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Thesis Summary 

Last year G. Lecorroller proposed a new approach to the problem of staff allocation 

in a telephone call centre, based on the work of Prof D. Lowe and Dr I. Nabney, and 

using a multi-skill workforce. He developed a two stage process, in order to compute the 

number of agents required to achieve a particular service level. In the first stage, thanks 

to a stochastic model of the queues, a minimum number of operators was predicted, 

in the next stage those were allocated in the different pools using a minimisation 

algorithm. The results were quite encouraging, 25% fewer agents predicted with this 

new approach compared to the traditional and current one. 

The main purpose of this thesis is to improve this new model. 

At first we tested it whilst considering an unlimited pool of people. A tricky problem 

to solve was the increase of the predicted number of agents with an increasing number 

of pools given a call volume. The empirical method we proposed to deal with this issue 

is detailed. 

The second part of our project explored the effect of different service time distri- 
butions. A new distribution based on mixture models has been developed which fits 

much better the service time distribution from any given call centre. In terms of agents 

cost less than 2% more were required compared to the new method. 

Next the effects of abandoned calls have been taken into account by revisiting 
some approximation formulae. However, the predicted increase of agents, necessary to 

achieve the same service level as before, remains less than 2% compared to the new 

model which added to the previous improvement correspond still to 20% fewer agents 

than with the traditional forecast. Our model is also more precise than the Erlang C 

model used traditionally. 

Ultimately we are able to validate the new model with our improvement using both 

simulation program and new data. All the results are presented in careful details. 
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Chapter 1 

Introduction 

1.1 Brief presentation of the problem 

The problem on which we have been working is human resource allocation in a call 

centre. Last year G. Lecorroller tackled it and proposed two approaches to deal with 

it: a people-based approach and a significant improvement of the traditional approach. 

The first gave disappointing results and therefore we gave up to lead further investi- 

gations. The results obtained with the second were far more interesting. That is the 

reason why we have worked exclusively on it in our thesis. 

In this model a call centre can be described in term of queues and skill pools, see 

Figure (1.1). Arrival calls, whose type is determined from the number dialled, are 

routed to different queues in which they will wait until a server qualified to answer 

that type of call is free. The waiting time depends on the intensity of the traffic and 

on the number of operators qualified to deal with the call. With regard to the agents, 

these are gathered in pools of same skills profile i.e with the same abilities to answer 

a call. In practice most of them are multi-skilled and thus are able to answer different 

types of call. 

In this way not only is the waiting time for each call minimised but also fewer peo- 

ple are required to provide the same service level, 7.e. the percentage of answered calls 

within a given delay, compared to a traditional call centre where there are as many 

pools as there are queues.
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Figure 1.1: Schematic diagram of an improvement approach. There are Q queues and 

P pools in our system. The agents are gathered in the P pools whose agents can answer 

calls coming from different queues if having the good skills profile. 

  

  

  

      

  

  

      

Another quite significant point which is now taken into account, and which wasn’t 

in the traditional method, is the quality of the service (see constraints in the next chap- 

ter). We can both measure and specify the service level and the quality of how well 

the different calls are answered by agents with suitable skills. The number of agents 

in the system will increase or decrease if we modify these parameters. 

The aim of this thesis is as follows: 

1. to lead investigations on the properties of this model; 

2. to explore the distributions of the inter-arrival time and the service time; 

3. to investigate the effect of people abandoning calls before they are answered. 

10



CHAPTER 1. INTRODUCTION 

1.2 Data used for the forecasting 

To forecast the number of agents in a particular call centre, it is essential to be able to 

describe its daily activity. 

The data used last year corresponded to several periods, each of them of half an 

hour collected during a week. Amongst all the information, two main parameters were 

useful: 

1. the call volume i.e. the total number of incoming calls per period; 

2. the call duration: the average duration of a call which is the average service time. 

The drawback with using only these parameters is: these are just mean values and 

therefore do not fit perfectly the real outcome, and as strong assumptions had been 

made to build the model of forecasting, see Chapter 2 and Chapter 4, the only way to 

improve and to validate it was to use other sample data. 

That is what we have done using data collected from a single queue call centre 

during a week. For each incoming call, the exact arrival time and duration of the 

call were known. Thus deriving the inter-arrival time distribution or the service time 

distribution was feasible. I thank also Callscan for supplying the data. 

At least by combining these two sets of data we could improve the exactness of the 

forecasting method to be discussed now. 

1.3. A two step process 

In this section we shall briefly describe the way the number of people in the system are 

forecasted. The computation of the number of agents in the different pools is a two 

step process. 

Initially we compute the minimum number of people required to achieve a certain 

service level, which is the percentage of incoming calls answered within a certain pe- 

riod, for example 95% of calls have to be answered within 30 seconds, for each queue 

11



CHAPTER. 1. INTRODUCTION 

and for each period. We use a revised stochastic modelling of the queue and the two 

previous files of data to calculate them. Since the main parts of this model have been 

laid by G. Lecorroller, we shall briefly present them again in the next chapter to obtain 

a better understanding our own new development, described itself in chapter 4. 

In the second step we calculate the number of people in the pools, considering dif- 

ferent constraints: e.g. that the number of agents in the system should be at least 

greater than the one computed in the previous stage or by requiring that the skills of 

the agents have to correspond as well as possible to the types of calls they answer. By 

being more or less demanding in these requirements the predicted number of operators 

rises or decreases. 

Mathematically we use the scaled conjugate gradient (scg) algorithm to find the 

minimum of this optimisation problem under constraints since convergence is both 

quick and reliable. 

It is worth noting that in all the investigations we have carried we have assumed 

that the pools of people were uncapped: in each pool as many people as necessary 

could be used. 

1.4 Thesis overview 

Chapter 2 summarises the theoretical model proposed by G. Lecorroller. It is all the 

more important to introduce it as our work depends on it. 

Chapter 3 presents the different experiments we have carried out on the model: we 

observe the behaviour of the model by changing the Lagrange multipliers, increasing 

the number of pools and the effect of multi-skilling amongst others. 

Chapter 4 describes the validation done on the stochastic modelling of the queue 

and the mixture model used to fit more accurately the service time. 

12



CHAPTER 1. INTRODUCTION 

Chapter 5 presents the way that abandoned calls have been taken into account in 

our model. 

In Chapter 6 we validate our model using other data. 

The last chapter, chapter 7 presents the conclusions. 

The appendices detail algorithms and methods: 

e In appendix A, the computation of the coefficients of the EM algorithm is detailed 

for a exponential mixture model. 

e In appendix B, we calculate the first and the second order moments of an expo- 

nential mixture distribution and some various other elements. 

e In appendix C, the code of different algorithms is given with some comments. 

13



Chapter 2 

Overview of earlier work 

2.1 Introduction 

To solve the problem faced by the management, namely the allocation in different 

pools of agents to achieve a specified service level while still providing a good quality 

of service, G. Lecorroller proposed a two step scheduling method. The objective of this 

chapter is to describe it. 

First we present in a detailed way the stochastic model of the queues used to com- 

pute the required total number of agents in the system in order to achieve a particular 

service level. 

Once this number has been calculated, we have to allocate agents to different pools. 

Therefore we define, in the second part, a cost function and some constraints. 

The practical resolution is the subject of the third part: we also transform our 

problem of minimisation under non-linear constraints to an unconstrained minimisation 

problem. The optimum provides a solution to the agent allocation problem. 

Finally we present results obtained last year. 

14



CHAPTER 2. OVERVIEW OF EARLIER WORK 

2.2 Stochastic modelling of the queue 

2.2.1 Observations 

In the simplified approach proposed by Prof D. Lowe and Dr Ian T. Nabney, calls were 

supposed to be uniformly distributed across period (In the method of forecasting we 

used to work on data collected during a week divided in periods of half hour. The call 

volume, the average number of incoming calls in an half hour period and the mean call 

duration were the main parameters). This assumption of course was a bit unrealistic as 

there might be busy periods inside a half hour and as well as the service time couldn’t 

be constant, some very long calls needing much more time to be answered than others. 

For all these reasons, G. Lecorroller used basic elements of queueing theory to take 

into account fluctuations in the call density and the random nature of the service time 

distribution. His idea was all the more interesting and practical as it was possible to 

compute the number of agents to achieve a certain service level thanks to approxima- 

tion formula. 

General notions about queueing are presented here, for more detail see (Allen, 1978) 

or (Kleinrock, 1975). 

2.2.2 Describing a queueing system 

Practically, incoming calls enter a queueing system. They are dealt by servers, i.e 

agents, unless all of them are busy. In this case they have to join the queue and wait 

until a server becomes free. 

We can characterise such a queueing system by its inter-arrival distribution, its 

service time distribution, the number of agents present and the time a call spends in 

the system, which is equal to the time spent in the queue and the time spent being 

answered. 

In the following sections we are going to describe these parameters. 

15



CHAPTER 2. OVERVIEW OF EARLIER WORK 

It should be noted that a lot of queueing theory considers a single queue and a 

single service time distribution. As our model, see Chapter 1, was made up of Q 

queues, Lecorroller worked on merging them in one. 

2.2.3 Inter-arrival distribution 

We assumed that the inter-arrival distribution, for each queue q, i.e. the distribution 

which represents the time between two arrival calls, was exponentially distributed with 

parameter A,. The arrival rate A,, was supposed to be equal to the average number of 

incoming calls in an half period: that is to say to N,/(30 x 60). 

Moreover we made another assumption: as an agent could in theory answer calls 

from any queue it was pertinent to merge the different queues in a single one. The 

inter-arrival distribution of this single queue was also exponential with parameter \, 

equal to the sum of each queues parameter Aj: \ = Se Aq: 

2.2.4 Service time distribution 

As far as the service time was concerned we assumed it was exponential for each type 

of call with parameter yj, = 1/T,, different for each queue, where T, denoted the mean 

duration of a call in a half hour period. 

As the Q queues were merged in a single queue, we used, to model the service time, 

a Q stage hyper-exponential distribution given by: 

Q 
BY 

£@O= Sy cate with a,=—=9*_, 
q=1 ee Aq 

where a, corresponded to the probability that an agent answered a call of type q. 

(2.1) 

If it was quite easy to give a sound justification for the exponential nature of inter- 

arrival call distribution, it was far more difficult to give a valid reason why the service 

time should be exponential. One argument for was that the duration of each answer 

should vary a lot amongst the time and therefore that the standard deviation will be 

16



CHAPTER 2. OVERVIEW OF EARLIER WORK 

very large relative to the mean value: this is one of the characteristics of an hyper- 

exponential distribution. Because of this uncertainty, we will investigate this issue in 

Chapter 4 using new data. 

2.2.5 Required number of servers 

Assuming our model, described with Kendall notation, was an M/H,/c model, i.e. 

exponential inter-arrival time distribution, a g-stage hyper-exponential service time 

distribution and c servers (agents), Lecorroller proved it was quite easy to derive the 

number of agents required to achieve a certain service level by combining two approx- 

imation formulae: Martin’s estimate and the heavy traffic approximation. 

Before describing this calculation we have to introduce some useful notation. The 

total time spent in the system by a call, described by the random variable w, is equal 

to the time spent in the queue, defined by the random variable d, plus the service time 

s, the random variable representing the time to answer the call. To define the service 

level we need to introduce too the r percentile value of d, ta(r), defined by: 

Heavy traffic approximation 

If we suppose that the average utilisation of a server approaches 1 then the heavy 

traffic approximation states that the distribution of the queueing time, d, approaches 

an exponential distribution. And so to compute the r‘" percentile value of d, we use 

the following formula: 

  
: 100 

ta(r) = Wg x In (sa = :) 

where Wy = E{d] is the average waiting time in the queue. The justification of this 

formula and the following one can be found, of course, in G. Lecorroller’s thesis. 

In fact, as in practice we specify a certain service level to be achieved, the only 

unknown in this formula is Wa. 

LG



CHAPTER 2. OVERVIEW OF EARLIER WORK 

Martin’s estimate 

Martin’s estimate has the following form: 

   > O(¢,a)x 2 1+C? 

oe = 
where 

e sis the random variable describing the service time, 

 E{s] is the expected service time, 

¢ a= x E{s] and J is the arrival rate, 

e C(c,a) is the Erlang’s C function, 

Gea Seete the squared coefficient of variation of s. 

With this formula we can link the average waiting time in the system W, to the required 

number of servers c. And as all the parameters in our model were fixed, the service 

time, the arrival rate, also E[s], a, C(c,a) and C? were computable: 

° Es] = 2, & T=! pq 

° E{s?] 7 Dee it 

Vv 2 

¢ C(c,a), the Erlang’s C function, can be derived thanks to an iterative formula. 

More detail about this calculations can be found in appendix C of (Lecoroller, 1997). 

Eventually the only unknown was c. So the required number of servers c can be defined 

as the smallest positive integer so that 

C(c,a) x E[s] - 1+C? 
a 5 (2.3) c2zat 

In practice the computation of c is slightly different: we are going to explain it 

thanks to the following example. 

18



CHAPTER 2. OVERVIEW OF EARLIER WORK 

Example 

The service time distribution and the queueing time known, we want to compute the 

required number of people so that 90% of the calls are answered within 30 seconds. 

That means, as 90 is the percentile value, that 74(90) has to equal to 30 seconds, 

in other words that P(d < 30) = 0.90. 

By using the heavy traffic approximation we can deduce that 74(90) = Wa x In() 3 

2.3 x Wg and so that Wg has to be equal or less that 2 = 13 seconds. 

Now using Martin’s estimate, we can derive the required number of servers c, which 

is the value so that 

2 i 2 C(c, a) x E[s] - LC; << C((¢—1),a) x E[s] , 1+C? 

c-a 2 (c—1)-a 2 
  

2.3 Formalising the optimisation problem 

In this section we formalise the problem of allocation of agents in a call centre. In the 

following paragraphs we will introduce some mathematical notations. 

2.3.1 Variables and mathematical notations 

Our system is composed of P pools, in which agents with similar skill profiles are gath- 

ered, and Q queues. 

Since we aim at computing a required number of agents for each scheduling period 

throughout a whole week, we have chosen the connectivities between the channel and 

the skills pools as the major unknowns. The variable (c,,) denotes a link between a 

pool p and a queue g. The connectivity matrix C is of size (P x Q). In fact there is a 

separate copy of C' for each scheduling period. 

To characterise the workforce we define then another matrix S, (P x Q). Each 

element sp, denotes the ability of a person belonging to skills mix pool p to answer a 

call from the queue q. The values lie between zero and one. For example, if sp, is equal 

19



CHAPTER 2. OVERVIEW OF EARLIER WORK 

to 1 that means that people in the pool p have a 100% competency to answer arrival 

calls from queue q. 

We defined n,, the predicted number of agents required to answer the calls from 

queue q, by the product of the total number of servers in the system and the active 

calls in the queue q divided by the total number of active calls in the system in half 

hour period: 

NT, 

Se N,Ty 

where N, is the number of incoming calls in queue q during an half hour period, T, is 

  xc   Nq 

the average call duration in queue q. 

Two remarks can be made: 

¢ the sum wy pq can be regarded as the number of agents used to answer calls 

from queue q. 

e the sum Sy Cpq May be seen as the number of agent in the pool p. 

2.3.2 The cost function 

The allocation problem is not one of the simple unconstrained optimisation since there 

are different aspects we need to take into account.Each of the constraints corresponds 

to a specific term in the cost function. To reflect the relative importance of the different 

parameters we will use Lagrange multipliers. 

Now let us briefly present the different cost terms. There are: 

1. a measure of loss in quality: 

we - 
Ey = Q Se (= pqSpq — n) 

q= p=1 =1 

2. a term enforcing the sum on each queue to equal the number of calls: 

tafe j 
E, = ay (oem) 

q=1 \p=l 
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3. a term corresponding to the minimisation of the total number of staff in general: 

P 

Sia (Con)? 
qz=l p=1 a

o
 

4. a term corresponding to the minimisation of the deviation of the number of staff 

from the theoretically required number of agents c: 

1 fee 2 

-3(SEm-*) 
q=1 p=1 

We derive the final cost function as a combination of all previous terms: 

fe (RP (RY) 
((Cpq)) +4 Eo +E, + BE2 + 5B 

2.3.3 Constraints 

Once the cost function is defined, there are still some other constraints, which don’t 

correspond to quality measures but to some physical requirement such as: 

¢ all the connectivities should be positive: cp, > 0 

¢ no call should be answered by people completely unqualified: 

If Spg=0 then ¢,.=0 

e the number of agents in the system should be greater than c, the minimum 

number of agents required to achieve the specified service level: 

P 

= dom > 
q=1 p=1 

¢ an optional constraint can be added, if it is necessary, to cap the number of 

people in some skill pools: 
Q 

ite <A 
q=l 

As this worked successfully last year, we concentrated our investigations on other 

aspects of the algorithm, and all experiments were uncapped pools. 
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2.4 Transformation to an unconstrained problem 

Minimising a function subject to non linear constraints is much harder than looking for 

the solution of an unconstrained problem. That is why we used the penalty function 

method to find the optimum for our problem. 

2.4.1 Penalty method function and the scg algorithm 

In this section we discuss the principle and the way it was implemented. 

Consider a function f(x) we want to minimise, subject to constraints 

Gla) = 0) or “a{z) > 0 i = 1,...,n. We can construct a quadratic penalty 

function $ ¢@@ that we add to the former function in order to obtain a new function 

defined by: 

6 aor Polz, 8) = f(a) +5 ee 

where ¢ contains only those constraints that are violated at x and 6 is called the 

penalty parameter. The problem becomes unconstrained. 

If a*(5) denotes the unconstrained minimum of Po(zx,5), under mild conditions, 

lims_,.. x*(5) = 2*, where x* is the true minimum with constraints. Consequently, we 

have found a way to compute the constrained optimum of f: 

a. We minimise Pg(z,6) using the scg algorithm for a fixed value of 6. According 

to the direction in which we move, we will have to add more or less quadratic 

terms to the function. 

b. We increase the value of 0. 

c. We go to the step a. until convergence. 

The effect of the penalty term is to create a local minimum near to the constrained 

minimum of f, for sufficiently large values of 6. For more details, see (Nabney, 1997). 
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2.4.2 Application 

Implementing the constraints using the penalty method is quite straightforward. For 

example: 

¢ The fact that no connectivity should be negative corresponds to the following 

statement 

4b 
TE epg <0, then Bnew = Bota + 55 

e the fact that no call should be answered by completely unqualified people: 

If Spg=0 and c,>0, then Enew = Eota + oct, 

¢ the number of agents should be greater than c: 

Qe 6 QP 2 

If DIG then 2, = w+5 (Sdem--) 

qz=l p=1 q=1 p=1 

Eventually as the solutions i.e. the final value of the cp, are real positive numbers, 

the number of people in each pool p is the nearest integer rounded up from yee) Cae 

2.5 Conclusion 

The results computed with such an algorithm are quite good, as shown in Figure (2.1). 

The total reduction in the workforce was quite high: 25% fewer agents required in a 

week than with the traditional method. 

In a practical sense, the convergence was quite quick and straightforward and we 

did not need more than 30 minutes to schedule a full week consisting of 120 periods. 

Anyway some issues haven’t yet been taken into account as: 

1. the validation of the hyper-exponential distribution. In a first place this distri- 

bution seems too simple to model the true one and a Gaussian distribution may 

fit it much better. We will check this intuition in Chapter 4. 

2. the abandoned calls whose integration could lead to an decrease of the number 

of staff. Chapter 5 deals with this issue. 
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Figure 2.1: Comparison between the number of agents used in the traditional model 
(the dotted line) and the one used in the stochastic model of the queues (solid line). 

But before tackling those problems, investigating the behaviour of the scheduling 

program seems suitable. 
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Chapter 3 

Investigating algorithm properties 

3.1 Introduction 

3.1.1 Presentation of the issue 

In this chapter we discuss the experience we gained in testing the different programs 

written last year and exploring the effects of parameter variations on the optimisation. 

First we ran the simulation algorithm and laid out some results in detail. Then for 

the scheduling algorithm, we have tested different values for the Lagrange multipliers. 

Next we have generated new data by scaling up the existing ones and observing the 

effect of increasing the call volume, the mean call duration, and the number of pools 

on the predicted number of agents in our model. 

Third as we have noticed that the number of agents increases with the number of pools 

we have tried to cap it. 

Finally we have tested the effect of the multi-skilling. 

In the last section we have set out another approach to solving our optimisation prob- 

lem. 

3.1.2 Fixed parameters 

To keep the problem realistic and to be able to make good comparisons with Lecor- 

roller’s results we have decided: 
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© not to cap the number of agents in each pool i.e. to work with unlimited pool of 

people in each skills mix. 

¢ to utilise the “usual” skills matrix (generated by Callscan) most of the time (see 

Table 3.1) 

Skills Mix Matrix (unscaled) 
  

Queues |} 1 2 3) lea eo 6 
  

  

Pool 1 || 35 | 100 | 100 | 74| 0 0 
  

  

  

  

  

Pool 2 || 36] 0 0 | 0 | 100} 44 

Pool 3 | 60] 0 | 60} 0} 0 0 

Pool 4 |} 80} O | 51 | 30] 100} 0 

Pool 5 || 23} 0 | 100] 20] 77 | 100 

Pool6 || 60] 0 | 60] 0] 0 0 
  

Pool 7 | 0 | 100} 0 | 37] 0 0 

Pool 8 || 27] 58 | 0 | 0 | 69 | 100 

Pool 9 || 0 | 100) 74 | 0 | 59 | O 

Pool 10 || 22} 0 | 42 | 80] 51} 0 

Pool 11 |} 0 | O | 69 | 50] 0 0 

  

  

  

                          

Table 3.1: The eleven skills mixes. 

3.2 New simulations 

A simulation algorithm was developed last year to model the activity of a call centre. 

With the predicted number of agents computed in the minimisation algorithm, we try 

to estimate the service level or the over-waiting time through a week composed of 120 

periods of half hour. The over-waiting time can be defined as the percentage of calls 

which experience a delay superior to this specified by the service level. Because we 

are going to use it later, we need to define also the quality of service provided to the 

customers: it is the average competence with which calls have been dealt. A value of 

1 will signify that all calls have been answered by fully competent people. 
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More explanations about this algorithm can be found in G. Lecorroller Thesis. 

Our system was composed of 6 queues and 4 pools corresponding to the first four 

pools of the Table 3.1. 

By running the simulation again but with different random files, we didn’t find 

exactly the same results as Lecorroller even using the same data set. However to be 

able to make relevant comparisons, in the following chapters of our thesis, we are going 

to present our results. 

We used both the agent data file, coming from optimisation procedure and com- 

puted so that 95% of calls could be answered within 30 seconds and 38 different random 

data files, which are using to simulate incoming calls. All the results are a bit worse 

than those predicted last year. Nevertheless they still remain quite acceptable. With 

regards to the service level: on average 4.40% of calls are answered after 30 seconds, as 

shown on Figure 3.1; it is a bit less than twice as much as 2.75% predicted last year. 

On average now, the service level is not reached in more than 38 half periods amongst 

the 120 periods as shown on Figure 3.2. However the fact that for some simulations 

in more than 80 periods also in two thirds of the whole periods the service level is 

insufficient could seem very worrying but we should bear in mind several things: 

e What really matters is the computation of the service level for the whole week 

and not for every period. Let us consider the following example in order to have 

a better understanding. Indeed if during 60 periods just two calls are answered 

after 30 seconds, and if during 30 other periods on average 6 calls are not answered 

with an acceptable delay, in the first case the number of over waiting period will 

be much higher than if the second case. But for the managing staff in the second 

case 180 customers could be considered as dissatisfied compared to the 120 angry 

clients of the first case and that is the most important thing. 

e A last remark can be added: the 80 periods in which the service level is not 

satisfied, only correspond to 11% of the calls. 

In order to explain the bad simulations and the big standard deviation between the 

data it would be interesting to calculate the real duration of the calls which experiences 
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delays greater than the acceptable one. 

Until now we have focused on the bad cases, but it worth noting that in more than 

2/3 of the simulations the average service level is respected. 

As expected the quality of service, in Figure 3.3, is not as high as computed last 

year, but the average skill of an agent answering a call is still equal to 76.6%. The 

good point is that it remains near constant through the simulation, the fluctuations 

never exceeding 5%. 

In conclusion even though the results obtained by running several simulations were 

sometimes quite disappointing we are going to use them as a standard in order to 

compare the validity of further improved models in the next sections. 
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Figure 3.1: Histogram of the average percentage of calls, which experience a delay 

greater than 30 seconds before being answered throughout a whole week. Each interval 
corresponds to a simulation. The dotted line represents the mean of the data, where 

the dotted-dashed symbolises the 5% bar. 
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Figure 3.2: Histogram of the number of periods per week in which the service level is 

not reached. Each interval corresponds to a simulation. The mean number of periods 

is represented by the dotted line. 
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Figure 3.3: Service quality provided against experiments 
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3.3 Testing different values for the Lagrange mul- 

tipliers 

Recall that the cost function can be written as: 

E=£E)+ BE, +7 ot+6 Bs (3.1) 

where (, 7, 6 are Lagrange multipliers. 

Considering 4 pools and 6 queues we varied the coefficients amongst 3 values {0.1;1;10} 

and noticed that: 

- the quality ratio doesn’t change significantly, only 1.3%. To be precise it fluctu- 

ates in the interval (0.6157; 0.6243] (1 indicating perfect quality). 

- the number of required agents fluctuates less than 4%. 

Since these changes do not affect the results significantly, and as modifying the value 

of these coefficients will change the relative weight of the parameters which make up 

our problem and also the meaning of the problem itself, we have kept the coefficients 

chosen last year: § = 10, y = 1, 6 = 1 (see Lecorroller Appendix D p 114). 

3.4 Increasing the traffic charge 

Last year, some experiments were carried out with a fixed number of pools: 

e increasing the call volume; 

e increasing the average call duration; 

e increasing the call volume and the average call duration. 

The reduction in the number of agents computed with the stochastic model com- 

pared to the Erlang C model decreased as a percentage, whereas it increased in term 

of agents. 

We decided to investigate in more detail. First we have increased the initial call 

volume by 2, 5 then the mean call duration by 2, 5 and then both by 2, 5. In each 

30



CHAPTER 3. INVESTIGATING ALGORITHM PROPERTIES 

case, we have raised the number of pools from 4 to 11. But unfortunately no linear 

relationship appeared. 

We have also carried out the same experiments but for a given number of pools, 6, 

by changing the coefficients of the skills matrix: the results remained disappointing. 

3.5 Increasing the number of pools 

Even if the experiments on the traffic charge didn’t give convincing results, we noticed 

that the number of agents increases with the number of pools. Therefore we have 

decided to work out this problem. For practical reasons and to be quite realistic we 

have considered an increase from 4 to 11 pools with all other factors held constant. 

400 more people were predicted with 11 pools than with 4 pools with a given call 

volume and a given mean call duration as we can see from Figure 3.4. 
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Figure 3.4: Evolution of the number of agents used in the traditional Erlang C model 

(dashed line) and the number of agents used in our approach (stars) with the increase 

of pools. 

With regard to the quality ratio, as shown in Figure 3.5, after a gain of 10% with 5 

pools, we denote a stabilisation. We conclude that in this case increasing the number 

of pools used more staff without any increase in quality of service. 
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Figure 3.5: Evolution of the quality service with the increase of the number of the 
pools 

3.5.1 A rounding problem 

The explanation of this problem is quite simple: it is a rounding problem. 

We have already explained the two steps of the algorithm: 

1. First we compute the minimum number of agents required in each queue for each 

period in order to achieve a satisfactory service level. In fact as the different 

queues are merged into one, thanks to the approximation formulae, we derive an 

integer number for each period which is completely independent of the number 

of pools. 

2. In the second stage by using the scg algorithm we share this number between the 

different pools and for each period. In most cases real numbers are obtained for 

the coefficients cp, and rounded up to the nearest greater integer. 

Consider an example taken from the results above. 

Let us consider two cases: in the first case there are 4 pools in the system, and in the 

second 11. Now if we suppose that the minimum number of agents required to achieve 

the correct service level is 8 for one period, we have to share them in the different 

pools, using the scg method. In the first case after rounding, 10 people will be neces- 

sary, whereas for 11 pools 13 agents will be predicted, as shown in Table 3.2 and in 
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Table 3.3. Thus just for one period and for the same call volume, 3 more people will 

be required with 11 pools than with 4 pools. 

The way to solve this issue poses a difficult problem for us. Finally after many 

unsuccessful attempts which we will explain later, we managed to find an empirical 

solution which nevertheless gives quite good results. It is the subject of the next 

section. 

3.5.2 Solution to the rounding problem 

In the following we will always use two kinds of rounding: the rounding up towards 

the nearest greater integer (for example 1.4 will be rounded to 2), and the rounding 

towards the nearest integer (still for the same example, 1.4 will be rounded to 1). 

In the optimisation algorithm so far all numbers were rounded toward the greater 

integer. So the main issue is now not to round all the numbers to the nearest integers 

towards infinity but only a few and therefore to round the others towards the nearest 

integers whilst preserving the quality factor. 

Let us explain the principle of our solution. We run the optimisation algorithm 

twice. The first time, we compute the agents required for a determined number of 

pools, we will consider as a reference, (in our example the standard will be 4 pools). 

And we store them without any rounding in a first matrix. Then we repeat the oper- 

ation, for the desired number of pools (still in our example those were the 11 pools) 

and store them in a second matrix without carrying out any rounding. At this stage 

in our algorithm there are no rounding errors. 

Then for each period we round the numbers of the second matrix, whose quality 

factors are the greatest- see Lecorroller scheduling algorithm code- toward the nearest 

greater integers and the other numbers simply toward the nearest integers. In this way 

we manage to keep a good quality factor. 
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True numbers | Rounding numbers 

Pool 1 2.33 3 

Pool 2 3.33 4 

Pool 3 1.34 2 

Pool 4 1 i 

Total 8 10         

Table 3.2: Results with 4 pools before rounding (true numbers) and after rounding 
(rounding numbers) 

  

  

  

  

  

  

  

  

  

  

  

  

    

True numbers | Rounding numbers 

Pool 1 0.6 aL 

Pool 2 14 2 

Pool 3 12 2 

Pool 4 0.2 1 

Pool 5 0.6 il 

Pool 6 0.6 1 

Pool 7 0 0 

Pool 8 0 0 

Pool 9 0.4 1 

Pool 10 1.5 2 

Pool 11 1.5 2 

Total 8 13         

Table 3.3: Results with 11 pools before rounding (true numbers) and after rounding 
(rounding numbers). 
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Practically, the way to handle each period can be described: 

¢ we classify the real numbers of the second matrix, each corresponding to one 

pool, in ascending order according to the value of their quality factor. 

¢ we round the numbers (real) of the second matrix, the ones after the others, 

toward the nearest greater integers, and we stop roughly when the sum, of all the 

numbers is superior to the sum, rounded to the nearest integer, of the numbers 

belonging to the first matrix of reference. 

¢ if there are numbers of the second matrix left which haven't been rounded towards 

the nearest greater integer, we round them, but towards the nearest integer this 

time. 

Thus we manage to cap the number of people in each period even with lots of pools. 

3.5.3 Results and validation 

The results are depicted in Table 3.4. We have represented the number of people 

required according to the new method against the one computed with the former al- 

gorithm. With this new approach and throughout a week only 32 more people are 

predicted with 11 pools than with 4 pools. The capping is also quite good because 400 

more people were necessary with 11 pools than with 4 pools before. 

To validate more carefully our new approach we have run the algorithm that simu- 

lates the activity of a call centre for a whole week. These results are the average of 10 

representative simulations each run with a different random seed. 

These results are quite good, see in Table 3.5. We noticed that there is a gap, both 

for the over waiting time and the quality ratio between the 4 pools system and the 

other systems component of more pools. We can easily explain this phenomenon by 

the presence of both more agents and agents 100% competent to deal with calls coming 

from the queue 6, as shown on Table 3.1. 

In a nutshell we won't draw any sort of general conclusion between the pools them- 

selves in particular, because it is a question of skills competencies. So we will content 
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Staffs with the new method | Staffs with the old method 

4 pools 5670 5670 

5 pools 5671 5716 

6 pools 5680 5770 

T pools 5698 5822 

8 pools 5699 5870 

9 pools 5708 5916 

10 pools 5714 5974 

11 pools 5704 6044         

Table 3.4: Predicted number of people with the new and the old approach for 4 until 

11 pools 

  

  

  

  

  

  

  

  

        

Over waiting time | Quality ratio 

4 pools 4.6 76.4 

5 pools 3.4 83.9 

6 pools 3.8 83.0 

7 pools 3.7 82.6 

8 pools 3.0 82.1 

9 pools 3.0 81.8 

10 pools 3.1 82:5 

11 pools 3.4 81.8     

Table 3.5: Average over waiting time, i.e the percentage of the calls which experiment 

a delay superior to this specified by the service level and average quality ratio for 

different number of pools. 
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with noticing that the service level is satisfied in all the cases, and that the quality 

ratio slightly improves with the increase of the number of pools. 

Some remarks need to made. First, even if the capping seems quite good, other 

experiments should be carried out with different skills matrices to really ensure that 

the method works in every case. Second we can’t assert that our solution is completely 

rigorous because we need in the first stage to compute the workforce required for a 

determined number of pools, which will use as a reference later. Shall you take 3, 4 or 

5 pools in the first step as reference pool? 

3.5.4 Other approaches which do not work 

To resolve the problem, the first idea we tried, was to integrate a new constraint in the 

optimisation algorithm under the form of a penalty term: 

Q Q @ 2 5 ie > Ga & then Ena, — wi$ (3 «2 on 
q=l q=l q=l 

where [x] is the integer part of x. 

But unfortunately despite the running of hundred simulations, we got no convincing 

results. Even by using different penalty functions, let them move, by combining in 

the algorithm both new and older constraints and using several loops, no significant 

decrease occurs. 

Eventually we had to give up and lost a lot of time, because each simulation was 

very costly in terms of time. 

3.6 Testing the effect of multi-skill pools 

We have carried out experiments to investigate the behaviour of the multi-skilling, 

i.e. when each pool could answer several queues. We wanted to confirm the results 

obtained last year by Lecorroller. He noticed, by using a modified skills matrix (see 

(Lecoroller, 1997), p83) that is to say, when each incoming call could be allocated at 

least to two pools of agents, that the fraction of over waiting calls decreases compared 
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to the ones computed with the usual skills matrix see in Table 3.1. By considering 6 

pools and 6 queues, we ran the “simulation” program 6 times, when each pool could 

answer from 1 to 6 queues: in the first simulation we considered that each pool had the 

full competency to answer 1 queue, then in the second simulation that each pool could 

answer two queues, one with a full competency and the other one with half competency 

et cetera. 

We noticed that both the quality ratio and the over waiting time decreased with the 

multi-skilling. Unfortunately in spite of those observations nothing could be derived, 

because other simulations with different random seed and a different number of pools 

gave contradictory results. The dependency of the data skills on the fluctuation of the 

service level and of the quality ratio seemed obvious. Therefore no conclusion as for 

the best number of queues that a pool has to answer can be drawn. All the more it 

depends on the importance we give either on the quality ratio or to the over waiting 

time. We can just confirm that it seems preferable that a queue can be answered at 

least by two pools. 

3.7 <A quadratic programming problem 

In the previous chapter, we showed how to solve the problem of human allocation re- 

source by using the scg algorithm and the penalty method. 

As the cost function contains quadratic terms and as all constraints except one are 

linear, we have investigated whether we could transform the problem into a quadratic 

programming problem, with just linear constraints. That is to say to be able to rewrite 

the problem in the following form: 

Min $ 2'Ha+ca 
(3.2) 

under constraints Az <b 

where x, b are vectors and H, A are matrices. 
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The function to minimise modulo a multiplier factor 1/Q, see section (2.3.3), can 

be defined by: 

f: (Rt)P*? — (R*) 

Que P ° Q /P 2 
(Coq) 45 3 (doens Pq 4) +9% (Sem) +7) >, 

=1 q=1 \p=1 q=l q=1 p=1 

QP z 

+6(Sdoen-¢) 
q=1 p=1 

It can easily be rewritten, modulo a multiplier factor, within the required form: 

QP Q P 

Dy gS, (52, +B +745) +29 >> Cog (Tarsus +9+ DD ee) 

  

  

q=l p=1 qz=l p=1 p' zp VFap' Fp 

LatHe 
QP 
2a Coq (—SpqMpq — Brg — 5c) + (sera (1+ 8) )+82) 

q=1 p=1 q=1 

ete. constant 

We can also make two remarks. First we can identify the cpg variables with the x 

variables in the previous equation. Secondly, as a constant doesn’t change anything in 

a minimisation problem, this equation has the correct form. 

With regard to the constraints, all are linear except one: 

e the fact that all connectivity should be positive: 

Cpqg 20 V(p,q)e[1,.., P] x [1,.., Q] 

¢ the fact that the number of agents in the system should be greater than c: 

e even the optional constraint to cap, if necessary, the number of people in some 

skills mixes is linear:
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The non linear constraint is that no call should be answered by people completely 

unqualified, i.e. if S,,=0 then pg = 0, can be suppressed by removing the vari- 

ables cpg whose associated Spq are zero. 

In this way we can transform the problem into a quadratic programming problem 

with linear constraints. We have not implemented it in this fashion because quadratic 

programming algorithms are complex, and using a general purpose optimisation algo- 

rithm (scg) with the penalty function method was adequate for all our experiments. 
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Chapter 4 

Refinement of the stochastic model 

4.1 Introduction 

In Chapter 2 we have presented briefly the stochastic model of the queues. Strong as- 

sumptions have been made that we are going to test thanks to the availability of much 

more detailed data. Firstly we will be interested in the inter-arrival time distribution 

and secondly in the service time distribution. 

Although the data provided by Callscan is from a single queue and comes from a dif- 

ferent centre than the one used last year, we can perform some relevant investigations. 

Indeed the above-mentioned distributions have general characteristics independent of 

the call centre, that we can show by exploiting several types of information for each 

call: 

the nature of the call, either normal calls or calls abandoned in the ring or in the 

queue; 

e the time the call occurred; 

¢ the time the call waited before being answered or the caller abandoned; 

e the call duration for answered calls; 

¢ the group which was intended to service the call, -1 indicates the group was 

unknown. 
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From this information, we have computed the time between each arrival i.e. the 

inter-arrival time, and the service time. An anomaly was detected. Too many service 

times equalled zero, at least one third of all the data. So we have recomputed a realistic 

number of zeros by using the mean of the data. In fact this computation seems all the 

more justified since the presence of excessive zeros can only be considered as some 

‘noise’ or error in recording the data. Moreover answered call whose duration is null, 

requires no agents and can also be partially removed from the sample data. 

4.2 The inter-arrival distribution 

4.2.1 Review 

Last year, we assumed that there were several queues indexed by q, each one described 

by the arrival rate \,. We also decided to model the arrivals of the calls from the 

different queues as a single Poisson process whose arrival rate parameter \ was equal 

toA= Sy A, and for obvious reasons we also modelled the inter-arrival time of calls 

as an exponential distribution. 

Thanks to the new data we are going now to investigate the inter-arrival service 

time distribution. 

4.2.2 Results 

As expected, an exponential distribution with mean computed from data is an excellent 

fit, as shown by Figure (4.1). Hence there is no need to change our model for the inter- 

arrival distribution. 

4.3 The service time distribution 

4.3.1 Review 

In our model the service time distribution for each call was exponentially distributed 

with different parameters for each queue q: 
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Figure 4.1: Real inter-arrival time distribution (solid line) against exponential distri- 

bution (dotted line) with mean computed from the data. 

- the service rate {1g 

A - and the probability an agent answers a call of type q, a, = Fo: 
qa 49 

We also assumed that all the queues could be merged in one, using a Q-stage 

hyper-exponential distribution, the density function of this hyper-exponential service 

time distribution being equal to 

Q 

fs(t) = Ss Qgpge "with ag = ee (4.1) 

q=l ae Aq 

4.3.2 First results 

If we were quite confident with regard to the inter-arrival time distribution, there was 

less reason to expect from the first principles that the service times should have an ex- 

ponential distribution. Therefore we investigated other parametric distributions such 

as the Gamma distribution, Erlang-k distribution, and Gaussian distribution to see if 
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they were more appropriate to fit the service time. Their analytical definition is given 

in Appendix B.3.4. 

But manifestly, see Figure 4.2, if it is not really an exponential distribution, (see 

Figure 4.3(a)), it is less likely to be these others, as shown in Figures 4.3(b), 4.3(c) and 

4.3(d). 

0.08 

0.06 

0.05 

0.04 

0.03 

0.02 

0.01 

° 50 100 150 200 250 300 350 400 
s 

Figure 4.2: Service time distribution. 

As the sample data of the service time distribution has a large standard deviation 

relative to the mean value, standard/mean = 6.5 the hyper-exponential distribution 

seemed the most likely near to the service time distribution. Therefore we decided to 

try to fit this by a mixture of exponentials. 

Thus in the next section we will introduce the theory of the mixture model and 

describe how those parameters can be estimated by the EM algorithm in the case of a 

mixture of exponential distributions. In the following section after we will present the 

new model we had to create to take the new service time distribution into consideration 

in the optimisation procedure and the results which ensue. 
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Figure 4.3: Parametric fits to the service time distribution. 
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4.3.3 Mixture models and EM algorithm 

Mixture models 

A mixture model represents, see (Bishop, 1995), an underlying density function as a 

combination of M simpler density functions: 

M 

p(x) = > P(s)p(xls) (4.2) 
j=l 

where the P(j)’s are the mixing coefficients or priors, which satisfiy the following 

constraints: 

O0< Pj) <1 
= 0) (4.3) 

ja PY) =1 

and where p(x|j) is the probability that the random value x is generated by the com- 

ponent j. This is also normalised: f p(x|j) dx =1 Vj, j =1,...,M. 

In our case, to model the service time distribution by a mixture of exponentials we 

choose the density functions p(x|j) so that p(x|j) = j.e~"*, A; is the inverse of the 

mean of the component j. 

Then fitting the model to data is a question of estimating the unknown parameters 

ie. {P(j),Aj, 9 =1,...,M}. We can do this using the Expectation-Maximisation 

algorithm. 

Expectation-Maximisation algorithm 

The EM algorithm, see (Bishop, 1995), is an iterative algorithm used to determine the 

parameters of a mixture model. 

Consider a data set of N values (x,22,...,2). We want to find the mixture 

model, see equation (4.2), which describes the distribution of this data set. To de- 

termine the parameters of this exponential mixture model, making the usual i.i.d. 

assumption, we can maximise the likelihood defined by: £L = p(t): In fact it is 
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equivalent to minimising the negative likelihood: 

M 
B=-nl=— dm { Por pbsnls)} (4.4) 

1 

To simplify the notation, we let 6 = {0;, j=1,...,M} ={P(j),Aj, J =1,...,M} 

Principle 

We have talked about an iterative algorithm: during the optimisation procedure, 

we shall adapt the parameters in order to increase the likelihood £. So we define 

the current value of the parameter vector 0, to be 0%@ and its new value 6” after 

modification. 

We have therefore to minimise a new quantity: 

N M 

Erg) — SY P(jlern, 0%!4)In{ Peal, 89”)P™"()} (4.5) 
n=1 j=1 

The justification of this new formula is given in Appendix A. 

As for the principle of the EM algorithm, it alternates two steps: the E-step and 

the M-step (We will later discuss its initialisation). 

The E-Step or “expectation” step computes the expected complete-data 

log-likelihood E°°”? (9"”) with respect to the posterior probabilities P(j|xn) for every 

data point x, and every component j, using the current, fixed, values of the parameters 

Ao, Pold(;); 

sald) Pej) 
P(j|Xn) = FF pln] Pau) "plea Pag) (4.6) 

The M-Step or “maximisation” step determines new, re-estimated, values of 

the parameters 6" by maximising the value of €°"? (9"*”) computed in the E-step. 

In the case of an exponential mixture model the updating relations are: 

Diner Pla, 6384 
dinel a ORY) an 

new — (4.7) 

  

pren(j) = 5 Poem (48) 
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Proofs and details can be found in Appendix A. 

Then we repeat the E-step and the M-step until our algorithm converges. It is 

worth noting that both steps guarantee the increase of the likelihood, i.e. the decrease 

of the negative log-likelihood unless it is already at the maximum. We can use it with 

confidence although sometimes we find sub-optimal local maxima or degenerate cases 

(when the variance of a component shrinks to zero). 

Initialisation 

The optimum parameters depend on the starting points of the equations (4.7) and 

(4.8). As we haven’t any information a priori, we initialise the priors P(j) to #4 for all 

Jj, and choose randomly the \; in the interval [0,1]. 

4.3.4 Data’s problem 

The practical implementation of this algorithm is quite easy and after a period of tests 

ensuring our model was working with basic examples, we have tried to compute the 

priors and the lambda parameters from our sample of data. But it didn’t work at all. 

After a few steps at least one lambda parameter tended to infinity. This was due to 

the presence of too many zeros, one third of all the data values, among the data of 

the service time distribution. After discussion with CallScan we decided that most of 

these zeros were erroreously recorded. 

To resolve this issue we computed a more realistic number of zeros by assuming that 

the service time distribution followed an exponential distribution with parameter the 

inverse of the mean of the data i.e. fitted an exponential to calculate an approximate 

frequency of zeros. 
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In practice we just had to solve the following equation: 

number of calls whose duration equals to zeros 
  

  

PIO sAe 1) 
(@s*s1) total number of calls 

1 

ive. | Ve 
0 No +n 

’ _ (mgt) no 
t.€. l-e i =   

not ny 

The definitions are listed below: 

e X, X; are the random variables corresponding to the service time duration 

© mo the number of calls whose service time is equals to 0 

e nm, the number of calls whose service time is >1 

X the parameter of the service time distribution is equal to the inverse of the 

mean m, defined by : )>; Xi/(mo + m1) 

And as result the predicted number of zeros is now 132 compared to 8300 from the 

original data. In the same time, we removed data with a very large service time, that 

is to say, calls lasting more than 2 hours: they are very few (0.17% of the total sample) 

indeed and are erroreous records. 

An interesting point to investigate now is the consistency of the data: it is all the 

more important to check that the mean and the variance of the data are stable as lots 

of theorems in the queueing theory rely on them. 

Thus we have computed, see Figures 4.4(a) and 4.4(b), the error bar of 10%, 20%...., 

90% our sample. The results, in each case, are the average of 1000 samples randomly 

chosen among the whole data and with the required proportion. It is obviously that 

the average values of the mean and the variance for each sub-sample fit very well the 

mean and the variance of the whole data. Therefore we can conclude that our sample 

is consistent. 

4.3.5 Results 

We computed the coefficients of the mixture model for the new data. We also had to 

determine the complexity of the model, i.e. the number of mixture components. 
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Figure 4.4; Representation of the data error bars for the mean a), for the variance b). 
Each error bar has been computed with 1000 sub-samples. The solid line joints the 
average of the value which range over the error bars. 

Choice of the number of components M 

To choose the required number of mixture components, see equation (4.2), we computed 

the error per point for different numbers of parameters: this is simply the negative log- 

likelihood per data, see Figure (4.5). 

The kink in the graph at 3 components indicates that this is a reasonable choice, in 

that adding more components does not significantly affect the data likelihood. 

Fit the service time distribution 

The fit of the service time distribution with a mixture model of three exponentials 

is shown in Figure (4.6(a)). There is no doubt that it fits much better the real ser- 

vice time data, particularly at small values, than a single exponential as shown as in 

Figure (4.6(b)). 
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Figure 4.5: Number of components vs Log-likelihood per point 

4.4 New queueing model 

4.4.1 New service time distribution 

In this section we shall integrate the new service time distribution in our stochastic 

model of the queues. In the last paragraph we showed with new data from a single 

queue, that the service time distribution could be approximated well by a mixture of 

exponentials. 

Since there are several queues, we have to make an assumption: we suppose that 

each queue has a service time distribution whose density function follows the mixture 

density of exponentials we have computed earlier, but with suitable scaling. 

Let us explain in more detail what it means. We have just seen that the density 

function of a mixture model of exponentials was given by: 

M 

FQ) => PO) aije** (4.9) 
j=l
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(a) Service time distribution (solid line) fitted with a mixture of 3 exponentials (dotted line). 
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(b) Service time distribution (solid line) vs single exponential (dotted line). 
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and so we can derive the mean of this distribution, m: 

M 

m= E[X]=)~ 
j=l 

P(j) 
ity 
  (4.10) 

We now substitute, for each queue g, the former service rate ae ), equal to 7 
the inverse of the mean duration of a call in a period, see review and equation (4.1), 

by a M-vector (jigi,.-. , /tgar) where the jth element Hgj is equal to: 

= A, fly = = fh (4.11) bgj = Gq fj = = fy : a5 MEPS gL 

Thus we can derive a new service time distribution with mixture model for our Q 

queues system. The density function is then equal to: 

Q M 

falt) = Yay (D7 PU)itine***) (4.12) 
j=l q=1 

with a, = ey 

This shows an advantage of using a mixture of exponentials, as the density function 

is still hyper-exponential. Let us come back to the formula (4.11). Previously we only 

had the mean of the service time distribution T, for each half hour period and each 

queue q. Now thanks to the new data, we have represented the service time distribution 

amongst a week, and the mean m = a <4 in case of a single queue. We want to 

scale the mean of the mixture of exponentials so that the mean of the mixture model 

is the same as jg. Thus if we suppose that the service time for each period and for 

each queue has the same distribution that for a week modulo a multiplier coefficient 

aq, we can deduce that 

¢ in terms of mean: 

m m 
f= — 16s q@=— ae “iT, 

e in terms of service rate : 

aq (fi1,.-- , fia) (instead of pg) is the new service rate for each queue q 
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It is worth noting that the mean duration of calls for each queue in our previous 

model did not vary too much throughout the week as we can see on Figure 4.6. The 

periods in which the mean duration is zero, have no worth because there are then no 
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Figure 4.6: Mean duration of a call in the six queues during a week. 

Having found a better model for our system, we are going to derive the number of 

servers required to achieve a given service level. This is done in the next section. 

4.4.2. The minimum number of servers required 

As we recalled in Chapter 2, to compute the required number of agents in the system 

we applied two approximation formulae available for M/G/c model, i.e. for a random 

Poisson arrival pattern and a random general service time distribution and c servers. 

As the inter-arrival distribution is still exponential, that is to say the arrival pattern 

is still a Poisson process and even if the service time distribution has changed, we can 

use those previous formulae. 
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In fact the service time distribution appeared only in Martin’s estimate: 

C(c,a) x E[s] eee Gg 

We e=@a 2 

where 

e sis the random variable describing the service time 

E{s] is the expected service time 

a =x E{s] and 4 is the arrival rate 

C(c, a) is the Erlang’s C function 

= oe is called the squared coefficient of variation of s 

As we know the mixture hyper-exponential service time distribution, see equa- 

tion (4.12), the different parts can be computed: 

¢ Bs] = Ee =1%q Tq 

¢ Bs] =202, 93" (DB) 

Var{s] _ Els? 
© C= BF 8-1 

e C(c,a), the Erlang’s C function, can be derived thanks to an iterative formula 

For more details see appendix B. Thus we can compute the minimum number of 

servers in the system for each half hour i.e. the minimum number of servers to achieve 

a specified service level, and the remainder of the procedure is as before. 

4.4.3 Results 

As expected, the minimum number of people, corresponding to the first step our process 

see paragraph 1.3, computed with the new service time distribution increases compared 

to the one computed with the old stochastic model of the queue. But it’s a very small 

increase: less than 1.6%. 

And if we also run the algorithm to compute the number of people we have to share 

between the different pools, the increase is still smaller : less than 1.5% compared to 
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the old one. In Figure (4.7), we can barely see the difference, so we have represented 

it in Figure (4.8). 
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Figure 4.7: Comparison between the number of agents required with the stochastic 

model(solid line) and with the new model (stars). 
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The topic of the next section is to validate our model using the simulation program. 

4.4.4 Validation 

The improvement carried out in the stochastic model accompanied by an increase of the 

predicted number of agents in the system. Normally it should lead to an improvement 

of the service level. One of the way to check this assumption is to run the simulation 

program. 

It is actually the case, as shown in Figure 4.9, now, only 3.58% of calls are not 

answered within 30 seconds, compared to the 4.42% with the previous stochastic model. 

The most appreciable difference takes place in the simulations which gave very bad 

service level: the decrease of the overwaiting time is significant between 1.5% and 

2%. It is worth noting that the service time is reached now in 71% of the simulations 

against 61% before. With regards to the average number of periods in which some calls 

experience an unwished delay, we observe a more significant drop in Figure 4.10(a): 

from 38 periods to 30 periods. That may confirm the assumptions that in lots of 

periods there are just a few number of calls which are waiting for a too long a time. 

And the presence of one, two or three people more, see Figure 4.8, is enough to cope 

with this. 

Figure 4.10(b) depicts the quality of service. We should not be misled by the 

scale of the graph, indeed it still remains quite stable, and we can notice a very slightly 

improvement from 76.6% to 77.0%. It is easily understood: some calls will be answered 

by agents more qualified, who were occupied before answering other calls for which they 

were less qualified. As the increase of agents in each pools is limited, the increase of 

the quality will be moderate too. 

4.5 Conclusion 

Even if the stochastic model of the queue developed last year was quite satisfactory, 

some doubts remained as to some assumptions made. Thanks to the new data file, pro- 

vided by Callscan, some weaknesses of the old model have been spotted: in particular 

the non hyper-exponential nature of the service time distribution. To cope with this
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Figure 4.10: a) Histogram of the number of periods per week in which the service 

time is not reached. The black bars correspond to the stochastic model whereas the 

white ones to the new model. 

b) Quality service provided for the stochastic model (solid line) and for the new model 
(dotted line) against several simulations. 
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issue, a new model based on mixture model has been developed which fits now much 

better the real phenomenon, the service time. 

To validate the new model, two approaches can be proposed: 

¢ running some simulations. That has been done, see previous paragraph and the 

results were quite promising since the increase of agents goes with the increase 

of the service level. 

¢ testing with another set of data: the results will be presented in Chapter 6. 
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Chapter 5 

Abandoned Calls 

5.1 Introduction 

So far we have not taken abandoned calls into account: this is the objective of this 

chapter. Intuitively we may think that their integration in our model may decrease the 

number of staff required for the same service level as previous but this is not the case 

as we shall see. 

After a short study of the data and of the queueing distribution, we will propose a 

method to tackle this problem. 

5.2 Data analysis 

From the data provided by Callscan, already used in the previous chapter, we can 

compute the queueing time i.e. the duration a call spent in the queue. Of course we 

will remove from the sample, the data whose service time duration is equal to zeros. 

A priori, a call whose service time is equal to zero cannot be considered as significant. 

Moreover as it does not require any agents, it has not to be taken into account in the 

long process of the computation of the number of agents. 

In Figures 5.1(a) and 5.1(b) we have represented the general queueing distribution, 

i.e the duration of incoming calls (answered and abandoned) spent in the queue, and 

the density function. The obvious point about these figures is that more than 2/3 of 
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    calls, 77%, do not spend any time in the queue. They are immediatly routed forward 

to agents or abandoned. 

With regard to abandoned calls, the calls are more spread, as shown in Figures 5.1(c) 

and 5.1(d). 
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Figure 5.1: Representation of the queuing time for incoming calls, a) and b), and for 

the abandoned calls, c) and d). 
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It is worth noting that the proportion of abandoned calls is 18%. This is due to the 

fact that we didn’t count the calls with service time duration equal to zero. Otherwise 

this proportion would have gone down to 11%. In fact it is not as important as we 

could think because we won’t use this proportion directly as we will see in the next 

paragraph. It just outlines the importance of the phenomenon and the necessity of 

dealing with it. 

Another interesting point that needs to be examined is the queueing distribution 

of answered calls, that is to say, calls which will be dealt with by operators. 

Figures 5.2(a) 5.2(b) provide good representations of the distribution. 

In the former model, strong assumptions were made: the Heavy traffic approxi- 

mation implies that the distribution of the queueing time approaches that of an ex- 

ponential. The random variable describing the queueing time d, see paragraph 2.2.5 

concerned all incoming calls. But as we now take abandoned calls into consideration, 

we will restrict the validity of the Martin’s Estimate and Heavy traffic approximation 

just to the answered calls. Furthermore it is interesting to check the practical im- 

plication of the Heavy traffic approximation on the queueing distribution of the calls 

being answered. Although the probability density function (p.d.f.) of those calls is not 

exactly fitted by an exponential distribution as shown in Figures 5.2(c) and 5.2(d), it 

is much better that other classical distributions such as the gamma Erlang. Therefore 

in the following we will still go on working with this assumption. 

5.3. New model 

5.3.1 Observation 

Abandoned calls may affect the predicted number of agents in the system. Paradox- 

ically more agents will be required to respect the same service level. This is because 

abandoned calls are treated as unanswered: we have therefore to ensure that a greater 

proportion of the remaining calls is answered within the time limit. Thereby more calls 

will have to be answered during the same time so that the average delay of waiting for 

answered calls will decrease. Consequently the required number of people will increase 
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Figure 5.2: Representations of the queueing time of the abandoned calls. In the two 

last graphs, the parameter of the exponential distribution is computed thanks to the 

data. 
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according to Martin’s approximation formula. 

The definition of the service time will slightly change: if it was seen before as the 

percentage of incoming calls within a period, it will be regarded now as the percentage 

of non abandoned calls which are going to be answered. 

5.3.2 Revisiting the Heavy Traffic approximation 

After this practical justification we focuse on revisiting the two approximation formu- 

lae. Let us define d, the random value describing the average waiting time spent in the 

queue by a call which will be answered. The expected value of the time spent in the 

queue, considered as the average waiting time in queue will be denoted as Wj = E[d] 

and will still be equal to Martin’s estimate. 

With regards to the Heavy Traffic Approximation, as the definition of the service 

level has slightly changed, the usual formula 7q(r) = Wy x In (48%) doesn’t apply for   

the r percentile value of d, 74(r). All the more as the abandoning calls should have 

to be integrated. We let d still denote the random value describing the time spent in 

the queue, but by all the calls, i.e. incoming calls = abandoned calls + answered calls. 

Let us introduce some useful notation: 

e N: the number of incoming calls. 

e r: the proportion of incoming calls which have to be answered in order to achieve 

the former service level, in fact r/100 is a percentage. 

e a,: the proportion of abandoned calls, a,N is the number of abandoned calls. 

Consequently the number of calls effectively answered is N — a,N. 

For a specified service level, given a number of incoming calls, we can express the 

number of calls which have to be answered within a certain period. In fact, the consid- 

ered period in both cases for all incoming calls or non-abandoned incoming calls, will 

be the same, then 74(r) = 74(r). 
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Therefore the first expression is equal to the number of incoming calls multiplied 

by the probability that the duration of incoming calls in the queue be less that g(r). 

But it can be seen too as the number of answered calls multiplied by the probability 

that the duration of answered calls be less than 7j. With our previous notations: 

P(d < n4(r)) x (N —a,N) = P(d < m4(r)) x N 

And as P(d < ma(r)) = 75 we deduce that the r‘* percentile value of d is defined 

by: 

PU < male) = Fe x 
Still assuming the Heavy traffic Approximation, and that the queueing time distribu- 

tion for answered calls can still be approximated by an exponential distribution, see 

5.2, we can use the following formula: 

nr) = W3x In Cresiers (8.1) 

Details can be found in appendix B.3.4. 

In this relation, the expected queueing time, W;, the r** percentile value and the 

proportion of abandoned calls a, are linked. To solve our problem of computing the 

required number of agents, we have also to calculate Wj. But this can only done if we 

are able to evaluate a,. This is the aim of the following section. 

5.3.3 Fraction of abandoned calls 

As abandoned calls affect the service level, we need to be able to compute the fraction 

of abandoned calls in some time interval. 

This can be done by using a convolution. If A(t) denotes the probability density of 

the fraction of abandoned calls, then by convolving A(t) with the relevant exponential 

distribution for non abandoned calls, denoted w(t), it also possible to calculate the 

fraction of abandoned calls in the interval (0, 74(r)]: 
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mn io
 

ma(r) 
aa | A(t)w(t)dt (5. 

0 

where: 

e the exponential distribution of the queueing distribution given by the heavy traffic 

approximation is equal to: 

ee 
w(t) = wxé wt 

d 

e and the probability density of the fraction of abandoned calls is defined by 

number of abandoned calls during any time interval [t,t + dt] A(t)   
~ number of (incoming) calls queueing during any time interval [t, t + dt] 

In Figure 5.3 we have represented this fraction using the current data. 
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Figure 5.3: Representation of the fraction of abandoned calls against the time. 
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5.3.4 Algorithm 

To compute the new required number of agents in the system we need to evaluate WwW, 

defined in the equation (5.1), but Wj depends on a,, and a, on Wj, so we can’t compute 

in a one step those quantities. An iterative procedure looking for a fixed point solution 

has to be used: 

1. Compute Wj as in the current procedure (i.e set a, = 0 initially): 

  

2. Compute a, from (5.2) 

3. Compute Wj from (5.1) 

4. If a, and Wj have not converged, go to 2. 

Since a, is quite small in practice this procedure should converge relatively rapidly. 

Once W; fixed, the integer c is determined too. 

We can now justify why more operators are necessary in the system, while taking 

the abandoned calls into account for a given service level. 

And since a, is a positive number and since 74(r) = wa(r), Wz < Wa, consequently 

more agents are now required than before. (In both case Martin’s estimate is be used 

to derive those numbers) 

5.4 Results 

In this section we present the results obtained whilst using both the new data set 

to compute the fraction of abandoned calls and the older data to run the algorithm 

through a whole week. The model used has also the new service time distribution. 

As expected, in order to achieve the right service level 95% of the calls answered 

within 30 seconds, and as shown in Figure 5.4, the required number increases slightly 

compared to the previous stochastic model: 2.9% but that is still 22% fewer agents than 

with the Erlang’C model, which does neither take into account service time distribution 

or abandoned calls. 
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Figure 5.4: Comparison between the number of agents used in the traditional model 

(the solid line), the stochastic model (the dotted line) and the new model, with a new 
service distribution and a procedure to include abandoned calls, (stars). 

With regards to this new model compared to the mixture model, the increase is 

about 1.4% of more agents. Figure 5.5 brings some remarks: the increase is neither 

uniform against the week neither dependent on the traffic as the representation of 

agents in background shows. 

5.4.1 Validation 

To validate our model, we have run the simulation program. The only major drawback 

of this approach comes from the fact that abandoned calls were not simulated. 

Failing anything better, we have also run it. For this reason the conclusions we 

could draw will be limited. As more agents are predicted in the system, an increase of 

the service level and of the quality ratio is expected. 

Finally after running it several times, the results are in keeping with our expecta- 

tion. Compared to the mixture model, as shown in Figures 5.6(a) and 5.6(b) all the 

characteristic parameters are improved: 
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Figure 5.5: Histogram of the difference between the number of agents required with 

the “mixture model” and those with the new model through a 120 periods week. In 

background the distribution of agents of the new model has been represented in an 
other scale (dashed line). 

- the number of calls experiments a delay superior of 30 seconds before being 

answered decreases. 

- whereas the quality ratio increases. 

At least to show the improvement brought to the model we have also summarised 

all the results, from this chapter and from the previous chapter in Table 5.1. 

  

  

  

  

        

New Model | Mixt. Model | Stoch. model 

Over waiting time * 2.86 3.58 4.42 

Number of periods ? oF 30 38 

Quality ratio 77.5 Teta 76.6 

Number of agents 5839 5758 5675     
  
“the overwaiting time is the average percentage of calls across a week which are 

not answered within 30 seconds 
bthis is the average number of period across a week in which th 

not achieved 
e service time is 

Table 5.1: Average results obtained with 38 simulations. 
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(a) Histogram of the average percentage of 

calls, which have experienced a delay greater 

than 30 seconds before being answered. The 

white bars represent the percentage obtained 

with the “abandoning model” where as the 

black ones with the "mixture model”. The 

dashed line symbolises the service level which 

should be respected. 
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(b) Quality service provided for the mixture 

model (dashed line) and for the new model 

(solid line). 

Figure 5.6: Simulations’graphs 

5.5 Conclusion 

To integrate abandoned calls in our previous model we have revisited the approxima- 

tion formulae relating to the service level and used some ideas like convolution product, 

directly based on the signal theory. 

Theoretically to respect the same service level, more people were required. We 

checked this assumption using two sets of data coming from two different call centres. 

In order to validate more thoroughly our new approach we will use an other data 

sample next chapter.



Chapter 6 

Validation 

6.1 Changing the service level 

So far we have carried out all experiments with the same service level: 95% of the calls 

have to be answered within 30 seconds. Therefore it could be interesting to explore 

the behaviour of our model compared to the previous stochastic one, by now moving 

the service level: both the percentage of the calls to be answered within a period, and 

the period itself. 

Then, we varied the required percentage from 10% to 99% and the specified period 

amongst the interval [10,...,60] (in second). 

All the results are presented in Figures 6.1(c) and 6.1(d). As expected in every case 

the predicted number of people with our new model is bigger than with the stochastic 

model. Although on average the quality ratio of our model is higher than that of the 

old one, it is worth noting that sometimes the reverse happens. It is due to the skills 

of the agents. 

Finally some remarks can be made: 

e for a specified period, the higher the percentage of calls to be answered is, the 

more agents they are in the system, and usually the quality ratio is higher. 

e for a given required percentage of calls, the bigger the time to answer calls is, 

the less agents they are in the system, which is quite logical and the smaller the 
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quality ratio is, which is less logical. Nevertheless it can be explained by the 

presence of less qualified agents in the system. 
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(b) Quality of service. 
(a) Predicted number of people with the 

stochastic model (solid line) and with the new 

model (dashed line). 

In conclusion, we have checked that our new algorithm was reliable. 

6.1.1 Presentation 

In the previous chapter we have proposed some improvement of the stochastic model. 

Most of the validation was made with the simulation program which was not always 

appropriate. 

Using another set of data from another call center, composed of several recordings 

with main parameters: 

e the arrival pattern 

e the service time distribution 

we have checked that the refinement brought to the model was still relevant. Effectively 

the arrival pattern follows a Poisson process and also the inter-arrival service time 
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distribution is still exponential, as shown in Figure 6.1(c), whereas the recomputed 

service time distribution can be fitted by a mixture of exponentials as shown in Figure 

6.1(d). 

In this stage, by running the scheduling algorithm, to achieve the usual service 

level, 95% of calls answered within 30 seconds, a bit more than 0.2% of people more 

are expected than with the previous scheduling algorithm. 

As the data comes from two different call centres, what really matters is not the 

percentage but the tendency. 
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(c) inter-arrival service time distribution (d) Representation of the recomputed service 

against exponential p.d.f (dashed line). time distribution (solid line) against exponen- 

tial p.d.f (dotted line) and mixture of expo- 

nentials p.d.f. 

As far as the abandoning calls are concerned we could think, in the first place 

reading raw data, that the percentage of abandonment will increase significantly the 

number of agents in the system, as shown in the Table 6.1. 

In fact that would mean ignoring that the abandoning calls, roughly 30% of the 

sample, are taken into account in a convolution product, which smooths their relative 

importance: the significant number in our present problem is the number of abandoning 

calls within 30 seconds, just 4.73% of the queueing calls. Compared to the previous 
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Abandoning calls | Anwering calls | Total 
  

Number of calls 1706 5586 7292 

Percentage 23.23% 77.77% 100% 

  

  
  

Abandoning calls | Answering calls ¢ | Total 

Number of calls 1706 4000 5706 

Percentage 29.89% 70.11% 100% 

  

            
  

  

A realistic number of calls whose service time duration was equal to zero has been 
recomputed with the method presented in Appendix C.3.7 

Table 6.1: Data statistics 

data, see Chapter 5, where the percentage was from 14.6%, it is really weak. No 

wonder also if the required number of people by running the algorithm is steady, just 

a minuscule increase. And then, the quality ratio is still slightly better. 

6.1.2 Conclusion 

We proved that we could use a method with data coming from another call center and 

that the number of people doesn’t change too much. In accordance with the theory we 

noticed an increase of the number of staff compared to the older stochastic model. 
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Chapter 7 

Conclusions 

The aim of this project was to go further in the investigations of the model developed 

last year by G. Lecorroller on the basis of the feasibility study made by Prof D. Lowe 

and Dr I. Nabney. 

The first point was concerned with reviewing the algorithm proposed to tackle this 

problem of human resource allocation. By combining the stochastic model of the queue 

to take into account the fluctuations of the incoming calls and the service time and a 

minimisation method based on a penalty function, the number of agents to achieve a 

proper level in our system could be derived. The results were quite encouraging as the 

number of staff remained smaller than those computed in the standard method, a lot 

of assumptions needed to be questioned and properties to be investigated. 

Secondly we have tested extensively the algorithm to discover some properties and 

highlighted the major weaknesses in order to improve it. We varied the coefficients of 

the cost functions, the Lagrangian parameters. Since there was no significant effect on 

the results, we left their values fixed in subsequent work. Thus by exploring a pos- 

sible correlation or linear relationship between the increase of the pool and those of 

the traffic rate, we noticed that while using more pools for a steady traffic rate more 

people were necessary. Proposing an empirical method we managed to control this 

phenomenon at least. From the several other investigations, we recalled that it was 

preferable that each queue could be answered by two pools.
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Using new data sets we tested the assumptions the stochastic model was relied on. 

The modelling of the arrival pattern with a Poisson process seemed quite reasonable, 

on the other hand the exponential distribution gave a very poor fit to the service time 

distribution. Therefore we have developed a new distribution, still hyper-exponential 

but with some mixture density coefficients. By running the algorithm, we noticed that 

more agents were predicted in the system, but the increase was still limited. 

The last issue discussed was abandoned calls. Intuitively we might think that tak- 

ing them into account will lead to less agents. But that idea was wrong since the 

definition of the service level had changed: the correct definition was the percentage 

of non abandoned calls which would have to be answered within a certain time. So 

since the abandoned calls affected the service level, it implied some modification of the 

approximation formulae. Running also the algorithm with the new data confirmed the 

increase of the number agents in the system. 

To test the reliability our model and the non dependency of the data, we trained 

it on new sample: we obtained a new confirmation our previous assumptions i.e. still 

more agents were predicted in the system but the rise remained reasonable less than 

3% and still 22% fewer that with the traditional approach i.e. the Erlang C model. 

However this new model was all the more satisfying as it seemed closer to the real 

behaviour of the queues. 

The ultimate step would be the implementation in a call centre to assess the real 

life performance of our model. 
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Appendix A 

Coefficients of the EM for the 

exponential mixture model 

In this appendix, we are going to demonstrate the updating formulae of the parameters 

Age’ and p"e"(j) we have used in chapter 4. 

A.1 Presentation 

To compute the new coefficients of the parameters astated above in the E-steps of 

the EM Algorithm we have to minimise the function €°™?(9"*”) under the condition 

pee, prew(j) = 1 where: 

e (En grew) = oes re Ae jlatn, 694)1 n(P (tnlj, Grew) Pree; )) 

e gnew — (XN ETE), =1,..,M} 

Indeed given a data set of N values (x;,22,...,2,) and given the mixture model 

which should describe it, p(x =e P(j)p(x|j), we consider those data to be incom- 

plete because we do not know which nee generated at a given data point n. We 

also introduce a variable z,, n varying from 1 to N, denoting the unkown generating 

component. 
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The complete data log-likelihood is: 

N 
1299(9) = J in(olt, zal) 

os 
(A.1) 

= Lo bnlplzalen OPC) 
Now we take its expectation with respect to the distribution 

N 

P(2)= |i PGaee) 
n=1 

And since z is a discrete variable, the expectation over all z, is a combination of N 

sums: 

N M M M WN 

Eco (9) aS SSeS Neel) )in{o(enlen #)PC=al))| 
n=1l‘g=12=1 zy=l1m=1 

N M M M M N 

->[>- ye I snlemO%)| 
n=142y=1  za-i=l2nyi=l  zv=1 mén (A.2) 

M 

Y Plenlm 9%) eal2n OPC) x 

w 
M
e
:
 

Ms
" 

P(2m|stm) O°") In{p(an|zns 8) P(2nl)} 
n Lin=1 

since the first square-bracketened term in (A.2) evaluates to unity as each of the 

individual sum S>™ _, P(zm|tm,6%) = 1 because the probability that 2, has been mek 

generated by the set (2, z2,--. , Zn) is equal to 1. 

Our see notation for a mixture model was p(x) = ye , P(j)p(x|j) which equals 

to Si P(j)p(x|j,0;). And so we may rewrite €°?(0"*”) equivently as: 

N M 

Econ (grew) = — SUS) P(ilstn, 094) In(P(wali, OF") P™™ (3) (A) 
n=l j=1 

A.2 Computation 

Thus to minimise the function €°”? (6"*”) under constraints, see above, we can use 

Lagrange multipliers. 
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Define a function g writing down by: 9"*¥ ++ g(9"”) = soy Poe (ai—els 

The minimum can be determined by solving the simultanous equations: 

agcono dye 
ponew — 9° Fonew = 0 (A4) 

985°") = 0 (A.5) 

for all j =1,....,.M 

A. By differentiating equation (A.4) with respect to the parameters P"”(j) we get 

the following equations for all j [1,..., M] : 

econ ag 
oy CE Niamels 5) ECON A6 

Oprew (7) B igrnen(,) ( ) 

We expand the lefthand side: 

Oe omP Og 
see ata ee 

ar)” SP*G) 
9 (SM DLs PUilen, 694) ln(P (eal, ope) Pre™(j))) 
  

  

GEnea(}) 
M (pnew( (A.7) a (Si (P"(j) -1)) 
oP") 

= Liner Pilon 6H) _ 
=) 

We conclude that: 

ra. 

Pree(s) = GD) Pilea, 64) (A8) 
n=1 

As this expression is available for all j = 1,...,M@ we can sum over the j, then 

N M M 

DOD PG lan 84) = 6 Pe) 
n=1 j=1 j=l 

=1 =1 

4.6. N= 3 

So by substituting @ for N in the equation (A.8) we obtain: 
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N 
- iL 4, 

Pree(5) = = > Plileen, 09%) 
n=1       

B. If we differentiate (A.4) with respect to the parameters \7*”, given that the 

density function is: P(rn|j, 07) = Nee Ie we get: 

agen ag 
er Bee =0 Viell,...,M] (A.9) an ane 

So after having substituted €°°”? for its expression and noticed that g does not 

depend on A} we obtain: 

8 (ota DIL PCI len, 694) (Im(ager) — A$" » a + In(P"™()))) 
angen 

(A.10) 

  

42. 

  

# 1 
SOP Glen, 624) [aes - a) =0 (A.11) 

a n=1 

Finally, from this we conclude: 

  

jar ont Pn OF) 
eine     
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Appendix B 

Stochastic modelling of the queue 

B.1 Expected value of an hyper exponential dis- 

tributed random value with mixture coefficients 

We shall consider a random variable X with a density function given by: 

0 ft <0) 

f(t) = (B.1) 
When (DM PUiin eet) ft > 0. 

with: 

aa © Magn = Og bn = TE bn 

M PG . m = yoy, oY 

© Sper On = 1 

The expected value of X is defined as follow: 

ix] = f+ se(nae= fe oa (5: PG ian ett) at 
= n=1 = j=l 

Son) PG) p23 pn e Fda = a Sy PO) 
N M M 

  

n=1 g= . n=1 j=l Hjn 

N M ~ N P. 

=Ya( ge) = Dat, 
n=1 j=l Ta By n=l 
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So the expected value of s, the service time, is equal to: 

Q 

E{s] = » Ost; 
q=1 

We also have to compute the moment with second order: 

0 N M aS 

E[X?] =) e felt)dt= Yan PU) f t? pjn e Hinde 
—00 = gai 0 

    

    

n=1 

N M py; N Mp, 

=2 ay a2 Dae 
Pega tie en gate 

On Tn? (PU) 
=2 wy SS, (~ 2 ) 

n=1 jai 9 

And so we can conclude that the second order of the value s is: 

Q 2 ,M : 
E[s?] = 2 yh peed) 

q=1 
2 

jae 

  

B.2 Calculation of the percentile value 

In this section we are going to justify the formula used in Chapter 5: 

100 100 ma(r) = Wa x In (wt) poe pees) 

where r‘’ is the percentile value of d the queueing. 

Considering an exponentially distributed random variable X, and r(r), its r* per- 

centile value, defined by: 

Tr iL 
P(X <x(r)) = eS 100   

since X is an exponentially distributed random variable, whose parameter is de- 

noted A, we can write: 

n(r) 
P(X <ax(r)) =1-—eO") =1-e° FI 

In deed for an exponential distribution, E[X] = . 
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Having two expressions of the probability P(X < m(r)), we deduce that: 

  ee eee oe #4 = 2 (199 2 l-e i-a, * 100 = e FX T00 * 100 (a) 

And eventually that: 

a 100 
m(r) = E[X] x In Cresirerst 

B.3 Some distributions 

B.3.1 Exponential distribution 

A continuous random variable X is said to have an exponential distribution with pa- 

rameter \ > 0 if its density function f is given by: 

News, z>0 

Some properties: 

E[X] =} Var[X]=% 

B.3.2, Normal distribution 

A continuous random variable X has a gaussian or normal distribution with parameters 

m and o > 0 if its density function f is given by: 

1 
fe) = eS     

Some properties: 

E|X) =m Var[X] =o? 

B.3.3 Gamma distribution 

A continuous random variable X has a gamma distribution with parameters a > 0 

A > 0 if its density function f is given by: 

Ta (Az)? e*, “> 0 
f(z) = 

o <0: > 
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where the I function is defined by 

E(t) = ie gi led ESD 

Some properties: 

E[X] =¢ Var[X] = ¢? 

B.3.4 Erlang k distribution 

A special class of gamma random variables is the Erlang k random variable with pa- 

rameter A. Its density function is given by: 

Some properties: 

E[X] =} Var[X) = a 
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Appendix C 

Outline algorithm 

This appendix displays the full algorithm which was used to produce the figures ob- 
tained in this thesis. The code is written in the interpreted matrix manipulation 
language MATLAB. 

C.1 Rounding program 

= Rounding algorithm 

% Read in the staff matrix 

% Load the standard matrix used to cap the number of agents in each pools 
% It is worth noting that this file contains real numbers and had been 
% created by running the old version of the scheduling algorithm: 
% to save the staff we use ’’staff(i,:) = sum(con’) instead of 
% staff(i,:) = ceil(floor(sum(con’)*100)/100) ; 
load sta4_un.dat 
stafO = sta4_un; 

load staii_un.dat 
stafi = staii_un; 

% Read in the quality matrix, the coefficient correspond now to the pools 
% This file was created still running the old version of the 
% scheduling algorithm: to save it we have used the following instruction 
% quality(i,:) = sum(skills’.*con’) instead of 
% quality(i,:) = sum(skills.*con) ; 
load qualiii_un.dat 
qual = qualiii_un; 

  

num_staf = size(staf1); 

% Initialize the matrix which will contain the rounded number of people 
% in each pool. This number will be an integer. 
staff = zeros(size(staf1)); 

for i = 1:num_staf(1) 

% Number of required agents for one period 
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c__i = sum(ceil(floor(staf0(i, :)*100)/100)); 

% We sort the quality matrix in function of the quality factor 
[quali ind1] = sort(qual(i,:)); 

indO = length(ind1) ; 
while (((sum(stafi(i,:))) < c__i)&(ind0>0)) 

stafi(i,indi(1,ind0)) = ceil(floor(stafi(i,ind1(1,ind0))*100)/100); 
indO = indO - 1; 

end 

staff(i,:) = round(stafi(i,:)); 

end 
%sum(sum(staff)) 

save ’stali_r.dat’ staff -ascii; 
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C.2 Code of EM Algorithm for exponential mix- 
ture model 

C.2.1 Creation of good data file 

% Program fx.m 
% Create a realistic data file 

% Read the file 
% The first column indicates the nature of the call 1->N, 2->Q, 3->R 
% The second column can be ignored 

% The next following columns contain the arrival time the col 3: h 
% the col. 4: mn, the col. 5: ss . 

% The column 6 : 60*mn + ss 
% In the column 7: The duration of wait. 
% In the column 8: The duration of calls. 
% In the column 9: The number of the pool which has answered the call. 
% In the column 10: The number of periods. 

load callsi0.dat 

len = length(callsi0) ; 

% We keep only the answering calls which duration is >0 and <2 hours 

% we are going to compute the length of the futur file, without the 
zeros 

leni = 
for i = 1:1:len 

if ((calls10(i,1) == 1) & (calls10(i,8)>0) & (calls10(i,8) < 3600)) 
leni = leni + 1; 

end 
end 

   

% We are going to create the file 
filel = zeros(leni,1); 
k = 1; 

for j = 1:1:len 
if ((callsi0(j,1) == 1) & (calls10(j,8)>0) & (calls10(j,8) < 3600)) 

filet(k,1) = callsi0(j,8); 
kak + 45 

end 
end 

% We compute the number of zeros thanks to the mean 
m = mean(filet); 
nzeros = ceil(fzero(’fx’,1,[],[],leni,sum(filet))); 
azeros = zeros(nzeros,1); 

% Finally we can create the realistic file 
file2 = [azeros; file1]; 

fid = fopen(’data.dat’,’w’); 
for i=1:1:length(file2) 
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fprintf(fid, ’%d\n’ ,file2(i)); 
end 

fclose(fid) ; 

% Function fx 
function y = fx(x,n,sum1) 
y = n*(exp((x+n)/sum1)-1) - x; 

C.2.2 Mixture coefficients 

“The following code is used to compute the mixture coefficients 
load data.dat 

% The log likelihood 
enew = -100000; 
eold = 0; 

% the number of exponential distribution 
i=0; 

while (abs(enew - eold)>1e-2) 

i=i+t 
eold = enew; 

% Initialisation 
[ncentres, priors, lambda] = emm(i); 

options = foptions; 
options(1) = 1; % Display error values 
options(14) = 10000; % Number of training cycles 
option(3) = 1e-8; 

(priors, lambda, options] = emmem(ncentres, priors, lambda, 
data, options) ; 
enew = options(8) 

end 

% We compute the mixture coefficient for a model with (i-1) components 

(ncentres, priors, lambda] = emm(i-1); 
options = foptions; 
options(1) = 1; % Display error values 
options(14) = 10000; % Number of training cycles 
option(3) = 1e-8; 
[priors, lambda, options] = emmem(ncentres, priors, lambda, data,... 

options) ; 

vect = zeros(i-1,2); 
vect(:,1) = priors’; 
vect(:,2) lambda; 

save ’mixcoef.dat’ vect -ascii 
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C.2.3 Exponential mixture model 

function [mcentres, priors, lambda] = emm(ncent) 

EMM Creates a exponential mixture model with specified architecture. 

Description 
MIX = EMM(NCENTRES) takes the dimension of the 
space DIM, the number of centres in the mixture model and the type of 
the mixture model, and returns a data structure MIX. 

The priors are initialised to equal values summing to one, and the 
covariances are all the identity matrix (or equivalent). The centres 
are initialised randomly from a zero mean unit variance Gaussian. 
This makes use of the MATLAB function RANDN and so the seed for the 
random weight initialisation can be set using RANDN(’STATE’, S) where 
S is the state value. 

The fields in MIX are 

ncentres = number of mixture components 
priors = mixing coefficients 
lambda = Lambda parameters: stored as rows of a matrix 

  

neentres = ncent; 

% Initialise priors p(j), j between[1...ncenters] to be equal and 
% summing to one 
priors = ones(i,ncentres) ./ ncentres; 

% Initialise centres: lambda parameters 
lambda = abs(randn(ncentres, 1))*0.1; 
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C.2.4 Expectation Maximisation 

function [priors, lambda, options, errlog] = emmem(ncentres, priors, 
lambda, x, options) 

“%EMMEM EM algorithm for Exponential mixture model. 

4 Description 
% (MIX, OPTIONS, ERRLOG] = EMMEM(MIX, X, OPTIONS) uses the 
4 Expectation 
4 Maximization algorithm of Dempster et al. to estimate the 
ms parameters of a Gaussian mixture model defined by a data 

is structure MIX. The matrix X represents the data whose 
h expectation is maximized, with each row corresponding to a 
% vector. The optional parameters have the following 
h interpretations. 
h 
% OPTIONS(1) is set to 1 to display error values; also logs error 
h values in the return argument ERRLOG. If OPTIONS(1) is set to 0, 
h then only warning messages are displayed. If OPTIONS(1) is -1, 
h then nothing is displayed. 
h 
h OPTIONS(3) is a measure of the absolute precision required of the 
h error function at the solution. If the change in log likelihood 
h between two steps of the EM algorithm is less than this value, 
h then the function terminates. 
h 

ie OPTIONS(14) is the maximum number of iterations; default 100. 
h 
h The optional return value OPTIONS contains the final error value 
h (i.e. data log likelihood) in OPTIONS(8) . 
h 
h See also 
h EMM, EMMINIT 

[ndata, xdim] = size(x); 

% Sort out the options 
if (options(14)) 

niters = options(14); 
else 

niters = 100; 
end 

display = options(1); 
store = 0; 
if (margout > 2) 

store = 1; 7% Store the error values to return them 
errlog = zeros(1, niters) ; 

end 
test = 0; 
if options(3) > 0.0 

test = 1; % Test log likelihood for termination 
end 
eold = -100000; 
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% Main loop of algorithm 
for n = i:niters 

% E-step 
% Calculate posteriors based on old parameters 
[post, act] = emmpost( ncentres, priors, lambda, x); 

% Calculate error value if needed 
if (display | store | test) 

prob = act*(priors)’; 
% Error value is negative log likelihood of data 
e = - sum(log(prob)); 
if store 

errlog(n) = e; 
end 
if display > 0 

fprintf(1, ’Cycle %4d Error %11.6f\n’, n, e); 
end 

end 
if test 

if (nm > 1 & abs(e - eold) < options(3)) 
options(8) = e; 
return; 

else 
eold = e; 

end 
end 

end 

% M-step 
% Adjust the new estimates for the parameters 
% the matlab5 instruction was new_pr = sum(post,2) 
new_pr = sum(post’) ; 
new_pr = new_pr’; 
newW_c = post * x; 

% Now move new estimates to old parameter vectors 
iors = new_pr’ ./ndata; PB P: 

lambda = new_pr./new_c; 

end 

% see Tipping 161, we now compute the negative log-likelihood 
% E = -sum(n) (log(P(xn)) 

foptions(8) = -sum(log(emmprob(ncentres, priors, lambda, x))); 
fprintf(1, ’Last Cycle %4d Error %11.6f\n’, n, foptions(8)); 

if (display >= 0) 
disp(’Warning: Maximum number of iterations has been exceeded’); 

end 
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C.2.5 Computation of the activation 

function a = emmactiv(ncentres, priors, lambda, x) 

“EMMACTIV Computes the activation of an exponential mixture model. 
y ho 
h Description 
h This function computes the activations A (i.e. the probability 
h P(X|J) of the data conditioned on each component density) for a 
h exponetial mixture model. The data structure MIX defines the 
% mixture model, while the matrix X contains the data vectors 

% Each row of X represents a single vector. 
h 
h See also 
h EMM, EMMPOST, EMMPROB 

% we compute the number of data, n, in our problem 
ndata = size(x, 1); 

% Calculate squared norm matrix, of dimension (ndata, ncentres) 

%create the ntm matrix [x1..x1, x2..x2, .., xn..xn] 
ax = x*ones(1,ncentres) ; 

% create the m*m matrix [11 0..0,0 12 0..0, ..,0..0 1m] 
al = diag(lambda) ; 

% create the n*m matrix [exp(-lixi)..exp(-lmxi), .., exp(-lixn).. 
yexp (-1mxn)] 

ae = exp(-ax*al); 

% create the N*M matrix [11*exp(-lix1)..1lm*exp(-lmx1),..,]; 
a = ae*xal;
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C.2.6 Posterior probabilities computation 

function [post, a] = emmpost(ncentres, priors, lambda, x) 

%EMMPOST Computes the class posterior probabilities of an exponential 
% mixture model. 

h Description 
h This function computes the posteriors POST (i.e. the 
h probability of each component conditioned on the data P(J|X)) 
4 for a exponential mixture model. The data structure MIX 
% defines the mixture model, while the matrix X contains the 

4 data vectors. Each row of X represents a single vector. 
h 
h See also 
ho EMM, EMMACTIV, EMMPROB 
h 

ndata = size(x, 1); 

% Compute the ((P(Xn|J) )) of the data conditioned on each component 
% density we obtain a N*M matrix 
a = emmactiv(ncentres, priors, lambda, x); 

% We compute the following matrix, M*N, [P(1)P(x1]1)..P(1)P(xnl1),.., 
% P(m)P(x1]1)..P(xn|m)P(m)] 
post = diag(priors)*a’; 

% we have the following matrix, n*1, [sum(k,1,m)P(k)P(x1,1k).. 
% sum(k,1,m)P(k)P(xn,1k) (see Tipping (206)) 

if ( min(size(post)) == 1) % we have to correct this line 
S = post; 

else 
s = sum(post) ; 

end 

% Set any zeros to one before dividing 
s = s + (s==0); 
sum(s) 

% ((P(J|Xn))) it’s an M*N matrix 
post = post./(ones(ncentres,1)*s) ; 
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C.2.7 Data probability computation 

function prob = emmprob(ncentres, priors, lambda, x) 

“EMMPROB Computes the data probability for a exponential mixture model. 
h 
h Description 
h This function computes the unconditional data density P(X) for a 
% Exponential mixture model. The data structure MIX defines 
% the mixture model, while the matrix X contains the data 

h vectors. Each row of X represents a single vector. 
h 
h See also 
th EMM, EMMPOST, EMMACTIV 

% Compute activations: ((P(XIJ))) 
a = emmactiv(ncentres, priors, lambda, x); 

% Form dot product with priors P(X) = sum(k) P(X|k)P(k) 
prob = a * (priors)’; 
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C.3 Revisiting optimisation program 

Last year’s code has been used as the basis of the following top-level 
program. As lots of functions haven’t even changed, we won’t including 
their code again, we are just going to talk about the Hmm_nagents.m 
function and its following which remplace the old H_agents.m function. 

C.3.1 Optimisation of staff scheduling 

load skills; 
skills = skills; 
% Rescale to range 0-1. 
skills = skills ./100.0; 
% Only use the first four skills profiles to make it interesting 
% In the people-based approach this line should be removed 
skills = skills(1:4, :); 

% Read in the data matrix describing the activity of the queues 
load volume; 

% time_steps_a_day is the number of half hour periods in a day 
time_steps_a_day = 20; 

% Read the mixture coefficient matrix 
load mixcoef.dat 
prior = mixcoef(:,1); 
lambda = mixcoef(:,2); 

% Load the queuing calls 
load qu_data_fraci.dat; 

qu_data_frac = qu_data_fracl; 
% Compute what should be the number of agents answering calls 
% from each queue, according to the stochastic modelling of the queues 
H_q = zeros(120,8); 
“H_q = Hmm_ratio(prior,lambda,volume,time_steps_a_day) ; 
H_q = Hmm_nratio(qu_data_frac,prior,lambda,volume,time_steps_a_day) ; 
% queue contains the required number of agents in each queue 

% The rest is also the same
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C.3.2 Number of agents in each queue 

function H = Hmm_nratio(frac,prior, lambda, volume ,time_steps_a_day) 

% This function calculates the number of servers required 
% if we merge all the queues(M/M/c system) in one system 
% considered as a M/H6/c system 
% It also computes the normalized number of agents 
% required in each queue 

% volume provided all the data describing the six queues 
% number of incoming calls per queue and per half-hour period 
% mean service time per queue and per half-hour period 
% number of server required in each queue considered separately 

% time_steps_a_day is the number of half hour periods in a day 

% nb contains the number of abandoned calls a t = 0,...,nb 
% queue, the number of calls in the queue a t=0,...,nb 

% number of queues in our system 
num_q = size(volume,1)/time_steps_a_day; 
% number of days considered in the week 
num_day = size(volume,2)/3; 
% total number of half hour periods for the whole week 
num_time_steps = num_day*time_steps_a_day; 

% queue contains the numbers of calls active at an instant in each queue 
queue = zeros(1,num_q); 

% the required number of agents in each queue for each half hour period 
q = zeros(num_time_steps ,num_q) ; 
% the total number of servers, i.e. agents required in the system 
c = zeros(num_time_steps, 1); 
% the server utilisation 
ro = zeros (num_time_steps, 1) ; 

% First line: call volume in each queue 
% Second line: average call duration in each queue 
param = zeros(2,num_q); 

for n=1:1:num_time_steps 

% Search for the call volume in the matrix volume 
for i = 0:1:num_q-1 

param(1,i+1) = 
volume (rem(n-1,time_steps_a_day)+1+time_steps_a_day*i 

»+-. 3*ceil(n/time_steps_a_day)-2) ; 
end 

% Search for the average call duration in the matrix volume 
for i = 0:1:num_q-1 

param(2,i+1) = 
volume (rem(n-1,time_steps_a_day)+1+time_steps_a_day*i 

. .3#ceil(n/time_steps_a_day)-1) ; 
end 
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total = 0; 

% Count the total number of calls active at an instant 
for i = 1:1:num_q 

queue(1,i) = param(1,i)*param(2,i)/(30*60) ; 
total = total + queue(1,i); 

end 

% Compute the total number of agents required in the system 
% to answer 95% of all calls within 30 seconds 
if total > 0 w = zeros(1,2); 

w = Hmm_nagents (frac, prior, lambda, param, 95,30) ; 
r = w(1)/total; 
c(n,1) = w(1); 

ro(n,1) = w(2)/w(1); 
else r = 1; ro(n,1) = 1; c(n,1) = 0; 

end 

% Compute the number of agents required in each queue 
for m = 1:1:num_q 

q(n,m) = queue(1,m)*r; 
end 

end 

% The function returns q, c and ro 
H= [qe ro J; 

oF
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C.3.3 Number of agents to achieve the right service level 

function H = Hmm_nagents (frac,prior,mu,param,p,t) 

ar = 0; 
arold = -100000; 

wd = 0; 
wdold = -100000; 

while ( (((wd - wdold) >1e-4)|((ar - arold)>1e-4))&(ar<0.050)) 

% we compute amongst other things the average queuing time 
P = Proc_wd(prior, mu, param, ar, p, t); 

% wd is the average waiting time in the queue 
wdold = wd; 

wd = P(1); 
n_agents = P(3); 
arold = ar; 

ar = 
for 1 2G 

ar = quad(’AW’,i-1,i - 1e-4,[1e-4 1e-4],[],wd,frac) + ar; 
end 

   

  

end 

% a is the offered load in erlangs of the system 
a = P(2); 

% the function returns n_agents and a 
H = [ n_agents, al; 

C.3.4 Computation of agents 

function P = Proc_wd(prior, mu, param,ar,p,t) 

% Proc_wd calculates the minimum number of agents in order to 
% answer p/(1-ar)% of all the calls within t seconds 

ic. = 

w = zeros(1,2); 
w = Wmm_q(prior,mu,param,c) ; 

while w(1) > (t/log(100/(100-p/(1-ar)))) 
CG S1crk; 
w = Wmm_q(prior,mu,param,c) ; 

end 

P = [wc]; 
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C.3.5 Computation of the p.d.f. of the fraction of abandoned 
calls 

function y = AW(x,wd,frac) ; 

W = lexp(1/wd,x,0); 

% this function is null except between [0 ,length(anb)-1] 
A = zeros(length(x) ,1); 

% we have to take into account the fact that the first 
% element of the file is zero 

for i =1:1:length(x) 
if ((x(i) >=0)& (x(i) <=(length(frac)-1))) 

A(i,1) = frac(floor(x(i))+1); 
end 

end 

y = W.*A; 

C.3.6 Exponential function 

function y = lexp(lambda,x,x0) 

% The function lexp evaluates the exponential function 

y = ((x>=x0) .*lambda.*exp(-lambda*(x-x0)))?; 

C.3.7 Average queueing time 

function w = Wmm_q(prior,mu, param,c) 

% This function Wmm_q calculates the average queueing time 
% for a M/H6/c system: 

= Exponentially distributed arrival times 

% The service time distribution is a 6 stages hyperexponential 
% distribution 
% (the parameters describing this two distributions are in param 

% c servers 

% The priors are the mixture coefficient 
% The lambda are the coefficient of the exponential distribution 

% lambda is the total arrival rate, that is equal to the sum of 

% the six single arrival rates of each queue 

num_q = size(param, 2); 

lambda = 
for i = 1:1:num_q 
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lambda = lambda + param(1,i); 
end 
lambda = lambda/1800; 

% E_s is the expected value of s, the service time 
E_s = 0; 
for i = 1:1:num_q 

E_s = E_s + param(1,i)*param(2,i)/1800; 
end 
E_s = E_s/lambda; 

% a is the offered load of the system 
a = lambda*E_s; 

% the offered load must be strictly less than the number of servers 
% else the number of calls waiting grows without limit 

if (c-a) <0 q = 1000000; 
else 

E_s2 = 0; 
for i = 1:1:num_q 

% E_s2 is equal to (E_s)~2 
E_s2 = E_s2 + param(1,i)*param(2,i)~2/1800; 

end 
E_s2 = 2*E_s2/lambda; 

M = 0; 
S = 0; 

for j = 1:1:length(prior) 
M = M + prior(j,1)/mu(j,1); 

§.= 8 + priorG,1)/ Gm(j ,1) 72); 
end 
E_s2 = E_s2*#S/M72; 

C = Erlang C(c,a); 
% q is the average waiting time in the system 
q = C/(c-a)*E_s2/(2+E_s) ; 

end 

/, The function returns q, the average queueing time in the system, 
% and a, the offered load of the system 

w=[Eqal; 

100



Bibliography 

Allen, A. O. (1978). Probability, Statistics and Queueing Theory with computer science 

applications. Academic Press, Inc. 

Beckmann, P. (1968). Introduction to Elementary Queueing Theory and Telephone 

Traffic. The Golem Press. 

Bishop, C. M. (1995). Neural Networks and Pattern Recognition. Oxford University 

Press. 

Kleinrock, L. (1975). Queueing Systems Volume I: Theory. John Wiley and Sons Inc. 

Kleinrock, L. (1976). Queueing Systems Volume II: Computer Applications. John 

Wiley and Sons Inc. 

Lecoroller, G. (1997). MSc Thesis: Human resource allocation in a call centre. Aston 

University. 

Lee, A. M. (1966). Applied Queueing Theory. Mac Millan. 

Lowe, D. and Nabney, I. (1996). Human resource allocation in a call centre: Feasibilty 

study report. 

Nabney, I. T. (1997). Algorithms and Computational Mathematics, Lecture notes. 

Press, W. H., Teukolsky, S. A., Vetterling, W. T., and Flannery, B. P. (1992). Numerical 

Recipes in C: The Art of Scientific Computing. Cambridge University Press. 

101



BIBLIOGRAPHY 

Saaty, T. L. (1961). Elements of Queueing Theory with Applications. McGraw-Hill 

Book Company. 

Tipping, M. (1997). Statistical Pattern Analysis, Lecture notes. 

102


