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SUMMARY

The thesis describes a method developed to measure thermal
contact conductance between metal-plastics surfaces by transient
experiments. Published literature contains no comparable transient
experimental technique and no conductance values for metal-plastics
surfaces. Thermal transients set up by a radiant heat flux in two
aluminium alloy rods which sandwich between them a thin sheet of
plastic material are used to evaluate the contact conductance.

Crank-Nicolson's finite difference scheme is used to
evaluate the time-temperature history in a three body composite
system with contact resistance at two interfaces. The details of
the experimental equipment designed and constructed for this work
is presented. Dimensionless groups obtained from the heat conduc-
tion equation, initial and boundary conditions predict the contact
conductance from experimental data and the limits to the accuracy
of the measurements of contact conductance. Optimisation techniques
are used to find the minimum of the sum of squares function formed
by the theoretically predicted and experimentally measured tempera-
ture values. The thermal conductivity of the plastic material is
also evaluated from these measurements.

The thermal contact conductance values obtained by this
method at various applied pressures lie in the range of
40 BTU/hr £t2 OF (227.2 w/m? °K) to 200 BTU/hr £t? °F (1136 W/m* °K)
and the thermal conductivity of the plastic material was 0.1042
BTU/hr ft °F (0.1803 W/m k). This conductivity value agrees wilh
that given in the literature.

The effects of applied pressure and ambient pressure on

contact conductance are investigated.
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INTRODUCTION

The objective of this work is to develop a transient method
to measure thermal contact conductance at metal-plastic interfaces.
The thesis presents theoretical and experimental investigations of
the transient temperature in a one-dimensional three-body composite
system with contact resistance at two interfaces. The method and
results are of use in the field of plastics technology, in curing
calculations, injection moulding and other applications where heat
passes across metal-plastics interfaces. The results will be also
of interest in comparing the theories of contact conductance
because the surfaces considered for the present work differ so
greatly in their physical properties.

A majority of the previous workers on contact conductance
measurements carried out theoretical and experimental investigations
on metal-metal contacts to give information for the thermal design
of space vehicles (re-entry vehicle, heat shield), nuclear reactors,
electronic equipment and so on, and have shown that contact resist-
ance may be significant. The models investigated by them mainly
consisted of two-body composite systems. For the present work a
three-body composite system was chosen due to the difficulties in
measuring temperature in plastic materials. All temperature
measurements were made in two metal rods which sandwich between
them a thin sheet of plastic material.

Previous work has shown that steady state experiments
need very accurate temperature measurements at several points on
both sides of the interface. The location of thermocouples very

close to the interface would cause disturbances in the interface
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temperature and hence the extrapolation of temperature profiles
becomes inevitable in steady state measurements. Also, it
requires a very stable sink to maintain the boundary temperature
value constant. However, for transient techniques the equipment
could be made simpler and more reliable. Temperature measurements
have to be accurate but an adequate time-temperature history can
be obtained with fewer thermocouples.

Basic concepts of contact heat transfer are discussed in
the remainder of this section. Section 2 examines some of the
literature in the field of contact conductance, and transient
experimental techniques relevant to this work. The mathematical
model used and the theoretical studies made are explained in
Section 3. The description of the experimental equipment designed
and constructed for this work and the experimental procedure
employed in the measurements are presented in Section 4. Section 5
gives the results obtained and a discussion of the accuracy of the
method developed.

Contact conductance studies are basically concerned with
the flow of heat near the interfaces of two solid bodies in
contact. Nominally flat surfaces which appear to be smooth are
actually rough (on a microscopic level) and make contact at discrete
points as shown in Figure l.la. (This illustration is representa-
tive of metal-metal contact). The bodies touch each other only
where the peaks touch peaks or peaks touch valleys. The total
area of contact may be less than 1% of the cross-section area
and is above 20% only for carefully prepared surfaces [6, 3Cﬂ.
However, in a metal-plastics contact due to the lower hardness of

the plastic material, the contact spots will be larger in number
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compared to that in a metal-metal contact and hence the contact
area will be relatively higher. When the contact pressure is
increased the plastic material will deform into the interstitial
volume and will increase the contact conductance.

An enlarged view of metal-plastics surfaces in contact

can be represented by Figure 1.1b. (p 4)
P

Definition of Contact Conductance

Thermal contact conductance hc is defined as

Q
— [=- 2 O
hc "N (W/m* “K) (1.1)
= C

where Qc Heat flux across the contact

o
I

Cross-sectional area of the surfaces in contact

AT

Temperature drop at the contact

The definition of the temperature drop at the contact of a com-
posite system under steady state conditions is illustrated in
Figure 1l.2a. The temperature profile on either side of the contact
will be a straight line and ATC is usually obtained by extrapolating
the profiles up to the interfaces. Under transient conditions,
however, the shape of the profiles will depend on the initial and
boundary conditions and time, ©. Figure 1.2b illustrates the
temperature profile under transient conditions if the system is
insulated and heated at one end.from an initially uniform tempera-
ture for time ©®. This is based on the theoretical studies made in
this work. Direct measurement of QTC (by extrapolation of the

temperature profiles) will not be required in the transient method.
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Four mechanisms which may contribute to the heat transfer

between surfaces in contact are:

(i) Conduction through the contact points
(ii) Conwvection through the fluid in the interstitial volume
(iii) Conduction through the fluid in the interstitial volume

(iv) Radiation between the contacting surfaces

The relative importance of these mechanisms depends on a
number of factors including the hardness and roughness of the
surfaces, the applied pressure and the properties of the fluid

between the contacts.






LITERATURE SURVEY

The aim of this section is to present some of the literature
relevent to the present work including publications on contact
conductance measurements and transient experimental techniques.

The majority of the early work published on contact conductance
was presented by authors who were interested in the measurement of
thermal conductivity. In the field of contact heat transfer, very
little work has been published, and no work published so far
includes any measurements of contact conductance at metal-plastic
interfaces or of conductance for surfaces of widely different

hardness.

2.1 Convective and Radiative Heat Transfer

The theoretical solutions reported by the earlier workers
were based on idealised models. Several models are reported for
the four somewhat independent modes of heat transfer. Most of the
authors [?, S 5 g lé] assumed that the contact points are widely
distributed, such that the radii of the contact spots are small
compared to the distance between them and the gap thickness Gf is
small compared to the distance between them. The model is illustra-
ted in Figure 2.,1. This model for the convective mode, was based
on two parallel flat plates separated by a distance Gf. Three
different orientations of the plates were considered by the authors.
However, they concluded that the convective heat transfer across
a contact can be safely ignored for any realistic problem. For a
metal-plastic contact these assumptions may be equally valid.

Fenech and Rohsenow [id] have estimated the radiative heat
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transfer contribution to the total to be less than 1% for mean
contact temperatures below 1100°F. Clausing and Chao [S] have
reported that the radiation amounts to less than 2% of the total
in the least favourable conditions of their experimental work.
Moore [ﬁﬂ, in order to estimate the gap radiation, has assumed
the interface temperature drop ﬁTc, to be small compared to the
mean temperature and obtained the following expression for the

radiative conductance hr:

2 2
hr = 4E120'Tm (2+1)
in which
1 (2.2)
s al 1
- + B -1
1 2

E. and E. are the emissivities of the surfaces.

: | 2
Tl + T2
Tm = . and 0 is the Stefan-Boltzmann Constant.

Moore also estimated the radiation to be less than 2% of

2 O

the total, even at the lowest conductance of 29 BTU/hr ft® F

he has measured.

2.2 Fluid Conductance

The two modes of heat transfer that contribute mainly to
the resistance are the solid-solid conduction and the conduction

through the fluid. The fluid conductance hf is defined as:

£ E—f— (2:.3)
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where K conductivity of the fluid

(o]
Il

Effective gap thickness

Early work [3@] reports that fluid conductance may even
account for over half the total conductance. For metal-plastic
contact this case would arise only under extremely high surface
roughness of the metal and very low contact pressures. Equation 2.3
suggests that the fluid conductance hf can be increased by intro-
ducing a high conductivity fluid in the intestices.

The evaluation of Gf in a metal-metal contact itself is a
difficult task. In metal-plastics contact, assuming the surface of
the plastic material to be perfectly smooth, the variation of the
gap thickness Gf with contact pressure will be very difficult to
predict., However, the contribution of the fluid conductance, hf,
to the total can be roughly estimated from conductance values

measured at constant contact pressure and different ambient pressures.

2.3.1 Solid Conductance

Solid-solid conduction mode, hs' contributes a major prop-
ortion to the total conductance hc under normal circumstances.
The heat flow lines must converge to pass through the contact
spots. Moore [6] has used the term 'constriction resistance' or
'constriction conductance' for the constriction of heat flow lines.
A surface will mainly have two types of irregularities: the
surface waviness which is macroscopic and surface roughness
which is microscopic. Hence two types of constriction of
heat flow lines result. Firstly, due to the macroscopic
waviness the heat flow lines converge to pass through the

macroscopic contact areas and then converge again to pass through



e

the microscopic contact spots.

Several models are available for the prediction of
constriction ratio a/b (Figure 2.l) to estimate solid-solid
conduction mode for metal-metal contacts. They differ in the

assumptions made by the respective authors.

2.3.2 Deformation Analysis

In order to predict the solid conduction mode, a relation-
ship between the applied pressure and the constriction ratio
a/b, (Figure 2.1), is essential. When normally rough surfaces
are pressed together, the actual area of contact between them
will be a small fraction of the cross-sectional area. Hence,
the average pressure on a contact spot will be much higher than
the applied pressure. The softer of the two materials will tend
to deform elastically or plastically, or both elastically and
plastically.

If the deformation is assumed to be plastic and the
pressure on a contact is equal to the maximum which can be
sustained by the softer material (called the Meyer hardness

value M) then using a simple force balance

P = BApplied pressure

Ac = Cross-sectional area
As = Actual contact area.
Hence:

oo

A
¥ N ) P
= = —ﬂ (2.4)
e
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If the deformation is assumed to be partially elastic, the
average pressure borne by an a-spot will be a fraction of the

Meyer hardness, M, i.e. the pressure on an a-spot Pa is:

P = M OF< & <l (2.5)
hence

(2.6)

4
. v
=

The above two assumptions were used by earlier workers in building

up their models.

2.3.3 Microscropic Contact Models

Cetinkale and Fishenden [3] used the model shown in
Figure 2.1 to predict values of contact conductance. The
contact element was assumed to be a circular cylinder of
radius b, with a centrally placed solid spot of radius a,
surrounded by a fluid of thickness Gf. The heat transfer was
assumed to occur through the contact and through the surrounding
fluid by conduction. The steady temperature distribution in
the model was cobtained by the relaxation method, controlled by
the dimensionless quantities a/b and b.Kf/GE.Km. They have
obtained solutions for ten different cases to include practially
all real cases (including the special case of a/b = 0, in
which the flow will be linear throughout the cylinder.) The
authors arrived at the following relationship after some

rearrangements:

_— (2.7)
s b.K_ tan b
£ E—/I:l - Kf/(hs.af}] -1
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in which K= = harmonic mean of Ky and K. Since hS appears
on both sides of the equation, an iterative method was used to
evaluate hs'

In order to evaluate a/b, the authors assumed the

deformation of the a-spots to be completely plastic, hence from

equation (2.4):

& e
b

|7

Also the authors have suggested means by which the gap thickness
Gf and the heat channel radius b can be evaluated from surface
roughness measurements and some experimentally measurable
constants. They concluded that conductances between specially
smoothened and roughened surfaces can be estimated with
sufficient accuracy for practical purposes using these

equations and the experimental values of Gf and b.

Laming [18] employed the model given in Figure 2.l1. He
assumed for normally flat, rough surfaces which are only just
in contact, the a-spots, whether few or numerous, must be
vanishingly small owing to very small radii of curvature of
roughness peaks. If the surfaces are pressed together under
an increasing load, the a-spots will increase in size, firstly
due to elastic then due to plastic deformation. Supported by
the previous work, that the elastic deformations are negligible
except for very smooth surfaces, Laming consequently assumed
as Cetinkale [3] and obtained:

A
a = [é—“ ¢ %] (2.8)

in which N = Number of a-spots per unit nominal area.
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Laming then used the conclusion of Holm [34] that con-
ductance of a single a-spot is 2 a Km. This is based on the
assumption that the dimension of 'a' is small compared with b,
the effective radius of the region supplying each a-spot. Then

rhose when
to account for ia cases#high loads are applied,where the fluid
and solid conductivities become: comparable, he modified the
relation to apply to single finite size a-spot by the use of a
'constriction alleviation factor', £, where:
ha—spot ot il i s (2,9)

where f is a function of a/b such that £ > 1 as a/b »> 1.

Laming approximated (1 = f£) to the first two terms in Rosse's

series such that:
£ = 1.41 L% (2.10)

He assumed that the surfaces will have a regularly pitched
waviness in one direction (due to mechining) and the number of
contact points is equal to the number of ridge intersections.
Eventually he arrived at the following expression for hs' the
solid conduction mode, (from equations (2.8) and (2.9)):

R (2.11)

1 -f 'rr.J\l.JL2 M

where ll and l2 are the surface wave lengths and o the angle at
which the ridges are oriented. Hence, the total conductance

term hc becomes:

i 2 Km Sin O P

£
h = + - (2.12)
c 3f 1= ﬁ.ll.lz M
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The remaining unknowns are a/b to evaluate f and the value of

Gf. He obtained a/b from the relationship:
a 2 hc ;
BT R i)
S
P hc i
£ = 1.4) ik g (2.14)

Hence, by eliminating f from equations (2.11) and (2.14) hs can
be evaluated which appears implicitly.

Fenech and Rohsenow [lQ] approached the problem in a
similar manner as in [18, 3 and 5] using the model given in
Figure 2.1. They obtained the expression for the sum of the

fluid conductance and solid conductance as:

Ke Sy S, g
= (1-€2) (4.26/5—5- ¥ 1% 4.26/:?—E+1) ¥ 1.2e £() wee— +4.26 e/n

h= _°f K- i 152
K [ S . 8 8 )
(T2}l = me = 4 i [ A:26/8 EF2 - 4.26/0 Q%1
Bg. Ry o8 E 4 €
(2:15)
5% ~//E; where AC = real contact area and A = apparent contact
A

area, in which € < 0.1 for all practical surfaces and f(g)= 1.
The term. in square brackets in the numerator is referred to as
the heat flow across the voids and the second fraction as the
heat flow through the contacts.

The application of this equation to actual surfaces requires
three quantities to be evaluated, Gf, M and €. For small €, the

authors develop the following expression for the average fluid
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thickness:

&4
Ry e Xe
o

, 1i=1, 2 and Kf # K (2.16)

i
where £ = average height of gaps in actual contact. The remaining
unknowns n, €, El and 52 were obtained from surface profile
measurements.

Cooper et al [i] have considered the resistance between two
solid thick bodies in vacuum. They have compared the existing
analyses of a single idealised contact and applied it to predict

conductance of multiple contacts.

2.3.4 Macroscopic Contact Models

Clausing and Chao Eﬂ have demonstrated that for many
surfaces used in engineering practice the macroscopic constriction
has a commanding influence on the overall resistance. They have
presented a model (Figure 2.2) to predict thermal contact con-
ductance in a vacuum and have obtained results to show the effect
of surface film, surface roughness, creep and intestitial material.

Their model suggests that thermal resistance across a con-
tact in the absence of any conducting fluid may be represented by

three resistances, RL' Rs, and Ro in series in.which:

]

macroscopic constriction resistance (or large scale)

L

o
]

microscopic constriction resistance (or small scale)

film resistance.

and R
o

= + + .
Hence, the total resistance Rt RL RS Ro
For microscopic resistance based on the model given in

Figure 2.1, they derived the same expression as Laming [}é]:

h = 2aSKm'n (2.17)

g (x)



Y

in which hs microscopic conductance
1

X

(as/bs)
g (x)= Rosses' series
However, they assumed that the asperity deformation is partially

elastic and hence the average pressure borne by an a-spot, Pa'

is assumed to be a fraction of the Meyer hardness, M.

i.e. Py o= E.M ,0 < £ <1 as in equation (2.5)
hence
2.PIK
h - = (2.18)
s, 1T.M.E;.as g (x)

The authors assumed an average value of 0.3 for £.

For macroscopic constriction analysis, the authors assumed
the contacting portion to be of radius 'aL' and the heat channel
radius to be 'bL'. The contacting region was assumed to consist

of a large number of contact spots, each of radius 'as' (Figure 2.2)

and obtained the relationship:

2 -
Ak T L (2.19)
Km m.g (xL)
in which X » aL/bL

hL = macroscopic conductance.

They assumed the macroscopic resistance to be governed by
the elastic deformation of the contacting members. 1In order to
predict the macroscopic contact area and its variation with
applied pressure, the flatness deviation of the contacting solids
was simulated by spherical caps of radii r, and x, (Figure 2.2).

They eventually obtained the following expression for X :

L
p by,
Rpv- 1.285 A for X < 0.65 (2.20)
m i =
in which dt = dl + d2 = total flatness deviation.
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Em = harmonic mean of the two modulii of elasticity

El and E2

The dimensionless group (P/Em)(pL/dtJ was designated as £ and
called the conformity modulus.

Hence, from equations (2.17) and (2.18)

LN Ay e BT (2.21)
K
m
in which
2 x 1.285 ;%
p (5) = == . (2.22)
T g(1.285 7%
I’IS
i.e. hﬂ - bL d 2.57 T o o
‘ -
Xa T g(1.285 %

and the ratio of microscopic conductance to macroscopic conduc-

tance becomes:

= e TR B (2.24)

P
M @ atg

in which for a given material of known geometry and load, the
guantities P, M, £ and bL are known. They estimated as.E.g (x)
by assuming 'as' is independent of the load and the average size
of the microscopic contact area is of the same order as the
surface roughness.

They have indicated from their calculations that micro-
scopic conductance is of secondary importance for many engineering
surfaces.

Popov and Yanin [29] have reported heat transfer studies
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between surfaces with waviness., Their model for the macro-
deviation is basically the same as that used by Clausing and

Chao [5 ]. They conclude that the wave height and the equivalent
out-of-flatness are the governing factors that affect contact
resistance. No experimental method is presented but the
theoretical values are reported to be in satisfactory agreement
with experimental data.

Sanockawa {23] has presented theoretical analysis of a
model of contact. The presentation consists of four parts
including the effect of the shape of surface roughness and the
waviness. He has performed experiments on waviness model and
shown that the contact resistance is roughly the sum of the
resistances due to roughness and waviness in series. Also, he

avoid.
states that unless extreme care is taken to waviness, there might
be many cases in which the resistance due to waviness might

exceed that due to roughness.

2.3.5 Comparison of Contact Models

The theories available include: only the prediction of
contact conductance hc' for either rough-flat surfaces or
smooth-wavy surfaces. Theories on surfaces with a considerable
amount of roughness and waviness are yet to be published. The
mechanisms suggested by Centinkale and Fishenden, Laming, and
Fenech and Robsenow are applicable only for flat-rough surfaces.
out of the work carried out on the microscopic contact model,
Laming's method requires less information. Fenech and Robsenow's
needs much effort to evaluate some of the parameters but is more

accurate., Clausing and Chao's work on macroscopic contact model
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will be applicable in preference to the others in cases where

the surfaces will have large scale waviness. Their experimental
results and theory agree for cylindrical specimens with spherical
ends (Figure 2.2), but there is no information regarding the

applicability and accuracy of the solutions for practical cases.

2.4 Transient Methods

Beck [i] has described a procedure for using transient
experimental data to determine simultaneously, several physical
properties appearing in certain partial differential equations.

The properties were estimated by making the temperatures calculated
by finite difference approximation to match the measured temperatures
in a least-squares sense,

Beck [1?] also describes a method using non-linear esti-
mation procedure to evaluate contact conductance as a constant or

as a function of time. He suggests that the dimensionless number,

B, where
B = =l (2.25)
in which L = specimen thickness
h.C = contact conductance
K = thermal conductivity.

When less than or equal to 0.5, the location of thermocouples are
not critical.

When B > 0.5, some thermocouples have to be located as near to
the interface as possible, but outside the disturbance layer.

Moore Bﬂ has presented solutions derived for a class of

boundary value problems for transient temperature distribution in
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a one-dimensional, two-layer composite rod. These solutions were
an original contribution to the field of contact heat transfer.
The theoretical analysis includes four different cases. In the
section of Literature Survey, he presented a tabulated review of
most of the existing publications on contact conductance studies
and closely related topics, catagorised by the type of information
to be found in the various references.

He has reported an effective method of locating thermo-
couples on the surface of the test specimen (explained in Section 4).
The experimental program of Moore consisted of six phases. The
experimental conditions were approximated to the boundary conditions
used for his theoretical solutions. These six phases of the
program differ in the initial and boundary conditions, applied
pressure and ambient pressure. The test samples used included a
large range of thermal properties.,

50% of the experimental results obtained :’g'reported to be
within 10% of the predicted values while 20% of them differed from
the predicted values by more than 20%.

Moore recommends a much stabler source block, larger number

of thermocouples and careful surface preparation for future work.
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THEORETICAL

3.1.1 Principle of Transient Method for Thermal Contact Conductance, hC
As stated in the Introduction, the work of this thesis
concerned measurements of thermal contact conductance by a transient
method. In the method a constant heat flux causes the temperature
of a composite rod containing a plastic sheet sandwiched between
metal sections to increase, and sets up thermal transients in the
rod. An illustration of the geometry of the composite rod is given

in Figure 3.1.

Vi Vi 7 i 7 z Z pa 7
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N
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x=0 X=a X=] x=L
Figure 3.1

All three regions of the rod are assumed to be one-dimensional
with constant thermal properties. The system is well insulated
to reduce the radial heat loss. The temperature distribution in
each of these three regions is assumed to obey the one-dimensional
transient heat conduction equation including the correction term

for the surface heat loss.
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3.1.2 Heat Balance over an Element of the Composite Body

BT BT
Wk, — — = - KA G
X+AX
bS x+Ax
Figure 3.2

For the element (Figure 3.2) x to x + Ax, whose cross-sectional area

is A and perimeter P

Rate of accumulation Rate of input - Rate of output

R bk 'pgse EE- = =K .A QE. + K . Al o =P . Ax £(P-T)
P 98 9x i
x+0x

(3.1)
in which f(T—Ti) is the rate per unit area of (convection) heat
transfer from the surface of the rods.

Taking Limit Ax - 0, 3.1 becomes

3T K 32T
— = — F {T_g‘ )
a6 o . C‘p 322 i
or .3.3 = o ﬁ - F(T-T,) (3.2)
R) 9x2 i >

Appendix 1 discusses the experimental determination of the value of

F(T—Ti} by recording cooling curves of the rods, from which
- e 2
F(T-Ti} = QT Ti) (3.3)

in which Q is a constant.
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3.1.3 Mathematical Model

Initially, all three regions of the composite rod are at a

uniform unitial temperature Ti' At time © = O, the end x

(Figure 3.1) is suddenly exposed to a constant radiant heat source

and it receives a constant radiant heat flux Fo' The flow of heat

across the interfaces x = a and x = b are assumed to be continuous

and no heat flows across at x = L.

Hence, the process can be represented by the

following mathematical model:

For the first metal rod:
o 2
1 + o(r,-T,) =

L
BTl
1
% o

For the plastic rod:

¥ + or,r)? = a?_&. agx<b
99 ax?

For the second metal rod:

PES Q(T3-Ti)2 = aB_éE}_, bgxgL
% 9x?
At time © = O:
Tl(x, 0) = T,
T2(x, Q) = Ti
T3(x, Q) = 'ri

At x = O:

(3.3)

(3.4)

(3.5)

(3.6)

(3.7)

(3.8)

(3.9)



s

At X = a:
T aT
Ky [__I_] . B (PT.) s X, [_2] (3.10)
ax ox
a a
At x = b:
k, |MT2| = nrry = x, |3 (3.11)
@ = @it ¢ S imx
b b
At x = L:
K, Efg = 0 (3.12)
ax 5

The contact conductance, h, is assumed to be independent of
temperature and its values at the two interfaces are assumed to be

equal, i.e. hl = h2.

3.1.4 Finite Difference Approximation

The composite body is divided into eleven finite regions,
with eleven nodal points to describe the temperature distribution.

Figure 3.3 illustrates the model.
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L g T
1 M \\\ 2
s——— - -
lst interface 2nd interface
Figure £ et

The length of each modal division§ in the regions 1, 2 and 3 are
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Ll' M and L, respectively.

2
Crank-Nicholson's finite difference scheme [}9] is used

to approximate the time-temperature history in the system. This

is an implicit method, where the average of the finite difference

approximation for 3%7/3x% at time © and © + A® is used,

2 2 2
i.e. [%;%] = l.(1%_§> + -%J§> (3.13)
X
9+%—9— e x9+b.9

b

The finite difference approximation for 3%t/ x? is:

3% 16 2Tn_,9 N .
—| = A (3.14)
3x ﬂ|9 ox
and for 9T/06 is:
T -7
o n,e + Ae n,® (3.15)

Fr) )

Hence, the one-dimensional heat conduction equation (3.2) in the

finite difference form will be:

ik - T e o >
n,6 + Ae D + QT 54 8o -1 = 52|, 4 1,0
Ae 2
el et B e s s e e T LT e te T
LS 1,0 + ﬁe)] (3.16)
Assuming
T A e Te kAT N (3.17)
i 2

Equation 3.16 becomes:



e

ae.'rn'e + Aot 42 -1.T _ 10w e (4 X(n) + Q.06
Bitoe Yyl Bileil N BB AN 6 4 e
i i 2 i 2 '
= 4 R(n) - Q.A® [Tn e N TiJ (3.18)

in which the arrays X, Y, 2 and R are defined in pages 30 -32

Hence, will depend on the temperature values at

Tn,e + Ae
the adjacent nodal points at previous (€) and current (e + Ae)
time steps. Equation 3.18 leads to eleven non-linear equations

with eleven unknowns, T of B 1 to 11. These equations

n,® + A
were solved by Newton Raphson's iterative technique to evaluate
the temperature profiles. The technique converges in two
iterations. The equations, the method of solving them and the

computer program written in Fortran IV for the evaluation are

described in Appendix 2.

3.1.5 BAn Alternative Method

The eleven non-linear equations could be made linear with
respect to Tn,e + Ao if we introduce Tn,e instead of Tm9 + 0e/2
into the correction term in equation 3.16. Hence, these equations
could be represented in matrix form AT = R, in which A is a
tridiagonal matrix (11 xJ§) and T and R are vectors. R contains
known constant values and temperature values in the previous

iterations T The assumption seems justified on comparing the

n,e"
temperature profiles obtained using either of these methods for a
given heat flux Fo and contact conductance h.values.

The nodal equations obtained using this assumption in the

matrix form is:



X(1) Y (1)
Z(1) X(2) Y (2)
\ S TG
‘ \
B
\ N

\ " \
N
zZ(9) X (10)
Z(10)
in which:
For I =1 to 3 (1) = 2
X{4) = 2
X(5) = 2
X(6) = 2
Ty =2
X(@8) = 2
and for I = 9 to 11 X(r) = 2
Y(1) = -28B
Y(2) = —Sl
¥(3) = -B;
Yi{4) = -2Bl/Nl
Y(5) = =28
Y(6) = -B

= 30 -

. e
T1,0 + le
Tz,e + Ae
Y (10) Tlo,e-rae
XA T35 0400
+ 281
+ 231 + 2Bl/Nl
+ 262 + 232/N2
+ 262
+ 232 + 282/N3
+ 283 + 283/N4
+ 253
Z(l) = -Bl
z(2) = -Bl
Z2(3) = -281
Zi4)y = —282/N2
z(5) = —82
Z(e) = =-2B

N

(3.19)



R(1) =

R(2) =

R(3) =

R(4) =

R(5) =

R(6) =

R(7) =

R(8) =

R(9) =

R(10) =

R(11)

in which

- 3] -

Y(7) = -28,/N, Z(7) = -2B4/N,
Y(8) = —263 z(8) = -83
¥(9) = =B, 2(9)" = B,
¥(10) = -B, z(10) = -2B,
2 F_.L :
i R B 0 Q.80(T; g = Ty)

1 + l 2 2

Bl.Tl' (2 2BlJ.T2'e 81'T3,e Q.ﬂe.(Tz'g T,)
+ - + = = 2

Bl'Tz,e (2 261}.T3'e Bl.T4'9 Q.ﬂe.(T3'9 T

231.T3'e + (2 - 231 - 281/N1)T4,9 + (281/N1)T5'9

4 = 2
Q.Ae.(T4'9 T,)

(282/N2)'T4,9 + (2 - 282 - 282/N2)‘T5,e + 262T6,9

)/ 2
_Q-&Q- (TSIQ Ti)

2
ByeTg o * (2 = 2B)) Tg o + ByeTy o = Qu88.(Tg o = T)

282'T6,e + (2 - 252 - 282/N3}.T?’e A (282/N3}.T8'9

2
- Q.ﬂQ.(T7'e - Ti)

(283/N4) T?'e

+ (2 - 283 - 263/N4)‘T8,e + 283.T9'9

5 % 2
Q.ﬁe.(Ta,e T,)

2
83.T8,9 + (2 - 263}'T9,e + BB'Tlo,e Q.ﬂe.{Tg’g Til

BB.TQ,Q + (2 - 283).T10'e + 83'T11,e - Q.&e.(Tlo'e - Ti)

2
2B3T10,0 ¥ (2 = 2B3)eTyy o = Q.86.(T), o = Ty)
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A computer program: written in Fortran IV to evaluate the
temperature profiles using Gauss-Jordon's elimination technique [iQ]
is given in Appendix 3. Appendix 3 also includes the comparison of

the temperature profiles predicted by the two methods.

3.1.6 Dimensionless Analysis

The differential equations (3.3 to 3.5) and their boundary
conditions contain a considerable number of experimental variables
(6, T, x, h etc) and thermophysical properties (a, c, p etc). So
as to display the interrelation of these guantities, and hence to
help the interpretation of experimental time-temperature curves,
the equations have been expressed in the dimensionless form. Three
dimensionless groups were obtained by writing in dimensionless form,
the equation and the boundary conditions.

This leads us to the following dimensionless groups on which

the solution to the system will depend.

1% Dimensionless temperature = X.T/(FO.L)
2 Dimensionless time = Ol.S/L2

3. Dimensionless contact conductance = th/K
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The groups chosen with appropriate parameters for the interpretation

are:

Dimensionless temperature = (K..T, .)/F .d (3.20)
i 2,9 o

Dimensionless time = al.e/d2 (3.21)

Dimensionless contact conductance = hcd/Kl (3522

in which ul is the thermal diffusivity of the material in region 1
(Figure 3.1), d is the thickness of the plastichk material and
other quantities are defined before.

From the theoretically predicted temperature profiles using
the computer program given in Appendix 3, a family of curves of
dimensionless temperature against dimensionless time can be plotted
for given values of Fo and the initial temperature distribution.
The curves obtained were found to take the shapes as shown in
Figure 3.4. These curves suggest the limits to the accuracy with
which the experimental method can measure thermal contact
conductance, h.

Figure 3.4 also suggests that #§ conductance values greater
than v 500 BTU/hr £t? °F (Dim.h 49.9) will be indistinguishable,
since the curves corresponding to conductance values in this range
of values lie closely together. At lower values of conductance h.

the accuracy will be limited by:

(i) the accuracy of the temperature measurements
(ii) the agreement of the experimental temperature profile

with the general shape of the graph.

If the circular points in Figure 3.5 represent a set of experimental

points and the continuous lines represent a plot of dimensionless
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time against dimensionless temperature cbtained theoretically using
the corresponding experimental condictions, then it will be only
possible to predict a range for the conductance values from a
particular experimental data. For the assumptions made in building
up the mathematical model to be valid, the general shape of the
experimental profiles should be the same as that cbtained
theoretically. The relationship will be a guide for the analysis

of the experimental data.

3.2 A Transient Method of Measuring Heat Flux at x = o {FOL

The transient temperature profiles set up in the composite
rod is caused by the heat flux, Fo' radiated from a high temperature
furnace. Analysis of the temperature-time profiles requires a
knowledge of the value of Fo‘ In order to measure this heat flux
at x = o (Figure 3.1) when it is exposed to the radiant heat source,
Fo is assumed to be constant during the process of transient heating.
The absolute temperature at x = o will be small compared to that
of the furnace. If the furnace temperature and the emissivity of
the surface x = o are kept constant, the change of Fo due to the
change of temperature at x = o during the process is illustrated
in Table 3.1. The table includes the range of furnace temperatures
and surface temperatures in which the experiments were carried

out.



ST

FURNACE TEMP. R SURFACE TEMP. °R PERCENTAGE CHANGE
F s i.e. ?': fo— T ")
F S
2000 550 0.000
2000 575 0.125
2000 600 0.250
2000 625 0.375
2000 650 0.5825
2400 550 0.000
2400 575 0.0625
2400 600 0.125
2400 625 0.1875
2400 650 0.291
Table 3.1

The experimental method of measuring heat flux at x = o uses a short
rod insulated at one end and edge of whose exposed end is identical
in area and surface emissivity to the rod of the main transient

experiments.

Figure 3.6
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The temperature at any point x on the rod at time © is:

19 0 = 2 it
L5 3] c.1l K 2 =1 2 €
p.c. i m n=1 n b | 2

(3.23)

in which the slab at zero initial temperature receives a constant
heat flux, FD at x = 1 and there is no flow of heat across at
X =0 [2] (Figure 3.6).

The temperature distribution corresponds to a linear increase
with time Fo.e/p.c.l. together with a correction term which depends
on x, the position, the time © and the length of the slab 1. Hence:

F le
o)
p.c:l

= + correction term (3.24)

The correction term was found small when compared to the main term,
Foe/p.c.l for x/1 in the range of 1/3 to 2/3 and for small 1.
Table82 gives the values of the main terms and the corresponding

correction terms for

F, = 2000 BTU/hr ft Op

i = 0.25 ft

%3 & LA xre, 273

0 = 169.0 1b/ft®

¢ = 0.213 BTU/lb °F

] = 1/2 hr
x/1 MAIN TERM F_.© CORRECTION TERM

p.c.1

1/3 168.014 -0.5439
1/2 168.014 -0.2039
2/3 168.014 +0.2723

Table 3.2



a0 =

Hence, the heat flux could be measured with the assumption
that the temperature T,increases linearly with time in the range
of values of x/1 and © given in Table 3.2 when one end receives a
constant heat flux.

If the initial temperature of the rod is Ti' then:

FO.G
T T (3.25)
& ar
1.0, Foim decd == (3.26)

dT/d6 will be cbtained from the thermal transients produced
by the heat flux Fo in a rod of length 1, density p and specific

heat c.

3.3 Least Squares Procedure for Comparison of Theory and Experiment

The technique used in this study finds the thermal contact
conductance (hc} between metal and plastic surfaces and the thermal
conductivity of the plastic material (Kp] by comparing the temperature-
time variation predicted by equations 3.3 to 3.12 (a variation that
depends on hc and Kp) with the temperature-time variation found by
experiment. The values of contact conductance and the conductivity
of the plastic material are those which give the closest agreement
between predicted and measured temperatures.

The sum of #d squares function F, for n thermocouples at m

discrete time steps

m T
Flh,, k) = 2 &lTc; gihe K P (3.27)
i N 7 £

has to be minimised with respect to hc and Kp
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in which Te¢ = predicted temperature

L}

il

- measured temperature

Optimisation techniques were used to find the minimum of
this function. The spiral algorithm[ﬁ2] was used for this purpose.
The flowchart for the proposed experimental procedure to estimate

these parameters is given in Figure 3.7.
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EXPERIMENTAL

The aim of this section was to provide temperature-time
curves, which together with the theoretically predicted temperature
values formed the sum of squares function. The data required was
the temperature transients set up in two aluminium alloy rods
which sandwich between them a thin sheet of plastic material, when
one end of the rod receives a known constant radiant heat flux.
This section briefly describes the design, construction and
operation of the apparatus used for these measurements.

The apparatus was used to measure two quantities. Firstly
to obtain the thermal transients produced by a constant heat flux
on the composite rod and secondly the thermal transients set up
in a 1" diameter and 3" long aluminium alloy rod by a constant
radiant heat flux which enabled us to evaluate the heat flux

provided by the high temperature furnace.

4.1 Apparatus

The apparatus consisted mainly of three parts, a high
temperature furnace, a test chamber containing the composite rod
and a pressure chamber (Figure 4.1).

The high temperature furnace (Griffin electric furnace
250 V, 12 PAmp) provided a constant radiant heat flux. It can be
heated up to a maximum temperature of 1200°C. The maximum
temperature can be varied by means of an energy regulator. The
furnace has a sliding door 8" x 6" and a heat shield was fixed
between this door and the Test Chamber. The shield was made of

aluminium sheet, lined with aluminium foil, in the form of a



43 =

JUsweanses)] S0UR3ONPUOD 3I0BIUOD 107 sniexeddy

*I°y 2Inbra

[Te] = = = = o o lele o o=

e o o

[=

YI0M dWDY
uoIX2p

Jaquwpys aInssasd

J2qUDYD }S2}

pPl21ys b2y

J00p buipi/s

:

22D UINY Y]




= 44 =

hollow truncated cone, 2.5" and 1.5" diameter at the ends and

4" in height. The purpose of this shield was to reduce heat loss
from the furnace by convection to maintain a constant furnace
temperature.

The test chamber was made of a mild steel pipe, 5.25"
internal diameter, 0.25" thickness and 18" long. Two flanges each
8" x 8" were welded to the ends of the pipe. To one of these
flanges was clamped an aluminium disc 8" diameter.

An IR radiation window ('vitriosil 066' silica glass), 6 cm
diameter was fitted at the centre of this disc. The thickness of
the glass window was 1 cm which would stand a pressure difference
of one atmosphere. This glass would pass radiant energy. Figure 4.2
shows schemetrically the arrangement of the composite rod in the
test chamber.

The pressure chamber was also made of mild steel pipe of
the same diameter as the test chamber but 14" long. A flange
8" x B" was welded to one end of the pressure chamber while the
other end was closed with a steel plate 8" x 8" welded across the
pipe. An aluminium disc 8" diameter and a flexible diaphrep of
the same diameter were sandwiched between the test chamber. The
central part of this disc was machined in the form of a socket,
such that a cylinder 3.5" diameter and 1" thick can smoothly slide
in it. One end of the longer metal test specimen was clamped to
this cylinder, while the other end was supported by means of a
'spider'. The socket and cylinder arrangement is illustrated in
Figure 4.2. The flexible diaﬁhram was an 0.1" thick rubber sheet.
The two chambers and the diaphr?g allow independent adjustment of

the ambient and applied pressures.
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The smaller rod 3" long was supported by a 'spider' closer
to the radiation window. The plastic material in the form of a
disc 1.5" diameter and 1/16" thick was clamped to a 'spider' and
sandwiched between the two metal rods. The photograph in Figure 4.3
provides a view of the metal specimens and 'spiders'. The spiders
provided good ali&lment of the test specimens.

The test chamber and the pressure chamber clamped together
were supported in a dexion framework (Figure 4.4). The test
chamber was connected to a mercury manometer and to a vacuum pump
by means of 'simplifix' couplings and pressure tubings. The
pressure chamber was connected in a similar manner to mercury mano-
meter and to the exhaust outlet of the vacuum pump. The pump used
was an Edwards, ISC 30 series and single stage. It is capable of
supplying compressed air through the exhaust outlet at 10O lb/in2
continuously and 20 lb/in2 intermittently.

The temperature measurements were made using alumel-
chromel thermocouples and a servoscribe 2, RE 520.20, potentio-
metric recorder. The recorder can be easily calibrated. It was
calibrated for a full chart scale of 4.1 mv which is equivalent to

lOOOC for a standard alumel-chromel thermocouple.

Test Specimen

The metal test specimens were constructed from 1" diameter
HE 30 WP aluminium alloy rods. The length of the smaller rod was
3". One thermocouple was located on this rod 1" from the end
closer to the radiation window. This end was painted black using
a mixture of carbon black and sodium silicate. The length of the

other metal specimen was 14.25" and a thermocouple was located at
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4.75" from the end which is in contact with the plastic material
(Figure 4.2). The plastic material used was 'Tyril' (Styrene
acrylonitrile copolymer) cobtained in the form of pellets. These
were moulded in the form of discs 1.5" diameter and 1/16" thickness.
The surface roughness of the metal samples were measured in the
Production Engineering laboratory. Since our experimental program
did not include the effect of surface roughness on contact conduc-
tance, the roughness of the metal surfaces in contact was kept
constant. The plastic specimens were moulded in the same mould
from the same bulk of pellets to ensure uniformity and equal
surface roughness. The location of thermocouples in the metal
specimen corresponds to the nodal points 2 and 9 in the model
given in Figure 3.%. 5

The thermocouples were installed in slots rather than in
drilled holes. This type of installation was reported by Watson
and Robinson l?l ]National Bureau of Standards. The specimen$ used
for his work were 2.54 cm diameter rods and the welded junctions
were peened into holes 0.1l cm diameter and 0.17 cm deep. The
installation of thermocouples for the present work, was based on
the techniques of Moore [6] . The alumel and chromel wires used
were 0.0148" diameter. The measuring junctions were formed by butt
welding. Good welding was achieved after some experimentation.
It provided a fairly uniform junction. These junctions were
embedded in narrow slots cut tangentially on the surface of the
rods at required locations, (Figure 4.5). The edges of the slots
were folded over the wire to ensure the safety of the wires and to
achieve good contact between the junction and the specimen. The

wires insulated with P.V.C. sleeves were wrapped around the sample.
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At the point where the wires meet on the opposite side of the slot,
the wires were wrapped together by a piece of insulation tape.

The upper portion of the tape was pasted on to the rod using
araldite to prevent relative motion between the wires and the rod.
The test specimens were held in melting ice and boiling water to
calibrate the thermocouples. The reference junctions were always
kept in melting ice during the temperature measurements. The
e.m. f. produced at these two temperatures agree with the data for

a standard alumel-chromel thermocouple.

4.2 Experimental Procedure

The furnace with heat shield fitted (Figure 4.1) was
switched on with the door closed. When the temperature reached
about 1ooo°c, the furnace door was opened with a square sheet of
aluminium 4" x 4" painted black with carbon black and sodium
silicate mixture placed across the heat shield. As the temperature
of the furnace reached a steady state under these conditions, the
furnace was ready to provide a constant heat flux. An average
time of 30 minutes was taken for the furnace to reach this steady
temperature after opening the door. The aluminium sheet 4" x 4"
was painted black in order to match the emissivity of the surface

of the rod at x = o.to maintain a constant furnace temperature.

4.2.1 Measurement of Heat Flux, Fo

The experimental set-up for the measurement of heat flux
is given in Figure 4.6. The aim was to obtain the thermal
transients set up in a 3" long metal rod when the end receives

a constant heat flux. A thermocouple was installed 1" from the
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heated end. The flat surface of the end of the rod closer to
the thermocouple was painted black with a mixture of carbon
black and sodium silicate solution. The rod was insulated
first with a layer of asbestos and outside of this with 1"
thick foamed polyurethane. The rod was fitted onto a spider
and placed in the test chamber with the end painted black
towards the radiation window. The spider was clamped to the
inside of the test chamber by means of allen screws. Between
the radiation window and the end of the rod was another heat
shield to prevent heat loss by convection from the end of the
rod. The thermocouple wires were connected to the recorder with
the reference junction in melting ice. The aluminium disc with
radiation window was then clamped to the flange.

The square sheet of aluminium was removed and the test
chamber was brought into position immediately such that the end
of the rod received the heat flux through the radiation window.
The potentiometric recorder produced e.m.f. data which enabled
us to obtain the rate of increase of temperature on the rod.

At the end of 30 minutes, the test chamber was removed
from the heat flux and the square sheet of aluminium was brought
back as before across the heat shield. The rate of decrease of
temperature in the rod was then recorded for 60 minutes. This
data enabled us to obtain the surface heat loss during the
transient heating (first 30 minutes of the experiment).

In agreement with the equation (3.23),

the plot of T against © was found to be a straight line when T

was corrected for the heat loss. Figure 4.7 is a graph of T
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against © obtained from experimental data before and after heat
loss correction. Hence, the heat flux received by the end of

the rod from the furnace was obtained from equation (3.24)

i.e, s ™ p.c.l. %%
in which dT = slope of T vs © after the heat loss correction
de
p = density of the rod
¢ = specific heat of the rod
1 = length of the rod.

For the experimental system:

169.0 lb/ft3

p =
¢ = 0.213 BTU/1b °F
17 = Q.25 &

The rate of decrease of temperature was assumed to be only due
to the surface loss. The effect of the axial flow of heat
during cooling on the rate of decrease of temperature en the
rod will be negligible (Appendix 1). The fluctuation in the
furnace temperature was less than 3%. Hence, the heat flux
provided by the furnace was regarded as constant throughout the

experiment.

4.2.2 Measurement of Thermal Transients in the Composite Rod

The aim of the experimental work was to obtain the thermal
transients set up in the composite system (Figure 4.2) when the
end of the smaller rod receives a previously measured constant
heat flux. The experimental program included the investigation

of:



B

(i) the effect of applied pressure

(ii) the effect of ambient pressure

on contact conductance. The following section describes the

experimental technique involved in these measurements.

Program (i)

The effect of applied pressure was obtained when the
specimens were at atmospheric pressure. The test pieces were
arranged in the test chamber as shown in Figure 4.2. Initially
the longer rod, well insulated, was introduced and then the
plastic material and the smaller rod. The spiders attached to
the longer rod can slide along the wall of the test chamber,
while that of the smaller rod was clamp.2d to the wall at the
same position as before in the heat flux measurement experiment.
This was to ensure that the end of the smaller rod receives the
same heat flux that was already measured.

In order to apply pressure against the contact, the
exhaust outlet of the vacuum pump was connected to the pressure

A
chamber while the suction side of the pump was exposed to the
atmosphere. The pressure chamber was connected to a manometer
by means of a 'simplifix' coupling and pressure tubing. The
cold junctions of the thermocouples were kept in melting ice.
Firstly the pressure was applied against the contact by increasing
the pressure inside the pressure chamber. When the required
ambient pressure was reached inside the pressure chamber, the
valve between the pressure chamber and the pump was switched
off. If the ambient pressure inside the test chamber is Py and

that in the pressure chamber is p,:
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L]

the pressure across the diaphram (p, - p,)

a2
(pp = py) 77 (4.1)

]

hence, the pressure across the contact

in which A and a are the diameters of the aluminium cylinder and

of the rod respectively (Figure 4.8).

The diameter of the cylinder A = 3.5"
and the diameter of the rod a = L.o"
hence, the contact pressure = 12.25 {p2 = pll for (p2 > pl)

(4.2)

The square aluminium sheet was removed and the end of the
smaller rod in the composite system was allowed to receive the
heat flux. The thermal transients set up in the aluminium rods

were recorded for 30 minutes.

Program (ii)

The test specimens were arranged as in program (i). The
exhaust outlet of the pump was disconnected from the pressure
chamber. The ambient pressure inside the test chamber and the
pressure chamber were reduced alternatively using the suction
side of the pump, keeping the pressure difference across the
diaphram very small. When the ambient pressure inside the
test chamber reached the required value, air was let in inside
the pressure chamber through the valve until the pressure dif-
ference across the diaphram corresponded to the required contact
pressure (from equation 4.2). The end of the smaller rod was
exposed to the radiant heat flux and the temperature transients

were recorded as in program (i).
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4.2.3 BAnalysis of Experimental Data

The temperature values were obtained from the e.m.f. values
recorded using standard thermocouple data. The total time taken
for each of the experiment;; was 30 mintes. The temperature values

were

at Awway three minute intervals was used for the analysis. The
increase in temperatuﬁfton the larger rod at the point corres-

ol
ponding to the nodaiag,was found to be very small. It was
therefore decided to use the temperature transients set up in
the smaller rod for the analysis. The least square function
was formed using these temperature values together with the
coresponding theoretically predicted values evaluated by the
finite difference scheme.

The information available for the therxmal conductivity,

Kp, of the plastic material was not adequate enough for our
analysis. The aim was to evaluate the contact conductance hc

and the thermal conductivity of the plastic material, Kp, that

minimises the least square function Fn,where

10 2
Fn = E [Tc {hc, Kp) = Texp] (4.3)

n=1

The minimum of this function was obtained using an optimization
technique based on the spiral algorithm [32]. The algorithm was
devised by A. Jones, for the estimation of parameters in non-
linear models. A computer program for this algorithm together
with a program for the finite difference scheme to obtain the
objective function was used to evaluate the parameters. All the
programs were in Fortran IV and run on the University ICL 1905
computer.

The outline of the steps involved in the data reduction
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J h K FN = Sum of

S P Squares
STARTING POINT 186.0 O.111 6.31
FINAL RESULT 50,7 e I 0.10654 1.7041
2 h K FN

c P
STARTING POINT 200.0 0.1065 4,027
FINAL RESULT 171.43 0.10336 1.7046
3 h K FN

c b
STARTING POINT 145.0 0.1240 11.491
FINAL RESULT 116.09 0.1160 1.7031
4 h K FN

c P
STARTING POINT 120.0 0.100 l10.08
FINAL RESULT 147.93 0.10734 1.7041

Table 4.1
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procedure is given in Appendix 4. On analysing a set of data

in which

F_ = 1920 BTU/hr £t

and the initial temperature of the system is 8?.4°F, the final
values of contact conductance hc and the thermal conductivity
of the plastic material KP were found to be dependent on the
initial starting value in the optimization procedure. The sum
of squares value obtained in each case was found to be of the
same order (1.70), although the conductance hc, and the con-
ductivity KP values corresponding to the apparent minimum were
different (Table 4.1).

It therefore became necessary to examine the behaviour of
the least squares function to see if it showed a single true
minimum. The computer program written for the theoretical
temperature distribution was modified by including the experi-
mental data to calculate the value of the least square function
for a range of values of conductance hc and conductivity Kp.
This enabled us to sketch the contour of the function Fn’ The
contour obtained by this procedure for the first set of experi-
mental data is given in Figure 4.9. The function has no unique
minimum point but has a line of minimum lying along a curved
valley. This explains the results obtained from the spiral
search technique.

This result required that KP be measured independently in
order to evaluate hc' It was also observed that the line of
minimum on the contour was lying almost parallel to the hC

25 0

axis at hC values greater than about 300 BTU/hr ft F

(1700 w/m2 oK), i.e. at higher values of hc the total resistance
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between the metal surfaces in contact with the plastic material
can be regarded as only that due to the sandwiched plastic
material. Hence the thermal conductivity of the plastic
material KP would be the value of Kp corresponding to large hc
values. An alternative method was devised to obtain the K

value independently in order to evaluate hc'

4.3 Alternative Method: Transient Measurements at High

Contact Conductance

The aim was to achieve a high contact conductance across
the interfaces such that the total resistance acro;s the metal
surfaces would be only that due to the plastic material sand-
wiched between them. The contact conductance should be greater

2 %%, In order to achieve a conductance

than about 300 BTU/hr ft
value in this range, a high surface tension liquid has to be
introduced between the interfaces and high contact pressure has
to be applied. Glycerdéne was used for this purpose and a
contact pressure of 175 psi was applied across the contact.

The temperature transients set up in the composite system under
these conditions were obtained when the end of the smaller rod
received a previously measured radiant heat flux.

The thermal conductivity of the plastic material KP was
evaluated by linear search technique at high values of conduc-
tance h_ (500 BTU/hr £t2 % - 1,000 BTU/hr £t? °F) along xy
(Figure 4.10) on the least square function formed by this
experimental data and theoretically predicted temperature

transients. Table 4.2 gives the results cobtained from the

search technique.
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hc Value Assumed Kp Value Obtained
BTU/hr ft? °F w/m? °k BTU/hr ft °F w/m °k
500 2839 0.1042 0.1804
1000 5678 0.1041 0.1802
Table 4.2

This suggested that Kp dominates the resistance between faces
and this value of KP can be used to evaluate hC at lower contact
pressures.

The search technique used for this evaluation was that of
Davies, Swann and Campey [33]. The computer program written for
this purpose based on Davies, Swann and Campey's method is given
in Appendix 5. The master program consisted of the optimization
technique, while the subroutine TC(Fn, X) , evaluated the objective
function from the theoretical and experimental temperature data.

The thermal conductivity value Kp cbtained by this method
was used to estimate the contact conductance hc at lower contact
pressures from curves of dimensionless temperature vs dimension-
less time (Figure 34 ). The curve obtained from experimentally
measured temperature values was similar in shape to those obtained
from theoretically predicted values. The position where the
experimental curve fits, suggested a suitable starting point for
the search technique. Knowing a suitable starting point, hc was
evaluated by a linear search at constant Kp along x'y' as shown

in Figure 4.11.
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RESULTS AND DISCUSSION

5.1 Introduction

This section presents the results obtained using the
transient method developed to measure contact conductance at metal
plastic interfaces and a discussion of the accuracy of measurements.
The metal rods used for the measurements were HE 30 WP aluminium
alloy. The plastic sheet was 'Tyril', a styrene-acrylonitrile
copolymer. The physical properties of the test specimens are
given in Appendix 6.

The results obtained confirm the accuracy and suitability
of the method for sser metal-plastic surfaces. However, the
relationship obtained and conclusions cannot be generalised for
all metal-plastic surfaces. The results cbtained were based on
the assumption that the physical properties of the test specimen
and the contact conductance are independent of temperature. The

measurements were made in the temperature range of 70°F to 200°F.

5.2 Results

5.2.1 The Effect of Contact Pressure on Contact Conductance

The experimental results include the effect of contact
pressure and ambient pressure on contact conductance. The
effect of contact pressure was obtained using the experimental
procedure explained in program (i), Section 4.2.2. The varia-
tion of contact conductance with the applied pressure may give
information on the deformation characteristics of the plastic
material. This is based on the fact that the plastic material

is by far the softer of the two materials in contact and will
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tend to deform into the interstitial volume. Table 5.1 gives
the variation of contact conductance hC with contact pressure
P, when the specimens were at atmospheric pressure.

The relationship obtained between contact pressure P
and contact conductance hc using a standard library subroutine
for curve fitting available in the University Computer Centre

was:

For p < 200 .P.SL.

h, = 20.61 + 2.25P + 0.003 P? (5.1)

in which h_ is in BTU/hx £t2 OF

and P is in psi.

It shows a linear relationship at contact pressures below
about 25 psi in which the term 0.003 p? is negligible compared
to the first two terms (equation 5.1). At higher pressures the
relationship deviates from linearity. The linear dependence of
hc on P that our results show at lower contact pressures are
comparable to the early results of Jacocb and Starr for copper
contacts (reported in [E]).

The available theories (Section 2) predict that hc values
increase as P where n < 1, a response to pressure that is quite
unlike the response in our experiments. Our results suggest
that these theories are inadequate to describe contact conductance

between highly deformable surfaces.

5.2.2 The Effect of Ambient Pressure on Contact Conductance

Table 5.2 gives the results obtained by employing the

experimental procedure explained in program (ii), Section 4.2.3.
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It shows that ambient pressure has very little effect on contact
conductance. This suggests that the solid-solid conduction mode
dominates the heat transfer across the contact in the range of
temperatures and pressures used in the experiments and the

fluid conductance Kf/ﬁf has negligible influence on contact

conductance.

5.3 Experimental Accuracy

5.3.1 Introduction

The temperature measurements were made using alumel-
chromel thermocouples. The e.m.f. produced by a standard
alumel-chromel thermocouple at boiling point of water (IOOOC)
was 4,10 mV, while that produced by the thermocouple used in
the experiments was about 4.09 mV., Hence, the accuracy of the
temperature measurements was around iO.lOC and the average
error was less than 0.1%.

The contact pressure was evaluated from the mercury

manometer readings to about *1.0 psi.

5.3.2 Accuracy of Measurement of Heat Flux

The fluctuation of furnace temperature was less than 3%¢.
This would produce about 0.8% error in the heat flux FO. The
effect of increase in temperature of the surface that received
the radiant heat flux from the furnace on the heat flux values
was estimated to be less than 0.6% (Table 3.1). Hence, the
overall error in the measurement of the heat flux will be less
than 1.0%. A good linear relationship was obtained between

temperature T and time © for the heat flux measurements
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(Figure 4.7). Table 5.3 gives the effect of the heat flux Fo

on two values of contact conductance hc measured.

F h % change in F _|% change in h
o o o c
1920 166.0 1.0 =1
1950 49.9 1.0 ~4
Table 5.3

The error in the heat flux measurements of about 1% is the major
source of error in the determination of contact conductance.
It produces a maximum of about 7.5% in the estimation of contact

conductance.

5.3.3 The Effect of the Accuracy of Thermal Conductivity of

the Plastic Material K on Contact Conductance h
P c

The thermal conductivity of the plastic material KP was
calculated from experiments at high contact conductance (Section
4) , in which the total resistance between the metal surfaces was
assumed to be only that due to the plastic material sandwiched
between them. Conductivity values of 0.1042 BTU/hr ft °F and
0.1041 BTU/hr ft °F were cbtained when the contact conductance

values were assumed to be 500 BTU/hr ft2 °F and 1000 BTU/hr ft? @

P
respectively. The contact conductance values obtained at lower
contact pressures differ by less than 0.5% for conductivity

values of 0.1042 and 0.1041. A conductivity value of 0.1042

BTU/hr ft OF was used to evaluate contact conductance at lower

contact pressures. The error produced by assuming this value of
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thermal conductivity Kp on contact conductance will be less
than 1%.

The effect of the thermal conductivity value Kp on
contact conductance under steady state conditions was estimated
to be of the same order. The estimation was based on Figure
5.1la and 5.1b in which the contact conductance values at the
two interfaces are assumed to be equal. Hence, for given heat
flux Q across the interfaces, thermal conductivity Kp and contact
conductance hc, the temperature drqp@m)l at the interfaces can
be evaluated.

For example, if the heat flux across the interfaces is Q,

then for Q 2000 W/ h A*

h_ = 100 Bhe /b " F

and xp = 0.1042 Bh«/ h A F
using Q = h(im),
2000 = 100.(&'.[')l
(ﬁ’r)l = '20 F (i)

The temperature drop across the plastic material (AT)z of

thickness 0.0650 will be

2000
(QTJ2 ® 10 X .0050
{ﬂT)z = 95,96 F

Hence, for KP = 0.1042, the total temperature drop (BT)t across

the metal surfaces will be

(ﬂT)t 2{&TJl + (AT)2

(M'}t 135.96 F
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If the 1<p value is changed to a new value of 0,1041l: (ﬂT)é

the temperature drop across the plastic material = azgg%r x .0050
i.e. (Am), = 9.06 F
Then the new value of {L\T)l becomes:
Y % 135,96 =:96.06
{&TJl = >
= 19,95
L]
Hence, the new contact conductance value hc is:
2000 t
1 = —— = l‘
h! e 100.25 Bm/h A F

The % change of hc is about 0,25%,
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CONCLUSIONS

Contact conductance at metal-plastic interfaces can be
measured by the transient method described in the thesis to an
error of not more than 10%. The major source of error in the
method arose in the estimation of the radiant heat flux. The
accuracy of the method can be increased with a more stable heat
source.

The results obtained from our experiments for contact
conductance at metal-plastic surfaces do not agree with the
existing mechanisms describing contact conductance at metal-
metal interfaces.

Further work should econsider mechanisms to describe
contact conductance between metal-plastic surfaces and measurement
of temperature dependent contact conductance over a wider range

of temperatures.
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APPENDIX 1

Evaluation of Heat Loss Correction Term by Cooling

Experiments

The smaller rod 3" long, insulated with polyurethane was
heated by the radiant heat flux. The radiant heat flux was suddenly
removed and the rate of decrease of temperature 9T/96€ at different
excess temperatures (T - Ti) were cbserved. Theoretical studies
showed that the axial flow of heat in the rod during cooling will
have negligible influence on the rate of change of temperature
9T/de at the point in which the measurements were made. Hence,
the rate of decrease of temperature 9T/06 is assumed to be only
that due to the surface loss. The range of temperature in which
these experiments were carried out, covers the range in which the
conductance measurements were made. The variation of the rate of
decrease of temperature at various excess temperatures for the
system is presented in a graphical form in Figure A.l. The
relationship between 9T/96 and (T - Ti) was obtained by curve

fitting. A parabola 9T/3@ = Q(T - T,)? fits the experimental

points.
Hence, the heat conduction equation becomes:
3T 32T
— = b = = 2 X
56 5;5 Q(T Ti) (A.1)
Q = 0.0342 if T is in °F and @ is in hours;

Q = 1.71 x 102 4f T is in % and © is in seconds.
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APPENDIX 2

A.2.1 The non-Linear Equations Obtained in Writing the Heat

Conduction Equation (A.l) in Finite Difference Form

2

Q'&Q'Tl, e+he

+ (4 x (1) + Q.he(2 Tl, o4 Ti})Tl, o +ae T

1 _ _ 2
4 Y(1).T = 4 R(1l) Q.&Q(Tl, o 2 Ti) (A.2)

2, e+he

For n= 2 to l0:

2
Q.&Q.Tn' St 4 Z(n - l}.Tn_l' oire T (4 X(n) + Q.06 (2 Tn' e 4 Ti))
- L " 2
Tn, Gitie AT Lo gk T ¢ R Q.46 (Tn,e 2 %)
(a.3)
For n = 11:
2 -
Q'ﬂe'Tll,9+ﬂ9 +'4 Ztlo)’TlO,e+ﬂ9 + (4 X(11) + Q.le, (2 Tll,e 4 Ti))
. i - 2
T11,9+ae = 4 R(11) Q.ﬁe(Tll,a 2 TiJ (A.4)
in which X(n), R(n) n from 1 to 11
and Y(n), Z(n) n from 1 to 10 are defined in Section 3,

pages 30 amd 2l
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A.2.2 Newton's Iterative Method for Solving Non-Linear Simultaneous

Equations

The unknown values in the set of equations A2 to A4 are

T » @+ A8, n = 1 to 11. The equations are represented by the

following:
fltTl, T2) = (0] (A.5)
fz(Tl, T2, TB} - (0] (A.6)
For n = 3 to 10:
fn(Tn _ 1’ Tn‘Tn & l} o (0] (A.7)

fll(TlO' Tll) = 0 (A.B)

and on expanding fn in a Taylor series in terms of an arbifrary
estimate to the desired roots (Tn + ATn) for n = 1 to 11.

Assuming To and Tl does not exist:

2
fn(Tn = X 2 &Tn - l}(Tn i3 ﬁTn)(Tn + 1? ﬁTn + 1) =0
Bfn afn
2 fn(Tn -1 Tn' Tn + 1) 1 ﬁTn - 19T Tn'BT ¢
n-1 n
Bfn
ATn L5 3Tn+1 + higher order terms in AT (2.9)

and assuming the higher order terms in AT to be small, equation A.9

becomes:
3E_ of_ or s L
fn{Tn -1 Tn' Tn + l) # aTn - 19T * ﬂTn'aT i &Tn + 1°93T
n-1 n+l

(A.10)

Hence, equation A.10 for n = 1 to 11, yields eleven simultaneuous
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equations with respect to A’,[‘n. Thus, an iteration pattern can be

set up as shown in the flowchart given in Figure A.2.

( START )

Initial guess for Tn'
@+ A6, n=1, 11

Substitute for T , © +A ©
in Equation A.1l0
for'n=1,; 11

Solve for aTn' n o= 1. 1l
by Gauss-Jordon's method

2 r)? <10

n=1

WRITE T o + Ae

Figure A.2
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Dol Computer Program in Fortran IV for Solving non-Linear

~ Simultaneous Equations

MASTER MPCT
NEWTON RAPHSON ITERATION FOR NON-LINEAR SIMULTANEOUS EQNS
BEMENSTION TOCTTE)Y 2 TNCTTY X 0T 2 Y (10 Z0T0 Y e RETT) o661 T ) v M GHL ) 4
TTRCYT ) G DT CTAY ST DS TN Y D82 C LY, DS E (10D
REAL K1 ,K2,K3,M,N1,N2,N3,N4,L1,L2
READCT +10Y T PCL) ;1= o4 FO L0 ob2 8 s K3, 69,C2,C3,
1RH01,RHO02,RHO3,DT,M,K2,Q,T1,H
A1=K1/(CT1*RHOT)
A2=K2/(C2*RHO2)
A3=K3/(C3*RHO3)
R1=A1*DT/(L1%%£,0)
B2=A2*DT/(Mx%*2,0)
B3=A3*DT/(L2*%x2,0)
N1=K1/C(H*L1)
N2=K2/ (H*M)
N3=N2
N&=K3/(HxL2)
10 FORMATLEF10,0)
X(1)=2,0+2,0%B1
pO3 I=1,2
3 X(I1+1)=X(D)
O X(4)=2.0+2.0%*B1+(2.0%B1/NT)
CX(5)=2.0+2.0%B2+(2.0%B2/N2)
X(6)=2.0+2.G*B2
X(7)=2.042.0*B2+(2.0%xB2/N3)
X(8)=2.042.0%B3+(2.0%B3/N%)
X(9)=2.0+2.0%BS5
X(10)=2.0+2,0%B3
X(11)=2.0+2.0%B3
Y(1)==2,0%B"1
Y(2)==B1
Y(3)==B1
Y(4)==2,0%B1/N1
Y(5)==2.0%B2
Y(6)==-B2 :
Y(7)=-2,.0%B2/N3
Y(8)=-2.0%*B3

Y(9)==B3
Y(10()==R3
2(1)=-8B1
2(2)=-B1

2(3)=-2.0*B1
7C4)==2 0%B2/N2
2(5)=~B2
2(6)=-2.0%B2
Z(7)=~2 . 0%B3/N&
2(8)=~B3
2(9)=-B3
2¢(10)==-2,0%B3
SUM=0.0
1C=0
po21 1=1,11
TOCI)=TP(CI)
TGCI)=TP(I)

21 CONTINUE
pO8 I11=1,80
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RE12=(2.0=2,0%B1)Y*T0(1)42,0«BT1*(T0(2)+(2 ,0*FO*L1/K1))
R(2)=BT*TOMI+(2,0=2,0%B1)*T0(2)+B1+T0(3)
R(3)=BT*T0(2)+(2,0-2,0%B1)*TO(3)+B1*T0(4{)

RCAI=2, 0*xBI1»TO(3)+(2,.0=2,0%B1~(2.0%B1/NI))I*TOCL)+((2,0%B1
1/N1)*7T0(5))
R(E5)=(2.0%B2/NZ2)*TOC4L)+(2.0~2.0%B2=(2,0%«B2/N2))*T0(5)+2. 0%
1B2*70(6)

R(6)=BZ2*TO(5)+(2,.0-2,0%R2)*T0(6)+B2+xT0(7)
RE7I=2,0%B2+T0C6)+(2,.0=2,0%B2~(2,0%B2/N3))*T0(7)+(2. 0%B2/N3
1)*70(8) : :
R(BI=(2,0%B3/N&)*TO(7)+(2,0~-2,0%B3=(2,0%B3/N&))*»TO(8)+2,0%B73
1%T0(9)

R(9)=B3*xT0(8)+(2,0-2 0*B3)*70(2)+B3*xT70(10)
R(C10UI=B3I*T0O(9)+(2.0-2.0«B3)=TO(10)+B3xT0O(11)
R(11)=2,0*B3*T0OC10)+(2.0-2.0%B3)*T0(11)
SCI)=Q*DT*TG(1) % %2+ (4 *X(1)4+Q*DT*(2 . *TC(1) =4 *TI1))*T7G (1)
T44, Y1) *TG(2) =4 *R(1)+Q*DT*(TO(1) =2, % T1)%n?
S(I)=Q*DTHTGCI)I%*2 4 (4, *Z(I=1))%TG(I=1)+C4 %X (I)+Q*DT*
1C2.*TOCI) =4 *T1))*TGCI) 44 . »Y(ID)*TG(I+1) =4 *RCI)+Q*DT*
2CTOCI) =2, *T1)n%2

SC11)=0+DT*TG(I1) *¥*2+ 4, *Z(10)*TGC10)+ (4, *»X(11)+Q0*DT* (2, *TO(1 1

Tob . %xT1))XTG(T11) =4 *R(1T1)+Q*DTH(TN(1Y1) = *T1) *%2
DS1C1)=2 , *Q*DT*TG(1)+4,*X(1)+Q*DT* (2, *TO(1) =4, *T71)
DS2C1)=4,%Y (1)

DS3(1)=4,%Z(1)

D09 1=2,10

DS3(I)=4,*Z2(1)
DSTCI)=2,%Q*DT*TG(I)+4 . *X(I)+Q*DT*(2,*TOC(L) =4, *T1)
DS2CI) =4 ,*Y(]I)

CONTINUE .

DS1(11)=2, *Q*DT*TG(11)+4 *X(11)+Q*DT* (2, *TO(11)=4.*T1)
W{1)=bS1(1)

G(1)==S(1)/Ww(1)

PO16 1=2,11
WCI)=DS1CI)=(DS3(I=1)*(DS2(C1=1)/UW(I=1)))
GCD)=(=S(I)=DS3(I=1)#G(I=1))/UW(])

CONTINUE

DICI1)=G(11)

D017 J=1,10

1=11=J
DICI)=GCI)=C(DS2CI)/WCI))*DIC(I+1))
CONTINUE
WRITE(Z2,22)(DICI),1I=1,11)
FORMAT(4X,6F10,5,/,4X,5F10,5//)
0018 I=1,11

SUM=SUM+DI(])*%2

CONTINUE

IF(SUM=0,0001)¢26,27,27

PO30 I=1,11

TGCIXY=TG(I)+DIC(I1)

SUM=0.0

GOTO 29

D031 1=1,11

TNCI)=TG(I)

D039 1=1,11

TOCI)=TNC(I)

TGCI)=TNC(CI)
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R

CONTINUE

IC=1C+1

IFC(IC~=5)8,97,97

I1C=0

SUM=0.0 _
WRITE(Z2,20)(CTNCI)+1=1,11)
FORMAT(&X:éFTO.B;/:AX:5F10.3)
CONTINUE

STOP

END

FINISH
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APPENDIX 3

3.1 Computer Program in Fortran IV to Evaluate Temperature

Profiles using Gauss Jordon's Technique

MASTER MPCT
IMPLICIT METHOD

DIMENSION TOC11)TNCI1) o XC11)oYC10),Z2C10) ,RCIT)/GCT1),WCTT)

{2 e

REAL K1/K2+/Kk3/M,N1 /N2 N3,N&G,L1,L2

READCT 10D CTpC1) .15

1:11)¢F0rL1fL21K1 k3,C1.€2.C3,

TRHOT +RHOZ2 ,RHO3:,DT M, K2:0,T1

H=30,0

D018 1D=1,10

N=1
A1=K1/(C1%xRHO1)
A2=K2/(C2%«RHO2)
A3=K3/(C3%RHO03)
B1=A1*DT/(L1*%x2,0)
B2=A2*DT/(M*x*2.0)
B3=A3*DT/(L2%%2,0)
N1=K1/ (L)
N2=K2/ (H*M)

N3=N2

NG=K3/(H*L2)
FORMATC(BFT0.0)
DIMH=2.0%H*M/KZ
WRITE(Z2,71)DIMH

FORMATC//6LX,SHDIMH=, F10.4s/ GXr15H %k h kb tetrkerhknsk)

WRITE(Z2,70)

70 FORMATC(///&X,24HTEMPERATURE DISTRIBUTION,S3X,8HDIM, TEMP,6X,
VEHDTMLUTIME /4X s 24H  xhhhkakhkk hhkhhkhkhnhk s SINeAHA N kR * Ak ks 6K/

SBHAk*khw k)
X(1)=2.0+2.0%*8B1
pO03 I1=1,2
XCI+1)=XCI)’

X(h)=2,0+2,0«B1+(2.
X(5)=2,0+2.0%B2+(¢,

X(6)=2.0+42.0xB2
X(7)=2.0+2.0%B2+(2

X(9)=2.042.0%B3
XC10)=2,0+2,.0%B3
X(11)=2,0+2,0%B3
Y(1)=~2,0%81
Y(2)=-81
Y(3)==-81
Y(4)==2.0%B1/N1
Y(S)==2,0%B2
Y(6)=-B¢
Y(7)==2.0%B2/N3
Y(8)=-2.0%B3

Y(9)==B3
Y(10)==-8B3
2¢(1)=-81
2(2)=-B1

2(3)==2,0*81
2(4)==2,0%B2/N2
2(5)==-8B¢
2(6)==2.0*B2

O*xB1/N1)
OxB2/N2)

LO*B2/N3)
X(8)=2,0+2.0*BsS+ (2.

(*B3/N&)
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2(7)==2.0%B3/Né&

2(8)==B3
2(9)=-B3
2(10)==2_0»B3
1C=0

D021 I=1,11

TOCI)=TP(I)

po8 11=1,80
R(1)=(2,.0-2_.0xB1)*TO(1)42,0«B1%(TO(2)+(2.0*FOxL1/K1))
1=Q*DT*(TO(1)=T1) **2
R(2)=B1+T0(1)+(2.0-2,0#B1)*T0(2)+B1*T0(3)
T=Q*DT*(TOCZ)=T1) %2
R(3)=R1#T0(2)+(2.0=2,0*B1)*TO(3)+B1*T0(4)
1=Q*DT*(TO(S5)=T7) **2
R(4)=2.0%B1*TO(3)+(2,0=2,0*B1=(2,0*B1/N1))*TO(4)+((2,0*B1
1/N1)*T0(5))

2=Q*DT*(TO(L) =TT ) w*2
R(5)=(2.0%*B2/N2)*TO(4)+(2.0~2.0%B2=(2,0*B2/N2))*TO(5)+2,0*
182+T0(6) *
R(H)=B2*TO(5)+(2,0=2,0*B2)*TO(6)+B2*T0(7)
R(7)=2.0%#B2*TO0(6)+(2,0-2,0%#B2=(2.0%B2/N3))*TO(7)+(2.0%*B2/N3
1)*T0(8)
R(8)=(2.0%B3/N&)*TO(7)+(2.0=2.0%B3=-(2.0*B3/N4))*TO(B)+2,.0*B3
1*T0(9)
2-Q*DT*(T0(8)=T1)wx2
R(9)=B3+T0(8)+(2,0-2,0%B3)*T70(9)+B3*T0(10)
1=Q*DT*(TO(9)=T1) *%2
R(10)=B3#T0(9)+(2.0-2,.0%B3)*T0(10)+B3*T0(11)
1=Q*DT*(TOC10) =TT ) **?2
R(11)=2.0%B3*T70¢10)+(2.0=2,.0+B3)*T0¢11)
1T=Q*DT*(TO(11)=T1)**x2

WC1)=X(1)

G(1)=RC1)/WC(CT1)

D012 I=2,11

WCI)=XCI)=(ZCI=1)*(Y(I=1)/W(I=1)))
G(I)=(R(I)=2(I=1)*G(I=1))/MW(])

CONTINUE

TNC11)=G(11)

pP013 J=1,10

1=11=J

TNCD)=GCI)=CCYCI)/WCID)IATNCI+1)) s TP

CONTINUE

D014 1=1,11

TOCI)=TNC(I)

1IC=I1C+1 =
DMTP=KI1*(TN(2))/(FO*x2,0%M)
DMTE=.03125#*N*A1/(4 0%xM*22,0)
IFCIC=5)8,16,16 :
1C=0 2
WRITE(C2,20)(CTNCID),I=1,11)DMTP,DMTE

N=N+1

CONTINUE

H=H+15.0

CONTINUE

FORMATCIHO +4Xs6F10.3,/+4Xe5F10.3,22X+F9,3,6X.F9.3/171/)
STOP .

END

FINISH
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A.3.2 Comparison of the Temperature Profiles Obtained by Newton-

Raphson's Method and the Alternative Method

Number of Time Temperature Values Predicted, (Tz,e}
FRCTERentS Newton Raphson's Method Alternative Method
5 94,295 94,296
10 100.733 100,747
15 106.792 106.810
20 112,504 112,532
25 117.852 117.894
30 122.836 122.891
35 127.457 127,526
40 131.724 131.806
45 135.648 135,741
50 139.244 139,347
55 142,529 142,640
60 145.521 145,639
65 148,241 148,364
70 150,708 150.834
75 152.942 153,069
80 154.962 155,090

The 80 time increments correspond to one-half hour.

?_ﬁg: F, = 1520 87U/ h &*®
Te
Phﬂsrc'cm' pnpet’h‘u: see p 3
Dimensias see pp 27 amd 46

87-4 F
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APPENDIX 4

Outline of the Steps Involved in the Data Reduction Procedure:

(1)

(ii)

(iid)

(iv)

(v)

(vi)

(vii)

Read in the initial temperature distribution of the
system the heat flux at x = o, thermophysical and
physical properties of the test specimens and the time

step e,

Read in the measured temperature values at the end of

every three minutes.

Read in initial starting point for the optimization

procedure,

Calculation of the theoretical temperature transients

by' the program.

Calculation of the least squares function - the cbjective

function.
Search for the minimum point.

If minimum point is reached, print out the values hc and

K -
P



- 89 -

APPENDIX 5

Computer Program for Davies, Swann and Campey's Search Technique

MASTER DSMD
DIRECTSEARCH
CONTACT RESISTANCE
DIMENSION T0(11);TN(11)fx(11);Y(10)r2(10),R(11),G(11).w{11)
T+TRCEIA Y EXPTCT0)
REAL K1,K2,K3,M,N1,N2,N3,N&,L1,L2
COMMON TP,FO,LT,L2,M,C1,C2,C3,RH0%,RHO2,RHO3,DT,EXP1,
1K1 ¢ K2:K3,TN,Q:H, T
PEAD(1:90)(TP(I):I=1.11);F0;L1:L2:K1:KS-C1:C2:CS.
TRHOT+RHOZ2,RHO3 DT+ M, K2,Q,T1
90 FORMAT(8F10,0)
READC1,91)CEXPICI),1=1:10).
91 FORMAT(8F10.0)
H=30.0
P=H
pDP=5,0
CALL TCC(FN,P)
UT=FN
pi=p
pp=2,0*rp
P=P+0DP
H=p
CALL TCCFN:p)
U2=FN
p2=p
3 pP=2.0xDP
P=p+DP
H=p
CALL TC{FN,P)
U3=FN
p3=p
IF(U3=U2)4,4,5
4 ui=ue
P1=p2
w2=u3
p2=p3
GOTO3
5 p=p=(DP/2.0)
H=p
CALL TCC(FN,p)
pP4&=p
U&G=FN
IFCU&L~U2)6,6,7
6 Ul=U2
p1=p2
u2=Ub
p2=ph
GGT08
7 U3=U4
p3=p4
8 PQ=p2+((P2-p1)*(UT=U3)/(UT=2,0%U2+U3))*2.0
12 1F(ABS(PQ=P1),.LE.3.000)G0T021
IFCABS(pPQ-P2).LE.S5.000)Cc0OTOC2
JFCABS(pQ=-p3).LE.3.000)G0T023
P=pQ
_H=p et o YELT 2 o AR Cabn
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CALL TCC(FN/P)
UQ=FN
IF(PQ.LT.P2.AND,UQ.LT.VU2)6G0TOY
IF(PQ,LT,P2,AND,UQ,.GT,U2)G0TO13
IF(PQ.GT,P2.AND, UQ,.GT,.U2)GOTO14
PA=P2
UA=UZ2
PB=P3
uB=U3
GOTO11
9 pPA=P1
UA=U1
PB=p2
UuB=UZ2
GOTO011
13 PA=PQ
UA=URQ
pQ=p2
va=u2
PB=P3
uB=Uu3
GOTO011
14 PA=P1
UA=U1
PB=PQ
UB=UQ
pPQ=p2
ve=ue
1 PR=((PA**Z.O-PB**Z.0)*UQ+(PB**2.o-pQ**Z.0)*Uk+(P0**2.0-PA**2.0)
1%UB)/(2.0*((PA=PB)*UQ+*(PB=PQ) *UA+(PQ=PA)*UB))
P=PR
H=P
CALL TCC(FN,P)
UR=FN
p2=pQ
uz2=uQ
p3=pB
u3=us
PQ=pPR
UuQ=UR
P1=PA
Ul=UA
GOT012 R
21 ZF=pi
GOTO024
22 7ZF=p2
GOTO24
23 ZF=P3
24 URITE(2,20)2ZF
20 FORMAT(Z2X.F10.4)
STOP
END
FINISH
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APPENDIX 6

The Properties of the Test Specimens

Manufacturers: Deutsch & Brenner Ltd, Birmingham

(i) The Metal Rods (HE 30 WP Aluminium Alloy)

Composition of the alloy:

Constituents Percentage Nominal
Composition
Aluminium ST
Magnesium 140
Silicon 1.0
Manganese 0.7

Thermophysical properties:

Density: 169.0 1b/ft?
Specific heat: 0.213 BTU/1b °F

Thermal conductivity: 103.0 BTU/hr ft °F

(ii) The Plastic Material

Tyril 767, Styrene acrylonitrile copolymer
Manufacturers: Distrene Ltd, London
Density: 67.5 1b/ft>
Specific heat: 0.330 BTU/1b °F

Thermal conductivity: 0.1042% BTU/ h t+ F

*Estimated from our experimental data.
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