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SUMMARY

This work undertakes a survey of methods of numerical approximation
to functions. The functions considered are taken to be continuous within
the range of approximation. Some consideration is given to the types
of approximating functions in common use and the measurement of goodness
of fit. It is seen that these two criteria together decide by what method
the unknown coefficients are to be determined.

Some properties of orthogonal fuﬁctimns and continued fractions are
presented. MNethods of deriving interpolating functions are described.
Approximations may often be based on series expansions and this is con-

)
sidered, with reference to Chebyshev series, asymptotic series and Pade’
approximants.

The next sectinn.deals with approximations derived when the measure
of fit is chosen as one of the three Holder norms L, , L, or L.,. The L,
problem is shown to be solved in some cases by treatment as an interpola..
tion problem. The least-squares (L,) problem is best treated using ortho-
gonal polynomials. The minimax (L) approximation is seen to be found
only by means of an iterative process and is the best approach when find-
ing rational function approximations.

The method of spline approximations is described. This is basically
an ‘interpolative approach, the practical method involves representing the
function between the points of agreement, or knots, by cubic polynomials.

Finally a general summary covers the types of approximatiun consid-
ered. Some techniques, &.g. range reduction, are mentioned which help in
certain cases with finding efficient approximations. An attempt is made
to give a general strategy which can be adopted for finding a suitable
approximation to a given function and which would be workable in all but

exceptional cases.
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CHAPTER I

APPROXIMATION TO CONTINUOUS FUNCTIONS

Introduction

Numerical approximations to functions involves attempting to find a
function f(x) which follows closely the behaviour of a given function y(x)
in some region a £ x £ b. The approximation, once determined may be used
instead of y(x), for example to aualuate‘ﬁby(x)dx or to find y(x,), for
some given value x,of the argument. .

Why should it be found necessary to use f(x) instead of y(x) in such
cases? Simply because f(x) can be chosen to be more "amenable" than y(x).
It may be possible to choose f(x) so that it is relatively easy to integrate
or differentiate or so that i# is rapidly evaluated by an automatic mach-
ine. It is possible that y(x) itsaif is not explicitly known, when, for
example, it is expressed as the solution of a differential equation.

In this work discussion is restricted to approximation to functions

which are continuous in a single real variabls.

Fundamental Considarations_

There are three basic steps in finding an approximation to a given
function. 1In the beginning, it is necessary to decide what form of func-
tion may be satisfactory as an approximation. Next, an expression must be
chosen which can be used to give a measure of the "closeness" or goodness of
fit of the approximation. Because of a geometric analogy, this is some-
times referred to as the distance betwsen the two functions. Finally, hav-
ing agreed upon the first two choices, it remains to derive and solve the
system of equations which determines the coefficients of the approximation

such that the distance function (or norm) is minimized.



There are no fixed rulses governing what form and norm should be chosen.
The choice will depend on a few general principles, mainly derived empiric-
ally and often constrained by what yields a pfacticable solution.

Traditionally, polynomials have been a first choice as approximating
functions. In the past, this was strongly influenced by the lack of suit-
able computational facilities and with appropfiate choice of norm, the coef-
ficients of a polynomial could be found without a prohibitive amount of com-
putation. Now, there is available virtually all the computing power we
require, yet polynomial forms remain popular. One reason for this is the
ease withuwhich polynomials may be integrated or differentiated.

_The choice of form and the distance function together determine the
nature of the problem we are faced with whédn trying to evaluate the unkncwn
coefficients, This problem is directly solved if it is a set of linear equa-
tions. This has meant that forms and norms have often been chosen so that
the coefficients have been determined by linear equations, This, in the his-
tory of the subject, has led to the importance of least-squares approxima-
tions by polynomials. It is as well to point out that the linear problem
can be ill-conditioned and that, in some cases, special care must be taken
to avoid this. (See Chapter II)

Notwithstanding the advantages of polynomials, it is sometimes desir-
able to use other forms. These choices lead to non-linear problems to deter-
mine the unknowns. Such systems usually require more effort for their solu-
tion and we require some benefit to warrant the extra effort. This is usually
in the form of a better degree of fit or perhaps the same degree of fit with
fewer coefficients.

The second choice, that of the way of measuring the closeness of the
approximation has a profound effect on the way in which the unknown pafamatars
are determined. One point which is important when considering the goodness
of fit is that generally, there are no a priori rules which determine the

degree of the approximation to achieve a given order of closeness. Normally,



we have to determine what is thought to be a suitable approximation and

then decide if it is satisfactory. If this proves not to be the cass, the
process must be repeated with a higher degree approximation. Another alter-
native would be to diuida'up the range of fit and to determine separate
approximations in each segment. 1In this case, some procedure is usually
adopted to ensure that the approximations display some degree of smoothness
at the joins of the segments.

Choice of Form of Approximation

. There are limitations on the types of functions that are available for
use in approximations. This may be due to the uses to which they are put
or simply due to the practicability of deriving the unknown coefficients.
Polynomials and trigonometric sums are often used because they display a
"smoufhneoa" of behaviour which is often closely matching that of the given
functions. A smeoth function can be Ehought of as one which displays an
undulating rather than craggy nature. More precisely, smoothness implies
that the function has continuous derivatives whose values remain relatively
small. However, for this very reason, if the given function does not dis-
play characteristic polynomial behaviour, then a polynomial approximation
may prove unsatisfactory. Such behaviour may take the form of a sharp
"elbow" or perhaps a region of large slope whilst elsewhsre the function
may be relatively smooth. In such cases it may prove advantageous to use
a different form of approximation, a natural choice being a rational function,
that is, the ratio of two polynomials. In such a case, the determination of
the coefficients is no longer a simple procedure. It may prove possible to
avoid such a choice by carrying out a transformation of the independent vari-
able. This can often be done fairly simply and the resultant function prove
sufficiently smooth for a low-degree polynomial to give an adequate approxi-
mation,

Rational ?qnctions have another attractive feature. There is empirical

evidence to suggest that for a great many problems, rational functions will
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give an approximation which has a smaller maximum error than polynomials
with the same number of coefficients. For this réason, rational functions
are often preferred as compact forms for use with automatic computers for
function evaluation. 1In addition, rational functions may be converted to
continued fractions which allows evaluation of the function economically
in terms of the number of operations requirsed.

Finally, the given function may possess special features that strongly
suggest the use of special functions in the approximation. The most
common of such functions are logarithmic or exponential terms. Special
forms of this kind do not fit into general theory and have to be treated
on their own merits.

The Measure of Goodness of Fit

When considering the distance of an approximation from a given func-~
tion, it is natural to ask how close is it possible to get? In particular,
if we choose pulynbmial form for the approximation, is it possible to increase
the degree of the polynomial and thereby steadily reduce the error to any
desired extent? Fortunately for the numerical analyst, Weierstrass estab-
lished in a famous theorem that if y(x) is a continuous function then it
may be approximated to any degree of closeness by a polynomial. (A proof
of this is given in Appendix A.l.) However, the theorem provides no hint
as to how these polynomials may be derived.

Interpolation

L

Intuitively it may be félt that if the approximation has the same
values as the original function at certain values of the argument, then i£
may be considered not to differ significantly at other points in the region
spanned by the chosen arquments., In addition, the more points of agreement,
the more reasonable the approximation should be. Historically, functions
have often been defined in terms of tables. In such cases interpolation
formulas have been used to evaluate the function at non-tabulated points

using function values at equal intervals. Unfortunately it is not possible



to ensure that approximations based on equal intervals have errors that
reduce uniformly as the number of points increase. However, there is no
reason to choose equally spaced points and it can be demonstrated that
unequally-spaced points will be an advantage.

Other methods try to ensure a good fit by including information
other than the function values. This usually consists of specifying the
derivatives at certain points. Methods of this nature include the Hermite
formula and cubic spline functions. If we include the function walue and
the value of its derivatives at only one single point then we have the
Taylor Series.

The Lp Norms

When discussing interpolation methodd, no specific mention was made
of the measure of the goodness of fit. It will be seen in the relevant
Chapters that the error may be estimated from the value of a certain high-
ofder derivative, dependent on the degree of the approximation.

In the more general case, we require a "distance" function which is not
dependsnt on the forﬁ of the approximation. This will then not only pro-
vide a measure of the goodness of fit, but will so characterize the prob-
lem as to lead the way to its sdlution. The measure that is adopted is
the Lp, or Holder norm.

This is defined as
b lf{)
P
Lp [5(><) - f(Xi] = [L\V(X) - £(x)| dx] py1 (1.1)

where y(x) and f(x) are the function and its approximation and [g‘b]

. -1s the range of fit.
Problem of
Tha{approximatinn can now be defined as, having chosen the form of
f(x), to determine its coefficients so that the expression on the right

hand side of (1.1) is a minimum.



Only certain values of p are of practical importance.

(1) p=1 .
/ ly(x) - f(x)l dx (1.2)
Since l/ y(x) - f(x)] dx & ‘_[a.ly(x) - £(x) | dx

b
it may seem reasonable to adopt the L, norm if d[ f(x)dx is to be
O

b
used to represent Jf y(x)dx.
a

(ii) p =2
b ]
L, = [f {y(x) - f(x)} dx} ) (1.3)
a
This is the classical least-squares norm. In practice, the square root
may be omitted without ambiguity.
(iii) p ==
)

It is possible to show that when p-soo, the Lp norm becomes

Ly = [:l:la;] ,y(x) - f(x)! (1.4)

(This is derived in Appendix Al.2). Because the object in each case
is to determine the coefficients of f(x) so that the distance functicn is
minimised, the Loonorm is often referred to as the "minimax" norm.

The expressions (1.2), (1.3) and (1.4) impose different conditions on
the approximation. fhe methods of deriving the coefficients are different
in each case, and in general, we do not expect to find the coefficients of
the approximations derived using the three norms to be the same.

Sometimes it is necessary or convenient to introduce a "weight-
function” into the norm,

b PP

i.e. Lp = [Aw(x)ly(x) - f(x), dx] (1.5)
where the weight-function w(x) is a non-negative function of the argument
in the range [a,tﬂ « This function has the effect of giving more emphasis
(or weight) to those errors in the regions where w(x) is largest and vice-
versa. It would appear simplest to take w(x) = 1, as this would give equal
wveight to all error values. However, there may be good reasons for other

. -
choices. If w(x) is taken as Iy(x) ,than the norm will be based on the
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relative error rather than the absolute error., In other cases, w(x) may
take special forms so that special functions e.q. Chebyshev polynomials
can be introduced into the approximation,

Chebyshev Sets

To complete this introduction, it is necessary to mention onas con-
cept which is important in the discussion of the existence of polynomial
solutions in both L, and L.o approximations, This is the idea of Chebyshev
sets.

Let us first consider the independence of a polynomial solution.

n
8.0 if P8, x) = SO aiﬁi(x) (1.6)
i=0

is an approximation where ﬁi(x) is a (as yet undefined) polynomial of degree i,
continuous in [a, b]then we require that, except for isolated points in fa, b ,
f(a',x) # f(a" ,x) unless a' = a" ; (1.7)

From (1.6) and (1.7)

2 1

n
5 (e ~a") 4,00 £ 0
i=o

or rearranging

n

Z (a=a"), d,(x) # d(x) 0% jén (1.8)
i=o ' "

PO LA

This implies that the g(x) we employ in the approximation f(x) mist be
linearly independent.

However it is found that this is not sufficient of itself to ensure that
the approximation exists and may be evaluated. For this to ba true in the
cases mentioned, it is necessary to demand a further property, which is the
defining property of a Chebyshev set.

This can be stated in one of three equivalent ways. Let ﬁi(x), =
be polynomials forming the basis for -£(x), then ",L-:'O’l e

n
(1) No linear combination Ehﬂ.(x) of the (+1) functions ¢.(x) has more
i=o F i

than n roots in Ey!ﬂ unlass it vanishes identically.

10



(ii) the determinant det {gi(xjj) i=0,1, ...n cannot vanish if the
xj are (n + 1) distinct points on [p,b] -
(iii) a unique linear expression of the form (1.6) can be found to inter-
polate any continuous function at (n + 1) distinct points in {é151
These are three different and equivalent ways of expressing Haar's
condition. Any set of functions satisfying Haar's condition is said to
form a Chebyshev set.
We notice immediately that the first (n + 1) powers of x,[},x,xl....xﬁ]
form a Chebyshev set in any interval. Also, and not obviously, so do the
“first (2n + 1) trigonometric functions [i,cosx, $in%, seos cas2nx,sin2nxJ
in the interval [0,21':‘].
It is fairly easy to derive a set of’functions not forming a Chebyshev
pet,'yst all functicns used in polynomial approximations do form such sets.
No attempt has been made to elaborate many of the statements and con-
cepts introduced in this first Chapter. The main Chapters of the work are
devoted to such elaboration., Chapter II introduces orthogonal functions,
which play an important role in methods of approximation, whilst Chapter III
discusses the main features of continued fractions. The next two chapters
are devoted to approximations derived by interpolation and from series
expansions respectively. Chapters VI, VII and VIII are given to methods
based on L,, L, and Lao norms in turn and Chapter IX looks at cubic spline
approximations. The final Chapter contains a general discussion and com-

parison of methods with some illustrative examples.

1



CHAPTER I1

Orthogonal Polynomials

Introduction

In this chapter, we attempt to show how orthogonal polynomials arise
naturally when considering problems of approximation. Reference is made
to trigonometric functions as they occur in Fourier series, From the
trigonometric functions are developed the Chebyshev polynomials. These
play a major part in any discussion of methods of approximation. Some of
their more notable properties are described.

Discrete Least-Sguares Approximation

The 'least-squares' method has a well kncwn application in curve fit-
ting over a discrete set of given points
(xkyk) k. 0.1 siscom o
Let f(x) =c, + ¢, x + ctx‘+ veesss + XN be the polynomial of

approximation, then the coefficients cj are chosen so that

5 = é‘n HEW (P fn(xk)}a] (2.1)

is a minimum (w(x) is a positive weight.Functinn).
Now S can be made arbitrarily large by a suitably 'bad' choice of coef-
ficients, so we expect that if an extreme value of S does exist, then it
will be a minimum value.

The necessary condition for a minimum value of S is

?;é =O k=D'1 tecree N
2Ck

Now if m»n + 1, S will be non-zero, and the above condition leads to a
set of linear equations defining the coefficients. These are termed the
normal equations and are

80°0"’8|C|+ LA B 'l'SnCano

e i L vy (2.2)
8aCg *+ 8y Cyt seranans *51ncn = bn
where s, = - x " and b, = Eiuxr
e * Lo ¥ r = (&0*ikk



The straightforward nature of this approach looks attractive, but two
problems arise in practice.

Firstly, the matrix of coefficients in (2.2) can become ill-
conditioned for even moderately large values of n. For example, if in

in (2.2)

(2.1) w(x) = 1 and x, are equally spaced in [D,i], then s,

becomes

m 1
S, = s x = mfxrdx = m if m is large.
k=0 "k o T+l

So, removing the factor m, the matrix becomes
o "

1k S L. e
% ¢ %

LR B

CRCIC I S N o

L

which is a well=known ill-conditioned matrix.
Secondly, if an approximation has been found of degres N say, and S proves
insufficiently small, then to extend the approximation to degree N + 1
involves the solution of a completely new set of equations and all the
previously computed coefficients will be changed.

These difficulties are overcome if we can express the approximating
function in the form

fn(x) = coﬁo(x) * C, f,(X) + conevcnss + cndn(x) - (2.3)

where the g's are independent functions in the space defined by the points

(xk) and having the property

T ulx b (8l ) =0 4f LA (2.4)

iE w(x 2( ) 0
S s )A]05) #
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Functions having this property are termed orthogonal. In such cases the
matrix of coefficients in (2.2) becomes diagonal and the coefficients
in (2.3) are defined by:
m
w(x, ). (x, )y
_k% g b 2 S

2 vl x,)

No longer is it necessary to invert an ill-conditioned matrix in order to

b D i B (2.5)

C

evaluate the coefficients. Also, it can be seen from (2.5) that adding new
terms to the approximation will not change the coefficients already evaluated.
The expression (2.1) for the error becomes
m 2 L .
s =2 u(x)[¥} - 2 Salx)] (2.6)

3
and S may be found for a higher degree approximation by including an extra

i cn+1¢n+1(x)

The Continuous Case

The least-squares method can be applied to the problem of finding an
easily computable function of the form (2.3) which approximates over a
given finite interval to a continuous function y(x).

If the interval is taken as [-l,i] we can uwrite
! 3
S = Lw(x)[y(x) - fn(x)] dx : (2.7)
and the coefficients of fn(x) are chosen to minimise S. The condition
for least S again produces a set of normal equations in which

Lut, e (x)ax i )

i+]

b

1

g2 Jue0f )y (x)ex

and the orthogonality condition is

[u08, 608 x)ex =6 1t 1

14



Hence, the off-diagonal elements of (2.8) are zero and the solution of the

normal equations yields
., - Lu008, Gy (x)ox (2.0
Sl (x)dx

The weight function w(x) is chosen to be non-negative in El,l]. One
important property of a set of polynomials which form an orthogonal system
is that any three consecutive polynomials are related by a recurrence of
the form
B (X) = (AX + BIF(x) = C | ()
(see J. R. Rice[13])

This will be used to develop a useful computational method for eval-

uating series whose terms are orthogonal folynomials.

Fourier Series

The best-known orthogonal system is the set of trigonometric func-
tions cos x, cos 22, seesnwe 3 BIN X, 8IN 2X, «eese Over the interval [—T,Til

It is easily shouwn that

m w :
~/;in nx sin mx dx ./;os nx cos mx = 0 for n # m

T L

n

W
and ﬁ/tsin nx cos mx dx 0

-t

So, if we pepresent a function in terms of an infinite series of trigono-

metric terms (a Fourier series) of the form .

ob
y(x) = B ;iﬂ (a cos kx + by sin kx) (2.1D)
Faress
then 8, = 1 f y(t) cos kt dt (2.10a)
W -
i
" ) fy(t)sin Kkt dt
K8 Jo
Now if (2.10) be truncated at some point, what sort of approximation is
obtgined?
n
let f_(x) = 32,;, |:>=:1 (a,cos kx + b, sin kx) (2.11)

15



then, taking w(x) = 1, (2.7) becomes

7 T n .
Re [y‘[x)dx - 2f {:9_ +Z (akcos kx + bksin kx)} y(x)dx
L

g 2 k=1

1

4
The condition that S should be a minimum is Js =9s =0

3%y, 89,

R 1 z T L *
+" a0+a + sceee +8n+bl+....... bn}

n

h
i.e, -/cos kxy(x)dx + 0 a =0
-0 "

or a y(x)cns kx dx

n

\.f\

<"
similarly b =71

K (x)sin kx dx

T <
We notice that these are precisely the coefficients defined in (2.10a).

That is to say, the truncated Fourier series is the best approximation in
the least-squares sense for the interval [-Tﬁ'ﬁ]

The error term for the truncated series is
S = /;’(x)dx - (ao"-r a: + .......a; + bli' % asdsene +b:)
i e

It is natural to ask if the series defined in (2.10) is conuérgent ir
y(x) is continuous, does fn(x) defined in (2.11) approach y(x) as n increases?
This problem is dealt with extensively in auéilable literature (e.g. Lanczos 11)
We note that the continuity of y(x) does not prove sufficient for conver-
gence af the series. Sufficiency is expressed in the "Dirichlet conditions"
which establish the desired smoothness of y(x). These conditions are not
always necessary; Fejer's method of summation [13] can be used to compute
a sequence which converges ta y(x) when the only restriction on y(x) is that
it is absolutely integrable.
. One practical difficulty encountered in approximation by Fourier series
arises from the fact that since the series is periodic, the function and its
derivatives are expected to have the same values at the.two end-points. At
best, if the original function is not periodic, we might hope for the con-
tinuity of the function and its first derivative only at these end-points.
In these circumstances, convergence of the series may prove slow. This
problem may be avoided by using the following transformation.

16



Chebyshev Polynomials

Consider y(x) when we write x = cos &
then y(x) = y(cus@); Y(8)
and the interval El,]J in x becomes [D,ﬁ] in ©. Y(8) being a function
of cos@will be an even function of and is periodic in ©.
Because Y(#) is even, we can expand it as a series of cosine terms
and the integral in (2.10) can be carried out over the positive half-
range only.

[- =]
i.e. Y(6) =a; + Z a, cos k&
k=1

of

where a =

K g/lY(O) cos k& d&
nw

[
Now rewrite in terms of the Driginal’uaﬁiabls X

: )
y(x) = e, V> a, T, (x)
2 k=1

8 - g_/'Tk(x) y(x) dx
i
' -1 v1-x*

where Tk(x) = cos k@ = cos(k cos x)

(2.12)

We notice that from their relation to the cosine functions that the Tk(x)
are polynomials of degree k in x. They are orthogonal over the interval
[-1,%]. These functions are called Chebyshev polynomials.

Chebyshev polynomials have many properties which have applications in
function approximation. Some of these are derived in Appendix A 2.1.
We list here the important features:

(i) They are orthogonal over the range E44%] with respect to a weight

function

1
/T =x*
(ii) 1In the range E—l,l], they have maximum and minimum values of +1
and Tn(x) has extremes at exactly n+l points.
(iii) They can be differentiated and integrated sasily.
(iv), A truncated Chebyshev series has an error nearly proportional to
the first negiectad term (say Tn+l(x))' By virtus of the equal
ripple property of Tn+£x) the error can be seen to be evenly

distributed throughout the interval. 17



(v) A series of Chebyshev terms displays more rapid convergence than
corresponding Egsggpserias.

(vi) The Chebyshev polynomials prove to be orthogonal over certain
discrete point‘sets with constant weights. This can be a use-
ful feature when the integral in (2.12) does not prove analyt-
ically possible.

Chebyshev Polynomials of the Second Kind

In Appendix A2:1 it is shown that a recurrence relation for Chebyshev

polynomials can be developed from the identity
cos (n+1)@ + cos(n-1)8 = 2 cosn@ cos @
i.e. Tn+$x1 + Tn_sx) = 2xTn(x)

- )
but we also know that

. 8in (n+1)& + sin(n=1 )@ = 2 sin n® cos® (2.13)

dividing by sin &

sin (n+1)® , &in (n=)@ 2 sin n® cos@

sin @ sin & sin &
Consider Un(9) = sin(n+1) @
sin @
then UO(O) =1
U,(8) = 2cos @
and (2,13) gives
U,(6) = 2cos@u__(8) - u___(6)

if we put x = cos @,

U (x) 51
U,(x) = 2x
Un(x) = 2x Un_‘(x) - Un_L(x)

and clearly Un(x) is a polynomial of degree n in x.
These functions are called Chebyshev polynomials of the second kind.

They have many -analogous properties to those of the Tn(x), although they

18



do not possess the equal-ripple property of the latter. Some of these
properties are derived in Appendix A2,2, .

However, one useful feature of Un(x) is that its integral can be expres-
sed explicitly in terms of the ordinary Chebyshsv polynomials.

In later chapters it will be seen that the properties of Chebyshev
polynomials can be used in many situations to obtain satisfactory approx-

imating functions.
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CHAPTER III

Continued Fractions

Introduction

The continued fraction form is represented by

f(x) = b + a,

b, + a,
b,+
aBAassBssBan +.?-rl mhare a = a(x)
bn b = b(x)
or, more conveniently
| a‘ a,.- a
F(x) - bn + bl + bz + ....I.‘.. bn (3.1)
n

It can be noted that this expresses f(x) as a rational function. The expres-
sion (3.1) is often a convenient computational form which, in many cases, can
be used to obtain approximations to functions of higher accuracy than a poly-
nomial expansion having the same number of coefficients. HowsBver, problems in
evaluation may arise. If at some stage a divisor is small, then the rounding
error introduced could become unacceptably large.

If (3.1) is obtained by truncation of an infinite continued fraction,
will the value of f(x) converge as m&gelggggsE:ratgﬂgésiéu-the-ﬁraeééen?
The convergence of fractions and their evaluation are discussed by Blanch[:ZJ
Some of the results obtained are quoted here. In addition, a different method
of computation is described and it is shown that the same criteria for conver-
gence and truncation error estimates can be obtained for this method as for
other methods. (Appendix A3.3)

Methods of Evaluation

Four methods of evaluation are described and a comparison made of their
relative merits.
(i) The most obvious method is to use backward recurrence in (3,1)

= @ i = = - E RN l
i.e. generate ¢, = K with e =0 k = n,(n=1),

then F(x) = b +c, <0



(i1) The second method uses forward recurrence.

let P(x) = An y then An and Bn can be found from the relation

B_
n
YJ+| = bj+|Yj + aJ+IYJ_‘ i B, e evanfni=l) (3.2)
where YJ is either Aj or BJ given A_| = Bo =1
B-‘ =0, AO = bO

(This relation is established in Appendix A3.1)
(1ii) - A method which differs slightly from (ii) calculates a correction

term which when added to each convergent ﬂj-l gives fi

%51 8
It is shown in Appendix A3.1l that it
% = APkt~ Bhea
then O = -8, Dy . (3.3)
‘and fﬂ _Poer 0 (3.4)
Bn Bn-l Bn-l Bn 3 :

‘At each stage D_ and B can be computed to obtain "

i
B

‘(iv) The last method differs in its approach in that successive convergents
cof.the fraction are expressed as the partial sums of a series.

From (3.1) is evaluated

= 8. l+p =bib,
Pl -El'| F‘ b| b;"‘ a,
b, b '
1+ = -1 323
s bj_‘bj+ajfl+f3_') g

_then f(x)

b+ %i U,
0 = 1

: = (See Azpendix A
where Uy = APy secereecs py X A3,1)

Comparison of Methods of Evaluation

It remains to be decided which form is the most convenient for comp,.

tation. All involve some division and could possibly suffer loss of
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significant figures if a divisor is small,Method (i) is best if the number
of terms in the fraction is known beforehand, for it involves the least
computational effort. However, if more terms nesed to be added to the frac-
tion, the wholse computation must be done again. The other forms, which all
involve forward recurrence, can compute the next convergent with relative
ease. Form (ii) does not directly compute the difference between succes-
sive convergents and since in some cases this can be used in the estimate
of truncation error, it might be an advantage to use forms (iii) or (iv).

Table 3.1 compares the number of multiplicétinns and divisions nec-
essary to compute the next cﬁnuargant by forward recurrence.

Method Multiplications Divisions

)

(ii) Bany | 1

(iii) 4. 1

(iv) 3 1
Table 3.1

This shows that method (iv) requires the least effort of the forward
schemes.

With regard to round-off errors, Blanch [g] found smaller error bounds
for the backward scheme than for the forward schemes (ii) and (iii). General
rules are difficult to formulate, for example the fraction

1 %=1 x=2 x=3 x-4
2 7 10+ -3+ O+ 1

could not be evaluated by machine using (i) or (iv) without suitable modifi-
cation when x = 4 and for x = 4 could produce intolerable rounding error.

The best conclusion to be drawn is that whereas most continued fractions are
well-conditioned, the only way to ascertain the condition of a particular
example would be to test it in detail.

Convergence of Continuad Fractions

In [2] the convergence of continued fractions is discussed making use

of the relations described in methods (ii) and (iii). The results are
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summarized here together with similar results for the form (v) which are
obtained in Appendix A3.3.

However, in order that the number of fractions under consideration
can be limited without loss of generality, use is made of the equivalence
transformation prowvad in Appendix A3.2. This enables consideration to be

conveniently restricted to the forms

3 ey
bn +ET:- S Sheswes provided a, £0
add " b &k B rovided b, £ 0
0 1+ 1+ LI O p k

Summarizing the results obtained jII[Z]and in the Appendix A3.3;

= 1 an
—— —

. If F =
a b."‘ b:."' RN where ak’bk>0 (3.5)

)
then the even convergents approach a limit Lo’ the odd convergents a limit

L, such that L &L
[s] 1

In the summation formfgj< 0, for j>1,and the terms of the series will

alternate in sign.

X 1 1
B. Ir E #bi+ b-‘_‘f LR N O WhBI.‘B bk) U (3.6)
0
F, converges if and only if iz bk divergss
k=1
1 1
C. If F: 5 b'— ba‘- dsssssns II.I'th‘B bk70 (3.?)

a sufficient condition for the convergence of F, is b, 2 2 for all k2N,
In this casef{j>tland the series used in the summation form has the same
sign throughout.

a,

=2 82
2 If R=5— A Lo AT where ak>0 (3.8)

a sufficient condition for the convergence of F; is that aks.& for all k> N.
E. For fractions in which all the elements ere positive, the value of the
fraction will lie between the values of successive convergents, (ignoring

rounding error).
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Fe For any fraction, let the truncation error bs Hn

e, R =F-"n
B
n
and let En = Eﬂ - An-l
B B
n n-1
then for F, if b >2 + ¢ where ¢ > 0
- =
BCJRH kldd{En! where d = 1 + 3c +/(1+3c) -1 (3.9)
and for Fy , if 2, %+ -c where ¢ >0

(3.10)

1 E
0 <|Rnl$t;;§r:33| ol
In addition if f’j form a decreasing sequence for j2zn+l,

then |R_ jd”ml ] 5
1

-’pn+1I
Examples
(1) = 1 1 1 1

1+ 3+ 54 7+

all the elements are positive and

1 1 .4 7
A=LA=-%: A="7° A~Tr i@

and all the values of pare negative apart fronr(?. The convergents are the
partial sums of the alternating series
1 1 1

l“?"’ "é'&""g'i'.ﬁ. + cssssese

and form the sequéence
1.0000 0.76190476 0.76159420
0.7500 0.76158940 0.76159415
The odd convergents are increasing, the even convergents are dscpeasing and

0.76159415 < F <« 0.76159420

1 i 1 5 §
B UF s e Ve
Po=l, A= i 1 2.2 e i
3 e g (‘?-—91 "’ = & = én which are all positive.
The series generated is
1 1 1

1"‘ 2 *+ 18 "‘549 IR RN
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The convergents form the sequence

1.00 00, *1.5000, 1.555 56, 1.557 38 .cecesssen

but u and applying (3.11)

PR |
€~ 32940

lnnk 1 & 0.31 x 10"

—_——— l-......
32940(1- =5 )

[

(The error is & 0.28 x 10  at this point)
This estimate requires extra work in the evaluation of ug andf% .

Reconstructions of Fractions for More Rapid Convergence

Handscontn[?]quutes transformations which allow only the odd or even

convergents to be computed when the original fraction is of the form

b, + . Ca €3
1+ 1+ 1+ sesecay (3-12)

Since this would halve the computational effcrt, it looks attractive.
Although any fraction could first be transformed into the form (3.12) and

then contracted, it would be helpful to apply the process to the more gen-

eral form
a A
bo'fg:'i b—: sssseae (3013)

In appendix A3.5, the following forms are established for the odd and

even parts of (3.13)

b,aza,
F| = bD "'(ba;jb:a‘) E“'b - T (3.14)
1] e s i,
2 (aﬂb*b_,‘»f -_-3: )

bya,a
F = Dob 43, : —ELE%EL s 533
P b, (asq +b;(b.b;+a1)- (?$+brb~+ b.a )_ (3.15)

by

'Clearly, extra effort is required in evaluation of the partial numerators
and partial denominators in either (3.14) and (3.15) compared with (3.13).
Depending on the nature of the coefficients, this may outweigh any reduc-

tion in the amount of calculation required in computing the convergents. .
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Consider an example, the known expansion

X g1 x" x"
tan X = E; E:-' g:— R (5;:1) R (3016)
This can be written ;5: e >
X 1:3. 38 (2r-3)(2r-1)
tan x = 1. I 1. ttseses ¥ e eiae

From (3.8), this is convergent if

T

1
(2r-3))(<2r-l) & %

or x" € (ra1) -3
4
This will always be true for large enough r, for example, if x = 3,

the coefficients satisfy the condition for convergence if r is greater than 5.

Using the transformation (3.15) or (5.16) we have

boa[l a = x ajz—x"‘ Jod
b, = 251 §31
hence,
a,b, = 3x a,b b= 3-x"
Dy8s8:. 7 » a,+ bib, + 228 . 35 . 106 ete.
b, 3 ¥ » b, 3
< it | 11 4
ﬂnd t&r‘lx= Sx 3 _—2—-_—'-' seseaw
(3-x*) - (35-10 x*)- (99-18 x*)-
' 3 7
or, more easily for computational purposes
3
tan X = 3 2 1057 69333 ssessae (301?)
Ga= 1) = (=% =10)- (== -18)-

" The convergents of (3.17) are the even convergents of (3.16).
If we note that the rth term of (3.17) is

(4r-1)(4r-9)
((41‘-5)(4:‘(-13)(&:'—1) 4 (Br-ﬁ;)

then some of the reduction in computational effort in using (3.17) is lost

due to the extra effort involved in evaluating the partial numerator and
denominators, It may be noted that some of the terms in (3.17) could be
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evaluated using integer arithmetic, which could be a help in reducing
rounding error. .

A comparison is givenin Table 3.2 of some results obtained from
(3.16) and (3.17)

Value of x Convergent No. Original Form Convergent No. Contracted Form

1.00 4 1.557 3770 > 1,557 3770
6 1.557 4077 3 1.557 4077
2,00 8 -2,185 0643 4 ~2,185 0643
10 -2.185 D399 5 -2,185 0399
3.00 8 -0.1425 4763 4 -0.1425 4763
10 =0,1425 4654 5 ~0.1425 4654
Table 3.2

Modification of the Summation Proecess lhen a Partial Denominator is Small
2

It has been shown that a continued fraction can be evaluated by summing

the series

ngo*"i-ﬂ uy where uj=ﬂ{a, —w
b, . b
and 14f;= " jet j JZ%3
bj_Pj+aJ(lﬂPJ_)
Now if bj is very small, then fj¥-1
u un_:g-l) =
also 1 + fﬁ+i= bjbj+| and considerable rounding error

bej+l+aj+|(l+fG)
could occur in the calculation of p, .
j+1
One way to avoid this possibility, assuming that it is due to only one isola-
ted value of bj is to avoid ths computation of Fn and Fn*!and to jump from

FI‘I-I i Fl'H-Z

In appendix : A3.6 the following expressions are developed

F = F - n=1I N bn+1bn+z+ ﬂrug(l +f°n-)
b & an+z)(bn—lbn + an(l+f9n_9) 48

s
N+ N=l N+2,
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. aa a b (1 ﬁph-)

U _ N=f N N+l N+1 N=|
e [?n+l(bn-lbn * an(lﬁ‘h-R) 2 an+|bn-il[ﬁbn+ibn+z * an+1)(bn-Fn+an(lﬁ‘h4»

+ 8

n+tbn-1bn+1]

b b
N+l N+2

-a b
I:'i"l-!-lb|'|~|-'.1. Y an+2. L n- I}
bnn(bn-lbn [ an(l +(ol"l-! )) + ar'l-l-lbr'l---l

These expressions are valid for n >3, with similar expressions for n = 1

1 2™

and n = 2. The programme documented in Appendix A3 uses the summation form
for the evaluation of a continued fraction and incorporates the above modi-
fications. It was used in the following example.

Example

The fraction for tan x can be expressed in two ways to obtain the even
)

and odd convergents respectively:

3 7 1
F ==X 3 7
\ 3 35 10 99 18
( xa—.l)- (xz_"‘ 3)"' (x-""" ? s "es e
i e L AL 25
g X 1.3.3.5 5.7.7.9
el X ik 2 1 2
(x‘- 3)_ X2~ 3.?)- (x‘- 7.11)- e

It can be seen that b=0 when x #/3 and b,>0 when x:inE:g. The following
results were obtained using singls precision floating point arithmetic and
without the modification outlined above

x = 1,7320508

Convergent No. Fo £
5 =-6.1480 5471 9 -6.1499 9224 2
6 -6.1480 5471 9 -6.1499 9224 2

X = 3.2403704

6 0.0991 0224 103 0.0990 9549 136
7 0.0991 0224 103 0.0990 9549 136

The summation appears to converge, but the difference in the results
indicate that the values obtained are unsatisfactory. With the modified

programme the results becoms:
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x = 1,7302508

Convergent No.

5
6

x = 3.2403704

6
?

FI

=6.1475 3345 4
~-6.1475 3345 4

0.0991 0026 477
0.0991 0026 477

Fa

-6.1475 3345 5
~6.1475 3345 5

0.0891 0026 474
0.0991 0026 474

Here, it is noticed that F, and F, appear to converge and, in addition,

agree in the values of the function.

The discrepancy in the last figure

could be accounted for by the fact that machine arithmetic is accurate to

about 11 significant figures.
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CHAPTER IV

Interpolating Functions

Introduction

One of the oldest problems in approximation is that in which we seek
to express a given function f(x) in terms of a simpler function p(x) such
that f(x) and p(x) and certain of their derivatives agree at given points
Xi9 i =0,1....n. The p(x) is described as the interpolating function
ana can be used as an approximation to f(x) for values of x within the
range defined by the Xg

In this chapter, methods are described which define p(x) as a poly-
nomial and as a rational function. A method of choosing nodes is given
.whicﬁ is the best choice in terms of the minimum of the error norm.

Polynomial Interpolation Forms

An obvious choice for p(x) is the polynomial which takes the values

of f(xi) at the nodes x.,. This is the Lagrange formula, given by

1
La0e) = 221 (x)P(x,)
n :
where li(x) =QZE (x - X,) kf i 1 =0,1,00000n (4.1)
(547 %)

If we wish the polynomial to take the value of the function and its first

derivative at the nodes, then we have the Hermite formula, given by

: n 2 !
Moy () = 2 160 [ 1 = 2010 ) 0emx )] P )+ 20 150x ) (e )1, ) (a.2)

i=0

. We notice that whereas in (4,1) each node point leads to the introduction of
a factor (x~xi), in (4.2) there is a factor (x—xi)z to ensure the correspon-
dence of both function and its first derivative. As the number of derivatives
introduced into the constraint is increased, so more and more nodes can be
thought to coalese. The ultimate would be if all nodes corresponded to one
point in which case, at that point, there would be agreement of function

value and its dariu;tiuas. This glves the well-known Taylor series represen-

tation, which is discussed in Chapter V.
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Error in the Interpolation Formulas

Consider the error in using the Lagrange formula. Since Ln(x) agreas
with f(x) at (n+l) chosen points, we assume an error of the form

f(x) - Ln(x) = E(x-xu)(x-x,) .......(x-xn)

Let F(x) be a function of the form

F(x) = f(x) = Ln(x) - C(x-xo)(x-x,) .......(x—xn)

F(x) will have zeros at X rX eovsoX and by choosing a new argument Xx ’

n+l

between X, and X with
£(x - L (x

= L ' n n+|
C = (% 0 =X X =X ) eeena(X  =x) (4.3)

then F(an ) = 0 and F(x) has at least (n+2) zeros.
By Rolle's Theorem, F'(x) will have at least (n+l) zeros and continuing in

this way F(n+')(x) will have one zero, say x' between X and X
i.,0. 0 = f(n+')(x‘) - C(n+1)! since Ln(x) is of degree n only.

Substituting for C in (4.3) gives

f(xn-}-i) =af Ln(xn %'_)_(x -X 0 sessan (xﬂ-ﬂ —xn)

Now xn+‘can be any point in the range X 9% and in addition, the equation

is valid at the (n+l) nodes.

P(x) - L (x) = F(n+')§ ) (x=x_) eeseslx=x_), X, § x'¢ x (4.3a)

(n+1)! &

Similarly, it can be shown that the error in the Hermite formula is given by

P(x) = H,_ (x A bl (WL CT0 ol ¢ W ol W (07 )

(2n+2)!
where xo$ X7 $xn
It is assumed that all the required derivatives of f(x) exist. The error
expressions are functions of the degree of approximation and of the particular
choice of nodes. It is desirable that

pn(x)—-} f(x) as n =% (4.5)

The question arises as to what choice of nodes will produce (4.5) or conversely,
given an arbitrary choice of nodes (e.g. equally-spaced) is (4.5) generally

true.
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Convergence of Lagrange and Hermite Formulse

Suppose that we wish to interpolate in the range [-l,l] using a
Lagrange formula. If f(x) has bounded derivatives in the region, then (4.3a)
requires that we minimize the expression

max I(x-xn)(x~x') ......(x-xn)l in I&l,l] (4.6)

In Appendix A4.,l it is shown that the polynomial in (4.6) must be identical

=N

to 2 Tn+1(x)’ where Tn+t(x) is the Chebyshev polynomial of degree (n+l).

Hence, the nodes are given as the zeros of Tn+1(x) f.9.

2, +1
m
xi-cos[n+1]-§ I =051 ceesis'sn

A similar result can be obtained for the Hermite polynomial. Again, if the
derivatives of f(x) are bounded, we can choose as the error norm to minimise

the expression.

(2n+2) : ]
iﬁax IETEEIES§£)I} &/f(x-xu)z (x—xii;;.....(x-xn) dx (4.7)

In Appendix A4.2 it is shown that the function under the integral sign must
be orthogonal with respect to unit weight function over Erl,l]. Hence, the

nodes must be the zeros of the Legendre Polynomial of appropriate degres F:+‘(x).

If we turn our attention to the case of equally-spaced nodes, we find
the results are discouraging. It has been demonstrated (e.g. by Hunga)
that even for a well-behaved function, approximations on equally spaced
nodes can be shown to diverge as the number of nodes increases. This has
been analysed by considering the behaviour of the given function in the com-
plex plane surrounding the real region of approximation. It can be shouwn
that if f(z) has poles which are close to the real interval [a,b] » then it
may prove impossible to find a sequence Ln(x) to satisfy (4.5).

For a discussion of this problem and an example of the Runge phenomenon,
see D. C. Handscomb [7], Chapter 3. A list of positive and negativa results
concerning the existence of interpolating functions is given in J. Todd [}6]

pp 146 - 149,
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Newton's Interpolation Formula

Newton derived the interpolating polynomial through the given function
values in a different form from that of Lagrénga.
Let F(x) = f[xaj + (x-xD)F[xo,x]

f]__xo,x_']= FI%oX] * (x-xl)f‘[xo,x‘,x] (4.8)

F[xo, ......xn_i,x] = f[%o, S xn~|'XA] + (x-xn)F[xu,xl, cons xn,xl

Then the functions f[xu, ....xi] are called divided differences and are

defined by ‘
f[xO] = f(xo) f[x_o,x] = f[_x,] - f[xo]
i ™
f[xo’ ST xi]= :[x,, O, xi] - f;on’ B xk'] (4.0a)

X3= Xg
Back~substitution in (4.8) leads to Newtons formula involving divided
differences
F(x) = f[xo]+ (x—xo)f[%o,xJ + (X—Xo)(XfX')f[%o,Xl,X;1+ o_- (4.9)

o (x-xu) LR, (x—xn_l)f[fo, % xé] + En(x)

where En(x) = (x-xo) R (x-xn)f.xo, ceee X oX

If En(x) is truncated, (4.9) defines a polynomial of degree n which
will pass through (n+l) given points [F. Hildebrand ﬁuﬂ ],Tha coefficients

in (4.9) are most conveniently evaluated by forming a divided difference

table. e.g.

X f(x)
0
Sl g®
1 (o] gu s "‘"’/5‘_._
g e
2 ¥~ e s
S o
3 Y% : ~Yig
g/
8 5 bs
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Interpolation formulas may be arranged in a variety of ways, most con-

veniently ofi terms lying on a continuous path through the table. Using

the two paths indicated, we have

F(x) = =1 + x + x(x=1)(="%) + x(x-1)(x-2)(x-3)('%s)

and F(x)

Approximation by Continued Fractions

5 (x=2)(x~

Yeu (x=2)(Us) + (x=2)(x=3)(-%) + (x-2)(x=3)(x=1)("%s)

3)(x=1)(x=4)( %s)

The formula for interpolation given in (4.9) can be considered in the

following recursive form

F(x)

uk(x) =

where uk(x)

e now consider a similar

F(x)

U (%)

The first few terms are
F(x)
F(x)

n

F(x)

u

u, (x)

uk(xk) +

(x-xk)uk+l(x)
5

i [xo,x'..... xk_l,x]

recursive form

v, (x)

uk(xk) +

v, (x)

X=X

uk+|(x)

X=X

(o]
VolBo! ST

vu(xu) +

X=Xo

k = (I"I-"l), .lll.l'U

k =2 (m-1) " +e..1,0 (4.10)

v, (x,) + x=x,
v, (x)

If the uk(x) can be chosen correctly, then the function F(x) can be made to

take the values f(xi) at the nodes x

In Appendix A4.3, we show

i.

that if

uk(x) = dk[ro’xl""'xk-u'¥]
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then (4.10) is an interpolating rational function where

F‘-E‘«:”‘J = g.[x]- p’:LxD]
X - X,

i?f:[xo,xl,xl = S — 7 (,"o'xn]

g |x X XJ = B R (4.10a)
k[ ot 2 e ﬁk-l[*o’ wee Xy_g0%] - ﬁk-![xo’ e K ateii]

Comparing (4.10a) with (4.8a), we see that the g#'s are the inverted divided
differences (or more simply, the inverted differences) of the Newton formula.
As for the divided differences, a table of inverted differences may be
formed. However, one important difference exists between the two tables.
In the inverted difference table, the order in which the points are intro-
duced is important.
i.e. whereas

f[xo’x1fx1’x;l= F[xl,%s,x,,x;] for divided differencss

ﬁa[xo,xl ,xz,x:];! p{E(,,xz,x,,xo] for inverted differences.

8.9.
X f(x) g, g, g Tt
0 -1
J 0 1
2 Ys “y 4
3 Yig %3 3 i
4 S T oLy -2

Then, using (4.10) we have the continued fraction

fitx) =l &« % %3 ' w5 a8
% & el % -2

Now if interpolation is required in the middle of the range, the points start-

ing at x = 2 may be introduced first and then work outwards.
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S el W

L4
2 s
3 Hs 5
1 0 o
4 i 'S’n Vs =25
0 -1 Sly "s -5%  ~ls

and the interpolating fraction can be written as

X=2 x=3 X=1 X=-4
S5+ Yo+ =25+ =lis

F(x) :%+

The entries marked with an asterisk are respectively ﬁ,[b,l,Z,S] and
53[2,3,1,d] and it can be seen that they are not equal,

~Reciprocal Difference Formula (Thiele Expansion)

When using interpolation formulas wsjusually require the tabulated
point nearest to the interpolation point to be used as the base point of
the formula. 1In this way, the correction terms that are calculated should
belsmall in magnitﬁde and the effects of rounding error will be minimized.
In the last section it was seen that reordering the points requires a com-
plete recalculation of the inverted difference table. This can be avoided
by using a slightly more complicated form of difference table.

The continued fraction interpolation so obtained is called a Thiele

expansion. In Appendix A4.4 is derived the following form.
X = X X = X R

[x ,xJ f[x ' X ,x,] f‘(x )+ ,.a][x 1% 9%, ,x3] [f‘[x ,x]+

(4.11)

F(x) = f(x)) +

when the (*'s are termed the reciprocal differences defined by

--X

me%,..” ,Xd Pi= {x, ceee X ,xd fl_[x, e 1ﬁkﬂ]
o+ (—?(_a [xo, “"xk-zl

Again, the reciprocal differences may be arranged in the form of a table.

By taking various continuous paths through this table, interpolation may be

carried out anywhere in the range of the arguments.
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Example

X f(x) PI i (D: (Dg fovl
0 -1< _ )
"‘--\“‘l
1 0 S
4 ¥ =
;’5 3 -..U
2 R R IS
PR TeghrET
3 Mg s
85
4 "

Taking the leading diagonal, we obtain the expansion

F(x) = =1 + X X=1 x=2 x=3 (4.12)
1+ 4+ -1+ -2

Now, if the points are reordered, say for interpolation near x = 2, we can

establish that

X=2 X=3 X=-1 X=4
S+ ¥s + ~25+ =g (4.13)

F(x) = £ +

Thiele's Expansion Involving Derivatives

An interesting case: of the Thiele expansion is that when only one nods
is taken and the kth convergent of the continued fraction agrees with the
value f(xo) and (k-1) of its derivatives at X« In Appendix A4.5 we derive

the form X=X X=X X=X

o ; 0.
FO) = 800) * T Bl # i)

(4.14)

where g k+|(x) = k +1
Pk

Cix) =4, (%) + B, (x)
with starting values

Ci0x) =@, (x) =0 g (x) = F(x}

i

This form can be used to provide formal expansions to continuously

differentiable functions in the form of rational approximations. Howsver,
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it may be that the function concerned is not expressible in fhe form (4.14),
For example, if the function is symmetrical about X0 the rational function
derived from a truncated continued-fraction expansion could only contain
even powers of (x -xu). In such casas some modification of the form is
required.

In analogy with the Taylor series, such expansions are extremsly good
near to X but rapidly become worse as we move away. In later Chapters,
methods will be discussed of modifying the basic functions in order to find
a more equal distribution of the error.

Comparison of NMethods.

The various methods described in this Chapter may sach be used to
advantage in different circumstances. The Hermite formula is useful when
the value of the derivative is prescribed at certain points. In cases where
the derivative is unknown, formula involving only the ordinates must be used.
The Lagrange form does not involve evaluation of a difference table, but
estimation of the truncation error is not possible unless the given function
is known analytically. The Newton form involves a difference table, but the
truncation error may be estimated from the first neglected difference. Also,
extra points are more easily incorporated in the Newton divided difference -
formula,

The use of continued fraction form is well-suited to problems of inter-
polation in the region of a point at which the given function becomes infinite,
Continued fractions can be evaluatéd) very quickly since only a few divisions
are involved. However, particularly with the reciprocal difference form,
derivation of the difference tables can be laborious. Also, it is possible
that the particular continued fraction form that we seek does not exist. This

problem can somstimes be overcome by a reordering of the points.
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CHAPTER V

Approximations Derived from Series Expansions

Introduction

Some msthods are described for deriving approximations by means of
series expansions. The Padé table is shown to be one method of deriving
a rational function approximation. As example is given of the use of a
series of Chebyshev polynomials in the solution of a differential equation.

The Taylor Series

If a function and its first n derivatives are continuous in a

region [a,x], then the function can be represented as

! ", a n n
) = riay » HRUR) | Hl@cea L G0

where a€§6x and the superscript represents differentiaion.

An approximation to f(x) is formed by omitting the last term in (5.1)
and the truncated series will then agree with the value of the function and
its first (n-1) derivatives at the single point x = a. The truncation error

e(x) is such that

le(x) | ¢/mX Fn!x!] (x-a)"

[a,x] n!

The value of Ie(x)lwill remain small in a region close to x = a, but will
rapidly increase as we move away from this point. From a practical point
of view, the infinite seriss obtained by allowing n to increase in (5.1)
must not only be formally convergent, but the terms must decrease in mag-
nitude rapidly enough to allow a reasonable point of truncation to be
chosen. Also, the error estimate involving the nth derivative may be
difficult to evaluate. In such cases, reasonable error bounds are often
found by other means. For example, the sum of the remainder terms may be
estimated by comparison with a known series (e.g. a geometric series.)

In the case of a series of alternating sign whose terms can be shown to
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be monotonically decreasing, we can bound the error using the first neg-

lected term.

n
w
1
w
+
[+ 7]
1
o0
»

i.e. if 5§

a = esseoe

n n+i n+a n+3 N+

) ! (an+3- an+*) or LB B

n aI'H-I an-u

and since all the bracketed terms are positive
S<S

+ (a

n
equally S =5 - a - an+3) + (an+ 8RR e e

n+i n+a 'S n+&

and 5>5 = a
n N+l

S i B an+l<5 <S5,

A truncated power series can often be used as an effective approxima-
tion so long as the interval over which}it is applied is small. Even with
modern computing speed,and time is of no importance, if large numbers of
‘tarms have to be summed, then large accumulations of rounding error could
occur, particula?ly if the first few terms are very large and considerable
cancellation takes place. However, power ssries are easily integrated or
differentiated term-by-term and there is usually a fairly reliable estimate

of truncation error.

Asymptotic Series

If the behaviour of a function over a range involving large values of
the argument is of concern, say as x <, then it is unlikely that a
Taylor series will ba practicable due to the large magnitude of the terms
generated. (Even though a series may be formally convergent.)

If it is possible to define a series

o
f(x) = Z fﬂ y then the series is said to be asymptotic
I'I'-:U xn
at infinity if for every n,

lim] xni%(x) - Sn(x)}l =0

"X R

n
where § (x) = 4 3y (5.2)
n k;§: ;E
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moy) be
ItA!B possible to use (5.2) as a reasonable approximation for large x

gven though it may not be convergent for finite values of the argument.

Asymptotic series possess the property that for a given value of x,

: ulFimately .
the terms fieeb-decrease in nagritude—and-bhen—stemdidy increass without
Howeuver  in some cases ) {
bound, the trunecation error is

less than the first omitted term. Hence, in practice it is often possible
to find asymptotic series in which the first terms decrease fairly quickly
and a reasonable approximation may be obtained with an early point of trun-
cation. Notice that in contrast to convergent series, there is no auto-
matic gain in including extra terms in the summation. Once terms begin

to increase in magnitude, there is everything to be lost hy including them.

£(x) / Tt
X

Integrating by parts f(x)

Example 1

1
Far
e
N
0
e
—
N
o
@

n
rr?“ﬂ
L__“,

my
s
,;]u

a.

ct

2
g 1 3§t jf ¥/ 1.3.5 dt

Bt"

% -
It ) e e (1 1 18 } (1)”"‘1 3..(20-1) [ a® dt

2% 4x° 8x* N t2n
o o
-
Now if [R_|= 1.3.5 ....(2n-1) [ e'dt
N tzn

n

2I"I+l x2n+l 2ﬂ+| tZI'I:l'l

o0 ;5
FS0 As ey (nel) _/1.3 e (2n-1)(2041) &% dt

x

The first term on the right-hand side is the first neglected term of the

series and the integral is positive and preceded by a negative sign. Hence
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Rn will be smaller in magnitude than the first nsglected term. If we
put X = 4, the series becomes
£(4) = E;-f-;---fé—s TR }

As we proceed from one term to the next, the denominator is multiplied
each time by 32. The terms will continue to decreass until the factors
in the numerator excesd 32 when they will steadily increase without bound.
Example 2

Consider the derivation of an asymptotic series for the Besssl
Function 2J (x).

How 53 (x) "/—{P(" n)cos (x_.'l‘.! - "') - Q(x,n) sin (x-ﬂé-w«-

whers * -&
" et - —T‘f)/ B (- s i B

Q(xyn) = m/e"uun-ég(h;_:_)m% _(1-_%5_)"-%} du

[Saa G. N. Watson, A Treatise on the Theory of Bessel Functions]

)

&=

Consider the expansion

(1+y_:)“‘* (o) (4u), (d)ochlisu,

2% 1! 2% 4}
-%) ...(n-r+%)/i %) oo (nep+d) fiu\T (1=t)T7' 2 1ut\"TTT? gt
RCES IR TS T CES e 41%55) (140", dut)

(p=1)! \2x (r=1)!
[The remainder term can be derived from the more usual form

L=| I'
R(y) = Lyzed™" " (y)es by uriting y =12, s =38% ang p(y) = (14y)" é]

(r=1)! 2x 2x
Now Por t in [0,1]) 1+_j'._|:|__t\}1, hence if r > n-% (5.3)
2%

\/('1-1;)“'“‘ (1«%“;‘3)”"'5 dt| ¢ l/il-t)f-* dt‘.l

. n=%
(42) "l esphdy) , Los2les) (du )
(n-%)(;.igT—r+1)(éz) = g(n-i! .!n-p_i)( )
whsrelg.l S
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By a similar argument

(l e _“ = !n-i![lu 5 !n-ﬁ!!n_§)(ig)x+
i 1! \2x 21 2x s

(107 k) ... n_$+;)/1u) Z £(n-3) ...(n-r+%J(ig N
(r-1)! \2x r! Zx)

+

If the two expressions are added, terms of odd degree will cancel, whilst
if they are subtracted, the even degree terms cancel.
Hence, writing r = %' gives

. N-% o
(1%;'-) +(a "‘3‘3) =242 Z (=1)"(n- %)(’(‘5;.): Ln-2m+*2‘~)(2‘)

N=% 2D+ i |
¢ 28(0sh) oo (020 %T’ 1£,1<1 (5.4)

and from (5.3) 2p > n-%

Equally, putting r = 2p+l

(1 + —j (1 2 i—“)n -4 = 21 % () (?Emzl)’ . (n-2m+%) (zj'“"
. 28(0-3)(n-2) ...(n-2p-4) _ig)"“‘ (5.5)
(2p+l)' 2x

and 2p + 1> n-% or 2p>n-%
Hence, substituting the series (5.4) and (5.5)

p-1

“u n-%
P(x,n) = m)[e . [l +“§1 (—l)_m(n-%‘%m.);..(n-2m+%)(é|._5m .

f;(n-é) ---(H-ZPfﬁ)(éif}dx

(2p)!
1 / e u"'%(zﬁ)lm d% = 03 T amen-} ;
Now X T ——— u
P(I"H‘%) A (2x)1mﬂ(n+%) A :
Nz 6 M (2m+n+%)

(zx)lm . F(ﬂ+%7_

= ) (2m+n-%)(2m+n-":‘.‘) see (n"‘%)
iam

-

(2x)
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The mth term in the integral for P(x,n) becomes

(-1)"(n=%)(n-%) .... (n-2m-%)(n+2m-%)(n+2m-%) ....(n+%)

(zm)! (2x)*"

= (-1)"(*-3*)(n =% ....(n*= (2m-%)*)
(2m)! (2x)*™ (5.6)

To consider the remainder term, we notice that

»
I /g: e " un+2p—% du

and if 2ps>n-% , as in (5.6)

lR,$Oﬁ~%“0*-9)-u-(f—(ayéf)
(2p)! (2x)*P

o

5‘-‘/'9-” un+2p-f} du =" (n+2p+%)

(2]

Hence, P(x,n) may be represented by the finite expansion
5
p—l & m :,_ a 8y a_ - 1
Blkan)ie ds o (=1)"(n*- 4*)(n*~ %) -;;-(n (2m-%)? )
m=1 (2111)' (ZX)

and the remainder will not exceed in absolute value the first neglected

term.

In exactly the same manner, we find that

m=1 =, . 2 < 3 e
ton) = & TN L (02(ne))
m=1 ; (_2!11-1)! (2)()
where, if 2p> n-% '

| Rl & (p+1)*" term.

The Pade Table

It is possible to derive a sequence of approximations in the form of
rational functions from the power series representation of the original
fynction. (Handscomb [7] ) .

Assume f(x) = Gs * 0,% # czxt+ .- (5.3)
and that Rmn(x) is a rational approximation of the form

a2 m
R (x)=ao+a‘x+aax sae e +Elmx (5.4)

mn

1+bx+bx* ..ob X"
n

where m and n are the degree (at most) of the numerator and denominator
respectively. The coefficients in (5.4) are chosen so that f(x) - Rmn(x)

expressed as a pdwer series has no-term of degree:less than.(m+n+1).
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That is

m+n n m
(CU + CIX + vese Cm*nx ‘l"caoo)( 1 * blx+ ...+bn>( )"(ao * al)('l- .oo‘Hamx )

(5.5)
must be free of terms of degree less than (m + n + 1).

Equating coefficients to zero in (5.5) gives a set of (m+n+l) equations to
determine the (m+n+l) unknowns in Hmn(x).
A m+1 m+n > >
The coefficients of x to x give a system of equations that can

be solved for the b's, the remainder of the equations, involving both a

and b can be solved once the b valuas are known

== - ~ - p— vy
i.e. c c o c b 0
m+t=n m+2~N sarEss Gl m+ | n
_______________ bn—l 0
: |
|l = i (506).
b 0
c c » e B = | 1]
m T e men-t Cmens L1+ LOJ

The matrix of coefficients [c] has n rows and (n+l) columns., Since the
right-hand-side is zero, it can be seen that (5.6) has a non-trivial solu-

tion if the determinant

c c L . 8w c
m—n+| m-n+2 L] LN - m
(= c
m=n+2a Mm=n+3 celsw i ees L
m+) % 0
c c L B B I O B ] c

; m 3 m+1 m+n=|
The approximations (5.4) that are obtained in this way are called

Pade approximants and are dependent on the choice of m and n. They can

be arranged in the form of a table in which m and n are used to denote

the row and column number respectively.

i.a. H R R L I B
a]s] o 032
B R R i s
R H R LR B B B
a0 R | A2

R I S I I R R R I A I N I A N )

/
The advantage of using the ratiocnal Pade form is in its computational
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efficiency, since it can be expressad conveniently as a continued fraction.
One disadvantage however, is that if the degree of agpproximation is to be
increased, the new pade approximant has to be evaluated right from the
beginning.

We now consider two examples that illustrate the derivation of padd

approximants.
Examples
x* x' x" xs
(i) lﬂge(l+x)=x--2'+-3'*'4_+€ tessssnas

The approximant

is found by making

(= B SR = A ons )} # b, x + sz’) - (a':l +ax + aax’) = 0(x%)

Eqﬁating coefficients of xj for J = 851 seu8

au=D ba’;ib.q-&zﬂ
Wy b 8 -%bz+ §b|+ +=0
bl" %332

from which R, = T x

The error luggfl+x) - R (x) is tabulated in Table 5.1 and we notice
that the error behaves in a similar manner to that of the truncated Taylor
series that is it is small close to the origin but rapidly increases on
gither side. Clearly the Padé approximant is not a suitable approximation
near x = -1, but it is reasonable to suppose that this is due to the rapid

descent of loga(1+x) to -e0in this region.

(ii) Consider

it M
S

+24 120+‘......

o X

a
. X
cosh X - sin x = 1 = x +~§ +

Then the first few entriss in the Pade table are

1 1 1

1+x l+x+§x*

1-x 1-%x 1-%x
: l+x L+gx+hx*
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Loxihn® 1 $x +35* 1 Hx o
l-sx 1 <5x +hx?*

etc.
The error (coshx - sinx) - R,(x) is tabulated below and again it can
be noticed that the error curve demonstrates the same pattern as in

the previous example,

X -1 "-18 —.6 -.a -.2

luga(l-rx) - Ru(x) =~ -.04423 -,00325 -.00018 -.00001
(coshx - sinx) = R (x) .01747 .00576 .00138 .00019 .00002
.2 o4 .6 .8 1.0

.0000 .00002 .00012 .00038 .00084

.00000 -.00019 ~,00155 =-,00623 -.01923

Error in Pade Approximants
Table 5.1

It is possible that the rational approximation may be more appropriate
over a wider range if it could be arranged for the error to be more equally
distributed. A method which attempts this is now described.

Economisation of Rational Functions

The object is to take the original Padé approximant _Rmn(x) and per-
turb it so that the error is more equally distributed throughout the range
and thus reduce the maximum error. The method described here is that der-
ived by Ralston [12]. It involves taking a combination of Pade approximants
in such a way that the predominant terms in the remainder form a Chebyshev
polynomial. The form of the modification is derived in Appendix 5.1
(iii) In the approximation to loga(l+x), since we have already noted that
this form is unlikely to be a reasonable fit near x = -1.0 we consider thas

rangs E—U.G,D.ﬁ:[.

Now we have P; PT . Eg ke
EE L E? "1 v Qr ¥ Texeix®
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The new approximation is

L 2 % 0
R*(x) = i I : since t, = t, =t =0
Q; + 3,8, + 34, t,= -20, t =5
1 12 (0.6) (-20)
then &, = 155 7 —fﬁ—' = =0,03
1 . (0.6)*(s)
hl = 'i"é'ﬁ' ol e = 0.00023

X + %xz - 0.03[x]
lex+gx*= 0.03[1+3x| + 0.00023

hence R¥ (x)

s 0.97x + *x* (5.8)
~ 0.,97023 +0.98500%x +fx*

The error is then found to be

b 4 ".6 —.5 "".4 “.3 -.2 -.l
log(1l+x)-R¥ (x) -.001053 -.000033 .000040 -.000014 -.000036 -.000025
.1 o2 . o4 i .6

.000019 .000024 .000014 .00000C1 -.000013 -.000009
Figure 5.2(a) shows a comparison between the error produced by the modified
and unmodified approximation. It is noticeable that the economised function
still does not produce an ideal Chabyshev form of error oscillation.
(iv) 1In the approximation to cosh x - sin x, the range will be taken as

[—l.G,l.q] i.s. in (5.1.1) a = 1 and &i(x), H:(x) and &:!x) will be as shoun

in the Pade tabla.

In this example t,=1t, = to =0
t, = ~-20 t, = 5 as befors
edsd2 1 (-20) _ 13
and 175205 *16 ° . 5%0 " 0.05417
I ] 14(5) 13 -
& = - 555 (=1) . i& =2306 = 0.00564

1.00000 - 1.30000x + 0.81667x + 0.05417(1 -3x) + 0.00564(1)
1,00000 - 0,30000x + 0.01667x"+ 0,05417(1 +4x) + 0.00564(1)

heance R¥* =

= 1.05981 -~ 1,32708x + D.B81667x>
1.05981 - 0,27292x + 0.01667x*

(5.9)
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The error y(x) - Hfﬁx) is plotted in Figure 5.2(b) and it is obvious
that the error distribution is not even approximately symmetrical about the
horizontal axis. To investigate why this is so, we look at the nature of
the modifying terms as given in Appendix ASil.

The error in the sconomised form is given in this case by an expression

of the form

y(x)-RX(x) = Qy(x) = BY(x) 3B (x)y(x) = P (x)] +3, [02(x)y(x) - P2(x)]
0J(x) +Y, Q/(x) + 3,0 (x)

(L-x+x+x%...)(2 =3x+1x* - (1-13x +49x")
2 6 10 60 10 60

Now D:y(x)-P:'(x)

13

b
?zﬂx + 0(x°)

(1 - x +_>_<’='+ 5" eeo)(1 + 3x) = (1 - %x)
2 6

Q’ (x)y(x)=P, (x)

5 x’ D(x”)

+-x-
2 8

[
Q’-‘IIX

(1 =-x4x+x*0e)1=1

(x)y (x)-P2(x) e x

a k] i & b
X + X'+ X + X' = x + 0(x")
2 6 24 120 (5.10)

Now if we take only the first terms of the remainders in (5.10) and substi-
tute in the above expression, we get

-0.01806x° + 0.02257% - 0.00564x
1.05981 - 0.27292% + 0.01667x*

y(x)-R¥(x) = (5.11)

The expression in (5.11) is plotted in Figure 5.2(b) and it is clearly
more like the shape that is desirable. Indeed, the numerator in (5.11) can

be written

-0.01806 « 3 -0.01806
= [16x - 20X + 5x] = e Toix)

However, if all terms up to x* are retained in the remainders in (5.10), then

y(x)-R¥(x) = -0. 01743x + 0.00701% + 0.02351x + 0.00282x* - 0.00564x
1,05981 - 0.27292x + 0.01667x* (5.12)
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If the plot of (5.12) is compared with the actual error curve in figure
5.2(b), it can be seen that they are very similar. Hence it can be con-
cluded that the presence of the extra terms in the error expressions account
for the unsatisfactory.shape of the error curve.

It seems that unless the range of approximation is kept relatively
small, the form of the error produced by the economisation process may be
far from ideal. In which case it is probably better to seek the true mini-
max approximation by some other method. (See Chapter VIII)

Expansion in a Series of Chebyshev Polynomials’

A series in which the terms are Chebyshev polynomials offers several

—advantages when used as a means of approximation. In most circumstances,
the coefficients in a Chebyshev series decrease rapidly in magnitude allow-
ing early truncation of the series without incurring serious error. In
particular, the truncated series has an error which is approximately equal
to the first neglected term and hence may be nearly a function with the
equal-error property. Since Chebyshev polynomials are only defined in the
range [—1,1], it may sometimes be necessary to make the substitution

X = %I‘- (z - a), which reduces a-h¢z €¢a+h to -1¢ x <1

One advantage of using Chebyshev polynomials is the relative ease with
which they may be integrated or differentiated. This makes them particu-
larly useful when the function under consideration can be expressed as the
solution of a differential equation whose coefficients are polynomials in x.
An example is given of this méthod of approach and two methods of estimating
the error are conmpared.

Example
To find an approximation to y(x) given that
(3 +2x) y'=-y =0 and y(o) =1 (5.13)
Let the range in which the approximation is valid be [—1,1] and assume
a solution p(x) =ian +a,T (x) +a,T,(x)+aT(x) (5.14)

where Ti(x) are Chebyshev polynomials.
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Equation (5.13) is first integrated and then (5.14) is substituted for y(x)

i.e. (3 + 2x)y - %/rydx = const (5.15)
Now 2ij = Tj+|+ Tj-l >0 and 2XTD = 2T,
and /
a .l T
Jﬁa.Tjdx B Ui (e < i L ) 1 §52
J 2 |3+ T -1
=§J[ra.+ TOI ! J=1
i i

le can substitute (5.14) into (5.15) and

we obtain
Ja a

0 1 I 5 1

( > +_4)+(-2 ﬂo + .'Sa|+ > a;) Ty (x) +<z

i
2

and the initial condition gives

a,+ 333 Ts(x) + % a,T,(x) = const,

using the above relationships,

Ia
4

a,+ 3314-

3)Tz(x)

(5.16)

Now all the conditions in (5.16) cannot be satisfied, so we choose to

satisfy the initial condition and make the coefficients of T,, T,and T, zero

i.e.

X
2% A =2
1 5
-=a + 3a, + +=a =0
250 aEeh (5.17)
1 7
Ial+ Saa+-zas = 0
1
5 a, + 3a3 = 0
Solving, we obtain
y(x)~ 0,967 741 94 + 0.349 462 36 T,(x) - 0.032 258 06 Tl(x)~...
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Estimation of Error

In (5.16) we can satisfy all conditions (apart from the constant of
integration) by introducing a term'ﬁTﬁ(x) on the right-hand side. (¢]

we then have in addition to (5.17)
R V= 0.003 360 22
5 83= or .= O,

Hence (5.1L) satisfies exactly the system
(3 + 2x)p(x) = sfp(x)dx = const. + 0.003 360 22T, (x) (5.19)
If p(x) = y(x) + e(x)

we find that substitution in (5.19) leads to e(x) satisfying

(3 + 2x) e(x) - S/Q(x)dx = 0,003 360 22T,(x) (5.20)

with initial condition e(o) = 0
5

This equation has to be solved iteratively, in the form
(p+1) ‘(r) _
(3 + 2x)e(x) = 0.0003 360 22T,(x) +d&r + 3/ ‘" /(x)dx (5.21)
- o
The «r is chosen to satisfy the initial condition and the integral is esti-
mated by the trapezium rule.

Choosing e(n) =0

1]

(3 + 2x) o' (x) = 0.003 360 22 T, (x) s

-]
-
[}
3
X
n
o
[14]
—_
~
L
=]
S
n

&[.00’3 360 22 + ]

-0.003 360 22

[
-»
o

—~
~—
~~
o
S
I
o
R
n

s 3+ 2x) o8 (x) = 0.003 360 22 [1.x) - 1]
(2)

Then equation (5.21) can be used to find e‘" /(x) and so on.

The results of the iterative process are tabulated below.

X "1.0 -U.B -006 "D.é "0.2 U.U 0.2 004 006 U-B 1.[]

g 0 442 "244 ~1€4 040 0 -0B0 -095 <147 134 0 x 107

e(z) 594 -2 =219 NEY] -03¢ © <032 « 106 =6 .f.?? -O-q,q
e 120 =254 282 137 -0 0 _g33 109 =180 =lgP ~0¢3
al'f} 5'?01 "1'06' -2'411 -’.352 -0'35& Q _0‘331 _!.qu -l-ﬂﬂ .".8“ -0.650 x 10
actual 3-495 ~2:098 =2:46% ~AS3S ~0:367 O -03W3 ~}G16 <1187 1M L OGN » 10

Brror

x 10

-3

-3

-3

-3

~3

The actual error was obtained by comparing the series approximation with

the exact solution of (5.15) i.e.



Estimation of Error Using Neglected Coefficients

In Appendix A5.2 the method described by J. Oliver [18] is outlined

for expressing the error in the solution to (5.15) in terms of the first

few neglected coefficients. In our example, we wish to find

a(x)

Qﬁx)a* + g(x)as + £ (x)a,

where  €,(x)

.
Z'A0T(x) = Ty (x)
§=0

3 @

E(x) = 2 djT_(x) - Ts(x) etc.

It is shown in Appendix A5.2 that the dj(i) satisfy equations with

. the same coefficients on the left-hand side as in (5.17) and

values on the right-hand side. )

In the example above, we have

s e
< g [ MO
%M 0
g 0
[ 4] i
i ==
[A] ? ::ﬁ) I g
da’CS') 5 0
)
il RN L 0 -
r 1 pre e
(] . [®] -
Rl 7 ¢ R S
43 0
.&‘l‘t‘- e U o
where [A] = $500 =1 0
-4 3 % .2
0 i 3 1!'1{-
s -
from which we obtain
oY = 1.258 06 WLEL R e
oA,© = 0.518 82 3= 0,1,2,3 &'uj -
{{
4N =8.370 97 o %
%Y = 0.561 83 PL e
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-1.,935 48
-0.341 13
0.032 26
-0,005 38



since e(x) = a,€,(x) + a,e.(x) + a ¢, (x)
e(x) will depend on reliable estimates being available for a,_, agsand a,

in the figures tabulated below, the values used were

a, = -0.001 44
a, = 0.000 32
a, = -0.000 07

X ar1 0. m0,0 206 -G 4002 0.8, 08 .04 Bb:oD8 10
a,2,(x) 263 gl =253 ~1'§4 0.7 «0:09 -0 =19 -228 ~0:4% x 0™
ag€s(x) ©'32 -03 -002 028 077 027 ~028 0:02 032 =032 x 10™
a, (x) Ol  -0p0gs Ol 0.1 Qe0# 005 ©s/3 014 003 Ofb x 107

a(x) 8106 =199 =249 «|eaS -0:40 ~&31 =106 =80 -)98 -0:65x 107
actual  g3.50 -0 =347 -S4 =037 ~o32 0% =/ -129 -0.67, 15
error

g O 0 ¢

The error curves produced by the two methods of estimation are compared
with the true error in fig. 5.3. In this case, both methods are shouwn to
be reliable. One point is noticsable about the error, that is that it is
far from symmetrically distributed about the axis, due to the initial con=-
dition producing zero error at the origin. This suggests that if the con=-
dition at the origin is relaxed a batter error distribution may be achiauad.LG]

The Perturbed Condition

Consider a solution of (5.15) of the form
%: I
xX) = %' + a,

Introducing a term T-STGI(x), we can solve the system

%a

-I’%-ao + 3a +§;al . 0

» -a, +a, = 1

$a, + 3a, +%a, = 0
%a, + 3a, .-a%a,f =0
~a, =Tg
the original equation now becomes
(3 + 2x) p(x) = B/p(x) dx = const +¥ T, (x) (5.22)

and p(x) is an exact solution of (5.22)

b
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Solving for the coefficients we get
8, = 1.937 076 a, = -0,032 729 a, =-0.001 269
a, + 0,350 120 a, = 0,006 089 ’7; = 0.7a,

3

le now take ﬁf;) as the first four terms of p(x)

1. (3 + 2x) (A(x) + 8,T,(x)) = 3/(p(x) + a,T,(x)) dx = const +7Ts(x)

or (3 + 2x) p(x) = 3fpf;)dx = const T, T, (x) - (3 + 2x)a T, (x) + 3] a,T, (x)dx
(5.23)

but (3 + 2x)y(x) = Sny(x)dx = const

i Ekx) = 5Tx) - y(x), e(x) satisfies the equation

(3+2x) a(x) - 3/€(x)dx L a, i (x) - (34 2x) a,T,(x) + 3/a*T*(x) dx

(5.24)
and if p(x) satisfies the initial condition
i.e. p(o) =1
then ;?;) +a, =1
also y(o) =1
2. e(o) = -a, (5.25)

As before (5.24) is solved iteratively in the form

AT 7 (e
(3 + 2x) e(x) = a*[;a‘T,(x) - (3+ 2x)T*(x) + %jfT&(x)d%]+=&r_‘+ 3 /e (x)dx
(5.26)
with %.ychosen at each stage to satisfy (5.25)

= te)
Now set e(x) =0

(3 + .2x)é“} =a‘£% Te(x). = (3 + 2x)T, (x) +3‘/¢:(x)dx} v

when x = 0 e(o) =-a, o O gl

¥
then (3 + 2x)'ém= a*{;%T;(x) - (3 + 2x)T,(x) +3/a(x)dx 4+ 3f§.'<)(x) dx

whence o-il = 0 as before and a“m is obtained.

We tabulate below the results of the iteration
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 }

59 248 =12F =lb¥ 049 49 121 06l =049 1S 09 0.82 x 10°°
5P aus -M4 IS2 <047 g 1) 064 -0d6 <1l =093 096 x 107

g™ 229 -109 -14 -0.44 .49 27 064 -0uS .10 09 099 x 10°
21 063 -037 -4 ~095 [0 « 10

actual24s «)l - 2T 0009 M3}

error

The estimated error curve is compared with the true error curve in fig 5.4.

Conclusion

The solution of this chosen problem ﬁas been satisfactory using a
Chebyshev series with only very few terms. The two methods of estimating
the error both gave reasonable estimates, although that involving the use
of the neglected coefficients does require some accurate estimation of the
unknown terms. The iterative scheme requires by far the most computation,
but all the terms are known and no estimates are required. In this sense
it is the more reliable method,

The error curve produced by perturbing the initial condition shows
an improvement on that of the unperturbed solution and suggests that the

extra degree of freedom afforded by this approach is of real benefit.
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CHAPTER VI

Approximation in the L, Norm

Introduction

The problem considered here is finding an approximating function

of the form
n
£ . ;
(a, x) iég aiﬁk(x) in an interval [x,,:ﬂ (6.1)

such that the integral

L,(a) = ,y(x) - f(a,xjdx (6.2)

%

is as small as possible.

We are draling oniy with problems where y(x) is continuous and é(x) are
chosen to hava polynomial form. It is shown that the problem can be con-
sidered as one of interpolation which is sufficient in many cases to pro-
duce the best approximation. A programme is developed which uses this
method when the ﬁi(x) are chosen to bs Chebyshev polynomials of the second
kind.

The Condition for Best Approximation

It is necessary to find the condition which characterizes the best
approximation in the L, sense. This requires the value of L,(a), defined
in (6.2) to be a minimum. Now L,(a) can be considered as a function of the
coefficients ay of the approximation, so if we define a¥* as the required

optimum point, we require (see Rice [13] )

1im iL,(a*+ ta) - L,(a*)] .0 (6.3)
t+0 t

i.e., the derivatives of L,(a) at a* are to be zero.

It is shown in Appendix A6.1 that (6.3) leads to the condition
¥a
ﬁi(x) signfy(x) - f(a*,x)}dx =0 $u0;1, ceoun (6.4)

%

where sign (z) =(-1 if z< 0D
0 .if z=0
+1 Af z»0
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Now assume that it is possible to find a sign function s(x), which takes
one of the values i 1, and which can be chosen so that

ﬁ;(x)s(x)dx =0 $:2 051 Sahesdin (6.5)
It 1o pos;ibla to show that s(x) must change sign at not less than (n+1)
points in [x‘, xJ, if the functions ﬁi(x) form a Chebyshev seat.,

A chebyshev set may be defined as a sequence of functions ﬁ.(x), con-
tinuous over the chosen range, such that no linear combination é% A ﬁ (x)
has more than n roots 1n31de[x ,x] unless it vanishes 1dentlca£ls.

Assume that the chosen functions form a Chebyshev set. (This is cert-

ainly true in this Chapter.) If s(x) has only n changes of sign, we can

choose
f(a,x) = Z .Rjﬂj(x) to change sign at these points and no « “'.o.

other. Then f(a,x)s(x) w;ll have a fixed sign throughout the range
xl
‘sz(a x)s(x)dx # 0 and (6.5) cannot be trus for all i, since

wa assume f(a,x) = E: Mg (x).

jop 94
So s(x) must have at least (n+1) changes of sign. Now if we ecan find s(x),
we see from (6.4) and (6.5) that f(a%*,x) could be determined from

signiy(x) - f(a*,x)} = s8(x)’ (6.6)
One way of satisfying (6.6) is to find the points X, at which s8(x) changes

sign in order to satisfy (6.5) and then to solve the interpolation problem.

y(x.) = f(a,x, ) (6.7)

If there are exactly (n+1) points, X0 then (6.7) determines f(a,x) uniquely.
Then if y(x) and f(a,x) do not agree at any other points in[x,, xz]wa have
found the required solution to (6.4). However, if the error curve has more
than (n+ 1) zeros, the solution to (6.7) will not give the required solution

to (6.4). 1In this case, a descent method must be employed to adjust the
coefficients to reduce the components of the derivative to zero (see Usow [17])
In this work, we consider only those cases where the L' problem is:solved

by interpolation. It is necessary to show that if the di(x) ars chosen to
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be polynomials, then the choice of interpolation points is fixed irres-
pective of the nature of the function y(x).

Choice of Interpolation Points

We consider the case where
r ; n
g (x) = S_b.x and f(a,x) = Z a.d,(x) (6.8)
& 126 9 fon Aod

It is necessary to find a set of points [xk] such that a sign func-
tion s(x) changes sign (n+l) times in the chosen interval [x,xﬁ].
The range of approximation will be taken to be [}1,{] and we consider

the integral
I

r
] = Z bjxja(x)dx // r = 0’1 sessse N (Gog)
3=0

-
By making the substitution x = cos @, it is shown in Appendix A6.2 that
if I is to be zero for all values of r,

then s(cos &) = sign [sin(n+2)9ﬂ

and that the points of interpolation for the functions definesd in (6.8)

are given by

k W
x, =cos{==, Kie 1,2, ennnslnel) (6.10)
which are the zeros of Un+t(x)’ the Chebyshev polynomial of the second kind.

* Choice of Interpolating Functions

Experience with power series approximations suggests that the choice
of xJ for the dj(x) may not be a good choice in terms of numerical stability.
;n the paragraph above, we see that Chebyshev polynomials have arisen natur-
ally in the discussion. These polynomials can be integrated readily.
Series of Chebyshev terms usually display repidly decreasing coefficients
and can be truncated at an early stage without great loss of accuracy. In
addition they are relatively easily summed using the appropriate recurrence
relation.

Furthermore, if we use a finite series approximation

n
f(a,x) = ;E; ajUj(x)

62



! U

then Ll(a) =u/1y(x) - f(a,x)l dx = [a u (x)ldx (6.11)

N+l N+
LAN axpansion af Fhe form y0\ o =' Fauitx) is assumed.) o
Now it can be shown (Todd[6lpage 149)"that the minimum value of u/}pn(x)\dx
-1
over all polynomials pn(x) of degree n with leading coefficient unity is
2'™" and is achieved when E;fx) = Un(x) where Un(x) is Un(x) divided

by a suitable constant to give a unit leading coefficient.

In view of this and (6.11) it seems appropriate that an approximation
based on a series of terms involving Uj(x) should give a useful method of
~expressing the best L, form. In Appendix A6.3 is given details of the pro-
gramme which attempts tc find the best L, approximation by interpolation
when the approximating function is a series of Chsbyshev polynomials of

the second kind. ;

It has been pointed out that the interpolation procedure does not
provide the best L, approximation in all cases. No attempt is made in the
- programme to implement a descent method when interpolation fails to give
the desired answer. It is felt that the L, approximation would have to
be shoun to possess some distinct advarntage over other norms before the
extra work involved in solving the optimization problem could be justified.

The Chapter is concluded with some examples of the use of the programme
to obtain approximating functions. The last example is taken from Usuw[l?]
and illustrates an example in which the in£arpnlation method fails for cer-
tain values of n.

Example 1

Consider y(x)

0.92 cosh x - cos x and an approximation

s :
f(x) 0 aiUi(x)
i=0

In this case, the interpolation points are + 0.3090, + 0.8090 and the
approximation is f, (x) = 0.15979 Uo(x) + 0.23971 U,(x) the other coeffici-
ents being zero.

The number of zeros of the error curve turns 6ut to be six, so the

approximation is not best in the L, sense. For this reason, we now try an
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approximation of degree five and again solve the interpolation problem.
The interpolation points are now + 0,90097, + 0,62349, + 0.22252 giving
. -b

f(x) = 0,15979 Un(x) + 0.23975 U,(x) = 0.113 x 10 U,(x) and the error
curve turns out to have the required six zeros. The two error curves are
compared in figure 6.1. The values of the L, integral are

Jf]y(x) - f,(x)| dx = 0.1058 x 10™°

A

[
Jfly(X) - £.(x) | dx
-1

In the case of f,(x), the zeros of the error curve were located as being

0.8394 x 10"

-0.90139, -0.62325, -0.22234, 0.22270, 0.62370, 0.90055.
This shows a maximum discrepancy with the given interpolation points
of 0.00042.
As a further check, the integrals én the lefc-hand-side of equation
.(6.5) are calculated and found to give
[-G.UDDDTT, U.d0379, -0.00004, 0.00383, 0.00007, 0.00004]
These should strictly be zero if the approximation is optimum. Since the
integrals are evaluated using the interpolated zeros of the error curvz
[ﬂppendix'AS.S], the discrepancy is reasonably accounted for by slight

errors in positioning the zeros of y(x) - f,(x).

Example 2
Consider y(t)s= et 0stgl
Kl SEPR O 1$t€2
t e = S e 26ts3

The range is scaled to [-1,1] by the transformation x = #(t -4 ). First, N
is taken equal to 4 and interpolation points are taken as the zeros of Us(x).
Then  f,(x) = 3.59554 U,(x) + 2.10396 U, (x) + 1.26684 U,(x) _

+ 0.87025 U,(x) + 0.24483 U*(x)
Interpolation points -0.86603 -0.50000 0.0 0,50000 0.86603

Zeros of error curve -0.86582 -0.50005 0.0 0.50000 0.86602
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The elements of the gradient vector arse
ED.UDDQI, -0.00094, 0,00083, -0.00053, U.DUO&S]

1
and Jﬁy(x) - fw(xjdx = 0.46088
-1
The error curve for this approximation is plotted in figure 6.2

If now, N is taken as 7 we gst

f,(x) = 3.90317 Ua(x) + 2,10546 U, (x) + 1.10182 U,(x) + 0.91162 U, (x) +

+ 0.38389, U, (x) - 0.17637 Ug(x) - 0.16857 U (x) - o i

Ll
+ 0.03988 U_(x
and J/]Y(X) - f,(x)|dx = 0.25755 2 (%)

Howsver, the error curve now turns out to have ten zeros instead of
eight. It then appears that there might be a solution with N = 9, but in
that case, eleven zeros are produced and the interpolation has not produced
the best L, approximation. The approximation is
f;(x) = 3,57331 Uo(x) + 2,08090 U (x) + 1.30196 U,(x) + 0.94899 U,(x)

+ 0.18620,U (x) - 0.20406 U, (x) - 0.08562 U (x) + 0.02599 U7(x)
+ 0,04525 U (x) + 0,05775 U,(x)

mith/iy(x) - £, ()ldx = 0.15487

The e;;or curves for these two approximations are also plotted in
figure 6.2, It may be noted that the discontinuities in thg first deri-
vatives at x = + % [t ="1.0r 2] causes the error curves to have quite sharp
peaks at these points.

In conclusion, it is thought that the use of the L, ncrm to define an
approximating function does not show any advantage over the more familiar
L, or L, norms. The idea of being able to expressthe:problem as one of
interpolation is attractive in its directness, but it does not always pro-
vide the best L, approximation. Expressing the approximafion as a
Chebyshev series provides a convenient computational form . It is diffi-
cult to appreciate the closeness of fit when the error norm is in ths form
of a definite integral. However, since computation of a fair number of
points along the error curve is necessary for the numerical integration
process, it is a simple matter to print out these points for reference

purposes,
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CHAPTER VII

Approximation in the L. Norm

Introduction

The concept of approximation in the L, norm (or least-squares approx-
imation) was introduced in Chapter II. Some examples of this approach are
now presented. A comparison is made of approximations expressed in series
of Legendre and Chebyshe¥ polynomials. Also the Chebyshev series obtained
by using the orthogonality property over a discrete point set is compared
with that where the cocfficients are determined by integration. Reference
is also made to the interpolation polynomiel where the interpolation points
are the zeros of a Chebyshev polynomial of suitable degree.

" Orthogonal Polynomials

If we express the approximations as the sum of a finite number of
orthogonal polynomials ﬁi:

n
f.8. f =z a.d.(x) : (7.1)
e. f(x) s 5 (x .

the L, norm required that the integral

l,b

~ :
L= [ oot - ) o (7.2)
shall be a minimum. X
[Normally, the square root may be dispensed with, since the minimum of
(La)z implies the minimum of L, 1.
In Chapter II, it was seen that (7.2) leads to the expression for

the coefficients in (7.1) given by

b
w(x)Y()d(x) d
2 ‘Lf-:(x);; )k (7.3)
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It has been shown that if the weight-function w(x) is taken as (1--><")_£i
and the range as_[—l,l], then (7.3) defines the coefficients of a series
of Chebyshev polynomials. Would it not be computationally more conveni-
ent if w(x) were chosen as unity? It can be shown that a set of poly-

nomials with the necessary orthogonality are the Legendre polynomials

given by
T ¢ (7.4)
Pr(x) i r )
2 ! dx

In Appendix A7.l1 some of the main properties of the Legendre polynomials
are derived. In particular, it is seen that the coefficientsin (7,1)

become ?
a :g%/': y(x)Pr(x)dx (7.5)

)
and the least~square: error expression is

) n ~
S = IZT y* (x)dx -rfg 28, (7.6)

erf
These can be compared with the similar expressions for the Chebyshev

series, i.e.

ir f(x) = Sr_l'arTr(x) in  [1,1]
r=0
th ! \
en ar < %[y(x)Tr(x) dx (?.7)
’ 1-x*

' n
1
and S - M dx - ']-_‘- Zl a Y
- — =0
P 2'"r
-1

ﬁha prime indicates that the coefficient in the first term of the summation

must be haluéda

Since the two types of orthogonal function have analogous properties,
it might naturally be asked why choose the one with the awkward weight
function? A significant reason lies in the shape of the error curve that is

obtained in each case.
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If the coefficients of the series approximation decrease fairly
rapidly, then the first neglected term is a good indication of the trun-
cation error. That is e(x)csan*‘ﬁh+l(x) where ¢n+1(x) would be either
the Legendre polynomial Pn+'(x) or the Chebyshev polynomial Tn+:(x)'

The main difference between the two curves is that the Legendre poly-
nomial oscillates mitﬁ increasing amplitudé towards the ends of the range,
whereas the Chebyshev polynomial oscillates with equal amplitude through-
out. Consequently, we expect a Chebyshev series to give very nearly a
minimax error curve, Add to this that for practical purposes, integra- -
tion can be replaced by summation over a discrete point set, with unit
-weight function, then the reasons for the preference of Chebyshev expan-
sions can be appreciated. The fnllowinﬁ example lllustrates the differencas
between the two error functions.

Example

Let y(x) = sinh x luge(tan h(%d)and eonsider an approximation in
the range [1,3].

Making the transformation z = x-2 to make the range [}1,1] and taking

the degree of the.approximatinn to be nine, we use (7.5) and (7.7) to

obtain

f (z) = -0,977 539 57 P,(z) - 0.036 411 50 P, (z) + 0,022 185 18 P, (z)
-0.008 565 60 P, (z) + 0.002 464 54 P,(z) - 0.000 580 71 P, (z)
+ 0.000 120 95 B, (z) = 0.000 023 94 P, (z) + 0.000 004 79 P, (z)
- 0.000 001 00 P, (z) (7.8)

f. (z) = -0.971 634 52 To(z) - 0,039 763 93 T,(z) + 0.017 434 62 T,(z)

- 0.006 516 85 T,(z) + 0.001 378 40 T,(z) - 0.000 291 38 T, (z)
+ 0.000 055 61 T,(z) - 0.000 010 23 T_(z) + 0.000 001 92 T,(z)
- 0,000 000 38 Tq(z) (7.9)

It may be noted that due to the orthogonality properties of the poly-
nomials, (7.8) and (7.9) provide approximations of lower degree simply by
truncation at the appropriate point. Figures 7.1 and 7.2 show the errors

for f_(x) and fc(x) for n =4 and n = 9,
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It was stated in Chapter II that there is a convenient computational
method for the summation of a series of nrthngohal functions. This is

based on the property that they obey a three-term recurrence relation.

fe. g (x)=Ad  (x)+Bd  (x) (7.10)
It is shown in Appendix A7.2 that setting bN+1 =0 and bN = aN
we form b =a + A

k k k+lbk+t+ Bk+2bk+z
for k = (N-l),(N"Z) vPecny 1

N
Then k;zé afy(x) = (a, +8B.b ) g, (x) + b & (x) (7.11)

and the summation is readily found without evaluating any of the polyno-

mials apart from the trivial ﬁl(x) and ﬂn(x).

3
Indeed, for a seriss of Legendre polynomials, we have

e 8 s ks
k+1 k+l ’ k+2 k+2
with Po(x) =1 P, (x) = x
and for a Chebyshev series
By = 2 : Sesa” =
To(x) =1 T, (x) = x

This implies that the evaluation of series of orthogonal terms is no worse
than ordinary polynomial evaluation in terms of the labour involved.

Determination of Coefficients by Summation

The coefficients of the Chebyshev series are defined by the integral
in (7.7). Very rarely is it possible to formally integrate these expres-
sions and some numerical technique must be employed, probably with the aid
of a digital computer. If this is so, may it not be more convenient to use
directly a method of summation based on the orthogonality of Chebyshev poly-

nomials over a discrete point set?
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N n
Looe o 2 T.0c )T le:) ={ % 1F gnsD or n=nef
=0 m'k n'k

k
4N if m=n#0 pr N
: 0 if m#n
cos Wk
where X = N ! k = 0,1, ....N and the double prime indicates that

the first and last terms in the summation are halved.

Let y(x) = %%l a Ts(x) .

N
11}
and consider b, =2 ¢ y(xk) Tr(xk) (7.12)
N k=0
th b =2 %' g‘"r( ) T_(x,)
en = a ) X X
IR~ e WL sk rk

Now the orthogonality property dictates that the second summation is zero

unless 3
Ta(xk) = Tr(xk) k = D,l TEEE N
i.e. cos sk _ cos rTk
) N B N
whence s =2Np 21 where p = 0,1 ....
and br = ar + aZN—r + a2N+r + aéN-r + 84N+r sanei

Y S'fSl‘emo.Hc Proceclure haseol on Fhis Lodmula con be fovncl in Hayes
Hence, if N is sufficiently large and the coefficients of the series dec-

rease reasonably quickly, br can be used as a very close approximation
to a. From another point of view, if we replace x by cos@ in (7.7) and
ﬁae the trapezium rule over a set of equally-spaced points at intervals of
/N, we get exactly the equation (7.12). (Snyder, Chapter 3 [14] )

Here is an example which compares the series obtained by evaluating
the coefficients using (7.7) and (7.12)

Example
y(x) = X

(VT + S oot

Consider an approximation of degree nine in the range [—1,13

From (7.7) we obtain
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f, (x) = =2.256 975 4 To(x) + 4,000 000 O T,(x) - 2.485 803 3 T,(x)
+ 0.999 999 98 T,(x) - 0.216 797 82 T, (x) - 0.000 000 02 T, (x)
+ 0.010 793 07 T,(x) - 0.000.000 02 T,(x) - 0.001 081 74 T,(x)
- 0.000 000 02 T,(x)

and from (7.)2), using summation over 22 points,

fa(x) = =2.256 975 4 To(x) + 4,000 090 0 T,(x) - 2,485 803 3 T,(x)
-099997°999 98 T,(x) - 0.216 797 82 Tb(x) - 0.000 000 02 T¢(x)
+0,010 793 07 T,(x) - 0.000 000 02 T_(x) - 0.001 081 74 T,(x)
~0.000 000 02 T,(x)

The error curve, which is the same in both cases to within 5 x llil"‘l is
shown in figure 7.3,

Interpolation Formula

By reference to figures 7.2 and 7.? it can be seen that the number nf
zeros in the error curves correspond to the number of zeros of the first
neglected polynomial term. It is of interest to consider the interpola-
tion polynomial which takes as the interpolation points the zeros of the
Chebyshev polynomial of appropriate degree. In Handscomb [7] it is shouwn
that if y(x) has no singularity on the real line [a,b], then the interpola-
tion formula with the above choice of points converges uniformly to y(x).

Figures 7.4 and 7.5 show the error curves when ninth-degree polyno-
mials are used in approximating to the functions in the two previous exam-
ples. The points of agreement are taken as the zeros of the Chebyshev poly-
nomial T, (x), (suitably transposed in the case with the range [1,3] ).

It is seen that the interpolating function produces an error curve
very similar to that of the Chebyshev series derived from the L, norm. In
these examples, the Lagrangian interpolation formula was used, which since
we are essentially using unequally-spaced points, may not be considered a

convenient computational form. One method of overcoming this is to derive

the interpolation function as a Chebyshev series (Hildebrand [10] ). This
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can be carried out conuaniantly since these polynomials up to degree n

are orthogonal over summation at the zeros of Tn+'(x). However, the effort
involved is virtually the same as that of finding the L , approximation by
summation over discrete points. 1In the two examples considered, the latter

approximation gives a smaller maximum error.
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CHAPTER VIII

Approximation in the L Norm

Introduction

The Lo norm applied to the approximation f(x) to the continuous

function y(x) in the range [a,b] saeks to minimise

in [Zm(x) {y(x) - r(x)}de]?"

Taking the limit of this expression produces the condition that

max m(x)ly(x) - f(x)'is to be a minimum.

x€ fa,b]
This implies that the required approximation must produce the least possible
(weighted) maximum error. For this reason, this norm is often referred to
as the minimax norm. Another name commonly used is the Chebyshev norm.

The characterization of the minimax norm, which is that the maximum
error must occur not less than a minimum number of times with alternating
signs, leads to an iterative approach to finding the best approximation.

The minimax problem can be solved for approximations which are the ratio
of two .polynomials if one accepts the additional complexity of the soluticn
of non-linear equations.

Characterization of Best Approximation

Consider an approximation in [a,ﬁ] of the form

n
f(x) = Z. a.d.(x) (8.1)
X = ai i X

where di(x) are polynomials of degree i. Then f(x) will be a polynomial
of degree n and we wish to determine a, so that
max ly(x) - f(x)\ is a minimum.
[a,b]
(Throughout this Chapter the weight function will be taken as unity. This
choice minimizes the maximum value of the absolute error.) In Appendix A8.1

it is shown that if the ﬂi(x) form a Chebyshev set, then a necessary and

sufficient : condition for (8.1) to be the best approximation of degree n
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is that the error curve y(x) - f(x) achieves its extrema at not less than
(n +2) points in {E,b] with alternating sign.

This important property provides a mefhod of determining the required
coefficients. In (B8.1) there are (n+ 1) unknown coefficients. There is
also the actual value of the error extreme, say h. Hence there are (n + 2)
unknowns for which the error extremes prouide (n+2) conditions. However,
this method does not have the simplicity of (say) an interpolation problem,
since we do not know in advance the points at which the error extremes
occur. Consequently, methods of solution are essentially iterative. One
method of approach is described below.

The Remes Algorithm

Two algorithms duarhemes [12] offer methods cf solving the problem
indicated in the last paragraph. The method described here is the second
algorithm and proceeds as follous,

First, choose a reference of (n+2) points [xi] in [a,b} and then
solve the (n+ 2) equations

y(xg) - f(x) = (-1)'h 1 w01, N drsslinea) (8.2)

giving the coefficients a, eeee. @ of f(x) and the error + h at the points
[xi]. When the error curve is now constructed, it is found that the chosen
points of reference are not the points of maximum error. It is possible to
—Jlocate the local axtrema.uf the error curve and this can be done for not
less than (n+2) points with alternating signs and in such a way as to
include the point of maximum error. These points are used as a new referencs
for a further solution of (8.2). The new error curve can again be scanned
for the peositions of the extrema. Proceeding in this way, we eﬁentually
find a set of points at which the error curve has extrema of equal magni-
tude and opposite sign. The approximation so found is the required mini-
max fit to the given function.
Example

Find an approximation of the form f(x) = a  +ax+ alx‘ in ﬁLZ] to

the function ex.
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We require a starting reference of four points. A common choice are
the extrema of the Chebyshev polynomial of apprépriate degree. (suitably
shifted in range)

In this case use the extrema of T,(z) in [-l,l] and transpose to
[0,2], giving X 0 0.5 1,50 2.00

x

e 1.0000 1.6487 4.4817  7.3891

Equations (8.2) become

1.0000 -a_ = h
1.6487 e = 0.5a, - 0.25a, = =h
4,4817 -& - l,5a, - 2.,25a; = h
7.3891 “a - 2,0a, - 4,00a, = -h

The solution to these equations gives

£"(x) = 1.1205 + 0.0624x + 1.5058x

h” = -0.1205

Figure 8.1 shows.the error curve produced. Since the error curve is fairly
rounded at the extrema, no special care is taken in locating the position
of the extreme points. If linear interpo;ation is used to find the points
where the first-order differences are zero in Table B.2, we find the inter-
nal extremes at 0.571 and 1.546.

Using these and the end-points as a new reference, we have the new

set of equations

l.UDOU - a = h

0.
1.7700 - a_ - 0.571a, - 0.3260a, = -h
4.6927 - a_ - 1,546, - 2.390la, = h

o ! -~
7.3891 - a_ - 2.00a, - 4.00a, = -h

)
yielding f (x) =1.12a3 + 0.0604x + 1.5060x"

Hm = =0,1223

© -
Table 8.2 compares the errors in the two approximations f (x) and

(@)
fl(x). Linear interpolation in the first-order differences locates the
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(-1
internal extrema at 0,572 and 1l.546. The error in f %x) at these points
is 0,1223 and -0,1225.
Hence, within the accuracy of the data used, the required approximation

has been found.

X 0.0 0.2 0.4 8.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0

e (x) =-.1205 .0282 .1054 .1221 ,0914 .0296 -.0437 -,1041 -,1221 -.0619 .1206
8 (x) -.1223 .0268 .1044 .1214 .0910 .0296 -.0433 -.1034 -,1213 -.0608 .1220

Error in Approximation to e

Table 8,2

Rational Function Approximation

The method of approach in minimax approximation lends itself to obtain-

ing approximations in the form of rational functions, that is, the ratio of

two polynomials. n i
aix
If  f(x) = i=0 (8.3)
S
1 +jz; hjx

then we notice that there are (m+n+1) independent coefficients,as in this
case, division thruughout by b0 has left the leading coefficient in the
denominator equal to unity. In an analogous way to the linear case, we
require (8.3) to produce an error curve with (m+n +2) local extrema with
alternating sign (Appendix AB.é). The approximation will be the required
minimax fit when the extrema are of equal magnitude. Empirically, it is
expected that for the same number of unknown coefficients, (8.3) will pro-
duce a smaller maximum error than (8.2). Howsever, the equations that have
to be solved for the coefficients in (8.3) are non-linear. It is possible,
in trying to solve the problem iteratively to produce a solution with a
pole in f(x) where no such pole appears in the original function.

Below are discussed three methods of approach to the solution of the

non-linear problem associated with rational approximations.

A
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Method 1 Linearization

Let the approximation be written as R(x) = Pn(x)
Q (x)

m

Then, as before, we choose a reference [xi] (£ = 0,1, svves mMen+l) and

solve the equations

y(x,) -_'fn(("_i) = (-1)*n (8.4)
Q (x

" i
It is noticed that the non-linearity is introduced into (8.4) by the pres-
ence of the unknown h. Hence, we may choose a value of h and solve (8.4)

as the linear system,

f(-l)ih - y(xi)} Qn(x;) + P (x;) = O i=0,1 .... (m+n+l)
(8.4a)

The iterative approach requires to’ find both the positions of the

local extrema and the required value of h that satisfies (8.4a).

Example
x
2
Consider an approximation of the form EL%ig to the integralj/7e-t dt
1
-]

where P, (x) and Q,(x) are both linear functions.
x 2 e
Now/a-t dt =f-'g-‘—-/ﬂe”t’-dt
L] y x
and the integral on the right can be integrated successively by parts to

produce an asymptotic series (see Chapter V)

LN 2
-t Boo.mL L 358 1.3.5 0 1:3.8.7
i.B%{fa dt =% -6 E v ....} (8.5)

2x~ 4x® ' Bx® T 16x?
This series may be used to evaluate the integral when x is relatively
large. Hence, if we use the series when x >3, the range of the rational
approximation can be chosen as [0,3].

Let z = §(x =% ) and then the approximation

f(z)= a0 +az is in the range [rl,l].
l+ b,z

There are four unknowns in the problem, so the reference points are chosen
as the points of extreme values of T,(z)

1.8. 7 -1 _% % 1
y(z) 0 0.630245 0.884929 0.886207
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In order to linearize the equations, we choose h = -0.06 then substituting

in (8.4) we have

-.06 + .06b,

0.690245(1 - 0,5b, )

ao - 0.5a,
a  + 0.5a, = 0.824929(1 + 0.5b,)

Since one unknomﬁ has been fixed, nnlg three conditions can be satis-
fied and these have been arbitrarily chosen as the first three points in
ascending order.

Solving these equations gives

a, = 0.786923 a, = 0.794654 b, = 0.871156
and the error when z = 1,0 is -0,04097
Figure 8.4 shows that the error curve is far from level and that the iocal
extrema do not occur at the chosen reference points. As a naxt iteration,
the reference points are chosen as -1.0, -0.75, 0.14, 1.0 and the value of
h is chosen as before.

Proceeding in this way, choosing the extreme points as the new reference
and at each stage making a suitable choice of h, the function f(z) is cal-
culated to try and level the error curve. After the first three iterations,
linear interpolation was used to try to find a suitable value of h to make
the error at the fourth point (z = 1.0) equal to that at the other three
chosen points. Table 8.3 shows the progress of the iteration process.

As a general remark it may be pointed out that linear interpolation
was not a satisfactory method of locating the extreme point near z = -0.800.
Linear interpolation of the firstbrder differences of the computed error
curve suggested that the maximum should occur slightly to the right of
z = -0.800, whereas the error curve in the next iteration showed the error
to be greatest at z = -0.800.

For example, in the last iteration, this method suqgests that, inter-

polating between computed points spaced at 0.1 intervals, the maximum

86



uoijodad] s
uouowl 2

USHBI |

Serale B

BT




should be at z* = -0,.771.

Actual calculation shows that

e(-0.800) = 0,0585
e(-0.795) = 0.0583
e(-0.790) = 0.0581
e(-0.700) = 0.0433
Iteration Reference Points h e(1.0)
.1. "loD -.S ¢5 log -.Uﬁ —.04097
2 -1.0 -.75 .14 1.0 -.06 .02270
3 -1.0 -.786 =31131 1.0 -.04 .11640
4 -1.0 -.768 -.2311| 1.0 -.0485| .07946
<] -1,0 -.756 -.172| 1.0 -,055 07275
6 -1'0 ".752 "0162 100 "'0063 - ¢03954
? "lou -0800 -0162 loDj -.USB 005029
8 -1.0 -,800 -.147|( 1.0 -.0588| .05780
9 =1,0 -.800 -.147| 1.0 -.0585; .05873
Iteratién a a b
5] ' '
1l . 786923 « 794654 -871156
2 . 785008 .B800352 744259
3 .828658 .842004 .666341
4 .816112 .830696 . 705364
] .813761 .829512 . 713605
6 « 797455 .B813806 . 740496
7 , 805746 . 822000 . 719756
2] .804625 .820970 . 722025
9 . 805049 .821360 « 721175
ta'
Approximation to/a- dt
-]
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Finally we illustrate the use of the series in (8.5). Putting x = 3

wa have

L
- =9
er ot =0.8862269 - 3L 1 . 3 15 }
: 6 108 * 944~ 34992 * ot

Taking only the first three terms of the expansion gives
f(3) =~ 0.8862269 - 0.0001233[0.166667 - 0,009259 + D,001543 ]

0.86862269 -~ 0.0000196

0.886207 to six significant figures.

The error in f(3) to six significant figures is therefore zero.
An error astimaté may be obtained from the first neglected term of the
series (See Chapter V)

-8
i.e. el < 0,0001233 x 15 =~ 5 x 10
34992

Method 2 A Direct Method for Rational Functions

This method is due to Stoer [}S]. In it we sseek a rational approxima-

tion R(x) = Pn(x) where the main feature of the method is that R(x) is
Q_(x)
m

expressed as a continued fraction. When the best approximation is found,

there are at least (n+m+2) points x; in [a,b] such that

y(xi) - R(xi) = (ul)ih, i 2 0,1 coes mn+l (8.5)

where le | =l hli
max

The approach, as in the other methods, is an iterative one, but because
of the continued fraction form of R(x), the interpolation property of
Thiele's expansion is exploited to find the solution for h in (8.5) when

the reference points X, are given.
P (x)

Qmixi

Then it is possible to write

Let R(x) = where n ¥ m.

R(x) = o 4 e,(x - xo) + e0eB (x—xo)(xﬁx|) os o {x=x:" )2

N=m M=M=

(x - xn)(x - xl) s X X )

-
Yy (x)

e
Ne=iN+ )
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e = X = X -

where ¥ (x) 14+x i TN & D xn+mﬂ_ (8.6)
-]

®n-mea -k ®hem

The coefficients in (B8.6) must be determined so that for a given choice of

reference points inol-
R(Xi) = y(xio) - ("l)ihu i = U,l, eesea M+N+l (807)

The polynomial part in (8.6) can be expressed in terms of divided differences
and the continued fraction part in terms of reciproccal differences. (Chz IV)

i.e. for divided differences

R(xo) = %0
all
\‘
Rix,) = a‘u
ay
R(x,) = a:m E
: a-
. N=m+l , N=M+1
. I T
R(xn-m+9 = ®n-mn ,0

where ai‘k = ai;k-l_ ai—!,k-n

and e, = &, ,
< g 134

It is noted that if m = 0, then Pn(x) passes through (n+2) points and

a = 0 which is the linear problem.
i1 4N+l

To obtain the coefficients in the continued fraction, we write (from B8.6)

¥ (x) = pn-m+:(x) o pn—m(x) (8.8)
RGY = 7, ()

)

where Pk()() = 90 + BI (X o XO) + sssve Bk(x o XU)(X b xl) sas0a (X — Xk_.l

The valuass of the right-hand side of (8.8) can be evaluated in terms of h°,

knowing that R(x) must satisfy (8.7) at the reference points

X gt o v eiol X
N=m+l N+Mm+t
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Hence, we have a table of reciproecal differences

ZP(xn-rnﬂ) = %60
cy
\‘\

?)(xn-m+9 *Cw b

. N

Py Cal .

- : ‘t‘

. " Cam, 2m

L]

.
?ﬁ(xn+mﬂ) ch,o

where c.k = xn--rn+|+i e xn-m+t+i-k o
J“) i-' 9 k":-

g e TP iy
and En_m” +i = ci,i by ci—z'i—z (i = 1! csna zm“'l)
Now the function R(x) will interpolate through the chosen points if the

fraction terminates. This implies that c &0 or
2my2Mm

Clm—l,&m-1= cim,zm—i (8.9)

If (8.9) can be solved, then the continued fraction has the property (8.7).
What is the nature of the equation in(8.9)? From (8.7) and (8.8) it can be
seen that R(x) and hence the terms in the reciprocal difference table will
be functions of h®. In fact (8,9) will represent the equality of two rational
functions in h°. In general, this equation cannot be solved directly and
an ‘Hterative solution must be sought. This is the most difficult part of
the process. Stoer gives an Algol programme which includes a solution of
this problem by Newton's method, claiming that two iterations are usually
sufficient to obtain the desired accuracy in h. As an alternative he sug-
gests using the method of regula falsi. In the examplse given below, (8.9)
yields a quadratic in h which can be solved directly for the value of small-
est modulus.

Once this stage of the algorithm is solved, a new basis can be chosen
from the extrema of the error curve and the process repeated until a satis-

factory solution is found.
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Example

. 1
To find an approximation to -—————~;— over the range [D,I] in
(1 + x*)~
the form ELL&Z
Q,(x)

+e.(x - xo)

1l (x = x,)
e,

Since n = m = 1, the continued fraction is R(x) = °,
Choose as the initial reference, the extremes of the shifted Chebyshev
polynomial T, *¥(x), in the range [U,l],

l.0,

x 0.0 0.25 - 0.75 1,00
y(x) 1.0000 0,9700 0.8060 0.7071
from (8.7) R(x) 1+h 0.97-h  0.8+h 0.7071-h

The divided difference table becomes

R(0O) =1 +h

R(0.25)= .97 - h (.97-h) - (1+h)

0.25

. e =1+h e,= -0.1200 - 8h

(n]
Then ( ) R

¥(x) = VX = XJ) (-0.1200 - 8h)x
R(x) = € R(x) = (1+h)

and the reciprocal difference table is

Y (0.25) = 1.0000 SIS e

i 1
% 0.0900 + 6h _ 1.0000
0.20000 ;
0.0900 + 6h
il ke
- i 1
t 0.1200 + Bh _ 0.0900 + 6h
0.2929 + 2h 0.2000

0.1200 + 8h
¥ (1.00) = %5555+ n

Hence, for the function R(x) to pass through the given four points, we have
equality of the entries in the second column.

i.e. 0 = 36h + 2.2122h - 0.0275
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e take the numerically least solution as our value of h giving

h = U.Ulﬂﬁ
whence R(x,)= 1.0106, 0.9594, 0.8106, 0.6965
e, = 1.0106, e, = -0.2048
e, = -2.1551
s e (x = 0.25)
2,1551

Figure 8.5 shows the error curve produced by R(x) and we choose as a new
reference the points [D.U, 0,26, 0,73, l.UD].

i.e. X 0.0 0.26 0.73 1.00
y(x) 1.0000 0.9679 0.8077 0.7071
R(0) = 1.0000 + h R(0.26) = 0.9679 = h
)

s 0.9679 - h - (1l+h)
ey 0.26 - 0.0

= =0,1235 - 7.6923 h

e
0

1.0000 + h e, = ~0.1235 - 7.6923h

 (=0.1235 - 7.6923h)x
R(x) - (1.0000 + h)

v (x)

The reciprocal difference table is

v (.26) = 1,0000

0.47
+4688+29,201h-1.0000
Y (.73) = .4688429,201h
0.27
.1235 - 7.6923h
5620 1 2h - (.4688 + 29.201h)
v (1.00) = .1235-7.6923h

«2929 + 2h
This gives rise to the eguation
0 = 15.768h" + 2.0224h - 0,0420

and taking the smallest root of this gives

h = 0,01067
hence e, = 1.0107 e, = -0,2056
Bﬂ = '2.1401
0.2056(x - 0.0)
and R(x). s 1.0107 - : (x - 0.26)
2,1401
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Again the error in R(x) may be seen in figurs (8.5). We notice that the
actual error extrema must occur at points very close to the chosen refer-
ance points.

A tabulation of the computed error is given in Table 8.6.

X 0.0 Bel 0,2 0,3 0.4 0.5 0,6 0.7 0.8 0.9 1.0

y-no)(x) -.0106 .0037 .0098 .0102 .0054 -.0003 -,0062 -.0102 -.0089 -.0010 .0106
y-R¥x) | -.0107 .0035 .0097 .0101 .0053 -.0004 -.0063 -.0104 -.0090 -,0011 ,0107

Error in Approximation to (1 +x*) “3

Table 8.6

Method 3 Rational Approximation as an Eigenvalus Problem

1f equation (8.4) is rearranged, we can write
i

fy(x;) = (-1)*h} @ (x;) + P (x;) = 0 (8.10)
As before, an iterative method is applied to finding a reference

a&xa< x‘ .l......< xm+n+l\‘
such that (8.10) is satisfied at these points and

max y(x) - i (x) = h

asxsh m(X)

The method employed here is dus'to Curtis and Osborne [4] and employs a
method for solving eigenvalue problems developed by Osborne. Equation (8.4)
can be thought of as an eigenvalue problem in which the maximum error h

is the eigenvalue and the corresponding eigenvector is the column vector

comprising the coefficients of the approximation.

q_(x) = Z bx

In more detail, let P (x)=§: a
J §=0

then (8.10) can be uritten as
n i m} =
{ao +8 X8 X, }-[y(:’c;-) - (=1) h}[bo +box, + cenab Xo =0
izggl 4 ea n+m+l

or in matrix form

[v {=(r = ne).[c]= 0 (8.11)

O
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where You ™= X, B =10 Civee Ntl
X =XS—I S=l,2, sesee ITH-l
rs r
F = diagonal iy(xr)}

vy
]

diagonal i(-l)r}
and ¢ = 0,1, ..., m+n+l

and [C] is the column vector [a Hoases B BB siies B x
[ Y n.g m

Appendix AB.3 sets out how the method seeks the solution to (8.11) itera-
tively., The method is summarized as follows.

Let [x](i), h(i), [p](i) be the values of the referencse points,
maximum error and coefficients respectively at some stage of the iteration.

Then the algorithm becomes 3

i (v = h(i)G)X]('.i)[v(iH ] - E),'leff)[c](i)
[y} -cr - neyd ) fe10+) | (o} ax] (1) JE+1)
plE+e) (1), gultiH)E (8.12)
(C)(i+l 5

where (v)p represents the element of maximum modulus (the pth) in the
vector [u]. In our case the coefficients are divided throughout by the
coefficient of maxiﬁum modulus so that they are all numerically less or
equal to one.

Equations (8.12) produce the new values of h and (c]. 1In order to
determine the next reference set, a new error curve must be computed and
the extrema found by interpolation.

Appendix AB8.4 gives a listing of a computer programme which has been
developed to exploit this method. Some examples of the use of this tech-
nique are now given.

Example 1
Consider an approximation to y = cos h-Ix in the range [1,3]. Since

y is two-valued in the range, the positive value will be taken.

Also dy _ ;i_ and ws see that when x = 1, y = 0 and gﬁ T
dx “{xT= 1
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This suggests that a rational approximation will be both difficult to
find and probably unsatisfactory in terms of the size of the error nsar
x=1. For this reason, the independent variable is chosen as

P.(z)

and we chooss a function 2

in the range LD,Jg].
Q,(z)

As the initial basis, we choose the points of extreme value of the Chebyshav
polynomial T, (u), suitably transposed into the range of approximation,

Table B.7 below shows the progress of the iteration in this case and

Figure 8.8 is a plot of the final error curve,.

Coefficients of Pa(2)

Iteration a, a, - a,
1 .0000 54 .990 013 .869 981 .045 886
2 .000 157 +995 673 737,218 047 334
3 .000 142 .993 291 + 781 573 047 410
4 .000 144 «993 266 .786 585 047 324
5 .000 144 .993 267 .786 532 .047 327
Coafficients of Q.(z) Max. Error
Iteration b, b, b, h x10"*
1 1.00 824 B39 . 360 433 « 5437
2 1.00 .698 469 + 327 B77 1.5654
] 1.00 733 833 «+334 183 1.4226
4 1.00 .7T38 249 «+ 335 321 1.4377
5 1.00 .738 202 e 330 312 1.4385
Points of Extrema of Error Curve
Iteration X, Xa Xy X Xg Xg Xq
1 0.0 . 286 716 1.411 2,171 | 2.551 2,828
2 0.0 .120 .500 .970 10205 2500 ] '2:828
3 SR .080 | .350 .920 1,610 | 2,430 | 2,828
4 0.0 .110 404 .901 1,640 | 2.447 2.828
5 0.0 .109 .407 .914 1.644 2.444 2.828

Approximation to cos h™'y by Rational Function 97
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Example 2
Let an approximation to y(x) = 0.92 cosh' 'x - cos x be of the form
P, (x)

Q,(x) ]
Here, n+m+2 = 6, so we choose the

f(x) = valid in the range [fl,l].
points at which T&(x) achieves
its extreme values as the initial basis.

Figure 8,9 shows that the error curve has seven extrema instead of
the expected six. However, we notice that since the original function is
even, the odd terms of the approximaticn have zero coefficients. In that
ﬁase, both P, (x)/0,(x) and P,(x)/Q,(x) would have the same error curve as
Pa(x)/Qa(x).

The following table summarizes the iteration process.

b

Coefficients of P (x) Max. Error
Iteration a, a, a, R x 10"
1 -.079. 833 6 0 .957 947 3 -.29 x 107"
2 -.079 927 6 0 +958 597 2 -.7244
3 -.079 916 8 0 .958 556 6 -,8319
4 | -.079 916 8 0 .958 557 0O -.8322
Coefficients of Q (x)
Iteration b, b, L
1 1.00 0 -.,001 385 3
2z 1.00 0 -.000 670 8
4 1.00 0 -,000 692 D
Points of Extrema of Error Curve
Iteration X Xa Xq Xn X g Xq X =
Initial | _, 600 |-.800 | -.300 | .300 |.sos | 1.000
values
1 |-1.000 |-.927 | -.567 | 0.000 |.567 .917 | 1.000
2 ,;l.OUU -.864 -.491 0.000 +491 .864 1.000
3 -1,000 -.863 -.502 0.000 .502 .B863 1.000
4 -1.000 -.863 -,499 0.000 .499 .B63 1,000

Approximation to 0.92 cosh’ x - cos x by Rational Function

Table 8.10
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It is interesting to compare this result with that obtained for the
L, approximation to the same function using an approximation which also
produces an error curve with six zeros (See Chapter VI). The rational
function approximation is seen to have a maximum error of approximately
0.83 x 10-», whereas the L, approximation has a maximum error of 0,29 x 10—5.
In addition, it can bé sean that the profiies of the two error curves are
quite different, the "equal oscillation" property being absent from the
L, error. Over a restricted range, say [-D.?, 0.?], the L, approximation
has a smaller maximum error than the rational minimax approximation.
Example 3

In this example, a polynomial approximation of the form P,(x) is

found to y(x) = 2% lug9(1+e-x) in the range [0,4].

2
Since six extrema might be expected, the initial reference was taken
as the points of extreme value of Tg(z) suitably scaled to the given
range. The process is tabulated in table 8,11 below and the final error

curve is plotted in figure B8,12. -

* Coefficients of P (x)

Iteration a, a, a, a, a, h x 10%
1 .003 404 1(-3.187 141 0|.924 685 3|-,119 227 0{.005 361 6 « 3404
2 .003 BS??Z -3.199 788 9|.923 791 B8({-.119 373 81.005 417 O « 3837
3 .003 B3% 3(-3.199 810 7].926 775 4|-.119 766 6|.005 418 3 3839
4 .003 839:3 -3,199 810 7}.926 775 4|-.119 766 6[.005 418 3 3839

Points of Extrema of the Error Curve

Iteration X X o s x, X ¢ X,
1 0.0 0.310 13155 2.365 3.508 4.000
2 0.0 0.322 1.169 2.345 3.488 4,000

{ IS . 0.322 1.169 2.344 3.488 4.000
4 0.0 0,322 1.169 2,344 3.488 4.000

Approximation to 2F1099§ 3(14+e" ) by Polynomial

Table 8.11
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* It may be noted that the coefficient: a, is here numerically greater
than one whereas it is stated that the programme scales all coefficients
_so that the maximum has a modulus equal to one. The reason for this is
that the programme calculated the approximation in the rational form
P(x) = a_ +ax+ax+ax+ax’ and the values
(2] ' Y a N

b

o
have been divided out to produce the more usual form,

Remarks on MMinimax Approximation

Minimax approximation displays two characteristicgthat make it attrac-
tive. Firstly, the method of solution yields an explicit figure for the
maximum error and secondly, because the error extrema arse distributed
throughout the range, the apprnximatinnjmay be used with equal confidence
anywhere within the range. 1Its disadvantage is the necessity for an itera-
tivﬁ method of solution to find the best fit.

Since an iterative method has to be employed in any case, it isla
natural extension to use the minimax criteria when finding a rational func-
tion %pproximatinn. Df the methods given for solving the non-linear problem,
that involving linearization by choosing h seems least attractive because
of the slowness of convergence. Stoer's method is the most complicated due
to the inherent difficulty in manipulating continued fractions in compar-
ison to polynomial forms. The method of Curtis and Osborne has worked well
in those cases where it has been applied., It is also shown that the linear
problem is solved by the same programme as the rational in which the degree
of the denominator is zero.

It is concluded that the last method is the best one to adopt for find-
ing.minimax rational or polynomial épproximations. If the final form is
desired as a continued fraction, then it may be a better approach to use

the programme provided by Stoer than to have to find a rational function

and then convert to continued fraction,
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CHAPTER IX

Cubic Spline Approximation

Introduction

The idea of spline approximation as a method of piecewise polynomial
approximation is described and the equations are developed for the case
when the polynomial is a cubic, 1In this case the approximation inter-
polates the given function at the joins or knots and smoothness of approx-
imation is imparted by the ability to ensure continuity of the approximation
and its first two derivatives at the knots. In this Chapter, a basic method
of cubic spline approximation is programmed and some examples given of
its application. : )

Concept of the Spline Approximation

Consider a set of n real values Xy in the range of approximation such
that BE X< X< senans (X €D (9.1)

An approximation is sought such that in each interval [xj_|, xJ]
the approximating function is a low-degree polynomial. To ensure smooth-
ness, the approximation and some of its derivatives are to be continuous
at the interval joiﬁs, or knots, Xx,, Xy ....,xn_l.

The simplest form of approximation is the polynomial of degree one,
which is the broken line joining consecutive knots. In this case, no
derivatives can be made continuous and the approximation is unsatisfactory.
Consequently, polynomials of satisfactory form will be either quadratic
or cubic.

In Appendix AS.1 it is demonstrated that splines of even degree dis=-
play practical difficulties and the lowest degree spline which gives a uss-
ful approach is that of degree three. In this case, it is possible to pres-

cribe that the first and second derivatives can be made continuous at the

internal knots.
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Defining Equations of Cubic Splines

The method described here follows Ahlberg, Nilson and Walsh [l]'
Let M, denote the value of the second derivative at the knot xj. Now the
second derivative of a cubic polynomial must be a linear function. In
addition, the sscond derivative is to be continucus at the internal knots,

Thus, we may write in [xj_l, le that if f(x) is the required cubic poly-

nomial
Plx) =m,_ (xg = %)y Oexy )
N el 5 ! where h, = X, - X
j j J J j-l

This equation can be integrated twice and the two constants of integration
svaluated from the fact that
fx = and f(x =
(e, m sl (x,) = v,
where y(x) is the given function.

3 3 ' a .

m X =X M, (x=x M. .=

i.8. f(x) = jnl( i ) i j( j-i) > A J‘)xj B )
' 6h ; Y jei 6 h

bhj j

2
+(y b m.h.) X=X
J —%-i —EEJ—' in [xj_‘,xj] (9.2)

Now the first derivatives of the splines must be continuous at the internal

knots. From (9.2), differentiating and putting x = x, we have

J
! h. h. Y.~ Y
tlx, =) = I} 1 AR

Equally, from the expression for f(x) in the interval [xj,xj+J , we have

: o h h y -y,
F(xj+) = - §+1 mj & é+t mj+|+ j;u j (9.3b)
jus

Hence, for continuity of the first derivative, (9.3a) and (9.3b) yield

Ei mj-l+ h, + h4+| mj 2 h'+l mj+|= Yijl' Yj - yj o yj—l
6 - 6 4] PR iy (9.4)

for 153208 seeein=1)
Equations (9.4) provide (n-2) conditions on the n unknowns, which are now
the values M, (j = 1,2 +... N). It is necessary, therefore, to impose two

J

end conditions, one at each of 'the end points x , and X e
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End Conditions

The two extra conditions which are applied at the ends of the range

can be chosen in a variety of ways., The simplest choice is

which implies that the end-points are simple points of interpolation.
This choice, although simple, tends to produce errors near the end points
which are larger than for other choices. Another method is to prescribe
the first derivative at the two end points. This may be useful in cases
where the derivative is prescribed by the problem.

The end condition which has been @adopted here is to put a restraint
on the error at the mid-points of the tqn neighbouring intervals at the
end of the range (Hayes Chapter 4 [9] ). The errors at the mid-points of
the extreme intervals are made equal to the errors at the mid-points of the

two intervals next in line.
i.e. [B('x&(xt-l "'xt) s[a(xj%(xt . xt‘“) for t = 2 and (n~1) (9.5)

Consideration is not given to the problem where the end-points of the
range of approximation are outside the two outer chosen knots X, and X0
In other words, it is assumed that the boundariss of the range are ths
first and last knot respectively.

_Error Estimate

If constant knot spacing is employed, Curtis and Powell [5] have
shown that an error estimate may be found in terms of the discontinuities
of the third derivatives at the knots. They obtain the inequality

max l'y(x) - F(x)ls_;_ max (lDtl,l Dt+J)+ 0(h®) (9.6)

$ XEXy 384

Xg

x .
3 ny s (n') g
where D, = h [f (x)] "t: =h'y " (x,) + 0(h)

A sign that the errors may be large compared with the estimate may
be given by the relative magnitude of the discontinuities in the third

derivative.
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From (9.2) we have

£"(x) zl%'[mj - qul in {XJ-I' xjj

[N

and the third derivative is easily calculated from the values of mj.
Comments

The method of cubic spline approximation provides a straight forward
approach to finding an approximation to a continuous function, exploiting
the advantage in accuracy to be gained by reducing the range over which
the function must provide a good fit., Its disadvantages lie mainly in
the facts that a considerable amount of information must be stored, that
is, the knots, the corresponding function values and the values of the
second derivatives at the knots. Also gquation (9,2) is rather cumbersoms

and rapid evaluation is not possible.

Computation of the Cubic Spline

The followirig assumptions are made
(a) The knot-spacing is constant throughout the range.
(b) The end points of the range were taken as the extreme knots.
(c) The end conditions are those of equation (9.5)

With (a), equatiors (9,4) can be written

- -r 1
J{Dh §h ‘th 0 0 sesenee ml F(Y-'i —2)!__‘4- yl)
1
0 &h §h ’ﬁh 0-...-0. m = —(y-2Y+y )
IJ h 4 1 : g (9.7)
[] 0 Z’h §h "’bh LR R I ;
3 t
- . . & 8 " + 8 = s = @ - li
1
4 = -
“h %h th I‘ﬂn h(yn Zyn_l * yn_l)
- v o J L o
The end conditions (c) are
y(x) = Plxa) = y(xa) = P(x,)
h? h*
but f(x.\') = -]-'a m.]"'i‘éma" %()‘ * Y;)
h? h
P = =i ie Ny 2y ey )
AR o e ST S e T I A (9.7a)
g 16 Y18 2 Y, = N, Y=y .
" 2 2
Similarly - 2 h

Yok = Vo3 Hy - A,
i i e

16 "2t 16 My



These two equations added to (9.7) determine completely the values of mj,
the second derivatives at the knots. :

The matrix of coefficients is tri-diagonal apart from the end condi-
tions. The system is solved by the method proposed by Ahlbert, Nilson
" and malsh[;I Chapter 2, based on successive elimination. The method may

be summarized as follows:

Given b, x, + € X2 = d,
E=X|+ b‘x‘+ C;XJ = dz
a;x, + byx, + c,;x, = dy
a X + b x + C X =d
n-1 " n=a n=1" N=\ n-1'n N1
ax +bx =d
n n- n n
we form p,_=a.q _ + b, (qo = 0)
qk = ‘ck/F’k
v = (d = a4 )p (ug = 0)

fDr k = l, sesssssll
The required solution is then

xk = quk+l+ Uk k = 1’2’ ceseny (n“l)

and Xne X 3 seeesyXy can be successively evaluated.

n=1

Two examples of the use of splines are now given.

Example 1 —x"
y(x) = %W in the range [D,Z].

The choice of interval between the knots was chosen initially as 0.5. The
sacond derivatives calculated at the knots are used to find error esti-
mates using (9.6). The actual maximum error in each interval was found by
using quadratic interpolation betwsen the three points spanning the extremum.

z
1.8, it fp =i . gn&Sfo + 33 s ¥

then f g 7
max 0

b (‘”{*“E)
8(s" f,)
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The comparison of the estimated and computed results is seen in Table 9,la.
The process was repeated for step lengths of 0.25 and 0.125 and the corres-
ponding results are in Table 9,1b and Table 9.1lc.

It can be sesen that the error estimate must, in certain instances, bhe
treated with some caution. An indication that the estimate is too optimis-
tic may be given by the magnitude of the discontinuities in the third der-

ivative. If these are large, then the estimate is likely to prove inadequate.

h = 8,5
(knots) m £ (x) lfm(xili Ercor Estimate Max. Error
X300 s
0.0 ~5,6544
12,651 6.80
0.5 0,6710 -11.034 3.60
1.616 5.0
1.0 1.4792 - 2,781 0,91
-1.165 1.8
1.5 0.3145 1.199 0,39
0.034 1.8
2,0 0.2087
Table 9.la
h = 0,25
wlinots ) . fﬂ(x) ﬁ“(x)]: Erroi iggimata max; EEEEF
0.00 ~4,6040
8.772 4,64
0.25 -2.4113 . 2.088 0.85
10.860 1,35
0.50 0,3035 -6.236 2.54
4,624 3.92
0,75 1,4596 -5,212 2,12
-0,588 0.887
1,00 ° 1.3135 -1.340 0.55
-1.928 8,171
1.25 0.8312 0.316 0,13
-1.612 D.339
1.50 0.4281 0.652 0,27
~0,960 0.230
1,75 0.1878 0.508 0.21
, -0.452 0.237
2.00 0.0753

Table 9.1b
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h = 0,125

ihnots) i Fm(x) Ifm(x)Jj Echi i;}%mﬂte Maz iEEQL
0.0 ~-4,101
3.97 2.55
0,125 -3,605 5.42 2.86
9.39 2,52
0.25 -2.425 1,99 1.01
11.38 0.627
0,375 -1,002 -1.71 0.87
9.67 1.65
0.50 0.210 -3.34 1.69
6.33 1.94
0.625 1.003 -3.37 1.71
2.96 1.56
0.75 1,373 -2.52 1.28
0.44 ¥ 1.004
0,875 1.428 0.62 0.316
1.06 0,511
1,00 1.295 0.70 0.356
1.76 0.169
1:125 1.075 0.14 0.071
1.90 0,057
1.25 0,837 -0,16 0,082
1.74 0.142
1,375 0.619 ' -0,30 0,153
1.44 0.171
1,50 0.439 -0.32 0,163
1,12 0,164
1,625 0.299 -0.30 0,153
0.82 0.141
1,75 0.196 -0,25 0.127
0.57 0,103
1.875 0.125 ~-0,19 0,097
0,38 0,104
J 2,00 0.077

Table 9,1c

Example 2

Consider a spline function approximation to

y(x) = ‘cosh™ x in the range [1,3) with knots

equally spaced at intervals of 0.2, (The principal value of the function
is considered.)

This is expected to prove a difficult problem, for when x = 1w =0
and yst all the derivatives are infinitely large. Apart from the problem
of finding a cubic polynomial with a very large first derivative, the

axpression for D, in (9.6), which involves the value of ths fourth derivative,

t
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suggests that a reasonable error estimate will not be available. Table (9.2)
shows the comparison between the error estimate and the actual maximum errors
found by interpolation between points on the error curve calculated at inter-

vals of 0.04,

ne= 0.2
si(knots) m ._ftx) [fm(xi]: Erru: ig%%mata Ma:.lgggor
1.0 ~-50,249
245,720 . 5991
S -1.104 -250,055 520 L
-4,335 i 439,1
1.4 -1,991 11,115 23.0
6.780 120.0
1.6 -0.635 ~6.455 1.35
0.325 30,3
1.8 -0,570 -0.680 1,42
1.005 9.03
2.0 -0.369 -0.625 1.30
0.380 1,95
2,2 -0.293 -0.060 0.125
0.320 0.802
2.4 -0.,229 -0.110 0.229
0.210 0.088
2,6 -0.187 . =0.055 0.110
0.155 0,114
2,8 -0.156 -0,040 0.083
_ 0.115 0.118
3.0 -0.133

Table 9.2

One point which is'clearly illustrated in this particular example is
the ability of spline functions to 'localize' the difficulties. Although
the figures confirm what was th ought about this particular function, never-
theless, in the range [2.2, 3.0], thz approximation can be said to be quite
reasonable. This means that the large errors experienced in-the neigh-
bourhood of x = 1.0, have been rapidly damped in moving away from the left-
hand end of the range. This feature, which appears general in spline

approximations, is one which makes spline functions an attractive approach.
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CHAPTER X

GENERAL DISCUSSION

Introduction

Some attempt is ﬁade to summarize the points concerning the various
methods mentioned and to compare their performance. It would be conven-
ient if a direct answer could be given to the question that having been
given a specific function, how would an approximation be found? A general
approach is suggested but it is pointed out that several factors might
affect what method is adopted.

Considerations Concerning Various mathcéa

Some of the features of the various methods described will bu out-
lined. It seems natural to commence with interpolation forms. These are
tremendously important in numerical analysis because of their use in inte-
gration and differentiation formulaa One reason why their popularity has
declined is that the difference tables often associated with them do not
fit well into autﬁmatic machines. The Lagrange formula, which avoids dif-
ference tables is not a convenient expression to handle in its general form,
Making use of equally-spaced nodes can improve this situation, but we have
seen that it is often daéirable to use points which are not equally-spaced
for the best results. An alternative is to define the interpolating poly-
nomial as a Chebyshev series, which results in about the same amount of
labour as finding the coefficients of the least-squares approximation by
summation over a discrete point set. I

There is little doubt that interpolation form will continue to be used,
particularly to derive integration formula , but for function eualuétion
it is possible to find functions of the same degree with rather better

error curves.
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The Hermite formula, in which the values of the function derivative
are introduced into the approximation has not been demonstrated in an exam-
ple. It is reasonable to suppose that this is a useful form in cases where
it is important that the approximation reproduces the derivative of the
function at points within the range.

Fourier series wére discussed in Chapéer Il din relatiqn to the least-
squares approximation. This method of obtaining the approximation as a
series of trigonometric terms is well known and widely applied in practical
problems of curve-fitting. Unless the function under consideration is peri-
odic in nature, a trigonometric series is likely to show slow convergence.
For this reason, and the fact that trigonometric sums may not be rapidly
evaluated, a Fourier series is best ressrved for ihe approximation of peri-
odic functions.

When considering approximations derivad from series, it is worth rem-
embering that a truncated Taylor series gives a small error if the range
of fit is kept small. However, the rapid increase of the error towards %he
ends of the range has been noted. Also, because a series is formally con-
vergent, does not guar%ntee its suitability for computation; for example con-
sider the evaluation of e* from its series expansion when x = 10. If a
function has an asymptotic expansion, this can often be used prnfitably
phen the range of apprnximation is semi-infinite. It must be borne in mind
that the truncation error cannot be made arbitrarily small so that normally
a lower limit has to be set for the range over which the asymptotic series
may be employed.

Padé approximants, being derived from series expansions have error dis-
tributions that look very like those of the series expansion. Being rational
forms they can be expressed as continuted fractions for computational use.
Modification of the Pade form to achieve a more equal distribution of the
error is likely to work satisfactorily only if the range of approximation

is kept reasonably small,
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0f all polynomial forms, the one most likely to have the best prac-
tical use is an expansion in a series of Chebyshev polynomials. Because
of the equal-oécillation form of these pnl?numials, Chebyshev series often
possess truncation error curves which are very close to the minimum-
maximum error condition. In addition, the coefficients of such series
often decrease rapidly in magnitude, thus &aking it possible to truncate
the series after only a few terms without incurring unreasonable error.

We now look at approximations in the three Holder norms, L,, L,and L.
As was seen in Chapter VI, the L, approximation can often be found by a
method of interpolation and that the truncation error is uften‘nearly the
form of a Chebyshev polynomial of the second kind. Now the interpolation
method will not always provide the besth, approx.mation and in addition
we expect the error curve to show the error increasing towards tha ends
of the range. For these reasons it is not considered that the L, norm is
likely to be a normal choice in approximation problems. The one exception
(Rice [13] ) might be to provide -an approximation to be used as an inte-
grand, since the L, norm minimisees the integral of the error modulus.

The L, norm is historically the earliest practical measure of approx-
imation and retains its status even with the availability of massive com-
puting power. The reason for this is that if the approximation is expres-
sed as a series of orthoéonal functions, the problem may be solved by a
fast, direct and numerically stable method. Furthermore, if these ortho-
gonal functions are chosen as Chebyshev polynomials, we expect the error
curve to behave, in many cases, very like a minimax error curve. Add to
this the eass of manipulation of polynomials and it would appaaf that any
approximation problem might be solved satisfactorily by this method. The
one drawback is that polynomials are essentially smooth functions aﬁd might
not deal with problems where the original function has large derivatives

or which may have regions of large curvature.

114



One way to deal with such problems would be to "stretch" the curve
out by some simple transformation of the independent variable. The res-
ultant improvement in the accuracy of a simple polynomial may be such as
to outweight the extra.burdan of carrying out the transformation. Another
approach is to alopt a rational function as an approximation. These func-
tions lead to essentially non-linear problems for the derivation of the
unknown parameters. The best approach with rational functions is to adopt
the minimax .norm and to determine the coefficients iteratively. Clearly,
fha equal-error distribution of the minimax apbruximaticn is an attractive
property and would appear the best measure to adopt. There is no need, of
course, toalopt a rational form when seeking a minimax approximation; poly-
mnomials being equally well suited to this type of solution. Indeed they
may not be subject to the instability sometimes : encountered when trying -
to find a rational approximatiun.- However, empirical sevidence demonstrates
that for the same number of coefficients, a rational form will give a smal-
ler maximum error than the corresponding polynomial. In order to exploit
this feature fully'rational approximations are usually chosen in which the
degrees of numerator and denominator are either equal or differ by one.
Another point about minimax approximation is that the method of evaluating
the coefficients also gives a specific figure for the maximum error. Lastly,
concerning a rational function; when this is expressed as a continued frac-
tion, it probably gives the most economical form for evaluation purposes.

On the contrary, considerable labour is inveolved in finding minimax
approximations because of the iterative method involved. In particular,
rational functions may give problems with stability, either through being
unable to find sufficiently close starting values or through difficulties
in locating the extrema of the error curve.

Spline function approximation is different again from the approach

using the Holder norms. Clearly its closest affinity is with interpolation
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forms. For the purpose of function evaluation, the main problem is that
the piecewise nature of the spline function is not a fast computational
form. Satisfactory eror estimates may not be available, although with an
automatic machine it is not unreasonable to compute and print out the error
curve using a fairly close mesh of points. End conditions present some-
thing of a problem. There is a general tendency with spline functions
for the error to increase in magnitude towards the end of the range. Never-
theless, spline function approximations can be found directly by a con-
venient numerical process and their ability to” "localize" perturbations
-produced by undesirable features is an attractive feature. This feature
possibly makes them particularly suited to problems of curve fitting.
Examples of approximations found by some of the methods described are
now given.
Example 1
In Chapter VII approximations were found to the function

X

E¢§t:—z +x3:£F:T-I in the range [—1,1]

Herce-a spline approximation is found using nine equally-spaced knots. In

table 10.1, the details of the error éra presented. It is interesting to
note that with this particular function, the error is greatest in the middle
of the range of approximation, which is contrary to expectation. It is
noticeable that the discontinuities in the third derivative follow this

trend and the error estimate, using the pxpression of Chapter IX is reliable.
Error Est. Actual

+
x m fr*} (x10°)  Error(x 10%)
- laDD -4?o88
5.56
- .75 -35.85 - 1,32 5.36
5.47
- .50 -24,15 - 4,40 17.90
27.64
- .25 -13.55 -10,94 44,40
64.11
0.00 - 5.68 -14,93 60.60
64,11
25 - 1,55 -10,92 44,40
27.64
.50 - Dn145 - 4.45 18.10
: 5.47
o785 . = D6 =.2325 5.10
5.56
1,00 - 0.123
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Compared with the Chebyshev series approximation of degree nine, whose
error curve has ten zeros, the maximum error is 0.00064 compared with

0.00015 for the seriss.

Example 2
Consider cosh x in the rangs [—l,l]

sinh x + 2
First, a Chebyshev series of degree nine, the coafficients determined by
summation over a set of discrete points, cdosen as an orthogonal basis
(see Chapter VII )
The approximation is

f, (x) = 0.787 858 - 0.542 979 T,(x) + 0.330 826 T, (x) - 0.125 213 T, (x)
+0.049 993 T,(x) - 0.020 329 T.(x) + 0,008 163 T, (x)
-0.003 283 T,(x) + 0.001 322 T,(x) -~ 0.000 532 Tq(x)

The error curve for f, (x) is plotted in figure 10.2. To show the advantage
to be gained in using a rational function in terms of the magnitude of the
maximum error, we can compare this with the approximation

f, (x) = 0,500 005 - 0,074 222x + 0.200 353x* - 0,322 750x°
1,000 000 + 0,351 506x - 0.173 361x* + 0,043 858%

The error curve for f,(x) is plotted in figure 10.3 and we can see that
although f, (x) has fewer independent coefficients, the maximum error is
cnnaidefably less. The coefficients in fx(x) were determined by the itera-
tive programme of Chapter VIII, which gave the maximum error h = 0.576 X 10-5
Example 3

As approximations to xe-x- lags(l - e-Zx) in the range [1,3] we find
a-Chebysheu series and the L, approximation, both of degree 5. Using the
mathod of Chapter VI, the L, fit is found in terms of the Chebyshev poly-
nomials of the second kind.

i.e. f,(z) =0.309 999 6 - 0.178 046 3 T,(z) + 0.021 603 3 T,(2)
-0.002 309 7 T,(z) + 0,000 855 9 T, (z) - 0.000 340 9 T,(z)

where z = X =2 and -1l¢ z<1l
f,(z) = 8.299 197 9 - 0,087 868 2 U,(z) + 0.010 373 5 U,(z)

- 0.000 983 7 Us(z) + 0,000 373 8 Uq(z) - 0.000 144 8 U.(z)
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The error curves for these two expressions are plotted in figure 10.4.
la notice that there are six zeros on the error curve and that, in this
case, f,(z) is the best L, approximation of degree five. As might be
expected, we notice that the L, fit gives errors of larger magnituds near
the ends of the range and that the extremes are greater than for the ord-
inary Chebyshev seriss,

Example 4
In the range [0,2] , we now consider the function defined by

x'y + (1-y)'y = 1.0
The approximation is found in this case in three different forms. First,
the Chebyshev seriss of degree eight was determined. Using this as the
starting point, the minimax polynomial approximation of degree eight was
found. Finally, to illustrate that the rational function with the same
number of parameters gives a smaller maximum error, the rational approx-
imation P, (x)/Q, (x) was determined.

i.e. f,(z) = 0.992 482 - 0.896 245 T, (z) - 0.000 133,T (z) +0.162 341 T iz}
-0,005 810 T,(z) - 0,049 468 T.(z) - 0.002 258 T, (2)

+0,020 943 T, (z) + 0.002 920 T,(z) Shdra T hos

f, (x) = 0.028 738"'[0.050 016 + 0.023 032x - 0.222 194x™ + 0.675 660X
- 1.000 000x“ + 0.677 143x° - 0.174 351% - 0.008 524x”
+ 0,007 715x'

f, (x) = (-0.419 969 + 1,000 000x - 0.894 927x* + 0,352 376X

-0.054 960x" )/(-0.239 461 + 0.570 135x - 0,571 611x™
+0.308 123x - 0.084 683x™)

The three error curves are compared in figure 10.5. The Chebyshev series
is again seen to be close to the minimax error of the same degree, but the
superiority of the rational function is clearly illustrated.

One final point, the rational function f, (x) can be represented by a

terminating continued fraction form
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f3(x) = 0,649 010 - 1.799 66 1,926 69 0,089 059
X - 0,200 596 + x = 1,274 93 + x = 1,094 418 +

0,117 442

In this form, the approximation can be evaluated with four divisions and
no multiplications.
Example 5

Here we compare the approximations to

o
Ez‘a-

ey in the range [0,4]

by a Chebyshev series of degree eight and interpolation through the zeros
of T,(U), scaled to the given range. In figure 10,6 it can be seen that
the two approximations give very nearly the same error distribution. How=
ever, the Lagrangian interpolation form, which was used by the computer
programme to evaluate the figures plotted in figure 10.6, may not be con-
sidered an efficient computational form. One alternative is to express

the interpolating function as a continued fraction, as in the manner of

Chapter IV. The two approximations then are

f,(z) = 1.360 788 6 + 0.347 768 57 T,(z) - 0.017 788 06 T,(z)
- 0,004 504 32 T,(z) + 0.000 353 49 T,(z) + 0.000 084 75 T.(z)
- 0,000 006 87 T,(z) - 0,000 001 76 T,(z) + 0.000 000 13 T, (z)
where z = 3(x=2)
f,(x) = 1.005 702 5 + x - 0,030 384 4 x - 0,267 949 2 x~-0.714 424 8
5.288 9142 + -10,071 2548+ =-N.080 126 9 +
x - 1,315 959 6 x - 2,000 000 X - 2.684 040 4
9.667 879 3 + 14,742 968 0 + -1,951 823 6 +

X = G285 675 2 x - 3,732 050 8
-1,788 073 8 + 4.309 930 6

It must be pointed out that the coefficients in fl(x) were derived from: a
reciprocal difference tabls computed using a machine with a nine-digit
quotient register. The accumulated rounding e€rror is sufficient to make
the fraction unsatisfactory for the computation of values accurate to the

magnitude given in figure 10.6.
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General Approach to Function Approximation

When seeking an approximation, it is necessary to bear three things
in mind; the use to which the approximation is to be put, the range of
fit required and the aécuracy that is demanded. If the approximation is to
be the basis of a procedure that will be used inhumerable times, it is
worthwhile trying to find a fast computational form. On the other hand, if
the function may be differentiated or integrated it would not be very help-
ful for it to be expressed say, as a continued fraction. UWhen considering
fha degree of accuracy required, clearly time spent computing terms which
are of no significance to the answer is wasted. However, when preparing
a standard subroutine, it is often necessary to consider the most string-
ent demand and programme accordingly. The best method is to have several
routinas of varying accuracy and expect the user to choose the most
appropriate [8].

WUhen considering the type of approximation, the range of fit can be
influential. Over a small range, a Taylor series or Pade approximant may
prove more than adequate. However, since with these forms the error shows
rapid increase towards the ends of the range, then for a moderately large
range a method must-hs adopted which produces a more equal distribution of
the error. For large ranges, it is essential to divide it up into two or
more parts and adopt different approximations in the separate sections.

The use of asymptotic series for regions in which the argument is large is
an example of this. Another technique is to reduce the range over which
the basic approximation must apply. For periodic functions, the range
obviously need never exceed one complete cycle. It is possible to make
use of the fact that the computer will work in floating point arithmetic
to base 2, so that multiplication or division by 2 implies a changs only

in the integer exponent.

8.0, ﬁ: = 2k__>_(_

;,22k
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and by using shifts involving changes in the exponent, the range may

be reduced to +sx ¢l
X = n+f
alsa & = 2 10992 = 2 where n is integer,
2", 2" 0gP<l

and e* can be computed by one division, a shift in the exponent. and' a
function to find 2?_
Equally 1093 X 2 log92. log, x
then if x = 2".f  where %&f<l
lugzx = n + log, f and the range of approximation is
reduced to [%,1] at the expehse of one multiplication and a shift of exponent.

Finally, is it possible to present a general method of approach to the
problem of finding an approximatioﬁ? Assuming that the function can be sval-
vated for any given argument, the process might proceed as follows.

Find the series of Chebyshev polynomials that gives the required degree
of accuracy. If the error curve is to be levelled, this can be used as a
starting point to find the minimax polynomial approximation,

The function that has been derived at this point may have rather a large
number of terms and the next step could be taken to adopt a rational func-
tion form to reduce the number of coefficients involved for the same magni-
tude of error. However, the use to which the approximation is to be put
may dictate that we prefer a few extra terms on the Chebyshev series to an
awkward continued fraction.

As a final exercise, if no satisfaction has been found using the above
mathods, then subdivision of the range is appropriate. In this case, it is
likely that different forms of approximation may be used in the different
segments that make up the complete rangs.

Clearly, having proposed this approach it is possible to consider a

host of reservations which .are dependent on any special features that the
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original function might posses. Howeuar, some of these points should now
have been mentioned and no attempt is made to réiterata them. The last
words are given to Prof. P. J. Davis who said at Centerbury in 1967
(Hayes p. 162 [9])

"The comparison of numerical methods is like a comparison of cars.
You must know what is in your pocket-book, how large your family is, what
they like to do at weekends etc. Comparisons are hard to make, frequently

hard to interpret but they ought to be undertaken."
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Appendix Al

A.l, Proof of the Weierstrass Theorem

This proof is that given by Rice [13] and follows that of Lebesgus.
Theorem: If y(x) is continuous in Eh]l then there exists a polynomial
Pn(y,x) such that for any £>0

an(y,x) - y(x) I<E for 0$x$1
Proof: There is no loss of generality in choosing the range ﬁ];q since
this can always be achieved by a suitable transformation,
| The method involves two steps. In the first, it is established that
y(x) can be approximated arbitrarily closely by a broken line b(x) and in
the second that b(x) itself can be approximated by a polynomial.

For any £, there exists §>0, such that if |x,- x|< §

then 'y(xz) - y(xl)l <3¢ (3:1.1)
Now choose a set of points x,, x, .... X, , equally spaced in [D,I], so

that \xj - xj_ll‘( §

m
Define the broken line b(x) = by + v b, ﬁ(xk,x) (2:1:2)
k=1
where ﬁ(xk,x) =X =X + Ix - xkl
The coefficients by in (1.1.2) can be chosen so that
.b(xk) = y(xk) K X awendly

Then, it follows that if (1.1.1) holds,
ly(x) - b(x)] < 3¢ in o0gxg¢2 (2,1.3)
If we now show that each term bkﬁ(xk,x) in (1,1.2) can be approximated to
within g/&m, then the result will follow.
For Jxl g 1 Ixles 1< (1=>)
1 1.3

3
or writing u=(1 - x*) Ix] o/l aa s 1w $u - U™ = = U v
2*2! 2° 31

where the right-hand side is uniformly convergent in the region under con-
sideration. Hence, thers are polynomials in u (or 1 - x*) which approx-

imate to | x| arbitrarily closely.
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Hence it is possible to approximate to Ix - xk, arbitrarily closely

in [0,1]
“. There exists polynomials Pk(x) such that
P, (x) - b, dx, ) < &2m
s0 |b(f,x) - g? Pk(x)' < &

S lyx) = b(eyx) + b(F,x) - k:Zl pk(x)k €/

l > b (x)|< €
or  lyeo - Sels

Which completes the proof.

Al.2 Relationship between Lp and Minimax Approximations

We-wish to show that

lim Lp[y(x) - F(xﬂ = maxl y(x) - f(t)l
p 3%

Let the approximation be of the form f(x) = igfi(x) and without loas

i=1
of generality we can choose the range of fit as [U,il

Then we shall denote the set of coefficients by [Ap] such that

f(Ap,x) is the best approximation in the sense of the norm

/
[y(x) - P(Ap.x) [fly(x) - r(np,x)l dx] i
being a minimum.

Assume that as p-«, we can choose a subset of [ﬁé] to form a sequence

such that

ol - (a,)

Also, let f(At,x) be the best minimax approximation to y(x) in [0,1]

writing M, =[B:a§] ly(x) - f(Agyx) |

Mg = g?;]IY(X) - f(Ag,x) |

we require to prove that Mg = Mt

Assume contrariwise that My> My and choose &€ = M= Mt >
Mg

For some interval I in [0,1], ly(x) - P(Ag,x) > Mg + &mt

2a

(1,2.1)

(1,2.2)



Ibut mo = n’lt(l+€)

= 2€
&m) o+ dmo = m (14%7)

in' I ly(x) - f‘(no,x)l > mtfl 2%

) (1,2.3)

Now for some Po? when p),po

le(a,,x) - f(np,x)l cEm

3
Thus for p‘.}po in the interval I

ly(x) = fp,x)l + 17(8p,x) = (A ) 2ly(x) - f(Ap,x) + £(Ap,x) - £(A_,x)I

hence  |ly(x) - f(Ap,x)l vEm mt(1+_§_a)
3
J

or |ly(x) - £(Ap,x)[» m (1+€) (1,2.4)
3

If m is the length of the interval I

] - |J 1
[/mx) -t 0] a[/ly(x) - el ax] "
e 1

; > m (1+€E)m (1,2.5)
3
Ye
But m"—»1, as p»«©, and since

1 e e
[/ly(x) - f(At,x)] dx] g m (1,2.8)
o
(1,2.5) and (1,2.6) imply that f(Ap,x) cannot be the best Lp approximation

hence ma and M, must be equal.

t
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Appendix A2

A2.1 Properties of Chebyshev Polynomials of the First Kind

Recurrence of Relation

If Tn(x) = cos(n cns“'x)
writing cosf= x

then Tn(cus&’) = cos n&

clearly Tn(x) =1 and T,(x) = x
but cos nY cos mf= %|cos(n+m)O + cus(n-m)@]
or T,00 To() 5 31 0 + T ((x)]

setting m = 1 and noting that T, (x) = X and rearranging

Th+’(x) - 2% Tn(x) + Tn_'(x) =0 when ny 0

Integral of Tn(x)

Using the identity cos m@ sinf = %[;in(m+1)9 B sin(m-l)ﬁ]

and integrating with respect to @

jcos mo sier de = irbcos(md)g 5 cas(m-1)9] m%l

m+1l m=1

or putting x = cos @

T (x) T (x)
sz = ot

and JfTo(x) dx T,(x)'

/‘Tl (x) dx %[Tl (x) + Tu(x)]

Multiplication of Powers of x

4

Start with the trigonometric identity

2k<n
cosne = _1 % ancoa(n-Zk) e
2”"' kz0

Putting x = cos8 yields

S,
X = _1 Cor X
o S k' (n-2k)
2
. n k<n i
o w X Tm(x) = nfl CkT(n-2k)(x) Tm(x)
2 k=0

4a

(2,1.1)

(2,1.2)

(2,1.3)

(2,1.4)



Then using (2,1.2)

T(na2k ) (X)T(x) = 5[T(m+n-2k)(x) X T(m-n+2k) (xi]

2k&n
f% Zf “ck[r(m+n_2k)(x) + T(m_n+2k)(x)}
2 k=0

anm(x)

WUriting n - j = k, then the first term on the right-hand side becomes
2k€n

Z_ "ot (x) = g
ook (men-2k) & .

n

an cos(m+n-2k) @

o \MA

nCnﬁjcos(m-n+2j)9

N
.
Vv
3

n n n
L‘.J T\(an+2j)\(x) since Cn-j Z CJ

b

2

L

2n

Hence the right-hand side represents summation over 0O to n

n
i.e. anm(x) =13 "ck T\ (mens2ic)] %) (2,1.5)
2" k=0

Zeros of T (x)

From (2,1.1), the zeros of Tn(x) are the zeros of cos nf in EDu1ﬁj
f.8. nb -.-(-‘-' L atc.)

or X, = cns(zk;I o™ K =1y 25 ssven: N (2,1.6)

' There are n roots in [—1,1] hence all the roots of Tn(x) are real and lie
4in [rl,l]

Orthogonality

For the orthogonality property, we have

! T
/ Tn(x) Tm(x) dx = /cos n® cos m@ df = 0 ifm#n
-l 1 e x* [

' 2
Tn (x) dx _

ST & RS

!
Ty (x) o< W n£0 (2,1.7)

J1 = X

5a



The first few Chebyshev polynomials Tn(x) are

TO(X) =1

To(x) = x

T, (x) = 2x* =1
Tg(x) = 4x° = 3x

We notice that they are alternately odd and even functions and that they
are not periodic in the argument x.

Orthogonality over Discrete Point Sets

The Chebyshev polynomials are orthogonal over certain discrete point

sets when summation is used instead of integration.

N ]
i.e. Z cosm@, cos nd, =0 for©®, = kT if mZAn Kk =0,1 co0uN
k k K
k=0 5 N ;
u
and % cos’nf, = 3N ifn#0Oor N
k
k=0
= N if n=0or N

The double prime indicates that the first and last terms of the summa-
tion are halved.

Then an approximation to y(x) has the form

- m
r.(x) = Eu' a T (x) (2,1.8)
N e ;
where a_ = -';1 Em y(x, )T (x,) x, = cos(-%'“) (2,1.9)

and k = 041y ceseseN
The single :prime indicates that the first term is halved. The degree of
the approximation m is less than N, otherwise an interpolation formula
results.

Equally we find that

m s
fm(x) = 2. brTr(x) is an approximation to y(x) (2,1.10)
r=0
h 2 T ylx)T.(x) (2,1.11)
where a_ = y(x X s1e
AR vy v T AL
. 2k+1\ W
and the discrete points X, = cos(~+l ) > k = 0,1, seses N



A2.2 Properties of Chebyshev Polynomials of the Second Kind

Orthogonality
7
From d/sin mfsin nfd® = 0 ifm#Zn
a
. _s8in mg 3
writing Um_l(g) ol where x = cos® (2,2.1)
1
‘ —
then U/‘Um_l(x) Un_l(x) l-x* dx = 0 ?f m#n

-
' L L N T
Also Jﬁﬁ - x*U_ (x) dx = d/;in mf d6 = =
A m-} # 2
and the functions Un(x) are seen to be orthogonal over Edqll with respect
to a weight function /1-x*

Recurrence Relation

Starting with the identity

sin(n+1)8 sin(n-1)6__ 2 sin nB .cos®

gineé ' e#ine ° sin @
we have
Un(x) + Un_gx) = 2x Un_£x)
or Un(x) = 2x Un_l(x) - Un-a(x) (2:2.%:)

Since from (2,2.1), we have that
'Uo(x)= 1 and U,(x) = 2x
it follows from (2,2.2) that Un(x) is a polynomial of degree n in x

Integral of Uuii)

Now Tn(x) = cos(n cos x)
T;(x) _n sin(n cos 'x) _Dnsin ng@ $F % = Gond
/1= x* sin ©
or T;(x) B nUn_l(x)
and  [U_ (x)dx=T, (x) if n32 - (2,2:3)
n

Relation between Tn(x) and Qn(i)

Since sin(h+1)8 ~ sin(n=1)8 = 2 cos nf sin®
then Singggigo - sini:;igs = 2 cos nd
hence Un(x) - Un_z(x) = 2Tn(x) if n>1 (2,2.4)
with U,(x) = 2T, (x)
Up(x) = T (x) .,



Appendix A3.

(ii)

A3.1 Recurrence Relations for Continued Fractions
An
(i) Let the valus of the continued fraction be e when it is truncatad
*n th .
after the term + & (termed the n~ convergent)
n
Then A and B can be generated by the recurrence
YJ-{-' = bj+'| Yj + a.j-l-l Y‘j—-l f'OI‘ J = U’l ......(I"’I—l)
[3siel)
with ﬂ_‘ = Ba = 1y AD = bo, B-—I =0
P Yeiey aa an
Proof If f(x) = o i S50 e g b, (3.1:2)
Then 22 " EE E¢ E b'bo + al.l o) ha f_i'
B0 1 B, byl +0 b,
Let (3.1.1) be true for n, then
Al"l'l‘l i bO +E'l essesaa +an
E]r'|+l B+ h  + an+|
n
b
n+1
= . anan
b+ @ " s 88080
a b« b b + a
n N+t n+l
An+| i (bn bn+| n+|)An-\+ % bn+| An-L
B8 (b.b +a
n+1 n N+l n+ )B_ + a
- n N+l nN-2
e bn+1(bn i % anAnuz) Y fns tneg
b (b B +a B )
N+ ' N N=) n n= N+l N=\
=ib A+
N+ n N+l N=|
b +

B a 8
n+#t N N+ N=1
Hence, by induction,(3.1.1) is true for all j.

The fraction (3,3.2) can also be evalwted by calculating the difference

between one convergent and the next

AL B BiMiai

Using the identity Dk

b A 4+ =
(B ey +ay My 08 = (B8 | + 8,8, 2 A,

=8 (B A, = Ay Broo)

ng oty o W (3:1.3}



continuing in this way Dj = (—l)J_'aJaj_‘.......a,

A A B A - BA

Now U R S S n n-i
B B = B B
n n=-1 n n-i
D
. n
B_ B
n=-'n
hence fﬂ = =1 (-anDn- ) (3.1.4)
B B 8 .8
n n=1| n=1n

At each stage Dn_and Bn peed to be evaluated.
(iii) The evaluation of (3.1.2) can also be expressed as the summation

of a series

=l
D (-l)n 8,8, 00000
n |2 n
fI‘l‘Jtn (3.14.) fn ‘e fn-|= B B - B B
N=1 N n=1 n
define = B8 . rar 152 A = % (3.1.5)
P = S
j \
then fn-fn-u'_' BPs =220 Pp
and 1+ P = Bj - a]Bj-l = biaj-l
B B
J J
= b_j
B
b, +a -2
3ty g
J=1
By
or 14+ = for j>2 (3.1.6)
LB v Tiacd
a bqb:.l.,
and = 1 +p, = =i
J F" 2 b,b,+ a,
but fn = f’o + (ft" fo) + (Q- fa) sesevess + (fn o fn_’)
=bo+‘o'+ﬁf’;+ o-.o.-oonoa*ﬁ,ﬂ.‘. caac/)n
n
or fn = bCI +izi u; where u; = ([P srveeves Py

(3.1.7)
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A3.2 The equivalence Transformation for Centinued Fractions

@3Dntinuad fraction is unchanged if some partial numberator aj and
partial denominator bj’ along with the immediately succeeding partial num-
erator are multiplied by the same non-zero constant.

Proof

Let aj’bj become kaj,kb s then since ] 1 is unaffected

j 1
A
L Ko vkah Ay
j kaBJ vka BT
j+! (kb AJ + kajAj ) + aj+.J_, Aj+| f a, becomes ka
0 PR Y R R S i i e
j+l — j Jj=a J+v =1 J

For the summation form

kbj lbj
1+ p! = - = 1+
Aj kb, b+ ka (1 o) izt
l4p} = kb.b.., = 1 +p, £ iy becomes ka
Jj# 3 JHl. = "in J+i
kb b ¥, T15)

Similarly, for the backward recurrence form, there will be a sub-
calculatiaon

P T

T where q is the value of the tail,
b.+ _j+
J
q
(g aj, bj and aj+| are all multiplied by k, the value of this quotient will

remain unaltered.

A3.3 The Convergence of Certain Continued Fractions

Certain criteria can be astablished for continued fractions evaluted

in the form (3.1.7)

(i) Consider F = b, + 3'_ _a__'f where all a,sb, >0
b|+ b’; see0np0e

For the series in (3.1.7) to converge, the ratio test gives

lim

n—Bcp]Un_‘( n..;.o-o

o <1

But since all the coefficients are positive

(P will be negative although 1 +ﬁiis positive,
10:



Now ljﬂn = n=t n n ?3

bn-lbn + an(l.*' b

when n = 3, 1 +/3 will be positive and less than 1. Hence by induction
the same is true for all‘n,andfsn is negative for n> 2,

i.e. =2 >0, pa<0  for n»2 [3.3.1)

This means that the series will alternate in sign and a necessary and suf-
ficient condition for convergence is

lim

npw'n=l

To show that even and odd convergents form monotonic sequences, we
write

Fan = Fanaa™ Yo, * Uy

z (l+8n)ﬁ/g~1 ”"”"D.ln-l

but all Pk ars negative apart from /4 and ]@n]ql

e, Fﬁn >'Fﬁn and the even convergents form an increasing

=2
sequence.

Equally |
FZI'IH e I:‘:J.n-|= (1+ gn“ )‘Ol(gz N Y P-?n 4 Db

¢ % F. < - F and the odd convergents form a decreasing
2N+ 2n=1

sequence.

Finally _
an - F.Zn—a= R(aa T ‘o_m < 0 since an odd number

of (33 are negative.

= {2n< f..‘J.n-l

and if the even convergents approach a limit Lo and the odd convergents a
limit L,, then

Loé L, (3.3.2)

(i1) The fraction to be considered next is of the form

1 1
FL & b; ba+ S S S where bk> 0

1lla



et [E | = |k, =~ Fy | =]y, = |faf%..;...fjn\

but from (3.1.5)

1 B
‘o' - E pj = - I"’-
\ B
J
) A, 1
. . lEnl g ] T
n-1 n
Now L T e R since all a, = 1

a2 | o j
' by +1 < (1 +b )1 +by)

let Bk < (1 + b])(l ¥ b:.) csssap (1 + bk)

Bcar™ Pt P

< b, 4By cences (1 + b, ) #f1-ab,) ciessenfl & by ,)

=(1+b,) ...........(1 +b,_,) [b (1+b )+ 1]

L% (1 +b,) cocccncons (1 + by )(1 +b )(1 * )

hence, by induction, we have
B, < (1 +b,)(1+by).eeone(l +b)

1
g N ) - A e O TR

It can be shouwn[Knopp: Theory and Application of Infinite Series, Ch. 7]

o o0
that k 1 (1 + b ) cnnuerges if and only if Z b, converges. . ST
- If 1im‘E l = U then ‘I by must diverge. kel (3:3.3)

Jo prove (3.3.3) is a sufficient condition, letkzi b, be divergent

k

By repeated application of the recurrence relation

Blk'i"l: hlkd‘l Blk $ b2k-l B-z.k-’- sessnes + bIBD

>(b-2k+l + blk-ll'. evsess + bl) BO

since the B, 's form an increasing sequence.

k
Similarly E2k>'(§2k + blk-z* seaesse +* bl)Bl
1 15
i TE = .
j lk+ll 52k91k+1 (§1k+'+ qlk-|+ cent b)(b lk Lt b_z)BIBO

and by virtue of the divergence oF.E:bk, the right-hand side of the inequality

can be made as small as required.

12a



(iii) Fractions are now considered in which the partial numerators are
negative. By virtue of the equivalence transformation, it is sufficient

to consider the two forms

1 1
Fz—b‘_ R where bk>U
a a
7N S—
3 1- 1- L L B ] Uhere ak> D
In F, 14p = By 1Yy
bj-l b,j - (1 +Pj_‘)
o 1+
b I g b
*fs R
Now if F, is convergent’fjkl for some j>N. So the right-hand sids

will be positive and so will the denominator on the left.
5
Hence the Fﬁ are all positive for large enough j and all terms of the
series for the evaluation of F, will have the same sign.

Equally for F,

1
: § +‘aj - -] 1 —Bj(l +P‘j_)
aj(l +pj_.)
1l -~ 8J(l - P,J-)

N R

= al(l + Pj-‘)
f+f:i 1
“and, as before /A j will be positive for all j3 N and the series will be

~one-signed for large enough valuss of j.

i - lim
Both series are convergent if 5 }f%[<l by the ratio test. (3.3.4)
1
but for F, lfh'=, 0 T 5 ) - lj
b b Fr=i
n-1 n
1
or 0 < 3 T £ for nyN
1
N=1I N

From R.H. inequality
1 ¢ 2B ]
b b
v D=l n

n=1 n

2(1+ﬁ1—| )< b b

13a



from (3.3.4) 4<b_ b

clearly, this will also satisfy the L.H. inequality.

Fipally, if bk =2 in F,

Yn FCLa LRz = i g from (3.1.5)

o [~

: 1 1
E. & 2 * 12
Q=3 - D3 -2) + oeneen

1lim
ne«<o (1- %) =1

n

and F, is convergent if bk?-2 for k2N where N
is some non-negative integer.

By a similar argument for F,

0 < = 2

WO O |
l-an(l+fh-9
from R.H. inequality
2an(1+(°n—l <1
the worst possible case would be =1

. an< %_ for n 2N

and this also satisfies the L.H. inequality.

If now, a, =1
4
i 1
F“ - 1- 4 1 = LB B O B )
il ek S W)
b BB ~ 2n(n+l1)
n-1 n
. s Mi Xk 3
. F3 - %[2"'6"'12 l......l]
F= 1
3 2
and F; is convergent if akQ‘ -:f for k2N

1l4a

(3.3.5)

(3.3.6)

(3.3:7)



A3.4 Estimation of Truncation Error

(i) Let the truncation error in the summation form be

)
R =Zu

N j=nw J
=Umdu'7%u+ﬁuaa+“ satusens)
Ry $ ,”mul (1 +,f)n+3-]+m1+xﬁml tienes)
Now if lfan""l)L’n*?])ffﬂ+3]'“”"

Rn«:Iun+|I(l "'f’nu!* l(gn:lr, AR Sinssiden)

Rn( luni-l I (3:4:1)
"G

(ii) For fractions of the form F, and Fy, it is necessary to quote the

following results Esaa Blanch [2]] i

If F, and, F, are fractions with terms b, and b' such that

k k
bé} bk2.2 for at least one value of'k, then g'< £ (3.4.2)
If F, and F, are fractions with terms 8, and a; such that
0< ak’<ak5% , for at least one value of k, then Fa'< F. (3:4.3)

It is now possible to produce estimates for the truncation errors in F.; and Fj'

For F, , let

"rlzb = b = R ‘lith bkal2+0, c>0

from (3.4.2)

1
Rnﬁzafc—y_. m)_ st eens

1 1

writing q = (2+0)- Gic)- = oo
o Q= b i
(2+c)-q
0=q-~- (2+4c)g + 1
from which q = (1+3c) + V(1+3c) -1

If the positive sign is taken, q increases without bound as c increases

0 g (ledc) = A14de) -1 < 1 (3.4.4)

15a



It is possible to write

F! = 1 1 1
: _bl- bz- L N B BN B BN B bn_ﬂn
=3
iy 25
or Fz Fa_(n)_+ un+|
where u =u with 1 + = bn
n+l - on Pos fonﬂ_b -H(l-!-(a)
n n n
Hn
P n+i bn
1+(:n 5 F!n
<
but 0 (an'(l
L ﬂr‘
: <

' r 4 R
' Fa - Fz(n)lg-——--—l nR 'unIS-—-&—l l'*'nl

Similarly if a, < $-c where ¢ >0, it can be shown that
R er N E SR TREE R R
e Rn -p

where P = \}-J’E_

A3.,5 Contraction of a Continued Fraction

Using the recurrence relation, we can urite

Aan > ba np'.?.n—l i a.‘LnAJn-z

b.z nh-?.n-f n.‘Zrn-:l.+ a:an’qzn-z i b:z nna.n-l i bnnb:m-\ A.ln-—n.

= A (a

n-2 .‘.?n+ b:z I"Ib2n—l ) * ban a:zn-1 Azn-s
since A-?.n-a = b:.n-—l Azn-: + azn_' + A'ln-a
1 azn-n

A:zn s Azn-a(a:n+b:nb2_n-l) & bana:\n-l [b n&n-a.— b A.?.n-q.} )

. 2N=2 an=2

J bznazn ! bnnam 1 aln 2
A = A {a +b. b + — f- = =
an QN=2.¢ 2N 2N 2n-i bzn-z bzn-:. an-

( bzna:m-l ) bana:.n-l azn-:.
Equally B =B a_ +b_ b ‘ ) - B

an -'ln--).( 2n an an=1 h:ln—z ) hln-z 2n-4

16g
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Similarly AL =b

A + a A
LN+ 2N+ An 2N+ an=i

! ad
b2n+1b2n ﬂzn-f+ aln+:“;n—l+ binﬁ Aln b1n+|b1n A-‘ln—i

a
3 2.n=1
B (axnu T b:nﬂbzn) ¥ blmn a.?ni Azn-i “b JQL:m--z}

b
2N=| An=|
( b &) Y'h a _a
hence A = A (a + b b 4 =202t 20 )= A2 AR A
2N+l an=1 ; 2N+ an+ 2an b 1nN=2
( 2n=-1 ) an-1
( b;\.n+1 a.zn ) I:':zn+| a:nam !
and B = B (a +b b+ ) -
2nN+1 :\n-|( N+ an+l an b-t.n-a ) b.Zn-I 2.N=3

(3.5.2)

(3.5,1) and (3.5.2) define recurrence relations which give convergents equal

to the even and odd convergents of the original fraction with terms a and bn.

A3.6 MNodifications To Avoid Small Divisors in Summation Form

With the notation of (3.1.7)

f = it + U+ U + U

= foei* Unah ? Uneitnhn b Un@ nfsi iz
n=-1 un-|ﬁ1(l i s PR B,

1]
|
+

a P El ‘. PN+ bn+! t’n+-‘z ;
GRS B Pnaat an+.1(l+‘cr‘1+l) )

]
-
+

/on(l+(an+| >(bn+; bn+2+ al'I+J. )(bl"‘lbl"l'l'l V- arH-l (1+P]'|)>

+ U
A=t Preet I:}n+1 l-'ln+:~.(bnbn+|i‘h an+l (l+,0n)) 4 an-x-zbnbnu-

Yn-vh s (bn+1bn+-.1.+ ®n+2)

et "{bb* b _+b_ b & (l+P)+a.. bb. )
n N+ N+2 N+l N+2 N+ n nN+a N N+l

l- —an(bm: l:]rwa“} an+z)(l+(?}-: )bn

u
= ] L(bnbnﬂ bn+2+an+zbn)(hn—-| bn+an(l*f‘?l—-| ))+bn-lhn l3n+'.>.-

a
n+\ ]

(L +2 )

Nn=1

0+l N=1 b b a g ] o
( n+i ﬂ+2+ n+1)(bn—1bn i dn(l+(ﬁul)) : dn+|bn-~1bn+2

it & (be s bl % w
I N' N4l N+3  N+3

(3.6.1)
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Similarly

i f®
an+2(.1.+ [ N+t )

Ynea” un-if% r%+|f%+a i un—;f%!ch+n b b <a (l+f9 )
N+ N+2 N+ n+

A {0 war‘l+|,( (an) - N+ N
Gk bnhn+t+ an+l(l+ﬁ%) bn+:(bnbn+l+ an+l(l+f%)) % an+zbn

u

"an(l+/<|:'r-l ) L e bn—d
n-| hn—!bn + an(l+/?1_l) r’an(hn-—ibn + an(l+({ﬂ_l))+ angn-!

X _an+:(bn-lbn * an(1+fg4))
(bn'i‘] hn+:_ N an+1)(bn-[bn = an(l”ﬁ—l )) % an+lbn-|bn+2

u "2 -un-lanan+lan+1bn-l (l+/¢r,1—l)
. il »9 = 3
i [Pn+1(bn-1bn+an(l+fn-l)) * an+|bn—d L}hn+1bn+1fan+a)(bn-|bn +an(l+/%-l))

* EIn-l-lbno-l bn+2.]

.

(3.62)
Finally ;
1400 G bn+1br1+'l- (3.6.3)
s bn+ibn+; Y an+1(l+f:+')
-a_ b
Shote 4 N+l N=|
“hei = B ulb, b e@ (1+/2 )) +a__ b
n+l ' N=t n n n-1 N+l n=1

A3,7 Programme for the Evaluation of Continued Fractions by Summation

Below is listed a programme for the evaluation of a continued fraction
using the summation form. Initially, a maximum figure is specified én the
number of terms to be included in the summation. In addition, if the last
term computed is less then 10 -Il, the evaluation is terminated. Ths value
of x for which the evaluation is desired is read from card. Termination of
the programme occurs when a value of x is read which is greater than 90.0

A subroutine must be provided which will give the values of the coef-
ficients ay bn when x and n are provided by the main programme.

The modifications denoted in A3.6 are included and ceme into operation
if any value of °/b is numerically greater than 10%

Output consists for each convergent of the coefficients a and b, the

18a



]

current value computed by the continued fraction, the last term added to the

sum and the value oF(ﬂ.

The specimen output shows the computation of tan x using the contracted

form F, used in one of the examples.
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READC(S,100)NMAX

100 FORMAT(12)

108 READ(5,101)X

101 FORMAT(F12,8)

109 FORMAT(IHO,5X,29HEVALUATION OF FRACTION FOR X=,F12,8)
IFCX,G6T,90,0)G0 70 150
WRITE(9,109)X
WRITE(9,107)

107 FORMATC(IH ,5XsTHA 14X, THB,6X,13HCONVERGENT NO,2X,9HVALUE OF ,

185HFRACTION 44X, 9HLAST TERM,S5X,12HVALUE OF RHO)
N=1

CALL EVC(X,N,A/BZERO,B)

IFCABS(A/B) ,GE,1E+4)G0 TO 111

RHO=A/B

C=RHO

RM=RHO+BZERO

103 D=C/RM
ERROR=ABS (D)

106 WRITE(9,148)A,B,NyRM;C;RHO
IFCERROR,LE 1E=»12)G0 TO 108
NeN+1
IF(N,GT,NMAX)GO 70 108
AMY=A
BM1=8
RHO1=RHO
CMi=C
RMY=RM
CALL EVC(X,N,A,BZ2ERO0,B)
TFCN=2)105,105,106

105 RHO1=0,0

106 TFCABSC(A/B),GE 1E+4)GO0TO%13
P=BM1*B
DEN=P+A*(1+RHOT)

RHO=P/DEN=1,0
C=CM1*RHO
RMaRMI+C

G0 70 103

111 WRITEC(9,149)A,B,N

149 FORMATC(IH ,E12,5,3X,E12,5¢5X,12:3X,;,25HPARTIAL DENOMINATOR SMALL)

148 FORMATCAH JE12,5,3X0E12,5,5X,12/8X,E17,10,3(3X,E12,5))
Al=sA
Bi=B
N=2
CALL EVC(X,N,A2,BZERQ,B2)
WRITE(D,147)A2,B2,N

147 FORMATC(IH ,E12.5,3X/,E12,5,5X,12)
N=3
CALL EVC(X,N,A,BZERO,B)
P=B1*B2+A2
DEN=BE*P+A%*B1
C=AT#=A2*A/(P*DEN)

RM= BZERO+AT*(B*p2+A)/DEN
RHO==A%B1/DEN

ERROR=1,0

GO TO 104

113 Al=A
B1=R
WRITE(92,149)A1,8B1,N
N=N+1
CALL EVC(X,N,A2,BZ2ER0:B2)
PzAt1»(1,0+RH01)

DEN=BM1*B1+P

20a



150

200

201

URITE(Q;14?)&2;BZ,N
NaN+1

CALL EVC(X,N,A,BZERO,B)
CemCMI*BMIRA2%A%P

PROD=(B2*DEN+A2*BMY)*((B*B2+A)*DEN+BMT1«B*A2)

C=C/PROD
RHOV1==A2*BM1/(B2*DEN+A2*BM1)
P1=p2+8B
RHO=P1/(P1+A%(1,04RH01))=1,0
P2=B*xB2+A
RMaRMI=CMI*P*P2/(P2*DEN+A2*BM1%B),
ERROR=ABS((RM=RM1)/RM)

GO TO 104

STOP

END

SUSROUTINE EVC(Z,K,P,QZERD,Q)
1F(K=1)200,200,201
QZERO=0,0

P=3,0/2

Q=3,0/2*%2=1,0
RETURN

L=4*K
Pee(L=1,0)/(L=5,0)

Q=(L=3,0)*(L=1,0)/Z%%22(2,0%L=6,0)/(L"5,0)

RETURN
END
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Appendix A4

A4.l Minimization of the Lagrangian Error Term

The error estimate for the (n+1)-point Lagrangian interpclation
formula is

(n+t)
Px) = L(x) = TeeslB Gk )0xex,) e (xex,) (4.1.1)

The best choice of the xi will be taken as that which minimises

_maxl(x—xo)(x-x ) PR x-xn),

This is so if the nodes are chosen as the zeros of the suitably-scaled
Chebyshev polynomial Tn+|(x).
Proof

et ! 3

Let pnll(x) be a monic polynomial of degree (n+l) which has a

smaller maximum deviation than the monic polynomial 2_nTn+‘(x) in [}l,l].

Then pn+'( x) = 2-nTn+'(x) is a polynomial of degree n (at most) which
must change sign between the (n+2) extrema of Tn+'(x).

Hence pn+'(x) - 2-"Tn+l(x) is of degree n with (n+l) zeros, which
could only be true if it is identically zero throughout the region.

A4.2 Minimization of the Hermitian Error Term

The error estimate for the (n+l) - point Hermitian interpolation
formula takes the form

E(1ﬂ+1]g 1 2 ~
f(x) - (x) A eyt (x—xu) (X=X ) ceeease (x-xn) (4.2.1)

If we choose the error norm, as the L,norm i.e. we wish to minimise

(2n+2) g
(2n+2)' a/f (X~x ) .......(x-x ) dx (4,2.2)

where the interval of interpolation is [-1,1}.

This is so if the x; are chosen as the zeros of the Legendre polynomial

pn+l(x)
Proof

(x-xo)(x-x‘) S (x—xn) is a monic polynomial and can be written as

+‘(x) = Cn+|Pn+1(x) + cnPn(x) + sesee €, P (x) + e,
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where Pj(x) is the Legendre polynomial of degree j (4.2.3)
Cjarﬁccwstants.

Then, by virtue of the orthogonality property of the Legendre polynomials
I__ & 20 2 n o T
/[“I’H-I (x)] TR R B 2 |

s 2n+3 1=0 24+l (4.2.4)

Clearly Cn+|# 0 otherwise the right-hand side of (4.2.3) is not of the
required degree. Hence (4.2.4) is minimized by taking

B =t I 2 e veesens =G = 0
n Nn=1 n=2 0

and 'In+1(x) = cn+an+l(x) which is the suitably-scaled Legendre
polynomial.
Hence, the nodes of the interpolation should be taken as the zeros

of P (x) in [-1,1].

A4.3 Derivation of Interpolation Fraction Using Inverted Differsnces

Consider the sequence f(x) = uo(x)

v, (x) = v, (x ) = * % k = 01,2 e (4,30
k il ;—-C:)
k+i
This leads to the continued fraction form
K=X X=X Ke=X

1 2

f(x) = UU(XD) + 0 :
R T T I R T T

(4.3.2)

If the fraction terminates after n divisions, the last term will be

X=X
Paiin ) o

(x)

v
N+l
TEx = X9 where DSk ¢n, the fraction terminates before the last term and

the value of un+l(x) is of no consequence. If we remove the fraction

ke , then (4.3.2) becomes a rational function which agrees with f(x)

at (n+l) points assuming that no divisor becomes zero for some x = xk.'
Introduce the notation

uk(x) = ﬁk[xo,x,, sesise Xk-i’%] where ﬁk will be shown

to be the inverted diffserence of Chapter IV. Then (4.3.1.) can be written
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X=X

v (x) = k - S
ket VX ;:T;j:;;?;q:I and we find recursively
that
g, (%) = F(x,)
' X, = X X =R
U|(x 1) = ﬁ.[xﬂ’xJ i p L,( - ;f L‘(l = F(X') - F(XO)
X, = X, _
v, (x,) = ﬁz[xngxlyxél ET[XO’Kél" d.[xg’xl etc.
R i
d = ﬁ X _3X sses =
an uk(xk) k{_o X, X;] ﬁk-l[xo "'xk-z’xk] - ﬁk”l[xo "'xkunka-;l

(4.3.3)
We see that the coefficientsv(¥)in (4.3.2) are the inverted differences
derived in (4.3.3)

R4.4 Interpolation Formula Involving Reciprogal Differences (Thisle's Form)

We define a quantlty{” by the relation
/okE‘o’ Saes xA: kE‘o’ veresX, | + 4 a[x 5 ...,xk_a ktr[ o A+ Sk
(4.4.1)
where the gd's are defined in A4.3. The series is terminated by ﬁo{%;]if
k is even and ﬁ.{xn,xJ if k is odd.
The quantityiﬁi is called the kth reciprocal difference of f(x).

In particular

f(xn)

Pﬂ[xo]r' du [xol
W
(?[XO'X‘-] = Ff| I:XUsX.] = f(xll) » $(Ko)

An inductive argument will show that the;ﬁ%s ara symmetrical in the arguments.

Now (4.4.1) implies that

fgk[xo’ ....,xg] hf%<-;[xo’ ...,xk_l = ﬁk[;o’ ...,xé] (4.4.2)

hence, using (4.3.3) we have

Pk [xo, ...,xk] ;d'k[xo, ...xk-l ot s ED, ...,xk_:‘_]

n

xk-x

1
ﬁk—![&ﬂ, "'Xk—x’xk] - ﬁk—i[&ﬂ’ e o Xy 29X 1
f{__[_ ies x’l
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So p b )CK] = Xr = Xg-)
KLy Y . S e
?“"'[x"i""xk-h"n] - PyalXoy 5%y X k1) & 2& ) (J4 '213)

From (4.4.3) we can build up a table of differences which can be substi-

tuted in the fraction (4.3.2) giving the approximation
X = X X R Haean

f",["n?‘o]* (D;E‘g’xg ’x;]_ f‘(x(:)F G[xo’xl'x;’x:!]- KJIE(O'X‘] o S

(4.4.4)

y(x) = f(x,) +

A4.5 Thiele's Expansion About a Single Point

We require the form of expansion in terms of a continued fraction when
all the nodes in A.4.4 become coincident.

Equation (4.4.1) will tend to the form
x-x x-x x-x

Y(X) Ff (x ) + g (X ) + ﬁ (X )+ d (X )+ teese (4-5-1)

where .;sz(x) = lim ﬁk [xo, ...,xk]

XX X
u k

or using (4.4.2)

Al = um G P eein]- A o SRR | o

X, = X
o k

In addition, since
X

. e =
ﬁk[ cenX sx‘l ﬁk Il'x ...X Q,X] ka .[ ...xk_lyxk_1]

we have

g, (x) = - lim & e (4.5.3)
- X, +% ‘ﬂk—lﬁ’ ....x,xk]- fi-.[* ...x,x]

But if this limit exists, it is given by

1
[ ,.....xk_J

k-‘ L] '.'x
xo’x". Xk_l

oL A(x) = k

(sﬁ_ﬁx) (4.5.4)

Also, from (4.5.2.), we have
b (x) = Lolx) = £_(x)

and so we have the recurrence relation
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k+1
Pex) = G, (x) + B (x) 5 4 (x) = i) (4.5.4)

with,cLix) = /2,(x) =0, ﬁo(x) = f(x) which can be used to derive the
constants in the expansion (4.5.1). This formula of expansion is very
useful in finding continued fraction expansions for functions which are

easily differentiated.

8.0. P(x) = tan"x
g,(x) = tan” x g (1) =T
Ly 4
f%(x) = tan"' x A= 1
x*+1
g, (x) = Lox® %,(1) = 2
2(x) = lex £' = 2x
2 )
ﬁ;(x) "-2-; ﬁz(l) = 1
A (x) = tan ' x + = f-;l= —-l—i;,_ - i"
\ 3 B
¢;(X; = 1—___17_ #3(1) = -6
Ia* x*
=~ Wond S )
tan (x) = E+;+ ;_ xﬁ susses BLC.

27a



Appendix A5

A5.]1 Ralston's Form of Economisation for a Rational Function

If y(x) has a formal expansion
y(x) = R R X & e

then the Pade approximant (x) = (x)
Q, (X)

(where J and k are the degree of Pj(x) and Dk(x) respectively and j + k = s)
is such that when expressed as a power series
y(x) - R?k(x) contains terms of degree (s + 1) or higher.

Assume we require an approximation in the range [—a,a] and write

X = az where =1& z€1 j
Then y(az) - n (az) = ¢®*'(a 2Y* ¢ ollez)™)
 and lim f(az) - R (az) _ o e (5,1.1)
a->0 a.Es-l-l #

Su,by;appropriata choice of j and k it is possible to find Padé approximants
with the property (5,1.1) for s = 0,1,2, .....
If R (x) is the basic pade approximant, we seek a modification
RX (x) = i (x Ei&s+zp (x) + (5,1.2)
QN (x) 1;; TR

For then

y(x)-R¥ (x) = Q" A (x)y(x) - PN n(X) + NZD [ﬂ (x)y(x) - P (X)] " 3
Q (x) + o= D bS“Q ( ) (5'1.3)

The coefficients are now chbsen so that for sufficiently small a, the

right-hand-side of (5,1.3) will approximate to dN+&N+|(z) wherse

2N

TN+}(X) is the Chebyshev polynomial of degree (N + 1)
N+1 N-s

i.60 3., % ds+| a - ts+1 8 = 0yly eeeey(N=1)
d 2
Nh+ |
an . =g m aN+|tD
2

s
where t_ is the coefficients of z~ in TN+|(Z) 28a



Then, since Q:(D) = 1 for all k, from (5.13) we have

- R¥* =
lim y(az) Rmn(az) 0 dN+1 N+1 2 NZ;' ts+1zs+1 . :E.
a0 N+1 5 = §S0 N N
a 2 2
i dN+l (z)
o N+
2

It may be noted that the Chebyshev polynomials are either even or odd

functions and some of tm;és+l are zero irrespective of the values of

d S+!

in (5,1.1). The choice ofj and k is not unique and may be chosen to
satisfy j + k = 8 in any fashion so long as 0sj¢m and 0€¢k¢ n (except
when s = 0 then j = k- = 0).

A5.2 Estimation of Error in Truncated Ohebyshav Series Solution

Let the nearly exact solution to the equation

(3 + 2x)y - 3//;dx = const be given by (5.2.1)

y(x) = EEB AT, (x) where y(o) = 1 (5,2.2)

Then substituting (5,2.2) into (5,2.1) and rearranging in terms of TJ(x)

gives

4 2
3 - 2 13
+{§A:+SQI+EQJ)T,(X) { A, + 3A +—-A3T() {—A+3H +TE }T(x)

+ i- % As+ ZﬂblT‘_ (x) + (x) = const. (5,2.3)

3. o 1 5 1 7
(Eau + = ﬂ,}b (—FE A, + 3A,+ 5 A’J T, (x) -l-E-; Av+ 3R+ 7 A’i T,(x)

We compare this with the expression (5.16) obtained in Chapter V for the

solution involving 'terms up to the third order

i% Bo + -‘],f al} +(— —',1); a + 3a, + % til__STl (x) + f% a + 3a, + %'333 T;(x)

+E% a,+ 333)JT, (x) +%a}1’“ (x) = const. (5,2.4)

Ve now subtract (5,2.3) from (5,2.4) and introduce the nota%ion



——
N[
™
o
+
P
g

1 : B 1 7
I; + {-—- 5 50 + 36, + > E'-J} T, (x) +?Z' &, + 38 + 7 5‘3 T,(x)

1 : 3 ) i
+f"é‘ SI.+ \58:- ',é' ﬂ'q‘gii (X) + s0c00ve = 0 (5‘205)

In a similar manner, we obtain from the initial condition

36, - 6,- A +A =0 (6:2.6)

We now assume that the &'s can be expressed in terms of the first few
neglected coefficients

; (%) (s) @)
1.8, 55 =ﬂ<an+a{sﬂ5 ‘1‘0(8“" (5.2.7)

The coefficients in (5.25) and (5.%6) now become functions of A,» A. and A, .
We must choose theA's to make as many terms in (5.25) to be zero as we can,
together with satisfying (5.26)

Hence for terms in A, we must have

3 =4 =1 [1nitial condition
-%‘«‘;‘9 & 34‘:% £ i") =0 [coefficient of T, (x)
%ﬁq+ 34? +%4?) =0 [coefficient of T lx)
&diq + 3,,(;‘“j = 2 [coefficient of T, (x)

Comparing (5.2¢4) and (5.2.5), togsther with the above we see that the solutions
for thee's involves the same set of equations as for the original problem
but with different right-hand sides.
Now the error is given by
e(x)> % (s, = AD) + (a, = AT, (x) + (a,- A )T, (x)
+ (a,- AT, (x) - A*T»(x) = A T.(x) = AT, (x)
and since each of the differences has been expressed in terms of the neglected
terms, from (5.27) we get
e(x) = A#aq(x) + AgEo(x) + A, € (x)

where

]
E‘j(x) = rZDL‘:'J)TI‘(x) - TJ(X)
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Appendix A6

A6.1 Expression for the Derivative of the L, Norm

Let the approximation be of the form f(a,x) =
i

8y () (6,1.1)

L Ms

and the error norm is

b
lﬂi/qy(x) - f(a,x)ldx

so that L, is a function of the coefficients a, in (6,1.1)

i.ee L, =L,(a)

Then we seek the derivative of L, at some point a* -

i.e. we require an expression for lim [Lq(a*+ ta) - L.(a*)} I I
t»o t '

we shall show that

b
d L, (d = -‘/f‘(a*,x) signiy(x) - f‘(a*,x)} dx

dt
where sign (z) =/-1 if z< 0
0 of z=20
+#1 if z>0
Proof

Define E as the sst E = {x] ly(x) ~ F(a*,x)l S E}
Then if the domain x = [a,b]
L, (a* + ta) ‘/qy(x - f(a*,x) - tf(a,x)ldx

= | x) - f(a*,x) - tf(a,x) ]dx +

X"E ﬁ/ﬂly(X) - P(a*,x) - tf(a,x)|dx ol
but [y(x) - F(a%,x) - tf(a,x)|dx d/[y(x) - fa%,x) - tf(a,x)]s (x) dx
s j]Y(X) - f(a*,x)ldx - t/r(a x) qun{ (x) - f‘(a*,x)}dx + ¥ (t)
i (6.1.4)

where

b (t) /4}(4) - f(a*,x) - tf(a x} [ (x) = s(x!]dx

a;j s (x) = 51gn[y(x - f(a*,x) = Lf(a,xﬂ

s(x) = siqnbz(x} - F(a"",x)}

3la



Now, from (61.3) and (6.1.4.) we have

L, (a* + ta) :l/fiy(x) - F(a%,x)ldx - E/ff(a,x) signzy(x) - F(a*,x)}dx

*E ¥k
+Tp(b)+/]y(x) - f(a*,x) - tf(a,x)ldx (6.1.5)

but L, (a*) = ‘/Qy(x) - f(a*,x)])dx
i Jﬁy(x) - f(a*,x)]| dx = L,(a¥*) -J/}y(x) - f(a*,x)]dx

X-E
Substituting in (6.1.5) and rearranging gives

L, (a* + tz) - L. (a¥) +Af(a,x) signfy(x) - f(a*,x)}dx

g Mti) + %-L[,Y(x) ~ f(a%*,x) - tf(a,x)|dx - ;E'[IY(X) - f(a%,x)ldx  (6.1.6)

Considegr the values in E of the }wu right-hand integrals
ly(x) - f(a*,x) - tf(a,x)l& |y(x) - f(a*,x)|+ t|f(a,x)l

& £+t where M = max | f(a,x)|
{x]

~;. U{iy(x) - f(a¥,x) - tf(a,x)|dx< (e + ﬂmyfdx
Equally d/3Y(XJ - f(a*,x)ldx < &J[dx

3 (e E
Also ‘V(t)=/[y(x) - f(a¥,x) - tf(a,x)} [st(x) - s(x)j dx

X-E
¢ [fle s m) [3,00 - s(x)]ex

x-E
Choosing £ = tM, we have

z"[4:_'—"-'-)-‘~<‘/'2[\.1 [st(x) - s(x):{ dx

but lim st(x) = 8(x) ... w(t)=o0 as t-=0
t—=0 t

..from (6.1.6)

lim| L, (a* + ta) - L,@@*) +/f‘(a,x) Si‘?”i)'(x) = f‘(a"“,x)}dx}g G—E’ + fﬂ)/dx
E

t=0 ;7
Y-

Also/2e + m)fjx < 3n1/d>< since £ = tM
t
E

£

As t->0, then £-+0 and E will become the set of points x for which

y(x) = f(a*,x)

So if y(x) and f(a*,x) only agree at distinct points in x

c/ﬁdx-a 0 as t-=0

[ 4
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Hence the right-hand side of (6,1.6) will then have limit zero as t—0

and tig[L.(g* + :a) - L.(a*)}= ;/;(a,x) signfy(x) -1 f(a*’x)}dx (6,1.7)

The function f(a,x) will be of the form
n

Playx) = £ as, (x)

and if we wish the derivative to be zero independently of the values of a;

from (6,1.7) when L,(a) is a minimum, we have

‘/f¢3(x)sign[y{x) - f(a*,x)]dx =0 i=0,1 eeuee nn (6,1.8)

A fuller discussion of the characterisation and uniqueness of the i3
approximation is given in Rice [lSJ.

A6.,2 Points of Interpolation in the Polynomial Case
5

Let the approximation be
n _
Ple,x) = 5 o, (x) (6,2.1)
where the ﬁi(x) have polynomial form

5
#,(x) =% bx

r=0

: 'y
Consider I ::/Z brxr s(x) dx

r=0
-

Urite x = cos@ : a

i i
I = 18 brcosrP s(cos?) sinfdo
[ r=0

but cos® sin® % sin 26

cod® sin® = }fsin 30 + sine}

cose sin® = j{sin 46 + 2 sin 26} etc
so the integrand can be written as a sine series in multiples of @

i i
i.e. Zbrcosrg sing = = sin(r+1)e

c
r=0 r=0 *
%
and I= é crsin(r-rl)@ s(cos®) do (6,2.2)
r=0

1
If the integral‘/pf(a,x) s(x) dx is to be zero, it follows from (6,2.1)
A
and (6,2.2) that it is necessary that

i
J/ sin mé s(cosP) d# = 0 T A LA R
(v]
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Consider

d= /Sin mo signgsin(n+2)9j do
k5 o "
=/ sin m6de :/n,u sin mfde + «+ (-l)n'"/ sin mfde
o i +)T
then nea g:‘){)

J ='%ii - 2cosmil. + 2 cos 2mN_ - 2 cos EEEL."°"('1)n2995(21£lﬂf +
n+2 n+2 n+2 n+2

(1) cos mi}
It is possible to show by summation of this series that J = 0
| for m = 1,2, eeco.(H+l)
In other words, the sign function s(x) which has the desired property when
f(a,x) has the form (6,2.1.) has zeros at the zeros of sin(n+2) @
4 where x = cos & .

The internal zeros of this sign functicn are given by

x, = co E{g) K 1,2, eases (nad) (6,2.3)
. and we notice that these are the zero of the Chebyshev polynomial of the

second kind. U_  (x).
n+i

A6.3 Programme to Attempt L, Approximatiocn by Interpolation

The programme attempts to find the approximation

f(x) = a U (x) + a,U,(x) + coees anUn(x) valid in [-1,1] (6,3.1)

which minimises the L, norm

/ly(X) - £(x)l dx

This is done by solving the interpolation problem where f(x) agrees with
y(x) at the zeros of the Chebyshev polynomial of the Second Kind Un+'(x).
It has been shown that if the error curve changes sign only at the inter-
polation points, then f(x) is the required L, approximation,

Input consists of the required degree of approximation N. The inter=-
polation points are then derived from (5,2.3). The coefficients in (6,3.1.)
are the solgtion of the set of linear equations

Plx,) = y(x ) 1.2, o tnisl) (6,3.2)
K
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The values y(xk) are evaluated using a subroutine supplied by the
user. This subroutine can also be used to take care of any transformation
of the independent variable to reduce the range to the [—1,1] employed
in the main programme.

The equations (6,3.2) are solved using a standard subroutine for solv-
ing linear equations involving factorization of the matrix on the left-hand
side into triangular form.

Having determined the approximating function the error is determined
at fifty-one egually-spaced points in [:l,]l. These points are used to
determine the error curve and the zeros of this curve are found by gquadratic
inverse interpolation between three adjacent points.

Additional output consists of the elements of the gradient vector

/l‘Jj(x) sign fy(x) - r(x)] dx § 50,0 caees N (6,3.3)

The integrals in (6,3.3) are evaluated using the property

/ U(x) dx = Vi (X if §3 2

j+1
= #(T,(x) + T (x)) 4f j=1
= T,(x) if j =0

If X,5 X;y ees. X_ are the points at which y(x) - f(x) changes sign

k
let s = sign{y(-l) - f(-l)} , then
]

jruj(x) signiy(x) - f(x)s dx

= j+l[ (x)] + 2{ [-T_j I(x)} jﬂ(x)l + eeee (= l)kg'[Tj_H (x)]xkl

+ (=1 )ks[TjH (x)].]

The value of the error norm
L,(x) = [ly(x) - £(x)lex
is computed from the fifty-onéqpoints of the error curve using Simpson's
Rule. .
The printed output below shows the output when
y(x) = ¥ in the range [0,2] when N = 2.
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100

21
20

97

22
29

98

19

106

130

131

102
17

299
300

302
3503
304

306
307

308

MASTER UAPPL1

DIMENSION X(15),RHSC15),CM(300),ERR(55),XE(55),AC20),AA(225)
DIMENSION BB(C15) ,REINT(20),Q(15)
READ(S5,100)N

FORMAT(I12)

DOGM=1,N+1

X(N+2=M)=COS(M*3_ 1415927/ (N+2))
WRITE(I 107X (XCI),1=1,N+1)

DO20I=1,N+1

CALL FACXCI),RHS(1))

DOZ21J=1,N+1

CALL UTERM(X(I),J=1«VALUE)
CMC(I+(N+1)%(J=1))=VALUE

CONTINUE

WRITE(D,97)

FORMAT(1HO,20X,22HMATRIX OF COEFFICIENTS)
DO22K=1,N+1

WRITE(9,99) (CM(K+(N+1)*(J=1)) (J=1,N+1)
CONTINUE

FORMATCI1HO ,5X,10F10,5/1H ,5X,6F10,5)

CALL F4ACSLCCMyRHSyN+1,(N+1)*(N+1) ,N+1,1,A,D,ID,IT,AA,BR,REINT
WRITE(9,98) (A(J) ,J=1,N+1)
FORMAT(30HOCOEFFICIENTS OF APPROXIMATION,/(1H ,7E16,8))
STEP=0,04

M=1

XE(M)==1,0

CALL FY1(XE(M)YVAL)

CALL USUSCXE(M) ;A¢N+APP)

ERR(M)=YVAL=-APP

WRITE(S,1G6)XE(M) ,YVAL,APP,ERR(M)

FORMAY(T1H »F5,2+/5X,E13,6,5X+E13,6,5%X,E13,6)
M=M+1

XE(M)=XF(M=1)+STEP

ITF(XE(M),LE,1,01)G0T019

M=1
YONE=ABS(ERR(M))
SsumMop=0,0

DO130M=3,49,2
SUMOD=SUMOD+ABS (ERR(M))
SUMEV=0,10
DO131M=2,50,2
SUMEV=SUMEV+ABS(ERR(M))
YEND=ABS (ERR(51))

AR=0,04*x(YONE+YEND+2 ,0%SUMOD+4 ,0%#SUMEV) /3,0

WRITE(9,102)AR

FORMAT(1HO,25X,21HVALUE OF L1 INTEGRAL=,E13,6)
M=1 '

K=1

IFCERR(M))300,308,302

I61==1

GOTN303

161= 1

IF(ERR(M+1))304,309,306

162==1

6070307

162=1

IF(IG1,EQ,162)G0T0310

P==ERR(M+1)/ (ERR(M+1)=ERR(M))
P=(=ERR(M#+1)=0,5«P*(P+1)* (ERR(M+1) =2 ,*ERR(M)+ERR(M=1)))/

1CERR(M#1)=ERR(M))

XCK)=XE(M+1)+pPw(0, 04
GOTO0311
X(K)=XE(M)
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GOTO0311
309 X(K)=XE(M+1)
M=M+1
311 NZS=K
K=K+1
310 M=M+1
IF(M,FQ,51)6G0T0305
312 GOT0O299
305 IF(K,LT N*+1)GOTO0313
WRITE(9,107)(XCJ)d=1yN2ZS)
K=1
11 1F(ERR(1))3%1,32,32
31 SGN==1,0
GOTN33
32 SGN=1,0
33 CALL EINGCK,NZS,SGN,X,EVAL)
WRITE(9,103)EVAL,K
16 K=K+1
IF(K,LE,N+1)G0T011
STOP
103 FORMAT(28H FLEMENT OF GRADIENT VECTOR=,E13,6,5X,
18HELEMENT ,12)
167 FORMAT(21HOZEROS OF ERROR CURVE./(1H ,9E13,5))
313 WRITE(9,105)
105 FORMAT(47H ERROR CURVE SCANNED INSUFFICIENT ZEROS LOCATED)
STOP 5
END

SUBROUTINE USUS(Z,DsND,SESUM)
DIMENSION D(20)
BNP1=0,0 ‘
BN=D(ND+1)
I=ND
25 BVAL=D(1)+2,0%Z*BN=BNP]
I=1-1
1F(1,EQ,1)60T026
BNP1=BN
BN=BVAL
6G0T025
26 SESUM=D(1)=BN+2,0%2*BVAL
RETURN
END

SUBROUTINE UTERM(Z,NC,UV)
ND=NC :
uz=1,0
U1=2,0%x2
IF(ND=1)35,36,37

- 25 Uv=uz
RETURN

36 uv=uU1
RETURN

37 Uv=2,0%7%xU1=U2Z
ND=ND=1
IF(ND,EQ,1)RETURN
uz=u1
U1=Uv "
GOTO37
END
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71
72
73

74

61

SUBROUTINE TCH(C,VAL,J)

L=J
IF(L=1)71:72,73
VAL=1,0

RETURN

VAL=C

RETURN

T21=1,0

Tz2=C
VAL=2,0%C*T22=T21
LeL=1
IF(L,EQ,1)RETURN
T21=722

TZ2=VAL

GOTO74

END

SUBROUTINE EING(M,K1,SGN,Z,EVAL)

DIMENSION 2(15)

CALL TCH(=1,0,0RD,M)
SUM==SGN*ORD
PO61J=1,K1

CALL TCHCZC(J),URD,M)
SUM=SUM+SGN*QRD*2,0
SGN==SGN

CALL TCH(1,0,0RD,M)

EVAL= 1,0/M*(SUM+SGN*ORD)

RETURN
END

SUBROUTINE F1(Z,FUNV)
Y=2+1,0

FUNV=EXP(Y)

RETURN

END
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ZEROS OF ERROR CURVF

-0,70711€ 00 «0,23196E~07 0,70711E 00

MATRIX OF COEFFICIENTS

1,00000 =1,41421 1,00000
1,00000 =0,00000 =~1,00000
1.00000 1.61621 1.00000

COEFFICIENTS OF APPROXIMATION

0,30724629€E 01 0,14752681€ 01 0,35418102€E 00
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«1,00 0,100000E 01 0,118447E 01 =0,184470F 00
«0,96 0,104081E 01 0,119142E 01 «0,150609€ 00
«0,92 0,108329€ 01 0,120290E 01 “0,119617E€ 00
v0,88 0,112750€ 01 0,121892€ 01 ~0,914242E=01
“0,84 0,117351€ 01 0.123947E 01 -0,659610E=01
~0,80 0,122140€ 01 0,126456E 01 ~0,431535E=01
“0,76 0,127125€ 01 0,129417E 01 =0,229249E=01
«0,72 0,132313€ 01 0,132833E 01 ~0,519566E=02
“0,68 0,137713€ 01 0,136701€ 01 0,101174E=01
«0,64 0,143333E 01 0,141023€ 01 0,231006E=01
«0,60 0,149182€ 01 0.,145798E 01 0,338440E=01
“0,56 0,155271€ 01 0,151027€ 01 0,424410E=01
«0,52 0,161607€ 01 0,156709E 01 0,489892E=01
w0, 48 0,168203E 01 0,162844E 01 0,535900E=01
), %4 0,175067E 01 0,169432E 01 0,563489Ew01
w0, 40 0,182212€ 01 0,176474E 01 0,573756E=01
-0,36 0,189648E 01 0,183970€ 01 0,567847E=01
w0, 32 0,197388E 01 0,191918€ 01 0,546950E=01
«0,28 0,205443E 01 0,200320€ 01 0,512304E=01
0,26 0,213828€ 01 0,209176E 01 0,4665198Ew01
«0,20 0,222554E 01 0,218484E 01 0,406974E=01
«0,16 0,231637€ 01 0,228246E 09 0,339028E=01
"0,12 0,241090€ 01 0,238462F 01 0,262814F=01
«0,08 0,250929€ 01 0,249131E 01 0,1798644E=01
0,04 0,261170€ 01 0,260253E 01 0,916933E=02
0,00 0,271828E 01 0,271828E 01 -0,541331E=08
0,06 0,282922F 01 0,283857E 01 ~0,935303E=02
0,08 0,294468E 01 0,296339E 01 «0,187122E=01
0,12 0,306485€ 01 0,309275€ 01 ~0,278928E=01
0,16 0,318993E 01 0,322664E 01 *0,367025E=01
0,20 0,332012F 01 0,336506E 01 «0,449411F=01
0,24 0,345561F 01 0,350801E 01 »0,524004E=01
0,28 0,359664E 01 0.365550E 01 -0,588634E=01
0,32 0,374342E 01 0,380753€ 01 «0,641046E=01
0,36 0,389619F 01 0,3964L08F 01 «0,678890E=01
0,40 0,405520EF 01 0,412517€ 01 ~0,699722E=01
0,44 0,422070F 01 0,429080E 01 =0,700998E=01
0,48 0,4639295¢ 01 0,446095€ 01 ~0,680068E=01
0,52 0,457223F 01 0,463564F 01 “0,634177E=01
0,56 0,475882E 01 0,481487E 01 ~0,560456E=01
0,60 0,495303F 01 0,499862F 01 «0,455919F=01
0,64 0,515517€ 01 0,518692F 01 «0,317457F=01
0,68 0,536556E 01 0,537974E 01 «0,141838E~01
0,72 0,558453E 01 0,557710E 01 0,743074E=02
0,76 0,581244E 01 0,577899F 01 0,334481E01
0,80 0,604965€ 01 0,598541E 01 0,642332E01
0,84 0,629654E 01 0,619637€ 01 0,100165€ 00
0,88 0,655350F 01 0,641186E 01 0,141640E 00
0,92 0,632096F 01 0,663189E 01 0,189068E 00
0,96 0,709933¢ 01 0,685645E 01 0,242877F 00
1,00 0,738906E 01 0,708554F 01 0,303514E 00



VALUE OF L1 INTEGRAL= 0,118896E 00

ZEROS OF ERROR CURVE
“0,70714E 00 =0,23140E=07 0,70709E 00

ELEMENT OF GRADIENT VECTOR= 0,820615E=04 ELEMENT 1
ELEMENT OF GRADIENT VECTOR==0,469441F=04 ELEMENT 2
ELEMENT OF GRADIENT VECTOR= 0,821580E-04 ELEMENT 3
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Appendix A.7

A7.1 Legendre Polynomials

Consider a polynomial of ﬁr(x) of degree r which is orthogonal to all

xk of inferior degree with respect to the interval [»l,l] and unit weight
function,
1
i.e, t/rﬁr(x) X< dx =0 k<r (Tsdad)
-l
Following Hildebrand [}B], let ﬁr(x) = gf' Ur(x) and integrate (7,1.1)
dxr
r times by parts,
" » o X (r-1)
Ur(r l)(x) it kUr(r 1)(x) xkj Ve asas(s1)® 'Ur(x) [ka =0
; (7,12
Now since ﬂr(x) is to be a polynomial of degree r, its (r+l) th
. derivative must be zero.
! g (x) = i u.(x) =0 £ (7,1.8)
L+l 2r+1
dx dx

But for (7,1.2) to be satisfied for any X of degree less than x° leads to

2r boundary conditions

U (1) = u;(* ) ees = Ur(r-‘)(i.l) =0 (7,1.4)

From (7,1.3) and (7,1.4) we get that

Ur(x) = Er(x‘- 1)r and writing
o= £ we have the Legendre polynomial
A
2°r!
104" e a)f (7,1.5)
el 5
2°pl dx

Orthogonality Property

From the derivationi we know that the Legendre polynomial is ortho-

gonal to all polynomials of inferior degree.
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1

'
a r
!
Now consider l//;r (x) dx [ 1. (2el) X" %4 6 ] Pr(x)dx
- 2rt  p!

=1

Because of the orthogonality property, terms involving powers of x of degree

less than r make no contribution

& U/f;r‘(x)dx ‘ 1 a(Zr)!l//,err(x)dx
2r(r!)

=1 =)

1 (2r)!/x”. 1 d® (x*~1) dx
2%(r1)" /\ 2% (r1) dxF

Integrating by parts, we have

) 3 1
/xr dt (x*- 1)Tdx = [xrd"" (x*- 1)"] 3 /r T (1)
& dx” dx* " 54 dx"

3

]

0+ (-1)F r! /(x”-- 1) dx

1 M |

a

= 2r] / con =" d#

(]
211 2r(2r =2)ivees 2

(21‘ +1)(21‘-l) R 3

]

L'()d o X
J/‘r * i 2r+1 : 42540

-

Recursion Formula

Since xPn(x) is a polynomial of degree (n+1l), we may uwrite

1 [ n+t
/ka(x) P (x) dx = /Pk(X)iED cyPy(x) dx

ck/‘lpki(x) dx (7,1.5)

=\

But ka(x) is of degree k +1 and Pn(x) is orthogonal to all polynomials of

degree n=-1 or less

cks:ﬂ for k+1<n i.e. k<n-1
and xPn(x) = cn+an+'(x) + cnPn(x) + cn_|Pn_l(x) (7:1,6)
From (7,1.3), the coefficient of x" in P_(x) is 2n)!
n > b
2'(n!)

+1

Equating coefficients of x"*! in (7,1.6) gives

c = n+l
2n+1l
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Also, Legendre polynomials contain only either even or odd powers of x,
+ R n
hence, equating powers of x
c =10
n

Now when k = n-l, consider the integrals in (7,1.5). Only the first term

in xP_- (x) need be retained on the left-hand-side.

. “_(‘?_n-i)_'__z /ﬂxnpn(x) dx = cn__:/‘bn_' (x) dx
237 Jenaay] s /i

whence c_,=.0
Z2n+1
and (n+1) P (x) = (2n+l1) x Pn(x) - nl’-‘n_l(x) (7:1:7)

A7.2 Evaluation of Series of Orthogonal Terms

Orthogonal functions obey a recurrence relation of the form

g (x) = Ad (x)+8g (x) (7,2.1)

n n nN=1\

Let S = ;Eg a, 4, (x)

aNﬁN(x) + aN_lﬁN_‘(x) + ieelbie e
{ Nyt HN-'-)) By (X) + Loy _o* Uuam} BpyaalX)reees

& bN-lEﬂN—I Bua(X) + By | F{N-3(x)} * {am- e au} Byag (X

n

whaere bN-I = ANaN + aN—l

. Siss e Ebl\l—lﬂlni T BNaN} Bu-a(x) + EaN—-f bwngm-\’} "fN-z(x)

bN—Z(nH—J.F!N-S(X) + By, # } i M-zt Pricy Bua§ By Ok

- 3 — ".‘.
where bl‘-l-:L = b”_‘ A=y + aN-1+ BNaN

S = bN- d (x) + sess

3By (%) + ibN—-lBN—Z 2~ :,) -

where t’N_g i bN..:_p‘N-z* "Ny’ IJN--\E'N-l
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Hence, it can be seen that if we set b =0, b

N+l = a, , we can generate

N

k k bk+lnk+l g bk+z Bk+z (7,2.2)

fOI‘k: (N-l)’(N-z) n-on’l
At the end of the series, we then have
S = b,d,(x)+ (al:J + B.b,) ﬁo (x)

Now from (7,1.7), we see that for a series of Legendre polynomials

Ak+| = 2k+l , Blya = = k+l , P, (x) = x, Po(x) =1
k+l k+2
and S =b,x + (ao - b, )
where hk =a + 2k+1 bk+l - k:l bk+z (7,2.3)
k+l k+2
k = (N-l) cae 1l
L
Similarly, for the Chebyshev series Z. aka(x)
k=0
S =b,x + (%ao -'bz)
PUEER B M a0 Thia (7,2.4)

k= (N=1) ¢sees 1
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Appendix AB

AB.1 Characterization of the Polynomial Minimax Approximation
n
Let the approximation be the form f(x) = 2 aidi(x) where ﬁi(x) is
i=0
a polynomial of degree i. Then if f(x) is the minimax approximation to

y(x) in [a,b], the maximum error will be attained at not less than (n +2)
distinct points in [a,b] with alternating sign.
Proof
The proof follows that given in Handscomb [7] page 64. Assume the
error e(x) = y(x) - f(x) is not identically zero, then it is possible to
locate all points Xy at which the errorjraaches its maximum modulus. Let
these be r in number.
Consider the sign changes in the list e(x), e(x,) ees.. e(xr).
If a sign-change occurs between x‘j and xj+l, define pJ = é(xJ + xj+|).
Thus, there is a list of values
a<p < p< sseseatl p;< b if there are s sign changes in all.
Now s cannot be greater than (r-1), since e(x) can only change sign betwsen
extrema of opposite sign.
We shall now show that if r< (n+2), then f(x) cannot be the minimax
approximation.
Assume r <(n+2) then r' is at most equal to (n+1) and since
s<r-1 then s&n

Hence, we can find a unique polynomial p(x) of degqree not greater

than n, having zeros at the points p,, P, ceeeey Pge In addition p(x) can

be chosen to have the sign of e(xn) at x_.
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Because of the choice of zeros, p(x) will have the same sign as e(x)
at points where e(x) attains its extreme values, By adding a suitable mul-
tiple of p(x) to f(x), the extreme values could therefore be reduced and
f(x) cannot be the minimax function.
Now p(x) may be considered as a more general combinationof the continu-
GUS'functiuhsﬁi; |
n
i.e. p(x) =.§a ciﬁi(x) (8,1.1)
where some at least of the ci are non-zero.
The above argument only holds if right-hand side of (8,1.1) has, at most,
n roots in [a,b]. This defines the polynomials di(x) as forming a
Chebyshev set. (of which the powers of x are a particular case)
Hence, it has been shown that if the number of extrema of opposite
sign is less than (n+2), then f(x) is not the minimax function and the
required result follows,
To prove sufficiency, let f(x) have (n+2) extrema of equal magnitude

!
and opposite sign. Let f(x) be a function such that max\y(x) - ftxﬂf
< maxly(x) = £(x)l

AS

R

Let [xi] i=0,1....(n+1) be the points at which f(x) achieves its extrema.
Then sign [f(xi) - thi}] = - sign[f(xi+l) - thi+l)]
e 7 S R A S
This implies that f(x) - F?x) has (n+1) zeros. But f(x) and fo) are of
degree n. Since they are also composed of polynomials forming a Chebyshev
set, then their difference cannot be zero at (n+ 1) points unless it is
identically zero,

Hence f(x) is the required minimax function.
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AB8.2 Extension to Rational Function Minimax Approximation

Assume that the approximation has the form R(x) = Pn(x)
: Q_(x)
m

where n and m are the degree of the polynomials in the numerator and den-
ominator respectively. Then analogous to the result in AB.1, Hnm(x) will
be a best minimax approximation if y(x) - ﬁnm(x) has not less than (n+m+2)
extrema of equal magnitude and with alternating sign in [a,b].
Proof

As before, we shall assume that the number of extrema is less than
(n+m+2) and show that this leads to.a contradiction.,

Let r be the number of points at which e(x) reaches its extreme value.
Consider the sign changes in the list

e(x,), 0(x,) cecsse a(xr)

If a sign change occurs between x.and xj+’, define pJ = 'Mx‘j + xj+')

J
There is now a set of points
a<p, < Paeeseeslp < b 1if there are s sign changes in e(x).
We shall assume that r< n+m+2 then since a sign change will only
be 1istaﬁ between extrema of opposite sign,

rpn+m+1 and s€n+m

n

Define A(x) (x = p, (%X = P3) coceee(x = ps)

then”  A(x)

Q,(x)a(x) = P_(x)b(x)
where a(x) and b(x) must be polynomials of degree not greater than
n and m respectively.

10 ) = Pn(x) -2a(x)
e Um(x) -£b(x)

£(x) - R' (x) = £(x) - R_(x) #(Gp{x)alx) = PLxDB(X)) (g 5 1,
A i q, )[4, (<) = gb(x)]

For a pole-free solution, Gm(x) must be one-signed in [a,b) and be non-

Consider

zero. Hence the denominator in the last term in (8,2.1) can be made one-

signed by choosing g sufficiently small.
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Now #(Q (x)a(x) - P _(x)b(x)) = £A(x)
and by suitable choice of ths sign of @, the last term can always be of
opposite sign to f(x) - an(x) at the poinfs of extreme value.

This would give R;m(xj a smaller maximum error than an(x). Consequently
if an(x) is to be the best minimax approximation, s must exceed (n+m) and

hence the number of extrema with alternatiﬁg signs must be not less than

(n+ms+2). /e(‘,‘)
Xy ' ; P <Y pr/
Tl % Xy h_“‘“ ——"/ x4

)

AB.3 TIterative Schems for the Construction of the Minimax Rational
Approximating Function

Let y(x) be a continuous function in [a,b] and let the approximation

be of tﬁe form f(x) = Pn(x)/ﬁm(x)
n
where P (x) = 2 a xJ
n j:u 'j

>, ]
Dm(x) =J=% bjx

It is required to find the set of reference points

..-..I...<
e ‘x0$ x‘< xn+m+l<b

at which the error reaches its extreme value h

e (21)% 0 R U e tamed (8,3:1)

max 2
where [-a’b]{y(x) - f’(x)] = h
First, we rearrange (8,3.1) and then express in matrix form

(-2)%] a(x,) = 0

i.e. Pn(xs) - iy(xs)

or more fully

n m

By TR X Fuisee W8 X, -~ iy(xo) - h}(bo + bnxu + seseee * bmxu} =0
m

n

ao + a.x.* .......-l-anx' - Ey(xl) +* h} (bﬂ + b‘x“" ssennee + bmxl = 0
N+m+1
- + a x sees n 2 b - a m
o Von+m+t ann+m+'{Y(Xn+m+l) (-1) h}bu+ bixn+m+l ""bmxn+m+k 0
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This can be expressed in partitioned-matrix form as

[Yi! - (F-cn).[)=0 (8,3.2)
where Yrg = xrs—( s = 1,2, ;....(n-+1)
X.g = xrsmI 8= 1,25 seciaime))
F = diagonal iy(xr)} .

G diagonal 1(-1 )r;

r

D,l, c.ooc'(n+m+1)

and [Cl is the column vector [ao @ eesesed bD b'.......béxr

The method of Dsborne[ﬂ] is applied to (B8.3.2) resulting in an
iterative scheme for the determination of [C] and h.
Write (8.3.2) as M(h).v = 0 » €8.3.3)

Then if hi ;; are approximate solutions of (8.3.3), we can write

[lﬂ(hi) +Ahi —:—E- & ] [Vi +AV11 =0

and retaining only first order small quantities,

== dif =
m(hy). {Vy, 5= -ah; gy (hy) - vy
Now -Ahi will only act as a scale factor and may be removed
1S dn - |
then mh ), = g (hy) - Yy (8.3.4)
Consider m(h) . Vi ® B(h).ui (8.3.5)

where B(h) is some function of h.
The solution of (B.3.3) will occur at the zeros of B(h), hence we may seek
the solution by finding a solution to B(h) = 0. This is done by applying
Newton's Method, for which is required an expression for g% .
Differentiate (B.3.5) with respect to h.

oS, o B
dh i+ - g 1
Ehence e 0% -1 di - dB -1

-

m

dh Wl e PR L (8.3.6)

Now the system is homegensous, hence one element is independent of h.

(In our case, let the element of maximum modulus always be made equal to one. )
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Let this element be the pth.

Then duiq ng, :
dh I
P

and from (8.3.6) and (8.3.5) we have

(m"' dm — ) (U )
dh i+l B dh °\ i+
P Sl
or B (ui+i)P (8.3.7)
. (m”.gm '31+J
dh dh p

From (8.3.4), we may compute Ui+‘ by identifying Ui as the vector of
coefficients Ei at the ith stage of the iteration.
Also, since ﬁi+' is an approximate solution to the eigenvalue problem,

we may use it in (8.3.4) to find a new gector of coefficients Ei+l'

— - —
thus Cipy =M (hi) . dm(hi) Vi

dh
If we choose from this equation the element in the pth position, we
have exactly the denominator in (8.3.7). Consequently, the process pro-
ceeds as follows:
Let h,, Ei be the solution at the 1°] stage, where Ei is scaled so

i
that the largest element is equal to unity.

- dm -
Solve m(hi) e Vi, =Gh (hi)°ci
- dMm -
m(hi) S Eﬁ(hi)‘ul
v,
and from (8.3.7) Mo = hy -(_1:Q p (8.3.8)

In terms of (8.3.2)

m(h) = [Y; -(F - 6h)x]
%E = [0} 6x]

When new coefficients are determined, a new error curve can be computed
and the points of extrema found by interpolation.

The whole process can then be repeated, using [xi+;], [ci+:1

and hi+| used as input to the next stage.
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A8.4 Computer Programme for Rational Function Minimax Approximation

The programme listed below is an implementation of the scheme given
in AB.3. 1Initial data consists of the degree of the polynomial in the
numerator of the approximation, the degree of the polynomial in the den-
ominator, the lower and upper bounds of the range of the approximation
followed by the step—iangth to he used whea computing points on the error
curve. Two further fields are optional. Because the extrema of the error
curve may be more closely packed near one end than the other, it is possible
to change the step length at some point part-way through the error curve.
This may be done by specifying the value of x at which the change is reqg-

- uired to take place followed by the new step length. If these fields are
left blank, this facility is ignored. 5

The programme then reads the values of x which are designatec as the
current reference and employs a user-provided subroutine to evaluate the
given function at these points. The final input statement reads the cur-
rent value of the error extreme value (h) followsed by the coefficients of
the approximation, with those of the numerator first and in ascending
powers of x.

Output, after one iteration of the algorithm,consists of the current
baéis (for reference), the newly-computed value of the error extreme and
the corresponding values of the coefficients of the rational function approx-
imation. Finally, a table of values is printed defiping the error curve.
‘The left-hand column is the values of x at the required interval, the next
column contains the value of the given function and this is followed by the
value of the approximation. The right-hand column contains the érror.

The specimen programme listed below shows the output of the fourth
iteration when finding the P, (x)/Q,(x) approximation to y = 0,92 cns.hx -COs X
(See example 2)

Sufficient storage has been allocated to allow the sum of the degrees

of the numerator and denominator to be a maximum of thirteen.
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REAL MAXV,MAXC
DIMENSION XC15),FNC15),C(15),A(225),B(225),V(15)
DIMENSION RHSC15),AA(225),BB(225) ,REINT(15)
READC(S,19)IP,1Q,XMIN,XMAX,DELX,X1,DELXY
19 FORMAT(212,5F5,3)
NeslP+IQ+2
READCS5,18) (X(I),1=1,N)
DD161=1,N
CALL F1(XCI),FNCI))
16 CONTINUE
WRITE(9,S50)(X(1),1=1,N)
50 FORMAT( 25H CURRENT REFERENCE POINTS/(1H ,12F9,5))
18 FORMAT(10F8,5) : :
READ(5,18)H,(C(I),1=1,4N)
D020J=1,N
ACJ)=1,0
DO29K=2,1P+1
29 ACJ+ (Ko 1) 2N)=X(J)*n(K=1)
ACJ+CIP+1)aN)=m(FN(J)=(=1) " J*H)
IF(IQ,EQ,0)G0TO020 ’
DO30OK=]IP+2,N=1
30 ACJ+KEN)=A(J+CIP+1)*N)*#X(J)*x (K=1P=1)
20 CONTINUE
D021J=1,N
DO31K=1,1P»1 5
3] B(J+(Km1)¥N)=0,0
BCJ+C(IP+1)%N)=(=1)w=)
IF(IQ,EQ,0)G0T021
PO3I2K=1P+2 ,N=1
32 B(J+KeN)= (1) *a )X (J)**(Ke]P=1)
21 CONTINUE
NA=N*N
CALL FPMUMT(N,1,N¢BC(1),C(1),RHS(1),0,NRR)
CALL F4ACSLCApRHS,NsNAyN,14V,D,ID,IT,AA(BB,REINT)
CALL FPMUHT(N!1IN'B(1)IV(1>tRHS(1)JO'NRR)
CALL FQACSL(ApRHSfN;NﬁaNf2;CfD;ID¢IT;AQIBB;REINT)
MAXC=0,0 :
MAXV=0,0
D022J=1,N
IFCABS(C(J))=ABS(MAXC))22,22,23
23 MAXC=C(J)
. MAXV=V ()
22 CONTINUE
-~ HzH=MAXV/MAXC
0024J=11N
24 CCJ4)=C(J)/MAXC
WRITE(S,27)H,(C(J),Jd=1,1P+1)
27 FORMAT(1H ,10HVALUE OF H,E17,8//16H COEFFICIENTS OF,
110H NUMERATOR/(10X,6E17,8))
WRITE(D,28)(C(J),d=1P+2,N)
28 FORMAT(1HO,27HCOEFFICIENTS OF DENOMINATOR/10X,6E17,8)
WRITE(9,40)
40 FORMAT(1H0,1UK;1HX,13X;4HFUNC;1UX.6HAPPROX;16X¢5HERROR)
IFCX1)X14,15.14
14 XEND=X1
GOT O Y
15 XEND=XMAX
17 Z=XMIN
26 BC=0,0
DOZ71=9,1P+1
Ks]Pm]le?2
37 BCuC(K)+Z=BC
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38

25

CC=0

DO38I=1,1Q+1

Kz]Q+2=] :
CC=CCIP+K+1)+Z*(CC

VALUE=BC/CC

CALL F1(Z,FUNV)
ERROR=FUNV=VALUE
WRITE(9,25)Z,VALUE,FUNV,ERROR
FORMAT(1H ,3(5X,F10,6),10X,E15,6)
ZeZ7+DELX
1F(Z,LE,XEND+DELX/2,0)G0T026
IFCZ,6T ,XMAX)STOP

XEND=XMAX

PELX=DELX1

Z=X1+DELX

GOTY0R26

END

SUBROUTINE F1(Z,FVAL)

FVAL=0,92*COSH(Z)=C0S(2)

RETURN :
END )
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CURRENT REFERENCE POINTS
©1,00000 =0,86270 =0,49920

VALUE OF H

COEFFICIENTS OF NUMERATOR
»0,79916781E=01

=0,83219411E=04

~0,67252399E=21

COEFFICIENTS OF DENOMINATYOR

X
«1,000000
«0,950000
«0,900000
«0,850000
«0,800000
~0,750000
«0,700000
«0,650000
«0,600000
=0,550000
«0,500000
-0,450000
«0,400000
«0,350000
«0,300000
«0,250000
«0,200000
«0,150000
«0,100000
«0,050000
0,000000
0,050000
0,100000
0,150000
0,200000
0,250000
0,300000
0,350000
0,400000
0,450000
0,500000
0,550000
0,600000
0,650000
0,700000
0,750000
0,800000
0,850000
0,900000
0,950000
1,000000

0,10000000€E 01

FUNC
0,879249
0,785672
0,696905
0.612947
0,533796
0,459450
0,389908
0,325169
0,265230
0,210091
0,159750
0,114207
0,073460
0,037510
0,006354
-0,020008
-0,041576
-0,058350
-0,070332
-0,077521
-0,079917
-0,077521
-0,070332
-0,058350
-0,041576
-0,020008
0,006354
0,037510
0,073460
0,114207
0,159750
0,210091
0,265230
0,325169
0,389908
0,6459450
0,533796
0,612947
0,696905
0,785672
0,879249

w(0,45852704E=21
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0,00000 0,49920

APPROX
0,879332
0,785644
0,696830
0,612865
0,533733
0,459420
0,389913
0,325206
0,265292
0,210169
0,159833
0,114285
0,073526
0,037555
0,006375

«0,020012
«0,041605

" =0,058402

«0,070400
“0,077600
=0,080000
=0,077600
«0,070400
«0,058402
»0,061605
=0,020012
0,006375
0,037555
0,073526
0,114285
0,15983%3
0,210169
0,265292
0,325206
0,389913
0,459420
0,533733
0,612865
0,696830
0.785644
0,879332

0,86270

0,95855700€ 00

~0,69200243E~03

ERROR
0,832194E=04
“0,273619E=04
«0,755113E=04
-0,818314E=04
“0,62664BE~04
“0,306190E=04
0,493930E=05
0,374195E=04
0,625732E=04
0,780894E=04
0,832205E=04
0,784375E=04
0,651156E=04
0,452495E=04
0,211990E=04
“0,453621E=05
-0,295111E=04
-0,515005E=04
«0,686334E=04
-0,794086E=04
«0,832194E=04
-0,794986E=04
-0,686333E=04
«0,515005E=04
«0,295112E=04
«0,453621E=05
0,211990E=04
0,452495Em04
0,651156E=04
0,784375E=04
0,832205E=04
0,780894E=04
0,625732E=04
0,374195E=04
0,493928E=05
~0,306190E=04
“0,626648Em04
“0,818314E=04
-0,755114E~04
-0,273619E=04
0,832194E=04



Appendix A9

A9.1 Choice of Degree of Approximation

The approximating function is assumed to be a low degree polynomial
wvhich satisfies two conditions. Firstly, it is required that the approx-
imation interpolates to the given function 'at the knots, secondly that
some degree of smoothness is imparted by continuity of the spline and at
least éome of its derivatives at the internal knots.

The criteria of smoothness rules out the possibility of the broken
-line passing through the given interpolation points. The next possibility
is the quadratic polynomial with continuity of the first derivative.

As illustration, let thers be three knots X, ¢ X, <X A quadratic
function in each of the two zones [}li,Lx‘&] provides six unknown coef-

ficients. The number of conditions imposed are

(i) Interpolation at three points (3)
(ii) Continuity of the approximation and its first derivative at % (2
(iii) End conditions at x, and x, (2)

This makes seven conditions in all and it is seen that the even degree func-
tion cannot satisfy all the requirements. More generally, let the degree

qf the spline be taken as 2n and the number of knots as (N+1). There are
(2n + 1)N unknouwns to determine, with the following constraints:

Continuity of derivatives of order 0,1,2, ....(2n-1) at each interior
points imposes 2n(N-1) conditions

There are n end conditions at x, and xN.Faspactiuely
This leaves (2n+1)N = 2n(N=-1) = 2n = N conditions for interpolation at
(N +1) knots, which is clearly impossible.
Now assume that the degree of the polynomial is (2n-1l). This time,
there are 2nN unknowns.
Continuity of derivatives of order 0,1, .....(2n=2) at (N-1) points imposes

(2n-1)(N=-1) conditions.
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End conditions impose (n=-1) constraints at x, and x ‘rESpectiuely.

]
This leaves 2nN = (2n=1)(N=-1) = 2(n=1) = N +1 which is exactly right
for interpolation at (N +1) points.

In particular, putting n = 2, we find that a cubic polynomial will
interpolate at the chosen knots and give continuity of the function and
its first two derivatives at the intermal knots whilst requiring one end

condition at x, and x respectively.

N+1

A9.2 Computer Programme for Cubic Spline Approximation

The input to the programme consists only of the values of x = a and
~x =-b, specifying the range of approximation [a,b), together with h, the choser
distance between the knots. This is considered fixed throughout the range
-and since it is assumed that both a and b are to b= knots; then (b-a)
must be an exact multiple of h,
In aldition a subroutine must be provided to compute thé value of the
given function y(x) for any value of x supplied by the main programme.
_Output prouidéd consists of the values of the second derivative of
the spline at the knots, together with the functionalues, the approximation
and the corresponding errors tabulated for values of the independent variable
at intervals equal to one-fifth of the knot-spacing over the complete range
of approximation.
In order to evaluate the spline function the machine has ﬁhree arrays
stored (i) the values of the knots (xk) (ii)the corresponding function
values y(xk), (iii) the computed values of the second derivative (mk).
Sufficient storage space has been allocated to allow a maximum number of
fifty knots to be used in any one approximation.
Th? output listing is given below for the example when

-X
y = i~+x‘ and the knot-spacing h = 0.5,
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DIMENSION XKNOT(50),Y(50),RM(2500),C(50),8D(50),P(50)
DIMENSION Q(50),U(50) j
WRITE(9,105)
READ(S;19)XMIN,XMAXsH

19 FORMAT(3F5,3)
INDEX=(XMAX=XMIN) /H+1
DO211=1,INDFX
XKENOTCI)=XMIN+®(I=1)*H
CALL FAC(XKNOTCI), Y(I))

21 CONTINUE
WRITE(9,102) (XKNOT(J) J=1,INDEX) |,
WRITE(9,103)CYCJ)J=1,INDEX)
DO18I=1,INDEX
PO18J=1,INDEX

18 RM (I+INDEX*(J=1))=0,0
DO17I=2,INDFX=1
CCI)=(Y(I+1)=2,0%Y(1)+Y(I=1))/H
RM(I+INDEX*(I=2))=K/6,0
RM(I+INDEX#(I=1))=2,0%KH/3,0

47 RM(I+INDEX*(I))=H/6,0
RM(1)==H*H/16,0
RMUINDEX*2+1)==RM(1)

XOH=XMIN+O,5%H :

XTH=XMIN+T,5%H 3

CALL FA1(XOH,FOH)

CALL FI(XTH,FTH)

CC1)=(Y(3)=Y(1))*x0,5+FOH=FTH
RMCINDEX+INDEX*(INDEX=1))=RM(INDEX*2+1)
RMCINDEX+INDEX*CINDEX=~3))=RM(1)

XON=XMAX=0,5«H

XTN=XMAX=1,S*H

CALL F1(XON,FON)

CALL F1(XTN,FTN)
CCINDEX)SC(Y(INDEX)=Y(INDEX=2))/2,0=FON+FTN
PC1)=RM(C1)

ud1)=Cc1)/pC1)

Q(1)==RMCINDEX*2+1)/P (1)

P(2)=RM(INDEX+2)
UC2)=(C(2)=RM(2)*C (1) /RM(1))/P(2)
QC2)==(RMC(INDEX*2+2)=RM(2)«RM(INDEX*2+1) /RM(1))/P(2)
DO150J=3, INDEX=1 '
PLJI=RMCINDFEX*(J=1)+J)+RMCINDEX*(J=2)+J)*Q(J~1)
UCJI=S(CCI)=RMUINDEX*(J=2)+J)xUCJ=1))/P(J)

150 QCJ)==RMCINDEX*J+J)/P(J)
PCINDEX)=RM(INDEX*(INDEX=2))*Q(INDEX=2)
UCINDEX)S(CCINDEX)=RMCINDEX*(INDEX=2))*U(CINDEX=2))/PC(INDEX)
QCINDEX)==RMCINDEX*INDEX)/PCINDEX)
SDCINDEX)=(UCINDEX)=UCINDEX=1))/(QC(INDEX=1)=QC(INDEX))
D0151J=1,INDEX=2

159 SDCINDEX=J)=SD(INDEX=J4+1)*Q(INDEX=J)+U(INDEX=J)
SDC1)=UC1)Y+Q(1)*SD(3)

WRITE(9,104)(SD(J)J=1,INDEX)

102 FORMAT(1HO,20Xs23HX=VALUES TAKEN AS KNOTS/1HO,7F16,4/

1(1H +7F16,4))

103 FORMAT(1HO,20X,30HFUNCTION VALUES AT GIVEN KNOTS/

1TH0.7E16,8/(1H ,7E16,8))

104 FORMAT(1HO0,20X,27HVALUES OF SECOND DERIVATIVE/1HO,7F16,4/

1CAH (7F16,4))

105 FORMATC(T1HO,30%,26HCUBIC SPLINE APPROXIMATION)

106 FORMAT(THO,8X,1HX 12X 8HFUNCTION,8X,6HAPPROX,17X,5SHERROR)
WRITE(9,106)
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X=XMIN
DELX=H/S,0

101 DO321=2,INDEX
TF(X=XKNOTCI))31,31,32

32 CONTINUE

31 VALI1SXKNOT(I)=X
VALZ2=X=XKNOT(I=1)
S=SD(I-1)*VAL1**3!(6,0*H)*SD(I)*vAL2**3f(6,0*H)+(Y(I-1)-H*Ht

1SD(1=1)/6,0)*VAL1/H+(Y(I)=H*H*SD(1)/6,0)*VAL2/H

CALL F1(XsFUNV)
ERROR=FUNV=S )
WRITE(S ,25)X,FUNV,S,ERROR

25 FORMAT(1H ,5XsF7,3,8%X,F10,6,5X,F10,6,10X,E15,6)
X=X+DELX
IF(X,GT, (XMAX+DELX/2,0))STOP
IF(X,6GT, (XMAX=DELX/2,0))60 TO 22
GOT0101

22 I=INDEX
GO TO 31
END

SUBROUTINE F1(Z,FVAL)
FVALZEXP(=2%2)/(1,042%2)
RETURN

END
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