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Thesis Summary

Last year G. Lecorroller proposed a new approach to the problem of staff allocation
in a telephone call centre, based on the work of Prof D. Lowe and Dr 1. Nabney, and
using a multi-skill workforce. He developed a two stage process, in order to compute the
number of agents required to achieve a particular service level. In the first stage, thanks
to a stochastic model of the queues, a minimum number of operators was predicted,
in the next stage those were allocated in the different pools using a minimisation
algorithm. The results were quite encouraging, 25% fewer agents predicted with this
new approach compared to the traditional and current one.

The main purpose of this thesis is to improve this new model.

At first we tested it whilst considering an unlimited pool of people. A tricky problem
to solve was the increase of the predicted number of agents with an increasing number
of pools given a call volume. The empirical method we proposed to deal with this issue
is detailed.

The second part of our project explored the effect of different service time distri-
butions. A new distribution based on mixture models has been developed which fits
much better the service time distribution from any given call centre. In terms of agents
cost less than 2% more were required compared to the new method.

Next the effects of abandoned calls have been taken into account by revisiting
some approximation formulae. However, the predicted increase of agents, necessary to
achieve the same service level as before, remains less than 2% compared to the new
model which added to the previous improvement correspond still to 20% fewer agents
than with the traditional forecast. Our model is also more precise than the Erlang C
model used traditionally.

Ultimately we are able to validate the new model with our improvement using both
simulation program and new data. All the results are presented in careful details.
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Chapter 1

Introduction

1.1 Brief presentation of the problem

The problem on which we have been working is human resource allocation in a call
centre. Last year G. Lecorroller tackled it and proposed two approaches to deal with
it: a people-based approach and a significant improvement of the traditional approach.
The first gave disappointing results and therefore we gave up to lead further investi-
gations. The results obtained with the second were far more interesting. That is the

reason why we have worked exclusively on it in our thesis.

In this model a call centre can be described in term of queues and skill pools, see
Figure (1.1). Arrival calls, whose type is determined from the number dialled, are
routed to different queues in which they will wait until a server qualified to answer
that type of call is free. The waiting time depends on the intensity of the traffic and
on the number of operators qualified to deal with the call. With regard to the agents,
these are gathered in pools of same skills profile i.e with the same abilities to answer
a call. In practice most of them are multi-skilled and thus are able to answer different
types of call.

In this way not only is the waiting time for each call minimised but also fewer peo-
ple are required to provide the same service level, i.e. the percentage of answered calls
within a given delay, compared to a traditional call centre where there are as many

pools as there are queues.



CHAPTER 1. INTRODUCTION
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Figure 1.1: Schematic diagram of an improvement approach. There are Q queues and
P pools in our system. The agents are gathered in the P pools whose agents can answer
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calls coming from different queues if having the good skills profile.

Another quite significant point which is now taken into account, and which wasn’t
in the traditional method, is the quality of the service (see constraints in the next chap-
ter). We can both measure and specify the service level and the quality of how well

the different calls are answered by agents with suitable skills. The number of agents

in the system will increase or decrease if we modify these parameters.

The aim of this thesis is as follows:

1. to lead investigations on the properties of this model;

2. to explore the distributions of the inter-arrival time and the service time;

3. to investigate the effect of people abandoning calls before they are answered.

10



CHAPTER 1. INTRODUCTION
1.2 Data used for the forecasting

To forecast the number of agents in a particular call centre, it is essential to be able to

describe its daily activity.

The data used last year corresponded to several periods, each of them of half an
hour collected during a week. Amongst all the information, two main parameters were

useful:

1. the call volume i.e. the total number of incoming calls per period;
2. the call duration: the average duration of a call which is the average service time.

The drawback with using only these parameters is: these are just mean values and
therefore do not fit perfectly the real outcome, and as strong assumptions had been
made to build the model of forecasting, see Chapter 2 and Chapter 4, the only way to

improve and to validate it was to use other sample data.

That is what we have done using data collected from a single queue call centre
during a week. For each incoming call, the exact arrival time and duration of the
call were known. Thus deriving the inter-arrival time distribution or the service time
distribution was feasible. I thank also Callscan for supplying the data.

At least by combining these two sets of data we could improve the exactness of the

forecasting method to be discussed now.

1.3 A two step process

In this section we shall briefly describe the way the number of people in the system are
forecasted. The computation of the number of agents in the different pools is a two

step process.

Initially we compute the minimum number of people required to achieve a certain
service level, which is the percentage of incoming calls answered within a certain pe-

riod, for example 95% of calls have to be answered within 30 seconds, for each queune

11



CHAPTER 1. INTRODUCTION

and for each period. We use a revised stochastic modelling of the queue and the two
previous files of data to calculate them. Since the main parts of this model have been
laid by G. Lecorroller, we shall briefly present them again in the next chapter to obtain

a better understanding our own new development, described itself in chapter 4.

In the second step we calculate the number of people in the pools, considering dif-
ferent constraints: e.g. that the number of agents in the system should be at least
greater than the one computed in the previous stage or by requiring that the skills of
the agents have to correspond as well as possible to the types of calls they answer. By
being more or less demanding in these requirements the predicted number of operators

rises or decreases.

Mathematically we use the scaled conjugate gradient (scg) algorithm to find the
minimum of this optimisation problem under constraints since convergence is both

quick and reliable.

It is worth noting that in all the investigations we have carried we have assumed
that the pools of people were uncapped: in each pool as many people as necessary

could be used.

1.4 Thesis overview

Chapter 2 summarises the theoretical model proposed by G. Lecorroller. It is all the

more important to introduce it as our work depends on it.

Chapter 3 presents the different experiments we have carried out on the model: we
observe the behaviour of the model by changing the Lagrange multipliers, increasing

the number of pools and the effect of multi-skilling amongst others.

Chapter 4 describes the validation done on the stochastic modelling of the queue

and the mixture model used to fit more accurately the service time.

12



CHAPTER 1. INTRODUCTION

Chapter 5 presents the way that abandoned calls have been taken into account in

our model.

In Chapter 6 we validate our model using other data.

The last chapter, chapter 7 presents the conclusions.

The appendices detail algorithms and methods:

e In appendix A, the computation of the coefficients of the EM algorithm is detailed

for a exponential mixture model.

e In appendix B, we calculate the first and the second order moments of an expo-

nential mixture distribution and some various other elements.

e In appendix C, the code of different algorithms is given with some comments.

13



Chapter 2

Overview of earlier work

2.1 Introduction

To solve the problem faced by the management, namely the allocation in different
pools of agents to achieve a specified service level while still providing a good quality
of service, G. Lecorroller proposed a two step scheduling method. The objective of this

chapter is to describe it.

First we present in a detailed way the stochastic model of the queues used to com-
pute the required total number of agents in the system in order to achieve a particular
service level.

Once this number has been calculated, we have to allocate agents to different pools.
Therefore we define, in the second part, a cost function and some constraints.

The practical resolution is the subject of the third part: we also transform our
problem of minimisation under non-linear constraints to an unconstrained minimisation
problem. The optimum provides a solution to the agent allocation problem.

Finally we present results obtained last year.

14



CHAPTER 2. OVERVIEW OF EARLIER WORK

2.2 Stochastic modelling of the queue

2.2.1 Observations

In the simplified approach proposed by Prof D. Lowe and Dr Ian T. Nabney, calls were
supposed to be uniformly distributed across period (In the method of forecasting we
used to work on data collected during a week divided in periods of half hour. The call
volume, the average number of incoming calls in an half hour period and the mean call
duration were the main parameters). This assumption of course was a bit unrealistic as
there might be busy periods inside a half hour and as well as the service time couldn’t

be constant, some very long calls needing much more time to be answered than others.

For all these reasons, G. Lecorroller used basic elements of queueing theory to take
into account fluctuations in the call density and the random nature of the service time
distribution. His idea was all the more interesting and practical as it was possible to
compute the number of agents to achieve a certain service level thanks to approxima-

tion formula.

General notions about queueing are presented here, for more detail see (Allen, 1978)

or (Kleinrock, 1975).

2.2.2 Describing a queueing system

Practically, incoming calls enter a queueing system. They are dealt by servers, i.e
agents, unless all of them are busy. In this case they have to join the queue and wait

until a server becomes free.

We can characterise such a queueing system by its inter-arrival distribution, its
service time distribution, the number of agents present and the time a call spends in
the system, which is equal to the time spent in the queue and the time spent being

answered.
In the following sections we are going to describe these parameters.

15



CHAPTER 2. OVERVIEW OF EARLIER WORK

It should be noted that a lot of queueing theory considers a single queue and a
single service time distribution. As our model, see Chapter 1, was made up of Q

queues, Lecorroller worked on merging them in one.

2.2.3 Inter-arrival distribution

We assumed that the inter-arrival distribution, for each queue ¢, i.e. the distribution
which represents the time between two arrival calls, was exponentially distributed with
parameter A,. The arrival rate \,, was supposed to be equal to the average number of

incoming calls in an half period: that is to say to N,/(30 x 60).

Moreover we made another assumption: as an agent could in theory answer calls
from any queue it was pertinent to merge the different queues in a single one. The
inter-arrival distribution of this single queue was also exponential with parameter A,

equal to the sum of each queues parameter \,;: A = Zil Ag-

2.2.4 Service time distribution

As far as the service time was concerned we assumed it was exponential for each type
of call with parameter u, = 1/T,, different for each queue, where T}, denoted the mean

duration of a call in a half hour period.

As the @ queues were merged in a single queue, we used, to model the service time,

a @ stage hyper-exponential distribution given by:

Q
A
Tt = Zaqpqe_“'?t with o, = Tq—,
g=1 Zq:l )\‘3"

where o, corresponded to the probability that an agent answered a call of type q.

(2.1)

If it was quite easy to give a sound justification for the exponential nature of inter-
arrival call distribution, it was far more difficult to give a valid reason why the service
time should be exponential. One argument for was that the duration of each answer

should vary a lot amongst the time and therefore that the standard deviation will be

16



CHAPTER 2. OVERVIEW OF EARLIER WORK

very large relative to the mean value: this is one of the characteristics of an hyper-
exponential distribution. Because of this uncertainty, we will investigate this issue in

Chapter 4 using new data.

2.2.5 Required number of servers

Assuming our model, described with Kendall notation, was an M/H,/c model, i.e.
exponential inter-arrival time distribution, a g-stage hyper-exponential service time
distribution and c servers (agents), Lecorroller proved it was quite easy to derive the
number of agents required to achieve a certain service level by combining two approx-

imation formulae: Martin’s estimate and the heavy traffic approximation.

Before describing this calculation we have to introduce some useful notation. The
total time spent in the system by a call, described by the random variable w, is equal
to the time spent in the queue, defined by the random variable d, plus the service time
s, the random variable representing the time to answer the call. To define the service
level we need to introduce too the r** percentile value of d, m4(r), defined by:

P(d < mu(r)) = o=

Heavy traffic approximation

If we suppose that the average utilisation of a server approaches 1 then the heavy
traffic approximation states that the distribution of the queueing time, d, approaches
an exponential distribution. And so to compute the r** percentile value of d, we use

the following formula:

ma(r) = Wy x In (101002 'r)
where W, = E[d] is the average waiting time in the queue. The justification of this
formula and the following one can be found, of course, in G. Lecorroller’s thesis.
In fact, as in practice we specify a certain service level to be achieved, the only

unknown in this formula is Wj.

17



CHAPTER 2. OVERVIEW OF EARLIER WORK

Martin’s estimate

Martin’s estimate has the following form:

C(c,a) x Els] ’ 1+ C?

W, =
¢ c—a 2

where

e s is the random variable describing the service time,

E[s] is the expected service time,

a= A x E[s| and A is the arrival rate,

C(c,a) is the Erlang’s C' function,

(= {%ﬁl the squared coefficient of variation of s.

With this formula we can link the average waiting time in the system W, to the required
number of servers c. And as all the parameters in our model were fixed, the service

time, the arrival rate, also E[s], a, C(c,a) and C? were computable:

o Els] =Y, 5

g=1 p,

o Bl =252, %

¢=1 p3
2 _ Var[s] _ E[s%]
* O3 =FF = 5y — !
e C(c,a), the Erlang’s C function, can be derived thanks to an iterative formula.

More detail about this calculations can be found in appendix C of (Lecoroller, 1997).
Eventually the only unknown was ¢. So the required number of servers ¢ can be defined

as the smallest positive integer so that

C(c,a) x E[s] 1+4C?
ma(T) S

ca+ (2.3)

In practice the computation of c is slightly different: we are going to explain it

thanks to the following example.

18



CHAPTER 2. OVERVIEW OF EARLIER WORK

Example

The service time distribution and the queueing time known, we want to compute the

required number of people so that 90% of the calls are answered within 30 seconds.

That means, as 90 is the percentile value, that 74(90) has to equal to 30 seconds,

in other words that P(d < 30) = 0.90.

By using the heavy traffic approximation we can deduce that 74(90) = W, x l”(%) o

2.3 x Wy and so that W, has to be equal or less that % ~ 13 seconds.
Now using Martin’s estimate, we can derive the required number of servers ¢, which

is the value so that

C(c,a) x E[s] » 1+C?

C((c—1),a) x E[s] " 1+C?
c—a 2

<13
P (e—1)—a 2

2.3 Formalising the optimisation problem

In this section we formalise the problem of allocation of agents in a call centre. In the

following paragraphs we will introduce some mathematical notations.

2.3.1 Variables and mathematical notations

Our system is composed of P pools, in which agents with similar skill profiles are gath-

ered, and @ queues.

Since we aim at computing a required number of agents for each scheduling period
throughout a whole week, we have chosen the connectivities between the channel and
the skills pools as the major unknowns. The variable (c,,) denotes a link between a
pool p and a queue g. The connectivity matrix C is of size (P x Q). In fact there is a

separate copy of C for each scheduling period.
To characterise the workforce we define then another matrix S, (P x Q). Each

element s,, denotes the ability of a person belonging to skills mix pool p to answer a

call from the queue g. The values lie between zero and one. For example, if s, is equal

19



CHAPTER 2. OVERVIEW OF EARLIER WORK

to 1 that means that people in the pool p have a 100% competency to answer arrival

calls from queue gq.

We defined n,, the predicted number of agents required to answer the calls from
queue ¢, by the product of the total number of servers in the system and the active
calls in the queue ¢ divided by the total number of active calls in the system in half

hour period:
NoT,
Eq:l NQTQ

where NN, is the number of incoming calls in queue ¢ during an half hour period, 7}, is

X c

the average call duration in queue gq.

Two remarks can be made:

e the sum 2;1 Cpq can be regarded as the number of agents used to answer calls

from queue gq.

e the sum Zle cpg May be seen as the number of agent in the pool p.

2.3.2 The cost function

The allocation problem is not one of the simple unconstrained optimisation since there
are different aspects we need to take into account.Each of the constraints corresponds
to a specific term in the cost function. To reflect the relative importance of the different

parameters we will use Lagrange multipliers.

Now let us briefly present the different cost terms. There are:

1. a measure of loss in quality:

et i
Ey = 0 Z (Z CpgSpq — ”r.*)
g=1 p=1

2. a term enforcing the sum on each queue to equal the number of calls:

1y )
E] = ‘éz (Zcm —nq)
g=1 Np=1
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3. a term corresponding to the minimisation of the total number of staff in general:

P
Ey = 'Clj Z Z(Cpq)z

q:l p=1

4. a term corresponding to the minimisation of the deviation of the number of staff

from the theoretically required number of agents c:
1 (8. P 2
E; = @ (chpq —c)
q=l p:]
We derive the final cost function as a combination of all previous terms:
Fi (&) ()
((C.pq)) I—)Eg'l'O!El +ﬁE2+§E3

2.3.3 Constraints

Once the cost function is defined, there are still some other constraints, which don’t

correspond to quality measures but to some physical requirement such as:
e all the connectivities should be positive: ¢,, > 0
e no call should be answered by people completely unqualified:

If Sp,;=0 then Cog =10

e the number of agents in the system should be greater than ¢, the minimum

number of agents required to achieve the specified service level:
Q
D >
g=1 p=1

e an optional constraint can be added, if it is necessary, to cap the number of

people in some skill pools:
Q
ZCPQ < A4y
q=1

As this worked successfully last year, we concentrated our investigations on other

aspects of the algorithm, and all experiments were uncapped pools.
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2.4 'Transformation to an unconstrained problem

Minimising a function subject to non linear constraints is much harder than looking for
the solution of an unconstrained problem. That is why we used the penalty function

method to find the optimum for our problem.

2.4.1 Penalty method function and the scg algorithm

In this section we discuss the principle and the way it was implemented.

Consider a function f(z) we want to minimise, subject to constraints
ci(z) =0 or c¢(z) >0 ¢ =1,.,n We can construct a quadratic penalty
function % ¢ ¢’ that we add to the former function in order to obtain a new function

defined by:

e

(S =)

PQ($!§) =f($) +

where ¢ contains only those constraints that are violated at z and § is called the

penalty parameter. The problem becomes unconstrained.

If 2*(6) denotes the unconstrained minimum of Py(z,d), under mild conditions,
lims_,o 2*(8) = z*, where z* is the true minimum with constraints. Consequently, we

have found a way to compute the constrained optimum of f:

a. We minimise Py(z,d) using the scg algorithm for a fixed value of §. According
to the direction in which we move, we will have to add more or less quadratic

terms to the function.
b. We increase the value of §.

c. We go to the step a. until convergence.

The effect of the penalty term is to create a local minimum near to the constrained

minimum of f, for sufficiently large values of . For more details, see (Nabney, 1997).
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2.4.2 Application

Implementing the constraints using the penalty method is quite straightforward. For

example:

e The fact that no connectivity should be negative corresponds to the following

statement

¥ ep<l, then Ep.,=FEu+ §C§¢

e the fact that no call should be answered by completely unqualified people:

If Spg=0 and cpe >0, then FEpey = Eyq+ g—ciq

e the number of agents should be greater than c:

Q@ P

g P 2
If ZZCW<C, then E...= agd+g(zz%q—c)

g=1 p=1 g=1 p=1
Eventually as the solutions i.e. the final value of the ¢,, are real positive numbers,

the number of people in each pool p is the nearest integer rounded up from Zif: y G

2.5 Conclusion

The results computed with such an algorithm are quite good, as shown in Figure (2.1).
The total reduction in the workforce was quite high: 25% fewer agents required in a
week than with the traditional method.

In a practical sense, the convergence was quite quick and straightforward and we

did not need more than 30 minutes to schedule a full week consisting of 120 periods.

Anyway some issues haven’t yet been taken into account as:

1. the validation of the hyper-exponential distribution. In a first place this distri-
bution seems too simple to model the true one and a Gaussian distribution may

fit it much better. We will check this intuition in Chapter 4.

2. the abandoned calls whose integration could lead to an decrease of the number

of staff. Chapter 5 deals with this issue.
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120

number of agenls

(o] 20 40 60 f=1e] 100 120
periods

Figure 2.1: Comparison between the number of agents used in the traditional model
(the dotted line) and the one used in the stochastic model of the queues (solid line).

But before tackling those problems, investigating the behaviour of the scheduling

program seems suitable.
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Chapter 3

Investigating algorithm properties

3.1 Introduction

3.1.1 Presentation of the issue

In this chapter we discuss the experience we gained in testing the different programs

written last year and exploring the effects of parameter variations on the optimisation.

First we ran the simulation algorithm and laid out some results in detail. Then for
the scheduling algorithm, we have tested different values for the Lagrange multipliers.
Next we have generated new data by scaling up the existing ones and observing the
effect of increasing the call volume, the mean call duration, and the number of pools
on the predicted number of agents in our model.

Third as we have noticed that the number of agents increases with the number of pools
we have tried to cap it.

Finally we have tested the effect of the multi-skilling.

In the last section we have set out another approach to solving our optimisation prob-

lem.

3.1.2 Fixed parameters

To keep the problem realistic and to be able to make good comparisons with Lecor-

roller’s results we have decided:
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e not to cap the number of agents in each pool i.e. to work with unlimited pool of

people in each skills mix.

e to utilise the “usual” skills matrix (generated by Callscan) most of the time (see

Table 3.1)

Skills Mix Matrix (unscaled)

Queues | 1 2 3 |4dl 5 6

Pool 1 || 35]100|100| 74| 0 0

Pool2 |[36| 0O 0 0 | 100 | 44
Pool3 |60 O | 60 | O | O 0
Pool4 (80| O | 51 |30 |100| O
Pool5 |23 ]| 0 |100|20| 77 | 100
Pool6 60| O [ 60 | O | O 0

Pool7 || 0 [100| O [37| O 0
Pool8 |27 58 | 0 | 0 | 69 | 100
Pool9 || 0 |100| 74 | 0 | 59 | O
Pool10 || 22| O | 42 [80 ] 51 | O
Pool11 || 0 | O | 69 |50]| 0 0

Table 3.1: The eleven skills mixes.

3.2 New simulations

A simulation algorithm was developed last year to model the activity of a call centre.
With the predicted number of agents computed in the minimisation algorithm, we try
to estimate the service level or the over-waiting time through a week composed of 120
periods of half hour. The over-waiting time can be defined as the percentage of calls
which experience a delay superior to this specified by the service level. Because we
are going to use it later, we need to define also the quality of service provided to the
customers: it is the average competence with which calls have been dealt. A value of

1 will signify that all calls have been answered by fully competent people.
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More explanations about this algorithm can be found in G. Lecorroller Thesis.

Our system was composed of 6 queues and 4 pools corresponding to the first four
pools of the Table 3.1.

By running the simulation again but with different random files, we didn’t find
exactly the same results as Lecorroller even using the same data set. However to be
able to make relevant comparisons, in the following chapters of our thesis, we are going

to present our results.

We used both the agent data file, coming from optimisation procedure and com-
puted so that 95% of calls could be answered within 30 seconds and 38 different random
data files, which are using to simulate incoming calls. All the results are a bit worse
than those predicted last year. Nevertheless they still remain quite acceptable. With
regards to the service level: on average 4.40% of calls are answered after 30 seconds, as
shown on Figure 3.1; it is a bit less than twice as much as 2.75% predicted last year.
On average now, the service level is not reached in more than 38 half periods amongst
the 120 periods as shown on Figure 3.2. However the fact that for some simulations
in more than 80 periods also in two thirds of the whole periods the service level is

insufficient could seem very worrying but we should bear in mind several things:

e What really matters is the computation of the service level for the whole week
and not for every period. Let us consider the following example in order to have
a better understanding. Indeed if during 60 periods just two calls are answered
after 30 seconds, and if during 30 other periods on average 6 calls are not answered
with an acceptable delay, in the first case the number of over waiting period will
be much higher than if the second case. But for the managing staff in the second
case 180 customers could be considered as dissatisfied compared to the 120 angry

clients of the first case and that is the most important thing.

e A last remark can be added: the 80 periods in which the service level is not

satisfied, only correspond to 11% of the calls.

In order to explain the bad simulations and the big standard deviation between the

data it would be interesting to calculate the real duration of the calls which experiences
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delays greater than the acceptable one.

Until now we have focused on the bad cases, but it worth noting that in more than

2/3 of the simulations the average service level is respected.

As expected the quality of service, in Figure 3.3, is not as high as computed last
year, but the average skill of an agent answering a call is still equal to 76.6%. The
good point is that it remains near constant through the simulation, the fluctuations

never exceeding 5%.

In conclusion even though the results obtained by running several simulations were
sometimes quite disappointing we are going to use them as a standard in order to

compare the validity of further improved models in the next sections.

0.12 T T T T T T T
]

0.08 - =

0.06 - -4

average overwaiting time

0.04 - Bim =

0.02 - =

(L PRl mladEEAR

(6] 5 10 15 20 25 30 35 40
number of simulations .

Figure 3.1: Histogram of the average percentage of calls, which experience a delay
greater than 30 seconds before being answered throughout a whole week. Each interval
corresponds to a simulation. The dotted line represents the mean of the data, where
the dotted-dashed symbolises the 5% bar.
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Figure 3.2: Histogram of the number of periods per week in which the service level is
not reached. Each interval corresponds to a simulation. The mean number of periods
is represented by the dotted line.
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Figure 3.3: Service quality provided against experiments
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3.3 Testing different values for the Lagrange mul-
tipliers
Recall that the cost function can be written as:
E=Ey+BE +v Ey+6 E; (3.1)

where 3, 7, § are Lagrange multipliers.
Considering 4 pools and 6 queues we varied the coefficients amongst 3 values {0.1;1;10}

and noticed that:

- the quality ratio doesn’t change significantly, only 1.3%. To be precise it fluctu-
ates in the interval [0.6157;0.6243] (1 indicating perfect quality).

- the number of required agents fluctuates less than 4%.

Since these changes do not affect the results significantly, and as modifying the value
of these coefficients will change the relative weight of the parameters which make up
our problem and also the meaning of the problem itself, we have kept the coefficients

chosen last year: § = 10,y = 1, § = 1 (see Lecorroller Appendix D p 114).

3.4 Increasing the traffic charge

Last year, some experiments were carried out with a fixed number of pools:
e increasing the call volume;
e increasing the average call duration;
e increasing the call volume and the average call duration.

The reduction in the number of agents computed with the stochastic model com-
pared to the Erlang C model decreased as a percentage, whereas it increased in term

of agents.

We decided to investigate in more detail. First we have increased the initial call

volume by 2, 5 then the mean call duration by 2, 5 and then both by 2, 5. In each
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case, we have raised the number of pools from 4 to 11. But unfortunately no linear
relationship appeared.
We have also carried out the same experiments but for a given number of pools, 6,

by changing the coefficients of the skills matrix: the results remained disappointing.

3.5 Increasing the number of pools

Even if the experiments on the traffic charge didn’t give convincing results, we noticed
that the number of agents increases with the number of pools. Therefore we have
decided to work out this problem. For practical reasons and to be quite realistic we

have considered an increase from 4 to 11 pools with all other factors held constant.

400 more people were predicted with 11 pools than with 4 pools with a given call

volume and a given mean call duration as we can see from Figure 3.4.

7800 - _
7400 : ____________________________________ :
7200 d
7000 - -

§ 8800 -

B sso00 - d
8400 _
6200 |~ -

o] B el v 3 e T o

<ol A D S -

e
5600 i~ —
s i s 1

MNumber of pools

Figure 3.4: Evolution of the number of agents used in the traditional Erlang C model
(dashed line) and the number of agents used in our approach (stars) with the increase
of pools.

With regard to the quality ratio, as shown in Figure 3.5, after a gain of 10% with 5
pools, we denote a stabilisation. We conclude that in this case increasing the number

of pools used more staff without any increase in quality of service.
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Figure 3.5: Evolution of the quality service with the increase of the number

pools

3.5.1 A rounding problem

The explanation of this problem is quite simple: it is a rounding problem.

L
10

oF

s L
7 a8
Number of pools

We have already explained the two steps of the algorithm:

11

of the

1. First we compute the minimum number of agents required in each queue for each

period in order to achieve a satisfactory service level. In fact as the different

queues are merged into one, thanks to the approximation formulae, we derive an

integer number for each period which is completely independent of the number

of pools.

2. In the second stage by using the scg algorithm we share this number between the

different pools and for each period. In most cases real numbers are obtained for

the coefficients ¢,, and rounded up to the nearest greater integer.

Consider an example taken from the results above.

Let us consider two cases: in the first case there are 4 pools in the system, and in the

second 11. Now if we suppose that the minimum number of agents required to achieve

the correct service level is 8 for one period, we have to share them in the different

pools, using the scg method. In the first case after rounding, 10 people will be neces-

sary, whereas for 11 pools 13 agents will be predicted, as shown in Table 3.2 and in
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Table 3.3. Thus just for one period and for the same call volume, 3 more people will

be required with 11 pools than with 4 pools.

The way to solve this issue poses a difficult problem for us. Finally after many
unsuccessful attempts which we will explain later, we managed to find an empirical
solution which nevertheless gives quite good results. It is the subject of the next

section.

3.5.2 Solution to the rounding problem

In the following we will always use two kinds of rounding: the rounding up towards
the nearest greater integer (for example 1.4 will be rounded to 2), and the rounding

towards the nearest integer (still for the same example, 1.4 will be rounded to 1).

In the optimisation algorithm so far all numbers were rounded toward the greater
integer. So the main issue is now not to round all the numbers to the nearest integers
towards infinity but only a few and therefore to round the others towards the nearest

integers whilst preserving the quality factor.

Let us explain the principle of our solution. We run the optimisation algorithm
twice. The first time, we compute the agents required for a determined number of
pools, we will consider as a reference, (in our example the standard will be 4 pools).
And we store them without any rounding in a first matrix. Then we repeat the oper-
ation, for the desired number of pools (still in our example those were the 11 pools)
and store them in a second matrix without carrying out any rounding. At this stage

in our algorithm there are no rounding errors.

Then for each period we round the numbers of the second matrix, whose quality
factors are the greatest- see Lecorroller scheduling algorithm code- toward the nearest
greater integers and the other numbers simply toward the nearest integers. In this way

we manage to keep a good quality factor.
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True numbers | Rounding numbers
Pool 1 2.33 3
Pool 2 3.33 4
Pool 3 1.34 2
Pool 4 1 1
Total 8 10

Table 3.2: Results with 4 pools before rounding (true numbers) and after rounding
(rounding numbers)

True numbers | Rounding numbers

Pool 1 0.6 1
Pool 2 1.4 2
Pool 3 1.2 2
Pool 4 0.2 1
Pool 5 0.6 1
Pool 6 0.6 1
Pool 7 0 0
Pool 8 0 0
Pool 9 0.4 1
Pool 10 1.5 2
Pool 11 1.5 2
Total 8 13

Table 3.3: Results with 11 pools before rounding (true numbers) and after rounding
(rounding numbers).
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Practically, the way to handle each period can be described:

e we classify the real numbers of the second matrix, each corresponding to one

pool, in ascending order according to the value of their quality factor.

e we round the numbers (real) of the second matrix, the ones after the others,
toward the nearest greater integers, and we stop roughly when the sum, of all the
numbers is superior to the sum, rounded to the nearest integer, of the numbers

belonging to the first matrix of reference.

o if there are numbers of the second matrix left which haven’t been rounded towards
the nearest greater integer, we round them, but towards the nearest integer this

time.

Thus we manage to cap the number of people in each period even with lots of pools.

3.5.3 Results and validation

The results are depicted in Table 3.4. We have represented the number of people
required according to the new method against the one computed with the former al-
gorithm. With this new approach and throughout a week only 32 more people are
predicted with 11 pools than with 4 pools. The capping is also quite good because 400

more people were necessary with 11 pools than with 4 pools before.

To validate more carefully our new approach we have run the algorithm that simu-
lates the activity of a call centre for a whole week. These results are the average of 10

representative simulations each run with a different random seed.

These results are quite good, see in Table 3.5. We noticed that there is a gap, both
for the over waiting time and the quality ratio between the 4 pools system and the
other systems component of more pools. We can easily explain this phenomenon by
the presence of both more agents and agents 100% competent to deal with calls coming
from the queue 6, as shown on Table 3.1.

In a nutshell we won’t draw any sort of general conclusion between the pools them-

selves in particular, because it is a question of skills competencies. So we will content
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Staffs with the new method | Staffs with the old method
4 pools 5670 5670
5 pools 5671 5716
6 pools 5680 5770
7 pools 5698 5822
8 pools 5699 5870
9 pools 5708 5916
10 pools 5714 5974
11 pools 5704 6044

Table 3.4: Predicted number of people with the new and the old approach for 4 until
11 pools

Over waiting time | Quality ratio
4 pools 4.6 76.4
5 pools 3.4 83.9
6 pools 3.8 83.0
7 pools 3.7 82.6
8 pools 3.0 82.1
9 pools 3.0 81.8
10 pools 3.1 82.5
11 pools 3.4 81.8

Table 3.5: Average over waiting time, i.e the percentage of the calls which experiment
a delay superior to this specified by the service level and average quality ratio for
different number of pools.
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with noticing that the service level is satisfied in all the cases, and that the quality

ratio slightly improves with the increase of the number of pools.

Some remarks need to made. First, even if the capping seems quite good, other
experiments should be carried out with different skills matrices to really ensure that
the method works in every case. Second we can’t assert that our solution is completely
rigorous because we need in the first stage to compute the workforce required for a
determined number of pools, which will use as a reference later. Shall you take 3, 4 or

5 pools in the first step as reference pool?

3.5.4 Other approaches which do not work

To resolve the problem, the first idea we tried, was to integrate a new constraint in the

optimisation algorithm under the form of a penalty term:

Q Q Q 2
4]
If § :CPQ ¢ Na then Enew = Lold + 5 (§ :Cpq = |:§ :CPQ:’)
q=1 g=1 g=1i

where [x] is the integer part of x.

But unfortunately despite the running of hundred simulations, we got no convincing
results. Even by using different penalty functions, let them move, by combining in
the algorithm both new and older constraints and using several loops, no significant
decrease occurs.

Eventually we had to give up and lost a lot of time, because each simulation was

very costly in terms of time.

3.6 Testing the effect of multi-skili pools

We have carried out experiments to investigate the behaviour of the multi-skilling,
i.e. when each pool could answer several queues. We wanted to confirm the results
obtained last year by Lecorroller. He noticed, by using a modified skills matrix (see
(Lecoroller, 1997), p83) that is to say, when each incoming call could be allocated at

least to two pools of agents, that the fraction of over waiting calls decreases compared
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to the ones computed with the usual skills matrix see in Table 3.1. By considering 6
pools and 6 queues, we ran the “simulation” program 6 times, when each pool could
answer from 1 to 6 queues: in the first simulation we considered that each pool had the
full competency to answer 1 queue, then in the second simulation that each pool could
answer two queues, one with a full competency and the other one with half competency

et cetera.

We noticed that both the quality ratio and the over waiting time decreased with the
multi-skilling. Unfortunately in spite of those observations nothing could be derived,
because other simulations with different random seed and a different number of pools
gave contradictory results. The dependency of the data skills on the fluctuation of the
service level and of the quality ratio seemed obvious. Therefore no conclusion as for
the best number of queues that a pool has to answer can be drawn. All the more it
depends on the importance we give either on the quality ratio or to the over waiting
time. We can just confirm that it seems preferable that a queue can be answered at

least by two pools.

3.7 A quadratic programming problem

In the previous chapter, we showed how to solve the problem of human allocation re-

source by using the scg algorithm and the penalty method.

As the cost function contains quadratic terms and as all constraints except one are
linear, we have investigated whether we could transform the problem into a quadratic
programming problem, with just linear constraints. That is to say to be able to rewrite

the problem in the following form:
Min 3 z*Hz + ¢’z

under constraints Az <b

where x, b are vectors and H, A are matrices.
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The function to minimise modulo a multiplier factor 1/Q), see section (2.3.3), can

be defined by:

fo @) — (®Y)

1 8 (F 2 Q [ P < Q P
(¢pq) '_> (ZCPQ Pq nq) "'52(2%@_”&?) +VZZC§4

g=1 p=1

i (55 )

=1 p=1

It can easily be rewritten, modulo a multiplier factor, within the required form:

Q P
chgq +ﬁ+'}’+5 +2ZZCPQ (Zcp’ (Sp’qqu+«3)+zchq)

=1 p=1 g=1 p=1 p'#p a'#qp'#p .
%xTHz
R P
222 Cpq (—SpgNpg — Bg — (Zn (1+8) +§c)
_ 9=1 p=1 il P
c:; ;;;cmt

We can also make two remarks. First we can identify the c,, variables with the z
variables in the previous equation. Secondly, as a constant doesn’t change anything in

a minimisation problem, this equation has the correct form.

With regard to the constraints, all are linear except one:

e the fact that all connectivity should be positive:
>0 V(p,qell,.., Bl [1,..,Q]

e the fact that the number of agents in the system should be greater than c:

P

Q
> > ez

e even the optional constraint to cap, if necessary, the number of people in some

skills mixes is linear: -

Zcpq <4,

q=1
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The non linear constraint is that no call should be answered by people completely
unqualified, z.e. if S, =0 then ¢, =0, can be suppressed by removing the vari-

ables ¢,, whose associated S,, are zero.

In this way we can transform the problem into a quadratic programming problem
with linear constraints. We have not implemented it in this fashion because quadratic
programming algorithms are complex, and using a general purpose optimisation algo-

rithm (scg) with the penalty function method was adequate for all our experiments.
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Chapter 4

Refinement of the stochastic model

4.1 Introduction

In Chapter 2 we have presented briefly the stochastic model of the queues. Strong as-
sumptions have been made that we are going to test thanks to the availability of much
more detailed data. Firstly we will be interested in the inter-arrival time distribution

and secondly in the service time distribution.

Although the data provided by Callscan is from a single queue and comes from a dif-
ferent centre than the one used last year, we can perform some relevant investigations.
Indeed the above-mentioned distributions have general characteristics independent of
the call centre, that we can show by exploiting several types of information for each

call:

e the nature of the call, either normal calls or calls abandoned in the ring or in the

queue;
e the time the call occurred;
e the time the call waited before being answered or the caller abandoned;
e the call duration for answered calls;

e the group which was intended to service the call, -1 indicates the group was

unknown.
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From this information, we have computed the time between each arrival i.e. the
inter-arrival time, and the service time. An anomaly was detected. Too many service
times equalled zero, at least one third of all the data. So we have recomputed a realistic
number of zeros by using the mean of the data. In fact this computation seems all the
more justified since the presence of excessive zeros can only be considered as some
'noise’ or-error in recording the data. Moreover answered call whose duration is null,

requires no agents and can also be partially removed from the sample data.

4.2 The inter-arrival distribution

4.2.1 Review

Last year, we assumed that there were several queues indexed by ¢, each one described
by the arrival rate A\,. We also decided to model the arrivals of the calls from the
different queues as a single Poisson process whose arrival rate parameter A was equal
to A= E;‘il A, and for obvious reasons we also modelled the inter-arrival time of calls

as an exponential distribution.

Thanks to the new data we are going now to investigate the inter-arrival service

time distribution.

4.2.2 Results

As expected, an exponential distribution with mean computed from data is an excellent
fit, as shown by Figure (4.1). Hence there is no need to change our model for the inter-

arrival distribution.

4.3 The service time distribution

4.3.1 Review

In our model the service time distribution for each call was exponentially distributed

with different parameters for each queue ¢:
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Figure 4.1: Real inter-arrival time distribution (solid line) against exponential distri-
bution (dotted line) with mean computed from the data.

- the service rate i,
- and the probability an agent answers a call of type ¢, o, = 273’177
q=1"9
We also assumed that all the queues could be merged in one, using a Q-stage
hyper-exponential distribution, the density function of this hyper-exponential service

time distribution being equal to

Q
fs(t) = Z Qqhge " with oy = :

—u (4.1)
g=1 Z{?:l /\Q‘

4.3.2 First results

If we were quite confident with regard to the inter-arrival time distribution, there was
less reason to expect from the first principles that the service times should have an ex-
ponential distribution. Therefore we investigated other parametric distributions such

as the Gamma distribution, Erlang-k distribution, and Gaussian distribution to see if
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they were more appropriate to fit the service time. Their analytical definition is given

in Appendix B.3.4.

But manifestly, see Figure 4.2, if it is not really an exponential distribution, (see
Figure 4.3(a)), it is less likely to be these others, as shown in Figures 4.3(b), 4.3(c) and
4.3(d).

0.08
0.07 |+
0.06
0.05 ff
Zo.04}
0.03
0.02

0.01

Lo, o N S S |

A1
0 50 100 150 200 250 300 350 400
s

Figure 4.2: Service time distribution.

As the sample data of the service time distribution has a large standard deviation
relative to the mean value, standard/mean = 6.5 the hyper-exponential distribution
seemed the most likely near to the service time distribution. Therefore we decided to

try to fit this by a mixture of exponentials.

Thus in the next section we will introduce the theory of the mixture model and
describe how those parameters can be estimated by the EM algorithm in the case of a
mixture of exponential distributions. In the following section after we will present the
new model we had to create to take the new service time distribution into consideration

in the optimisation procedure and the results which ensue.
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Figure 4.3: Parametric fits to the service time distribution.
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4.3.3 Mixture models and EM algorithm

Mixture models

A mixture model represents, see (Bishop, 1995), an underlying density function as a
combination of M simpler density functions:

M

p(x) =Y P(5)p(x]5) (4.2)

=1
where the P(j)’s are the mizing coefficients or priors, which satisfiy the following

constraints:
0<P(@y)<1

EﬁlP(J) =1

(4.3)

and where p(x|j) is the probability that the random value x is generated by the com-

ponent j. This is also normalised: [ p(x|j)dx=1 Vj,j=1,...,M.

In our case, to model the service time distribution by a mixture of exponentials we
choose the density functions p(x|j) so that p(x|j) = A;.e”*, \; is the inverse of the

mean of the component j.

Then fitting the model to data is a question of estimating the unknown parameters
i.e. {P(j),A;, 3 =1,...,M}. We can do this using the Expectation-Maximisation

algorithm.

Expectation-Maximisation algorithm

The EM algorithm, see (Bishop, 1995), is an iterative algorithm used to determine the

parameters of a mixture model.

Consider a data set of N values (zy,Z,...,zx). We want to find the mixture
model, see equation (4.2), which describes the distribution of this data set. To de-
termine the parameters of this exponential mixture model, making the usual i.i.d.

assumption, we can maximise the likelihood defined by: £ = ]_[::1 p(zn). In fact it is
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equivalent to minimising the negative likelihood:
M

E=-InL=- Zln{ZP p(xnl7) } (4.4)
To simplify the notation, we let 8 = {8;, j=1,..., M} ={P(j),), 1=1,... ,M}
Principle

We have talked about an iterative algorithm: during the optimisation procedure,
we shall adapt the parameters in order to increase the likelihood £. So we define
the current value of the parameter vector 6, to be #°¢ and its new value 6" after
modification.

We have therefore to minimise a new quantity:

ER(RY) = — Z Z P(j|zn, 03)In{ P(znlj, 07<") P"*" ()} (4.5)
1 j=1

The justification of this new formula is given in Appendix A.

As for the principle of the EM algorithm, it alternates two steps: the E-step and

the M-step (We will later discuss its initialisation).

The E-Step or “expectation” step computes the expected complete-data
log-likelihood £°™ (#™*) with respect to the posterior probabilities P(j|x,) for every
data point x,, and every component j, using the current, fixed, values of the parameters
A?id, Pol(5):

p(%n] /\au) Pold(4)
Y =1 P(Xn| AStd) Potd(j)

P(jlxn) = (4.6)

The M-Step or “maximisation” step determines new, re-estimated, values of
the parameters 8" by maximising the value of £ (™¢*) computed in the E-step.

In the case of an exponential mixture model the updating relations are:

/\new = Zn—"l ‘P(JI Ixﬂs SOM)
! En 1 P(z,|j, gnew)xn

(4.7)
ﬂ.ew — old
P NEP (la, 63') (4.8)
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Proofs and details can be found in Appendix A.

Then we repeat the E-step and the M-step until our algorithm converges. It is
worth noting that both steps guarantee the increase of the likelihood, i.e. the decrease
of the negative log-likelihood unless it is already at the maximum. We can use it with
confidence although sometimes we find sub-optimal local maxima or degenerate cases

(when the variance of a component shrinks to zero).

Initialisation

The optimum parameters depend on the starting points of the equations (4.7) and
(4.8). As we haven’t any information a priori, we initialise the priors P(j) to < for all

J, and choose randomly the ); in the interval [0,1].

4.3.4 Data’s problem

The practical implementation of this algorithm is quite easy and after a period of tests
ensuring our model was working with basic examples, we have tried to compute the
priors and the lambda parameters from our sample of data. But it didn’t work at all.
After a few steps at least one lambda parameter tended to infinity. This was due to
the presence of too many zeros, one third of all the data values, among the data of
the service time distribution. After discussion with CallScan we decided that most of

these zeros were erroreously recorded.

To resolve this issue we computed a more realistic number of zeros by assuming that
the service time distribution followed an exponential distribution with parameter the
inverse of the mean of the data i.e. fitted an exponential to calculate an approximate

frequency of zeros.
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In practice we just had to solve the following equation:
number of calls whose duration equals to zeros

Pll< X <1)=
@=Ax ) total number of calls
1

7%

ie. / Ae Mt = —2
0 ng + ny

_(ng#4ny)

1.€. l1—e e fo

Mg + My

The definitions are listed below:

e X, X, are the random variables corresponding to the service time duration

ng the number of calls whose service time is equals to 0

n, the number of calls whose service time is >1

A the parameter of the service time distribution is equal to the inverse of the

mean m, defined by : 3. X;/(no + ny)

And as result the predicted number of zeros is now 132 compared to 8300 from the
original data. In the same time, we removed data with a very large service time, that
is to say, calls lasting more than 2 hours: they are very few (0.17% of the total sample)

indeed and are erroreous records.

An interesting point to investigate now is the consistency of the data: it is all the
more important to check that the mean and the variance of the data are stable as lots
of theorems in the queueing theory rely on them.

Thus we have computed, see Figures 4.4(a) and 4.4(b), the error bar of 10%, 20%,...,
90% our sample. The results, in each case, are the average of 1000 samples randomly
chosen among the whole data and with the required proportion. It is obviously that
the average values of the mean and the variance for each sub-sample fit very well the
mean and the variance of the whole data. Therefore we can conclude that our sample

1S consistent.

4.3.5 Results

We computed the coefficients of the mixture model for the new data. We also had to

determine the complexity of the model, i.e. the number of mixture components.
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Figure 4.4: Representation of the data error bars for the mean a), for the variance b).
Each error bar has been computed with 1000 sub-samples. The solid line joints the
average of the value which range over the error bars.

Choice of the number of components M

To choose the required number of mixture components, see equation (4.2), we computed
the error per point for different numbers of parameters: this is simply the negative log-
likelihood per data, see Figure (4.5).

The kink in the graph at 3 components indicates that this is a reasonable choice, in

that adding more components does not significantly affect the data likelihood.

Fit the service time distribution

The fit of the service time distribution with a mixture model of three exponentials
is shown in Figure (4.6(a)). There is no doubt that it fits much better the real ser-
vice time data, particularly at small values, than a single exponential as shown as in

Figure (4.6(b)).
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Figure 4.5: Number of components vs Log-likelihood per point

4.4 New queueing model

4.4.1 New service time distribution

In this section we shall integrate the new service time distribution in our stochastic
model of the queues. In the last paragraph we showed with new data from a single
queue, that the service time distribution could be approximated well by a mixture of
exponentials.

Since there are several queues, we have to make an assumption: we suppose that
each queue has a service time distribution whose density function follows the mixture

density of exponentials we have computed earlier, but with suitable scaling.

Let us explain in more detail what it means. We have just seen that the density
function of a mixture model of exponentials was given by:

M

f&) = P(j)ije (4.9)

j=1
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and so we can derive the mean of this distribution, m:

m = E[X] = Zi@ (4.10)

=1 Hi

We now substitute, for each queue g, the former service rate p, (= 7-), equal to
q
the inverse of the mean duration of a call in a period, see review and equation (4.1),

by a M-vector (pg1, ... , Henr) Where the jth element y,; is equal to:

SISk s
Hoj =0q i = 7 (4.11)
q

Thus we can derive a new service time distribution with mixture model for our Q

queues system. The density function is then equal to:

Q M
0 =Y eq (D0 PU)isee™) (4.12)
g=1 J=1

Ag
Zq:l ’\l]' :
This shows an advantage of using a mixture of exponentials, as the density function

with Qy =

is still hyper-exponential. Let us come back to the formula (4.11). Previously we only
had the mean of the service time distribution 7, for each half hour period and each

queue g. Now thanks to the new data, we have represented the service time distribution

amongst a week, and the mean m = - ﬂll in case of a single queue. We want to
g J_l “J g

scale the mean of the mixture of exponentials so that the mean of the mixture model
is the same as p,. Thus if we suppose that the service time for each period and for
each queue has the same distribution that for a week modulo a multiplier coefficient

aq, we can deduce that

e in terms of mean:
m ’ m
To=— i.e Qg = —
q €. q
Qg 7,

e in terms of service rate :

aq (fl1, ..., finr) (instead of p4) is the new service rate for each queue ¢
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It is worth noting that the mean duration of calls for each queue in our previous
model did not vary too much throughout the week as we can see on Figure 4.6. The

periods in which the mean duration is zero, have no worth because there are then no

calls.
Queue 1 Tm = 90.97 Queue 2 Tm = 45.24 Queue 3 Tm = 62.62
140 70 100
120 60
80
100 50
5 80 5 a0 5.5
s = s
3 60¢ | 30 | 40
40 20
20
20 10
0 0 - 0
0 50 100 0 50 100 0 50 100
periods periods periods
Queue 4 Tm = 98.19 Queue 5 Tm = 76.84 Queue 6 Tm = 119.89
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= [ =] [ =4
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Figure 4.6: Mean duration of a call in the six queues during a week.

Having found a better model for our system, we are going to derive the number of

servers required to achieve a given service level. This is done in the next section.

4.4.2 The minimum number of servers required

As we recalled in Chapter 2, to compute the required number of agents in the system
we applied two approximation formulae available for M /G /c model, i.e. for a random

Poisson arrival pattern and a random general service time distribution and ¢ servers.

As the inter-arrival distribution is still exponential, that is to say the arrival pattern
i1s still a Poisson process and even if the service time distribution has changed, we can

use those previous formulae.
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In fact the service time distribution appeared only in Martin’s estimate:

C(c,a) x E[s] 55 " C?

c—a 2

Wy =

where

e 5 is the random variable describing the service time

E[s] is the expected service time

a= A x E[s] and ) is the arrival rate

C(c,a) is the Erlang’s C function

O s ‘;—“[;]Lil is called the squared coefficient of variation of s

As we know the mixture hyper-exponential service time distribution, see equa-

tion (4.12), the different parts can be computed:
o Els] =39 0, T,
g=1""49 —1q

e E[s’] = 22?:1 an"??i (Z_:il Pj))

L]

Var|s E[s?
* Ci =g = 2 -

e C(c,a), the Erlang’s C function, can be derived thanks to an iterative formula

For more details see appendix B. Thus we can compute the minimum number of
servers in the system for each half hour ¢.e. the minimum number of servers to achieve

a specified service level, and the remainder of the procedure is as before.

4.4.3 Results

As expected, the minimum number of people, corresponding to the first step our process
see paragraph 1.3, computed with the new service time distribution increases compared
to the one computed with the old stochastic model of the queue. But it’s a very small
increase: less than 1.6%.

And if we also run the algorithm to compute the number of people we have to share

between the different pools, the increase is still smaller : less than 1.5% compared to
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the old one. In Figure (4.7), we can barely see the difference, so we have represented

it in Figure (4.8).
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Figure 4.7: Comparison between the number of agents required with the stochastic
model(solid line) and with the new model (stars).
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Figure 4.8: Difference between the number of agents required with the new model and
the old stochastic model through periods.
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The topic of the next section is to validate our model using the simulation program.

4.4.4 Validation

The improvement carried out in the stochastic model accompanied by an increase of the
predicted number of agents in the system. Normally it should lead to an improvement
of the service level. One of the way to check this assumption is to run the simulation
program.

It is actually the case, as shown in Figure 4.9, now, only 3.58% of calls are not
answered within 30 seconds, compared to the 4.42% with the previous stochastic model.
The most appreciable difference takes place in the simulations which gave very bad
service level: the decrease of the overwaiting time is significant between 1.5% and
2%. It is worth noting that the service time is reached now in 71% of the simulations
against 61% before. With regards to the average number of periods in which some calls
experience an unwished delay, we observe a more significant drop in Figure 4.10(a):
from 38 periods to 30 periods. That may confirm the assumptions that in lots of
periods there are just a few number of calls which are waiting for a too long a time.
And the presence of one, two or three people more, see Figure 4.8, is enough to cope
with this.

Figure 4.10(b) depicts the quality of service. We should not be misled by the
scale of the graph, indeed it still remains quite stable, and we can notice a very slightly
improvement from 76.6% to 77.0%. It is easily understood: some calls will be answered
by agents more qualified, who were occupied before answering other calls for which they
were less qualified. As the increase of agents in each pools is limited, the increase of

the quality will be moderate too.

4.5 Conclusion

Even if the stochastic model of the queue developed last year was quite satisfactory,
some doubts remained as to some assumptions made. Thanks to the new data file, pro-
vided by Callscan, some weaknesses of the old model have been spotted: in particular

the non hyper-exponential nature of the service time distribution. To cope with this
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issue, a new model based on mixture model has been developed which fits now much

better the real phenomenon, the service time.

To validate the new model, two approaches can be proposed:

e running some simulations. That has been done, see previous paragraph and the

results were quite promising since the increase of agents goes with the increase

of the service level.

e testing with another set of data: the results will be presented in Chapter 6.
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Chapter 5

Abandoned Calls

5.1 Introduction

So far we have not taken abandoned calls into account: this is the objective of this
chapter. Intuitively we may think that their integration in our model may decrease the
number of staff required for the same service level as previous but this is not the case
as we shall see.

After a short study of the data and of the queueing distribution, we will propose a

method to tackle this problem.

5.2 Data analysis

From the data provided by Callscan, already used in the previous chapter, we can
compute the queueing time i.e. the duration a call spent in the queue. Of course we
will remove from the sample, the data whose service time duration is equal to zeros.
A priori, a call whose service time is equal to zero cannot be considered as significant.
Moreover as it does not require any agents, it has not to be taken into account in the

long process of the computation of the number of agents.
In Figures 5.1(a) and 5.1(b) we have represented the general queueing distribution,

i.e the duration of incoming calls (answered and abandoned) spent in the queue, and

the density function. The obvious point about these figures is that more than 2/3 of
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calls, 77%, do not spend any time in the queue. They are immediatly routed forward

to agents or abandoned.

With regard to abandoned calls, the calls are more spread, as shown in Figures 5.1( c)

and 5.1(d).
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Figure 5.1: Representation of the queuing time for incoming calls, a) and b), and for

the abandoned calls, ¢) and d).
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[t is worth noting that the proportion of abandoned calls is 18%. This is due to the
fact that we didn’t count the calls with service time duration equal to zero. Otherwise
this proportion would have gone down to 11%. In fact it is not as important as we
could think because we won't use this proportion directly as we will see in the next
paragraph. It just outlines the importance of the phenomenon and the necessity of

dealing with it.

Another interesting point that needs to be examined is the queueing distribution
of answered calls, that is to say, calls which will be dealt with by operators.
Figures 5.2(a) 5.2(b) provide good representations of the distribution.

In the former model, strong assumptions were made: the Heavy traffic approxi-
mation implies that the distribution of the queueing time approaches that of an ex-
ponential. The random variable describing the queueing time d, see paragraph 2.2.5
concerned all incoming calls. But as we now take abandoned calls into consideration,
we will restrict the validity of the Martin’s Estimate and Heavy traffic approximation
Just to the answered calls. Furthermore it is interesting to check the practical im-
plication of the Heavy traffic approximation on the queueing distribution of the calls
being answered. Although the probability density function (p.d.f.) of those calls is not
exactly fitted by an exponential distribution as shown in Figures 5.2(c) and 5.2(d), it
is much better that other classical distributions such as the gamma Erlang. Therefore

in the following we will still go on working with this assumption.

5.3 New model

5.3.1 Observation

Abandoned calls may affect the predicted number of agents in the system. Paradox-
ically more agents will be required to respect the same service level. This is because
abandoned calls are treated as unanswered: we have therefore to ensure that a greater
proportion of the remaining calls is answered within the time limit. Thereby more calls
will have to be answered during the same time so that the average delay of waiting for

answered calls will decrease. Consequently the required number of people will increase
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according to Martin’s approximation formula.
The definition of the service time will slightly change: if it was seen before as the
percentage of incoming calls within a period, it will be regarded now as the percentage

of non abandoned calls which are going to be answered.

5.3.2 Revisiting the Heavy Traffic approximation

After this practical justification we focuse on revisiting the two approximation formu-
lae. Let us define (f, the random value describing the average waiting time spent in the
queue by a call which will be answered. The expected value of the time spent in the
queue, considered as the average waiting time in queue will be denoted as W; = E[cf]

and will still be equal to Martin’s estimate.

With regards to the Heavy Traffic Approximation, as the definition of the service

100
100—r

level has slightly changed, the usual formula m4(r) = Wy x In ( ) doesn’t apply for
the r* percentile value of d, 7;(r). All the more as the abandoning calls should have
to be integrated. We let d still denote the random value describing the time spent in

the queue, but by all the calls, 7.e. incoming calls = abandoned calls + answered calls.

Let us introduce some useful notation:
e N: the number of incoming calls.

e 7: the proportion of incoming calls which have to be answered in order to achieve

the former service level, in fact r/100 is a percentage.

e a,: the proportion of abandoned calls, a./N is the number of abandoned calls.

Consequently the number of calls effectively answered is N — a, V.

For a specified service level, given a number of incoming calls, we can express the
number of calls which have to be answered within a certain period. In fact, the consid-
ered period in both cases for all incoming calls or non-abandoned incoming calls, will

be the same, then my(r) = m;(r).
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Therefore the first expression is equal to the number of incoming calls multiplied
by the probability that the duration of incoming calls in the queue be less that ma(r).
But it can be seen too as the number of answered calls multiplied by the probability

that the duration of answered calls be less than ;. With our previous notations:
P(d < my(r) x (N = a.N) = P(d < m4(r)) x N
And as P(d < m4(r)) = {5 we deduce that the 7** percentile value of d is defined

by:

T 1

1—a,.x1[}0

P(d < my(r)) =

Still assuming the Heavy traffic Approximation, and that the queueing time distribu-
tion for answered calls can still be approximated by an exponential distribution, see

5.2, we can use the following formula:

100
ﬂ-&(r):W‘EXIH(IOO—T/(I—aT)) (5.1)

Details can be found in appendix B.3.4.

In this relation, the expected queueing time, W, the r** percentile value and the
proportion of abandoned calls a, are linked. To solve our problem of computing the
required number of agents, we have also to calculate W;. But this can only done if we

are able to evaluate a,. This is the aim of the following section.

5.3.3 Fraction of abandoned calls

As abandoned calls affect the service level, we need to be able to compute the fraction

of abandoned calls in some time interval.

This can be done by using a convolution. If A(¢) denotes the probability density of
the fraction of abandoned calls, then by convolving A(t) with the relevant exponential
distribution for non abandoned calls, denoted w(t), it also possible to calculate the

fraction of abandoned calls in the interval [0, 74(r)]:
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at
]
—

ma(r)
gy = / A(t)w(t)dt (B
0
where:

e the exponential distribution of the queueing distribution given by the heavy traffic

approximation is equal to:

e and the probability density of the fraction of abandoned calls is defined by

A(t) = number of abandoned calls during any time interval [t, ¢ + Jt]

number of (incoming) calls queueing during any time interval [¢, ¢ + §t]

In Figure 5.3 we have represented this fraction using the current data.
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Figure 5.3: Representation of the fraction of abandoned calls against the time.
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5.3.4 Algorithm

To compute the new required number of agents in the system we need to evaluate W,
defined in the equation (5.1), but W; depends on a,, and a, on W3, so we can’t compute
in a one step those quantities. An iterative procedure looking for a fixed point solution

has to be used:

1. Compute W; as in the current procedure (i.e set a, = 0 initially):

2. Compute a, from (5.2)
3. Compute W; from (5.1)

4. If a, and W; have not converged, go to 2.

Since a, is quite small in practice this procedure should converge relatively rapidly.

Once W; fixed, the integer c is determined too.

We can now justify why more operators are necessary in the system, while taking
the abandoned calls into account for a given service level.

And since a, is a positive number and since 7;(r) = my(r), W; < Wy, consequently
more agents are now required than before. (In both case Martin’s estimate is be used

to derive those numbers)

5.4 Results

In this section we present the results obtained whilst using both the new data set
to compute the fraction of abandoned calls and the older data to run the algorithm
through a whole week. The model used has also the new service time distribution.

As expected, in order to achieve the right service level 95% of the calls answered
within 30 seconds, and as shown in Figure 5.4, the required number increases slightly
compared to the previous stochastic model: 2.9% but that is still 22% fewer agents than
with the Erlang’C model, which does neither take into account service time distribution

or abandoned calls.
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Figure 5.4: Comparison between the number of agents used in the traditional model
(the solid line), the stochastic model (the dotted line) and the new model, with a new
service distribution and a procedure to include abandoned calls, (stars).

With regards to this new model compared to the mixture model, the increase is
about 1.4% of more agents. Figure 5.5 brings some remarks: the increase is neither
uniform against the week neither dependent on the traffic as the representation of

agents in background shows.

5.4.1 Validation

To validate our model, we have run the simulation program. The only major drawback

of this approach comes from the fact that abandoned calls were not simulated.

Failing anything better, we have also run it. For this reason the conclusions we
could draw will be limited. As more agents are predicted in the system, an increase of

the service level and of the quality ratio is expected.
Finally after running it several times, the results are in keeping with our expecta-

tion. Compared to the mixture model, as shown in Figures 5.6(a) and 5.6(b) all the

characteristic parameters are improved:
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Figure 5.5: Histogram of the difference between the number of agents required with
the “mixture model” and those with the new model through a 120 periods week. In
background the distribution of agents of the new model has been represented in an

other scale (dashed line).

- the number of calls experiments a delay superior of 30 seconds before being

answered decreases.

- whereas the quality ratio increases.

At least to show the improvement brought to the model we have also summarised

all the results, from this chapter and from the previous chapter in Table 5.1.

New Model | Mixt. Model | Stoch. model
Over waiting time * 2.86 3.58 4.42
Number of periods ® 21 30 38
Quality ratio 77.5 77.0 76.6
Number of agents 5839 5758 5675

“the overwaiting time is the average percentage of calls across a week which are

not answered within 30 seconds

®this is the average number of period across a week in which the service time is

not achieved

Table 5.1: Average results obtained with 38 simulations.
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Figure 5.6: Simulations’graphs

5.5 Conclusion

To integrate abandoned calls in our previous model we have revisited the approxima-

tion formulae relating to the service level and used some ideas like convolution product,

directly based on the signal theory.

Theoretically to respect the same service level, more people were required. We

checked this assumption using two sets of data coming from two different call centres.

In order to validate more thoroughly our new approach we will use an other data

sample next chapter.
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Validation

6.1 Changing the service level

So far we have carried out all experiments with the same service level: 95% of the calls
have to be answered within 30 seconds. Therefore it could be interesting to explore
the behaviour of our model compared to the previous stochastic one, by now moving
the service level: both the percentage of the calls to be answered within a period, and

the period itself.

Then, we varied the required percentage from 10% to 99% and the specified period
amongst the interval [10,...,60] (in second).
All the results are presented in Figures 6.1(c) and 6.1(d). As expected in every case
the predicted number of people with our new model is bigger than with the stochastic
model. Although on average the quality ratio of our model is higher than that of the
old one, it is worth noting that sometimes the reverse happens. It is due to the skills

of the agents.

Finally some remarks can be made:

e for a specified period, the higher the percentage of calls to be answered is, the

more agents they are in the system, and usually the quality ratio is higher.

e for a given required percentage of calls, the bigger the time to answer calls is,

the less agents they are in the system, which is quite logical and the smaller the
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quality ratio is, which is less logical. Nevertheless it can be explained by the

presence of less qualified agents in the system.
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(b) Quality of service.

(a) Predicted number of people with the

stochastic model (solid line) and with the new
model (dashed line).

In conclusion, we have checked that our new algorithm was reliable.

6.1.1 Presentation

In the previous chapter we have proposed some improvement of the stochastic model.
Most of the validation was made with the simulation program which was not always
appropriate.

Using another set of data from another call center, composed of several recordings

with main parameters:
e the arrival pattern
e the service time distribution

we have checked that the refinement brought to the model was still relevant. Effectively

the arrival pattern follows a Poisson process and also the inter-arrival service time

72



CHAPTER 6. VALIDATION

distribution is still exponential, as shown in Figure 6.1(c), whereas the recomputed
service time distribution can be fitted by a mixture of exponentials as shown in Figure
6.1(d).

In this stage, by running the scheduling algorithm, to achieve the usual service
level, 95% of calls answered within 30 seconds, a bit more than 0.2% of people more

are expected than with the previous scheduling algorithm.

As the data comes from two different call centres, what really matters is not the

percentage but the tendency.
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(¢) inter-arrival service time distribution (d) Representation of the recomputed service

against exponential p.d.f (dashed line). time distribution (solid line) against exponen-
tial p.d.f (dotted line) and mixture of expo-
nentials p.d.f.

As far as the abandoning calls are concerned we could think, in the first place
reading raw data, that the percentage of abandonment will increase significantly the

number of agents in the system, as shown in the Table 6.1.

In fact that would mean ignoring that the abandoning calls, roughly 30% of the
sample, are taken into account in a convolution product, which smooths their relative
importance: the significant number in our present problem is the number of abandoning

calls within 30 seconds, just 4.73% of the queueing calls. Compared to the previous
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Abandoning calls | Anwering calls | Total

Number of calls 1706 5586 7292
Percentage 23.23% 77.77% 100%

Abandoning calls | Answering calls ¢ | Total
Number of calls 1706 4000 5706
Percentage 29.89% 70.11% 100%

®A realistic number of calls whose service time duration was equal to zero has been
recomputed with the method presented in Appendix C.3.7

Table 6.1: Data statistics

data, see Chapter 5, where the percentage was from 14.6%, it is really weak. No
wonder also if the required number of people by running the algorithm is steady, just

a minuscule increase. And then, the quality ratio is still slightly better.

6.1.2 Conclusion

We proved that we could use a method with data coming from another call center and
that the number of people doesn’t change too much. In accordance with the theory we

noticed an increase of the number of staff compared to the older stochastic model.
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Conclusions

The aim of this project was to go further in the investigations of the model developed
last year by G. Lecorroller on the basis of the feasibility study made by Prof D. Lowe
and Dr I. Nabney.

The first point was concerned with reviewing the algorithm proposed to tackle this
problem of human resource allocation. By combining the stochastic model of the queue
to take into account the fluctuations of the incoming calls and the service time and a
minimisation method based on a penalty function, the number of agents to achieve a
proper level in our system could be derived. The results were quite encouraging as the
number of staff remained smaller than those computed in the standard method, a lot

of assumptions needed to be questioned and properties to be investigated.

Secondly we have tested extensively the algorithm to discover some properties and
highlighted the major weaknesses in order to improve it. We varied the coefficients of
the cost functions, the Lagrangian parameters. Since there was no significant effect on
the results, we left their values fixed in subsequent work. Thus by exploring a pos-
sible correlation or linear relationship between the increase of the pool and those of
the traffic rate, we noticed that while using more pools for a steady traffic rate more
people were necessary. Proposing an empirical method we managed to control this
phenomenon at least. From the several other investigations, we recalled that it was

preferable that each queue could be answered by two pools.
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Using new data sets we tested the assumptions the stochastic model was relied on.
The modelling of the arrival pattern with a Poisson process seemed quite reasonable,
on the other hand the exponential distribution gave a very poor fit to the service time
distribution. Therefore we have developed a new distribution, still hyper-exponential
but with some mixture density coefficients. By running the algorithm, we noticed that

more agents were predicted in the system, but the increase was still limited.

The last issue discussed was abandoned calls. Intuitively we might think that tak-
ing them into account will lead to less agents. But that idea was wrong since the
definition of the service level had changed: the correct definition was the percentage
of non abandoned calls which would have to be answered within a certain time. So
since the abandoned calls affected the service level, it implied some modification of the
approximation formulae. Running also the algorithm with the new data confirmed the

increase of the number agents in the system.

To test the reliability our model and the non dependency of the data, we trained
it on new sample: we obtained a new confirmation our previous assumptions i.e. still
more agents were predicted in the system but the rise remained reasonable less than
3% and still 22% fewer that with the traditional approach i.e. the Erlang C' model.

However this new model was all the more satisfying as it seemed closer to the real

behaviour of the queues.

The ultimate step would be the implementation in a call centre to assess the real

life performance of our model.
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Coefficients of the EM for the

exponential mixture model

In this appendix, we are going to demonstrate the updating formulae of the parameters

AT and Pm®(j) we have used in chapter 4.

A.1 Presentation

To compute the new coefficients of the parameters astated above in the E-steps of
the EM Algorithm we have to minimise the function £™?(#"%) under the condition

SN | Prew(5) = 1 where:
o Efmp(gnenty = 5oL ¥t Plilzn, 07 in(Blznls, 07°) PR 5))
° gnew —_— {A?ewrpnew(j)‘j e 11 - ﬂ/f}

Indeed given a data set of N values (z;,zs,...,2,) and given the mixture model
which should describe it, p(x) = Z;";l P(j)p(x|7), we consider those data to be incom-
plete because we do not know which component j generated at a given data point n. We
also introduce a variable z,, n varying from 1 to N, denoting the unkown generating

component.
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The complete data log-likelihood is:

N
L™ (6) = ) _ in(p(n, 2u|6))

=
=1

= Z En{p(l‘nlzm 9)P(?—n|9)}

fi==1

Now we take its expectation with respect to the distribution

N
P(z) = [ | Plznlza, %)
n=1

And since z is a discrete variable, the expectation over all 2, is a combination of N

sums:

e camp

> - 3 I1 Plentem, 9“9in{p(anle )P0}

za=1 zy=lm=1

P4)=
1[M]=

2
Il

-2k
|

N - M M M MON
=33 5 5 5 T Pl
n=1"~z3=1 zp—1=12zp41=1 zy=lm#n (5\2)

M
>~ Planltm 04)n{o(zalin, )P (:0)]

n=1

X
&

M
Z P Zmlxmagdd En{p(zn|zn:9)P(zn|9)}

1 2,=1

Mz

]
I

since the first square-bracketened term in (A.2) evaluates to unity as each of the
individual sum 3" _| P(2|2:,0°%) = 1 because the probability that z,, has been

generated by the set (21, 22,... ,2,) is equal to 1.

Our previous notation for a mixture model was p(x) = Z P(j)p(x|j) which equals

to Zﬁil P(j)p(x|7,0;). And so we may rewrite £ ("% equivently as:
N M
g (@ren) = = 33 Plifen, 034) In(Paali, ) P™())  (A3)

n=1 g4=1

A.2 Computation

Thus to minimise the function £ (6™") under constraints, see above, we can use

Lagrange multipliers.
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Define a function g writing down by: 6™ — g(g"*") = Z:’:l il [ i 8

The minimum can be determined by solving the simultanous equations:

Qe dg
“opgnew 6 j new N (A'L)
a0 a6

9(63°) = 0 (A.5)

forally=1.% M

A. By differentiating equation (A.4) with respect to the parameters P"¥(j) we get
the following equations for all je[l,..., M] :

_Em_p_ﬁ._ag___

oPmes ;) i S

We expand the lefthand side:
Foesey oo
aPnen(s) " GPws(])
8 (s Tiks Plilem, 654)in(P(zalj, 83°) P )
8P j)
8 (S (Pe (i) - 1)
o j)

_ T PUilon, 68)
Prnew (J)

0=

(A7)

- B

We conclude that:
N

+ 3" P(j]us,62) (A.8)

n=1

) = 1

As this expression is available for all j = 1,..., M we can sum over the j, then

N M M
N VNG P, 00 = 3 N pRRE )
o] la=] J=1
5 ™ i S T
i.e. N=5

So by substituting 8 for N in the equation (A.8) we obtain:
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N
new( ; 1 .
P*0) =+ > Pljlxn. 08
n=1

B. If we differentiate (A.4) with respect to the parameters A\"“, given that the

new .

density function is: P(z,|j, 07¢") = A;-"e‘”e"\: " we get:

ogme By
a)‘;&ﬂw BA;-'.G‘W

=0 Vje[l,..., M] (A.9)

So after having substituted £°°™ for its expression and noticed that g does not

depend on A7 we obtain:

8 (o Ty Pliln, 684) (In(X3°%) = X3 - 2 + In(P""())) )
0 GAuew

(A.10)

i.e.

L 1
ZP(jlxm 9?“) (,\new v m“) =0 (A.11)

n=1

Finally, from this we conclude:

A‘r}ew . E:::], P(j |$m Q;Ed)
i Plilea, ) s
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Appendix B

Stochastic modelling of the queue

B.1 Expected value of an hyper exponential dis-
tributed random value with mixture coefficients
We shall consider a random variable X with a density function given by:

0 ittt <0,
fr(t) = (Bl)
S o, (Z;il P(j) tjn e“‘i"t) if t > 0.

with;

ot _m
® lgn = Qq :U*n—f?#n

m:ZM P(j)

j=1 123

- Z'f:l Qn = 1

The expected value of X is defined as follow:

M

E[X] = /Zt fo(t)dt = /ﬂmt ian (ZP@#N e‘*‘fﬂ*)dt

= =1

N M = N M p ()
= ZanZP(j) / t s € L = Zan Z &
n=1  j=1 J0 Rl gl B
N M P(j) N
- S (20} -3 e,
n=1 j=1 Ta Hj n=1
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So the expected value of s, the service time, is equal to:

Q
Els] = Z o, T;
g=1

We also have to compute the moment with second order:
oo N M o0
E[X?] =/ #2 fo(t)dt = Zaan(j)/ #2 Lin e—Hint g
i =1 j=1 0

N M

=QZQRZP(j)=2 aﬂz(f(j))g

2
P‘Jjn n=1 _?: 1 Th

=138 )

2
n=1

J

And so we can conclude that the second order of the value s is:

Bl = 2 Zfl% (3029

j=1 Hj

B.2 Calculation of the percentile value

In this section we are going to justify the formula used in Chapter 5:

100 100
) = Wl (100 s a,,)) = Lo (wo —r /(- a,))

where 7" is the percentile value of d the queueing.

Considering an exponentially distributed random variable X, and «(r), its 7 per-

centile value, defined by:

r 1
P(){Sﬂ(r)):l—a Xﬁ

since X is an exponentially distributed random variable, whose parameter is de-

noted A, we can write:

w(r
P(X<nm(r)=1—e =1 e~ FIXI

In deed for an exponential distribution, E[X] = 1.
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Having two expressions of the probability P(X < 7(r)). we deduce that:

— “%E:%z I -—1— _%:—1— st i
l1—e l—aTXIOU = & IUOX 100 =6

And eventually that:

1 100
r(r) = BLX] xIn (57— 7= )

B.3 Some distributions

B.3.1 Exponential distribution

A continuous random variable X is said to have an exponential distribution with pa-

rameter A > 0 if its density function f is given by:

Aethe, z >0
0, T< b

Some properties:
E[X]=1} Var[X] = 3%

B.3.2 Normal distribution

A continuous random variable X has a gaussian or normal distribution with parameters
m and o > 0 if its density function f is given by:
1

@) = "%(02 T €
flz) = —= e 45 R

Some properties:

E[X]=m Var[X] = o?

B.3.3 Gamma distribution

A continuous random variable X has a gamma distribution with parameters o > 0

A > 0 if its density function f is given by:

ﬁ (Am)a_l ez z>0

0, z < 0.

flz) =
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where the I' function is defined by
['(t) :f ztle~%dx >0
0

Some properties:

EX]=%  Var[X]=2?

B.3.4 Erlang k distribution

A special class of gamma random variables is the Erlang k random variable with pa-

rameter A. Its density function is given by:

Some properties:
E[X]=3% Var[X] = 5z
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Outline algorithm

This appendix displays the full algorithm which was used to produce the figures ob-
tained in this thesis. The code is written in the interpreted matrix manipulation
language MATLAB.

C.1 Rounding program
% Rounding algorithm
% Read in the staff matrix

% Load the standard matrix used to cap the number of agents in each pools
%» It is worth noting that this file contains real numbers and had been

% created by running the old version of the scheduling algorithm:

% to save the staff we use ’’staff(i,:) = sum(con’) instead of

% staff(i,:) = ceil(floor(sum(con’)*100)/100);

load sta4_un.dat

staf0 = sta4d_un;

load stall_un.dat
stafl = stall_un;

% Read in the quality matrix, the coefficient correspond now to the pools
% This file was created still running the old version of the

% scheduling algorithm: to save it we have used the following instruction
% quality(i,:) = sum(skills’.*con’) instead of

% quality(i,:) = sum(skills.*con);

load qualilill_un.dat

qual = quallll_un;

num_staf = size(stafl);

% Initialize the matrix which will contain the rounded number of people
% in each pool. This number will be an integer.

staff = zeros(size(stafl));

for i = 1:num_staf(1)

% Number of required agents for one period
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c__i = sum(ceil(floor(staf0(i,:)*100)/100));

/» We sort the quality matrix in function of the quality factor
[quall ind1] = sort(qual(i,:));

ind0 = length(indl);

while (((sum(stafi(i,:))) < c__1)&(ind0>0))
staf1(i,ind1(1,ind0)) = ceil(floor(staf1(i,ind1(1,ind0))*100)/100);
ind0 = ind0 - 1;

end

staff(i,:) = round(stafi(i,:));

end
%sum(sum(staff))

save ’stall_r.dat’ staff -ascii;
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C.2 Code of EM Algorithm for exponential mix-
ture model

C.2.1 Creation of good data file

% Program fx.m
% Create a realistic data file

% Read the file

% The first column indicates the nature of the call 1->N, 2->Q, 3->R
% The second column can be ignored

% The next following columns contain the arrival time the col 3: h

% the col. 4 : mn, the col. 5: ss .

%» The column 6 : 60*mn + ss

% In the column 7: The duration of wait.

% In the column 8: The duration of calls.

% In the column 9: The number of the pool which has answered the call.
% In the column 10: The number of periods.

load calls10.dat
len = length(callsi0);
% We keep only the answering calls which duration is >0 and <2 hours

/» we are going to compute the length of the futur file, without the
% zeros

lenl = 0;
for i = 1:1:1en
if ((calls10(i,1) == 1) & (calls10(i,8)>0) & (calls10(i,8) < 3600))
lenl = lenl + 1;
end
end

% We are going to create the file
filel = zeros(leni,l1);
k= 1;
for j = 1:1:1en
if ((calls10(j,1) == 1) & (calls10(j,8)>0) & (calls10(j,8) < 3600))
filel(k,1) = calls10(j,8);
k=k + 1;
end
end

% We compute the number of zeros thanks to the mean
m = mean(filel);

nzeros = ceil(fzero(’fx’,1,[],[],lenl,sum(filel)));
azeros = zeros(nzeros,1);

/h Finally we can create the realistic file
file2 = [azeros; filell;

fid = fopen(’data.dat’,’w’);
for i=1:1:length(file2)
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fprintf(fid,’%d\n’,file2(i));
end

fclose(fid);

% Function fx
function y = fx(x,n,suml)
y = n*(exp((x+n)/sumi1)-1) - x;

C.2.2 Mixture coefficients

%#The following code is used to compute the mixture coefficients
load data.dat

% The log likelihood
enew = -100000;
eold = 0;
% the number of exponential distribution
i=0;
while (abs(enew - eold)>1le-2)

T =g

eold = enew;

% Initialisation

[ncentres, priors, lambda] = emm(i);

options = foptions;

options(1) = 1; % Display error values
options(14) = 10000; 7’ Number of training cycles
option(3) = 1le-8;

[priors, lambda, options] = emmem(ncentres, priors, lambda,
data,options);
enew = options(8)

end

% We compute the mixture coefficient for a model with (i-1) components
[ncentres, priors, lambda] = emm(i-1);

options = foptions;

options(1l) = 1; % Display error values

options(14) = 10000; % Number of training cycles

option(3) = 1e-8;

[priors, lambda, options] = emmem(ncentres, priors, lambda, data,...
options) ;

vect = zeros(i-1,2);
vect(:,1) = priors’;
vect(:,2) = lambda;

save ’mixcoef.dat’ vect -ascii
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C.2.3 Exponential mixture model

function [ncentres, priors, lambda] = emm(ncent)

%EMM Creates a exponential mixture model with specified architecture.
h

% Description

% MIX = EMM(NCENTRES) takes the dimension of the

/ space DIM, the number of centres in the mixture model and the type of
% the mixture model, and returns a data structure MIX.

h

% The priors are initialised to equal values summing to one, and the

% covariances are all the identity matrix (or equivalent). The centres
% are initialised randomly from a zero mean unit variance Gaussian.

% This makes use of the MATLAB function RANDN and so the seed for the

% random weight initialisation can be set using RANDN(’STATE’, S) where
% S is the state value.

0

b

% The fields in MIX are

/A

b
b
A
pA

ncentres = number of mixture components
priors = mixing coefficients
lambda = Lambda parameters: stored as rows of a matrix

ncentres = ncent;

%» Initialise priors p(j), j between[l...ncenters] to be equal and
% summing to one
priors = ones(1l,ncentres) ./ ncentres;

%» Initialise centres: lambda parameters
lambda = abs(randn(ncentres, 1))*0.1;
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C.2.4 Expectation Maximisation

function [priors, lambda, options, errlog] = emmem(ncentres, priors
lambda, x, options)

AEMMEM EM algorithm for Exponential mixture model.

b

3

% Description

A [MIX, OPTIONS, ERRLOG] = EMMEM(MIX, X, OPTIONS) uses the

% Expectation

h Maximization algorithm of Dempster et al. to estimate the

h parameters of a Gaussian mixture model defined by a data

% structure MIX. The matrix X represents the data whose

T expectation is maximized, with each row corresponding to a

A vector. The optional parameters have the following

A interpretations.

to

b OPTIONS(1) is set to 1 to display error values; also logs error
A values in the return argument ERRLOG. If OPTIONS(1) is set to 0,
% then only warning messages are displayed. If OPTIONS(1) is -1,
i/ then nothing is displayed.

h

A OPTIONS(3) is a measure of the absolute precision required of the
A error function at the solution. If the change in log likelihood
" between two steps of the EM algorithm is less than this value,

A then the function terminates.

b

A OPTIONS(14) is the maximum number of iterations; default 100.

b

A The optional return value OPTIONS contains the final error value
b (i.e. data log likelihood) in OPTIONS(8) .

T

b See also

T EMM, EMMINIT

0,

h

[ndata, xdim] = size(x);

% Sort out the options
if (options(14))
niters = options(14);
else
niters = 100;
end

display = options(1);

store = 0;
if (nargout > 2)
store = 1; % Store the error values to return them
errlog = zeros(1l, niters);
end
test = 0;
if options(3) > 0.0
test = 1; % Test log likelihood for termination
end

eold = -100000;
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% Main loop of algorithm
for n = 1:niters

% E-step
% Calculate posteriors based on old parameters
[post, act] = emmpost( ncentres, priors, lambda, x);

% Calculate error value if needed
if (display | store | test)
prob = act*(priors)’;
% Error value is negative log likelihood of data

e = - sum(log(prob));
if store

errlog(n) = e;
end

if display > 0
fprintf(1, ’Cycle %4d Error %11.6f\n’, n, e);
Jend
end
if test
if (n > 1 & abs(e - eold) < options(3))
options(8) = e;
return;
else
eold = e;
end
end
end

% M-step

% Adjust the new estimates for the parameters

% the matlabb5 instruction was new_pr = sum(post,2)
new_pr = sum(post’);

new_pr = new_pr’;

new_c = post * x;

% Now move new estimates to old parameter vectors
priors = new_pr’ ./ndata;
lambda = new_pr./new_c;

end

/ see Tipping 161, we now compute the negative log-likelihood
% E = -sum(n) (Log(P(xn))

foptions(8) = -sum(log(emmprob(ncentres, priors, lambda, x)));

fprintf(1, ’Last Cycle %4d Error %11.6f\n’, n, foptions(8));

if (display >= 0)
disp(’Warning: Maximum number of iterations has been exceeded’);
end
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C.2.5 Computation of the activation

function a = emmactiv(ncentres, priors, lambda, x)
HEMMACTIV Computes the activation of an exponential mixture model.

A

A Description

T This function computes the activations A (i.e. the probability
pA P(X|J) of the data conditioned on each component density) for a
bo exponetial mixture model. The data structure MIX defines the

yA mixture model, while the matrix X contains the data vectors.

%o Each row of X represents a single vector.

To

% See also

b EMM, EMMPOST, EMMPROB

%
/ we compute the number of data, n, in our problem
ndata = size(x, 1);
% Calculate squared norm matrix, of dimension (ndata, ncentres)

hcreate the n*m matrix [x1..x1, x2..x2, .., xn..xn]
ax = x*ones(1,ncentres);

% create the m#m matrix [11 0..0,0 12 0..0, ..,0..0 1m]
al = diag(lambda);

% create the n*m matrix [exp(-11x1)..exp(-lmx1), .., exp(-1lixn)..
hexp (-1mxn)]
ae = exp(-ax*al);

% create the N*M matrix [ll*exp(-11x1)..lm*exp(-1lmx1),..,];
a = aex*xal;
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C.2.6 Posterior probabilities computation

function [post, a] = emmpost(ncentres, priors, lambda, x)
4EMMPOST Computes the class posterior probabilities of an exponential
% mixture model.

b

A Description

A This function computes the posteriors POST (i.e. the

A probability of each component conditioned on the data P(J|X))
A for a exponential mixture model. The data structure MIX

pA defines the mixture model, while the matrix X contains the

b data vectors. Each row of X represents a single vector.

bo

bo See also

% EMM, EMMACTIV, EMMPROB

y i
ndata = size(x, 1);

% Compute the ((P(Xn|J) )) of the data conditioned on each component
% density we obtain a N*M matrix
a = emmactiv(ncentres, priors, lambda, x);

/» We compute the following matrix, M*N, [P(1)P(x1|1)..P(1)P(xnl1),..,
% P(m)P(x1]1)..P(xn|m)P(m)]
post = diag(priors)*a’;

% we have the following matrix, n*1, [sum(k,1,m)P(k)P(x1,1k)..

% sum(k,1,m)P(k)P(xn,1lk) (see Tipping (206))
if ( min(size(post)) == 1) % we have to correct this line
S = post;
else
s = sum(post);
end

/» Set any zeros to one before dividing
g =g + (s==0):
sum(s)

% ((P(JIXn))) it’s an M*N matrix
post = post./(ones(ncentres,1)*s);
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C.2.7 Data probability computation

function prob = emmprob(ncentres, priors, lambda, x)
#EMMPROB Computes the data probability for a exponential mixture model.
b

JA Description

pA This function computes the unconditicnal data density P(X) for a
A Exponential mixture model. The data structure MIX defines

% the mixture model, while the matrix X contains the data

/A vectors. Each row of X represents a single vector.

/.

A See also

% EMM, EMMPOST, EMMACTIV

YA

% Compute activations:((P(X[J)))
a = emmactiv(ncentres, priors, lambda, x);

% Form dot product with priors P(X) = sum(k) P(X|k)P(k)
prob = a * (priors)’;
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C.3 Revisiting optimisation program

Last year’s code has been used as the basis of the following top-level
program. As lots of functions haven’t even changed, we won’t including
their code again, we are just going to talk about the Hmm_nagents.m

function and its following which remplace the old H_agents.m function.

C.3.1 Optimisation of staff scheduling

load skills;

skills = skills;

% Rescale to range 0-1.

skills = skills ./100.0;

%» Only use the first four skills profiles to make it interesting
% In the people-based approach this line should be removed
skills = skills(1:4, :);

% Read in the data matrix describing the activity of the queues
load volume;

% time_steps_a_day is the number of half hour periods in a day
time_steps_a_day = 20;

% Read the mixture coefficient matrix
load mixcoef.dat

prior = mixcoef(:,1);

lambda = mixcoef(:,2);

% Load the queuing calls
load qu_data_fracl.dat;

qu_data_frac = qu_data_fraci;

% Compute what should be the number of agents answering calls

% from each queue, according to the stochastic modelling of the queues
H_q = zeros(120,8);

%H_q = Hmm_ratio(prior,lambda,volume,time_steps_a_day);

H_q = Hmm_nratio(qu_data_frac,prior,lambda,volume,time_steps_a_day);

% queue contains the required number of agents in each queue

% The rest is also the same
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C.3.2 Number of agents in each queue

function H = Hmm_nratio(frac,prior,lambda,volume,time_steps_a_day)

%» This function calculates the number of servers required
% if we merge all the queues(M/M/c system) in one system
% considered as a M/H6/c system

% It also computes the normalized number of agents

% required in each queue

% volume provided all the data describing the six queues

/» number of incoming calls per queue and per half-hour period
/» mean service time per queue and per half-hour period

% number of server required in each queue considered separately

/ time_steps_a_day is the number of half hour periods in a day
b

% nb contains the number of abandoned calls a t = 0,...,nb

% queue, the number of calls in the queue a t=0,...,nb

% number of queues in our system

num_q = size(volume,1l)/time_steps_a_day;

% number of days considered in the week

num_day = size(volume,2)/3;

%» total number of half hour periods for the whole week
num_time_steps = num_day*time_steps_a_day;

% queue contains the numbers of calls active at an instant in each queue
queue = zeros(l,num_q);

’ the required number of agents in each queue for each half hour period
q = zeros(num_time_steps,num_q);

% the total number of servers, i.e. agents required in the system

¢ = zeros(num_time_steps,1);

% the server utilisation

ro = zeros(num_time_steps,i);

/ First line: call volume in each queue
% Second line: average call duration in each queue
param = zeros(2,num_q);

for n=1:1:num_time_steps

% Search for the call volume in the matrix volume
for i = 0:1:num_g-1
param(1l,i+1) =
volume(rem(n-1,time_steps_a_day)+1+time_steps_a_day*i
,... 3*ceil(n/time_steps_a_day)-2);
end

% Search for the average call duration in the matrix volume
for i = 0:1:num_qg-1

param(2,i+1) =
volume (rem(n-1,time_steps_a_day)+1+time_steps_a_day*i
..3*ceil(n/time_steps_a_day)-1);
end
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total = 0;

% Count the total number of calls active at an instant
for i = 1:1:num g

queue(1,i) = param(1,i)#*param(2,i)/(30%60);

total = total + queue(l,1i);
end

% Compute the total number of agents required in the system
% to answer 95% of all calls within 30 seconds
if total > 0 w = zeros(1,2);
w = Hmm_nagents(frac,prior,lambda,param,95,30);
r = w(l)/total;

c(n,1) = w(l);

ro(n,1) = w(2)/w(1);
else r = 1; ro(n,1) = 1; c(n,1) = 0;

end

% Compute the number of agents required in each queue
for m = 1:1:num_q
q(n,m) = queue(1,m)*r;
end
end

%» The function returns q, ¢ and ro
H=[qcrol;

o7



APPENDIX C. OUTLINE ALGORITHM

C.3.3 Number of agents to achieve the right service level

function H = Hmm_nagents(frac,prior,mu,param,p,t)

ar = 0;
arold = -100000;

wd = 0;
wdold = -100000;

while ( (((wd - wdold) >le-4)|((ar - arold)>le-4))&(ar<0.050))

% we compute amongst other things the average queuing time
P = Proc_wd(prior, mu, param, ar, p, t);

% wd is the average waiting time in the queue
wdold = wd;

wd = P(1);
n_agents = P(3);
arold = ar;
ar = 0;
for-x =151t
ar = quad(’AW’,i-1,i - le-4,[le-4 1le-4],[],wd,frac) + ar;
end

end
/» a is the offered load in erlangs of the system
a = P(2);

% the function returns n_agents and a
H = [ n_agents, al;

C.3.4 Computation of agents

function P = Proc_wd(prior, mu, param,ar,p,t)

% Proc_wd calculates the minimum number of agents in order to
% answer p/(1-ar)’, of all the calls within t seconds

c=1;
w = zeros(1,2);
w = Wmm_q(prior,mu,param,c);

while w(1) > (t/log(100/(100-p/(1-ar))))

¢ = ctl:

w = Wmm_q(prior,mu,param,c);
end
P=[wcl;
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C.3.5 Computation of the p.d.f. of the fraction of abandoned
calls

function y = AW(x,wd,frac);
W = lexp(1/wd,x,0);

% this function is null except between [0 ,length(anb)-1]
A = zeros(length(x),1);

% we have to take into account the fact that the first
% element of the file is zero

for i =1:1:length(x)
if ((x(1) >=0)& (x(i) <=(length(frac)-1)))
A(i,1) = frac(floor(x(i))+1);
end
end

y = W.*xA;

C.3.6 Exponential function

function y = lexp(lambda,x,x0)

% The function lexp evaluates the exponential function

y = ((x>=x0) .*lambda.*exp(-lambda*(x-x0)))’;

C.3.7 Average queueing time

function w = Wmm_q(prior,mu,param,c)

% This function Wmm_q calculates the average queueing time
% for a M/H6/c system:

/» Exponentially distributed arrival times

% The service time distribution is a 6 stages hyperexponential

% distribution

% (the parameters describing this two distributions are in param

% ¢ servers

% The priors are the mixture coefficient
% The lambda are the coefficient of the exponential distribution

% lambda is the total arrival rate, that is equal to the sum of
% the six single arrival rates of each queue

num_q = size(param,2);
lambda = 0;

for i = 1:1:num_q
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lambda = lambda + param(1i,i);
end
lambda = lambda/1800;

%» E_s is the expected value of s, the service time

E_s = 0;
for i = 1:1:num_q
E_s = E_s + param(1,i)*param(2,i)/1800;

end
E_s = E_s/lambda;

% a is the offered load of the system
a = lambdax*E_s;

% the offered load must be strictly less than the number of servers
% else the number of calls waiting grows without limit
if (c-a) < 0 q = 1000000;
else
E_s2 = 0;
for i = 1:1:num_q
% E_s2 is equal to (E_s)"2
E_s2 = E_s2 + param(1,i)*param(2,i)~2/1800;

end
E_s2 = 2*E_s2/lambda;
M=0;
S =0;
for j = 1:1:length(prior)

M =M+ prior(j,1)/mu(j,1);
S =8 + prior(j,1)/(mu(j,1)°2);
end
E_s2 = E_s2%S/M"2;
C = Erlang C(c,a);
% q is the average waiting time in the system
q = C/(c-a)+*E_s2/(2*E_s) ;
end

% The function returns q, the average queueing time in the system,

%» and a, the offered load of the system
w=[qal;

100



Bibliography

Allen, A. O. (1978). Probability, Statistics and Queueing Theory with computer science

applications. Academic Press, Inc.

Beckmann, P. (1968). Introduction to Elementary Queueing Theory and Telephone
Traffic. The Golem Press.

Bishop, C. M. (1995). Neural Networks and Pattern Recognition. Oxford University

Press.
Kleinrock, L. (1975). Queueing Systems Volume I: Theory. John Wiley and Sons Inc.

Kleinrock, L. (1976). Queueing Systems Volume II: Computer Applications. John

Wiley and Sons Inc.

Lecoroller, G. (1997). MSc Thesis: Human resource allocation in a call centre. Aston

University.
Lee, A. M. (1966). Applied Queueing Theory. Mac Millan.

Lowe, D. and Nabney, I. (1996). Human resource allocation in a call centre: Feasibilty

study report.
Nabney, I. T. (1997). Algorithms and Computational Mathematics, Lecture notes.

Press, W. H., Teukolsky, S. A., Vetterling, W. T., and Flannery, B. P. (1992). Numerical

Recipes in C: The Art of Scientific Computing. Cambridge University Press.

101



BIBLIOGRAPHY

Saaty, T. L. (1961). Elements of Queueing Theory with Applications. McGraw-Hill

Book Company.

Tipping, M. (1997). Statistical Pattern Analysis, Lecture notes.

102



