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SUMMARY. 

This work undertakes a survey of methods of numerical approximation 

to functions. The functions considered are taken to be continuous within 

the range of approximation. Some consideration is given to the types 

of approximating functions in common use and the measurement of goodness 

of fit. It is seen that these two criteria together decide by what method 

the unknown coefficients are to be determined. 

Some properties of orthogonal functions and continued fractions are 

presented. Methods of deriving interpolating functions are described. 

Approximations may often be based on series expansions and this is con- 
, 

sidered, with reference to Chebyshev series, asymptotic series and Pade’ 

approximants. 

The next section deals with approximations derived when the measure 

of fit is chosen as one of the three Holder norms L,, L, or Ly. The L, 

problem is shown to be solved in some cases by treatment as an interjola- 

tion problem. The least-squares Ce) problem is best treated using ortho- 

gonal polynomials. The minimax (L,,) approximation is seen to be found 

only by means of an iterative process and is the best approach when find- 

ing rational function approximations. 

The method of spline approximations is described. This is basically 

an interpolative approach, the practical method involves representing the 

function between the points of agreement, or knots, by cubic polynomials. 

Finally a general summary covers the types of approximation consid- 

ered. Some techniques, e.g. range reduction, are mentioned which help in 

certain cases with finding efficient approximations. An attempt is made 

to give a general strategy which can be adopted for finding a suitable 

approximation to a given function and which would be workable in all but 

exceptional cases.



SUMMARY 

CHAPTER s 

CHAPTER II 

CHAPTER III 

CHAPTER IV 

CHAPTER Vv 

CHAPTER VI 

CHAPTER WII 

CHAPTER VIII 

CHAPTER Ix 

CHAPTER x 

APPENDICES 

LIST OF REFERENCES 

CONTENTS 

Introduction 

Orthogonal Functions 

Continued Fractions 
> 

Interpolation 

Approximations based on Series Expansions 

L, approximation 

L, approximation 

Lo approximation 

Cubic Spline Functions 

Discussion and Conclusions



CHAPTER I 

APPROXIMATION TO CONTINUOUS FUNCTIONS 

Introduction 

Numerical approximations to functions involves attempting to find a 

function f(x) which follows closely the behaviour of a given function y(x) 

in some region a¢ x ¢b. The approximation, once determined may be used 

instead of y(x), for example to ovaruate ff y(x)ax or to find y(x,), for 

some given value x,of the argument. j 

Why should it be found necessary to use f(x) instead of y(x) in such 

cases? Simply because f(x) can be chosen to be more "amenable" than y(x). 

It may be possible to choose f(x) so that it is relatively easy to integrate 

or differentiate or so that i¢ is rapidly evaluated by an automatic mach- 

ine. It is possible that y(x) itself is not explicitly known, when, for 

example, it is expressed as the solution of a differential equation. 

In this work discussion is restricted to approximation to functions 

which are continuous in a single real variable. 

Fundamental Considsrations © 

There are three basic steps in finding an approximation to a given 

function. In the beginning, it is necessary to decide what form of func- 

tion may be satisfactory as an approximation. Next, an expression must be 

chosen which can be used to give a measure of the "closeness" or goodness of 

fit of the approximation. Because of a geometric analogy, this is some- 

times referred to as the distance between the two functions. Finally, hav- 

ing agreed upon the first two choices, it remains to derive and solve the 

system of equations which determines the coefficients of the approximation 

such that the distance function (or norm) is minimized.



There are no fixed rules governing what form and norm should be chosen. 

The choice will depend on a few general principles, mainly derived empiric- 

ally and often constrained by what yields a practicable solution. 

Traditionally, polynomials have been a first choice as approximating 

functions. In the past, this was strongly influenced by the lack of suit- 

able computational facilities and with appropriate choice of norm, the coef- 

ficients of a polynomial could be found without a prohibitive amount of com- 

putation. Now, there is available virtually all the computing power we 

require, yet polynomial forms remain popular. One reason for this is the 

ease withwhich polynomials may be integrated or differentiated. 

The choice of form and the distance function together determine the 

nature of the problem we are faced with whén trying to evaluate the unknown 

coefficients. This problem is directly solved if it is a set of linear equa- 

tions. This has meant that forms and norms have often been chosen so that 

the coefficients have besn determined by linear equations. This, in the his- 

tory of the subject, has led to the importance of least-squares approxima- 

tions by polynomials. It is as well to point out that the linear problem 

can be ill-conditioned and that, in some cases, special care must be taken 

to avoid this. (See Chapter II) 

Notwithstanding the advantages of polynomials, it is sometimes desir- 

able to use other forms. These choices lead to non-linear problems to deter- 

mine the unknowns. Such systems usually require more effort for their solu- 

tion and we require some benefit to warrant the extra effort. This is usually 

in the form of a better degree of fit or perhaps the same degree of fit with 

fewer coefficients. 

The second choice, that of the way of measuring the closeness of the 

approximation has a profound effect on the way in which the unknown parameters 

are determined. One point which is important when considering the goodness 

of fit is that generally, there are no a priori rules which determine the 

degree of the approximation to achieve a given order of closeness. Normally,



we have to determine what is thought to be a suitable approximation and 

then decide if it is satisfactory. If this proves not to be the case, the 

process must be repeated with a higher degree approximation. Another alter~ 

native would be to divide up the range of fit and to determine separate 

approximations in each segment. In this case, some procedure is usually 

adopted to ensure that the approximations display some degree of smoothness 

at the joins of the segments. 

Choice of Form of Approximation 

There are limitations on the types of functions that are available for 

use in approximations. This may ba due to the uses to which they are put 

or simply due to the practicability of deriving the unknown coefficients. 

Polynomials and trigonometric sums are often used because they display a 

"smoothness" of behaviour which is often closely matching that of the given 

functions. A smooth function can be thought of as one which displays an 

undulating rather than craggy nature. more precisely, smoothness implies 

that the function has continuous derivatives whose values remain relatively 

small. However, for this very reason, if the given function does not dis- 

play characteristic polynomial behaviour, then a polynomial approximation 

may prove unsatisfactory. Such behaviour may take the form of a sharp 

"elbow" or perhaps a region of large slope whilst elsewhere the function 

may be relatively smooth. In such cases it may prove advantagsous to use 

a different form of approximation, a natural choice being a rational function, 

that is, the ratio of two polynomials. In such a case, the determination of 

the coefficients is no longer a simple procedure. It May prove possible to 

avoid such a choice by carrying out a transformation of the independent vari- 

able. This can often be done fairly simply and the resultant function prove 

sufficiently smooth for a low-degree polynomial to give an adequate approxi- 

mation. 

Rational functions have another attractive feature. There is empirical 

evidence to suggest that for a great many problems, rational functions will



give an approximation which has a smaller maximum error than polynomials 

with the same number of coefficients. for this reason, rational functions 

are often preferred as compact forms for use with automatic computers for 

function evaluation. In addition, rational functions may be converted to 

continued fractions which allows evaluation of the function economically 

in terms of the number of operations required. 

Finally, the given function may possess special features that strongly 

suggest the use of special functions in the approximation. The most 

common of such functions are logarithmic or exponential terms. Special 

forms of this kind do not fit into general theory and have to be treated 

on their own merits. 

The Measure of Goodness of Fit 

When considering the distance of an approximation from a given func- 

tion, it is natural to ask how close is it possible to get? In particular, 

ir we choose polynomial form for the approximation, is it possible to increase 

the degree of the polynomial and thereby steadily reduce the error to any 

desired extent? Fortunately for the numerical analyst, Weierstrass estab- 

lished in a famous theorem that if y(x) is a continuous function then it 

may be approximated to any degree of closeness by a polynomial. (A proof 

of this is given in Appendix A.1.) However, the theorem provides no hint 

as to how these polynomials may be derived. 

Interpolation 

Intuitively it may be felt that if the approximation has the same 

values as the original function at certain values of the argument, then it 

may be considered not to differ significantly at other points in the region 

spanned by the chosen arguments. In addition, the more points of agreement, 

the more reasonable the approximation should be. Historically, functions 

have often been defined in terms of tables. In such cases interpolation 

formulae have been used to evaluate the function at non-tabulated points 

using function values at equal intervals. Unfortunately it is not possible



to ensure that approximations based on equal intervals have errors that 

reduce uniformly as the number of points increase. However, there’is no 

reason to choose equally spaced points and it can be demonstrated that 

unequally-spaced points will be an advantage. 

Other methods try to ensure a good fit by including information 

other than the function values. This usually consists of specifying the 

derivatives at certain points. methods of this nature include the Hermite 

formula and cubic spline functions. If we include the function value and 

the value of its derivatives at only one single point then we have the 

Taylor Series. 

The Lp Norms 

When discussing interpolation methods, no specific mention was made 

of the measure of the goodness of fit. It will be seen in the relevant 

Chapters that the error may be estimated from the value of a certain high- 

orden derivative, dependent on the degree of the approximation. 

In the more general case, we require a "distance" function which is not 

dependent on the form of the approximation. This will then not only pro- 

vide a measure of the goodness of fit, but will so characterize the prob- 

lem as to lead the way to its solution. The measure that is adopted is 

the Lp, or Holder norm. 

This is defined as 

b p “Wp 

Lp boo - F(x)} = [Live - (xl ax| p>l (1.1) 

where y(x) and f(x) are the function and its approximation and fa, b] 

is the range of fit. 

prablem of 
The/ approximation can now be defined as, having chosen the form of 

f(x), to determine its coefficients so that the expression on the right 

hand side of (1.1) is a minimum.



Only certain values of p are of practical importance. 

(4) pel 

af ly(x) - ie dx (1.2) 

Since Lt box) - Fx) ax] g Lives - f(x) | dx 

it may seem reasonable to adopt the L, norm if [ios is to be 

b 
used to represent ifs y(x)dx. 

a 

(ii) p=2 
b 2 Te 

Lys LL fy(x) - r(x} a] ; (1.3) 
O 

This is the classical least-squares norm. In practice, the square root 

may be omitted without ambiguity. 

(141) p = 00 
d’ 

_It is possible to show that when p-»oo, the Lp norm becomes 

Log= ey ly(x) = F(x)| (1.4) 

(This is derived in Appendix Al.2). Because the object in each case 

is to determine the coefficients of f(x) so that the distance function is 

minimised, the Lonorm is often referred to as the "minimax" norm. 

The expressions (1.2), (1.3) and (1.4) impose different conditions on 

the approximation. The methods of deriving the coefficients are different 

in each case, and in general, we do not expect to find the coefficients of 

the approximations derived using the three norms to be the same. 

Sometimes it is necessary or convenient to introduce a "weight- 

function" into the norm. : 

b pt 
i.e. Lp = [Levcal yea - r(x) es (2.5) 

where the weight-function w(x) is a non-negative function of the argument 

in the range la, b) + This function has the effect of giving more emphasis 

(or weight) to those errors in the regions where w(x) is largest and vice- 

versa. It would appear simplest to take w(x) = 1, as this would give equal 

weight to all error values. However, there may be good reasons for other 

choices. If w(x) is taken as ly(xy'] then the norm will be based on the 

9



relative error rather than the absolute error. In other Cases, w(x) may 

take special forms so that special functions e.g. Chebyshev Polynomials 

can be introduced into the approximation, 

Chebyshev Sets 

To complete this introduction, it is necessary to mention one con- 

cept which is important in the discussion of the existence of polynomial 

solutions in both L, and Leo approximations. This is the idea of Chebyshev 

sets. 

let us first consider the independence of a polynomial solution. 

n 

e.g if f(a,x) = So aid,(x) (1.6) 
iso 

is an approximation where A; (x) is a (as yet undefined) polynomial of degree i, 

continuous in [a,b] then we require that, except for isolated points in [a,b] , 

f(a',x) # f(a" ,x) unless a’ = a” : (107) 

From (1.6) and (1.7) 

Oa 
1" 2 (a! -a"),8,(x) # 0 

izo 

or rearranging 

A 

Z (al =a"), 6,(x) # 4,(x) O<jén (1.8) 
izo 7 0 

any 

This implies that the ¢(x) we employ in the approximation f(x) must be 

linearly independent. 

However it is found that this is not sufficient of itself to ensure that 

the approximation exists and may be evaluated. for this to ba true in the 

cases mentioned, it is necessary to demand a further property, which is the 

defining property of a Chebyshev set. 

This can be stated in one of three equivalent ways. Let A, (x), Lie 

be polynomials forming’ the basis: for f(x), then sees ek 
n 

(i)> No linear combination 208, (x) of the +1) functions g,(x) has more iat i 

than n roots in fa, o} unless it vanishes identically. 

10



(ii) the determinant det i) i = 0,1,°...n cannot vanish if the 

x, are (n # 1) distinct points on [a, b] = 
J 

(iii) a unique linear expression of the form (1.6) can be found to inter- 

polate any continuous function at (n + 1) distinct points in fe,) 

These are three different and equivalent ways of expressing Haar's 

condition. Any set of functions satisfying Haar's condition is said to 

forma Chebyshev set. 

We notice immediately that the first (n + 1) powers of xy [1yx)x72 0x) 

form a Chebyshev set in any interval. Also, and not obviously, so do the 

“first (2n + 1) trigonometric functions [2,cosx, GLOX) (sc os. cos2nx,sin2nx] 

in the interval [o, 2a). 

It is fairly easy to derive a set of’ functions not forming a Chebyshev 

set, ‘yet all functions used in polynomial approximations do form such sets. 

No attempt has been made to elaborate many of the statements and con- 

cepts introduced in this first Chapter. The main Chapters of the work are 

devoted to such elaboration. Chapter II introduces orthogonal functions, 

which play an important role in methods of approximation, whilst Chapter III 

discusses the main features of continued fractions. The next two chapters 

are devoted to aperoninations derived by interpolation and from series 

expansions respectively. Chapters VI, VII and VIII are given to methods 

based on L,, L, and Leo norms in turn and Chapter IX looks at cubic spline 

approximations. The final Chapter contains a general discussion and com- 

parison of mathods with some illustrative examples. 

ads



CHAPTER II 

Orthogonal Polynomials 

Introduction 

In this chapter, we attempt to show how orthogonal polynomials arise 

naturally when considering problems of approximation. Reference is made 

to trigonometric functions as they occur in Fourier series, From the 

trigonometric functions are developed the Chebyshev polynomials. These 

play a major part in any discussion of methods of approximation. Some of 

their more notable properties are described. 

Discrete Least-Squares Approximation 

The 'least~squares' method has a wel) known application in curve fit- 

ting Buee a discrete set of given points 

(xy) ke a,0,1) scoce mS 

Let f,(x) = cg + 0,x + cx + seeeee + €,xM be the polynomial of 

approximation, then the coefficients €j are chosen so that 

Ss Zloof - ta} | (2.2) 

is a minimum (w(x) is a positive weight function). 

Now S can be made arbitrarily large by a suitably '‘bad' choice of cosf- 

ficients, so we expect that if an extreme value of S does exist, then it 

will be a minimum value. 

The necessary condition for a minimum value of S is 

28 29 kis O)1 wsesas 0 
Oj, 

Now if myn + 1, S will be non=zero, and the above condition leads to a 

set of linear equations defining the coefficients. These are termed the 

Normal equations and are 

Bolg + S.C, + eoveeeeeee + Spl = bo 

S\Co + 8,0, + eoeeeeeese + 8,0, = by 

' (2.2) 

   



The straightforward nature of this approach looks attractive, but two 

problems arise in practice. 

Firstly, the matrix of coefficients in (2.2) can become ill- 

conditioned for even moderately large values of n. For example, if in 

(2.1) w(x) = 1 and x, are equally spaced in fo,2], then s, in (2.2) 

becomes 

m z 
8, = Zo X 

’ 
= af xTax =_m if m is large. 

© rel 

So, removing the factor m, the matrix bacomes 

1 ts ote. 

2 2. t t 

    

which is a well-known ill-conditioned matrix. 

Secondly, if an approximation has been found of degrees N say, and S proves 

insufficiently small, then to extend the approximation to degree N + 1 

involves’ the solution of a completely new set of equations and all the 

previously computed coefficients will be changed. 

These difficulties are overcome if wea can express the approximating 

function in the form 

F(x) = cod (x) +o, B(x) + cevcereee + od (x) (2.3) 

where the ¢'s are independent functions in the space defined by the points 

(x) and having the property 

L w(x Oyj) #0 aS (2.4) 

= “(,) #00 2 oO 8504) # 

13



Functions having this property are termed orthogonal. In such cases the 

matrix of coefficients in (2.2) becomes diagonal and the coefficients 

in (2.3) are defined by: 
m. = Wx 8 5 OK Ye 

  

Co 2 
joa 2 Ep MIF) 

  

i= Ola ea rccoe a (2.5) 

No longer is it necessary to invert an ill-conditioned matrix in order to 

evaluate the coefficients. Also, it can be seen from (2.5) that adding new 

terms to the approximation will not change the coefficients already evaluated. 

The expression (2.1) for the error becomes 

m n 
2 22 s.e wa [yj - 2p Any] (2.6) 

’ 

and S may be found for a higher degree approximation by including an extra 

cee Chalets (x) 

The Continuous Case 

The least~squares method can be applied to the problem of finding an 

easily computable function of the form (2.3) which approximates over a 

given finite interval to a continuous function y(x). 

If the interval is taken as (-1,2) we can write 

Ss Lube [yoo - #(x))" ax Es (257) 

and the coefficients of F(x) are chosen to minimise S. The condition 

for least S again produces a set of normal equations in which 

Leo, 6 (x) 5. ea) itj 

b oY 2 & [ules Ody(x)ax 

and the orthogonality condition is 

[ox r6 (0) xe m0 ssifiane of 

14



Hence, the off-diagonal elements of (2.8) are zero and the solution of the 

normal equations yields 

x be x )dx (2.9) 

(x) 85 (x) dx 

  

The weight function w(x) is chosen to be non-negative in Eval: One 

important property of a set of polynomials which form an orthogonal system 

is that any three consecutive polynomials are related by a recurrence of 

the form 

Beas 2) = (AK + BDAC) = CyB , (x) 
(See J. R. Rice [13] ) 

This will be used to develop a useful computational method for eval- 

uating series whose terms are orthogonal polynomials. 

Fourier Series 

The best-known orthogonal system is the set of trigonometric func- 

tions cos x, COS 2X, seseece » Sin xX, SiN 2x, oee-- over the interval (-r, 1). 

It.is easily shown that 
T vr 4 

fein nx sin mx dx = [eve nx cos mx = 0 forn# m 
= TT 

and Sin nx cos mx dx = 0 
Lin 

So, if we pepresent a function in terms of an infinite series of trigono- 

metric terms (a Fourier series) of the form 
Py 

y(x) = eae 2 (a,cos kx + bein kx) (2.19) 

foe 
then ae i [we cos kt dt (2.10a) 

7 
i 

bd Sve )ein kt dt 
k i. 

Now if (2.10) be truncated at some point, what sort of approximation is 

obtained? 

n 
let P(x) = Et) = (a, cos kx + bysin kx) (2632) 

15



then, taking w(x) = 1, (2.7) becomes 
7 7 a : 

Ss J vax - fe oe (a, cos kx + bysin to) y(x)dx 

LW oe 2 k=l 

4 

The condition that S should be a minimum is os = Qs =0 

= 2 2 z L u 
+H 5O,* 8, + veers +8 + Bt ceeceee ef 

n 

i 
Ase. - [evs kxy (x )dx +lay 

Lin 
or a. = 

similarly be ak Jy sin kx dx 
: qd 

  

We notice that these are precisely the coefficients defined in (2.10a). 

That is to say, the truncated Fourier series is the best approximation in 

the least-squares sense for the interval [-w7] 

The error term for the truncated series is 
" 

2 - 2 2 z 
Ss [? (x)dx - (ay +a, toeeeeeeeal +b 

iT a 

  

It is natural to ask if the series defined in (2.10) is convergent if 

y(x) is continuous, does F(x) defined in (2.11) approach y(x) as n increases? 

This problem is dealt with extensively in available literature (e.g. Lanczos 11) 

We note that the continuity of y(x) does not prove sufficient for conver- 

gence of the series. Sufficiency is expressed in the "Dirichlet conditions" 

which establish the desired smoothness of y(x). These conditions are not 

always necessary; Fejer's method of summation [13] can be used to compute 

a sequence which converges to y(x) when the only restriction on y(x) is that 

it is absolutely integrable. 

One practical difficulty encountered in approximation by Fourier series 

arises from the fact that since the series is periodic, the function and its 

derivatives are expected to have the same values at the:two end-points. At 

best, if the original function is not periodic, we might hope for the con- 

tinuity of the function and its first derivative only at these end-points. 

In these circumstances, convergence of the series may prove slow. This 

problem may be avoided by using the following transformation. 

16



Chebyshev Polynomials 

Consider y(x) when we write x = cosQ 

then y(x) = y(cos@) = Y(@) 

and the interval (1,3) in x becomes {o, Ti] in 9, ¥(@) being a function 

of cos@will be an even function of and is periodic in ©. 

Because Y(@) is even, we can expand it as a series of cosine terms 

and the integral in (2.10) can be carried out over the positive half- 

range only. 
2 

ice. Y(@) =a + 2 a,cos ke 
k=l s| 

where a = k 2 fo) cos kOd@ 
Tv ° 

Now rewrite in terms of the original variable x 

y(x) = 8 + > ant (x) 
an) (kein 

3° 2 [1 v(x) dx 
LC ares 4 J, a 

where T(x) = cos k@ = cos(k cos x) 

(2.12) 

  

We notice that from their relation to the cosine functions that the 1, (x) 

are polynomials of degree k in x. They are orthogonal over the interval 

{-1,2]. These functions are called Chebyshev polynomials. 

Chebyshev polynomials have many properties which have applications in 

function approximation. Some of these are derived in Appendix A 2.1. 

We list here the important features: 

(i) They are orthogonal over the range €1,3] with respect to a weight 

1 

fiax= 

(ii) In the range €2,1), they have maximum and minimum values of +1 

  function 

and T(x) has extremes at exactly n+l points. 

(iii) They can be differentiated and integrated easily. 

(iv), A truncated Chebyshev series has an error nearly proportional to 

the first neglected term (say T_,(x)). By virtue of the equal 
n+l 

ripple property of Thal) the error can be seen to be evenly 

distributed throughout the interval. 17



(v) A series of Chebyshev terms displays more rapid convergence than 

corresponding Tey oO ees: 

(vi) The Chebyshev polynomials prove to be orthogonal over certain 

discrete Raine sets with constant weights. This can be a use- 

ful feature when the integral in (2.12) does not prove analyt- 

ically possible. 

Chebyshev Polynomials of the Second Kind 

In Appendix A2:1 it is shown that a recurrence relation for Chebyshev 

polynomials can be developed from the identity . 

cos (n+!) + cos(n-1)@ = 2 cosn@ cos 9 

i.e. Tha) + T,f*) = can) 

but we also know that : 

. sin (n+1)@ + sin(n-1)@ = 2 sin nO cos® (2.13) 

dividing by sin @ 

sin (n+1)0 ,» Sin n=)0 _ 2 sin n® cos@ 

sin@ sin® sin® 

Consider u(@) = sin(n+t)@ 

sin 6 

then u, (6) sl 

U,(@) = 2cos® 

and (2.13) gives 

ui (@) = 2cos@ u_ (6) - ure te) 

if we put x = cos@, 

Uo (x) 1 1” 

U,(x) = 2x 

U(x) = 2x Uns (x) - us (x) 
2 

and clearly U(x) is a polynomial of degree n in x. 

These functions are called Chebyshev polynomials of the second kind. 

They have many analogous properties to those of the TA(x)s although they 

18



do not possess the equal-ripple property of the latter. Some of these 

properties are derived in Appendix A2.2. : 

However, one useful feature of U(x) is that its integral can be expres- 

sed explicitly in terms of the ordinary Chebyshev polynomials. 

In later chapters it will be seen that the properties of Chebyshev 

polynomials can be used in many situations to obtain satisfactory approx- 

imating functions. 

19



CHAPTER IIT 

Continued Fractions 

Introduction 

The continued fraction form is represented by 

f(x) = bo +a, 

  

  

b+ a, 

b+ 

seeeseceees for TneTeMeaeneaCO) 

by b = b(x) 

or, more conveniently 

a a an a F(x) = bo + Tale be eeceeeee = (3.1) 

n 

It can be noted that this expresses f(x) as a rational function, The expres- 

sion (3.1) is often a convenient computational form which, in many cases, can 

be used to obtain approximations to functions of higher accuracy than a poly- 

nomial expansion having the same number of coefficients. HowSver, problems in 

evaluation may arise. If at some stage a divisor is small, then the rounding 

error introduced could become unacceptably large. 

If (3.1) is obtained by truncation of an infinite continued fraction, 

will the value of f(x) converge as Se onset eco tliat 

The convergence of fractions and their evaluation are discussed by Blanch [2d 

Soma of the results obtained area quoted here. In addition, a different mathod 

of computation is described and it is shown that the same criteria for conver- 

gence and truncation error estimates can be obtained for this mathod as for 

other methods. (Appendix A3.3) 

Methods of Evaluation 

Four methods of evaluation are described and a comparison made of their 

relative merits. 

(i) The most obvious method is to use backward recurrence in (3.1) 

4.e. generate c, = 5% with cos O k=n,(n-1), eooeee 1 
Ker + 

aie a) 
then f(x) = b +c, <0



(ii) The second method uses forward recurrence. 

let f(x) = Ary de then AL and 8, can be found from the relation 

B 
n 

Yiu = bia; i. Biya Ais Opls- exes (on). (3.2) 

where Y; is either a or lp given AL s 8, zl 

B,=0, Ab, 

(This relation is established in Appendix A3.1) 

(444) . A method which differs slightly from (ii) calculates a correction 

term which when added to each convergent oi gives ai 

By-1 oe 

It is shown in Appendix A3.1 that if 
’ 

AL Bay 

  

- BA 

  

Kk kKok-l 

then oO. = - a Dey (3.3) 

and ee “st , DL : on 

n n=1 n=ion 

‘At-each stage a and a, can be computed to obtain 2 

n 

‘(iv) “The last method differs in its approach in that successive convergents 

Cof-the fraction are expressed as the partial sums of a serios. 

From (3.1) is evaluated 

) 

= By 1+, = bib, 

eer a b,b,+ a 

a Pa Lene : 575 
b, bi+a Ps 

4 

b 
° then f(x) 

where u 
a 

= PiPs coseeeers py 

Wand) di 

+2 Us 
doleet 

(See 

  

@ndix 3,1) 

Comparison of Methods of Evaluation 

It remains to be 

tation. Ali involve some division and could p 

decided which form is the most convenient for compy. 

ossibly suffer lose of 

ey



significant figures if a divisor is small.Method (i) is best if the number 

of terms in the fraction is known beforehand, for it involves the least 

computational effort. However, if more terms need to be added to the frac- 

tion, the whole eendea ete must be done again. The other forms, which all 

involve forward recurrence, can compute the next convergent with relative 

ease. Form (ii) does not directly compute the difference between succes- 

sive convergents and since in some cases this can be used in the estimate 

of truncation error, it might be an advantage to use forms (iii) or (iv). 

Table 3.1 compares the number of multiplications and divisions nec- 

essary to compute the next convergent by forward recurrence. 

Method Multiplications Divisions 

3 
(ii) 4 1 

(4ii) 4. a 

(iv) 30 1 

Table 3.1 

This shows that method (iv) requires the least effort of the forward 

schemes. 

With regard to round-off errors, Blanch (2] found smaller error bounds 

for the backward scheme than for the forward schemes (ii) and (iii). General 

rules are difficult to formulate, for example the fraction 

2 Mol x22 x23 xn 
Dae Toe ten Onn BL 

could not be evaluated by machine using (i) or (iv) without suitable modifi- 

cation when x = 4 and for x ~ 4 could produce intolerable rounding error. 

The best conclusion to be drawn is that whereas most continued fractions are — 

well-conditioned, the only way to ascertain the condition of a particular 

example would be to test it in detail. 

Convergence of Continued Fractions 

In [2] the convergence of continued fractions is discussed making use 

of the relations described in methods (ii) and (iii). The results are 
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summarized here together with similar results for the form (iv) which are 

obtained in Appendix A3.3. 

However, in order that the number of fractions under consideration 

can be limited without loss of generality, use is made of the equivalence 

transformation proved in Appendix A3.2. This enables consideration to be 

conveniently restricted to the forms 

  

Teel 
uA Cyt Cyt ee © provided a, #0 

and b + oe Wo rovided b, # 0 otTe Te tttteee p ' 

Summarizing the results obtained in [2 Jand in the Appendix A3.3; 

EN ae 
. If . f = c b+ byt -coccesocee where a,b, 70 (3-5) 

3 
then the even convergents approach a limit lo the odd convergents a limit 

L, such that LSLe 
oO t 

In the summation rons 0, for j>l,and the terms of the series will 

alternate in sign. 

  

: eet 
Boot ho * Bra: bat cseevetee where b, > 0 (3.6) 

© 
F, converges if and only if 2) by. diverges 

kel 

c. 

  

where b.70 (327) 

a sufficient condition for the convergence of f, is by ? 2 for all k>N. 

In this case 379 and the series used in the summation form has the same 

sign throughout. 

Dd. If Real ae where a,20 (3.8) Bilist Le vasesesace 

a sufficient condition for the convergence of F, is that as + for all k>N. 

E. For fractions in which all the elements ere positive, the value of the 

fraction will lie batween the values of successive convergents, (ignoring 

rounding error). 
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Fe. For any fraction, let the truncation error be Ry 

fie, Roar - An 
B 

n 

and let eo = Ay - Bre 
B B 

n n=) 

then for F, if bh 22+ where 670 

o<|r lk d El where d= 14 4c V(l+tc)) - 1 (3.9) 
nls 1l-d 

and for F,, if as 4 -c where c>0O 

(3.10) 1 E 
o< IR, Keen! n | 

In addition if P3 form a decreasing sequence for j7n+l, 

then | Ry I< Yost , 

  

1 lone | 

Examples 

1 1 1 1 
@) f= yo Sas ears 

all the elements are positive and 

1 a 4 7 

ArLA "as Ata AMis Ce *7 a6 
and all the values ofpare negative apart from A> The convergents are the 

partial sums of the alternating series 

Ale Deeley ete a 84 ~ 3171 HF ceeevere 

and form the sequénce 

1.0000 0.76190476 0.76159420 

0.7500 0.76158940 0.76159415 

The odd convergents are increasing, the even convergents are decreasing and 

0.76159415 < F < 0.76159420 

ere which are all positive. 

  

   



The convergents form the sequence 

1.00 00, 1.5000, 1.555 56, 1.557 38 .....ceee 

1 r 
but Us = S500 and applying (3.11) 

Ral n 

1 
Cees 

32940(1- 
x 0.31 x 10°* 

     6 

_* 

(The error is “0.28 x 10 at this point) 

This estimate requires extra work in the evaluation of ug andy. 

Reconstructions of Fractions for More Rapid Convergence 

Handscomb [7] quotes transformations which allow only the odd or even 

convergents to be computed when the original fraction is of the form 

bo+% C2 og 
d+ 1+ 1+ eeeecey (3.12) 

Since this would halve the computational effcrt, it looks attractive. 

Although any fraction could first be transformed into the form (3.12) and 

then contracted, it would be helpful to apply the process to the more gen- 

eral form 

a ax 
bo a Bo octteeee (3.13) 

In appendix A3.5, the following forms are established for the odd and 

even parts of (3.13) 

  

basa, 

. Baa) “ER 
(3.14) 

(a, +b,bs + = s 

3. b,a,a. 
p= Doty _ b. ana s 

2 b, (a,b, +b, (b, b, +a, )- (Breh* bea, y (3.15) 

bs 

Clearly, extra effort is required in evaluation of the partial numerators 

and partial denominators in either (3.14) and (3.15) compared with (3.13). 

Depending on the nature of the coefficients, this may outweigh any reduc- 

tion in the amount of calculation required in computing the convergents. 
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Consider an example, the known expansion 

  

     
    

: ». v * 
tan x = 7 seeeeee (Em) cee (3.16) 

This can be written Se 2 xt 

CER ee S265 2r-3)(2r-1 
=e “4 To ottteeee 73 oeeee 

From (3.8), this is convergent if 

2 i < = 
(22-3) (22-1) aa 

or x; 6. CRF ~ 

S
i
r
 

This will always be true for large enough r, for example, if x = 3, 

the coefficients satisfy the condition for convergence if r is greater than 5. 

Using the transformation (3.15) or (4.16) we have 

  

a a, = -x? joi 

by = 2j-2 jyl 

hence, 

2 
a,b,= 3x a,b, b,= 3-x 

eases 2 8 bya 2 Bie a, + b,b; + = 35 - 10x etc. 
Bog ie ess bs > 

Z ye u xt 
and tan x = 

3x 3 
(3-x*) - (35-10 x*)- (99-18 x*)- so ga 

3 © 

or, more easily for computational purposes 

tan x ee epg a 
105 ° -1)- (82 -10)- (3 -18)- 

  

(3.17). 

  

* The convergents of (3.17) are the even convergents of (3.16). 

If we note that the rt" term of (3.17) is 

4r-1)(4r-9 
( 4r-5)(4r-3)(4r-1) _ (p76) 

then some of the reduction in computational effort in using (3.17) is lost 

due to the extra effort involved in evaluating the partial numerator and 
denominators. It may be noted that some of the terms in (3.17) could be 
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evaluated using integer arithmetic, which could be a help in reducing 

rounding error. 

A comparison is given in Table 3.2 of some results obtained from 

(3.16) and (3.17) 

Value of x Convergent No. Original Form Convergent No. Contracted Form 

1.00 4 1.557 3770 2 1.557 3770 
6 1.557 4077 3 1.557 4077 

2.00 8 =2.185 0643 4 -2.185 0643 
10 -2.185 0399 5 -2.185 0399 

3.00 8 -0.1425 4763 4 -0.1425 4763 
10 -0.1425 4654 5 =0.1425 4654 

Table 3.2 

Modification of the Summation Process When a Partial Denominator is Small 
5 

It has been shown that a continued fraction can be evaluated by summing 

the series 

rete a where 44 = (2 Seay 

and “fim tte, ) 573 

Seta Jz 

Now if a is very small, then jeri 

eae us {-2) el 

SE also l + Pia = and considerable rounding error 
b,b, +a (142, 

J je +t Jj if 

could occur in the calculation of Pyar? 

One way to avoid this possibility, assuming that it is due to only one isola- 

ted value of 4p is to avoid the computation of f and Fig and to jump from 

Fee aa Fea 

In appendix : A3.6 the following expressions are developed 

F = Ff - Yat en Om Crea an. +Pn-d 
n+2 n=! 

(oe Bien . Sry Pas 5 si ate.) + Baa Bnet Bae, 
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Yat 2n®n shea nas (1 ‘fre 

Oe [Prat (oes * a, (lia)? s ereanet (ors onaa * Biya) (6, bt, (149,,) 

+ 

U 

ebb Nat net N42, 
b 

Te. A nt n+2 

‘Pn+2™ 
Das Paes +a woneieenet } 

a crege : a, (2 Fo) + Ono 

These expressions are valid for n 23, with similar expressions for n = 1 

  

and n = 2. The programme documented in Appendix A3 uses the summation form 

for the evaluation of a continued fraction and incorporates the above modi- 

fications. It was used in the following example. 

Example 
The fraction for tan x can be expressed in two ways to obtain the even 

and odd convergents respectively: 

al a 
eee ee ee Re 

3 35 i 
Cea t)= AC = 

  

i eee 
x ies :as6 

ne sr ae m0 a7 

  

It can be seen that b<=0 when x 2f3 and b= 0 when xe/008. The following 

results were obtained using single precision floating point arithmetic and 

without the modification outlined above 

xX = 1.7320508 

Convergent No. Ley fer 

5 6.1480 5471 9 -6.1499 9224 2 
6 -6.1480 5471 9 -6.1499 9224 2 

xX = 3.2403704 

6 0.0991 0224 103 0.0990 9549 136 
7 0.0991 0224 103 0.0990 9549 136 

The summation appears to converge, but the difference in the results 

indicate that the values obtained are unsatisfactory. With the modified 

programme the results become: 
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x = 1.7302508 

Convergent No. 

5 
6 

X= 3.2403704 

6 
ee 

F, 

-6.1475 3345 4 
-6.1475 3345 4 

0.0991 0026 477 
0.0991 0026 477 

Fa 

-6.1475 3345 5 
-6.1475 3345 5 

0.0991 0026 474 
0.0991 0026 474 

Here, it is noticed that F, and F, appear to converge and, in addition, 

agree in the values of the function. The discrepancy in the last figure 

could be accounted for by the fact that machine arithmetic is accurate to 

about 11 significant figures. 
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CHAPTER IV 

Interpolating Functions 

Introduction : 

One of the oldest problems in approximation is that in which we seek 

to express a given function f(x) in terms of a simpler function p(x) such 

that f(x) and p(x) and certain of their derivatives agree at given points 

Xie i = 0,1 ....n. The p(x) is described as the interpolating function 

and can be used as an approximation to f(x) for values of x within the 

range defined by the Xe 

In this chapter, methods are described which define p(x) as a poly- 

nomial and as a rational function. A method of choosing nodes is given 

which is the best choice in terms of the minimum of the error norm. 

Polynomial Interpolation Forms 

An obvious choice for p(x) is the polynomial which takes the values 

of F(x,) at the nodes Xie This is the Lagrange formula, given by 

L(x) Da x) = 5 ean 1, (x)# (x; ) 

TF (x - x.) kf i i= 0,1,.....n (4.1) 

(StS x) 

where 1, (x) =, 

  

If we wish the polynomial to take the value of the function and its first 

derivative at the nodes, then we have the Hermite formula, given by 

ee HU , 
Heyy = 160 fa a 2 (x, (xx, )] F(x;) + Bry Ugly xox, POx,) ee 

. We notice that whereas in (4.1) each node point leads to the introduction of 

a factor (x-x5)» in (4.2) there is a factor (x-x, to ensure the correspon- 

dence of both function and its first derivative. As the number of derivatives 

introduced into the constraint is increased, so more and more nodes can be 

thought to coalese. The ultimate would be if all nodes corresponded to one 

point in which case, at that point, there would be agreement of function 

value and its derivatives: This gives the well-known Taylor series represen- 

tation, which is discussed in Chapter V. 
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Error_in the Interpolation Formule 

Consider the error in using the Lagrange formula. Since L(x) agrees 

with f(x) at (n+1) chosen points, we assume an error of the form 

P(x) - Ls) = C(x-x,)(x-x, ) sereeee(x-x,) 

Let F(x) be a function of the form 

F(x) = f(x) - L(x) - C(x=x,)(x-x, ) seeeene (xox, ) 

F(x) will have zeros at XgrK oeee eX, and by choosing a new argument x_, 
n+) 

between xy and xy? with 

Cre ee LAC) (4.3) 
a Ona %o) Spar %) vee OQ HX) 

  

then fons ) = 0 and F(x) has at least (n+2) zeros. 

By Rolle's Theorem, F'(x) will have at least (n+1) zeros and continuing in 

this way Fort) (x) will have one zero, say x’ between Xe and Xy° 

(n+t)-o ives O=f (x') = C(n+1)! since L(x) is of degree n only. 

Substituting for C in (4,3) gives 

$l%n,) - Un%ays) = LO ON, My) corre Orns Mp) 
(n+l)! 

Now xa can be any point in the range XX, and in addition, the equation 

is valid at the (n+1) nodes. 

F(x) = LA(x) = asia (xox,) eeseelxen)s x46 x'EX, (430) 
(n+l)! uy 

Similarly, it can be shown that the error in the Hermite formula is given by 

P(x) =H yw £2066) (roe Kn, eveceeetxen,) (4.4) 
ante (2n+2)! 

where x! r xy$ <x, 

It is assumed that all the required derivatives of P(x) exist. The error 

expressions are functions of the degree of approximation and of the particular 

choice of nodes. It is desirable that 

p(x) > F(x) as n30 (4.5) 

The question arises as to what choice of nodes will produce (4.5) or conversely, 

given an arbitrary choice of nodas (e.g. equally~spaced) is (4.5) generally 

true. 
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Convergence of Lagrange and Hermite Formule 

Suppose that we wish to interpolate in the range (1,1) using a 

Lagrange formula. If f(x) has bounded derivatives in the region, then (4.3a) 

requires that we minimize the expression 

max | (x-x,)(x-x,) «eee (x-x,)! in [1,3] (4.6) 

In Appendix A4.1 it is shown that the polynomial in (4.6) must be identical 

An to 2 Ta (s)2 where 1 (x) is the Chebyshev polynomial of degree (n+l). 

Hence, the nodes are given as the zeros of Ta %) S505 

2d 
if T 

ee i= 0,1, ......n   

A similar result can be obtained for the Hermite polynomial. Again, if the 

derivatives of f(x) are bounded, we can choose as the error norm to minimise 

the expression. 

(2n+2) : i 
ee) ie? (x-x, Pose.an(xex,) dx (4.7) 

In Appendix A4.2 it is shown that the function under the integral sign must 

be orthogonal with respect to unit weight function over (-2,1). Hence, the 

nodes must be the zeros of the Legendre Polynomial of appropriate degree Py (x)> 

If we turn our attention to the case of equally-spaced nodes, we find 

the results are discouraging. It has been demonstrated (e.g. by Runge ) 

that even for a well-behaved function, approximations on equally spaced 

nodes can be shown to diverge as the number of nodes increases, This has 

been analysed by considering the behaviour of the given function in the com- 

plex plane surrounding the real region of approximation. It can be shown 

that if f(z) has poles which are close to the real interval {a,b] » then it 

may prove impossible to find a sequence L(x) to satisfy (4.5). 

For a discussion of this problem and an example of the Runge phenomenon, 

see D. C. Handscomb [7], Chapter 3. A list of positive and negative results 

concerning the existence of interpolating functions is given in J. Todd fae) 

pp 146 ~- 149. 
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Newton's Interpolation Formula 

Newton derived the interpolating polynomial through the given function 

values in a different form from that of Lagrange. 

Let F(x) = tix] + (xox, )f Lx, 9%) 

Fixosx]= Fx 9%] + (x-x, PKG 2X 1X] (4.8) 

t[x,» oreo eX x] = Px» eaee xX %nl + (xox, )P[xo9X aeele xox} 

Then the functions P[x> sree] are called divided differences and are 

defined by : 

t [x] = F(x,) t [x9] = F{x,] - [x] 

xy- x 

(4.8a) 

  

Back~substitution in (4.8) leads to Newtons formula involving divided 

differences 

F(x) = P(x ]+ (x-x,)* [x59x,] + (xx) (xex, )t [xox xa] oe 49) 

eee (x-x,) Gc (xox, fxg» aes: xa + E(x) 

where E(x) = (x-x,) aoe (x-x,)f Xgr cere xX] 

If E(x) is truncated, (4.9) defines a polynomial of degree n which 

will pass through (n+1) given points [r. Hildebrand (20) a The coefficients 

in (4.9) are most conveniently evaluated by forming a divided difference 

table. e.g. 

x f(x) 

0 a1... 
=m 

Sea Men, «aes 
x, a5 
Is. OL =) 

2 Wwe. Rien : es 
ese p es See 

S be ¥y iY 8S 
3 iS hey 

‘es 
4 ‘Yo 
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Interpolation formula may be arranged in a variety of ways, most con- 

veniently of terms: lying on a continuous path through the table. Using 

the two paths indicated, we have 

F(x) = -1 + x + x(x-1)(-'%) + x(x-1)(x-2)(x-3)(‘$s) 

%4 (x-2)(Is) + (x-2)(x=3)(~4g) + (x-2) (x3) (x-1) (Es) 

+ (x=2)(x-3) (xe) (x=4)( 4s) 

and F(x) 

Approximation by Continued Fractions 

The formula for interpolation given in (4.9) can be considered in the 

following recursive form 

F(x) = uo(x) 

u(x) = u(x) + (xox, )up (x) kos (ne) y eee lg 0 

where uy (x) af [0% oa Sha gptal 

We now consider a similar recursive form 

F(x) = va (x) 

  

Kx, 

= 7) k = (n-1 eeeel,0 (4.10 1) #400) + TB) (n-2) (4.20) 

The first few terms are 

F(x) = vg (x) 
X-x, 

COSC A araresy 

X=Xo 
F(x) = Vg (Xo) * vy a) + XX 

vy (x) 

If the vy (x) can be chosen correctly, then the function F(x) can be made to 

take the values F(x;) at the nodes Xe 

In Appendix A4.3, we show that if 

vy (x) = 4, [99% sex +x] 
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tihen (4.10) is an interpolating rational function where 

a ; # [x] - TP] 

x-% 
i, [*or%s »*\ = Fx) - 8 Xr] =a) Pe] 

x - x 
k=1 (4.10a) g, [x a Sugcea ales kL°o ke) ] hon Xoo see x 49*] - Ay [%o2 oe Xeon® kar J 

Comparing (4.10a) with (4.8a), we see that the g's are the inverted divided 

differences (or more simply, the inverted differences) of the Newton formula. 

As for the divided differences, a table of inverted differences may be 

formed. However, one important difference exists between the two tables. 

In the inverted difference table, the ordgr in which the points are intro- 

duced is important. 

i.e. whereas 

f]x59x, xx,] = t]x, 9%, 9X, 1X5) for divided differences 

# fox, Xo] A & fearXas%urXy] for inverted differences. 

8.Q. 

x F(x) g, By #. by 

0 +1 

1 0 1 

2 Ye Sy 4 

3 "s 93 Sa 

4 "Iq Mg yee -2 

Then, using (4.10) we have the continued fraction 

F(x)oS "1 4% xed xn? xe 

Lie 4 S14 =2 

Now if interpolation is required in the middle of the range, the points start- 

ing at x = 2 may be introduced first and then work outwards. 

32



x f(x) go, g, Paer e 

2 Sig . 

8 ‘Is 5 

1 0 cee a 

4 ‘Si hy "hs -25 

0 -1 Sy 4s “5% —"is 

and the interpolating fraction can be written as 

3, x2 x=-35) xe xH4 
F(x) = $+ = a 0) e25euaiie 

The entries marked with an asterisk are respectively ¢,[0,1,2,3] and 

Bs [z,3,1,0] and it can be seen that they are not equal. 

Reciprocal Difference Formula (Thiele Expansion) 

When using interpolation formula, we’ usually require the tabulated 

point nearest to the interpolation point to be used as the base point of 

the formula. In this way, the correction terms that are calculated should 

be small in magnitude and the effects of rounding error will be minimized. 

In the last section it was seen that reordering the points requires a com- 

plete recalculation of the inverted difference table. This can be avoided 

by using a slightly more complicated form of difference table. 

The continued fraction interpolation so obtained is called a Thiele 

expansion. In Appendix A4.4 is derived the following form. 
x= xX) x= x, ox, 

F(x) = F(x, )* AlX aR Alo ex ae] P(x, )+ Alo 2% 9X, 9Xq ABE - 

(4.11) 

  

when the ('s are termed the reciprocal differences defined by 

Ay “Xi, 

Px [*o ee *] = Prot [%o poten Xe Ae Ag [Fo peek oa ent] 

+ Ae. fro? creek] 

Again, the reciprocal differences may be arranged in the form of a table. 

  

By taking various continuous paths through this table, interpolation may be 

carried out anywhere in the range of the arguments. 
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Example 

x F(x) A -> Cs las 

  

0 “1, : 
a ~ 

1 

1 0 SEG ‘ = 
4s eciO) 

2 4s ois aol 

Bie P30-- = 
3 Ms Ve 

8%, 

4 "hq 

Taking the leading diagonal, we obtain the expansion 

F(x) = -1 + _x X-1 _x-2 x3 (4.12) 
d+ 4+ -l+ =2 
      

Now, if the points are reordered, say for interpolation near x = 2, we can 

establish that 

    
23,%2 %3 xol x4 

BO )ie et ice pee ear (6715) 

Thiele's Expansion Involving Derivatives 

An interesting case: of the Thiele expansion is that when only one node 

is taken and the pa convergent of the continued fraction agrees with the 

value F(x,) and (k-1) of its derivatives at X,- In Appendix A4.5 we derive 

the form X=x X-x xX=X 

F(x) = 6, (x,) + TJs 7.) TJs (4.14) 

where g fe (x) ie 

CO) FAcag D+ fy 00) 

with sterting values 

A,00) = A) 20 > (x) = F(x) 
This form can be used to provide formal expansions to continuously 

differentiable functions in the form of rational approximations. However, 
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it may be that the function concerned is not expressible in the form (4.14). 

For example, if the function is symmetrical about Xoo the rational function 

derived from a truncated continued-fraction expansion could only contain 

even powers of (x -Xy)« In such cases some modification of the form is 

required. 

In analogy with the Taylor series, such expansions are extremely good 

near to Xgo but rapidly become worse as we move away. In later Chapters, 

methods will be discussed of modifying the basic functions in order to find 

a more equal distribution of the error. 

Comparison of Methods. 

The various methods described in this Chapter may each be used to 

advantage in different circumstances. The Hermite formula is useful when 

the value of the derivative is prescribed at certain points. In cases where 

the derivative is unknown, formule involving only the ordinates must be used. 

The Lagrange form does not involve evaluation of a difference table, but 

estimation of the truncation error is not possible unless the given function 

is known analytically. The Newton form involves a difference table, but the 

truncation orror may be estimated from the first neglected difference. Also, 

extra points are more easily incorporated in the Newton divided difference 

formula, 

The use of continued fraction form is well-suited to problems of inter- 

polation in the region of a point at which the given function becomes infinite. 

Continued fractions can be evaluatéd) very quickly since only a few divisions 

are involved. However, particularly with the reciprocal difference form, 

derivation of the difference tables can be laborious. Also, it is possible 

that the particular continued fraction form that we seek does not exist. This 

problem can somatimes be overcome by a reordering of the points. 
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CHAPTER V 

Approximations Derived from Series Expansions 

Introduction 

Some methods are described for deriving approximations by means of 

series expansions. The Pade table is shown to be one method of deriving 

a rational function approximation. As example is given of the use of a 

series of Chebyshev polynomials in the solution of a differential equation. 

The Taylor Series 

If a function and its first n derivatives are continuous in a 

region [asx], then the function can be represented as 

Hix) @t(a) ¢ eenee) Ea sony ESNet) 
where acScx and the superscript represents differentiaion. 

An approximation to f(x) is formed by omitting the last term in (5.1) 

and the truncated series will then agree with the value of the function and 

its first (n-1) derivatives at the single point x = a. The truncation error 

e(x) is such that 

le(x) I< max #" ] (x-a)" 
a,x} n! 

The value of Je(x)|wi22 remain small in a region close to x = a, but will 

rapidly increase as we move away from this point. From a practical point 

of view, the infinite serias obtained by allowing n to increase in (5.1) 

must not only be formally convergent, but the terms must decrease in mag- 

nitude rapidly enough to allow a reasonable point of truncation to be 

chosen. Also, the error estimate involving the ae derivative may be 

difficult to evaluate. In such cases, reasonable error bounds are often 

found by other means. for example, the sum of the remainder terms may be 

estimated by comparison with a known series (e.g. a geometric series. ) 

In the case of a series of alternating sign whose terms can be shown to 
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be monotonically decreasing, we can bound the error using the first neg- 

lected term, 

i.e. if S " wo 1 o . o 1 o + a ~ aeeee n na ner n+3 n+h 

)- (eo - re) or Neaetete aoo-a 
n nee n+2 

and since all the bracketed terms are positive 

s<s 

) + 08 

  

n 

Sove ty eac Sa ene? Cre one) * (ames Bass 

and S> a = 8. 

Ba Gans 

A truncated power series can often be used as an effective approxima- 

tion so long as the interval over which it is applied is small. Even with 

modern computing speed, and time is of no importance, if large numbers of 

_terms have to be summed, then large accumulations of rounding error could 

occur, partioutarty if the first few terms are very large and considerable 

cancellation takes place. However, power series are easily integrated or 

differentiated term-by-term and there is usually a fairly reliable estimate 

of truncation error. 

Asymptotic Series 

If the behaviour of a function over a range involving large values of 

the argument is of concern, say a¢x<, then it is unlikely that a 

Taylor series will be practicable due to the large magnitude of the terns 

generated. (Even though a series may be formally convergent.) 

If it is possible to define a series 

«“ 
f(x) = = Ba » then the series is said to be asymptotic 

n=O Xn 

at infinity if for every n, 

im! x" (F(x) - s.(x)}| = 0 
x20 

n 
where 5, (x) em “« (5.2) 

x 
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moy be 
It Veal possible to use (5.2) as a reasonable approximation for large x 

even though it may not be convergent for finite values of the argument. 

Asymptotic series possess the property that for a given value of x, 

ultimately 
the terms fimet+—decreaso in_magnitude—and—then—stemtity increase without 

bound, re te eS eet the truncation error is 

less than the first omitted term. Hence, in practice it is often possible 

to find asymptotic series in which the first terms decrease fairly quickly 

and a reasonable approximation may be obtained with an early point of trun- 

cation. Notice that in contrast to convergent series, there is no auto- 

matic gain in including extra terms in the summation. Once terms begin 

to increase in magnitude, there is everything to be lost by including them, 

f(x) = [rortet 
x 

Integrating by parts f(x) 

Example 1 

eo , - 

(By? )dt 
2t 

* 

ey i 
= iver | # (he) dt 

eS SN 2t* 

ae -ty ee 
= ae a” pave Ey, 3) dt 

a owe tf OG 
* 

   

  

= 13” 
2x 

ciaat(%) sean eS ae 
8x 20 4an 

M 
-¢ 

Now if [R j= 1.3.5 ....(2n-1) / e dt 
2n 42n 

* 

a 2 ot 
eG . 1.3.5 200. (2n-1) _ / 2.3 ....(2n-1)(2n+1) © _dt 

gu ent gn 42nee 

The first term on the right-hand side is the first neglected term of the 

series and the integral is positive and preceded by a negative sign. Hence 
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Ry will be smaller in magnitude than the first neglected term. If we 

put x = 4, the series becomes 

=i 
#(4) =e -%& +o wese ese } 

As we proceed from one term to the next, the denominator is multiplied 

each time by 32. The terms will continue to decrease until the factors 

in the numerator excead 32 when they will steadily increase without bound. 

Example 2 

Consider the derivation of an asymptotic series for the Bessel 

Function J (X)e 

ov WF 
Now 4, (x) rie n)cos (x88. ) = Q(x,n) sin es vm 

suns (isiw\? faut? 
P(x,n) = ton,/[o “ue 7 32) C au) } a 

a(x,n) = eo fe ew tia Cee du 

(see G. N. Watson, A Treatise on the Theory of Bessel Functions;] 

where 

Consider the expansion 

(su) de(n-4) #): a ocak ae 

* (n-d) (n=r+} ~ u ner-$ » eb nars iu n=-3) ... (ner (say (1-t )** ' Aut) dt 
(r-1)! (r-1)! 

[The remainder term can be derived from the more usual form 
Eat pf 

R(y) = heel (y)as by writing y= x, 8s aut and f(y) = (ary)? ] 

Now for t in (0,1), 1+ dutl> 1, hence if r>n-$ (5.3) 
2x 

(at Po! iutyn-e-d atl g | [rat at / 2x 

Gola aa 5 Opbtgay «Sosy (any + ecere 

(n-4) sas(ncesh (iu) (a=) aloe ae ye 

where IS, | $ 
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By a similar argument 

. n-$ ‘ Bry pce 
G-# 21 - Ge + boat) |, 

2x Th Xs: 2! 2x 

(-1 io ~ (n-34% a. $ (0-4 a (nces) yaiuy? 
“ ee 2x () 

If the two expressions are added, terms of odd degree will cancel, whilst 

if they are subtracted, the even degree terms cancel. 

Hence, writing r= gives 

 n=t 2 nad 
(2432) +(2 4u" =2+2 = 1 ae n-3 ai pea) 

4 2 Gln-d) 2. (n-2p+}) wf 1$,)<2 (5.4) 
(2p)! 

and from (5.3) 2p > n-$ 

Equally, putting r = 2p+l 

or TQ BY = Ech toets atone Big 
(2m-1)! 

2 €,(n-4)(n-3)_...(n-2p-4)(iu eure (5.5) % soles net) as (noto=t (du) 

and 2p + 1>n-$ or = 2p>n-d 

Hence, substituting the series (5.4) and (5.5) 

(2m)! 

$,(n-4) ...(n-2p+4) uaP 
F 2p)! eS) us 

2 2 0 
t om ure) ‘ dx el Cay uamen-3 

Now x oe du 
Poet) (2x) MA(ned)/, 

el PF (2m+n+4) 
(2x)2" ° (rsd) 

* dean (2m+n-4)(2m+n-%) 2. (n+4) 

x 

2 ou ue) 
P(x,yn) = acn/' b + 2 (20)R (ied) (oe ane x iV “ 
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The ae term in the integral for P(x,n) becomes 

(-1)™(n-4)(n=4) 226 (n-2m-$) (n+2m-4)(n+2m—4) ....(n+d) 

(2m)! (2x)°™ 

  

(2m)! (2x)*™ (5.6) 

To consider the remainder term, we notice that 

a 

| fs arr untep-2 du 

and if 2p>n-%, as in (5.6) 

fri ¢ (a 3°) (nt- 8”) woes (n= (2p-3)*) 

(2p)! (2x)?P 

  

a 

s [o uneap-2 du =(n+2p+4) 
lo 

Hence, P(x,n) may be represented by the finite expansion 
5 

Pal ¢_yyM/a_ 2aycia_ 3 ou Da 
BGan)iete Ss (-1)"(n*~- 3*)(n*- 2 pele 2m-4)*_) 

m=1 (2m)! (2xy 

and the remainder will not exceed in absolute value the first neglected 

term. 

In exactly the same manner, we find that 

P (Sonar nt~2*) ....(n*(2m-%)*) Q(x,n) = 2 a 
m=1 . (2m-1)! (2x) 

where, if 2p>n-% 

[rl¢ (pr) term. 

The Padé Table 

It is possible to derive a sequence of approximations in the form of 

rational functions from the power series representation of the original 

function. (Handscomb[7] ) 
. 

Assume f(x) =e) + e,x + OX + coeee (5.3)   

and that Rag () is a rational approximation of the form 

2 m 
Ran (*) = 89 + A,X + A,X seers + ax (5.4) 

n 
1+ b,x + byx*+ 2... box 

where m and n are the degree (at most) of the numerator and denominator 

respectively. The coefficients in (5.4) are chosen so that f(x) - Rant) 

expressed aS a pdwer:series has no-term of degree:less than.(m+n+ 1). 
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That is 

m+n A m (c, +X + sees Ox teeee)( 1 + b xt seetb x )-(a, + A\Xt oo eta x ) 

must be free of terms of degree less than (m+n +1). 

Equating coefficients to zero in (5.5) gives a set of (m+n+1) equations to 

determine the (m+n+l1) unknowns in Rin(kde 

m+t men 
The coefficients of x to x give a system of equations that can 

be solved for the b's, the remainder of the equations, involving both a 

and b can be solved once the b values are known 

i.e. [co c cas b 0 
M+t-n “m+2-n coeee M “M+l n 

Tear Pas Site =) Res baa -0 

: | i =|: (5.6). 

b 0 

c Cc seeeee C c A. oO 
m m+ m+n-1 “m+n 

The matrix of coefficients (c] has n rows and (n+l) columns. Since the 

right-hand-side is zero, it can be seen that (5.6) has a non-trivial solu- 

tion if the determinant 

c c peereeeeee GC 
m=n+i m=n+2 m 

c c 
m=n+2, M-N43 — oeeeeeees C 

m+} 20 

c c teerceeeees 
m ~ md m+n! 

The approximations (5.4) that are obtained in this way are called 

Padé approximants and are dependent on the choice of mandn. They can 

be arranged in the form of a table in which m and n are used to denote 

the row and column number respectively. 

  

i.e. Bao us Roa . 

Ree aye Ry enesc ce 

R R. R ea eeeeeee 
a0 I aa 

    

, 

The advantage of using the rational Pade form is in its computational 
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efficiency, since it can be expressed conveniently as a continued fraction. 

One disadvantage however, is that if the degree of approximation is to be 

increased, the new Pade approximant has to be evaluated right from the 

beginning. 

We now consider two examples that illustrate the derivation of Padé 

approximants. 

Examples 

Rite ae aa ae (i) log (lx) =x - F455 G+E coccccees 

The approximant : 
ao+ax + ax 

se oO t 2 
2 is found by making 

1+ b,x + b,x* 

(x - $04 Oe = RL + b,x + b,x*) - (a, + a,x + a,x) = O(x") 

Equating coefficients of xd for j = 0,1 2.6.4 

a =O b,- $b,+ $= 0 

-$b,+ 4b,+ = 0 

  

2 
from which R= EEE (527) 

t 

The error log, (1+x) - R(x) is tabulated in Table 5.1 and we notice 

that the error behaves in a similar manner to that of the truncated Taylor 

series, that is it is small close to the origin but rapidly increases on 

either side. Clearly the Padé approximant is not a suitable approximation 

near x = -1, but it is reasonable to suppose that this is due to the rapid 

descent of log, (1+x) to -in this region. 

(ii) Consider 

en ae 
* 6 * 247120 n

x
,
 

cosh .x - sinx=l-x+ + secceee 

Then the first few entries in the Padé table are 

2 1 1 
1+x Lax+dx= 

13x 1-x 1-3x 
; 14+3x T+3x+Ex™ 
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=> 2 A a anaes 1 -3x_+ix 1 ~%x_ +x 
1-4x 1 <%x 4hx* 

etc. 

The error (coshx - sinx) - R,,(x) is tabulated below and again it can 

be noticed that the error curve demonstrates the same pattern as in 

the previous example. 

  

x -1 -,8 -.6 -24 ~.2 

log, (1+x) - R(x) =9 -.04423 -.00325 -.00018 ~-.00001 

(coshx - sinx) - R(x) _.01747 -00576 00138 00019 -00002 
ag 04 6 8 1.0 

-0000 00002 -00012 .00038 -00084 

00000 -,00019 ~-.00155 -.00623 -.01923 

Error_in Padé Approximants 

Table 5.1 

It is possible that the rational approximation may be more appropriate 

over a wider range if it could be arranged for the error to be more equally 

distributed. A method which attempts this is now described. 

Economisation of Rational Functions 

The object is to take the original Padé approximant Ra *) and per- 

turb it so that the error is more equally distributed throughout the range 

and thus reduce the maximum error. The method described here is that der- 

ived by Ralston {2}. It involves taking a combination of Padé approximants 

in such a way that the predominant terms in the remainder form a Chebyshev 

polynomial. The form of the modification is derived in Appendix 5.1 

(iii) In the approximation to log, (1+x), since we have already noted that 

this form is unlikely to be a reasonable fit near x = -1.0 we consider tha 

range 0.6,0.6]. 

° » 
Now we have Pp Pp pr > 

Ror get ee So end a ee 
hg Q 19x Qt 1+x+x 
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The new approximation is 

  

+ » °o 

Re(x) = Pat Pi + &Po since t, = t, =t =0 
a iy RRR ae eo! ° 

Q, + 3,0, + 8,05 t,= -20, t,= 5 

1 12 (0.6) (-20) 
then §, = Teo “lie” -0,03 

% 

aut. .,, (9-68) °(5) a 3, "too 2+ Ge = 0,00023 

* = 0,03 3% SR . x 

hence RE (x) = Tixsexe= 0.03[1+da]  0,00023 

w 0.97x + 4x” (5.8) 
~ 0.97023 +0.98500x +¢x* 

Ths error is then found to bea 

x -6 -.5 -.4 -.3 -.2 -.1 0 

log(1+x)-R*, (x) -.001053 -.000033 .000040 -,000014 -.000036 -.000025 0 

ol a2 aS 4 5 6 
000019 000024 .000014 .000001 -.000013 -.000009 

Figure 5.2(a) shows a comparison between the error produced by the modified 

and unmodified approximation. It is noticeable that the economised function 

still does not produce an ideal Chebyshev form of error oscillation. 

(iv) In the approximation to cosh x - sin x, the range will be taken as 

(-1.0,1.9] i.e. in (5.1.1) a = 1 and R(x), Ro (x) and RA(x) will be as shown 

in the Padé table. 

In this example t,=t, = ty = 0 

t, = -20 t, = 5 as before 

eeid 12 1 (-20) . 13 and 17°°F90°5 ‘Te? SLT T ae 0.05417 

=-33 2(5) 13 . § = - 35 (-1) =o%p4 = 0-00564 

1.00000 - 1.30000x + 0.81667x' + 0.05417(1 -3x) + 0.00564(1) eo 
hence R* =7"00000 - 0.30000x + 0.01667x"+ 0,05417(1 +4x) + 0.00564(1) 

= 1.05981 ~ 1.32708x + 0.81667x” (5.9) 
1.05981 - 0.27292x + 0.01667x* 
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The error y(x) = R(x) is plotted in Figure 5.2(b) and it is obvious 

that the error distribution is not even approximately symmetrical about the 

horizontal axis. To investigate why this is so, wa look at the nature of 

the modifying terms as given in Appendix AS5ji1. 

The error in the economised form is given in this case by an expression 

of the form 

y(x)-R&(x) = O4y(x) = PM) yO Cody (x) = PO) +3, f02Gdy(x) = PEC) 
OF(x) +, ON(x) + 4:05 () 
  

Now a! y(x)=P,"(x) (l= x+ x4 x7....)(1 = 3x + 1 x*) = (1 = 13 x + 49x") 
60 2 6 10 10 60 

== ex + O(x°) 

a?(x)y(x)=P, (x) = (L-x +x+ x" ...)(1 + 4x) = (1 - 4x) 

08 (x)y(x)-Po(x) = (1 = x + x74 oo 1-1 
2 

a ox + x*e x7 + xt x%+ O(x®) (5.10) 
2 6 24 120 * 

Now if we take only the first terms of the remainders in (5,10) and substi- 

tute in the above expression, we get 

-0.01806x* + 0,02257x°~ 0.00564x -R¥ eas 
V(x)-RE() 1.05981 - 0.27292x + 0.01667x* (5.11) 

The expression in (5.11) is plotted in Figure 5.2(b) and it is clearly 

more like the shape that is desirable. Indeed, the numerator in (5-11) can 

be written 

-0.01806 
16 

faex' - 20% + Sx] = “2.3808 T, (x) 

However, if all terms up to x® are retained in the remainders in (5.10), then 

y(x)-R(x) = ~0.01743x + 0.00701x + 0.02351x°+ 0.00282x*~ 0.00564x 
1.05981 - 0.27292x + 0.01667x* (5.12) 
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If the plot of (5.12) is compared with the actual error curve in figure 

5.2(b), it can be seen that they are very similar. Hence it can be con- 

cluded that the presence of the extra terms in the error expressions account 

for the unsatisfactory shape of the error curve. 

It seems that unless the ranges of approximation is kept relatively 

small, the form of the srror produced by the economisation process may be 

far from ideal. In which case it is probably better to seek the true mini- 

max approximation by some other method. (See Chapter VIII) 

Expansion in a Series of Chebyshev Polynomials” 

A series in which the terms are Chebyshev polynomials offers several 

advantages when used as a means of approximation. In most circumstances, 

the coefficients in a Chebyshev series decrease rapidly in magnitude allow- 

ing early truncation of the series without incurring serious error. In 

particular, the truncated series has an error which is approximately equal 

to the first neglected term and hence may be nearly a function with the 

equal-error property. Since Chebyshev polynomials are only defined in the 

range f-2,1], it may sometimes be necessary to make the substitution 

x= 2 (z - a), which reduces a-nézéath to -l< xsl 

One advantage of using Chebyshev polynomials is the relative ease with 

which they may be integrated or differentiated. This makes them particu- 

larly useful when the function under consideration can be expressed as the 

solution of a differential equation whose coefficients are polynomials in x. 

An example is given of this method of approach and two methods of estimating 

the error are compared. 

Example 

To find an approximation to y(x) given that 

(3 + 2x) y'- y = 0 and y(o) =1 (5.13) 

Let the range in which the approximation is valid be [-1,2] and assume 

a solution p(x) ska + a,T, (x) + aT, (x) + a,T, (x) (5.14) 

where Ty (x) are Chebyshev polynomials. 
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Equation (5.13) is first integrated and then (5.14) is substituted for y(x) 

i.e. (3 + 2x)y - 3f yax = const (5.15) 

Now ashy = Tei Te, j?0 and 2x7, = 27, 

and ‘ 

eo lia T 
7 ,dx Be aah del hs j>%2 
J 2) Gel Gai 

= a Tet Ty jel 
4 < 

= ag, j=0 

We can substitute (5.14) into (5.15) and using the above relationships, 

we obtain 

3a a 
1 L § 1 2 = “ah(4 a, + Jat a, T, (x) + @ a+ 3a,+ a 23} 7(*) 

G a,+ say) T(x) + 2 a,T,(x) = const. (5.16) 

and the initial condition gives 

Now all the conditions in (5.16) cannot be satisfied, so we choose to 

satisfy the initial condition and make the coefficients of T,, T,and T, zero 

i.e. 1 
2% “a ee 

ai 
-Fa_ + 3a, + Ha =O 

200 2 (5.17) 

i Z 
Gat 3a, + Te 8 0 

$a, + 3a, =0 

Solving, we obtain 

y(x)¥ 0.967 741 94 + 6.349 462 36 T,(x) - 0.032 258 06 T,(x) 

+.0,005 376 35 T, (x) (5.18) 
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Estimation of Error 

In (5.16) we can satisfy all conditions (apart from the constant of 

integration) by introducing a term %T,(x) on the right-hand side, Ce] 

we then have in addition to (5.17) 

a,=% or %= 0.003 360 22 
ol
an
 

Hence (5.14) satisfies exactly the system 

(3 + 2x)p(x) = 3 p(x)ax = const. + 0.003 360 22T,(x) (5.19) 

If p(x) = y(x) + e(x) 

we find that substitution in (5.19) leads to e(x) satisfying 

(3 + 2x) e(x) - af o(x)ox = 0.003 360 22T,(x) (5.20) 

with initial condition e(o) = 0 

This equation has to be solved Teevatively; in the form 

(3 + Ne 0.0003 360 22T,(x) +c&r + sf ox ax (5.21) 
‘ lo 

The *r is chosen to satisfy the initial condition and the integral is esti- 

mated by the trapezium rule. 

Choosing 2() =O 

" (3 + 2x) 0')(x) = 0.003 360 22 Tylx) +X, 

when x = 0 : ero) = 3[.003 360 22 +5] 

-0.003 360 22 ipa !(o) 20 a 

0.003 360 22[T,(x) - 1] 

(2) 

wt (3 + 2x) a(x) 

Then equation (5.21) can be used to find e‘”’(x) and so on. 

The results of the iterative process are tabulated below. 

x -1.0 -0.8 -0.6 -0.4 -0.2 0.0 0.2 0.4 0.6 0.8 1.0 

eo 0 4:42 -B44 ~ 16% woo 0 -080 -0.95 ~1647 2184 0 x 107 
g) 594 -bl2 219 13, -024 0 082 °106 17% 9179-049 JQ 

of J20 ~BS4 “282 2137 -O86 © Logg ~h0F =280 ~heP -063 497? 
el) 870% -206l ~2422 ~pase -03S6 O Loge, -1.089 1867 198% -0.450 x 107? 

° actual 3-495 =2:09% -2:468 -AS3S -0+367 ~OBW =H 9T97 EM LOG x 9 
error 

The actual error was obtained by comparing the series approximation with 

the exact solution of (5.15) i.e. 

 



Estimation of Error Using Neglected Coefficients 

In Appendix A5.2 the method described by J. Oliver fas] is outlined 

for expressing the error in the solution to (5.15) in terms of the first 

few neglected coefficients. In our example, we wish to find 

a(x) = E(xay + E(x)a, + E(x)a, 

where E(x) 
3. U4) 
‘ 4, T(x) - T(x) 

3 6) 

& (x) = 7 «51 j() - T(x) etc. 

It is shown in Appendix A5.2 that the ot; (4) satisfy equations with 

_ the same coefficients on the left-hand side as in (5.17) and different 

values on the right-hand side. 3 

In the example above, we have 

  

) a 
[a] ae | el (a 

= xo) 0 

a 0 
4” ea 

@ : 

[a] : Se) : 
Gy = 

os) 0 
Ay L 6; 

[4] ee [a : ao] = 0 
as) 0 
4s) Lo 

where [a] aon 50 “=? 0 

<—$ 3° 4.40 

0° t 3 Wy 

(ECaetan se 05, 

from which we obtain 

a”) = 1.258 06 aed a 

ao = 0.518 62 ee 4, 
4.5% = 9,370 97 Ace 

4," = 0.561 83 ae 

55 

1.935 48 

-0.341 13 

0.032 26 

-0,005 38



Since e(x) > a,é€,(x) + aéo(x) + a €, (x) 

a(x) will depend on reliable estimates being available for a,, a,and a, 

In the figures tabulated below, the values used were 

a, = -0.001 44 

a, = 0.000 32 

a, = -0.000 07 

x -1.0 -0.8 -0.6 -0.4 -0.2 0.0 0.2 0.4 0.6 0.8 1.0 

ayey(x) 2:63 he -2S% 194 ~o-7) 0:09 ~041 =h9G -2:28 -0-49 x 107 

agts(x) O82 +032 -002 023 0:97 =0:27 -0-2% 0:02 0°32 -032 x 107 

ay &(x) Ol! -e04 Of! Onl! row 00S 08/3 O14 0:03 Of6 x 107 

a(x) B06 - 19% +249 ~ 14S -Orgo OB! -1606 2/89 -~ 693 06S, 107 

actual g,s9 -2:10 -247 -)S4 -037 -oga -/08 ~/h%0 189-067, 19> 
error 

O
o
e
o
O
o
e
c
e
 

The error curves produced by the two methods of estimation are compared 

with the true error in fig. 5.3. In this case, both methods are shown to 

be reliable. One point is noticsable about the error, that is that it is 

far from symmetrically distributed about the axis, due to the initial con- 

dition producing zero error at the origin. This suggests that if the con- 

dition at the origin is relaxed a better error distribution may be achiaved.[ 6] 

The Perturbed Condition 

Consider a solution of (5.15) of the form 

= = 34 eh p(x) = Bey + % asTy(x) 

Introducing a term TT (x)s we can solve the system 

-a, ta, = 1 

- a, + 3a, +ha, 30 

fa, + 3a, +%a, = 0 

ta, + 3a, oo a, * 0 

Sere 
the original equation now becomes 

(3 + 2x) p(x) = 3 [o(x) dx = const +% T, (x) (8,22) 

and p(x) is an exact solution of (5.22) 
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Solving for the coefficients we get 

an 1.937 076 a, = -0.032 729 a, =-0.001 269 

a,+ 0.350 120 a, = 0,006 089 1 = 0.7a, 

We now take p(x) as the first four terms of p(x) 

S564 (35% 2x) (p(x) + a, T,.(x)) - 3/(ex) + a,T,(x)) dx = const +%Ts(x) 

or (3 + 2x) p(x) - 3 f plx)ax = const %T, (x) - (3 + 2x)a,T,(x) + sf a, 1, (x)dx 

(5.23) 

but (3 + 2x)y(x) - 3 ['y(x)dx = const 

eaadt. a(x) = p(x) = y(x), e(x) satisfies the equation 

(3+2x) @(x) = 3 [eorex =f = Baste (x) = (3 + 2x) aTy(x) + 3f 91, (x) dx 
(5.24) 

and if p(x) satisfies the initial condition 

i.e. p(o) =1 

then p(o) +a, =2 

also y(o) =1 

wv. e(0) = -a, (5.25) 

As before (5.24) is solved iteratively in the form 

7 7 cnt) 
(3 + 2x) 8(x) = o,f) - (3+ 2x)T, (x) + 3[Tydor]o~,.,¢ 3 /e (x)dx 

(5.26) 

with %.)chosen at each stage to satisfy (5.25) 
“< es) 

Now set a(x) = 

(3 + 2x)é” a Te (x). - @ + 2x)T, (x) ors 

when x = 0 @(o) =-a, Ree ane 

¥ 
then (3 + x)e a fibre - (3 + 2x)T, (x) +3fig co +h, + 3 [2% dx 

whence “, = 0 as before and «° is obtained. 

We tabulate below the results of the iteration 
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x -1.0 -0.8 -0.6 -0.4 -0.2 0.0 0.2 0.4 0.6 0.8 1.0 

Bed = her ~h4O -o1F 9.92 097 OF) 024 -1IF -0.85 pody 197? 
a) 298 12d Mbt word 4.67 7.27 OG) -O19 “HIS -O%% O.82 x 107 
a? das Hd 182-047 ggg 197 O64 -O6 =pil -093 0.96% 107 
a Agr = 09 = 144 0.94 9.69 A764 01S -f10 0.9 0.9% x 107 

actualQ-4¢S 1 ~ 127 -0007 NS 127 O68 -0a7 ~hl4 -095 Jody 10> 
error 

The estimated error curve is compared with the true error curve in fig 5.4. 

Conclusion 

The solution of this chosen problem has been satisfactory using a 

Chebyshev series with only very few terms. The two methods of estimating 

the error both gave reasonable estimates, although that involving the use 

of the neglected coefficients does require some accurate estimation of the 

unknown terms. The iterative scheme requires by far the most computation, 

but all the terms ara known and no estimates are required. In this sense 

it is the more reliable method, 

The error curve produced by perturbing the initial condition shows 

an improvement on that of the unperturbed solution and suggests that the 

extra degree of freedom afforded by this approach is of real benefit. 
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CHAPTER VI 

Approximation in the L, Norm 

Introduction 

The problem considered here is finding an approximating function 

of the form 
na 

f(a,x) = 3 a, d(x) in an interval [ee x (6.1) 

such that the integral - 

L,(a) of Iy(x) - f(a,x}ax (6.2) 

; . is as small as possible. 

We are dealing only with problems where y(x) is continuous and A(x) are 

chosen to have polynomial form. It is shown that the problem can be con- 

sidered as one of interpolation which is sufficient in many cases to pro- 

duce the best approximation. A programme is developed which uses this 

method when the 8, (x) are chosen to be Chebyshev polynomials of the second 

kind. 

The Condition for Best Approximation 

It is necessary to find the condition which characterizes the best 

approximation in the L, sense. This requires the value of L,(a), defined 

in (6.2) to be a minimum. Now L,(a) can be considered as a function of the 

coefficients ay of the approximation, so if we define a* as the required 

optimum point, we require (see Rice (13) ) 

lim (i. (a*4 ta) - Lb =) 20 (6.3) 
t70 t 

i.e., the derivatives of L,(a) at a* are to be zero. 

It is shown in Appendix A6.1 that (6.3) leads to the condition 
¥a 

4, (x) sign{y(x) - F(a%,x)}dx = 0 50,1, ....n (6.4) 

- 

where sign (z) =(-1. if z<0 

O (ff 20 

+1 if z>0 
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Now assume that it is possible to find a sign function s(x), which takes 

one of the values + 1, and which can be chosen so that 
x. 

J, (x)9(x)ox = 0 See -Ob lies seearar (6.5) 
is 

It is possible to show that s(x) must change sign at not less than (n+1) 

points in [x, » x), if the functions 8, (x) form a Chebyshev set. 

A chebyshev set may be defined as a sequence of functions B(x), con- 

tinuous over the chosen range, such that no linear combination = A840) 

has more than n roots inside[x, a unless it vanishes ieee 

Assume that the chosen functions form a Chebyshev set. (This is cert- 

ainly true in this Chapter.) If s(x) has only n changes of sign, we can 

choose in 
tax) a = X A009) to change sign at these points and no © “.:.. 

other. Thm f(a,x)s(x) will have a fixed sign throughout the range 
x 

L tasx)a(aex # 0 and (6.5) cannot be true for all i, since 
an 

wa assume f(a,x) = ZY }d.d.(x)- 
jso 34 

So s(x) must have at least (nm +1) changes of sign. Now if we can find s(x), 

we see from (6.4) and (6.5) that f(a*,x) could be determined from 

signfy(x) = f(a*,x)} = 9(x) (6.6) 

One way of satisfying (6.6) is to find the points Xx, at which s(x) changes 

sign in order to satisfy (6.5) and then to solve the interpolation problem. 

y(x,) = P(a,x,) (6.7) 

If there are exactly (n+1) points, Xo then (6.7) determines f(a,x) uniquely. 

Then if y(x) and f(a,x) do not agree at any other points in[x, 4 x] we have 

found the required solution to (6.4). However, if the error curve has more 

than (n+1) zeros, the solution to (6.7) will not give the required solution 

to (6.4). In this casa, a descent method must be employed to adjust the 

coefficients to reduce the components of the derivative to zero (see Usow (27}) 

In this work, we consider only those cases where the L, problem is:solved 

by interpolation. It is necessary to show that if the 8, (x) ara chosen to 
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be polynomials, then the choice of interpolation points is fixed irres- 

pective of the nature of the function y(x). 

Choice of Interpolation Points 

We consider the case where 

r n 

d(x) = Sib xI and t(ayx) = E a,d, (x) (6.8) ip joo ir iA AyX ete 

It is necessary to find a set of points Ix] such that a sign func- 

tion s(x) changes sign (n+1) times in the chosen interval Es x,J- 

The range of approximation will be taken to be (-1,)) and we consider 

the integral 
1 

r, 
t= / = b x!e(x)dx Pie Op Liesesece 8 (6.9) 

vets ‘ S 

By making the substitution x = cos@, it is shown in Appendix A6.2 that 

if I is to be zero for all values of r, 

then s(cos @) = sign [sin(n+2)o] 

and that the points of interpolation for the functions defined in (6.8) 

are given by 

x, =¢08(55) ie Weep tees ec (ntl) (6.10) 

which are the zeros of My (x), the Chebyshev polynomial of the second kind. 

Choice of Interpolating Functions 

Experience with power series approximations suggests that the choice 

of xd for the s(x) may not be a good choice in terms of numerical stability. 

i the paragraph above, we see that Chebyshev polynomials have arisen natur- 

ally in the discussion. These polynomials can be integrated readily. 

Series of Chebyshev terms usually display repidly decreasing coefficients 

and can be truncated at an early stage without great loss of accuracy. In 

addition they are relatively easily summed using the appropriate recurrence 

relation. 

Furthermore, if we use a finite saries approximation 

n 

f(a,x) = ie aU; (x) 
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then L, (a) = [ive - t(a,x)| dx e/Ja U (x)) dx (6.11) 
LAN axpansion af the Porm y@Q\ a “2 anyon ti assumed.) i 
Now it can be shown (Todd [é}page 149)"that the minimum value of [Ppt rlox 

over all polynomials p(x) of degree n with leading coefficient ee is 

2'~" and is achieved when PC) = Un) where U(x) is U(x) divided 

by a suitable constant to give a unit leading coefficient. 

In view of this and (6.11) it seems appropriate that an approximation 

based on a series of terms involving U(x) should give a useful method of 

expressing the best L,form. In Appendix A6.3 is given dstails of the pro- 

gramme which attempts to find the best L, approximation by interpolation 

when the approximating function is a series of Chebyshev polynomials of 

the second kind. ; 

It has been pointed out that the interpolation procedure does not 

provide the best L, approximation in all cases. No attempt is made in the 

programme to implement a descent method when interpolation fails to give 

the desired answer. It is felt that the L, approximation would have to 

be shown to possess some distinct advantage over other norms before the 

extra work involved in solving the optimization problem could be justified. 

The Chapter is concluded with some examples of the use of the programme 

to obtain approximating functions. The last example is taken from Usow [17] 

and illustrates an example in which the Eneatootetion method fails for cer- 

tain values of n. 

Example 1 

Consider y(x) = 0.92 cosh ix = cos x and an approximation 

3 
f(x) = Eau, (x) 

i=0 

In this case, the interpolation points are + 0.3090, + 0.8090 and the 

approximation is f, (x) = 0.15979 Ug (x) + 0.23971 U,(x) the other coseffici- 

ents being zero. 

The number of zeros of the error curve turns out to be six, so the 

approximation is not best in the L, sense. For this reason, we now try an 
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approximation of degree five and again solve the interpolation problem. 

The interpolation points are now + 0.90097, + 0.62349, + 0.22252 giving 

f(x) = 0.15979 Ua (x) + 0.23975 U,(x) - 0.113 x 10° u(x) and the error 

curve turns out to have the required six zeros. The two error curves are 

compared in figure 6.1. The values of the L, integral are 

Live) = f,(x)| dx = 0.2058 x 107° 

Lv - f(x) | dx = 0.8394 x 107" 

In the case of f, (x), the zeros of the error curve were located as being 

-0.90139, -0.62325, -0.22234, 0.22270, 0.62370, 0.90055. 

This shows a maximum discrepancy with the given interpolation points 

of 6.00042. 

As a further chsck, the integrals on the lefc-hand-side of equation 

-(6.5) are calculated and found to give 

({-0.000077, 0.00379, -0.00004, 0.00383, 6.00007, 0.00004] 

These should strictly be zero if the approximation is optimum. Since the 

integrals are evaluated using the interpolated zeros of the error curve 

[Appendix A6.3], the discrepancy is reasonably accounted for by slight 

errors in positioning the zeros of y(x) - f, (x). 

Example 2 

Consider y(t)= a. O<tel 

“fet etse ist<2 

eo” te = e'-e7+e 26ts3 

The range is scaled to [-1,2] by the transformation x = 3(t -4). First, N 

is taken equal to 4 and interpolation points are taken as the zeros of U,(x). 

Then f(x) = 3.59554 U(x) + 2.10396 U,(x) + 1.26684 U,(x) 

+ 0.87025 U, (x) + 0.24483 U(x) 

Interpolation points -0.86603 -0.50000 0.0 0o.50000 0.86603 

Zeros of error curve -0.86582 -0.50005 0.0 0.50000 0.86602 
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The elements of the gradient vector are 

(0.00041, -0.00094, 0.00083, -0.00053, 9.00043 | 

and Jive - #,, (x dx = 0.46088 

The error aleve for this approximation is plotted in figure 6.2 

If now, N is taken as 7, we get 

#,(x) = 3.90317 U(x) + 2.10546 U,(x) + 1.10182 U,(x) + 0.91162 U,(x) + 

+ 0.38389, U,(x) - 0.17637 U,(x) - 0.16857 U, (x) i SANs : 0.03988 U 
and [veo - ¢,(x)|ax = 0.25755 a 1) 

However, the error curve now turns out to have ten zeros instead of 

eight. It then appears that there might be a solution with N = 9, but in 

that case, eleven zeros are produced and the interpolation has not produced 

the best L, approximation. The approximation is 

i (x) = 3.57331 Uy (x) + 2.08090 U,(x) + 1.30196 U,(x) + 0.94899 U, (x) 

+ 0.18620,U (x) - 0.20406 U,(x) - 0.08562 U,(x) + 0.02599 U(x) 

+ 0.04525 U,(x) + 0.05775 U,(x) 

wsen [‘lyoo - #,(x)lax = 0.15487 

The naeee curves for these two approximations are also plotted in 

figure 6.2. It may be noted that the discontinuities in the first deri- 

vatives at x = + 4 {t = 1 or 2] causes the error curves to have quite sharp 

peaks at these points. 

In conclusion, it is thought that the use of the L, norm to define an 

approximating function does not show any advantage over the more familiar 

Ll, or L.norms. The idea of being able to expressthe:problem as one of 

interpolation is attractive in its directness, but it does not always pro~ 

vide the best L, approximation. Expressing the approximation asa 

Chebyshev series provides a convenient computational form. It is diffi- 

cult to appreciate the closeness of fit when the error norm is in the form 

of a definite integral. However, since computation of a fair number of 

points along the error curve is necessary for the numerical integration 

process, it is a simple matter to print out these points for reference 

purposes, 
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CHAPTER VII 

Approximation in the Ly Norm 

Introduction 

The concept of approximation in the L, norm (or least-squares approx- 

imation) was introduced in Chapter II. Some examples of this approach are 

now presented. A comparison is made of approximations expressed in series 

of Legendre and Chebyshev polynomials. Also the Chebyshev series obtained 

by using the orthogonality property over a discrete point set is compared 

with that where the coofficients are determined by integration. Reference 

is also madé to the interpolation polynomizl where the interpolation points 

are the zeros of a Chebyshev polynomial of suitable degree. 

Orthogonal Polynomials 

If we express the approximations as the sum of a finite number of 

orthogonal polynomials Bt 

a ' 

d.e. f(x) = 2 ‘a,g.(x) C751) 
ue 

i=0 

the L, norm required that the integral 

l= [ ferorev00 = F(x). ex)” (7.2) 
shall be a minimum. fe 

[Normally, the square root may be dispensed with, since the minimum of 

(Ly )* implies the minimum of aes 

In Chapter II, it was seen that (7.2) leads to the expression for 

the coefficients in (7.1) given by 

b 
wu d: 

oe detent nce (7.3) 
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It has been shown that if the weight-function w(x) is taken as (Lex?) 

and the range as (-1,1], then (7.3) defines the coefficients of a series 

of Chebyshev polynomials. Would it not be computationally more conveni- 

ent if w(x) were chosen as unity? It can be shown that a set of poly- 

nomials with the necessary orthogonality are the Legendre polynomials 

given by i 

Were (Peers? (7.4) 
Pox) =o 

Z 2 ax 

In Appendix A7.1 some of the main properties of the Legendre polynomials 

are derived. In particular, it is seen that the coefficients in (7.1) 

become 1 
a= érsi [vor (x)dx (7.5) 
=. r 

2 ot 

3 
and the least-square: error expression is 

, n = 
Se ao y*(x)dx - 28. (7.6) 

at r=0 
are 

These can be compared with the similar expressions for the Chebyshev 

series, i.e. 

ny if f(x) = z aT, (x) in 61,1] 

then 
2 [y(x)T,(«) dx a= 2 f r (7.7) 

1-x' 

ns ae a 
Z y¥ (x) x uv 2 and S = oven os 

[The prime indicates that the coefficient in the first term of the summation 

must be halved.) 

Since the two types of orthogonal function have analogous properties: 

it might naturally be asked why choose the one with the awkward weight 

function? A significant reason lies in the shape of the error curve that is 

obtained in each case. 
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If the coefficients of the series approximation decrease fairly 

rapidly, then the first neglected term is a good indication of the trun- 

cation error. That is e(x)va 6 (x) where $4, (x) would be either 

the Legendre polynomial P_ | (x) or the Chebyshev polynomial Ta OX) 

The main difference between the two curves is that the Legendre poly- 

nomial oscillates with increasing amplitude towards the ends of the range, 

whereas the Chebyshev polynomial oscillates with equal amplitude through- 

out. Consequently, we expect a Chebyshev series to give very nearly a 

minimax error curve. Add to this that for practical purposes, integra- - 

~ tion can be replaced by summation over a discrete point set, with unit 

—weight function, then the reasons for the preference of Chebyshev expan 

sions can be appreciated. The following example illustrates the difference 

between the two error functions. 

Example 

Let y(x) = sinh x Jog, (tan h(S)) and eonsider an approximation in 

the range (2,3). 

Making the transformation z = x-2 to make the range (-1,1] and taking 

the degree of the approximation to be nine, we use (7.5) and (7.7) to 

obtain 

f(z) = -0.977 539 57 Po (z) - 0,036 411 50 P,(z) + 0.022 185 18 P,(z) 

-0.008 S65 60 P,(z) + 0.002 464 54 P,(z) - 0.000 580 71 P,(z) 

+ 0.000 120 95 P, (z) = 0.000 023 94 P (z) + 0.000 004 79 P,(z) 

- 0,000 001 00 P, (z) (7.8) 

f,(z) = -0.971 634 52 T(z) - 0.039 763 93 T,(z) + 0.017 434 62 T,(z) 

- 0,005 516 65 T;(z) + 0.001 378 40 T(z) ~ 0.000 291 38 T,(z) 

+ 0,000 055 61 T,(z) - 0.000 010 23 T,(z) + 0.000 001 92 T,(z) 

- 03000 000 38 T,(z) (7.9) 

It may be noted that due to the orthogonality properties of the poly- 

nomials, (7.8) and (7.9) provide approximations of lower degree simply by 

truncation at the appropriate point. Figures 7.1 and 7.2 show the errors 

for f, (x) and to (x) forn=4 andn=9, 
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It was stated in Chapter II that there is a convenient computational 

method for the summation of a series of orthogonal functions. This is 

based on the property that they obey a three-term recurrence relation. 

dee. P(x) = Ad (x) + Bf, (x) (7.10) 

It is shown in Appendix A7.2 that setting Diet =O and by = ay, 

we form b, = a, + Ral eat Bee eye 

for k = (N-1),(N-2) ...., 1 
N 

Then a ayoy(x) = (a, + Bb ) 4, (x) + b, g (x) (7.11) 

and the summation is readily found without evaluating any of the polyno- 

mials apart from the trivial g, (x) and d(x). 

3 
Indeed, for a series of Legendre polynomials, we have 

2k+ k+l 
rcs aREOE” Bat THe 

with | Po(x) = 1 P, (x) = x 

and for a Chebyshev series 

Bua, = 2x 2 Bet ao 

Ty (x) =l T, (x) = x 

This implies that the evaluation of series of orthogonal terms is no worse 

than ordinary polynomial evaluation in terms of the labour involved. 

Determination of Coefficients by Summation 

The coefficients of the Chebyshev series are defined by the integral 

in (7.7). Very rarely is it possible to formally integrate these expres- 

sions and some numerical technique must be employed, probably with the aid 

of a digital computer. If this is so, may it not be more convenient to use 

directly a method of summation based on the orthogonality of Chebyshev poly- 

nomials over a discrete point set? 
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Nu 
fee. 2 T(x.) T(x) =f N if menzO or mencN 

kso (™ 8 
3N if m=nfO pr N 

O if mAén 

where x= cost » k = 0,1, ....N and the double prime indicates that 

the first and last terms in the summation are halved. 

Let y(x) = = a, T(x) : 
s 

N jv 

and consider Bes 2 my Cy) Tats) (7.12) 
N k=O 

th beg Felon HG) LO en = a u x x 
DG satel Aeon .® KO PEK 

Now the orthogonality property dictates that the second summation is zero 

  

unless 5 

Ty (x) = Tx) Ke: G31) oo0ccuN 

i.e. — cos rik 
- N 

whence s=2Nper where p = 0,1 .... 

and b, #8, + Boyer * Sonar * Bane * 84ner °°°°° 

A systematic Procedure baseol on this Lonmula con be foondl in Hayes 
Hence, if N is sufficiently large and the coefficients of the series dec- 

rease reasonably quickly, b, can be used as a very close approximation 

to a From another point of view, if we replace x by cos@ in (7.7) and 

use the trapezium rule over a set of equally-spaced points at intervals of 

T/N, we get exactly the equation (7.12). (Snyder, Chapter 3 [14] ) 

Here is an example which compares the series obtained by evaluating 

the coefficients using (7.7) and (7.12) 

Example 

y(x) = x 
3 

(oT + x} (eal 

Consider an approximation of degree nine in the range (-1,22) 

From (7.7) we obtain 
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f, (x) = -2.256 975 4 T,(x) + 4.000 000 O T, (x) - 2.485 803 3 T, (x) 
+ 0.999 999 98 T,(x) = 0.216 797 62 T,(x) - 0.000 000 02 T,(x) 

+ 0,010 793 07 T,(x) - 0.000.000 02 T,(x) - 0.001 081 74 T, (x) 
- 0.000 000 02 T, (x) 

and from (7.12), using summation over 22 points, 

F(x) = -2.256 975 4 Th (x) + 4,000 ooo 0 T,(x) - 2.485 803 3 T,(x) 

-029995999 98 T(x) - 0.216 797 82 T(x) - 0.000 000 02 T,(x) 

+0.010 793 07 T,(x) - 0.000 000 02 T(x) - 0.001 081 74 T,(x) 

0.000 000 02 T,(x) 

The error curve, which is the same in both cases to within 5 x 107" is 

shown in figure 7.3. 

Interpolation Formula 

By reference to figures 7.2 and 7.3 it can be seen that the number of 

zeros in the error curves correspond to the number of zeros of the first 

neglected polynomial term, It is of interest to consider the interpola- 

tion polynomial which takes as the interpolation points the zeros of the 

Chebyshev polynomial of appropriate degree. In Handscomb [7] it is shown 

that if y(x) has no singularity on the real line (a,b], then the interpola- 

tion formula with the above choice of points converges uniformly to y(x). 

Figures 7.4 and 7.5 show the error curves when ninth-degree polyno- 

mials are used in approximating to the functions in the two previous exam- 

ples. The points of agreement are taken as the zeros of the Chebyshev poly- 

nomial T,,(x), (suitably transposed in the case with the range [1,3] ). 

It is seen that the interpolating function produces an error curve 

very similar to that of the Chebyshev series derived from the L, norm. In 

these examples, the Lagrangian interpolation formula was used, which since 

we are essentially using unequally-spaced points, may not be considered a 

convenient computational form. One method of overcoming this is to derive 

the interpolation function as a Chebyshev series (Hildebrand [10] ). This 
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can be carried out conveniently since these polynomials up to degree n 

are orthogonal over summation at the zeros of Tar (XD However, the effort 

involved is virtually the same as that of finding the ty approximation by 

summation over discrete points. In the two examples considered, the latter 

approximation gives a smaller maximum error. 

a)



CHAPTER VIIT 

Approximation in the L# Norm 

Introduction 

The Lo norm applied to the approximation f(x) to the continuous 

function y(x) in the range [a,b] seeks to minimise 

lim [i fy(x) - reosh Pan] 

pre 

Taking the limit of this expression produces the condition that 

max w(x)ly(x) - F(x)lis to be a minimum. 
x€ a,b] 

This implies that the required approximation must produce the least possible 

(weighted) maximum error. For this reason, this norm is often referred to 

as the minimax norm. Another name commonly used is the Chebyshev norm. 

The characterization of the minimax norm, which is that the maximum 

error must occur not less than a minimum number of times with alternating 

signs, leads to an iterative approach to finding the best approximation. 

The minimax problem can be solved for approximations which are the ratio 

of two polynomials if one accepts the additional complexity of the solution 

of non-linear equations. 

Characterization of Best Approximation 

Consider an approximation in [a,b] of the form 

n 

F(x)r= S ad, (x) (8.1) 

where B(x) are polynomials of degree i. Then f(x) will be a polynomial 

of degree n and we wish to determina a, 80 that 

max I y(x) - F(x) | is a minimum. 
[a,b 

(Throughout this Chapter the weight function will be taken as unity. This 

choice minimizes the maximum value of the absolute error.) In Appendix A8.1 

it is shown that if the 8, (x) form a Chebyshev set, then a necessary and 

sufficient: condition for (8.1) to be the best approximation of degree n 
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is that the error curve y(x) - f(x) achieves its extrema at not less than 

(n +2) points in [a,b] with alternating sign. 

This important property provides a method of determining the required 

coefficients. In (8.1) there are (n+ 1) unknown coefficients. There is 

also the actual value of the error extreme, say h. Hence there are (n + 2) 

unknowns for which the error extremes provide (n +2) conditions. However, 

this method does not have the simplicity of (say) an interpolation problem, 

since we do not know in advance the points at which the error extremes 

occur. Consequently, methods of solution are essentially iterative. One 

method of approach is described below. 

The Remes Algorithm 

Two algorithms due, Remes [12} offer methods cf solving the problem 

indicated in the last paragraph. The method described here is the second 

algorithm and proceeds as follows. 

First, choose a reference of (n+2) points ieee in [a,b) and then 

solve the (n+2) equations 

y(x,) - (x4) = (-1)'n felon een (nea) (8.2) 

giving the coefficients ay teres OL of f(x) and the error + h at the points 

{x,]- When the error curve is now constructed, it is found that the chosen 

points of reference are not the points of maximum error. It is possible ta 

—locate the local extrema of the error curve and this can be done for not 

less than (n+2) points with alternating signs and in such a way as to 

include the point of maximum error. These points are used as a new reference 

for a further solution of (8.2). The new error curve can again be scanned 

for the positions of the extrema. Proceeding in this way, we eventually 

find a set of points at which the error curve has extrema of equal magni- 

tude and opposite sign. The approximation so found is the required mini- 

max fit to the given function. 

Example 

Find an approximation of the form f(x) = a, + ax + Sex. in {o,2] to 

the function e*, 
81



We require a starting reference of four points. A common choice are 

the extrema of the Chebyshev polynomial of apprépriate degree. (suitably 

shifted in range) 

In this case use the extrema of T,(z) in {-2,1] and transpose to 

[0,2], giving x 0 0.5 1.50 2.00 

e“ 1.0000 1.6487 4.4817 7.3892 

Equations (8.2) become 

1.0000 <8, = oh 

1.6487 =a 0.5a, - 0.25a, = -h 

4.4817 ae 1.5a, - 2.25a, = h 

-h n 7.3891 -a_ - 2,0a, - 4,00a, 
° 

The solution to these equations gives 

£°(x) = 1.1205 + 0,0624x + 1,5058x* 

h? = -0.1205 

Figure 8.1 shows. the error curve produced. Since the error curve is fairly 

rounded at the extrema, no special care jis taken in locating the position 

of the extreme points. If linear interpolation is used to find the points 

where the first-order differences are zero in Table 8.2, we find the inter- 

nal extremes at 0.571 and 1.546. 

Using these and the end-points as a new reference, we have the new 

set of equations 

1.0000 - a = oh 
0. 

1.7700 - a) - 0.571a, - 0.3260a, = -h 

4.6927 - a - 1,.546a, - 2.390la, = h o ' 2 

7.3891 - a5 2.00a, - 4.00a, =-h 

(a) 
yielding f (x) 2151283 + 0.0604x + 1.5060x" 

n” = -0.1223 

0 
Table 8.2 compares the errors in the two approximations F(x) and 

@ 
f(x). Linear interpolation in the first-order differences locates the 
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internal extrema at 0.572 and 1.546. The error in tx) at these points 

is 0.1223 and -0.1225. 

Hence, within the accuracy of the data used, the required approximation 

has been found. 

x 0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0 
  

8'(x) -.1205 .0282 .1054 .1221 .0914 .0296 -.0437 -.1041 -.1221 -.0619 .1206 

8° (x) -.1223 .0268 .1044 .1214 .0910 .0296 ~.0433 -.1034 -.1213 -.0608 .1220 
  

x 
Error in Approximation to ¢ 

Table 8.2 

Rational Function Approximation 

The method of approach in minimax approximation lends itself to obtain- 

ing approximations in the form of rational functions, that is, the ratio of 

two polynomials. n i 
Pie a,x 

If f(x) = i=0 (8.3) 

caren ad +5 oe 

then we notice that there are (m+n+1) independent coefficients,as in this 

case, division throughout by bg has left the leading coefficient in the 

denominator equal to unity. In an analogous way to the linear case, we 

require (8.3) to produce an error curve with (m+n+#2) local extrema with 

alternating sign (Appendix A8.2). The approximation will be the required 

minimax fit when the extrema are of equal magnitude. Empirically, it is 

expected that for the same number of unknown coefficients, (8.3) will pro- 

duce a smaller maximum error than (8.2). However, the equations that have 

to be solved for the coefficients in (8.3) are non-linear. It is possible, 

in trying to solve the problem iteratively to produce a solution with a 

pole in f(x) where no such pole appears in the original function. 

Below are discussed three methods of approach to the solution of the 

non-linear problem associated with rational approximations. 
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Method 1 Linearization 

Let the approximation be written as R(x) = PACx) 
Q_(x) 
m 

  

oe. m+en+l) and   

Then, as before, we choose a reference [x5] (Freer  G 

solve the equations 

y(x;) - Pats) cg (2i)th (8.4) 
Xs 

moi 

  

It is noticed that the non-linearity is introduced into (8.4) by the pres- 

ence of the unknown h. Hence, we may choose a value of h and solve (8.4) 

as the linear system, 

f-ayth - yOu} ayGey) + P(xg) = 0 4 = O42 eee (mene) 
(8.4a) 

The iterative approach requires to’ find both the positions of the 

local extrema and the required value of h that satisfies (8.4a). 

Example 

Consider an approximation of the form Ete) to the intasren e. 
' 

° 

x 2 
tat 

where P, (x) and Q,(x) are both linear functions. 
eae = 

now [on™ at =F. [ora 

: x 

and the integral on the right can be integrated successively by parts to 

  

produce an asymptotic series (see Chapter V) 
x 2 2 to [or ae T. o* {3 Pipe S eles. oeeee ceo e7 Fos ee 

, 2x” GxF * BxF ~ T6x7 32x4 

This series may be used to evaluate the integral when x is relatively 

large. Hence, if we use the series when x23, the range of the rational 

approximation can be chosen as [0,3]. 

Let z= %(x -%) and then the approximation 

t(z)= a, + az is in the range [-1,1]. 

1+ b,z 

There are four unknowns in the problem, so the reference points are chosen 

as the points of extreme values of T,(z) 

ivee “1 = + 1 

y(z) oO 0.630245 0.884929 0.886207 
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In order to linearize the equations, we choose h = -0.06 then substituting 

in (8.4) we have 

a -a, = -.06 + .06b, 

a, ~ 0.5a,= 0.690245(1 - 0.5b, ) 

aot 0.5a,= 0,824929(1 + 0.5b, ) 

Since one unknown has been fixed, only three conditions can be satis~ 

fied and these have been arbitrarily chosen as the first three points in 

ascending order. 

Solving these equations gives 

a, = 0.786923 a,= 0.794654 b, = 0.871156 

and the error when z = 1.0 is -0,04097 

Figure 8.4 shows that the error curve ig far from level and that the iocal 

extrema do not occur at the chosen reference points. As a next iteration, 

the reference points are chosen as -1.0, -0.75, 0.14, 1.0 and the value of 

h is chosen as before. 

Proceeding in this way, choosing the extreme points as the new reference 

and at each stage making a suitable choice of h, the function f(z) is cal- 

culated to try and level the error curve. After the first three iterations, 

linear interpolation was used to try to find a suitable value of h to make 

the error at the fourth point (z = 1.0) equal to that at the other three 

chosen points. Table 8.3 shows the progress of the iteration process. 

As a general remark it may be pointed out that linear interpolation 

was not a satisfactory method of locating the extreme point near z = -0.800. 

Linear interpolation of the firstorder differences of the computed error 

curve suggested that the maximum should occur slightly to the right of 

z = -0.800, whereas the error curve in the next iteration showed the error 

to be greatest at z = -0.800. 

For example, in the last iteration, this method suggests that, inter- 

polating between computed points spaced at 0.1 intervals, the maximum 
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should be at z* = ~0.771. Actual calculation shows that 

e(-0.800) = 0.0585 

e(-0.795) = 0.0583 

e(-0.790) = 0.0581 

e(-0.700) = 0.0433 

Iteration Reference Points h e(1.0) 

a -1.0 | -.5 5 1,0 | -.06 -.04097 

2 -1.0 -.75 14 1.0 | -.06 02270 

3 -1.0 | -.786 -.113] 1.0 | -.04 -11640 

4 -1.0 | -.768 -.231] 1.0 -.0495|] .07946 

5 -1.0 | -.756 -.172) 1.0 | -.055 07275 

6 -1.0 | -.752 -.162| 1.0 | -.063 03954 

7 -1.0 | -.800 ~-162] 1.0, | -.058 | .06029 

8 -1.0 | -.800 -.147| 1.0 | -.0588; .05780 

9 -1.0 | -.800 -.147| 1.0 wear | 05873         
ears os ape aay 

Iteration a a b 
° ’ ¥ 
  

«786923 «794654 - 871156 

- 785008 «800252 744259 

«828658 842004 666341 

-816112 «830696 - 705364 

-813761 «829512 «713605 

2797455 «813806 - 740496 

, 805746 «822000 «719756 

-804625 -820970 «722025 

«805049 -821360 ©721175 w
o
n
s
n
o
a
o
n
r
u
n
 Ke

 

        
x 

  

Approximation to / 
fo 

Table 8.3 
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Finally we illustrate the use of the series in (8.5). Putting x = 3 

we have 
3 2 
ee dt = 0.8862269 - eo ligt oie nose LS hee } 

¢: 6 1038 1944 34992 ici 

Taking only the first three terms of the expansion gives 

f(3) * 0.8862269 - 0.001233 [0.166667 - 0.009259 + 0.001543 been 

= 0.8862269 - 0.0000196 

0.886207 to six significant figures. 

The error in f(3) to six significant figures is therefore zero. 

An error estimate may be obtained from the first naglected term of the 

series (See Chapter V) 

ise. lel < 0.0001233 x_15 2 5x10 
34992 

Method 2 A Direct Method for Rational Functions 

This method is due to Stoer [as]. In it we seek a rational approxima- 

tion R(x) = Paix) where the main feature of the method is that R(x) is 
Q (x) 

m 

expressed as a continued fraction. When the best approximation is found, 

there are at least (n+m+2) points x, in [a,b] such that 

y(x;) = R(x, ) = (-1)4n, i= 0,1 .... men+l (8.5) 

where le| =lhl max 

The approach, as in the other methods, is an iterative one, but because 

of the continued fraction form of R(x), the interpolation property of 

Thiele's expansion is exploited to find the solution for h in (8.5) when 

the reference points x, are given. 

P(x) 
Q (x 

m 

Let R(x) = where nm. 

Then it is possible to write 

) R(x) = 8, + e,(x - x) + 2008. 1 (xnk, )hxex, ) wee (xeres 

(x = xj )(x - x) eeee (x = x, ) 
Mm 

y (x) 

e 
nem+ 
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where ¥(x) = 1 ae eee eS ertrappcart (8.6) 

Snemaa tb nem 

The cosfficients in (8.6) must be determined so that for a given choice of 

reference points (ye): 

ROG) = y(x2) = (-1)4n° di m/Q)1, .s2..1msne2 = (8:7) 

The polynomial part in (8.6) can be expressed in terms of divided differences 

and the continued fraction part in terms of reciprocal differences. (Chz; IV) */} 

i.e. for divided differences 

R(x,) = a5 

ai 

ROC) =e 

a, 

R(x.) = a5 : 

a ay 
. N=m+l, A-M+) 

: Shami! 

R(x ) =a 
n=m+ N-m+1 40 

where a,,k = Stieie sti ken 

Air Tie 

and ae ae 

It is noted that if m = 0, then P(x) passes through (n+2) points and 

a = O which is the linear problem. 
Fer sae 

To obtain the coefficients in the continued fraction, we write (from 8.6) 

Wik) = remeles Fae (8.8) 
RG) = B(x) 

) where P(x) ze +8, (x - x,) i Gscws a(x - x(x - x, ) eee (X= Xen 
9 1 

The values of the right-hand side of (8.8) can be evaluated in terms of n°, 

knowing that R(x) must satisfy (8.7) at the reference points 

x sees X 
[ nme? Amel 
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Hence, we have a table of reciprocal differences 

    

Cena Dee "oo 

cy 

ie rent, Pe oho af : i 

Cx a 

: A 3m, 2m 

ren) “= Son,o 

x -x ; 
where a = aoa - fet t+i-k + e., ee 

i,k-1 int ,k-5 

and Cron ietie or - Cri G = Lycee 2n-1) 

Now the function R(x) will interpolate through the chosen points if the 

fraction terminates. This implies that c 20 or 
2m,2m 

Same ,2mei = Con, aml (8.9) 

If (8.9) can be solved, then the continued fraction has the property (8.7). 

What is the nature of the equation in(8.9)? From (8.7) and (8.8) it can be 

seen that R(x) and hence the terms in the reciprocal difference table will 

be functions of h°. In fact (8.9) will represent the equality of two rational 

functions in h°. In general, this equation cannot be solved directly and 

an :bterative solution must be sought. This is the most difficult part of 

the process. Stoer gives an Algol programme which includes a solution of 

this problem by Newton's method, claiming that two iterations are usually 

sufficient to obtain the desired accuracy in he As an alternative he sug- 

gests using the method of regula falsi. In the example given below, (8.9) 

yields a quadratic in h which can be solved directly for the value of small- 

est modulus. 

Once this stage of the algorithm is solved, a new basis can be chosen 

from the extrema of the error curve and the process repeated until a satis- 

factory solution is found. 

OL



Example 

iL To find an approximation to ae over the range (0,2) in 
Clas) 

the form Pilx) 
Q, (x) 

Since n = m= 1, the continued fraction is R(x) = 8 48 (x x xy) 
Sieg (x = x.) 

ts 

Choose as the initial reference, the extremes of the shifted Chebyshev 

polynomial T,*(x), in the range [2,2]. 

i.e. 

  

x 0.0 0.25 0.75 1.00 
y(x) 1.0000 0.9700 0.8000 0.7071 

from (8.7) R(x) 1+h 0.97-h 0.8+h 0.7071=-h 

The divided difference table becomes 

R(0) =1l+h 

R(0.25)= .97 -h (.97-h) - (1+h) 
0.25 

-.e@,l+h e,= -0.1200 - 8h 

Then ele x) , 

¥ (x) = =) ° = (-0.1200 - 8h)x 
R(x) =e, R(x) - (1+h) 

and the reciprocal difference table is 

% (0.25) = 1.0000 RO ety 

  

1 

+ Vo cher inann 
0.20000 : 

0.0900 + 6h ¥ (0.75) = Se 
1 

ee 
+ ono 8h _ 0.0900 + 6h 

0.2929 + 2h ~ 0.2000 
W (1.00) = 223200 + 8h 

0.2929 + 2h 

Hence, for the function R(x) to pass through the given four points, we have 

equality of the entries in the second column. 

idee. O = 36h’ + 2.2122h - 0.0275 

92:



We take the numerically least solution as our value of h giving 

h = 0.0106 

whence R(x, )= 1.0106, 0.9594, 0.8106, 0.6965 

e, = 1.0106, e, = -0.2048 

8, = -2.1551 

and R(x) = 1.6206 - 8.20860 = O60} 

ol 

  

  

Figure 8.5 shows the error curve produced by R(x) and we choose as a new 

reference the points [0.0, 0.26, 0.73, 1.00]. 

i.e. x 0.0 0.26 0.73 1.00 

y(x) 1.0000 0.9679 0.8077 0.7071 

R(O) = 1.0000 +h R(0.26) = 0.9679 = h 
5 

yy = 28878 = p= Gen) = 0.1235 - 7.6923 h 

e, = 1.0000 +h e,= -0.1235 - 7.6923h 

wv (x) 
_ (=0.1235 = _7.6923h)x 

R(x) - (1.0000 +h 

The reciprocal difference table is 

vy (.26) = 1.0000 
0.47 

¥4688+29.201h-1.0000 

Ww (.73) = .4688+29.201h 
0.27 

EE GS (.4688 + 29.201h) 
«2929 + 2h 

Ww (1.00) = .1235-7.6923h 

2929 + 2h 

This gives rise to the equation 

0 = 15.768h’+ 2.0224h - 0,0420 

and taking the smallest root of this gives 

h = 0.01067 

hence e, = 1.0107 e, = -0.2056 

e, = -2.1401 

and RCS) ee eD1NT = eee emo 
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Again the error in R(x) may be seen in figure (8.5). We notice that the 

actual error extrema must occur at points very close to the chosen refer- 

ance points. 

A tabulation of the computed error is given in Table 8.6. 

  

x 0.0 0.1 0.2 Q.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 
  

y-r tx) ~.0106 .0037 .0098 .0102 .0054 -.0003 -.0062 -.0102 ~.0089 -.0010 .0106 

y-r*Yx) ~-,0107 .0035 .0097 .0101 .0053 -.0004 -.0063 -.0104 -.0090 -,.0011 .Q107     
2 Error in Approximation to (1+x* 

Table 8.6 

Method 3. Rational Approximation as an Eigenvalue Problem 
  

If equation (8.4) is rearranged, we can write 

i ~fy(x,) = (-2)'n} a (x,) + PyGg) = 0 (8.10) 

As before, an iterative method is applied to finding a reference 

agx,s x, oe oS Xx 

  

SS 
mens 2 

such that (8.10) is satisfied at these points and 

max y(x) - B PAG) eh 
agxgb a) 

The method employed here is due to Curtis and Osborne (4] and employs a 

mathod for solving eigenvalue problems developed by Osborne. Equation (8.4) 

can be thought of as an eigenvalue problem in which the maximum error h 

is the eigenvalue and the corresponding eigenvector is the column vector 

comprising the coefficients of the approximation. 

Z oy Q(x) = b,x 
m je0 J In more detail, let P p(wet aye 

then (8.10) can be written as 

fag + 8, Xyoemky "\ - fix) - (-2) info, Sm, teat, Xyt =u 

i = 0,1 .0... nemel 

or in matrix form 

[y | -(F - nedx].[c]= 0 (8.11) 

wo
 

oO



where Ye 8 =1,2, cece. n+l 

Xone 6 2.1525 vewes M+) 

F = diagonal fy(x,)} 

2 " diagonal {(-1)* 3 

andr = 0,1, .... m+n+l 

and {c} is the column vector {a, Ayres ay bo b wees bn | S 

Appendix A8.3 sets out how the method seeks the solution to (8.11) itera- 

tively, The method is summarized as follows. 

Let ay, not), Cc} ) be the values of the reference points, 

maximum error and coefficients respectively at some stage of the iteration. 

Then the algorithm becomes 5 

lee nay] yan Ue [of ox]? fof?) 

fy} -(F - n()g),x9 (4) fe*") - fo; ox] fy JGe) 
(440) (OL) (441) (8.12) 2 R ye, (c 

where (v)p represents the element of maximum modulus (the pet) in the 

vector {v}. In our case the coefficients are divided throughout by the 

coefficient of nexinun modulus so that they are all numerically less or 

equal to one. 

Equations (8.12) produce the new values of h and (c]. In order to 

determine the next reference set, a new error curve must be computed and 

the extrema found by interpolation. 

Appendix A8.4 gives a listing of a computer programme which has been 

developed to exploit this method. Some examples of the use of this tech- 

nique are now given. 

Example 1 

Consider an approximation to y = cos ho'x in the range (273); Since 

y is two-valued in the range, the positive value will be taken. 

Also gy _ i and we see that when x = 1, y = 0 and sy = 
dx “/xt= 1 
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This suggests that a rational approximation will be both difficult to 

find and probably unsatisfactory in terms of the size of the error near 

x21. For this reason, the independent variable is chosen as 

  

P,(z) 

Q,(z) 
and we choose a function in the range [0,vé]. 

  

As the initial basis, we choose the points of extreme value of the Chebyshev 

polynomial T,(u), suitably transposed into the range of approximation, 

Table 8.7 below shows the progress of the iteration in this case and 

Figure 8.8 is a plot of the final error curve, 

Coefficients of P3(z 
  

  

          

  

  

            

  

    

Iteration a, a, a, a, 

1 0000 54 -990 013 889 981 «045 886 

2 .000 157 +995 673 +737, 218 +047 334 

3 000 142 2995) 291 +781 573 047 410 

4 000 144 993 266 -786 585 047 324 

5 000 144 993 267 786 532 047 327 

Cosfficients of Q.(z) Max, Error. 

Iteration be b, b, h xo" 

z 1.00 2824 839 «560 433 29437 

2 1,00 698 469 2327 877 1.5654 

3 1.00 «733 833 +334 183 1.4226 

4 1.00 +738 249 +335 321 1.4377 

5 1.00 738 202 2335 312 1.4385 

Points of Extrema of Error Curve 

Iteration x, Xq Xs Xy Xe Xe xy 

1 0.0 2286 «716 1.411 2.171 2.551 2.828 

2 0.0 120 | .500 -970 | 1.720 | 2.550 | 2.828 

3 0.0 080 | .350 -920 1.610 | 2.430 | 2.828 

4 0.0 110 | .404 2-901 | 1,640 | 2.447 | 2.828 

5 0.0 -109 -407 914 1.644 | 2.444 | 2.828                   
Approximation to cos h”!x by Rational Function 97 
  

Table 8.7
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Example 2 

Let an approximation to y(x) = 0.92 cosh’x - cos x be of the form 

f(x) = P, (x) valid in the range [-1,1). 

G(x) ; 
Here, n+m+2 = 6, so we choose the points at which T, (x) achieves 

its extreme values as the initial basis. 

Figure 8.9 shows that the error curve has seven extrema instead of 

the expected six. However, we notice that since the original function is 

even, the odd terms of the approximation have zero coefficients. In that 

case, both P,(x)/Q,(x) and P,(x)/Q,(x) would have the same error curve as 

P,(x)/Q2(x)» 

The following table summarizes the iteration process. 

  

  

Coefficients of P (x) . Max. Error 

Iteration a, a, a, Rh x 10° 

a -.079: 833 6 0 957 947 3 -.29 x 107" 

2 -.079 927 6 0 958 597 2 -27244 

3 -.079 916 8 0 +958 556 6 -.8319 

4 \ ~.079 916 8 0 958 557 0 -.8322         

Coefficients of Q (x 
  

  

        

  

  

Iteration by b, by 

1 1.00 0 -.001 385 3 

2 1,00 0 -.000 670 8 

3 1,00 0 -.000 692 6 

4 1.00 oO -.000 692 0 

Points of Extrema of Error Curve 

Iteration Xe Xa xy Xe Xs Xe X4 

Initial 1,000 |-.e09 | -.309 | .309 |.809 | 1.000 
values 

a -1.000 -.917 -.567 0,000 «567 917 1.000 

2 | -1.000 -.864 -.491 0.000 2491 864 1.000 

3 -1.000 |-.863 | -.502 0.000 502 863 1.000 

4 -1.000 | -.863 =.499 6.000 +499 863 1,000                   

Approximation to 0.92 cosh’x - cos x by Rational Function 

Table 8.10 
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It is interesting to compare this result with that obtained for the 

L, approximation to the same function using an approximation which also 

produces an error curve with six zeros (See Chapter VI). The rational 

function approximation is seen to have a maximum error of approximately 

0.83 x Anes whereas the L, approximation has a maximum error of 0.29 x ome 

In addition, it can be seen that the prpriles of the two error curves are 

quite different, the "equal oscillation" property being absent from the 

L, error. Over a restricted range, say {-0.7, 0.7], the L, approximation 

has a smaller maximum error than the rational minimax approximation. 

Example 3 

In this example, a polynomial approximation of the form P,(x) is 

found to y(x) = 27 eo) in the range [0,4]. 

Since six extrema might be expected, the initial reference was taken 

as the points of extreme value of T;(z) suitably scaled to the given 

range. The process is tabulated in table 8.11 below and the final error 

curve is plotted in figure 8.12. . 

* Coefficients of P (x 

  

  

Iteration a, a, a, a, en h x 104 

i 003 404 1)-3.187 141 01.924 685 3}-.119 227 0}.005 361 6 | +3404 

2 003 837 2 -3.199 788 9|.923 791 8|-.119 373 6|.005 417 O | 3837 

3: 003 839 3/-3.199 810 7|.926 775 4|-.119 766 6|.005 418 3 3839 

4 003 839 3 -3.199 810 7|.926 775 4|-.119 766 6|.005 418 3 3839                 
Points of Extrema of the Error Curve 

  

  

Iteration x 5 oe Ky X Re xX, 

ay 0.310 1.155 2.365 3.508 4.000 

2 0.0 0.322 1.169 2.345 3.488 4.000 

3 0.322 1.169 2.344 3.488 4.000 

4 0.0 0.322 1.169 2.344 3.488 4.000                 
  

Approximation to 2f log, { 4(1407* I by Polynomial 

Table 8.11 
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* It may be noted that the coefficient. a, is here numerically greater 

than one whereas it is stated that the programme scales all coefficients 

_ so that the maximum has a modulus equal to one. The reason for this is 

that the programme calculated the approximation in the rational form 

P (x) = a, tax + a.x’+ ax+ a,x* and the values 

b 
° 

have been divided out to produce the more usual form. 

Remarks on Minimax Approximation 

Minimax approximation displays two characteristicgathat make it attrac- 

tive. Firstly, the method of solution yields an explicit figure for the 

maximum error and secondly, because the error extrema are distributed 

throughout the range, the approximation ,may be used with equal confidence 

anywhere within the range. Its disadvantage is the necessity for an itera- 

tive method of solution to find the best fit. 

Since an iterative method has to be employed in any case, it is a 

natural extension to use the minimax criteria when finding a rational func- 

tion scprossmation® Of the methods given for solving the non-linear problem, 

that involving linearization by choosing h seems least attractive because 

of the slowness of convergence. Stoer's method is the most complicated due 

to the inherent difficulty in manipulating continued fractions in compar- 

ison to polynomial forms. The method of Curtis and Osborne has worked well 

in those cases where it has been applied. It is also shown that the linear 

problem is solved by the same programme as the rational in which the degree 

of the denominator is zero. 

It is concluded that the last method is the best one to adopt for find- 

ing minimax rational or polynomial Meceor ination If the final form is 

desired as a continued fraction, then it may be a better approach to use 

the programme provided by Stoer than to have to find a rational function 

and then convert to continued fraction. 
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CHAPTER IX 

Cubic Spline Approximation 

Introduction 

The idea of spline approximation as a method of piecewise polynomial 

approximation is described and the equations are developed for the case 

when the polynomial is a cubic. In this case the approximation inter- 

polates the given function at the joins or knots and smoothness of approx- 

imation is imparted by the ability to ensure céntinuity of the approximation 

and its first two derivatives at the knots. In this Chapter, a basic method 

of cubic spline approximation is programmed and some examples given of 

its application. , 

Concept of the Spline Approximation 

Consider a set of n real values xy in the range of approximation such 

that BEX, C XC see eee CXQED (9-1) 

An approximation is sought such that in each interval [ese re 

the approximating function is a low-degree polynomial. To ensure smooth- 

ness, the approximation and some of its derivatives are to be continuous 

at the interval Soins; or knots, x,; x; sovoX ie 

The simplest form of approximation is the polynomial of degree one, 

which is the broken line joining consecutive knots. In this case, no 

derivatives can be made continuous and the approximation is unsatisfactory. 

Consequently, polynomials of satisfactory form will be either quadratic 

or cubic. 

In Appendix A9.1 it is demonstrated that splines of even degree dis- 

Play practical difficulties and the lowest degree spline which gives a use- 

ful approach is that of degree three. In this case, it is possible to pres- 

cribe that the first and second derivatives can be made continuous at the 

internal knots. 
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Defining Equations of Cub ylines 

The method described here follows Ahlberg, Nilson and Walsh (2]. 

Let os denote the value of the second derivative at the knot Ase Now the 

second derivative of a cubic polynomial must be a linear function. In 

addition, the second derivative is to ba continuous at the internal knots. 

Thus, we may write in [xj-1 x5] that if f(x) is the required cubic poly- 

nomial 

TCO Lye | ere) x JL + jah where h, = x, = x 
jl 5 PO eee doe at 

This equation can be integrated twice and the two constants of integration 

evaluated from the fact that 

F(x = and f(x,) = yo) Th (x) = yy 
where y(x) is the given funetion. 

ive. art (&)) Het oy ‘ aoe? ate, 

a vat 

  

» 
ly + ae 

4 oe Ry in (x5, 1x5] (9.2) 

Now the first derivatives of the splines must be continuous at the internal 

knots. From (9.2), differentiating and putting x = x, we have 
Jj 

4 Re h, Vier ayia kyo) pay ie a m, Se : (9.3a) 

Equally, from the expression for f(x) in the interval 1% 52% ja] , we have 

(x, +) = yet m- “1 y patie | eo (9.3b) Joan 

Hence, for continuity of the first derivative, (9.3a) and (9.3b) yield 

nae Ao eto a, + hy, Mat YG) pare a ge 

: : aa AG (9.4) 

for june 25S oece (N= 2) 

Equations (9.4) provide (n-2) conditions on the n unknowns, which are now 

the values M, (j = 1,2 .... nn). It is necessary, therefore, to impose two 
dl 

end conditions, one at each of ‘the end points x, and Xe 
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End Conditions 

The two extra conditions which are applied at the ends of the range 

can be chosen in a variety of ways. The simplest choice is 

which implies that the end-points are simple points of interpolation. 

This choice, although simple, tends to produce errors near the end points 

which are larger than for other choices. Another method is to prescribe 

the first derivative at the two end points. This may be useful in cases 

where the derivative is prescribed by the problem. 

The end condition which has been adopted here is to put a restraint 

on the error at the mid-points of the two neighbouring intervals at the 

end of the range (Hayes Chapter 4 [9] ). The errors at the mid-points of 

the extrems intervals are made equal to the errors at the mid-points of the 

two intervals next in line. 

i.e. Len, +) “POI, A Xe) for t = 2 and (n-1) (9.5) 

Consideration is not given to the problem where the end-points of the 

range of approximation are outside the two outer chosen knots x, and Xa 

In other words, it te assumed that the boundaries of the range are the 

first and last knot respectively. 

Error Estimate 

If constant knot spacing is employed, Curtis and Powell Cs] have 

shown that an error estimate may be found in terms of the discontinuities 

of the third derivatives at the knots. They obtain the inequality 

max lye) = f(x) [<a max (10,1, | D, I+ o(h*) (9.6) 
$ XE Xs 384 Be 

so Xty * by) & where oO. eh [F (x) | fe shy (x,) + O(h’) 

A sign that the errors may be large compared with the estimate may 

be given by the relative magnitude of the discontinuities in the third 

derivative. 
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From (9.2) we have 

’"(x) = ala, -m] in [x))9 5] 

a 

and the third derivative is easily calculated from the values of me 

Comments 

The method of cubic spline approximation provides a straight forward 

approach to finding an approximation to a continuous function, exploiting 

the advantage in accuracy to be gained by reducing the range over which 

the function must provide a good fit. Its disadvantages lie mainly in 

the facts that a considerable amount of information must be stored, that 

is, the knots, the corresponding function values and the values of the 

second derivatives at the knots. Also equation (9.2) is rather cumbersome 

and rapid evaluation is not possible. 

Computation of the Cubic Spline 

The following assumptions are made 

(a) The knot-spacing is constant throughout the range. 

(b) The end points of the range were taken as the extreme knots. 

(c) The end conditions are those of equation (9.5) 

With (a), equatiors (9.4) can be written 

l ie Sareea, 0) osckeae Ib Roe -27.4 ye) 

  

1 Dame pane Rh Oneness Mm} = |= (y- 2y+y,) 
yt Pe aa 2 (9.7) 

Oe Ueeeh .4hoethis ae... | : 

t 

1 4, =| - th 3h him! ley, = 2y,_, nea) 

The end conditions (c) are 

y¥(xun) - FOxu) = yOu) - P(x) 
h2 h> 

but F(x.) = -7EM+ m+ dy, + y,) 

i ke 
P(x,,) =~ 76 M- fg Mt 2(y, + y,) 

er eS ae Hy -y) (9.78) vom 7g My + ae My Y= Yt ay =, 7a 

; h> he Stet erly ie Meware we aay = Veen 2 Yom) 
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These two equations added to (9.7) determine completely the values of Mss 

the second derivatives at the knots. ; 

The matrix of coefficients is tri-diagonal apart from the end condi- 

tions. The system is solved by the method proposed by Ahlbert, Nilson 

“and Walsh tJ Chapter 2, based on successive elimination. The method may 

be summarized as follows: 

Given b, x, + C,X2 =d, 

@,xX,+ b,x, + C,XxX3 =da 

€@,X,+ b,x, + C5Xx, eds, 

a x +b x € Cox ac 
n-t nea n-t n=" n-i n net 

ax +bx sd 
nas 0 n a 

we form = aot by, (qa, = 0) 

q, = -0,,/P,, 

uy, = (d= au, IP, (u, = 0) 
for k = 1, cecceeen 

The required solution is then 

Xe FX t UL K = 1,2, secong (Nat) 

and xy? x denen Xy can be successively evaluated. 
n= 

Two examples of the use of splines are now given. 

Example 1 c 

-x 
y(x) = rae in the range [0,2]. 

The choice of interval between the knots was chosen initially as 0.5. The 

second derivatives calculated at the knots areused to find error esti- 

mates using (9.6). The actual maximum error in each interval was found by 

using quadratic interpolation between the three points spanning the extremum. 

2 
= Bei i.e. if r = re + Pash + oT § ‘ 

then f 2 ft (Sf_y +5t,) 
max ho ee ms) 
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The comparison of the estimated and computed results is seen in Table 9.la. 

The process was repeated for step lengths of 0.25 and 0.125 and the corres- 

ponding results are in Table 9,lb and Table 9.lc. 

It can be seen that. the error estimate must, in certain instances, be 

treated with some caution. An inditation that the estimate is too optimis- 

tic may be given by the magnitude of the discontinuities in the third der- 

ivative. If these are large, then the estimate is likely to prove inadequate. 

  

  

      
  

  

  

        

h = 0.5 

(knots) m f(x) fe" (x)|* exeor Estimate Max. Error 
fool. x_10°* x 10°* 

0.0 -5.6544 
12.651 6.80 

0.5 0.6710 -11.034 3.60 

1.616 5.0 
1.0 1.4792 - 2.781 0.91 

-1.165 1.8 

1.5 0.3145 1.199 0.39 
0,034 1.8 

2.0 0.2087 

Table 9.la 

h = 0.25 

(knots) m (x) foo)? oe eae tat, oragr 

0,00 -4,6040 

8.772 4.64 

0.25 -2.4113 2.088 0.85 
10.860 1.35 

0.50 0.3035 ~6.236 2.54 

4,624 3.92 

0.75 1.4596 -5.212 2.12 

-0,588 0.887 

1,00 1.3133 -1.340 0.55 
-1.928 0.171 

1,25 0.8312 0.316 0.13 

-1.612 0.339 

1.50 0.4281 0.652 0.27 
~0.960 0.230 

1.75 0.1978 0.508 0.21 
-0.452 0.237 

2.00 0.0753 

Table 9.1b 
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h, = 0,125 
  

  

        

™ Aer eaber: ime ie e 
x(knots) m to(x) malt (x)}- fence ee a ae 

0.0 ~4,.101 
3.97 2.55 

0.125 ~3,605 5.42 2.86 

9.39 2.52 

0.25 -2.425 1.99 1,01 

11.38 0.627 

0,375 -1,.002 “1.71 0.87 
9.67 1.65 

0.50 0.210 3.54 1.69 

6.33 1.94 

0.625 1,003 -3.37 1.71 

2.96 1.56 

0.75 1.373 -2.52 1.28 

0.44 1.004 

0,875 1.428 0.62 0.316 

1.06 0.511 

1,00 1.295 0.70 0.356 
1.76 0,169 

1.125 1,075 0.14 0.071 
1.90 0.057 

1,25 0.837 ~0.16 0.082 

1.74 0.142 

1.375 0.619 -0.30 0,153 

1.44 0.171 

1,50 9.439 -0.32 0.163 
1.12 0,164 

1.625 0.299 -0.30 0,153 

0.82 0.141 

1.75 0.196 -0.25 0.127 

0.57 0,103 

1.875 0.125 -0.19 0,097 
0.38 0,104 

2.00 0.077 

Table 9.1c 

Example 2 

Consider a spline function approximation to 

y(x) = cosh” x in the range i333) with knots 

equally spaced at intervals of 0.2. (The principal value of the function 

is considered. ) 

This is expected to prove a difficult problem, for when x = 1, y = 0 

and yet all the derivatives ara infinitely largs. Apart from the problem 

of finding a cubic polynomial with a very large first derivative, the 

expression for D, in (9.6), which involves the value of the fourth derivative, 
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suggests that a reasonable error estimate will not be available. Table (9.2) 

shows the comparison between the error estimate and the actual maximum errors 

found by interpolation between points on the error curve calculated at inter- 

vals of 0.04, 

  

  

h = 0.2 

tenon) fom |, ele). s.r Guy) heen Eatin Ress epee 
a) -50.249 

245.720 5991 
2.2 -1.104 -250.055 520 j 

-4.335 oe 439.1 
1.4 -1,991 11,115 23.0 

6.780 120.0 
1.6 ~0.635 -6.455 eco 

0.325 30.3 
1.8 -0.570 -0,680 1.42 

1.005 9.03 
2.0 -0.369 -0.625 1.30 

0.380 1.95 
2.2 -0,293 -0.060 0.125 

0.320 0.802 
2.4 -0,229 -0.1190 0.229 

0.210 0.088 
2.6 -0,187 _ -0.055 0.110 

0.155 0.114 
2.8 -0.156 -0,040 0.083 

0.115 0.118 
3.0 | -03133         

Table 9.2 
One point. which is clearly illustrated in this particular example is 

the ability of spline functions to 'localize' the difficulties. Although 

the figures confirm what was th ought about this particular function, never- 

theless, in the range [2-25 3.0] » the approximation can be said to be quite 

reasonable. This means that the large errors experienced inthe neigh- 

bourhood of x = 1.0, have been rapidly damped in moving away from the left- 

hand end of the range. This feature, which appears general in spline 

approximations, is one which makes spline functions an attractive approach. 
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CHAPTER X 

GENERAL DISCUSSION 

Introduction 

Some attempt is made to summarize thelpomnes concerning the various 

methods mentioned and to compare their performance. It would be conven- 

ient if a direct answer could be given to the question that having been 

given a specific function, how would an approximation be found? A general 

approach is suggested but it is pointed out that several factors might 

affect what method is adopted. 

Considerations Concerning Various Methods 

Some of the features of the various methods described will be out- 

lined. It seems natural to commence with interpolation forms. These are 

tremendously important in numerical analysis because of their use in inte- 

gration and differentiation formula, One reason why their popularity has 

declined is that the difference tables often associated with them do not 

fit well into automatic machines. The Lagrange formula, which avoids dif- 

ference tables is not a convenient expression to handle in its general form, 

Making use of equally-spaced nodes can improve this situation, but we have 

seen that it is often desirable to-use points which are not equally-spaced 

for the best results. An alternative is to define the interpolating poly- 

nomial as a Chebyshev series, which results in about the same amount of 

labour as finding the coefficients of the least-squares approximation by 

summation over a discrete point set. 

There is little doubt that interpolation form will continue to be used, 

particularly to derive integration formule , but for function evaluation 

it is possible to find functions of the same degree with rather better 

error curves. 
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The Hermite formula, in which the values of the function derivative 

are introduced into the approximation has not been demonstrated in an exam- 

ple. It is reasonable to suppose that this is a useful form in cases where 

it is important that the approximation reproduces the derivative of the 

function at points within the range. 

Fourier series were discussed in Chapter II in relation to the least- 

squares approximation. This method of obtaining the approximation as a 

series of trigonometric terms is well known and widely applied in practical 

problems of curve-fitting. Unless the function under consideration is peri- 

odic in nature, a trigonometric series is likely to show slow convergence. 

For this reason, and the fact that trigonometric sums may not be rapidly 

evaluated, a Fourier series is best reserved for the approximation of peri- 

odic functions. 

When considering approximations derived from series, it is worth rem- 

embering that a truncated Taylor series gives a small error if the range 

of fit is kept small. However, the rapid increase of the error towards *he 

ends of the range has been noted. Also, because a series is formally con- 

vergent, does not guarantee its suitability for computation; for example con- 

sider the evaluation of e* from its series expansion when x = 10. Ifa 

function has an asymptotic expansion, this can often be used profitably 

when the range of approximation is semi-infinite. It must be borne in mind 

that the truncation error cannot be made arbitrarily small so that normally 

a lower limit has to be set for the range over which the asymptotic series 

may be employed. 

Padé approximants, being derived from series expansions have error dis- 

tributions that look very like those of the series expansion. Being rational 

forms they can be expressed as continuted fractions for computational use. 

Modification of the Pade form to achieve a more equal distribution of the 

error is likely to work satisfactorily only if the range of approximation 

is kept reasonably small, 

deh



Of all polynomial forms, the one most likely to have the best prac- 

tical use is an expansion in a series of Chebyshev polynomials. Because 

of the equal-oscillation form of these polynomials, Chebyshev series often 

possess truncation error curves which are very close to the minimum- 

maximum error condition. In addition, the coefficients of such series 

often decrease rapidly in magnitude, thus Raking it possible to truncate 

the series after only a few terms without incurring unreasonable error. 

We now look at approximations in the three Holder norms, L,, La, and lo, 

As was seen in Chapter VI, the L, approximation can often be found by a 

method of interpolation and that the truncation error is often nearly the 

form of a Chebyshev polynomial of the second kind. Now the interpolation 

method will not always provide the best’ L, approximation and in addition 

we expect the error curve to show the error increasing towards the ends 

of the range. For these reasons it is not considered that the L, norm is 

likely to be a normal choice in approximation problems. The one exception 

(Rice [13] ) might be to provide an approximation to be used as an inte- 

grand, since the L, norm minimisee the integral of the error modulus. 

The L, norm is historically the earliest practical measure of approx- 

imation and retains its status even with the availability of massive com- 

puting power. The reason for this is that if the approximation is expres- 

sed as a series of orthogonal functions, the problem may be solved by a 

fast, direct and numerically stable method. Furthermore, if these ortho- 

gonal functions are chosen as Chebyshev polynomials, we expect the error 

curve to behave, in many cases, very like a minimax error curve. Add to 

this the ease of manipulation of polynomials and it would appear that any 

approximation problem might be solved satisfactorily by this method. The 

one drawback is that polynomials are essentially smooth functions and might 

not deal with problems where the original function has large derivatives 

or which may have regions of large curvature. 
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One way to déal with such problems would be to "stretch" the curve 

out by some simple transformation of the independent variable. The res- 

ultant improvement in the accuracy of a simple polynomial may be such as 

to outweight the extra burden of carrying out the transformation. Another 

approach is to alopt a rational function as an approximation. These func- 

tions lead to essentially non-linear problems for the derivation of the 

unknown parameters. The best approach with rational functions is to adopt 

the minimax .norm and to determine the coefficients iteratively. Clearly, 

the equal-~error distribution of the minimax approximation is an attractive 

property and would appear the best measure to adopt. There is no need, of 

course, to ajopt a rational form when seeking a minimax approximation; poly- 

nomials being equally well suited to this type of solution. Indeed they 

may not be subject to the instability sometimes: encountered when trying 

to find a rational approximation. j However, empirical evidence demonstrates 

that for the same number of coefficients, a rational form will give a smal- 

ler maximum srror than the corresponding polynomial. In order to exploit 

this feature fully, rational approximations are usually chosen in which the 

degrees of numerator and denominator are either equal or differ by one. 

Another point about minimax approximation is that the method of evaluating 

the coefficients also gives a specific figure for the maximum error. Lastly, 

concerning a rational function; when this is expressed as a continued frac- 

tion, it probably gives the most economical form for evaluation purposes. 

On the contrary, considerable labour is involved in finding minimax 

approximations because of the iterative method involved. In particular, 

rational functions may give problems with stability, either through being 

unable to find sufficiently close starting values or through difficulties 

in locating the extrema of the error curve. 

Spline function approximation is different again from the approach 

using the Holder norms. Clearly its closest affinity is with interpolation 
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forms. For the purpose of function evaluation, the main problem is that 

the piecewise nature of the spline function is not a fast computational 

form. Satisfactory @ror estimates may not be available, although with an 

automatic machine it is not unreasonable to compute and print out the error 

curve using a fairly close mesh of points. End conditions present some- 

thing of a problem. There is a general tendency with spline functions 

for the error to increase in magnitude towards the end of the range. Never- 

theless, spline function approximations can be found directly by a con- 

venient numerical process and their ability to’ "localize" perturbations 

~produced by undesirable features is an attractive feature. This feature 

possibly makes them particularly suited to problems of curve fitting. 

Examples of approximations found by some of the methods described are 

now given. 

Example 1 

In Chapter VII approximations were found to the function 

{werd et in the range [-173 

Here-a spline approximation is found using nine equally-spaced knots. In 

table 10.1, the details of the error are presented. It is interesting to 

note that with this particular function, the error is greatest in the middle 

of the range of approximation, which is contrary to expectation. It is 

noticeable that the discontinuities in the third derivative follow this 

trend and the error estimate, using the pxpression of Chapter IX is reliable. 
Error Est. Actual 

  

+ 
x m ita (x10*)  Error(x 10°) 

- 1.00 ~47.88 
5.56 

- .75 ~35.85 - 1.32 5.36 
5.47 

- .50 -24.15 - 4.40 17.90 
27.64 

- .25 “13.55 -10.94 44.40 
64.11 

0.00 - 5.68 -14.93 60.60 
64.11 

025 -.1.55 -10.92 44.40 
27.64 

50 - 0.146 - 4,45 18.10 
5 5.47 
375 0.1469 |e 332525 5.10 

5.56 
1,00 0.123 

116



2-01 
Sia 

(e+ 
yur) /eyse 

oj 
vo}jowneoudd yy 

 
 

 
 

  
  

¢
-
 

2
 

t
o
 

°°) 
; 

O90 
ou= 

i 
t 

4 

iV 
/ 

bh ao 
8 

; 
L 

R 

rt 
3 - 

b
u
 

be 
sawas 

aeysdqayd 

ALT 

 



Ort 

sor 
Sy 

(Cs 
se yurs) /

x
 

Yser 
v4 

U
O
H
O
W
R
O
W
d
d
 

+ 
O
9
6
 

f 
| 

> 
| 

: 
oun 

118 

        

& 
9X NHDF 

T 
ie 
vv 

  
o
w
l
 

f
o
/
t
g



Compared with the Chebyshev series approximation of degree nine, whose 

error curve has ten zeros, the maximum error is 0.00064 compared with 

0.00015 for the series. 

Example 2 

Consider cosh x in the range (-1,2) 

sinh x + 2 

First, a Chebyshev series of degree nine, the coefficients determined by 

summation over a set of discrete points, chosen as an orthogonal basis 

(See Chapter VII-) 

The approximation is 

f, (x) = 0.787 858 - 6,542 979 T,(x) + 0.330 826 T, (x) - 0.125 213 T, (x) 

+0.049 993 T, (x) - 0.020 329 T.(x) + 0.008 163 T, (x) 

-0.003 283 T,(x) + 0.001 322 T,(x) - 0.000 532 T4(x) 

The error curve for f,(x) is plotted in figure 10-2. To show the advantage 

to be gained in using a rational function in terms of the magnitude of the 

maximum error, we can compare this with the approximation 

f, (x) = 0,500 005 - 0.074 222x + 0.200 353x*_- 0.322 750x° 

1,000 000 + 0.351 S06x - 0.173 361x* + 0.043 858x° 

The error curve for f,(x) is plotted in figure 10.3 and we can see that 

although f, (x) has fewer independent coefficients, the maximum error is 

considerably less. The coefficients in P(x) were determined by the itera~ 

tive programme of Chapter VIII, which gave the maximum error h = 0.576 x ion 

Example 3 

As approximations to x e*. log, (1 - = 2%) in the range O,3] we find 

a Chebyshev series and the L, approximation, both of degree 5. Using the 

method of Chapter VI, the L, fit is found in terms of the Chebyshev poly- 

nomials of the second kind. 

i.e. f,(z) = 0.309 999 6 - 0.178 046 3 T,(z) + 0.021 603 3 T,(z) 

-0.002 309 7 T,(z) + 0,000 855 9 T,(z) - 0.000 340 9 T,(z) 

where z = x-2 and -l< zsl 

f,(z) = 8.299 197 9 = 0.087 868 2 U,(z) + 0.016 373 5 U,(z) 

- 0.000 983 7 U,(z) + 0,000 373 8 U,(z) - 0.000 144 8 U.(z) 
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The error curves for these two expressions are plotted in figure 10.4. 

Wa notice that there are six zeros on the error curve and that, in this 

case, f,(z) is the best L, approximation of degree five. As might be 

expected, we notice that the L, fit gives errors of larger magnitude near 

the ends of the range and that the extremes are greater than for the ord- 

inary Chebyshev series. 

Example 4 

In the range [0,2] , we now consider the function defined by 

x*y + (1-y)*y = 1.0 

The approximation is found in this case in three different forms. First, 

the Chebyshev saries of degree eight was determined. Using this as the 

starting point, the minimax polynomial approximation of degree eight was 

found. Finally, to illustrate that the rational function with the same 

number of parameters gives a smaller maximum error, the rational approx~ 

imation P,(x)/Q,(x) was determined. 

i.e. f,(z) = 0.992 482 - 0.896 245 T, (z) - 0.000 133,T (z) +0.162 341 Tota) 

-0,005 810 T,(z) - 0.049 468 T,(z) - 0.002 258 T, (z) 

+0.020 943 T,(z) + 0.002 920 T, (z) anaegte es Boel 

f, (x) = 0.028 7387' {0.080 016 + 0.023 032x - 0.222 194x" + 0.675 660% 
1.000 000x" + 0.677 143x° - 0.174 351x° - 0.008 524x? 

+ 0,007 715x'} 

f, (x) = (-0.419 969 + 1,000 O00x - 0.894 927x* + 0.352 376° 

-0.054 960x" )/(-0.239 461 + 0.570 135x - 0.571 611x* 

+0.308 123x” - 0.084 683x") 

The three error curves are compared in figure 10.5. The Chebyshev series 

is again seen to be close to the minimax error of the same degree, but the 

superiority of the rational function is clearly illustrated. 

One final point, the rational function f, (x) can be represented by a 

terminating continued fraction form 

ter
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P(x) = 0.649 010 - 1.799 66 1.926 69 0.089 059 

x - 0.200 596 + x- 1.274 93 + x - 1.094 418 + 

0.117 442 
x - 1.068 594 

In this form, the approximation can be evaluated with four divisions and 

no multiplications. 

Example 5 

Here we compare the approximations to 

ale 

Ji wus in the range [0,4] 

by a Chebyshev series of degree eight and interpolation through the zeros 

of T, (U), scaled to the given range. In figure 10.6 it can be seen that 

the two approximations give very nearly the same error distribution. How= 

ever, the Lagrangian interpolation form, which was used by the computer 

programme to evaluate the figures plotted in figure 10.6, may not be con- 

sidered an efficient computational form. One alternative is to express 

the interpolating function as a continued fraction, as in the manner of 

Chapter IV. The two approximations then are 

  

  

f(z) = 1.360 788 6 + 0.347 768 57 T,(z) - 0.017 788 06 T,(z) 

- 0,004 504 32 T,(z) + 0.000 353 49 T(z) + 0,000 084 75 T, (z) 

- 0,000 006 87 T,(z) - 0.000 001 76 T,(z) + 0.000 O00 13 T, (z) 

where z = 4(x-2) 

f,(x) = 1.005 7025 +x - 0.030 384 4 x - 0.267 949 2 x-0.714 424 8 

5.288 9142 + -10.071 2548+ -N.080 126 9 + 

x - 1.315 9596 x ~ 2.000 000 x - 2.684 040 4 

9.667 879 3 + 14.742 968 0+ -1.951 823 6 + 

x - 3.285 575 2 x - 3.732 050 8 

-1.788 073 8 + 4.309 930 6 

It must be pointed out that the coefficients in ea(%) were derived froma 

reciprocal difference table computed using a machine with a nine-digit 

quotient register. The accumulated rounding error is sufficient to make 

the fraction unsatisfactory for the computation of values accurate to the 

magnitude given in figure 10.6. 
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General Approach to Function Approximation 

When seeking an approximation, it is necessary to bear three things 

in mind; the use to which the approximation is to be put, the range of 

fit required and the accuracy that is demanded. If the approximation is to 

be the basis of a procedure that will be used innumerable times, it is 

worthwhile trying to find a fast computational form. On the other hand, if 

the function may be differentiated or integrated it would not be very help- 

ful for it to be expressed say, as a continued fraction. When considering 

the degree of accuracy required, clearly time spent computing terms which 

are of no significance to the answer is wasted. However, when preparing 

a standard subroutine, it is often necessary to consider the most string- 

ent demand and programme accordingly. The best method is to have several 

routinas of varying accuracy and expect the user to choose the most 

appropriate [8]. 

When considering the type of approximation, the range of fit can be 

influential. Over a small range, a Taylor series or Pade approximant may 

prove more than adequate. However, since with these forms the error shows 

rapid increase towards the ends of the range, then for a moderately large 

range a method ane be adopted which produces a more equal distribution of 

the error. For large ranges, it is essential to divide it up into two or 

more parts and adopt different approximations in the separate sections. 

The use of asymptotic series for regions in which the argument is large is 

an example of this. Another technique is to reduce the range over which 

the basic approximation must apply. For periodic functions, the range 

obviously need never exceed one complete cycle. It is possible to make 

use of the fact that the computer will work in floating point arithmetic 

to base 2, so that multiplication or division by 2 implies a change only 

in the integer exponent. 
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and by uSing shifts involving changes in the exponent, the range may 

be reduced to Rexel 

x —. neP 
also oe a) iog,2 = 2 where n is integer, 

eae. os P< 

and e” can be computed by one division, a shift in the exponent. and! a 

function to find 2°. 

Equally log, x = log ,2- log,x 

then if x = 2".P where $<f<1 

log x = n+ log f and the range of approximation is 

reduced to [2.2] at the expehse of one multiplication and a shift of exponent. 

Finally, is it possible to present a general method of approach to the 

problem of finding an approximation? Assuming that the function can be eval- 

uated for any given argument, the process might proceed as follows. 

Find the series of Chebyshev polynomials that gives the required degree 

of accuracy. If the error curve is to be levelled, this can be used as a 

starting point to find the minimax polynomial approximation, 

The function that has been derived at this point may have rather a large 

number of terms and the next step could be taken to adopt a rational func- 

tion form to reduce the number of coefficients involved for the same magni- 

tude of error. However, the use to which the approximation is to be put 

may dictate that we prefer a few extra terms on the Chebyshev series to an 

awkward continued fraction. 

As a final exercise, if no satisfaction has been found using the above 

methods, then subdivision of the range is appropriate. In this case, it is 

likely that different forms of approximation may be used in the different 

segments that make up the complete range. 

Clearly, having proposed this approach it is possible to consider a 

host of reservations which are dependent on any special features that the 
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original function might posses. However, some of these points should now 

have been mentioned and no attempt is made to reiterate them. The last 

words are given to Prof. P. J. Davis who said at Canterbury in 1967 

(Hayes p. 162 [9]) 

“The comparison of numerical methods is like a comparison of cars. 

You must know what is in your pocket-book, how large your family is, what 

they like to do at weekends etc. Comparisons are hard to make, frequently 

hard to interpret but they ought to be undertaken." 
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Appendix Al 

A.l. Proof of the Weierstrass Theorem 

This proof is that given by Rice [23] and follows that of Lebesgue. 

Theorem: If y(x) is continuous in fo,a] then there exists a polynomial 

Pn(y,x) such that for any £70 

lpnty, x) - y(x) [sé for 0$x$1 

Proof: There is no loss of generality in choosing the range fy since 

this can always be achieved by a suitable transformation. 

The method involves two steps. In the first, it is established that 

y(x) can be approximated arbitrarily closely by a broken line b(x) and in 

the second that b(x) itself can be approximated by a polynomial. 

For any&, there exists §>0, such that if [x,- x|<$ 

then lycx,) - y(x,) | <te (3,1.1) 

Now choose a set of points x,, x, -.+. X,,» equally spaced in (0,2) » so 

that \x; - x ,IS § 
m 

Define the broken line b(x) =b + 2 b, d(x,,x) (31-2) 
° kel k Kk 

where B(x, 9x) zxX-x% + lx - x, | 

The coefficients by in (1.1.2) can be chosen so that 

B(x.) = y(x,) Kim Syaesciely th 

Then, it follows that if (1.1.1) holds, 

ly(x) = bil < 6 in og xg1 (5163) 

If we now show that each term by B(x, 9x) in (1,1.2) can be approximated to 

within fon, then the result will follow. 

For Jxl<1 Kec lls /TearCense) 
1 a3 igs 

or writing u = (1 - x’) Ix} =Vi-u= 1-du- —u-s—ue 
22! 2°3! 

where the right-hand side is uniformly convergent in the region under con- 

sideration. Hence, there are polynomials in u (or 1 - x*) which approx- 

imate to | xl arbitrarily closely. 

la



Hence it is possible to approximate to Ix - x, | arbitrarily closely 

in [0,1] 

*. There exists polynomials PL (x) such that 

lex) = bf(x x < Ym 
so lb(P,x) - 2 P.(x)]< & 

. LyQx) = b(r,x) + b(P,x) = a p (xdl¢ fp .h 

I Fp (x)l or y(x) = ee) g& 

Which completes the proof. 

Al.2 Relationship between Lp and Minimax Approximations 

We-wish to show that 

3 nim Lp[y(x) = P(x] = maxl y(x) - #(x)I 
390 [ } f@,5) Pp 

Let the approximation be of the form f(x) = a8, (x) and without loss 
i=l 

of generality we can choose the range of fit as {o, 2). 

Then we shall denote the set of coefficients by [Ap] such that 

f(Ap,x) is the best ane in the sense of the norm 

tp {y(x) - (Ap,x)} = [fivoo Ere (ap rei wale 

being a minimum. 

Assume that as p+, we can choose a subset of [ae) to form a sequence 

such that 

nim fa] = C4.) PP. 

Also, let £(A,,x) be the best minimax approximation to y(x) in [o,2) 

writing Mm, = na ly(x) - F(Ag,x) | 
t  (,y 

Mo "ay ly(x) - F(Agsx) | 

we require to prove that Mg = 

Assume contrariwise that Mg>mM_ and choose &= m- mt > O 

Me 

For some interval I in (0,1), ly(x) - f(Ao,x)l > #Mg + am, 

2a



but m, = m,(1+€) 

* 2g $m, + am, = m, (1 +77%) 

int ly(x) = F(Agsx)l > — m(17%) (152.3) 

Now for some Poe when P>P, 

Ip(a,,x) = F(a, »x)l gem, 
3 

Thus for P®P, in the interval I 

ly(x) = Apsx)L + Ie(apyx) = #(Ajsx)L%ly(x) = F(Apyx) + F(Ap,x) = £(A,»x) | 

hence ly(x) - f(Ap,x)| + EM, > m(2 +26) 

3 
3 

or ly(x) - F(Ap,x)[2 m,(1+€) (1,2.4) 
3 

If m is the length of the interval I 

: . y y 

[Lhe = rap, x)” | ? >[ [lr = r(apyxdl° ox] ” 
e a 

; > m, (1+ &)mi“e (1,2.5) 
3 

Ye. But m’-1, as p»oo, and since 

7 P Ye 
[ [ivco = ragol” om, (2,248) 

lo 
(1,2.5) and (1,2.6) imply that f(Ap,x) cannot be the best Lp approximation 

hence m, and M, must be equal. 
t 
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Appendix A2 

A2.1 Properties of Chebyshev Polynomials of the First Kind 
  

Recurrence of Relation 

if T(x) = cos(n cos’ x) 

writing cosf= x 

then T, (cos) = cos n@ 

clearly Ty (x) #1 and T,(x) = x 

but cos nO? cos mé= $/cos(n+m)O + cos(ri-m)@] 

or TAC) THO) [Taam + Trem] 

setting m=1 and noting that T, (x) = % and rearranging 

Tan (x) = 2x T(x) + Vet (x) = 0 when n7O0 

Integral of T(x) 

Using the identity cos m@ sin@ = 3 [ein(m2)0 - sin(m-1)6] 

and integrating with respect to 8 

[oo mocing dg = ¢[cceim1)@ _ cos(m-1)6 mg1 
m+1 m-1 

or putting x = cos @ 

Sra) dx sine - =| ng 

and fro) dx = T, (x) 

[1 & = aff) + 1,60] 

Multiplication of Powers of x 

Start with the trigonometric identity 

2k¢n 
cos" a ae "c,.cos(n-2k) © 

2! ks 

a 

Putting x = cos@ yields 

igen a eCeT, (x) x = 
a “aah k' (n-2k)* 

. n. ken i 

ome x TCX) oe lea CLT naa) (%) T(x) 

2™"(keo 

4a 

(2,1.1) 

(2,1.2) 

(2,1.3) 

(2,1.4)



Then using (2,1.2) 

T(neak) XT A(X) = 21 man-24) 0) + T(mens2k) )] 

2ken 

“2 a "C4 (Fone 2k) *) o Te aryl} 
2” k20 

eee xta(=) 

Writing n- j =k, then the first term on the right-hand side becomes 

2k$n 

Z "or (x) = ; ken K (men-2k) a : 

n 
rey cos(m+n-2k) @ EM

R 
n M
e
 

3 
C,_ soon m-n+2j ye 

N fae
 

v = 

n, n, n, 
c; T\¢mi-n425)\ 0% since oe z cy Sa

y 

2 a an 

Hence the right-hand side uaa summation over 0 ton 

i.e. xT (x) = ie roy Ty (mene2k)| (2,1.5) 

2" K=0 

Zeros of T (x) 

From (2,1.1), the zeros of T(x) are the zeros of cos n@ in fo,nv] 

i.e. nO -(3 > . etc.) 

or x F cos( 22 it Kemi, 25esecen (2,1.6) 

There are n roots in (er; x) hence all the roots of 1 (x) are real and lie 

‘in {-1,1) 

Orthogonality 

For the orthogonality property, we have 

7 

T(x) 7 ,(*) be + [coe no cos avo = ifmén 

° fi-x ie 
[Bae 

Vie ee 

ee Ty) ele n#o (25467) 

Yi 2 
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The first few Chebyshev polynomials T(x) are 

T(x) sl 

Ti (x) = x 

T, (x) = 2x =-1 

T, (x) = 4° = 3x 

We notice that they are alternately odd and even functions and that they 

are not periodic in the argument x. 

Orthogonality over Discrete Point Sets 

The Chebyshev polynomials are orthogonal over certain discrete point 

sets when summation is used instead of integration. 
N 

ise. Z'cos m9, cos nO, = 0 forO, = kT -if-m¢n—k-= 0)1 ..00N 
k=0 k k k n ; ‘ 

ua 

end oa, = 3N ifn#O0orN 
k=0 

=N ifn=6orNn 

The double prime indicates that the first and lastterms of the summa- 

tion are halved. 

Then an approximation to y(x) has the form 

n 
f(x) = z a,T,(x) (2,1.8) 

N it é 

where ae 2 5 y (x, )T(x,) x, = cos “f) (2,1.9) 

and k = 0,1, ......N 

The single :prime indicates that the first term is halved. The degree of 

the approximation m is less than N, otherwise an interpolation formula 

results. 

Equally we find that 

Me 
F(x) = 2 b, T(x) is an approximation to y(x) (2,110) 

a) 

h 2 a (x2) TG) (2,2.12) where a = y(x, x ais 
tweak | 5 PUK 

: 2k+1\ i 
and the discrete points ea coe( aes \s k = O,1, eoeee N



A2.2_ Properties of Chebyshev Polynomials of the Second Kind 

Orthogonality 
7 

From fein m@sin n@d@ = 0 ifm én 
lo 

A _ sin mg . 
writing Un) * atapT where x = cos@ (25221) 

1 

ha c then ie (x) UL, (x) l-x* dx = 0 if mén 

1 r os 
Also [4 = Ue ; (x) dx = J[eintno d@ = > 

wt ig fy 

and the functions U(x) are seen to be orthogonal over 61,2] with respect 

to a weight function Si-x* 

Recurrence Relation 

Starting with the identity 

sin(n+!)@ , sin(n-1)@ _ 2 sin n@ .cos 
Sing sing sin @ 

we have 

U(x) + uL_fx) = 2x Ys) 

or U(x) = 2x Un_, (x) - U(x) (252.26) 

Since from (2,2.1), we have that 

Uj (x)= 1 and U,(x) = 2x 

it follows from (2,2.2) that U(x) is a polynomial of degree n in x 

Integral of U (x) 

  

Now T(x) = cos(n cos'x) 

: -I 
T(x) = 2sin(n cos x) _ n sin n@ if x 2 Goso 

n Vl - x* sin® 

1 
or T(x) = nu, (x) 

and J Voy 8 = T(x) if n>2 (2,2.3) 
n 

Relation between Te x) and UG) 

Since sin(h+1)@ ~ sin(n-1)@ = 2 cos n@ sin® 

then sin(n+1)@ _ sin(n-1)0 
sings > @gainerr soa 

hence U(x) - Un, (x) = 27, (x) if nol (2,2.4) 

with U,(x) = 27, (x) 

U(x) = Ty (x) la



Appendix A3. 

A3.1_ Recurrence Relations for Continued Fractions 

  

  

  

A 

(i) Let the value of the continued fraction be a when it is truncated 
a n 

after the term + . (termed the on convergent) 
n 

Then A and B can be generated by the recurrence 

Yuan = Par Y.+ a Yue for j = 0, «(n-1) 

(3.1.1) 
with A, = 8) =, A, =b., 8, =0 

hs PGi es Ses eines Proof TP f(x) = oo b+ a sescceees b, (3.462) 

fftanis hoist Ay 2 Mb + aed by +a, 
Beet B, b,l+0 B, 

Let (3.1.1) be true for n, then 

Anas b ah a ecceee an 
a eee ae 
n+l Bt: et 

b 
net 

= a nine ie eicieisie ewe 
o b+ bb 

nena * Anat 

peek (b, Bast Snes Ane en ade nee 

ar (6, oa * any )6. 4a bee (8 net on net naz 

F Pon Ane a Ane Ba) z net nc 
Baa 6, Boy * 3,8 ee alent 

=D Aa A ne on n+t n=1 
b Bo+a 8 net on n+) n=1 

Hence, by induction,(3.1.1) is true for all j. 

(ii) The fraction (3,2.%) can also be. evalusted by calculating the difference 

between one convergent and the next 

Using the identity Oo. = ALB oy BAL 

b,A,_, + OAc Hi Meg Bm (OB, * 8a )Aeat 

Fe Be Akoa lt eel koa.) 

aah ae (351.3)



  

continuing in this way D, = (-1)S Taya, as 

  

    

jt 

A A B A -BA 
Now 28 eheat ey hict op nonst 

B B % BB 
n n-1 non-t 

Do 
A n 

BB 
n-tn 

hence Ay ee ore * Ga ona ) (32124) 
B B BB 

n n-1 n-1on 

At each stage oh and 8, need to be evaluated. 

(iii) The evaluation of (3.1.2) can also be expressed as the summation 

of a series 

from (3.14.) fe 

  

define (3.2.5) 

then 

and 

dard Bi 

b,b 
or Lee, = Bysshe 1 for j>2 (3.1.6) 

and (f, = : ’ 1 +P,= Tee 

' 

but f =f, + (f- fo) + (Q- fy) csceecee ete) 

s b, tAit Ppt tteeerereee HO, 08 Py 

or 7 = b, +2 uy where uy = Fra creeeres Py 

(21.7) 
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A3.2_ The equivalence Transformation for Continued Fractions 

Acontinued fraction is unchanged if some partial numberator 2, and 

partial denominator a along with the immediately succeeding partial num- 

erator are multiplied by the same non-zero constant. 

Proof 

Let a8) become Re, » then since —j-t is unaffected 

  

ae 1 

al 
SS kb A, + ka.A woe ag ; =e “ji! jira = 
2) kee, kao, By 

ws Bia (kb jas, = eae 2) t Seay re Fiat af | pecomes ie 
Ba ae TB + ka 83) oe ai . 

For the summation form 

kb, ob 
=1 l+ pi = ee Pj kbj 5; + kaj(l +o) a) 

' kb .b. 2 ein jo ja. =i1 Bare Af. becomes ka a +i jet kb, Bit ahs (+e) “ 

Similarly, for the backward recurrence form, there will be a sub- 
calculation 

faa e hee - where q is the value of the tail, 
b+ jt 

anag 

af: ans Jt and aa are all multiplied by k, the value of this quotient will 

remain unaltered, 

A3.3_ The Convergence of Certain Continued Fractions 

Certain criteria can be astablished for continued fractions evaluted 

in the form (3.1.7) 

(i) Consider Feb + 20 3a where all a,b, 70 
b+ by se eeroes 

For the series in (3.1.7) to converga, the ratio test gives 

Lim {4% " 24 

rr aa 

But since all the coefficients are positive 

Oe 
l+Art a <1 

b — az 

fos will be negative although 1 +B is positive. 
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Now don = Brat ba ny3 
Be, b, + 8n(M4p p01) 

when n = 3, 1+ will be positive and less than 1. Hence by induction 

the same is true for all nando, is negative for n?2. 

a, i.e. ie 70, Pa<9 for n%2 (3.3.1) 

This means that the series will alternate in sign and a necessary and suf- 

ficient condition for convergence is 

lim bed 
no on” 

To show that even and odd convergents form monotonic sequences, we 

write 

Fan 7 Fanen™ Yona * Yan 

= +8) Apa eee Qo, 

but all Ce are negative apart from © and l@al<2 

  

wi oe > Fonea and the even convergents form an increasing 

sequence, 

Equally 

Fonats fancisia* Gant Apa SITY Ye yo) 

cy F. < Ff, and the odd convergents form a decreasing ant an-1 

sequence. 

Finally 
Fon - Bera, iPr cress fon> oO since an odd number 

of Pj are negative. 

Seeing fans 

and if the even convergents approach a limit Lo and the odd convergents a 

limit L,, then 

st (3.3.2) 

(ii) The fraction to be considered next is of the form 

rae 1 

4 be bat 
er eeeeee where b> oO 

lla



ret [EL] = WR - Fal = 1, d= PPro n) 

but from (3.1.5) 

  

i B 
(og ey Secait 

' 8 
J 

pidee| Elen 
net na 

Now 8, = b,6,+ 8 since all a we 

= bb+1 < (1 +b,)(1 + b,) 

let a < (1 + b,)(2 + b) Bectews kl + by.) 

Serb) 848, 
ket k+) k k-1 

<b (1 + by) weeeee (1 + by) + (1 4b,) eeeeees (2 + bY) 

5 

= (1 + by) se-eeeeeee (2 + by |) [vay (2 +b) + 1 

aps (2 + Dy) ceeeeeeeee (1 + bY) (1 + by )(1 + BL) 

hence, by induction, we have 

B, < (1 + b, )(1 + bz) seeo0e-(1 +b) 

1 
and |< oor 

| al Ca + by) sooe(l + by, y+ by) 

It can be shown [[Knopp: Theory and ge rae of Infinite Series, Ch. 7) 
= 

that ge 1 (1 + by ) converges if and only if - by. vonverges. . GOSS 

“If lim|e,| = a then ee by must diverge. “> (3.3.3) 
To ree (3.3.3) is a sufficient condition, ret & by b, be divergent 

By repeated application of the recurrence relation 

Brie waka (9k)? aka dks aeee se ecto 

2, (Bo 4 2 
aay toveeee + b,) 8, 

since the B.'s form an increasing sequence. 

Similarly Ba? (by 4 +b + veseeee + by )B, 
2k-2 

Ve 1 
vs 1 Exel = B. b, + eet BY(byL < 

Bake) (en ke vee b)B,8 Ba ken 

and by virtue of the divergence of =o, the right-hand side of the inequality 

can be made as small as required. 
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(iii) Fractions are now considered in which the partial numerators are 

negative. By virtue of the equivalence transformation, it is sufficient 

to consider the two forms 

1 2 
fo best tact where b 70 

a a 
AG = = where a, > 0 

In F, a: +6; = 5 
(1 +p, 

Jelad J-v 

ao 2 1+ 

te 1 3 b Oe “Fj jas 

Now if R is convergent | p,|<1 for some j>N. So the right-hand side 

will be positive and so will the spon ator on the left. 

Hence the P; are all positive for large enough j and all terms of the 

‘series for the evaluation of F, will have the same sign. 

Equally for F, ssi 1 

= 2,41 +0,_) 
= 5 J @ L-a,(1 * Pi) 

=a(1+P,_) 

fA 1 

and, as before Gay will be positive for all j>N and the series will be 

one-signed for large enough values of j. 

  

  

5 li 
Both series are convergent if | 2 vans by the ratio test. (3.3.4) 

a 
but for F, | =|-——SC—-id2? 2 lal?| } 

2 b (+e) n 

1 or o< 7 Len <a for n>N 

b b 
n-1 ni 

From R.H. inequality 

n-1 7 
2(l+a _)< bos 

13a



from (3.3.4) 465." b 

Clearly, this will also satisfy the L.H. inequality. 

Finally, if by. =2 in F, 

  

  

us 1 
n = aaa) from (3.1.5) 

R= 

= (1 - $)+(4 - $)+(4 - 4) + «000. 
lim 

Se are l= i) 3) 
n 

and F, is convergent if b. 22 for k>N where N 

is some non-negative integer. 

By a similar argument for F, 

a 0< ——-—, < 2 

dann Pn) 

from R.H. inequality 

2a, (Ite, Jer 

the worst possible case would be f= 

for n oN In
 ae a< 

<
 

and this also satisfies the L.H. inequalit 

If now, a= i 
4 

‘ sence 

2n(n+1) 

a s te 5.2, oe Fy = ff +E +i? stoseeee | 

  

and F, is convergent if a < & for k2N 3 k 4 

l4a 

(353.5) 

(3.3.6) 

(3.3.7)



A3.4 Estimation of Truncation Error 

(i) Let the truncation error in the summation form be 

2 
R_ = u 

n jen J 

. iy *Hoaa tna fate Meeeeess) 

Ra SJ Yaad 2 +1 Ayal Waal t ore) 

Now if [Cos P>fmeapefensab esses 

Ro [aa] +lAral + Naar Jail Mile celsscs eles) 

R,< Une (3.4.1) 

z “|Gu] 

(ii) -For fractions of the form F, and Fy, it is necessary to quote the 

following results [see Blanch 2] J. 2 

If F, and, F, are fractions with terms b and b such that 

b> b.e2 for at least one value of ky then Fic ES (3.4.2) 

If F, and F,' are fractions with terms a and a, such that 

o<¢ af<agt » for at least one value of k, then Es FS (3.4.3) 

It is now possible to produce estimates for the truncation errors in FE and f 

For F, , let 

  
  R= 5 ssecccce with b.72 +c, e>o0 

from (3.4.2) 

  

1 
ans (Zsc)- (24c)- °° 

writing q Soest se eves 

OF qe= 2 

(240 )-q 

O=q- (24+¢)q + 1 

from which q = (laste) + M(l+dc)*- 1 

If the positive sign is taken, q increases without bound as c increases 

wo.) Ge (1edc) - Mlede)°- 2 <2 (3.4.4) 

15a



It is possible to write 

    

  

  

’ I: 2 
Fe = Da- ee eeeeeee b 

PR et 
or Fy = tn) o 

b 
where Be” a Pines with 1 + fae — a ; 

n n Cr 
R 

\ ae n 

Ponti b, 
-~R 

lve, n 

but O<¢@,<2 

R 
es Sees Anise 

  

' ' : R 
ie im FanyiS a [ope eel 9) 

1-R, l-q 

Similarly if a,¢t-c where ¢>0, it can be shown that 

R F - FY ee Hime | |e u 
3 \5 (nd! $ ga In ae 

where p= $-/e 

A3.5 Contraction of a Continued Fraction 

Using the recurrence relation, we can write 

Aen ¥ 5 nranst * 8 hana 

a Fanaa (a,,* 4% neanel? fe bn Bans Bones 

since a = Bone Lane Sess +A 2n3 

1 ®2n 
a) Bec nea oan oonnoney oe cenaanes fe Asner” 5 

an-2 an » 
f satan Ba n2ann Pana 

A aA @22+Do 0. Berea ee CN eet cee 
an an-2(- an 2n an-1 Oey Baas 2 

( bs nfannt ) B nPann Sanne 
Equally 8. = 8B (a, +b. _b ao) - 

an SEES an an 2n-1 ans ) Ba nen 

l6a 

(3.45) 

(3.4.6) 

Ba nPanet A2nen* Man4anat Panfans ~ PanPans Mana 

= 2. 
Maney 

rm 

n=4 

an-4 (32833



einen), Ane ic a By a Bone Aanel 

Seti ton ane! Stoner ancl Canaan 2 Pane Can ane 

  

1 2n-t 
Banat eons : Ban ay 7 Bans Ban ic Bana aid Nena} 

2n-1 an-t 

( b aube ee aa 
hence A 2A (a +b + 20H an )__aptt an ans 

ant an=1 pans ann 2n b b 2n-2 
( 2n-1 ) Qn) 

( ee pe ae 
a an+t 2n . ant an ans! 

ue See ae Can ant ab ) b 2-3 
( an-t ) 2n-1 

@.5.2) 
(3.531) and (3.522) define recurrence relations which give convergents equal 

to the even and odd convergents of the original fraction with terms a, and bo: 

A3.6 Modifications To Avoid Small Divisors in Summation Form 

With the notation of (3.1.7) 

fn a if *U +U +u 
na, one) On nei na, 

Sct tnetnen YneiPnfas * Yn? nfnsi hea 

Sanat eras * Fast lit Fass 

iS (1+ ens One Paes ; 

a nif ( Baa yee naa ta) ) 

" re + 

Cacia Yo n+ Baaa* areal one nna” na (Q,)) 

fae Ba (PnPn, + 8,,,(14A)) +8 So 
N+) n+2° nN n+ nea o n+h 

orn nna Co eneae Sn+2) 
  ef o+ =< 

aa Cae eat Draeniacnel (te a) Ss Bea none) 

ce Ont nta* ee aes 8 A 
  u 

cits Aes aor Beat Bahn) (By net bade, De Pain Daas 

a 
n+ ‘] 

  

or n= b b +a b b+ z 4 
(era n+Q ea Avan n — : ea Paa Bee, 

(3.6.1) 

17a



Similarly 

~8pg2 (1+ (a = P= a 
n+2 uth Pasi Asa Une Cn Cras bo ob a 142) 

N+) N+2 N+2 net 

  u 

  

= UP 5, neg ot “Fn? n 

nate beat ae Breas none arate? oe Baoan 

  

a a (14a ) r n+) n=) 

Oot Baeren oa Dr oe Aber Saas, DES nei Prat 

  

x mie cs Terie ae nl+)) 

(oa ee .) a) = Sy ( Lee, )) % eitney ie 

ie ne net One! n-1 44. ) 

. 2 
“na “Poo Baek bt, (147 net )) . Sasi Bet} [Oe Reg ene en tee, ) 

+ Snares Pasa | 

  

(3.62) 
Finally 

bub : net n+ (3.6.3 Laat oe ) 
ne nee 

wa b 
net n-t 

aiate (ne blab) 5 +a (l+2 )) +a ob 
A n-t nei on-t on nei n= 

A3.7_ Programme for the Evaluation of Continued Fractions by Summation 

Below is listed a programme for the evaluation of a continued fraction 

using the summation form. Initially, a maximum figure is specified on the 

number of terms to be included in the summation. In addition, if the last 

term computed is less then 10 se the evaluation is terminated. The value 

of x for which the evaluation is desired is read from card. Termination of 

the programme occurs when a value of x is read which is greater than 90.0 

A subroutine must be provided which will give the values of the coef- 

ficients aor b, when x and n are provided by the main programme. 

The modifications denoted in A3.6 are included and come into operation 

if any value of 3/5 is numerically greater than 20'", 

Output consists for each convergent of the coefficients a and b, the 

18a



current value computed by the continued fraction, the last term added to the 

sum and the value of P. 

The specimen output shows the computation of tan x using the contracted 

form Ff, used in one of the examples. 
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READ (5,100) NMAX 
100 FORMAT(12) 
108 READ(5,101)X 
101 FORMATCF12,8) 

109 FORMAT(1HO;5Xs2DHEVALUATION OF FRACTION FOR X=,F12,8) 
IF(X,GT,90,0)G0 TO 150 
WRITEC9,109)X 

WRITE(9,107) 

107 FORMATCIH s5Xe1HAsT4Xe1HBp6X,1SHCONVERGENT NO-,2X,9HVALUE OF , 
TOHFRACTION;4X/9HLAST TERM,5X,12HVALUE OF RHO) 
N24 

CALL EVC(XsNe Ar BZERO,B) 

IFCABS(A/B),GE,1E*4)GO TO 111 

RHO=A/B 

C=RHO 

RM&Z&RHO#BZERO 

103 DsC/RM 
ERROR=ABS(D) 

104 WRITE(9+148) A, Br Np RMsC,RHO 

TFCERROR,LE,1E"12)G0 TO 108 
NENeT 
IFCN,GT,NMAX)GO TO 108 
AMV =A 

BM1=B 

RHOT=RHO 
CM1=C 
RMT ERM 
CALL EVC(X,N,A,8Z2ERO,B) 

TFQN@2)105,105,106 
405 RHO1=0,0 
106 IFCABS(A/B) ,GE,1E46)G0T0413 

PSBM1*B 

DEN=P4+A*(1+*RHO1) 
RHO=P/DENW1,0 
CeCM1*RHO 
RMBRMT4C 
GO TO 103 

111 WRITE (94149) A,BIN 
149 FORMATCAH 6E12,57¢3XsE12,5¢5Xe12035Xe25HPARTLIAL DENOMINATOR SMALL) 

148 FORMATC1H 9 £12.50 3X0 E12.5¢5Xe 120 8Xe E17 4107, 3(35X,E12,5)) 
ABA 
BieB 

Ne2 

CALL EVC(X,N,A2,BZERO,B2) 

WRITE C9 +147) A2,B29N 
147 FORMATCAVH 7612—553X0612,595X12) 

NSS 
CALL EVC(X,NsA,BZERO,B) 

PEBI*B2+A2 
DENSB*P+A*B1 
CSA1*A2*A/ (PXDEN) 
RM= BZERO+A1#(B*B24A)/DEN 
RHO="AxBI/DEN 
ERROR=1,0 
GO TO 104 

113 Aisa 
B1sB 
WRITEC9 +149) AT/B49N 
NEN+4 

CALL EVC(X,N,A2sBZERO,B2) 

PzA1*(1,0+RHO1) 
DENSBM1*B414P   
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150 

200 

201 

WRITE(9,147)A2,B2yN 
NEN+4 

CALL EVC(X,N,A,BZERO,B) 
CamCMTeBMIeA2*AeD 
PROD=(B2*DEN+A2*BM1) *((B*B2+A) #DEN+BM1&B AZ) 
C=C/PROD 
RHO1="A2*BM1/(B2*DEN+A2*BM4) 
Piep2ee 
RHOEP1/(P14A%(41,0+RHO1) "1,0 
P2=BxB24¢A 
RMBRM1MCM1*PxP2/ (P2*DEN+A2®BM1 8B), 
ERRORSABS ((RM#RM1)/RM) 
GO TO 104 
STOP 
END 

SUBROUTINE EVC(Z,/KyPsQZERO,Q) 
TF(K=1)200,200,201 
QZERO=0,0 
-p=3,0/2 
Q23,0/Z**2=1,0 
RETURN 
L=4xk 

Pre (L=-1,09/(L=5,0) 
QL 3,0) *CL=1,0)/Z%#2—(2,0*L-6,0)/(L95,0) 
RETURN 

END 
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Appendix A4 

A4.1 Minimization of the Lagrangian Error Term 

The error estimate for the (n+1)-point Lagrangian interpolation 

formula is 
   

as (x-x,) (4.1.1) 

The best choice of the Xi will be taken as that which minimises 

-max| (x-x,)(x-x \isieeewe x-x,) | 

This is so if the nodes are chosen as the zeros of the suitably-scaled 

Chebyshev polynomial T(x). 

Proof 
<< 5 

Let Pay, (*) be a monic polynomial of degree (n+1) which has a 

smaller maximum deviation than the monic polynomial 2 Te Ge) in [-1,2]- 

Then Pray % x)- Baatnne(x) is a polynomial of degree n (at most) which 

must change sign between the (n+2) extrema of Tray (%)+ 

Hence Pray (*) - ini ea(<) is of degree n with (n+l) zeros, which 

could only be true if it is identically zero throughout the region. 

A4.2 Minimization of the Hermitian Error Term 

The error estimate for the (n+l) - point Hermitian interpolation 

formula takes the form 
Pea ea) piene2 

f(x) - H (x) = (anv2)1 (x-x,} (x-x Niccese ss (x-x,)” (4.2.1) 
2nt 

If we choose the error ‘norm, as the L,norm i.e. we wish to minimise 

(242) (4) 
foo fs (xox, ) eeeeeea (xox, ) dx (4.2.2) 

where the interval of interpolation is [-1,2]- 

This is so if the xy are chosen as the zeros of the Legendre Senay 

(x) Phe 

Proof 

(x-x, )(x-x ,) sees (x-x,) is a monic polynomial and can be written as 

4 0) =o, par (x) + CAP A(x) + seeee ©, P, (x) + cy 
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where P(x) is the Legendre polynomial of degree j (4.2.3) 

Core tonstants. 

Then, by virtua of the orthogonality property of the Legendre polynomials 
t x n 

a ct 2 
Fei (x) dx = 2as poe 

ks 2n4+3 i=0 2i41 (4.2.4) 

Clearly Cok Q otherwise the right-hand side of (4.2.3) is not of the 

required degree. Hence (4.2.4) is minimized by taking 

Cl etG S. =6 = seeeeeee =C =O n n= n-2 9 

and te (x) = oo iPah (x) which is the suitably-scaled Legendre 

polynomial. 

Hence, the nodes of the interpolation should be taken as the zeros 

of P(x) in [-1,2]. 

A4.3 Derivation of Interpolation Fraction Using Inverted Differences 

Consider the sequence f(x) = vo (x) 

vex) = u(x) = Ae k = 0,1,2 <<. (4.33) 
Vice %) 

This leads to the continued fraction form 

f(x) = v_(x_) + *7%o aN oe vax, Thee Vs vse (4.3.2) 

If the fraction terminates after n divisions, the last term will be 

X-x 
vi(x,) + A 

v_ (x) net 

if x = Xo where OSk¢n, the fraction terminates before the last term and 

the value of Vig OX) is of no consequence. If we remove the fraction 

ae » then (4.3.2) becomes a rational function which agrees with P(x) 

Vat (x) 

at (n+l) points assuming that no divisor becomes zero for some x = Xe 

Introduce the notation 

v(x) = A, [x59%, p teeeee Xe x] where A, will be shown 

to be the inverted difference of Chapter IV. Then (4.3.1.) can be written 
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X=X, 
Mice (x) = . SY 0G Weer EID and we find recursively 

Mj (xu O,) 

  

that 

B(x.) = F(x,) 

a i oo %5 e ie a 

v(x,) = B[x.x,] = Al ~ a1) * FU) = FO) 

Sale Xe 
vi(x,) 5 B [XX 2%] = Tora) & rl etc. 

Akon ket and v(x) = Ay [xgeX, «40% ,)= Fal % ara — Faso rE 

(4.3.3) 

We see that the coefficients v@) n (4.3.2) are the inverted differences 

derived in (4.3.3) 

A4,4_ Interpolation Formula Involving Reciproval Differences (Thiele's Form) 

We define a quantity Fe by the relation 

Pe fro Slee x= A Fos seceaxy | + Ba Xo? see \e ee fos Be Sauls aay 

(4.4.1) 

where the g's are defined in A4.3. The series is terminated by Bq|xo]if 

k is even and ¢, {xo if k is odd. 

The quantity T is called the eet reciprocal difference of f(x). 

In particular 

Fol%o)* 8, [x5] P(x) 
x - x 

1 ° 

OPom|= A ol aya PO) 
An inductive argument will show that the fs are symmetrical in the arguments. 

Now (4.4.1) implies that 

Px [%o? veee%] ~ Pea [*or sex] = 4 [os sora% (4.4.2) 

hence, using (4.3.3) we have 

Pe Ko» seer] 8. [Kg +X | Ane for seta h ea 

Pion Ket 
Ber fo? see | - #5, [%o? eX Maal 

"Fina Xo? yh el 
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So Alea) = | ——__¥a = ep ace 
hr ReatBXes++9% casi) = Perfor 3 Xea ie) Ped j ¢ 4 io 

From (4.4.3) we can build up a table of differences which can be substi- 

tuted in the fraction (4.3.2) giving the approximation 
x= xX) x xiaax 

AL*1 9% ]* Oo, yr F (xo G For, %y%31- Po*l + tee 

(4.4.4) 

  y(x) = f(x,) + 

A4.5_ Thiele's Expansion About a Single Point 

We require the form of expansion in terms of a continued fraction when 

all the nodes in A.4.4 become coincident. 

Equation (4.4.1) will tend to the form 

Re x =- X - 
y(x) = 5 (x, ) ‘TEs Fm) rar See (4.5.1) 

where g,(x) = lim Ay, fro? ree9X%y | 
aie XOX 

Xo X 
5 

or using (4.4.2) 

= lim eee - sees A(x) xt, f& For %)- Acca ro» res] (4.542.) 

In addition, since 

x, ze k 7 *keot 
A[* eX 4 uc BX oe eX gM] Be, Po oo oX aX] 
  

we have i 
f(x) = Lim eee 

xox Pye we eXX |= GQ, [x +4 eX yx] 

But if this limit exists, it is given by 

(4.5.3) 

x eee x XN Xket 

. a (x) 
1 

dx 

  

J A(x) = = tx) 
(4.5.4) 

— 

Also, from (4.5.2.), we have 

A(x) = A(x) = 2_,(x) 

and so we have the recurrence relation 
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POD = Ga) #800 5 Bey OO = BIG inka) 

with _{x) = A, (x) #0 5 (x) = f(x) which can be used to derive the 

constants in the expansion (4.5.1). This formula of expansion is very 

useful in finding continued fraction expansions for functions which are 

easily differentiated. 

8.0. f(x) = tan" 

g,(x) = tan™' x g (1) 

  

-t Fo(*) = tan x Qr kh 

  

x41 

g, (x) = Lex® g,(1) = 2 

(x) = l+x? f= 2x 

6.0) = % 6) 2a 

A,(x) = tan™'x +t Aap si = 

8 (2) = -6 

tan” (x) = +t ae x esesse Otc. 
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Appendix AS 

AS.1 Ralston's Form of Economisation for a Rational Function 
  

If y(x) has a formal expansion 

ces 

sex) = Pi) 

Bo) 
then the Pade approximant 

(where j and k are the degree of P(x) and Q(x) respectively and j +k = s) 

is such that when expressed as a power series 

y(x) - nc) contains terms of degree (s + 1) or higher. 

Assume we require an approximation in the range [-a,a] and write 

X= az where -l$zél 35 

Then y(az) - RS (82) = d°*! (az)9*"+ a((az)®™*) 

; s 
and lim f(az)-R (22) = gets (5,11) 

avo ast! 7 

So, by appropriate choice of j and k it is possible to find Pade approximants 

with the property (5,1.1) for s = 0,1,2, ..... 

If rv nf) is the a Pade Spproxinant, we seek a modification 

RX (x) = fi CD) i. Sloat * Yo (5,1.2) 

a NC) = Your F(x) 

For then 

yaar (x) = WnCedVG) ~ PRO + 2 [agGryoo = PS00} = 9 

a n(x) + Zo den Ml) (5,2.3) 

The coefficients are now chosen so that for sufficiently small a, the 

right-hand-side of (5,1.3) will approximate to ores (z) where 

2’ 

Twa OS) is the Chebyshev polynomial of degree (N + 1) 

ght! N-s 
a 

  

dee. Qo =, — t, s = 0,1, ...+,(N-1) 

deo. 12 zt 
Net 

Yo og N en t, 
2 

8 
where t. is the coefficients of z in Tyas (2) 28a



Then, since ay (0) = 1 for all k, from (5.13) we have 

  

aim ¥(az) - Rin (82) Nel (Nel Se Casle mato See ee 2 5 ae a 
a0 aNtl 2N 

gVtl 7 
A. THe 

2 

3 (2) 

It may be noted that the Chebyshev polynomials are either even or odd 

functions and some of the } a4 are zero irrespective of the values of 

S+! 
d in (5,1.1). The choice ofj and k is not unique and may be chosen to 

satisfy j + k = s in any fashion so long as O< jem and O€kE€n (except 

when s = 0 then j = k= 0). 

A5.2 Estimation of Error in Truncated Ghebyshev Series Solution 

Let the nearly exact solution to the equation 

(3 + 2x)y - 3/ys« = const be given by (5.2.1) 

6, 
y(x) = a ALT, (x) where y(o) = 1 (5,2.2) 

Then substituting (5,2.2) into (5,2.1) and rearranging in terms of Ty) 

gives 

3 a 1 5 z 7 
fe, 1% aje eS A, + At a} Tr (xe {3 At SALt T a} 1.0 

ah 5 13 “f A,+ 3A,+ > aly (x) 8 A, + 3A, +2 nyt, (x) + fBy 3A.+ Tp aj Tete) 

- f- + Alt aa}. (x) + + A,T, (x) = const. (5,2.3) 

We compare this with the expression (5.16) obtained in Chapter V for the 

solution involving ‘terms: up to the third order 

{Fe +daheC des saede aly, (x) + fF a+ 39, + Fal tc) 

{3 a,+ seb, (x) +2 a1, (x) = const. (5,2.4) 

We now subtract (5,2.3) from (5,2.4) and introduce the notation



  

8 T, (x) +i 6+ 36,44 8} T(x) 

=0 (542.5) + 

  

1 6 
“3 8+ 385-5 at (x) 

In a similar manner, we obtain from the initial dition 

  

38, =(B- A+ A, = 0 6.2.6) 

We now assume that the 6's can be expressed in terms of the first few ' 

neglected coefficients 

) ) @ (u) (s) 

i.e. 6, HA Age X As +X Ay (5.2.7) 

The coefficients in (5.25) and (5.35) now become functions of Ay» Ap and A,» 

We must choose the A's to make as many terms in (5.25) to be zero as we can, 

together with satisfying (5.26) 

Hence for terms in A, we must have 

da -4 

what + 3d $0” = 

Ks a” +24? 

BY + 3409 

o
o
r
 [initial condition 

[coefficient of T, (x) 

[coefficient. of T,(x) 

[coefficient of T, (x) n 
wi
ly
 

Comparing (5.2¢4) and (5.2.5), together with the above we see that the solutions 

for thee's involves the same set of equations as for the original problem 

but with different right-hand sides. 

Now the error is given by . 

a(x) 4 (a, = Ay) + (a, - A, )T (x) + (a,- A, )T, (x) 

+ (a,- A, )T, (x) - AYT, (x) - AT. (x) = ALT, (x) 

and since each of the differences has been expressed in terms of the neglected 

terms, from (5.27) we get 

a(x) = A, &,(x) + ASEs(x) + A, &(x) 

where 3 2 

£j(0) = Ze 1, («) - T(x) 
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Appendix A6 

  

A6.1 Expression for the Derivative of the L, Norm 
n 

Let the approximation be of the form f(a,x) = 2 a, d(x) (6,1.1) 
is0 

and the error norm is 
b 

Liyox) = F¢e,x oe 
so that L, is a function of the cosfficients a 

  

4 in (6,1.1) 

ieee. L, =L,(a) 

Then we seek the derivative of L, at some point a*~ 

i.e. we require an expression for lim js ‘a*+ ta) -L, a*)} (Gyle2e) 
t tro 

we shall show that 
b 

gel (a) mo P(a*,x) sign { y(x) - F(a*,x)} dx 
dt fa 

where sign (z) =/-1 if z<0O 

0 of z=0 

+1 if z>0 

Proof 

Define £ as the sot E = {xl ly(x) - r(a*,x)| se} 

Then if the domain x = [a,b] 

L, (a® + ta) -[ivix) - f(a*,x) - tf(a,x)ldx 
%, 

= Me) - f(a*,x) - tP(a,x)] dx + 

ee of) - f(a*,x) - tf(a,x)] dx en 

wut /ys) - P(a®,x) - tP(a,x)ldx - [bo = P(a%,x) - tP(a,x)) 9, (x) ox 

= [I(x =~ P(a*,x)ldx = t frase) sian{y(x) a £(a%,x)} dx +¥(t) 

=f a (6.1.4) 

where 
y (t) [yoo - f(a¥,x) - tf(a,x)) [s_(x) - 3(x)]}dx 

ana 5, (x) = sion[y(x) - F(a*,x) - tf(a,x)] 

a(x) = sign [y(x) - F(a*,x)) 

3la



Now, from (6.1.3) and (6.1.4.) we have 

L , (a* + ta) = [ly(x) - (a¥,x)] dx - t/ (a,x) sign {y(x) - P(a*,x)}dx 
a nok 

+¥© + [iyo - f(a*,x) - tf(a,x) lax (6.1.5) 
& 

but L, (a*) = [i - f(a*,x)] dx 

ae _Jiv(x) = rar elax = L(at) ~/Iy(x) = F(a x0] 8 
€ fs y 

Substituting in (6.1.5) and rearranging gives 

bifets fo) bles) + [*arx) sign fy(x) - f (a*,x)} dx 
“6 

a He) + = [veo - f(a*,x) - tf(a,x)] dx - ¢ [veo - F(a*,x)| dx (6.1.6) 

Consider the values in E of the eo right-hand integrals 

ly(x) - P(a*,x) - t(a,x)Ie ly(x) - F(a*,x)] + tl f(a,x)] 

€ €+ tm where M = max | f(a,x)I 

bg 

oe Live) ~ F(a*,x) - tf(a,x)| dxs (e+ tnyf ex 

a = sx) dx s Equally [iv F(a*,x)ldx < ef 

Also ¥y (t)= /[y(x) = Fla*,x) - tr(a,x)] fa,(x) - s(x) J dx 

ME 

S (€ + tm) {s (x) - s(x)]dx f[ : 
Choosing € = tM, we have 

“ede fan [5, (x) - 3(x)] dx 

but lim 5, (x) = s(x) .*. ¥(t)20 as t>0 
t>0 t 

-- from (6.1.6) 

ua L.(a* + 2 - L,@*) _[rem sion{y(x) - Fak, x)} dx] (e : 0) fax 

E an 

Also/2e + oe € an [ex since & = tm 
t & p 

As t0, then é+0 and E will become the set of points x for which 

y(x) = f(a*,x) 

So if y(x) and f(a*,x) only agree at distinct points in x 

[x70 as t-0 

é 
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Hence the right-hand side of (6,1.6) will then have limit zero as tO 

and Lnfller + ta) — L{ot)} “fran sianfy(x) a f(a®,x)}dx (6,1.7) 
t70 

The function f(a,x) will be of the form 
n 

F(a,x) = fo a8, (x) 

and if we wish the derivative to be zero independently of the values of a, 

from (6,1.7) when L,(a) is a minimum, we have 

[8 @sin [yo - f(a%,x)Jdx = 0 £20,1.....0 (6,1.8) 

A fuller discussion of the characterisation and uniqueness of the L. 

approximation is given in Rice [13]. 

AG.2 Points of Interpolation in the Polynomial Case 

, 
Let the approximation be 

A 
f(a,x) = io a, 8, (x) (6,2.1) 

where the 5; (x) have polynomial form 
i 

B(x) = bxT 
r=0 

: 1G 

Consider I -[z bx” s(x) dx 
r=0 

i) 

Write x = cos@ iz 

ie 
is Fi b cos’ s(cos@) sinéd& 

r=0 ‘ 

but cos sine + sin 26 

cos sin@ = tfsin 30 + sino} 

cos@ sind = i {sin 46 + 2 sin 26} etc 

so the integrand can be written as a sine series in multiples of 8 
be i 

ise. 2. bcos’ sing = 2Xc_ sin(r+1)@ 
r r 

r=0 r=0 
a 

and I= i c.sin(r+1)9 s(cos@) d@ (6,2.2) 
r=0 

‘o 
' 

If the integral /'F(e,x) s(x) dx is to be zero, it follows from (6,2.1) 
A) 

and (6,2.2) that it is necessary that 

Th 
7 sin m@ s(cos@) d@= 0 Wet IG2, cece entl 

0 
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Consider 

a Jo moO sign{sin(n+2)®} do 

= ai 7 
Te nee n+ 

= sin m@dQ - sin méd@+ + (-1) sin mde 

° i +) TT 

then ana me 

Ips Af - 2cosmi_ + 2 cos 2mm - 2 cos 3mi_.....(-1)"2cos(n+l)mn + 
n+2 n+2 n+2 n+2 

(-1)"" cos mu} 

It is possible to show by summation of this series that J = 0 

for m= 1,2, .....(f+1) 

In other words, the sign function s(x) which has the desired property when 

#(a,x) has the form (6,2.1.) has zeros at the zeros of sin(n+2) 0 

2 where x = cos9 , 

The internal zeros of this sign function are given by 

ki 
x, = co a) k= 1,2,, --.<< (net) (6,2.3) 

and we notice that these are the zero of the Chebyshev polynomial of the 

second kind. U_ (x). 
n+ 

A6.3 Programme to Attempt L, Approximation by Interpolation 

The programme attempts to find the approximation 

f(x) = a,U,(x) + 8,U,(x) + sess au,(x) valid in [-1,1]  (6,3.1) 

which minimises the L, norm 

Jv - #(x)] dx 

This is done by solving the interpolation problem where f(x) agrees with 

y(x) at the zeros of the Chebyshev polynomial of the Second Kind Ura (x). 

It has been shown that if the error curve changes sign only at the inter- 

polation points, then f(x) is the required L, approximation, 

Input consists of the required degree of approximation N. The inter- 

polation points are then derived from (6,2.3). The coefficients in (6,3.1.) 

are the solution of the set of linear equations 

F(x.) = (x ) keeals2 sneer en (Tish) (6,3.2) 
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The values y(x,) are evaluated using a subroutine supplied by the 

user. This subroutine can also be used to take care of any transformation 

of the independent variable to reduce the range to the [-2,) employed 

in the main programme. 

The equations (6,3.2) are solved using a standard subroutine for solv- 

ing linear equations involving factorization of the matrix on the left-hand 

side into triangular form. 

Having determined the approximating function the error is determined 

at fifty-one equally-spaced points in (1,1). These points are used to 

determine the error curve and the zeros of this curve are found by quadratic 

inverse interpolation between three adjacent points. 

Additional output consists of the elements of the gradient vector 

[6 sign fy(x) = F(x)} dx NY sl0;2 sees (6,3.3) 

The integrals in (6,3.3) are evaluated using the property 

of U,(x) dx = Thar) ae 5a2 
jel 

= 4(T,(x) + T)(x)) if j=l 

= T,(x) if j=o0 

If X,, X,» ee+- X, are the points at which y(x) - f(x) changes sign 
kK 

let s = signfy(-1) - f(-1)} » then 
' 

Us (x) sion {y(x) - t(x)} dx 

  

Z suf 8 fa @), + 2fs Ty, x], - [754], sates (-1)'S'fr,,, J} 

+ (-1 Me[ts,, “| 

The value of the error norm 

LC) = /ivGx) = PGxdlx 
is computed from the fictycon points of the error curve using Simpson's 

Rule, 

The printed output below shows the output when 

y(x) = e* in the range [0,2] when N = 2. 
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100 

24 
20 

OC 

22 
99 

98 

19 

106 

130 

134 

102 
AG 

299 
300 

302 
303 
304 

306 
307 

308 

MASTER UAPPL1 
DIMENSION X(15),RHS615),CM(300),ERR(55) + XEC55) AC20) eAA C225) 
DIMENSION BR(15),REINT(20),Q(15) 
READ(5,100)N 
FORMAT(I2) 
DOOM=1,N+1 
XCN+2=M) =COS(M#3,1415927/ (N42) ) 
WRITEC9,107)(XC1),1=1¢Nt1) 
DO201=1,N+1 
CALL FICXCT)/RHSCI)) 
DO2Z1J=1—-N41 
CALL UTERM(XCI) sd 1 eVALUED 
CMCI+(N+1) # CJ 1)) =VALUE 
CONTINUE 
WRITE(9,97) 
FORMAT(1HO,20X/22HMATRIX OF COEFFICIENTS) 
DO!Y2KE1,N+4 
WRITEC9 7,99) (CCMCKHCNt1) #0 Je1)) JET eN41) 
CONTINUE 
FORMAT(1HO¢5X¢10F10,5/1H 75Xe6F10,5) 
CALL F4ACSLOCMy/RHSsNt1,(Nt1)*ONt1) N41 ¢1¢A¢ De IDs TT AAs BBs REINT 
WRITE(9,498) (ACI), JE1eNH1) 
FORMAT(30HOCOEFFICIENTS OF APPROXIMATION, /(1H ,7E16,8)) 
STEP=0,04 
Me4 
XE(M) 31,0 
CALL FICKECM) eYVAL) 
CALL USUSCKE(M) sAeNe APP) 
ERR CM) EYVAL=APP 
WRITE(9,106)XE(M) ,YVAL,;APP,ERR(M) 
FORMAY (1H 4 F5,205XeE13,615X0E15,675X0E13,6) 
M=M+1 

XE CM) =XE(M=1)4+STEP 
TFCXECM),LE,1,01)G0T019 

meq 
YONE=ABS(ERR(M)) 
SuMOD=0,0 
DO130M=3,49,2 
SUMOD=SUMOD+ABSCERR(M)) 

SUMEV=0,0 

DO131M=2,50,2 
SUMEV=SUMEV+ABS(CERR(M)) 

YEND=ABSCERR(51)) 

AREO, O4*CYONE+YEND #2, 0eSUMOD44, 0O%SUMEV)/3,0 

WRITE(94102)AR 
FORMAT(1HO,25X,27HVALUE OF L141 INTEGRAL#,E13,6) 

M=4 : 
Ks 
ITF CERR(M)) 300,308,302 
1G1==<1 
GOTN303 

1615 1 
ITF CERR(N+1)) 304,309,306 
1625-1 

GOT0307 
1G2=1 

TF C1G1,FQ@,162)G0T0310 

PErERR(M+1)/ (ERR (M+1) = ERROM)) 

PECmERROM#1)-0,5* PC P41) *CERRCM+4) 92, *ERR CM) FERR(M@1)))/ 

ACERR (M41) @ERROM)) 
XCKI EXE CM41)4+P¥0,046 
GOTO311 
X CK) =XECM) 
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GoOTO311 
309 XK) =XECM+41) 

M=M+4 
341 NZS=K 

K=K+1 
310 Meme 

TF(M,EQ,51)G0T0305 
3412 GOT0299 
305 IF(K,LT.N#1)GOTO313 
WRITEC9 4107) (XCJ) pd=1— NZS) 
K=4 

11 TFCERR(1))51,32,32 
31 SGNz-1,0 

GOT033 
32 SGN=1,0 
33 CALL EING(K,NZS¢SGN+X, EVAL) 
WRITE(9, 193) EVAL, K 

16 K=K+1 
IFCK,LE,N+1)G0T011 
stop 

403 FORMAT(28H ELEMENT OF GRADIENT VECTOR=,E13,6s5Xy 
T5HELEMENT ,12) 

107 FORMAT(21HOZEROS OF ERROR CURVEs/(1H »9E13,5)) 
313 WRITE(9,105) 
105 FORMAT(47H ERROR CURVE SCANNED INSUFFICIENT ZEROS LOCATED) 

STOP 5 
END 

SUBROUTINE USUS(Z,D,ND,SESUM) 
DIMENSION D(20) 
BNP1=0,0 rs 
BN=D(ND+1) 
T=ND 

25 BVAL=D(1)4+2,0*Z*BN@BNP4 
Ts{=4 
TFC1,EQ,1)G0T026 
BNPT=BN 
BNSBVAL 
GoTO25 

26 SESUM=D(1)"BN+2,0*Z*BVAL 
RETURN 
END 

SUBROUTINE UTERM(Z,NC,UV) 

ND=NC : 
Uz=1,0 
U1=#2,0*2 
IF (ND-1)35,36,37 

35 UvVeUZ 
RETURN 

36 UV=U1 
RETURN 

37 UVs2,0*Z*U1-UZ 
ND=ND#4 

IF (ND, EQ,1) RETURN 
UzZ=U1 
Ul=eUV 
GOT037 

END 
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71 

18 

73 

74 

61 

SUBROUTINE TCH(C,VAL+J) 
Le 
TECL#1)71072073 
VAL=1,0 
RETURN 

VALSC 
RETURN 

T21=1,0 
T22=C 
VAL=2,0*CHTZ29721 
LeL-1 
IF CL, EQ,1) RETURN 
TZ4=122 
TZ2=VAL 
GOTO74 
END 

SUBROUTINE EING(M,K1,/SGNeZ,EVAL) 
DIMENSION 2015) 
CALL TCH(H1,0,0RD)M) 
SUM==SGN#*ORD 
DO61d=1+K1 
CALL TCH(Z(J) ,URD MD 
SUM=SUM+SGN*ORD*2,0 

SGN==SGN 
CALL TCH(1,0,0R0,M) 
EVAL= 1,0/M*(SUM+SGN*ORD) 
RETURN 
END 

SUBROUTINE F1(¢Z,FUNV) 
Y=z+1,0 
FUNV=EXPCY) 
RETURN 
END 
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ZEROS OF ERROR CURVE 
“O0.70711E 00 -0,23196E-07 O0,70711E 00 

MATRIX OF COEFFICIENTS 

1,00000 =1,41421 1,00000 

1.00000 -0,00000 =1,00000 

1.00000 1,%41424  1,00000 

COEFFICIENTS OF APPROXIMATION 
0,30724629E 01 0,14752681E 01 0,35418102E 00 

#1,00 0,100000F 91 0,118447E 04 70,184470E 00 
20,96 0,104081E 01 0,119142E 04 70,150609E 00 
0,92 0,108329E 01 0,120290E 01 -0,119617E 00 
70,88 0,112750€ 01 0,121892E 04 70,914242E#01 
70,84 0,117351E 01 0.123947E 01 70,659610E#01 
°0,80 0,122140E€ 01 0,126456E 01 70,431535E=01 
"0,76 0.127125 01 0,129417F 01 "0,229249E#01 
"0,72 0,132313€ 01 0,132833E 01 70,519566E"02 
=0,68 O,1S7713E 01 0,136701E 01 0,101174E=01 
70,64 0,143333E 01 0,141023E 01 0,231006E#01 
-0,60 0,149182E 91 0,145798E 04 0,338440E"01 
70,56 0,155271£ 01 0,151027E 01 0,424410E#01 
70,52 O0,1615607E 01 0,156709E 01 0,489892E#01 
70,48 0,168203E 01 0,162844E 01 0,535900E=01 
90,44 0,175067E 01 0,169432E 04 0,563489E#01 
=0,40 0,182212F 01 0,176474E 04 0,573756E=01 
-0,36 0,189648E 01 0,183970E 01 0,567847E#01 
70,32 0,197388E 01 0,191918E 04 0,546950E=01 
“0,28 0,205443€ 01 0,200320E 01 0,512304E#01 
70,24 0,213828— 01 0,209176E 01 0,465198E"01 
=0,20 0,222554E 01 0,218484E 01 0,406974E#01 
70,16 0,231637E 01 0,228246E 01 0,339028E#01 
“0,12 0,241090E 01 0,238462EF 04 0,262814F #01 
#0,08 0,250929E 01 0,249131E 01 0,179844F#01 
70,04 0,261170E 01 9,260253E 01 0,916933E902 
0,00 0,271828E 01 0,271828E 01 70,541331E"08 
0,04 0,282922— 01 0,283857E 01 70,935303E"02 
0,08 0,294468E 01 0,296339E 01 =0,187122E#01 
0,12 0,306485E 01 0,309275E 04 =0,278928E#01 
0,16 0,318993E 01 0,322664E 01 °0,367025E=01 
0,20 0,332012F 01 0,336506E 01 70,449411F #01 
9,24 0,345561£ 01 0,350801E 01 70,524004F#01 
0,28 0,359664E 01 0,365550E 01 -0,588634E-01 
0,32 0,374342E 01 0,380753E 01 =0,641046E=01 
0,36 0,389619F 01 9,396408F 04 70,678890E=01 
0,40 0,405520E 01 0,412517E 04 70,699722E=01 
0,44 0,422070E 01 0,429030E 01 =0,700998E#01 
0,48 0,439295E 01 O,446095E 04 70,680068E#01 
0,52 0,457223F 01 0,463564F 01 70,634177E#01 
0,56 0,475882E 01 0,481487E 01 70,560456E=01 
0,60 0,495303E 01 0,499862E 01 #0,455919E#01 
0,64 0,515517E 01 0,518692E 041 90,317457F "01 
0,68 0,536556E 01 0,537974E 04 70,141838E+01 
0.72 0,558453E 01 0,557710E 01 0,743074E"02 
0,76 0,581244E 01 0,577899E 01 0,334481E#01 
0,80 0,604965E 01 0,598541E 04 0,6423326=01 
0,84 0,629654F 01 0,619637E 01 0,100165E 00 
0,88 0,655350€ 01 0,641186EF 01 0,141640E 00 
O52 0,682096F 01 0,663189E 01 0,189068E 00 
0,96 0,709933E 01 0,685645E 04 0,242877E 00 
1,00 0,738906E 01 0,708554E 01 0,303514E 00 
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VALUE OF L1 INTEGRAL= 0,118896E 00 

ZEROS OF ERROR CURVE 
°0,.70714E 00 -0,23140E-07 0,70709F 00 

ELEMENT OF GRADIENT VECTOR= 0,820615E=04 ELEMENT 14 
ELEMENT OF GRADIENT VECTOR="0,469441E-04 ELEMENT 2 
ELEMENT OF GRADIENT VECTOR= 0,821580E"04 ELEMENT 3 
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Appendix A.7 

A7.1 Legendre Polynomials 

Consider a polynomial of 8(x) of degree r which is orthogonal to all 

x* of inferior degree with respect to the interval (-1,1) and unit weight 

function, 

ie. J 

Following Hildebrand {20}, let B(x) ed U(x) and integrate (7,1.1) 

dx™ 

   (x) x dx = 0 ker (7,162) 

r times by parts, 

-1) 
yx) xk = ey, (x) TNs vee (2) U(x) ot” " ° 

: (7,1.2 
Now since g(x) is to be a polynomial of degree r, its (r+l) th 

derivative must be zero. 

  

g(x) = gt u(x) 20 FA 7e163) 
r+ 2r+ 

dx dx 

But for (7,1.2) to be satisfied for any x of degree less than x” leads to 

2r boundary conditions 

UL(#1) = UY(41) =... = uu 2) =0 (7,124) 

From (7,1.3) and (7,1.4) we get that 

  

  

U(x) = b(t - +7" and writing 

C = 7 we have the Legendre polynomial 
Saat 

20 

ia (CoS ie (7,1.5) 
Fee at 

2nd, dx 

Orthogonality Property 

From the derivation! we know that the Legendre polynomial is ortho- 

gonal to all polynomials of inferior degree, 
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1 t 

Now consider [reo dx /t Mea (2nt) xt eis ee ] P.(x)dx 

a vr . 2r! rl 
1 

Because of the orthogonality property, terms involving powers of x of degree 

less than r make no contribution 

co [Pr om ; a (ze)! [Feta 

2*(r!) 1 oF 

= 1 can [a Pe dei (R=) F dx 
2 (r!)" /, 2 (er!) dx 

Integrating by parts, we have 

, ' ' 
i d™ (x= 1)"dx = pe (x*- u* Ss i gra ae (g* asa) r dk 

Ly dx™ dx™"! a dx? 

5 

' 

0+ (-1)' r! [ 1)? dx 
%, 
4 = at cos"**'9 ao 

Ser | 2e(2riai2 ese 2 

(2r +1)(2r-1) 2... 3 

p? d 22 v fe (x) dx soy (7,144) 

Recursion Formula 

Since xP, (x) is a polynomial of degree (n+1), we may write 

' 1 net 

[2%462) Pal) a = [Reoz, ©,P, (x) dx 

c [re dx (7,1.5) 

A 

But xP, (x) is of degree k +1 and P(x) is orthogonal to all polynomials of 

degree n-1 or less 

oo for k+1l<n ieew. ken-l 

and xP, (x) = Orne ek) + oP (x) + Or Pan Om) (75156) 

From (7,13), the coefficient of x" in P(x) is 2n)! 
n - 2 

2 (nt) 

+1 
Equating coefficients ‘of x") Gn (7,1.6) gives 

c = ntl 
2ne1 
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Also, Legendre polynomials contain only sither even or odd powers of x, 

hence, equating powers of x" 

(te ESE 
n 

Now when k = n=l, consider the integrals in (7,1.5). Only the first term 

inxP os (x) need be retained on the left-hand-side. 

i aep de 2 es [rate dx = 6, of Paro) dx 
2° [(n-2)] ~! Ar 

  

whence Ce mes 

2n+l 

and (n+1) Pete) = (2n+1) x P(x) - PO) (CTp det), 

A7.2 Evaluation of Series of Orthogonal Terms 
  

Orthogonal functions obey a recurrence relation of the form 

g(x) Ag (x) +86 (x) (7,24) 
n inet Wine 

N 

ahi") 
Let s 

u and y(x) + Oy Byny (*) + eecine 

f ayy + ayy By, (x) + fay ot Bay} By g(X)teeee " 
" Dyas Ayer Buenl*) + Byar Buns + Leyag + Buty} Byun ls 

where Byes = Avay + yy 

8 fl Ant heat Bua} yaa) + es. 

2 bya afuaaBins (*) + By By yO} + (ayo st Oy Buus} yes OH 

x < A where Oya Beh Ney Neo CNN, 

S = By gByag(*) + (by .8y,* Suen\Pna ul) * sere 

where bys = Dy sAyot Sy-s * On-18n- 
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Hence, it can be seen that if we set Dual = 0, by = ay » we can generate 

b =a (752.2) k ie Oi i olokea okea 

for k = (N-1),(N-2) ...e,1 

At the end of the series, we then have 

S = b,B,(x) + (a, + B,b,) A, (x) 

Now from (7,1.7), we see that for a series of Legendre polynomials 

| Aca, = 2kel, ee P, (x) = x, P(x) sl 

k+l k4+2 

and S = b,x + (a, - $b,) 

where b za + 2k+1 Dat - Se ee (7,263) 

k+l k+2 

k = (N-1) ... 1 

Ny 
Similarly, for the Chebyshev series 2. aT, (x) 

k=0 

S = b,x + (Ja, -b,) 

Been ea hes (7,224) 

kis (N-1) .--6 1 
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Appendix A8 

A8.1 Characterization of the Polynomial Minimax Approximation 

n 
Let the approximation be the form f(x) = Zz a9, (x) where (x) is 

@ polynomial of degree i. Then if f(x) ara lacie: approximation to 

y(x) in [a,b], the maximum error will be attained at not less than (n+2) 

distinct points in [a,b] with alternating sign. 

Proof 
The proof follows that given in Handscomb [7 page 64. Assume the 

error e(x) = y(x) - f(x) is not identically zero, then it is possible to 

locate all points x at which the es reaches its maximum modulus. Let 

these be r in number. 

Consider the sign changes in the list e(x,), e(x,)..-.- a(x). 

If a sign-change occurs between x and *in » define Py = 2(x; + ey ye 

Thus, there is a list of values 

a<p<p< eoccecdS P< b if there are s sign changes in all. 

Now s cannot be greater than (r-1), since e(x) can only change sign between 

extrema of opposite sign. 

We shall now show that if r¢(n+2), then f(x) cannot be the minimax 

approximation. 

Assume r <(n+2) then r’ is at most equal to (n+1) and since 

sgr-l then sgn 

Hence, we can find a unique polynomial p(x) of degree not greater 

than n, having zeros at the points p,, Pp, sesee, Po In addition p(x) can 

be chosen to have the sign of e(x,) at x,- 
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Because of the choice of zeros, p(x) will have the same sign as a(x) 

at points where e(x) attains its extreme values. By adding a suitable mul- 

tiple of p(x) to f(x), the extreme values could therefore be reduced and 

f(x) cannot be the minimax function. 

Now p(x) may be considered-as a more general combinationof the continu- 

ous functions, 
a 
ve 0,9, (x) (8,161) 

where some at least of the cy are non-zero. 

i.e. p(x) 

  

The above argument only holds if right-hand side of (8,1.1) has, at most, 

n roots in [a,b]. This defines the polynomials 85 (x) as forming a 

Chebyshev set. (of which the powers of x are a particular case) 

Hence, it has been shown that if the number of extrema of opposite 

sign is less than (n+2), then f(x) is not the minimax function and the 

required result follows, 

To prove sufficiency, let f(x) have (n+2) extrema of equal magnitude 

L ty 
and opposite sign. Let f(x) be a function such that max| y(x) - P(x 

< maxly(x) = f(x)t 

    Sa le ee 
\4@) Fp 

Let [x5] i = 0,1 ....(n+1) be the points at which f(x) achieves its extrema. 

Then sign [r(x,) - F(x, )} =e sion[P(x; ,,) - Pxs J 

Loe DO, ccoeeg 1 

This implies that f(x) - (x) has (n+1) zeros. Sut f(x) and (x) are of 

degree n. Since they are also composed of polynomials forming a Chebyshev 

set, then their difference cannot be zero at (n+1) points unless it is 

identically zero. 

Hence f(x) is the required minimax function. 
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A8.2_ Extension to Rational Function Minimax Approximation 

Assume that, the approximation has the form R(x) = P(x) 

Q (x) 
m 

where n and m are the degree of the polynomials in the numerator and den- 

ominator respectively. Then analogous to the result in A8.1, Rime) will 

be a best minimax approximation if y(x) - Rome) has not less than (n+m+2) 

extrema of equal magnitude and with alternating sign in [a,b]. 

Proof 
As before, we shall assume that the number of extrema is less than 

(n+m+2) and show that this leads to a contradiction. 

Let r be the number of points at which e(x) reaches its extreme value. 

Consider the sign changes in the list 

0(x,), 0(x,) «ee0e+ 0(x,) 

) If a sign change occurs between & jeng Xjes? define Py = 2x, +x 
‘J+ 

There is now a set of points 

8<P,< Pyeeeeeep.<b if there are s sign changes in e(x). 

We shall assume that r<n+m+2 then since a sign change will only 

be listed between extrema of opposite sign, 

rpn+m+l and s€n+m 

Define A(x) = (x = p,)(x = p,) seeeee(X = py) 

then’ A(x) = Q,(x)a(x) - P,(x)b(x) 

where a(x) and b(x) must be polynomials of degree not greater than 

nN and m respectively. 

Rt (x) = P_(x) -4a(x) 

Q(x) =4b(x) 
Consider 

Q.(x)a(x) - P(x)b(x)) (8.2.1) 

GO) [O, (x) B(x) 

For a pole-free solution, Q(x) must be one-signed in [a,b] and be non- 

f(x) - Rr x) = f(x) - Ram(X) 66 

zero. Hence the denominator in the last term in (8,2.1) can be made one- 

signed by choosing sufficiently small. 
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Now @(Q,(x)a(x) - Pi(x)b(x)) = PA(x) 

and by suitable choice of the sign of #, the last term can always be of 

opposite sign to f(x) - RanX) at the points of extreme value. 

This would give Rint) a smaller maximum error than Rig iX de Consequently 

ie Ram *) is to be the best minimax approximation, s must exceed (n+m) and 

hence the number of extrema with alternating signs must be not less than 

  

  

+2). 
(n+m , ee) 

x ms pri 
a= Se ee, 

5 

A8.3 Iterative Scheme for the Construction of the Minimax Rational 
Approximating Function 

Let y(x) be a continuous function in (a,b] and let the approximation 

be of the form f(x) = Po (x)/a, (x) 
a 

where P(x) =a xd 
jeo J 

yb ed Q(x) = bx 

It is required to find the set of-reference points 

eee eee ee nd a 6x5§ x< xa 

at which the error reaches its extreme value h 

P(x.) 
Q(x.) 
  

i.e. y(x,) - = (-1)%h 8 = 0,1, s506,n+mel (8,321) 

max as where Cty) - *(x)| =h 
First, we rearrange (8,3.1) and then xpress in matrix form 

fee. P(x) ~ fy(x,) - (-1)%] a(x,) = 0 

or more fully 

n m 8, + 8X, + voeee 48x, fv) - rh {o, + DX) + ceeeee + b,x” } =0 

m n 8, + 8X \+ eeeeeeetarx, - fy(x,) + h} {o, + DX, + ecceces + box, =O 

neme+t Stax eoss@_x - mae m 
a ost ‘ Se VGA (<1) hie, Daan oo Oe 0 
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This can be expressed in partitioned-matrix form as 

[vi - (F - ch)x}. {cJ= 0 (8,3.2) 

where Yes = a 6m 152), seoes(n+l) 

Xig = inl 6 #1525, Sccesl(M ta) 

F = diagonal {y(x, } , 

G diagonal ((-2 rh 

© O15 scsees (+ m+1) 

and {cy is the column vector [20 A seeeeea, BY by seereeeby |” 

The method of Osborne 4] is applied to (8.3.2) resulting in an 

iterative scheme for the determination of [C] and h. 

Write (8.3.2) as m(h).v = 0 , (8.3.3) 

Then if hy vi, are approximate solutions of (8.3.3), we can write 

[m(n,) +n, ay wd [%, +av,| =0 

and retaining only first order small quantities, 

= om = 

CN A ee 

Now ~4h, will only act as a scale factor and may be removed 

— om es 
then m(hs {7,4 =o (hy). V, (8.3.4) 

Consider mh) . Va B(h).v,. (8.3.5) 

where B(h) is some function of h. 

The solution of (8.3.3) will occur at the zeros of B(h), hence we may seek 

the solution by finding a solution to B(h) = 0. This is done by applying 

Newton's Method, for which is required an expression for a ° 

Differentiate (8.3.5) with respect to h. 

ae, tei = SO 
dh itt “a dh° i 

whence dv 
i+t 

¥ (8.3.6) 

  

Now the system is homegensous, hence one element is independent of h. 

(In our case, let the element of maximum modulus always be made equal to one.) 
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Let this element be the pil, 

Then e Vai | me 

dh is 
p 

and from (8.3.6) and (8.3.5) we have 

  

(0. om — woe eB G 
“ah* Ysa) ee EE ee) 

Pp ne 

or B (8.3.7) 
dB eam. Uv 

dh dh i+) p 

  

From (8.3.4), we may compute Vea by identifying vy as the vector of 

coefficients c, at the in stage of the iteration. 

Also, since Von is an approximate solution to the eigenvalue problem, 

we may use it in (8.3.4) to find a new peerer of coefficients Cia ° 

i zs Es 
thus cam (h;) e am(h, ) Vu 

dh 

If we choose from this equation the element in the pie position, we 

have exactly the denominator in (8.3.7). Consequently, the process pro- 

ceeds as follows: 

th 
Let h be the solution at the i° stage, where &; is scaled so 2 oy 

that the largest element is equal to unity. 

- _ sm - 
Solve m(h;) ov = th (h; ).5, 

   

itt 

= dm = 
mrs) +» Gy = GHihy)-¥5,, 

v 
and from (8.3.7) hi, = (8.3.8) (id » 

©5441) p 

In terms of (8.3.2) 

mh) = [Y|-(F - Gh)x] 

at = (0 } 6x] 

When new coefficients are determined, a new error curve can be computed 

and the points of extrema found by interpolation. 

The whole process can then be repeated, using area ; [ore f) 

and hi, used as input to the next stage. 
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A8.4 Computer Programme for Rational Function Minimax Approximation 

The programme listed below is an implementation of the scheme given 

in A8.3. Initial data consists of the degree of the polynomial in the 

numerator of the approximation, the degree of the polynomial in the den- 

ominator, the lower and upper bounds of the range of the approximation 

followed by the step-length to be used when computing points on the error 

curve. Two further fields are optional. Because the extrema of the error 

curve may be more closely packed near one end than the other, it is possible 

to change the step length at some point part-way through the error curve. 

This may be done by specifying the value of x at which the change is req- 

—uired to take place followed by the new step length. If these fields are 

left blank, this facility is ignored. * 

The programme then reads the values of x which are designatec as the 

current reference and employs a user-provided subroutine to evaluate the 

given function at these points. The final input statement reads the cur- 

rent value of the error extreme value (h) followed by the coefficients of 

the approximation, with those of the numerator first and in ascending 

powers of x. 

Output, after one iteration of the algorithm,consists of the current 

basis (for reference), the newly-computed value of the error extreme and 

the corresponding values of the coefficients of the rational function approx- 

imation. Finally, a table of values is printed defining the error curve. 

The left-hand column is the values of x at the required interval, the next 

column contains the value of the given function and this is followed by the 

value of the approximation. The right-hand column contains the error. 

The specimen programme listed below shows the output of the fourth 

iteration when finding the P, (x)/Q 2(%) approximation to y = 0.92 cos hx -cos x 

(See example 2) 

Sufficient storage has been allocated to allow the sum of the degrees 

of the numerator and denominator to be a maximum of thirteen. 
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REAL MAXV»MAXC 
DIMENSION X(15)¢FNC15) ,C(15) ,AC225) »B( 225) .V 615) 

DIMENSION RHS(15),/AA(225) ¢BB(225) ,REINT(15) 
READ(5¢19) TP, LQeXMINFXMAX p DELX 4X1, DELX1 

49 FORMAT(212,5F5,3) 
NETP+IQ+2 
READ(5,18) (X(T), 1810N) 

DO161=1,N 
CALL FICXCI)FNCI)) 

46 CONTINUE 
WRITE(9,50)(XC(1),TR10N) 

50 FORMAT( 25H CURRENT REFERENCE POINTS/(1H 1412F9,5)) 

18 FORMAT(10F8,5) 
READ(5,18)H, (CCL) p Let 9 ND 
DO20J51,N 
ACJ)=1,0 
DO29KS2,1P +1 

29 ACI+CKe1) ND EXC I) HH CKO) 
ACS+# CT P41) *N) =P CENCI) @ (m1) eed HHD 
TFCIQ,EQ,0)GOT020 
DOZOKRIP+2,N=1 

30 ACJ+KEN) SACS+ CIP 41) *N) #XCI) He CK=TP OT) 
20 CONTINUE 

DO21U=1—N 
DO31KS1,1P +1 7 

34 BC J+ (Km1)4#N) 20,0 

BC IFC IPF1) EN) SC H1) wed 
IFCIQ,EQ,0)G0T0O21 
DOS2ZK=IP+2,NM4 

32 BCSHKEN) C1) HHI EX CI) HH CKO TP HT) 

21 CONTINUE 
NA=NEN 
CALL FRMUMT(N,1/N¢B(1) 201) -RHSC1) p Oe NRRD 
CALL F4ACSLOAPRHSpNiNAPNe te Ve Del De IT /AAe BB, REINT) 
CALL FPMUMTCNs1¢N¢B61) 2V 61) + RHS (1) OeNRRD 
CALL F4ACSLOA,RHSpNsNAyNe2eCeD, 1D, IT, AAs BByREINT) 
MAXC=0,0 
MAXV20,0 
DO2Z2J=1,N 
TF CABS(C(J))=ABS(MAXC))22422,23 

23 MAXC#C(J) 
MAXV2V(J) 

22 CONTINUE 
HSH MAXV/MAXC 
DO24J=1—N 

24 CCS ECCI /MAXC 
WRITEC9,27)H, (CCS) det, 1 PHI) 

27 FORMAT(1H ,10HVALUE OF HrE17,8//16H COEFFICIENTS OF, 

110H NUMERATOR/(10X,6E17,8)) 
WRITE(9 428) (CCS), dBIP+20N) 

28 FORMATC1HO,;27HCOEFFICIENTS OF DENOMINATOR/10Xs6E17,8) 

WRITE(9,40) 
40 FORMATC1HO,10X¢1HX¢13X¢ SHFUNC 6 10X¢ OHAPPROX¢ 16X¢ SHERROR) 

TFOX1914,15614 

14 XEND=X4 
GOTO 17 

45 XEND=XMAX 
417 Z=XMIN 
26 BC=0,0 

DOS7I=1,1P+1 
Kz] Pele2 

37 BC#C(K)+Z*BC 
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25 

CC8O 
DOS81=1,1Q4+1 
Kz{Q42e] 
CORCCIPHKH1) #2#CC 
VALUE=BC/CC 
CALL F1CZ+FUNV) 
ERRORSFUNVeVALUE 

WRITE(9,25)Z, VALUE, FUNV, ERROR 

FORMATC1H 9 305X1F10,6)410X,E15,6) 

ZeZ+DELX 

IF (CZ, LE,XEND#DELX/2,0)G0T026 

TF(Z,GT,XMAX) STOP 
XEND=XMAX 
DELX=DELX1 
ZEX1+DELX 
GOT026 

END 

SUBROUTINE F1(Z,FVAL) 
FVAL20,92*COSH(Z) #COS(Z) 
RETURN ; 
END - 
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CURRENT REFERENCE POINTS 
=1.00000 =0,86270 -0,49920 0,00000 0,49920 0,86270 

VALUE OF H #0,83219411E"04 

COEFFICIENTS OF NUMERATOR 
70,79916781E"01 =0,67252399E@21 0,95855700E 00 

COEFFICIENTS OF DENOMINATOR 
0, 10000000EF 01 #0,45852704E#21 -0,69200243E-03 

xX FUNC APPROX ERROR 
-1,000000 0,879249 0.879332 0,832194E*04 
-0,950000 0,785672 0.785644 =0,273619E=04 
=0,900000 0,696905 0.696830 =0,755113E=046 
-0,850000 0.612947 0,612865 =0,818314E~04 
©0,800000 -0,533796 0, 533733 =0,626648E"04 
=0,750000 0.459450 0.459420 =0,306190E=04 
=0,700000 0, 389908 0, 389913 0,493930E905 
=0,650000 0,325169 0.325206 0,374195E=04 
=0,600000 0, 265230 0.265292 0,625732E*94 
-0,550000 0,210091 0.210169 0,780894E=04 
-0,500000 0,159750 0,159833 0,832205E904 
-0,450000 0.114207 0.144285 0, 7843756704 
=0,400000 0,073460 0,073526 0,651156E*04 
=0, 350000 0,037510 0.037555 0,452495E=04 
=0,300000 0006354 0,006375 0,211990E=04 
=0,250000 -0,020008 =0,020012 $0, 453621E905 
=0,200000 =0,041576 =0,041605 =0,295111E=04 
=0,150000 -0,058350 * 90, 058402 =0,515005e=04 
-0,100000 -0,070332 =0,070400 0, 686334E=04 
-0,050000 -0,077521 =0,077600 =0,794986E=04 
0,000000 =0,079947 =0,080000 =0,832194E"04 
0,050000 -0,077521 =0,077600 =0,794986E*04 
0.100000 =0,070332 =0,070400 =0,686333E=04 
0.150000 =0,058350 =0,058402 =0,515005E=04 
0,200000 =0,041576 =0,061605 =0,295112E"04 
0,250000 =0,020008 #0,020012 =0,453621E=05 
0, 300000 0,006354 0.006375 0,211990E=04 
0,350000 0,037510 0.037555 0,452495En04 
0,400000 0,073460 0.073526 0,651156E=04 
0,450000 0,414207 0.114285 0,784375E=04 
0,500000 0.159750 0.159833 0,832205E=04 
0, 550000 0.210091 0.210169 0,780894E*04 
0,600000 0,265230 0.265292 0,625732E"04 
0,650000 0, 325169 0.325206 0,374195E=04 
0,700000 0,389908 0,389913 0,493928E=05 
0.750000 0,459450 0.459420 =0,306190E=04 
0, 800000 0533796 0.533733 "0, 626648E"04 
0,850000 0,612947 0.612865 -0.818314E=04 
0.900000 0.696905 0,696830 "0, 7551146E=04 
0.950000 0,785672 0.785644 =0,273619E=04 
1,000000 0,879249 0,879332 0,832194E=04 

54a  



  

Appendix A9 

A9.1_ Choice of Degrse of Approximation 

The approximating function is assumed to be a low degree polynomial 

which satisfies two conditions. Firstly, it is required that the approx- 

imation interpolates to the given function at the knots, secondly that 

some degree of smoothness is imparted by continuity of the spline and at 

least eons of its derivatives at the internal knots. 

The criteria of smoothness rules out the possibility of the broken 

-line passing through the given interpolation points. The next possibility 

is the quadratic polynomial with continuity of the first derivative. 

As illustration, let there be threé knots x,< x,<X%» A quadratic 

function in each of the two zones ( x}-L.%) provides six unknown coef- 

ficients. The number of conditions imposed are 

(i) Interpolation at three points (3) 

(ii) Continuity of the approximation and its first derivative at Xe (2 

(441) End conditions at x, and Xe (2) 

This makes seven conditions in all and it is seen that the even degree func- 

tion cannot satisfy all the requirements. More generally, let the degree 

of the spline be taken as 2n and the number of knots as (N+1). There are 

(2n+1)N unknowns to determine, with the following constraints: 

Continuity of derivatives of order 0,1,2, ....(2n-1) at each interior 
points imposes 2n(N-1) conditions 

There are n end conditions at x, and Xyereepectively 

This leaves (2n+1)N - 2n(N-1) - 2n = N conditions for interpolation at 

(N +1) knots, which is clearly impossible. 

Now assume that the degree of the polynomial is (2n-1). This time, 

there are 2nN unknowns. 

Continuity of derivatives of order 0,1, .....(2n=2) at (N-1) points imposes 

(2n-1)(N-1) conditions. 
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End conditions impose (n-1) constraints at x, and Xy Pespectively. 

This leaves 2nN - (2n-1)(N-1) - 2(n-1) =N+1 which is exactly right 

for interpolation at (N+1) points. 

In particular, putting n = 2, we find that a cubic polynomial will 

interpolate at the chosen knots and give continuity of the function and 

its first two derivatives at the internal knots whilst requiring one end 

condition at x, and x respectively. 
Nel 

A9.2 Computer Programme for Cubic Spline Approximation 

The input to the programme consists only of the values of x = a and 

~x -=-b, specifying the range of approximation [a,b), together with h, the chosen 

distance between the knots. This is considered fixed throughout the range 

-and since it is assumed that both a and b are to be knots, then (b-a) 

must be an exact multiple of h. 

In aidition a subroutine must be provided to compute the value of the 

given function y(x) for any value of x supplied by the main programme. 

Output provided consists of the values of the second derivative of 

the spline at the knots, together with the function talues, the approximation 

and the corresponding errors tabulated for values of the independent variable 

at intervals equal to one-fifth of the knot-spacing over the complete range 

of approximation. 

In order to evaluate’ the spline function the machine has three arrays 

stored (i) the values of the knots (x) (ii)the corresponding function 

values y(x,.)s (iii) the computed values of the second derivative (m,)- 

Sufficient storage space has been allocated to allow a maximum number of 

fifty knots to be used in any one approximation. 

phe output listing is given below for the example when 
-x 

y= at and the knot-spacing h = 0.5 
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DIMENSION XKNOT(50),Y(50) ¢RM(2500) ,C(50),SD(50),P (50) 
DIMENSION Q(50),U(50) 
WRITE(9,105) 
READ(5¢19)XMIN¢XMAX GH 

49 FORMAT(3F5,3) 
INDEX=(XMAX=XMIN)/H#4 
DO211=1,INDFX 
XKNOTCI)=XMIN# (CI @1) *H 
CALL FICXKNOTC(I),YC(1)) 

21 CONTINUE 
WRITEC9,102) (XKNOTCI) @J=1, INDEX) . 
WRITEC9 4103) (CY CJ) ¢J21, INDEX) 
DO1BI=1, INDEX 
DO18J=1, INDEX 

18 RM CIFINDEX*(Jm1))20,0 
DOV?1=2-¢ INDEX#1 
CCLRC C141) 92,08 C1) +¥(191))/H 
RMCI+INDEX#(1=2))=H/6,0 
RMCI+INDEX#(C1@1))=2,0*H/3,0 

“47 RMCIFINDEX#(1))=H/6,0 
RM(1)="H#H/16,0 
RMCINDEX#241)==RM(4) 
XOH=XMIN+0, 5H 
XTHEXMING1, 50H 5 
CALL F4(XOH,FOH) 
CALL FACXTHFTH) 
COVDECY (C32 =V 012) #0, S+FOHMFTH 
RMCINDEX#+INDEX*® CINDEX@1)) =RMCINDEX #241) 
RMCINDEX+INDEX*(CINDEX=3))=RM(1) 
XON=XMAX=0,5#H 
KTN=XMAX=1,5%H 
CALL F1(XON, FON) 
CALL FACXTN FTN) 
CCINDEX) =CY CINDEX) #YCINDEX*2))/2,0"FON+FIN 
P(4)=RM(1) 
UC1)=C01)/P 01) 
QC1) SHRM CINDEX#241)/P C1) 
P C2) =RMCINDEX#2) 
UC2)= CC C2)" RMC2)* COT) /RM C1 /P C2) 
QC2) =e (RMCINDEX#242) @RM(2) HRM CINDEX%241)/RM (C1) )/P C2) 
DO0150J=3,INDEX@1 
PCJ IERMCINDEX* (J21) +d) #RMCINDEX* (S92) 45) OC 91) 
UCII=ECC CI ARM CINDEX#CJe2)0 oJ) HUG SHI) / PCI) 

150 QCJ)S“RMCINDEX#I+U)/P CI) 
PCINDEX) =RMCINDEX*(INDEX=2)) #Q(INDEX=2) 
UCINDEX) =(CCINDEX) @RMCINDEX* CINDEX#2)) #UCINDEX®2))/PC( INDEX) 
QCINDEX) ="RMCINDEX*INDEX)/PCINDEX) 
SD CINDEX) =(UCINDEX) @UCINDEX=1))/ (QCINDEX#1) "QC INDEX)? 
DOUSTI=A1, INDEX#2 

151 SDCINDEX=J) =SDCINDEX=J41) #QCINDEX#J)+UCINDEX*J) 
$D(1)=U(19'40(1) ¥S50(3) 
WRITE(94104) (SDCJ) ,J=1, INDEX) 

102 FORMAT(1HO,20Xs23HX=VALUES TAKEN AS KNOTS/1H0;7F16,4/ 
1(4H 47F16,4)) 

103 FORMAT(1HO,20X,30HFUNCTION VALUES AT GIVEN KNOTS/ 
41HO+7E16,8/01H 4 7E16,8)) 

104 FORMAT(1HO,20X,27HVALUES OF SECOND DERIVATIVE/1HO,7F16,4/ 
VC1H 17F16,4)) 

105 FORMAT(1HO,30X%,26HCUBIC SPLINE APPROXIMATION) 
106 FORMATC1HO,8X-1HX/12X¢ SHFUNCTION, 8X, GHAPPROX/17X¢ SHERROR) 

WRITE(9,106) 
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X=XMIN 
DELX=H/5,0 

101 DO3S21=2, INDEX 

TF CX=XKNOTCI) 31534-3532 
32 CONTINUE 

31 VALISXKNOT(T) =X 
VAL2Z=X"XKNOTCI#1) 

S=ESD (101) *VAL1#*3/ (6, 08H) #SDCI)#VAL2Z*#3/ (6, 08H) +(YCI eT) eHeH® 

4SD (191) /6,0) #VALI/H4 CY C1) *H*H*SD CL) /6,0) *VAL2/H 

CALL F1CXsFUNV) 

ERROR=FUNVSS = 

WRITE(9425)X,/FUNV,S,/ ERROR 

25 FORMATC1H 15K oF, 348X496 10460 SXF 10,64 10K 7 E1546) 

X=X+DELX 

TE (X,GT, (XMAX#DELX/2,0)) STOP 

IF (X,GT, (XMAX*DELX/2,0))G0 TO 22 

GOT0101 

22 ISINDEX 

GO TO 31 
END 

SUBROUTINE F1¢Z,FVAL) 
FVAL=EXP(=Z*2)/(1,0+Z*2Z) 
RETURN 

END 
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