Stator d
end-winding =
. Rotor 1
Rotor __
end-winding : :

10]

Fig., 3.1: Sub-division of an end-region by trizngular element
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computational time required to determine the coefficients

associated with the element is less compared with other types of

element. This element is the type used in solving problems

3.3.3

arising within this thesis, and Fig. 3.1 shows the triangﬁlar
sub-division of an end-region.

Derivation of potential variation over an element

It is necessary to assume a function to describe the
variation of potential within the element. This function is
termed the "shape function®, and is represented by a polynomial
of an order consistent with the number of nodes available along
any edge of a triangle, e.g. a linear polynomial requires two
nodes per side, a quadratic three nodes per side. The higher the
order of polynomial, the more complex become the numerical
equations, but greater accuracy is obtained. Therefore, a
balance of cost against accuracy must be achieved, and for a
2-dimensional study with simple boundary conditions, the linear
polynomial suffices,

The linear variation of potential over a triangular element
may be written as:

U = a + azr + a3z W e, (oEd
where a4, ar and as are coefficients related to the nodal
co-ordinates and potentials of the triangle concerned. These
coefficients can be derived by substituting into Egn. (3.6) the
co-ordinates and potentials at each vertex, giving, for the
general triangle of Fig. 3.1, the following:-

U. = a4 + azr. + azz.
i 1 st b
U. = aq + Qzr, + 033 _

J J

U = @1 + Q2T + 0z3%
1 2m Bm

5



Solving for a, gives:

U ., Z
i i i
U T z
J J J
U x Z
m m m
a4 =
1 P z
i i
1 r. z
d J
1 r z
m m
Therefore: $
U(zr. -2zr )+ Uf(z.r -2r)+0(z.r. -2.0r,)
&' s im Shanss m i o i 1 39
zm(rj - rgj + zi(rm - rj) + zj(ri = rm)
a U, +a.U.+aT
e B 479 m m
= 2A
where: A = area of the triangle
i [zm(r'j - ri) + Zi(rﬁ - rj) + zj(ri - rm)f
= 2
a =0 T =gy
i m j m
a. & B5.r — 2.p
J im m i
a = Zr,6 - ..
m J X )
Similarly for @z and as:
bU. + b.U. +b U
T TR 1 _mm
= 24
where: b, = 2. -2z
i 3 m
b =B e
Jj m 9
b = Z, = 3
m i 5
and :
e U, e, el
el i 3 s m m
2A
where: e =Pl ep
mn J
C = A, - R
J i m
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Thus, if a4, @2 and a3 are substituted into Eqn. (3.6), the
potential distribution within any triangle becomes:

Kai #{b i ciz)Ui + (aj 4 bjr + cjz)Uj +—(am-rbmr-+cmz)0ﬁi

- oA
Vel kS
{a + b+ cnz)
where the terms >A are called the shape functions
(n=1i, j or m). <

Numerical equivélent of the extremised functional

The numerical equi%alent of Eqn. (3.5) is obtained by sub-
stituting Egn. (3.7) into the functional equation (3.4) and
extremising with respect to potentials at all nodes. Thus
extremisation at node 'i' of the general triangle in Fig, 3.1 is
obtained by differentiating with respect to U&, summing similar
equations formed from connected triangles with node ti*, and

equating to zero, i.e.:

ox°
Y '5-[]_'- = O " s e e (3-8)
st 1

where 2: represents the summation of all connected triangles.
The following example illustrates this:
Consider node 'i' in Fig. 3.2, then the complete variational
equation for this node is: |

0X4 0Xs 0Xs 0Xo X4z 9X=0

o0, Yo T en t oy ten T am
i o 9 i i i

aze
ou,
3

Fig. 3.2: Element array
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_The variational becomes, when expanded:

E:_ax“’_ E[/M 2U_8 (au)  gu_3 (au)
= oOHr ~‘ !
au, i or au; jer | © 0z dU; B2
e
+-1'i—:UaU r dr dz

which gives, when substituting for U from Egn. (3.7):

Z Tl j/:/‘%[r (b, U, + bU, + b U ) bi.

e
+r(c,U. +cU,+cU)ec, +2(a, + bur + c.z)
i1 JJ mn’ i rvi i i
X [(ai+bir+ciz) e (aj+bjr+ cjz) UJ.
+(a +br+cz)U7}drdz
m m m m_j

+ the contributions from the other associated triangles

= O LR (3! 9)
The integral over the area of the triangle is evaluated, as
described in Section 8.4, and leads to the following numerical

equation:-

e
i :

+ pzci‘? S+ 2p° b, a8 + 2p? a, ¢, Q+ 2p2bi c; z )

xU. + (b, b.rbrec, .7 A+ pPe,a. W
i s R b b | 19

-tr1:121311:;._'_"1':-’3+pzcic;jS+p?a.j biA +p2aibjﬁ

SH |

2 i 2 : 2
+ p bichA+p cibj A+ p© c, aJ.Q

2 —ﬂ. _b 2
+ p aich)Uj+(bibmr Hie, €. T +pai&mw

2 =Y 2 2
: A
+ p bibmr&+pcicms+p biamA+p aibm
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+p2bi cm;A+ P ey bm;A-irpz c; a Q

+p° &, ¢ QU + similar expressions for
1 e

other associated triangles

o e s AZ10)
: i r. +r.+r
where: Q = I[,.r-z-dr dz P e il B
= 3
1 o Z, + 2.+ 3z
WV = jy-—'dr dz By~ Al n
r ! 3
2 g L
S = //E" dr dz
r

(From Eqn. (3.10) it can be seen that if one of the connecting
triangles has a different p., then it is wrong to ignore this
term, whereas the Uo and the 7 from the };6 are common to all
triangles, and can be ignored.)

3.3.5 Development of matrix equation

An expression similar to Eqn. (3.10) is obtained for each node
within the end-zone, so a set of simultaneous equations of 'nt

unknowns are formed which can be represented in matrix form as

follows:-
asqy 843 Uy Vs
d24 822 Uz
834 asj
8% &ip B35 Biy o f Ui | = 1 V4
ann Up Vn
Coefficient array Unknowns Source
array

The matriz formed from the finite-element expressions is

symmetric about the leading diagonal, as illustrated by the
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following example :-

An equation similar to (3.10)
is formed when extremising
about node 1 of Pig. 3.3,

This can be written in the

following terms as:-

84 Us + 245U, + 8,505 + a,,U, + a,Ug + 80Uio t 8,45sUss = O

where a,; is the leading diagonal coefficient, and a,, ... a

~

1915

are the sub-coefficients. Similarly, when considering node 2:

821Ut + 822Uz + a23Us + a,,U; + a, Uy + 8,505 = O

where a:2 is the leading diagonal coefficient, and Boy 4 Boe ven
az 45 are the sub-coefficienfs, but because the coefficients a,,
and a,y are both dependent upon the same nodal positions 1 and 2,
it can be easily shown from Eqn. (3.10) that:
821 = 842
and, similarly:
85y = a5, etc,

This gives a symmetric matrix which facilitates the solution
procesé.

The source terms of the matrix are derived from the end-
winding excitation, and from nodes which form the boundary

surfaces. These terms are discussed in the following section.

3.4 Winding Representation and Boundarv Conditions

3.4.1 Stator and rotor winding currents

The scalar potential approach cannot treat the finite
thickness of the conductor, but assumes that the excitation
winding can be represented by an infinitely thin current sheet
situated at the mid-depth of the actual conductor. (The depth of
the conductor czn be approximated by a series of such current

sheets distributed across the depth. )
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"The current sheet is represented by an infinitely thin,
magnetically insulating shell having a scélar potential
difference (AU) between the shell surfaces. This is illustrated
in Fig. 3.4 by the example of a single coil per pole. The cbil
is represented by a magnetically insulating shell, and the coil
curreﬁt is allowed for by making the outer and inner surfaces of
the shell differ in potential by an amount corresponding to that
produced by the coil. This is shown in Fig. 3.5, where the peak

~

fundamental potential difference is given by:

4 e
AU = E-I sin pd

//,/’ Scalar

Q ' potential
, difference
: AU

Single
coil /pole

Magnetic
shell

Fig, 3.4: Single coil per pole Fig. 3.5: Scalar potential equivalent
of the single coil

The expressions for the ampere-turn distribution of the more
complex stator and rotor end-windings of a turbine-generator have
been derived by Tegapoulos18, and are as follows:-—

(i) Stator winding

8
The expression for AU 2

g Z Pl S

is derived for a single gnnﬁg;____,f””f’ |
i d L

current sheet, representing Bund L4

a b
the 2-layer end-winding, as § L dr"'-*"i
shown in Fig. 3.6. Fig. 3.6

The peak stator ampere-turns for the evolute section are givenas:

. T
AU = pole

2.7 Irms - T Ky« =in [éiﬁf1 Sl dsl?
23 z dw
i J

s (3. 1h)
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(i1)

(iii)

where: I = stator terminal current

rms
Tph = turns per phase

Kﬁ = distribution factor

a = coil pitch factor

ds = axial length of straight portion of winding
dw = axial length of evolute portion of winding

Similar expressions, having sine and cosine components
respectively, can be derived for the individual layers.
“
This simple extension is discussed ‘in Section 8.5.

Rotor windings

The peak rotor ampere-turns

dr - )
RO S ——E;—E (AT/pole) ey (§.12)

rotor fundamentsl mmf
rotor peak mmf

where: C
I_ = rotor current
T = rotor turns per pole
dr = axial length of bent portion of rotor
winding

Numericzl representation of winding currents

To represent the stator or rotor currents in finite-
element form, nodes on triangles (Fig. 3.7) lying along
either side of the magnetically insulating shell must not
be linked in any way, except by the scalar potential
difference AU. Thus:

U (outer) ="l (inner) iEU
a b
(+ or - is used, depending on

current polarity): Uﬁ and Ub
are potentials of adjacent

nodes on either side of the

insulating magnetic shell used
: Fig. 3.7: Numerical represen-
to simulate the current sheet tation of winding
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3.4.2 Outer boundary - except air-gap boundary line

The nodes on the outer boundary can be expressed as a known

scalar potential (the Dirichlet condition) related to the ampere-

turns eppearing across the air-gap. (The exception to this is

where the boundary is treated as a screen.)

(i)

(i)

Stator excitation only

In the air-gap region the difference of potential
across the. gap will be equal to the peak ampere-turns pro-
duced by the stator wiﬁding. Thus the stator surface up to
the ﬁinding can conveniently be defined as having a
potential equal to the mmf present on the straight surface
of the winding, whilst the other surfaces will have a zero
potential. The potential difference across the winding’

surface will fall off in accordance with Egn. (3.11).

Fig. 3.8 shows that the g U=0"

Stat -windi
boundary line A-B will ator end-winding

have a maximum U=C
U B
potential specified, Wi <
and the boundary C-D a D :
U=<q U= 0.

zero potential.
Fig. 3.8: Outline of end-region for
stator only excitation

Rotor excitation only

Similarly, the peak ampere-turns produced by the rotor
will set up a difference of potential, Egn. (3.12), across
the air-gap. Again, one surface can be expressed as a zero
potential, and the other (rotor surface) assigned a
potential equal to the rotor ampere-turns. The potential

difference across the rotor winding falls off, as defined by

Eqn. (3.12).
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3.4.3

3-4-4

-Fig. 3.9 shows the | )

maximum potential

boundary as line C-D, U'=0_ U=0]

and the zero A;__rr

potential line as W= Uﬁ Botor
Ir——}F" end-winding

A-B. : ) B U=0-

Fig. 3.9: Outline of end-region for
rotor only excitation

Air-gap boundary line s

The air-gap boundary line is taken at a position so far
removed axially from the ends of the core that ﬁz can be taken as
zero,

A
= 0

It can be shown that the side of the triangular element
lying along this type of boundary will aﬁtomatically adopt the
condition of ﬁz = O if the nodes are treated as unknown
potentials.,
Screens

Since the screen is assumed to be infinitely conducting, the
flux will flow parallel to the screen surface. The normal flux
density is zero at this surface therefore.

8U . &
"~ on Bn

= 0 (equivalent to an infinitely conducting surface)

Flux penetration into a practical i
5 1] |
L = )
screen can be allowed for approximately ok 8 ﬁj
o 1 $
by situating the sides of the triangle, E _é
0 {
representing the screen boundary, at a 45 .~L.d/fé
depth equivalent to d/¥2, as suggested Fig. 3.10: Numerical
19 ' treatment
by Dreyfus ~ - see Fig. 3.10. of screen
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The structural components which are represented by the

screen~type boundary within the end—regioﬁ are those members with

induced currents circulating in them. For the fundamental field

the copper screen, clamping plate and the aluminium baffle-guides

on the outer boundary can be approximated to by a screen surface.

‘For the harmonic fields, most conducting surfaces within and

enclosing the end-region are treated as screens,

3.4.5 Internal iron members

These are structural ﬁembers within -the end-region which can

be treated as magnetic components with negligible eddy currents

circulating within themn.

(1)

(ii)

Infinitely permeable iron, u = o

The flux flows normally into this type of member, thus
the tangential flux density is zero,

; au
L2s = 3t

= 10
This condition is obtained within the finite-element
solution by allowing all nodes on the surface to have the

same scalar potential value.

Finite permeable iron, U = Ugl-

The correct density boundary conditions at the iron/éir
interface are given simply by specifying elements within
this region and allocating the finite permeability to the

elements.

3.4.6 End-rings

As the end-rings are normally non-magnetic, they only need

consideration when investigating stator-produced harmonic fields.

Magnetic end-rings would be represented by a region of finite

permeability.
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3.5 Conclusions
The numerical equations used to determine the scalar potential
distribution in the end-region have been developed from the finite-
element approach. Possible ways of dealing with the excitation and
boundary conditions have been discussed. -
From the numerical study of the end-region problem, a large
number of simultaneous equations are formed; it is the aim of the
following chapter to look into possible methods for solving these

~

equations.
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CHAPTER 4

SOLUTION OF LARGE SPARSE SYMMETRICAL MATRICES

4.1 General
| The finite-element determination of the scalar potential in
turbine-generator end-zones leads to a large set of simultaneous
equations of the type given by Eqn. (3.10). In matrix form they may be

written as:

a11 8.12 - . Ug V{
829 8y, U,
83,4 asj
: ] a, . . .| U = : Via e us ‘
e 8 3 834 Ui vl (4 1)
a U v
nn n n
Coefficient array Unknowns Source
array

The coefficient terms, aij’ are determined from the algebraic
expressions éssoeiated with the unknown terms, U, in Egn. (3.10), and
the source term cbefficients, V;, are formed from the excitation and
boundary conditions of the end-region.

The coefficient matrix is symmetric about the leading diagonal,
and as the numerical formulation produces relatively few non-zero
coefficiénts, the matrix is said to be sparse.

The following sections briefly discuss possible methods of
solving large sparse symmetric matrices, and describe the method

selected for the present study.
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4.2 Types

of Matrix Solution

§o2.i

4.2.3

Iterative methods

Iterative methods, of which Gauss-Seidel iteration,
successive éver—relaxation and line iteration are examples, have
been used extensively for solving large sparse matrices. They
have the advantage that only the non-zero coefficients have to be
stored, so that large matrices can be solved on a relatively
small computer. However, the disadvantages are that the number
of iterations required for\a reasonably accurate solution is
dependent on the method of iteration chosen, the initial starting

values, and the convergence characteristics of the equations.

Direct methods

Two methods for solving the matrix equation, (4.1), are:
(i) Transforming the matrix equation, such that [ﬁ:]. == [ﬁj

becomes z = [B] . EA -1.

(ii) Eliminating the unknown valués, x, until all the
coefficients below the leading diagonal are zero: the
values, x, are then determined by back-substituting. A
method using this approach is the Gaussian elimination
scheme.

Both approaches are suitable for solution by a large fast
digital computer, but the inversion process of Method (i) tends
to give a longer computer time because more arithmetic operations
are needed.

Selection of method

Although iterative methods are more economical in computer
storage, the direct approach overcomes the unceftainty of con-
vergence. Past experience has shown that the direct method
developed by Jenningseo, vwhich is a modified version of the
Gaussian elimination, is an efficient and economical method for

solving large sparse symmetrical matrices of up to 3,000 unknowns,
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provided the computer storage is available. The number of nodes
that are required for an end-zone study is.unlikely to exceed
1,000, TFor the solution of more than 3,000 unknowns, the
iterative solution is far superior.

To show the advantages of this method, known as the "Compact
Storage Scheme", it is compared with the Gaussian Elimination
Method.

4.3 Gaussian Elimination Method

Let:
Big Xy + 8% + B3X b el F ApXn F oo F YTy = W ... (422)
84Xy + 80X, + By3Xy + eoo F BupXp + een £ BpnXy = Vo ... (4.3)
(4) By Ty 8% + 8K F oo baLT b ot = o ... (4.4)

Bia Ty T 8T PR A, 4 R Bl Ll [8:5)

be a system of 'n' linear equations, where:

8,49 8,4 8, etc. are the coefficient terms

X,» X, X;, etc. are the unknown terms

Yy9 Yo» Y55 etc. are the source terms

The process starts by eliminating x; from all equations but (4.2);
then x, from all but (4.2) and (4.3), and so on, until only x, is left.

To eliminate x, from Egn. (4.3), it is necessary to add Hgn. (4.3}
to Eqn. (4.2) multiplied by (- 8,4/2,4 ), or, in general terms, add the
mthequation-haEqn.(4.2) multiplied by (- ay,/a,;), where m = 2 =n.

- Thus the equations of System (A) are reduced to System (B):

BgqXg + 805%y + 8 X, 4 o0+ 8 X+ ...+ Bt ¥

(1) (1) (1) (1) (1

BoaXy * BpnTy e F 8Ty f il £ 8% = T, .o (4.6)

2272 237 2m™m =
s SR CF (1) (1) (1)
(B) Bgrp T BnXy s v # B+ Smt i U S L T

(1) (1) (1) (1) (1)
Bup¥o * Busks fiove F B X 4 sl kB X = ¥ ... (4.8)
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(1) a

where: a_ . = ..—A‘B,
1J 1] 844 J
[ ]
(1) .
it A
yi = yi " aii ¥4 (1’ a = 2! 39 LR n)

Similarly, to eliminate X,, tl(xe)e ue)ttions below (4.6) are added,
1 1 <

in turn, to (4.6) multiplied by (- ay,/2,,), where m = 3, ... n).
The equations reduce to System (C):
a‘ix1+a$2xe+a13x3+ ...+amx'm+ ...+a”1x|_I =5y,
(1) (1) =i{1) S5 (1)
890Xy + 8p5X3 + s F B, Xt ol HB,X =y,
(2) (2) (2) (2)
(c) By3Xy + eoe F By X+ i H 8K = Y,
(2) (2) (2) (2)
BasXy + ese B X  + oL 48X = ¥,
(2) (2) (2) (2)
BaaXy + coo kb @ X 4 ot B X = ¥,
(1)
(@l () iaigy)
where: aij = ai.j - mazj
s>
(@F ey -
¥y Vi <) e £, 3 %%, 8¢ voum)

22
This procedure is repeated until the upper triangular matrix is

formed as:

a”x‘+a1.‘,x2+a13xz+...-'rzitmxm+...+a,nxrl = Yy
(1) (1) (1) (1) (1)

BogXy t BouXy # sey + Bo X ¥ o0 # a,.x = 7

(2) (2) (2) (2)

BysXy + coe + By X0 4 o0 + 8y X - = Ys

(m-1)

st e o I

D il - e

mn n ym

(n-1)

annxn

I
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This gives:
(n-1)

n n-1
& pn

and x n-, t0 X, can be obtained by back substitution,

(n-2)  (n-2)
i.e g Yp-y = 8 g 'xn_
A s (n-2)

8n—1, n—

This is repeated until x, is determined.
Although this method is suitable for solution by computer, it
does not make the best use of storage and symmetry.

4.4 Compact Storagze Scheme

4.4.1 Storage
This method makes use of the fact that the coefficients

formed by a finite-element solution give a symmetrically diagonal
matrix, so only half the coefficients are considered. Of these,
only the coefficients after and including the first non-zero, up
to the leading diagonal, are stored.

In the following example of a coefficient array, Fig. 4.1,

the coefficients are stored as 210l1]lo!lo!
2, 1, 1,0, 3, 1, 4, 2, 0, 0, 2. The corrvect 0110 2
11o]13]1]0
addressing sequence of the coefficients is
Ojof1]4]|0
retained by forming a one-dimensional array, olzlolol2
whose values specify the position of the first Fig. 4.1

non-zero coefficient numbered from the diagonal; this is termed

the "bandwidth matrix", and for Fig. 4.1 can be written as:

i ] (B e

The positions of the leading diagonal coefficients in the
coefficient array are given by summing the bandwidths, i.e.:

Bandwidth matrix: SO R A
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Running sum: 1, 2, 5, 7, 11 (coefficient position
in coefficient array)

Coefficients of the
leading diagonals: 2 by Ty &8 2

4.4.2 Reduction process

The process is best explained by the reduction of the

following set of four simul taneous equations:-

Bl % | 2 | Pes *s b,

a a a a x b

21 22 23 24 > >
. =

B3¢ | 832 | 835 | B34 s b,

a9 | 842 | 843 | 4y X, b,

The coefficient array is:

a a a
%1 azt 22| 31 asz a33 44 aaz a43 a44 bt bz b: b4

In the reduction process, a double asterisk, *¥ indicates a
reduced coefficient, and a single asterisk, *, indicates a
coefficient held in temporary computer storage.

4.4.2,1 Reduction of the 1st row

The leading diagonal is reduced to unity by dividing

the first row by e, 4, giving:
*¥% % ** %

1 a,, &y 8. b,
Bpi B0 G By LS

re

vhere: a,, ='§13, etc. are the reduced coefficients.
11

These double asterisk values cannot be stored until
other rows are reduced, but the value 1/511 over-writes
the leading diagonal value, a,q. The coefficient array

end R.H.S. becomes:
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1 ; Main
21| 822 B3¢ | By, |8y [ 84q | 84p | 843 | Q4s storase
ge

b, | b, | b5 | b, | R.H.S. storage

4.4.2.2 Reduction of 2nd row

*
a?'l = &gpy
‘. - -
a&,, 1is held in a temporary store

This now releases the storage location filled by a,,,
wE
so the reduced coefficient a,, = a,,/a,,, which, by
*
symmetry, becomes a,,/a,,, and over-writes the a,

location. 1In eliminating the x,, the following occur:-

* Wik
822 = 855 - 845 85y

¥ *%  x
8y3 = 8,5 = 843 8,y :
- 2 %
Bo4 T 8,4 84,8,
® ¥u
b? = b2 - b1 8.21

*
The leading diagonal, &,, is reduced to 1 by

* *
-dividing by a,, and the value 1/a,, over-writes a,,.

The reduced coefficients become

= * o * 5 *
f e ABEX a5 o Rk )i SR
23 = * ? 24 * ? 2 e *
852 85, 822
i * * >
Again the values By By cannot be calculated until

Rows 3 and 4 are reduced: the arrays are now as follows:-

0 K 1 2 2 Main
a 842 a; B1 § %32 { 233 | 240§ 24| %iun | Sae | stavane
11 20 ok
¥¥ | 5x

b, | b, | by | b, |R.H.S. storage

*

&,, | Temporary store
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4.4.2.3 Reduction of 3rd row

To eliminate x, and x, from the 3rd row, the pro-
2 s i i
cedure is as follows:-

*
83y = 834

*
This over-writes a,4 in the temporary store, and

* * ; : :
a,y= a,,/a,, over-writes ay in the main store.

12

and is stored in the ‘“temporary store.'
This releases the store held by a,,, &and, because
kS * ¥

*
of symmetry, &a,s=2a55/3,,. Thus a,3 over-writes &,, in

the main store: the other values are:

¥ % ¥ ¥ ¥x
835y = 835 = 854 845 = 83, 853
* *  ®E * . Be
Say = Qs = H3g By — 833 894
* S~ *  xx
b; = by -85, b, -a5, b,

*
The diagonal a,, is reduced to 1 by dividing

* *
throughout by a4, and the value 1/h3, over-writes a,,.

I * * * % * *
The reduced values are a,, = 8,,/a,,, and by = by/a ..

*%
The a=4_cannot be calculated until the fourth equation
has been reduced.

The state of the arrays after the third reduction

ds:
1 ¥ 1 il 1 Main
: a S12 ¥ |843] 82 i 821 1%42 | Pus | Pas | store
11 8, .l
®% | wx | *r
4| b, | bs | by | R.H.S. store

* *
a a Temporary store
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4.4.2.4 Reducti

on of 4th row

As before, in eliminating x,, X, and Xy the pro-

cedure

*
By | =

*r
84

43

is:
’ *
a4 and over-writes ay,
*
Sy 4 >
and over-writes a
a 41
11
* *¥ o *
89 = 84y 85, an@ over-writes a,,,
*
*x a
thus a,,= “ﬁ? can now be stored in the g location
855
* xx * wR :
845 =84y 8y3— 8, a,58nd stored in the temporary store
+*
*R % i 1)
thus 8y, = Eﬁr can be stored in the 8 5 location
855
* ¥ * k= 3 * o
Bea ~ By 844 — 84y By, — By By,

*
The value 1/a,, is stored in a,, location.

¥ * e * ¥ ¥ %%
b, = b, -a, b -28,b -2, b
* ¥ b*
PR Y I
b, = *
844
Thus the storage is finally:
‘| E 1 * .** 1 *% *% g 1 i
= 85 * | 843 | &, F | 844 | 824 | B34 * 1alin
11 a ... a
22 33 42 | store
*x +* ¥ ¥ * %
b‘ b,2 b3 b4 R.H.S. store
* *
a a a
41 42 43 | Temporary store
The final reduced matrix is:
= re 3 5
1 &2 83 B2 %4 b 1
9 i e
1 &y Bo0] . | X]| o b 2
* 5 * %
1 Eus = 3
¥
1 X, b‘
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To obtain Xos X, X and x4, back-substitution is

used, i.e.
bt
X = b
%% E = 3
X3 = by - a,, x,
ete.

4.4.3 Merits of the Compact Storagze Method

Besides the advantage of stgrage as mentioned in
Section 4.4.1, the reductiog process of the coefficient array is
more efficien% than the Gaussian Elimination Method, since there
is less "jumping" around within the main sequencé store. This is

shown in Fig. 4.2:

Zi
7z %
Z | sl |
1 LT B2Z2)
%

V_//t"_//,—/// '

pE " ' v ~1E

N

A 727
% 77 W
R 2 |7

Fig. 4.2: Typical coefficient array of a sparse matrix

Fig. 4.2 shows diagrammatically the coefficient arrangement
for a typical sparse matrix. Conéidering the Gzussian
Elimination first, at some stage the coefficients of column PR
will be eliminated by using the coefficients of row PQ. In order
to discover which rows are affected, the address sequence for the
whole of the latter part of the matrix will have to be inspected,
and the appropriate rows operated on. However, in the Compact
Storage Scheme the elimination of one row-;IHE(Fig.4u2) - is per-

formed by referring to the coefficients within the square DEFG.
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4.5 Solution by the Comvact Storace Scheme

The method is used to solve the following equations:-
2Xx + 2y + 0z + 2w = 14

2x + y+ 2z + Ow

n

7

" OX+ Yy + 2z + Ow 8
2w + Oy + Oz + 3w = 14

The storage is as follows:-

2 2 1 1 P 2 0OJd 0| 3 | Main store

141 7 8 | 14 | R.H.S. store

After the reduction of the 1st row:

1 i 0 i x T
2 1 1 0 y 7
0 | 2 0 Z 8
e 0 0 3 w 14
Yl2]1]l1]l2]|2]0]0] 3 |Main store

T ) 8 | 14 | R.H.S. store

After the 2nd row reduction:

1 1 O3 x 1
DR y 7
0 1 2 © Z ¥ 8
200 O S W 14
+l1|-1]1 2|2 ]|0]|0]|3 |Main store

T 7T | 8|14 | R.H.S. store

2 | Temporary store
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After the 3rd row reduction:

1 i 0 1 ¥

~] =3

Tiaied. W2 y

—
1
wh
N
Gl

|1 ]-1]-1]+ | 2]0|0] 3 |Main store

717 3% 14|R.H.5. store

i Temporary store

After the 4th row reduction:

1 1 (8l X 7
o=l 2 y i
1 -% Z %
1 W 4
1 1 2 I3 .
z |1 |{=-1]|-1]=5 |1 2 | -5 T Main store
717} * |4 |RHS. store

2 | -2 | -2 | Temporary store

The solution to the above reduced matrix is:

4.6 Conclusions
End-zone studies can adequately be represented by 1,000 nodes or
less, and for this size of problem experience has shown that the
Compact Storage Direct Method is simple and economical to use.
A computer program has been written, and all the end-region

problems studied within this thesis have been solved using this method.
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CHAPTER 5

THE FINITE-ELEMENT METHOD

VERIFICATIO}N

5.1 General

The finite-element approach has been formulated in numsrical

terms, but before solving a gensrator end-zone problem, it is

desirable to demonstrate ths working of the method, and to indicate its

accuracy compared with an analytical approach. Two examples for which

analytical solutions are obtainable will be considered, viz.:

(i) Scalar potential distribution in a rectangular sheet with a

specified votential on one edge and zero potential on the other

three.

(ii) Scalar potential distribution between two concentric cylinders,

with a specified potential varying sinusoidally round the peri-

phery on one, and zero potential on the other (applicable to the

open-circuit condition in the air-gap of a machine).

5.2 Rectangular Plate

5.2.1 Finite-elem=nt solution

The problem is illustrated in Fig. 5.1, and is symmetric

about the lins 1AAT,

0

X

A

p— — i

Fig. 5.1: Rectangular plate

The potential within the plate is described by Laplace's

equation, which in cartesian co-ordinates is:

8%u
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_The functional corresponding to Eqn. (5.1) is obtained by
applying Euler's equation, as described in Section 8.3:
N T B R
sy 0 ox]| 513U T ox)ex

ox

leads to f‘afx

n
B
QJ[OJ
ol (=i
(a8}
'mlm‘
g,

3 au
fx I i'[ax
Similarly:
oU)2 t
2w, A
it

giving the functional as: ;
T)2 o B 2
Rl [f 1{[%] 2 {%’j} ]dx’ Ay IR TN ey (5.2)
s

The functional is extremised by differentiating Eqn. (5.2)

with respect to U, and equating to zero. This gives:
2x [_[ o0) _0.(a0]  (20) o (au]
g oy e | (et e S il Sl i IO 16 -SG5y
ou [/s"' ox an'LaxJ Layj BU{_GJ

= 0

To solve Eqn. (5.3) numerically, the rectangular plate is

divided into triangular elements, as shown in Fig. 5.2, and the

—1.0m
potential is assumed to vary 6 o2 =11
_ = O~} lo.8
linearly over each triangle. ¥ 9 2@ /8
: 1] [ @ @
This can be written as: & e 40.4
Ly ‘s <9
U = a1+ ax + dzy { 2®, 110 o
which, expressing the (') 055 1.|0m
coefficients « in terms of the Fig, 5.2: Element sub-division

nodal potentials and co-ordinates of the general triangle i, Jj, mn,
' gives:

SR .
U = 5h [(ai + b.x + ciy)LTi + (aj 4 bjx + cjy)UJ,

-

=i
+a +b X+ cmj)JmJ ..... (5.4)
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where: a, = x.ym = X ¥ b, 2 ¥, =Y., B, SXx = ¥.

J mJ i 3 m 3 il J
aj = xmyi - xiym, bj = ym - yi, c‘j = xi - xm
& T xiyj iy xjyi' bm =¥ T yj’ ST xJ T 5

In the nuﬁerical treatment, the functional is extremised with
respect to potentials at all the nodes. Thus, for node 'i' of
the general triangle (Fig. 5.2)extfemisationis carried Aut by
differentiating Eqn. (5.2) with respect to Ui’ summing similar
equations formed from all iriangles connected with node 'i', and

equating to zero; i.e.

Yl o U _a_(au), (au)_a_ (au) |
BUi g Z ffs l:{ax} aqi {axj ¥ {ay} U, {ayj _! dx dy
= i _ R o (5.5)

where E: represents the summation. of all connected triangles.
Substituting for U from Eqn. (5.4) gives the final

numerical equation as:

ax° % A 2 24,
E{: an = j{: in !((bi + ci )Ji + (bibj + Cicj)Uj

=
(b.b_ 4+ c.c )U {
im imom mi
J

S B e e e SR T ST T IR ) 8 (5.6)

For the ezample in Fig. 5.2, the extremisation of the

functional leads to the following eguations:-

Node 1: gﬁ: + g,iz + gﬁf + gfiﬁ g}j“: + aa)%:’ T (5.7)
Node 2: %%: + g%j + %%f + iﬁiﬁ + 2§i: + 2§£: = O ) (?.8)
Node 3: ggﬁ + ggj + giz = 0 sale e (5.9)
Node 4: 2% , 8% 84 _ voslaan KB10)

o, o0, ot
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(Nodes 3 and 4 actuslly lie on the line of symmetry, where the

boundary condition is 8UBx = 0, but, as discussed in

Section %.4.4, these can be treated as unknown values.)
BEach component of Egns. (5.7) - (5.10) is given by the
general equation,(S.G), and from the dimensions of Fig. 5.2,

they reduce to:

4 AU = 1.25U0s 4 O.00s —0.8U0: = O
-'1.25U1 + 4.95U2 - 0.6U3 + 0.0Ug = 250
~
0.0Uy - 0.6U, + 2.475U5 - 0.625U, = "125
-0.8U, + 0.0U, - 0.625U, + 2.05U0, = 0
In matrix form these become:
4.1 =1.25 0 -0.8 Uy 0
-1,25 4.95 | -0.6 0 Us 250
0 -0.6 2.475| -0.625 Us 125
-0.8 0 -0.625| 2.05 Us 0
seanen stk 541

(The coefficient matrix is symmetrical about

diagonal.)

Solving Egn. (5.11) gives:

27
U, = 695 °
Uy = 75.6
0 e in s

the leading

to be made with finer mesh systems. PFig. 5.3 shows two degrees
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of sub-division, one having 121 nodes, and the other 286. The
latter has small elements concentrated in the area of rapidly

changing potential.

121 nodes 286 nodes
r ! 5 10 55 B D
2l A4 B ECANBREOLSBEGREHES
34 8 5 R SHHH .**r;fz
e -+ S b L
MEE 2
?'“j'iﬂf 7

~
—
SIS
N
. al

= i | T ) / -_l‘ .. _/‘ - .
r oA AA
== v e ~ v =

Fig. 5.3: Finer sub-divisions of the recténgular plate

— i b 3 W
e E—— F;'B)*;Ehﬁmm. -

Fig. 5.4: Scalar potential distribution

The resulting scalar potential plots are given in Fig. 5.4.

5.2.2 Analytical solution

The problem to be solved is illustrated in Fig. 5.1.

The potential hes a constant value of U, on the upper
surface, but goes to zero at the vertical edges. This can be
represented by a Fourier series of half-wavelength 'a! and odd

harmonics only, since U is symmetrical about a/2.

o
] Uy nmx
o el S s 4 S e——
T n a

n’!‘l, 3! 5"'

The potential within the plate is obtained by substituting
U = U/(v) sin ££§

‘into Egn. (5.1), giving:

87U’ n?g?
e ey AR
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for which the solution is:

(=]
It
.
=
o
o
e
+
(o]
4]
1
Nt
v}
=
=

fi=l 3,5, 0
Constants A and B are determined from the following boundary

conditions:-

i

Aty =0, U =0

Y b, U"_z Ua

1}

These give:

ANS= ..._2.[1&_ ERd R, = - _2_Uﬂ_
i nb . nwb
sinh _é_ sinh T

The final equation is:

N=1 3335 40

Eqn. (5.12) was used to calculate the potential at nodes
corresponding to those used in the finite-element studies.
Results are compared in the following section.

5.2.% Comparison

The potentials at the four nodes indicated in Fig. 5.2 are

used to assess the accuracy of the numerical study.

Node Finite-element Study
No. | Analytic I'pote] rumber of nodes
12 121 287

1 27.7 | 27.0 | 27.78 | 27.74
2 70.4 | 69.5 | 70.2 | 70.3
3 76.6 | 75.6 | 76.57 | 76.6
4 34.8 | 31.4 | 34.77 | 34.78

Table 1
The results of the numerical and znalytical methods agree

vell, even for the coazrse mesh with only four internsl nodes.
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5.3 Concentric Cyvlinders

This problem corresponds to the situation in the air-gap of a
turbine-generator if the following assumptions are made:-
(i) Slotting on stator and rotor surfaces is ignored.
(ii) The -stator iron and rotor iron are infinitely permeable.
(iii) The stator and rotor are infinitely long.
(iv) The potential is sinusoidally distributed around the periphery,
and has no axial variation.
(When comparing the numeric and &nalytic solutions, a peak scalar
potential of 100 is assumed on the iﬁner cylindrical surface, and zero
on the outer surface. The radii used for the inner and outer cylinders
are 0.573m and 0.7m respectively: values typical of a large turbine-
generator. )

5.3.1 Finite-element solution

Using the quasi-3-dimensional approach, the peripheral
variation of potential is built into the functional, and since
there is no axial variation of potential, the problem reduces to

the numerical solution of Laplace's equation in the region shown

Stator

P T e s e B

\\\\H\\xJ \\}=O.Tm

into 36 triangular elements, and the \\\\F
I\!
equations derived in Section 3.3, Y;;\:T\\\j\

were used to determine the potential

distribution. '\\\\\\\\\T\\\&P

Variation of peak scalar potential TN,
—> — 0-5731]1

in Fig. 5.5. This region was divided

across the gap between the cylinders ~ Rotor
is shown in Fig. 5.7. Fig., 5.5: Zlement division

5.3.2 Analytic solution

The assumptions of Section 5.3 reduce the analytic problem
to the solution of Laplace's equation between two concentric

cylinders, as shown in Fig. 5.6.

62.



Laplace's equation in cylindrical

co-ordinates is:

O R R (N o SN
et ™ B © 2¥ ppt T 4)
- Stator
Using Assumption (iv) leads to: Fig. 5.6: Concentric
cylinders
G I - ¢ L - L :
'5-1';*+rar-szu = 0 Leedhan e, 15)

g
(]
H
@
(=1
!

= U! sin péo
P = number of poles

The solution of Egn. (5.13) is:

U = ?(Ar“+3r““) sin po

/

n=i

The constants A and B are determined from the following

boundary conditions :-

At T=R,, U=0

It

At r=R,, U=TU, sin pb

giving the final solution as:

2
Uo [% - i%%—] sin pb6

U s Hme gl R 7 adede T S (5. 14)
-5
1

Substituting for the values given in Section 5.3 gives the
distribution of potential as shown in Fig. 5.7.
5.3.3 Comparison
Fig 5.7 compares the numeric and analytic values of

potential across the gap, and shows very satisfactory agreement.

—
a
1100+ o
5 Analytical
+
a
o ) o Numerical

d 50+ \ '
o
L9
m -

0 1 1 1 o‘\ﬁu 1

0.56 0.6 0.64 0.68 0.72 Radizal Distance (m)

Fig. 5.7: Comparison of analytical and numerical potentials
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5.4 Conclusions
The two relatively simple examples considéred have demonstrated
that the results obtained from the finite-element numerical approach
give good agreement with the anaiyticallyhderived values. This
encourages confidence in the method which, in the next chapter, will be
applied to the calculation of end-zone fluxes in conventional and novel

forms of generators.
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6‘1

CHAPTER 6

APPLICATION OF THE FINITE-ELEMENT METHOD TO MACHINE PROBLEMS

GCeneral

The earlier chapters have shown how the finite-element approach is
formulated and applied to geometrically simple problems. The results
were found to compare well with analytical values.

This chapter establishes the validity of the method for machine
end-region problems'by comparison.of test and calculated results on the
following machines:-

(i) A short-core replica of a 500 MW turbine-generator, where the flux
density normal to the inner winding surface has been measured.
(ii) A 660 MW turbine-generator, where the flux density normal to the
support fingers has been measured.

The method is also applied to open-circuit, short-circuit, and
load conditions on a 660 MW turbine-generator, with particular attention
being given to the calculation of the flux density normal to the stator-
core sugface. The effect of power factor variation on core-end-surface
flux densities is shown.

Examples are also given of the determination of end-region flux
distributions on the following machines:-

(a) A generator with a rotating superconduéting field winding.
(b) A fully siotless turbine-generator.

Short-core Replica of a 500 MW Turbine-generator

6.2.1 Machine details

The radial dimensions ﬁére the same as for a production
500 MW generator, but the core length was oﬁly 0.3m and there was
no rotor. One end-winding was conical, the other cylindrical:
the arrangement of the replica is shown in Fig. 6.1.

The replica was tested, several years ago, to investigate the
behaviour of the end-winding bracing under short-circuit
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conditions, but only a limited number of flux density values were
obtained. Of these, the values measured normal to the inner
surface of the end-winding conductors nearest the stator bore will
be used for comparison purposes.

The measurements were made with the stator windings excited,
as shown in Fig. 6.2: this
gives a stationary pulsating
field. The flux densities

~
were measured with low stator i &-hrJ&ﬁﬂy

currents, but, to indicate

Fig. 6.2: Stator winding exci-
the levels arising in service, ' tation used in tests
they were scaled up for the rated stator phase current of a pro-

duction 500 MW generator. Fig. 6.3 shows the resulting flux

density distribution:

_f"/frn’a@

— —wl
= /tator s
O D= er
<t M
1
B Numerical - 2-layer
-
a \\& — ——— — Numerical - single-layer
Q
oy o \j\x\\ ~ x x x Measured
5 ~
i
o
= 0.1
~
§ -
(a8
0 1 L 1 ] ]
0,2 0.4 0.6 0.8 150
Axiz)l Distance from Stator-core-én (m)
Fig. 6.3: Comparison of numerical with measured values of

flux density normal to the inner surface of the
end-winding cone
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6.2.2 Finite-element solution

Before solving by the finite-element method, certain simpli-

fying assumptions had to be made, viz.:

(1).

(ii)

The stator-core end-surface from the bore to the innermost
partoi‘thelclamping-plate was considered as infinitely
permeable (u = o).

Both clamping-plate and screen form part of the outer

boundary, and were assumed to be infinitely conducting.

- (iii) As the replica had no duter casing or end-cover to form

(iv)

(v)

(vi)

natural boundaries for the numericel study, infinitely-

permeable magnetic boundaries were assumed sufficiently far

away for their influencg in the vicinity of the stator

winding to be small. (The axial outer boundary was situated

at a distance equivalent to 2% times the end-winding length,

and the radial outer boundary ét a distence equivalent fo

twice the average end-winding radius.)

In the absence of a rotor, the centre-line of the machine was

treated as an equipotential surface, i.e. U = o.

The air-gap boundary line was set at the axial centre of the

stator core where the axial flux density was zero, giving the

boundary condition of 8U/on = O.

The stator windings were represented by either

(a)'a single current sheet situated between the two layers
of the end-winding; or

(b) current sheets situated at the mid-depth of each end-
winding layer.

With these approximations, the end-region reduces to the out-

lines as shown in Figs. 6.4 and 6.5:
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Fig, 6.4: Single-layer représen- Fig. 6.5: 2-layer representation
tation of end-winding of end-winding

In each study the end-region was divided into 845 elements,
and contained (with boundary points) 521 nodes. The element
distribution is shown in Figs. 6.6 and 6.7, with concentration in
the vicinity of the winding area so as to obtain accurate results
for comparison with the measured values.

Solutions were obtained for a stator excitation equivalent to
the rated stator current of the production machine. Flux
densities normal to the inner surface of the stator winding were
calculated from the scalar potential distribution, as shown in
Fig. 6.8.

6.2.5 Comparison with measured values

Fig. 6.3 compares normal flux densities from the finite-
element studies with the measured values. The agreement is good,
with the 2-layer representation giving slightly better results.

6.3 660 MW Production Turbine-generator

‘Scalar potential distributions were calculated for thé end-region
of the production 660 MW turbine-generator of Fig. 1.2 for the following
excitations:- 4

(i) Open-circuit - rotor only excited.
(ii) "Tdeal" short-circuit - equal andlopposite excitation on stator

and rotor windings.
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(iii)

(a)

(v)

(c),

6.5.1

Load - for a variation of power factors from 0.85 lag to

0.85 lead.

These studies gave:

Open-circuit flux density normél to the support fingers for com-
parison with measured values.

Flux densities normal to the stator-core end-surfaces for all
excitation conditions.

Comparison of open-circuit potential distributions of the gquasi-3-
dimensional study with a 2-dimensional fiqite-element.study.

Open-circuit study

The open-circuit test is part of the Works test, and gives
information on magnetisation, losses and temperature rises.

The following assumptions were required, in addition to those
given in Section 2.3.5:-

(i) The outside boundary of the screen and clamping-plate were
combined fo form one large scréén surface, and assumed to be
infinitely conducting.

(ii) Eddy current and saturation effects in the stator core were
ignored.

(iii) The end-ring cover was taken as a magnetic region, of
ur = 500.

(iv) The effect of rotor and stator slotting was alloﬁed for by
increasing the air-gap by Carter's coefficient, which was
1.086.

The potential difference, AU, between the magnetic shell
representing the rotor winding current sheet is calculated in
accordance with Egqn. (3.12). The peak ampere-turns of potential
difference must be sufficient to give an air-gap flux density
consistent with the open-circuit terminal voltage.

With these additional assumptions, the end-region is reduced

to that of Fig. 6.9:
3.
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Fig. 6.9: Outline of the end-region of a 660 MW generator
for solution purposes

The end-region was divided int‘o 456 elements by 302 nodes,
including the boundary nodes, as shown in- Fig. 6.10.

The scalar potential distribution for this study is shown in
Fig. 6.11, and the comparison of calculated with measured flux

density normal to the support fingers is shown in Fig. 6.12:

~ 0.3%4 Stator core Note: In this and sub-
2R b s e ~—x] Support sequent figures
oy 3 ? : N fingers relating to the
B X n ‘ 660 MW generator
< e etial flux densities

)82+ are normalised,
B x x x Measured with rated

5 voltage, open-
i—:o circuit air-gap
a density as

K 0.1+ reference.

E

vt

a 0 1 1 1

= 0.7 0.8 0.9 1.0

Radial Distance (m)
Fig. 6.12: Comparison of numerical with

measured values of flux density
normal to the support fingers
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6.5.2

The core-end heating is dependent upon the magnitude and
distribution of the axial flux density along the core end-surface:
Fig., 6.13 shows this variation, together with the radial density

variation along the stator bore:

o
co
(=)

o
(00]
1]

(@]
-]
(69]

Radial Distance(m)

=
=3
S

= e |

o) |
202 1.8 LA
Axial Flux Density (p.u.)

/

i L—l::b The dashed lines indicate

I | that the values will not

= | | be correct for a practical
machine as ventilation

! ! | i ducts are ignored.
0.04 0.080.12 0,16
Axial Distance (m)

RadialFlwxDensit'?p.u.)

Fig. 6.13: Variation of open-circuit flux density
normal to the stator-core end-surface

"Tdeal" short-circuit excitation

This exzcitation requires the stator winding ampere-turns to
be equal, but of opposite sign, to the rotor winding ampere-turns,
This differs from the Works short-circuit test in that no
allowance is made for the induced voltzge needed to overcome the
stator leakege reactance volts drop. All calculations for this
excitation are done for rated stator winding current.

To solve numerically, using the finite-element method, the

assumptions of Section 6.3.1 were adopted.-  The stator winding was

represented by a single current sheet situated mid-wazy between the

end-winding layers, and the potentisl difference distribution

7.



simulating the effect of the winding current was given by
Eqn. (3.11). Similarly, fqr the rotor winding, the potential
difference distribution was given by Eqn. (3.?2).

The element division was the same as for the open-circuit
Sfudy, and the resulting potential distribution is given in
Fig. 6.14.

6.3.5 Load study

The load flux densities within the end-region can be obtained
for any power factor by adding vectorially the appropriately
scaled values of flux densi%y from the open-circuit and short-
circuit studies. An example is given in Fig. 6.15 for a power

factor of 0.85 lagging:

Armature
reaction

pen-circuit excitation
used to determine B
; oc

Open-
circuit
mmf

Fig, 6.15: Vector diagram for obtaining load flux densities

The calculated flux density normal to the stator-core end-
surface is plotted in Fig. 6.16 for a range of power factors for
a constant power output. These results show clearly the detri-
mental effect of leading power factor operation, since the axial

fluxes increase, leading to higher stator core temperatures:
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6.3.4

0.71ém

Normal Flux

0.73m

L
/
L
///_ 0.84m
_ﬂ—*“”’#’1fff-

S ol 0.97m

L 1 | 1 ] 1
0.85 0.9 0,85 3.0 0.95 0.9 0.85
Lag Lead
Power Factor

Fig. 6.16: Variation with power factor of flux density
normal to the stator-core end-surface

Comparison of the guasi-3-dimensional
appro&gch with a 2-dimensional approsch

The governing differential equation, (2.7), for the quasi-3-
dimensional solution reduces to the axially symmetric case by
substituting p= 0: +this eliminates the peripheral term. This
approximation is similar to that made in Teledeltos studies, where
peripheral leakage is also ignored.

The open-circuit scalar potential distribution was calculated
for the 2-dimensional approach and compared (see Fig. 6.11) with
the 'quasi-3-dimensional potential distribution. The difference
between the two distributions is small near the air-gap region,
but increases towards the ends of the winding. This is because
the peripheral leakage flux is dependent upon the ratio of peri-
pheral flux path length to path length in the longitudinal plane.
Thus, in the air-gap region, the peripheral distance is about 2.2m,
compared to a "within-plane" distance of only 0.2m, which leads to

small peripheral fluxes.
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6.4 660 MW Generator with a Rotating Superconducting Field Winding

A design concept of considerable interest for very large unit
ratings is the rotating superconducting field generator, where the con-
ventional rotor is replaced by a superconducting winding mounted on an
insulating core. Since there is no rotor iron, very high excitation
ampere-turns are needed to provide the working density in a veéy much
increased air-gap. (These can, of course, be provided with almost
negligible loss.) The design of such a generator is described by
Lorch‘. . Ik '

Compared with the conventional generétor,'the higher field
excitation and the increased air-gap tend to give much higher flux
densities normal to the core end-surface. In an attempt to reducé these
flux densities, the rotor end-winding was moved into the "air gap".

The open-circuit flux densities were calculated, using the finite-
element method, for two rotor end-winding positions. Fig. 6.17 shows
the boundary outline of the generator end-region, and the element
division was such that both studies could be solved with a minimal

change in data:

Fr R e . iy o R T — -

The region was sub-divided by
577 elements
345 nodes

= e

DT . etedmtad]

l Conventional generator

Stator stator end-winding
e D B e
Active region lOverhang

e e e i e s

\ i Position 1
|

Superconducting field winding ==—- Position 2

i . - . . . . v e

Fig. 6.17: End-region of a 660 MW rotating superconducting field generator
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Fig. 6.18 compares the variation

core .' L g
of flux densities normal to the I 5
stator core-surfaces for both radial e

' -
rotor winding positions; it can o
be seen that the second rotor Case 1 : J ;elilT' 0
ux density,
winding position reduces the — = faaal D
flux density greatly. This is
active region ; overhang

Feemmrr s e sy === =7

because the flux density normal

s

to the core-end laminations are

a consequence of fringing and

flux due to the peripheral rotor

flux density, T

end-winding currents. Thus, in

Case 2, the fringe flux is

m, axial

reduced because the rotor
Fig. 6.18: Variation of flux density

winding ampere-turns fall off normal to the stator-end-
surface (from discussion
towards the stator core-end, and of Ref. (1))

since the rotor end-winding is mainly inside the stator core, the core
end-surface is effectively shielded from the fluxes due to the peri-

pheral currents. The rotor winding position of Case 2 gives a slight

m, radial

reduction in generator voltage, since the average radial air-gap density

is lower.

The 2-dimensional approach was also used to determine the scalar

potential distribution for Case 1, and the values of flux density normal

to the stator core surfaces are compared in Fig. 6.18. It shows that
there is a very large discrepancy between the two approaches: this is
the result of neglecting peripheral leakage flux in the 2-dimensional
approach; This can be explained by considering the transverse section
at the axiai centre of the generator, as shown in Fig. 6.19. Because
the 2-dimensional method neglects the peripheral variation, the flux

distribution is forced to that shown in Fig. 6.19. The actual distri-
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bution, which can be derived analytically, is shown in Fig. 6.20:

Stator
fw"-.. -“.

. Flux
lines

'\ & =
_~#Super- > Flux N{{ / 1 \
~ conducting ' lines i SRS
rotor

_ ——Stator

B
-

T

7

eV
\\ggﬂper-

g

conducting
rotor

Fig. 6.19: Flux Eistribution inthe Fig. 6.20: Flux distribution in the

core of a rotating super-

conducting generator,

assuming no peripheral

flux

6.5 660 MW Fully Slotless Generator

core of a rotating super-

conducting generator,

flux

allowing for peripheral

The effect of chamfering the corner of the stator-core-end of a

fully slotless generator, so as to reduce the normally directed fluxes

entering the core, was investigated by using the finite-element method.

fully

Fig. 6.21 shows a simplified section of the end-region of a 660 MW

slotless generator:

e—— B I S ————

The region was sub-divided by

770 elements

466 nodes
Stator
core
b
( iﬂyﬂ (a) Slotless stator winding
ki
Slotless rotor winding
Rotor

e S S

Fig. 6.21: End-region of a 660 MW fully slotless generator
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6.6

Studies were made for the normal end-surface outline, and also
with the corner chamfered. Fig. 6.22 compares the flux densities
normal to the stator cdre, and shows that the effect of éhamfering is to

force the densities to decay more rapidly, though the peak values are

not greatly reduced.
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2.0} Peak Axial Density (T)
"fé "‘1 — — —~ — (a) Square corner
[3) LT Y el i o
a |
L | (b) Chamfered corner
1.0
o
5
o
e é
o
[<3]
p-‘ 1 1 1 ]
0 0.2 0.4

Axial Distance(m)

Fig. 6.22: Comparison of open-circuit flux densities normal to the
stator-core end-surface of a 660 MW fully slotless generator,
for (a) square corner, and (b) chamfered corner

Conclusions

The finite-element method has been used to determine the end-
region flux distributions within two full-size turbine-generator end-
regions, for which some measured values of flux density are available.
In both cases the agreement with the measured values was good, giving
confidence in the approach.

The method has also been applied to the end-region of a production
660 MW generator for several excitation conditions, and the load study
showed how the core-end flux dénsity, and hence heating, increases as

the power factor varies from lag to lead.
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The value of the method in design work on novel machines has been
demonstrated by studies on a 660 MW generator with a superconducting

field winding and on a 660 MW fully slotless generator.
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T.1

7.2

CHAPTER 7

CONCLUSIONS

General

The previous chapters have detailed the development of the Finite-
element Method for determining the flux distribution within the end-zone
of turbine-generators, and have shown it to be an accurate and extremelﬁ
flexible approach. This method allows‘for irreéular boundary surfaces,
mixed boundary conditions on the game sufface, screens and clamping-
plates, internal iron regions of finite permeability (such as the end-
ring cover), and distributed windings. The advantages of the Finite-
element Method compared with the Finite-difference Method (Section 1.4)
have been demonstrated.

The major disadvantage of the method is the cost of data
preparation: the following section discusses possible ways of reducing
this, and further improvements in the treafment_of eddy current effects
and iron saturation.

Possible Imvprovements

T7.2.1 Data preparation

For a solution by the Finite-element Method, the computer
program requires the radial and axial co-ordinates of all nodes
and the node numbers of the triangular elements: this results in
a vast amount of data. So far, the data has been prepared by
hand, but this has proved expensive, as shown by the example of
the 660 MW generator study, where the manpower cost for preparing
the data exceeded £150, compared with a solution cost of £5.

To reduce the cost of data preparation, it is desirable to
generate the geometric and element data by a computer program. A
program has been written, but has proved inadequate to cover all
the variations in screen and winding shapes, rotor positional

changes, etc., that are required when trying to optimise the end-
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7.2.3

region design. A more general progrém could be written, but
unless studies need to be made frequently the large development
costs would outwdigh possible savings in running cost.

A compromise between the hand-prepared and computer-generated
data is to prepare .the co-ordinates by using a "digitiser". A
drawing of the end-region, with element division, is reqﬁired: on
positioning a probe over a node the co-ordinate data is punched
onto paper tape. The element data can be prepared by hand, or
generated automatically by & computer prograﬁ: such a program has
been written by Frederick et a121. Using this approach, the data
for the 660 MW generator study could probably be produced for
about £40.

Eddy current effects

The circulating eddy currents in conducting members have been
simulated by an infinitely-conducting surface. One possible
improvement being investigated is to express the flux density
normal to the conducting surface in terms of the eddy current
relationships beneath the surface. This would allow better repre-
sentation of permeability, resistivity and frequency effects.
Because the expressions are in terms of complex variables, a
complex matrix solution is necessary. Providing computer storage
is available, this could prove advantageous, as problems with a
multi-layer winding representation or load excitation could be
solved with one study.

Saturation effects

The saturation of the stator-core end-laminations can have a
significant effect on the magnitude of the flux densities normal
to the core—énd—surface. "At present, only the-extreme boundary
conditions of infinite permeability or infinite conductivity are
possible. To incorporate approximately the saturstion effect of

the stator-core-end laminations into the end-zone solution would
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require a knowledge of the ampere-turn distribution within the
stator core. This is provided from a separate solution of scalar
potential distribution in the stator core, using boundary fluxes
calculated from the end-zone program: iteration between the "end-
iron" and "end-zone" programs would continue until convergence of
boundary potentials was obtained.

So far, only internal iron regions of finite permeability
have been considered, but an approximation can be made for the
non-linear magnetisation chﬁracteristics (by re-calculating the
permeability of the elements) within the iron region, baéed upon
the initial scalar potential distribution, and re-solving with the
new values. This procedure would be repeated until convergence of
all permeabilities is achieved.

T.3 Concluding Remarks

Although further improvements are possible, the method as
described is a considerable advance on méthods previously available to
designers for the solution of end-zone problems. The method will also
prove invaluable in the design of advanced forms of generators where

previously existing techniques have been inadequate.
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CHAPTER 8

8. APPENDICES

8.1 Appendix I: Vector Potential Solution of the End-region Problem
8.1.1 Assumptions
In deriving the vector potential distribution within the:
end-region, the following assumptions were made:-
(i) All functions are sinusoidally distributed peripherally.
(ii) In the gap region, stator and rotor currents are repre-
sented by a tﬁin current sheet on the stator and rotor
surfaces.
(iii) All external iron boundaries are infinitely permeable.
(iv) Eddy currents are ignored.

8.1.2 Derivation of the end-region vector votential egquations

The vector potential distribution in the end-region is
described by Poisson's equation, which is:
V2I - _“O-j—- CRCR I (8-1)

From Assumption (i):

- Pl A A A
J = Jrsinpex;;-i-Je cosp6x§+Jz sin p0 x z
— A il
A - Arsinp6x£+Aecosp6x_@+?\zsinp6x_z_
Also:
DivA = O

which in terms of the peak quantities is:

A BA oA

B R g = Z
g e Ao w0 St o B s (8.2)

From the above the following component eguations are

derived (all vector potentials and current densities are peak

values):—
3% dA_  9°A s
o i r (1 +p%) 2
ar? " r or T 8z’ e AL+ ;% Ag = - Ho Jr e (8.5
%A oA a2A
0 1508 1 4+ p2 P
ar2 T T or azf ( rZD ) AB = ;% Ar = - Ho Jg ... (8.4)



3

L
3;5—+_—5_1~_+az: _I‘z'A = = Ug JZ_ ST S (8-5)

Egn. (8.3) can be rearranged by substituting for

Egn. (8.2). The resulting equation is:

2 - - 2 1 2 a
%A : z‘BAr z %A, 1 (1 - 5°) A 25 b A
or- r or d9z° re . Ho 9% < v P2

This can be more conveniently expressed by writing

Al =r Ar, giving:

r
BzAi* , 04 azgr' s : . 204
i L £ i
e i b, fr Al = Ho J_ T ~pal T (8.6)

Thus AZ can be solved directly from Egn. (8.5), which then
makes possible the solution of Ar’ from Egn. (8.6), because
aAZ/Sz can be determined. - Ae is then obtained either from

Eqn. (8.2) or Egqn. (8.4).

Numerical formulation

To solve FEgns. (8.4), (8.5) and (8.6) by the finite-
element method, the end-region is divided into a number of
triangular elements, with the radiasl and axial co-ordinates of
the corners known. It is assumed in this analysis that the
vector potential function is linearly distributed over each
element, so that A within the element can be expressed as:

b
A = oA [(ai + bir 4 ciz)Ai + (aj + bjr + cjz)Aj

+ (am - bmr + cmz)Am} S G (8.7)

(a. + b oy c.z)
i i i : :
where: o7 = Ni (1inear shape functlon)

also: X = A or A 6r.& .
Z € iy

ai, bi’ ci, etc. are in terms of r and z as defined'in
Section 3.3.3.
The finite-element method is based upon the minimisation

or maximisation of stored energy within the region considered,
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and requires the establishment of a "functional", which can be
regarded as describing the stored energy relationships within
the end-region.
. The derivation of the functional from the application of
Euler's equation is detailed in Section 8.3..
The functionals corresponding to Egns. (8.5), (8.6) and

(8.4) respectively are:

=N
T /} [E‘ ar) T 5??) T or Az S Jz Az] a8 4

4
1

HN
It
—
——\
ol

Before X can be solved, oA /Gz is required.

2 A?)z (14 p Ay’
Xg 2l e i 2r
[.uo Jo + —Ev A:I a] de st Ll (8.10)

Before X, can be solved, Ar is required.

©
Since the procedure for obtaining the final numerical form
of the equations is the same fér AZ, Ar and Ae, only the
solution of Az is described.
The numerical form of X% is obtained by substituting
Egqn. (8.7) into Eqn. (8.8).
Xz is extremised by differentiating with respect to the

nodal vector potential for all triangles associated with the

nodal vector potential:
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‘]('__
f.e. yz'—'— = 0 : : A rvenaner k8a11)

‘3
For example, if node 6 is associated with elements 10, 50, 74,

96 and 107, then Eqn. (8.11) is written as:

axZ1o axzs aXZ74 ?_&9_5. .a_x.%ﬂl
RIS e = 0 sisihas RBa12)
Ze Z6 Z6 76 Ze

Thus, when all nodes are operated on in accordance with
Eqn. (8.11), a complete set of simultaneous equations is formed,
defining the distribution of axial vector potential AZ.

A typical component part of Egn. (8.11) is given as:

0X
% 1 sy s 2 2 2 e
T 4&2[("1 rd+ et rid gl S NEPTE vk
iy
2 2 2 s =
s S+ 2p biaiA+2p bicizé
2 i = — 2 T
'
+ 2p ciaiQ)AZi+(bibjrﬁ+cicjrﬁ+p aiaJJ
2 = 2 2 2
+ p bibjrA+p cich+p biaj:5.+p aibjA
+p b, 0, g8 4+p cob, eh+p2c, a, Q
PO < 3 )
2 g = 2
+ p aich)AZj+(binmrﬂ+cicmrﬂ+p aiamw
+p°b. b rBA+p c.c SB+p b.e A+ pSa b A
3 im 3 en = S s A 0
2 555 2 = 2
4+ p bicmz.ﬁ+p cibmzﬁ-i-p ciamQ
2 == s & 8 8 0 8.1
+p 8, c Q)Az (YZ1)] (8.13)
m
& r.+r,+ 1
where: r = -
2
Z2. + 2, + 2
S o J m
3
[BAZ
Yz1= +1[Wﬂorszrdz
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These terms are only present when the node considered lies on
or within the stator or rotor winding areas.

S; Wand Q are areas of integratioh for the functions described
in Section 8.4.

8.1.4 Boundary conditions

Because the air-gap has to extend back into the ;ore, a8 .
problem arises in defining boundary condition. 1In Okuda'515
ﬁork, the core end-surface and rotor were taken as an
infinitely permeable con%inuous surface. .This allows the
method of images to be applied, and leads to the simple con-
dition that AZ = 0. However, the present study is particularly
concerned with fluxes near the gap end, and thus it is unwise
to make this assumption.

Equating the boundary in full gives:

(i) Radial infinitely permeable iron surfaces

(e.g. stator end-surface)

D Bﬁe

B w Slisresle 10 (from B = curl A) ....... (8.14)
aAr aAz :

By =k D e wsier KBS

(ii) Axial infinitely permeable iron surfaces
ie.g. stator bore)
B = LG B2 (r A,) -p A = 0 cvicenl L8, 15
z r|or ) r R

aAr BAZ

]3e =S~ I b R e . (8.1?)

The extreme boundary of the air—gap_can be regarded as
havihg the radial flux component only present, i.e.
Ar = Ae ;-0, and A; is calculated from 2-dimensional theory.
The conditions above do not allow a solution to be

obtained. It appears that the assumption made by Okuda is

necessary for the solution to be.formulated.
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The assumption made is that the stator and rotor end-
surfaces are infinitely permeable and form one continuous
straight boundary. Based on this assumption, the mirror image

currents can be set up as shown in Fig. 8.1:

=

Stator end-
winding turn

—

U =

Ot 1l st ittt

L.

< Winding
current

current

)

/
/

oy g e e e Ty, Ty ey,
H = o

. lmage

Inage _
~current

current

Fig., 8.1: Mirror image currents

Thus on surface OB the axial component of the vector potential
vanishes, giving AZ = 0. Similarly, on the axial surfaces the
radial component vanishes, giving Ar = O.

This leads directly to the following boundary conditions:-

(a) Radial surfaces (core end-surface, etc.)

A = 0

z

oA

Senighinl ol

3y = 0 ... from (8.14)
aAr

e 0 ... from (8.15)

(b) Axisl surfaces (rotor shaft, etc.)

oA '
o = 0 ... from (8.17)

é% (r 4g). = 0 ... from (8.16)

9.



8.1.5 Advantages of vector potential

Current in the stator and rotor windings can accurately be
represented in amplitude and distribution; also, the actual
thickness of the winding can be considered.

8.1.6 Disadvantages of vector potential

(i) Three solutions are required for Az, Ar and Ag.

(ii) To derive'ﬂr, the ferm aAz/az is reguired; thus any
errof in thé AZ solgtion is tranéferred tolthe Ar and Ag
solutions. To reduce this effect, a finer mesh would be
required, thus increasing the store requirements.

(iii) The boundaries on the radial and axial surfaces have to
be approximated so that a directlsolution is possible.
The effect of this assumption is not known.

(iv) Although the winding currents are accurately represented,
the considerable amount of calcuiation makes the solution
costly.

8.2 Appendix II: Flux Density Solution of End-region Problem

8.2.1 Derivation of end-region flux density equations

Because of the difficulty of defining boundary conditions
for the vector potential solution, the problem was formulated
in terms of flux density, for ﬁhich boundary conditions are
much more definite. The equation describing the flux density
in the end-region is:

DiveE = O

and expanding gives:

B, 9B, , 0B, 9B,
g e o e e R
Also: curl B = fo J (in the winding regions)

This gives the following relationships (all flux densities
and current densities are peaks of quantities varying
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Bo2e2

sinusoidally in the peripheral direction):-

82B7 asz 1aBz ps bl . aJS 1
ar: " a2 ' T er D Bol s LT sl S5 =1 Handg

e 18

. 7 i s
and 11‘]3e = rBe.
25 1 7 P o _
2% —1-aBa+aBe 23" -a—(J r) + J
arz t 1 or 8a- —r® 9 T Pog, Vg Ho +,
aJr
“For'a"z"' (8.19)
and if B’ = r B :
r r
9% ! B ¢ 8°B /! 2 dJ 9B
r i [ r B R Y T
or© i r ar + 8% _%—Br SaE Lo a cz P Ko Jz 2 0z

These equations are similar to Egns. (8.3) - (8.5) of
Section 8.1, and thus the solution procedure is the same.

Numerical formulation

The flux density is assumed to vary linearly over the

triangular elements, thus giving:

1
B = 2 Eai + bir + ciz) Bi + (aj + bjr + Cjz) Bj
+ (am SRt cmz) Bm] ..... ov ABL2Y)
where: B = B or B’ or Be’.
z T

The functionals for Egqns. (8.18) - (8.20) are:

(p (aBz : (aBz)z }i
¥ e £ =2 —2 .
XZ j:' 'L2 or "\ %z * or Bz Ho Jg Bz * Bk Jr Bz
BJe
—porEBz}drdz Hasee LB2AY
T aBrJr ‘ aBr!)2 p2 2
L i a0 ’
X;|:- = [f{2 or i 0z +2rBr pporJz Br
, 9, oB_
st ko VT 5 e ! 3 A
+fe *° 50 :ﬂr °T 52 Br } dr dz (8.23)

96.



' s PR R ) A :
rr t'.e) B) 23- 2 :
Syl = j} 2 or *\ oz Fogas Bp i Bosk s Bg
28J£ 0 ]
= I L. 5 r |
Ho ¥ == By’ + Ko T 3= (r JZ) By | dr dg eses (8.24)
Fgns. (8.22) - (8.24) are reduced to the finite-element
form by substituting for Egn. (8.21), and extremising as

. described in Section 8.1.3.

8.2.3 Boundary conditions

~

(i) Axial surfaces (M = »)

BzﬁBe‘:O
- - a
. LromiBEei B =t 10, Ee (rB) = 0
T r y
aBr‘
e e = 0

(ii) Radial surfaces (U = )

B'2B6=0

LEE = 0

BZ=B6=O
Br' is determined from 2-dimensional theory for the flux

densit;” variation between two concentric cylinders.

(iv) Corners on outside boundaries

(a) Internal corners: Both Br’and Bz are taken as zero.

(b) External corners: Since the values of Br'and BZ
cannot be defined, values are
chosen consistent with saturation
levels at the corners.

8.2.4 Advantages of the flux density solution

(i) Flux density conditions on the outer boundaries can be

specified exactly, except at the corner points.
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(ﬁi) Current sources can be accurately represented.

8.2.5 Disadvantages of the flux density solution

(i) When deriving Br !, the axial gradient of Bz is required,

thus any errors in Bz are transmitted to Brf.

(ii) In Eyn. (8.18), for B, the R.H. side contains a term

aJé/Br. The distribution of this term is such that the
derivative gives a zero value over the radial width of
the winding, but an infinite value on the boundaries of
the winding. Thisxleads to difficulty in the finite-
element formulation, and it is necessary to approximate
the true distribution by one for which the gradient is
finite on the winding edges. This involves extra

computation.

8.3 Appendix III: Determination of the "Functional" from Euler's Eouation

It is required to find the functional, X, corresponding to the

differential equation (2.7):

8%y

(0T AN NG it LR i

/
fe T p gy | pr 06 T agr

SN

For convenience, the above equation can be written as:

2%y’ @’ 1 3% a3y’ 5
raz‘.z+ar+rae¢+r-a?—=0 ....... (8.25)

The general form of the functional is as follows:-

where: Q

1

From

functional

[;r[ (Q) dar. dz a6 S E (R B o S (8.26)

LA

g . s oUt. 8t
f[r, Z, e, U, ary az! a6

Buler's theorem, the necessary condition for X to be the

for Egn. (8.25) is that Eqn. (8.28) should be identical to

the differential equation to be solved, viz. (8.25):

o)

oz

or

wireg 1.0 Qoh, Ol 09 1 68L0
31‘ a(aU") 5] ae a(auf) o az a auf) an ol 0 . (8.28)
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Comparing Eqns. (8.28) and (8.25) term-by-term,

it follows

this

that:
A R 2%y’ au’ ) au’
ar BF_U_;-) = 13 arz + ar = ar ar -------
B[ 8 7. 1807 _ 12 [ou
ad 3 oy’ r ob - p 08 ) 86
Jef o 1 . e . 2 f{au
oz a BU‘} iy 9z° oz | Oz
e bkl I P,
QI
au’
Thus the values of Q (say, Qi, Qz, Qs and Q4) for all four
parts of Eyn. (8.25) are:
80, _ . u
3 au’ o or
or
el r jeu
L Q- 2 {ar
Similarly:
4 (au)®
Qe o {a&]
r {au’ ¢
i 2 [32:}
Qs = O
then Q = Q4+ Q- + Q; + Q,, and a check will indicate that

value of Q satisfies the Euler condition.

From Egqn. (8.26) the required functional becomes:
2 * ___:-.*U']Q (@_) 9 (__aU')* 1
X = [f(2l:(8r * Vog + 52\ 38 Jdrdzdﬁ.

8.4 Appendix IV: Evaluation of Areaz Integrals

When formulating the numerical expressions of the extremised

functional equation, (3.10), terms arise which are of the form:

f[f(r,.z)dr' i
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In deriving the final numerical equations, it is necessary to
evaluate these functions over the area of the triangle being considered.
To describe the integration procedure, the function

Stoo o o %

is evaluated,

L f[—’- i a%
1‘ ~

The integration over the area of the triangle is performed by taking
each side in turn and adding their centributions. '(The sequence of
integration must be consistent with that used for deriving the general
distribution of'scalar potential over the triangle, i.e. clockﬁise. 15 i
this is not done, a sign error will appear, giving incorrect numerical
equations.)

Considering side ij] (Fig. 8.2):

This line can be expressed in terms of the nodal co-ordinates,

a (r A )
i m 1 ) 5|
i.e. 2 = a + br where: a =& =7 = =
c (r. - r )
m J i
c P, =
m J i
. 1
. W = ~dr Gz
[
=
:f EdI‘
I
L
it
—~
r. 9
"L (a s br) 5 :
= - \a + br)dr -
r.
i ¥
oo
J
=[aloger+brl =
i 1
a y ol
= - E; loge r. = 10gé r, 4= bm 0 Axial
a_ T Fig. 8.2: Triangle over which
C.oow o= 2aog ;l -z, - 5.) the area integrals
“n 4 J = J are calculated
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This procedure is repeated for the sides jk and ki respectively, and

these components added to the expression for side ij, giving:

*n By 8y £y T
W4 = E_‘loge T. & c. 1oge r * e logé r.
m J 1 m J i
(Si'nce I(Zl s ZJ) + (ZJ i Zk) +* (Zk = Zi); B 0.)

The other functions arising in the numerical equations are evaluated,

using the same procedure, and aré as follows:-

Q = ﬁf%-dr dz X
a? r iﬂ 8" r
e [20 Elog, St e log P ' Dok loge ;T-}
m m 3 i
b 2 a b b.2 a.b,
+ [Ef— (r. + r.) + L Z%— (r.+1 )+ =
v i
b ® a. b
+ == (r +1r.)+ —J——J]
de'. m 3 c
J J
I
and I dr dz
{]
am3 By 3 zi 8 ¥,
TR logé r.  3c.° loge r T 33 lOge T,
m J i m J $

bm bm2 2 2 &m bm
o ) e 2
[ 5 9 (r. +T, T+ r'j ) + (ri + rj) + a

Cm N 9 J 2
R AT ix 0ats O =
+ =7+ (rj * i * ) + > (rj + rm) + 8,
. U 2
| ] S aoh 2_
+ E;E —%— (rm + rm ri + ri ) + —15"1 (rm + ri) + aj }

8.5 Appendix V: Two-lzyer Representation of the Stator End-winding

Section 3.4.1.1 has shown how a single current sheet can be used to
represent the end-winding, but for more accurate studies it is possible to
represent the winding by two current sheets, one for each winding layer. A
difficulty arises because the mmf distributions set up by each current

sheet are displaced peripherally relative to each other, although their
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magnitudes are the same. Thus a single solution is not possible, as the
quasi-3-dimensional study does not allow for a peripheral phase shift in
‘potentials at different positions throughout the end-region.

This difficulty is overcome by resolving the individuazl mmfs into |
sine and cosine components, and solving forlthese distributioné separately.
The final solution is obtained by adding vectorially the potentials from
the two numerical studies.

The potential difference, AU, acroés the magnetically insulating
shell, which represents the current ;heet, is given directly from the mmf

distribution relationships.

These equations are given by Nomura, but for convenience they are

- X _-r-
llSted below: Evolut»e
ection
The layout of a typical end-turn is 2 dw
a
shown in Fig. 8.3, and only the
y Straight :
fundamental component of potential section ds

;-—p’ (T/2 “—"'{

difference is considered. na
Fig, 8.3: Stator end-winding turn

(a) Cosine potential difference distribution

(i) Straight section: 0 < 2z < dg

13505 0 % 7 X K
rm

& S ph d AT
AU = poles cos (1 - p*) 2
(ii) Bvolute section: dg < z < ag
s
AU = b Irms . Tph : Ka cos L E—EE-—-fEE + 1
x poles 2 dw

(b) Sine potential difference distribution

(i) Straight section: 0 < z € dg

1.35 % Irms X Tph x K

AU = # S sin (1-p) %

poles

(ii) Evolute section: dg < z < ag

AU = %

1.35 % Irms X Tph % Kﬁ = (pr(z - as) ]
i ) e e s SR
poles 2 | dw

-

(The plus and minus signs apply to the inner and outer layers respectively. )
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