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Chapter 1 

Introduction 

... I shall demonstrate how this tiny sound within, this nothing, contains 

everything; and how, with the bacillary aid of a single sensation — always 
the same one, and deformed at that in its very origins — a brain isolated 

from the world can create a world in itself ... 

Remy de Gourmont — Siztine. 

Measurements of brain activity can be performed by recording the electric potentials 

on the scalp surface : this is known as electroencephalography (EEG). EEG analysis 

has played a key role in the modeling of the brain’s cortical dynamics. If several mental 

states can be reliably distinguished by recognizing patterns in EEG, then is it possible 

to utilise EEG information to automatically estimate car driver or pilot workload for 

example ? By estimating workload, we mean assessing the level of attentiveness or 

vigilance of a pilot. 

There have been many studies of alertness to try to discover whether vigilance 

may be recognized from single or multi-channel EEG traces ( [35], [36], [39]), since 

the first investigation by Loomis et al in 1937 [7]. Most of them have confirmed that, 

despite sincere intentions, few subjects remain vigilant while engaged in monotonous 

monitoring tasks. 

The analysis of the data is problematic due to the fact that multiple neural genera- 

tors of the EEG may be simultaneously active and the potentials and electromagnetic



CHAPTER 1. INTRODUCTION 

are distorted by the head volume conductor), reference electrode effects and algorithm 

effects (algorithms that are adopted to reduce volume conduction effects may introduce 

false coherency estimates) [32]. 

The fundamental reason why EEG analysis is performed in the frequency domain is 

because of the belief in the linear nature of the physical sources generating the potential 

differences measured by the sensors. This linearity suggests that the signal might be 

decomposed into a sum of sinusoidal components. So we are supposed to obtain a 

description of the signal in terms of its fundamental frequency characteristic. 

Recently, blind source separation by Independent Component Analysis (ICA) has 

received attention because of its potential applications in signal processing such as 

in speech recognition systems, telecommunications and medical processing. The goal 

of ICA is to recover independent sources given sensor outputs in which the sources 

have been linearly mixed. In contrast to correlation based solutions such as Principal 

Component Analysis (PCA), ICA not only decorrelates the signals but also reduces 

higher-order statistical dependencies, attempting to make the signals as independent 

as possible. The blind source separation problem has been studied by researchers in 

the field of neural networks [33], [1], [2], [26], [19], [8]. It has also been applied to the 

particular field of EEG in several studies [35], [36], [39], [25]. All these studies only 

consider multi-channel EEG recordings to perform the ICA algorithm. 

For this study, we have made the choice to consider only single channel EEG data 

recorded from wake subjects due to the hypothesis that over short segments of EEG 

data, we can reconstruct the dynamics of the system with a dynamical embedding 

of one single channel. We will question the use of linear Fourier analysis within the 

wake state, essentially because of the nature of the noise sources and complexity of the 

signal. Indeed, we will start from the hypothesis that the complexity in wake EEG is 

due to the nonlinear interaction of a few degrees of freedom rather than the linear in- 

teraction of many degrees of freedom, plus additive noise. This is a dynamical systems 

perspective which considers the existence of an underlying data generator (or attrac- 

11



CHAPTER 1. INTRODUCTION 

consists of finding the statistically independent sources responsible for a set of data. 

The most familiar situation is the “cocktail party problem” where there are many 

speakers, or sources of accoustic signals, and the listener detects mixtures of these 

signals. 

Finally, topographic mappings may be viewed as nonlinear, unsupervised feature 

extraction processes. Here the criterion for selection of features is not to maximise 

variance or any mutual information, but rather that the topology or geometric structure 

of the data be preserved in the feature space. 

In the feature space, delay vectors x are expressed as a linear combination of span- 

ning basis functions v; and a set of “source” signals a;(t) 

a(t) = Sy a; (t)v; 

In a Principal Component Analysis embedding, the basis functions v; are obtained 

as the eigenvectors of a covariance matrix (see Chapter 3). In an Independent Compo- 

nent Analysis, the expansion basis vectors v; are instead determined as the independent 

components of a demixing matrix (see Chapter 4). 

In both cases (PCA and ICA), we project the data linearly on the embedding 

vectors and therefore reduce the dimensionality of our feature space. This also allows 

us to reduce some of the noise structure (see figure 1.1). 

We can now build a model in this reduced (dimension and noise) feature space (see 

Chapter 6), search for some dynamic structure, identify anomalous behaviour and look 

for interesting structure which might characterise vigilance. 

Figure 1.1 presents a symbolic overview of the structure and function of this thesis. 

13



CHAPTER 1. INTRODUCTION 

Chapter 5 details all the results with ICA applied to our raw or filtered data. It 

discusses these results in terms of frequencies and validates the hypothesis made in 

Chapter 3. 

Chapter 6 applies different methods of topographical mappings to the results of ICA. 

These methods are : Kohonen Self-Organizing Maps, Sammon Mapping, NEUROSCALE 

The different results are then discussed and the methods are compared. 

Chapter 7 concludes this thesis, discusses the major results and gives directions for 

further research. 

15



CHAPTER 2. NEOCORTEX AND BRAIN WAVES 

sources rather than sources farther from the sensors. 

e EEG is most sensitive to correlated dipole layer in ab, de, gh (that is perpendic- 

ular fields), less sensitive to correlated dipole layer in hi (that is tangential fields) 

and insensitive to opposing dipole layer in bcd, efg. 

EEG 
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Figure 2.1: Extracranial recording of EEG data 

With all the limitations of extracranial recordings, we can wonder if anything valuable 

can be extracted from EEG signals. However, it has long been appreciated (since 

the first EEG recording in 1928) that electroencephalography is a genuine measure 

of conscious experience. As a matter of fact, EEG recording has long been used in 

medicine as a clinical test for variety of pathologic conditions : epilepsy, Alzheimer’s 

disease, severe head injuries, multiple tumors... 
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CHAPTER 2. NEOCORTEX AND BRAIN WAVES 

2.4 Brain Waves 

Interpreting EEG involves the characterization of wave forms largely defined by their 

frequency and to a lesser extent by their morphology. The difficulty lies, in part, 

in recognizing artifacts and also in being able to differentiate normal variants from 

abnormalities. 

2.4.1 Waves defined by frequency 

Frequency means the number of waves per second. The frequencies of the EEG waves 

run from 0.5 per second to hundreds per second. Waves are usually defined by their 

frequency and are divided, on this basis, into four main groups. Figure 2.2 displays 

these different types of waves and the following sections describe them more precisely. 

  

1 sec 
i aPC ST EE I TD 

ANNAN 

| Jenne neneml 
Figure 2.2: Brain waves



CHAPTER 2. NEOCORTEX AND BRAIN WAVES 

in children. 

2.4.2 Waves defined by morphology 

Certain waves have characteristic forms irrespective of their frequency and are recog- 

nizable by their shape; in other instances pair or groups of waves have typical appear- 

ances. Single waves that are specially shaped include, for instance spikes or sharp waves 

- waves that rise rapidly to a point and fall away equally dramatically with a base that 

is small compared to the wave’s amplitude. Some wave forms can be recognized by 

their morphology and these include two main types: 

e Specially shaped waves 

e Specially shaped wave complexes 

Artifacts 

Artifacts are disturbances caused by technical defects - usually transitory. Included are 

such things as eye movement, electrode movement with loss of contact, muscle activity 

obscuring the EEG, movements of the head, scratching the scalp, sweating etc... 

Normal variants 

There are several waves or patterns of waves which are unusual in appearance yet 

are not significant for abnormality or disease. These waves can be misinterpreted. 

Amongst the more common ones are mu rhythm, psychomotor variant, lambda waves, 

POSTS, spindles, vertex waves. 

21



CHAPTER 2. NEOCORTEX AND BRAIN WAVES 

EEG data was collected on an Oxford Instruments Medilog system utilising 8 sep- 

arate measurement channels at the University of West England on behalf of British 

Aerospace. The electrodes were sited according to a standard 10-20 system and bipolar 

potential differences due to electroencephalographic activity were measured. 

The data was sampled at 128 Hz and scaled and linearly quantised at one byte per 

sample. For this study, only signals extracted from scalp locations T5-Oz were used. 

Cross-channel effects are the subject of future work. 

One major problem with using wake EEG is due to the very poor signal-to-noise 

ratio as a consequence of the overall mental and mechanical activity, giving rise to 

spurious and background electrical activity. Hence our first approach was to con- 

sider approaches to reduce the noise components in the signal and to enhance the 

information-carrying signal components. 

23



CHAPTER 3. DYNAMICAL EMBEDDING 

3.2 Nonlinear Phenomena 

The separation of linear systems into discrete and continuous systems is also appropri- 

ate for nonlinear systems. Our aim is to exhibit a new appreciation for the complexity 

and richness of behaviour of a system such as brain waves with only a few degrees of 

freedom. 

There are different types of behaviour for a deterministic time series : 

equilibrium 

e periodic 

© quasiperiodic 

chaotic 

These four types of behaviour are called attractors. The distinction between these 

different types of attractors are most obvious when applied to systems with relatively 

few degrees of freedom and large signal-to-noise ratio. The problem we are going to 

face is that our electroencephalographic data has a very poor SNR. The generator of 

our data will thus be quite difficult to characterise. 

The general idea is that simple systems (that is systems with a few degrees of free- 

dom) behave simply. This idea is certain for linear systems. However, with nonlinear 

systems, new phenomena have been described that cannot be predicted by linear theory. 

So even very simple systems, if nonlinear, can exhibit extremely complex behaviour. 

Such nonlinear systems are very interesting for appreciating their complexity and rich- 

ness of behaviour despite their few degrees of freedom. They can exhibit chaotic and 

dynamic behaviour characterized by complexity and sensitivity to the initial state of 

the system [32]. 

25



CHAPTER 3. DYNAMICAL EMBEDDING 

a particular physiological state of the brain) typically is estimated by expressing the 

data from our single EEG channel into an M-dimensional space. This is equivalent to 

constructing a delay vector X(t) from the initial time series 

X(t) =(X(t-1),...,X(t-(M —1)r)) € R” 

where T is the time increment (or lag) and M is the embedding dimension (or number 

of lags). According to [15], we choose r = 1 in the whole following. 

A single point in this space is then located by the vector 

Yi@) = (ay Xe, «--,-Xar) 

and the next location is given by the vector 

Y2(t) = (Xo, X3,...,Xm41), and so on. 

Hence, in a time series consisting of K measured values, Y (t) can assume L = K—M+1 

discrete values in the embedding space. 

For a D-dimensional attractor, the embedding dimension M must be at least as 

large as D. Takens showed in [16] that for a system of D degrees of freedom, we must 

have M > 2D +1. 

We then have to determine the complexity and the window size M of the embedding. 

In the following study, we will consider K = 1000 samples which is worth 10 seconds 

of EEG data. 

3.4 Determining the Complexity 

As described before, a delay-space embedding can be used to reconstruct a multi- 

dimensional representation. But an important question is “How many dimensions 

should be used in the representation ?”. 

It was shown in [15] that an analysis of the number of degrees of freedom in X 

leads to the singular value problem 

X =SncT (3.2) 

27



CHAPTER 3. DYNAMICAL EMBEDDING 

by the o;. Furthermore, as 0; decreases, the noise-to-signal ratio (inverse of SNR) 

increases. Thus it is possible to obtain information on the level of noise in the system 

by studying the eigenspectrum. 

So, to make a choice from among all the different singular spectra, we are looking 

for a change in the curvature that displays the limit between the signal space and the 

noise space. We expect a general stability of the spectrum as sufficient information 

content is captured with the window size. Convergence of the singular spectrum is the 

criterion for obtaining a sufficiently large delay window. 

Thus, we know that we have found the right kink when the singular spectrum does 

not change in the signal space when we go on incrementing the window size. This 

means that the window size is big enough to capture the whole dynamics of the signal 

generator. However, because of serial correlations in the data, the length of the delay 

vector is not equivalent to the number of degrees of freedom of the data. It is rather 

determined by the location of the kink on the converged spectrum. The number of 

degrees of freedom is the dimension of the subspace containing the embedding manifold 

rather than the dimension of the manifold in itself. 

For our given EEG data, the singular spectra seem to converge for a window size 

of 30. In figure 3.1 (a), we can observe two kinks occuring at the second eigenvalue 

and at the eigth eigenvalue. We know the first kink is typical of such eigenspectra. 

They relate to the trend of the time series and gather a very large amount of variance. 

Therefore, we know that, they are not enough to reconstruct the signal subspace. The 

kink we are looking for, which shows the singular spectrum of the delay vector for a 

window size of 30, occurs around 8 eigenvalues. 

Figure 3.1 (b) gives us the same singular spectrum by using a delay window of 

8. The delay embedding has therefore 8 degrees of freedom. We can see that the 

curve is smoother in the noise space after the kink at about 5. But there is a residual 

structure in the noise space after this kink. That implies an intrisic dimensionality of 

the underlying manifold generating the EEG signals of about 5. 

29



CHAPTER 3. DYNAMICAL EMBEDDING 

3.5 Principal Component Analysis 

Now that we have chosen to build an embedding matrix of size 30 with our input 

vector, it would be interesting to first perform a Principal Component Analysis on our 

data as a preliminary linear analysis. 

PCA is a commonly used method for analysing data, and it is closely related to 

some other methods such as least squares methods and factor analysis. The objective 

of PCA is to find a set of m orthogonal vectors in data space that have the greatest 

contribution to the data variance. Dimensionality reduction is accomplished by pro- 

jecting the original data with n-dimensional space onto the m-dimensional subspace 

spanned by the orthogonal vectors. This projection often retains most of the essential 

information in the data. PCA is also used to search for clusters. The first principal 

component is taken along the direction of maximum variance, while the second princi- 

pal component has to be the subspace perpendicular to the first one and taken along 

the direction of maximum variance within the subspace. Then the third principal com- 

ponent is a subspace perpendicular to the first two with maximum variance direction, 

and so on. 

The above steps can be generalised that the direction of the kth principal component 

is along an eigenvector direction of the kth largest eigenvalue of the full covariance 

matrix. Proof can be found in reference [17]. 

Unfortunately, this method has a number of problems. For example, extreme points 

in the data set (known as outliers) can generate large errors in the eigenvalues. The 

structure of the data cannot be recovered, i.e., there is a loss of orientation due to 

aliasing along the largest variance of two parallel groups of data. Finally, the linearity 

aspect of PCA will obviously not solve non-linear problems. PCA may yield a relatively 

large number (m > 10) of significant principal components from which we cannot obtain 

information (ordinarily we can visualise 2-3 dimensional data space). Moreover, a large 

number of data can significantly increase computational complexity, e.g., computing 

the inverse of the covariance matrix is typically @(n°). 
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Chapter 4 

Independent Component Analysis 

4.1 Introduction 

We have just seen the results of a Principal Component Analysis applied to our 

data. Recent studies of Independent Component analysis with multi-channel EEG 

have proven promising [35] [36] [39]. That is why we have chosen to apply it to our 

single channel EEG data. The fundamental advantage of ICA over PCA is that the 

signal space is not constrained to be spanned by orthogonal basis vectors and hence 

the independent sources obtained from Blind Source Separation should have a better 

interpretability in terms of the original EEG problem. 

Let us assume that we have some phenomenon which manifests itself through a set 

of n independent random variables. We shall denote the combination of these variables 

with a random vector s = [s;52...8,]". Components sj, s2,...8, are called sources 

and s is called the source vector. This name implies independence : the sources are 

assumed to be independent sources of information. 

Now suppose that the original independent source components are observed via a 

linear process. Denote the observed random vector by z. Since the process is assumed 

linear, the relation between s and x can be modelled as 

2=As (4.1) 
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CHAPTER 4. INDEPENDENT COMPONENT ANALYSIS 

because any constant multiplying an independent component may be cancelled by 

dividing the corresponding column of the mixing matrix A by the same constant. 

e there is no ordering between the independent components. 

4.2 Removing correlations 

Assume that our data has zero mean, that is E{x} = 0. If we can find a linear 

transformation giving relation (4.2), the independent components of s have zero mean 

as well. We assume then that the data has this property, that it has been centered by 

removing its mean and that it has been unit-varianced. So the covariance matrix of 

s is cov{s} = I, and components of s are uncorrelated. Uncorrelatedness is necessary 

but not sufficient for independence. 

We can accomplish uncorrelatedness by transforming z so that its covariance matrix 

will be diagonal. If in addition, all components have unit variance (the covariance 

matrix is unity), the process of accomplishing this is called whitening or sphering. 

Whitening can be done using PCA basis vectors. Let E denote the matrix of 

principal component basis vectors of random data vector 2, i.e., the eigenvectors of 

cov{x}, and D = diag(,,...,&m) a diagonal matrix of corresponding eigenvalues. The 

new whitened data vector v is given by 

v= DET (4.3) 

Matrix V = D-'/?ET is a whitening matrix. The fact that v is really white can be seen 

from 

cov{v} = E{D?ET gr? ED-Y?} 

= D-VET coy{z}ED-/? 

D-? ET EDET ED-¥? 

= I 
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CHAPTER 4. INDEPENDENT COMPONENT ANALYSIS 

e Karhunen, Oja, Wang, Vigario and Joutsensalo [19] 

e Karhunen and Pajunen [21] 

¢ Girolami and Fyfe [26] 

e Pearlmutter and Parra [8] 

In Table 4.1, we describe the algorithms we have selected to use before choosing 

the definite one for the experiments and the study. 

  

Method of solution 
  

Mathematical |} Diagonalization Fixed point 

approach 
  
  

Fourth order cu- JADE [23] Original fixed point [5] 

mulants 
  

Contrasts based = Generalized fixed point [4] 

on other nonlin-           earities 
  

Table 4.1: A classification of used ICA algorithms. 

One especially important class of algorithms missing from this list is the set of 

algorithms with foundations in information theory. In section 4.3.2, I will introduce 

the entropy maximization algorithm of Bell and Sejnowski. Then in section 4.3.3, I 

will present algorithms based on batch computations. Finally, in section 4.3.4, I will 

present the fast-fixed point algorithm which is a particular method of the generalized 

fixed-point, I have been using for my experiments on EEG data. 
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yi= gthi) 
  

  

  

  

  

        

  

      

  

Figure 4.1: Entropy maximization error network 

4.3.3 Jade Algorithm 

The JADE algorithm of Cardoso and Souloumiac is based on joint approximate di- 

agonilization of eigenmatrices [23]. The ICA problem can be solved by computing the 

eigenvectors of the cumulant matrix Q,(M) for any matrix M. JADE diagonalizes a 

set of eigenmatrices representing the whole cumulant matrix set C,. 

The problem with such an algorithm is that it uses batch tensorial computations. 

The data we are using is too large for such difficult tensorial computations. 

4.3.4 Fast-Fixed Point Algorithm 

One way to approach the ICA problem is to try to form an optimization problem that 

has its solutions as the independent components. We shall call such objective functions 

contrast functions. 

We introduce a measure called kurtosis. Its value is described to measure the 

peakedness of the distribution, with peaked distributions giving positive values of kur- 
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There are two ways of solving this equation. One of them would be by applying 

standard numerical algorithms. Hyvarinen and Oja have chosen to write the equation 

in the form : 

w = scalar x (E{x(w"z)*} — 3]|w||?w) (4.12) 

This is very useful for the scalar takes into account the penalty function which we 

therefore don’t need to compute and hence, we don’t need to take into acount the 

peakness of our signal (sub or super gaussian). 

Then, the iteration obtained is very fast. 

Using the preceding equation, we derive the following algorithm : 

  

1. w:=rand() 

2. w:=w/|lw|l 

3: 20a = 0 

4. while ||w — weal] > € A ||w + wall > € 

© Wold = W 

e w= E{v(w'v)3} — 3w 

© w:= w/ull 

end     
  

Table 4.2: Hyvarinen and Oja’s Fast-Fixed Point Algorithm 

The final vector w equals one of the column of the mixing matrix B, which means 

that one of the non-gaussian independent component has been separated. Thus to 

estimate n independent components, one needs to run the algorithm n times. We are 

sure that we estimate each time a different component thanks to the orthogonalizing 

projection inside the loop. 

Hyvarinen and Oja prove that their algorithm has a cubic convergence. 

Al



Chapter 5 

Experiments and Results 

5.1 Introduction 

The Independent Component Analysis is ideally suited for performing source separation 

in domains where : 

e the sources are independent 

e the propagation delay of the “mixing medium” are negligible 

e the sources are analog and have probability density functions not too unlike the 

gradient of the logistic sigmoid 

e the number of independent signal source is the same as the number of sensors 

In our case of EEG signal, one scalp electrode picked up correlated signals at differ- 

ent times of the day on a wake human being executing four different tasks. We would 

like to know what effectively independent brain sources generated these mixtures. If we 

assume that the complexity of EEG dynamics can be modelled as a collection of sta- 

tistically independent brain processes, the EEG source analysis problem satisfies ICA 

assumption 1. Since volume conduction in brain tissue is effectively instantaneous, 

ICA assumption 2 is also verified. Assumption 3 is plausible. But assumption 4 is 
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5.3 Independent Component Analysis of Raw EEG 

Data 

I have chosen to show here only the most relevant results on task 4 in order to remain 

as concise as possible. 

Figure 5.1 shows the original time serie of 1000 samples we are going to work on. 

  260 r v 7 
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Figure 5.1: 1000 samples time series for task4 

Then, we complete an embedding on our signals (let us bear in mind that we use 

1000 samples which is approximately worth 8 seconds of EEG recording), we can apply 

the fast fixed point algorithm. 

We chose to compute as many independent components as we have delay vectors. As 

a matter of fact, we do not know how many sources such a time series is constituted of. 

We do not want to risk losing any information. Hence, at the end of our computation, 

which is quite long, we obtain 30 independent components. We project each of our delay 

vectors on the corresponding independent component in order to obtain the sources we 
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Figure 5.4: 9th source of the raw data and its power spectral density 
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Figure 5.5: 8th source of the raw data and its power spectral density 

47



CHAPTER 5. EXPERIMENTS AND RESULTS 

  

S
t
S
 

1 

  -2! 
0 200 400 600 800 1000 

  800; 

600) 

400) 

200)     
  

Figure 5.8: 10th source of the raw data and its power spectral density 

As none of our resulting sources are ordered, we had to choose a way to classify 

them. Using the power spectrum of each of them proved to be a good method. As a 

matter of fact, it seems that the sources showing the brain activity during the different 

tasks, display different frequency range. Of course, some of them are identical or fall 

very closely in the same frequency interval. We can then advance that they naturally 

cluster by order of frequency. 

Moreover, knowing the approximate frequency of each of the sources and their 

shape allows us to be able to relate them to an activity of the brain. Let us study each 

preceding source separately : 

source 16 (figure 5.2) has a very low frequency at about 5 Hz and its morphology 

can make us think that the ICA has isolated some eye movements. 

¢ source 20 (figure 5.3) shows us the general trend of the signal but if we analyse 

it more closely we see a frequency range from 5 Hz to 10 Hz which characterizes 

alpha activity. 

e source 9 (figure 5.4) shows high alpha activity and beta activity mixed. 

e source 8’s morphology (see figure 5.5) displays more spikes and the frequency 
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CHAPTER 5. EXPERIMENTS AND RESULTS 

chosen to be reasonable (in combination with a reasonable necessary compromise on 

the shape of the rectangle). The Butterworth filter provides the maximum flatness 

in the passband (no ripples) which implies the minimum amplitude distortion and is 

therefore suited for our situation. 

They are causal and of various orders, the lowest order being best (shortest) in 

the time domain, and the higher orders being better in the frequency domain. Well- 

engineered projects often include Butterworth filters. 

Our need is to design a lowpass filter that loses no more than 3 dB in the passband 

and has at least 50 dB in the stopband because we assume that there is no more 

human activity after 50 Hz. 45 Hz and 50 Hz are the passband and stopband edge 

frequencies and the sampling frequency is 128 Hz. The estimated order of the filter is 

7. The order was estimated using MATLAB function butterord. Figure 5.9 shows 

the magnitude of the transfer function of our designed filter. The filter was designed 

using MATLAB function butter. 

Let aa denote the transfer function of the Nth-order digital filter. Then, by 

computing the z-transform of the digital filter, we have : 

jw) — B(z) _ b(1) +0(2)a71 +--+ + b(n» + 1)2- 

HO) = FG) ~ Trae ttt alg ee 
The vector w is a L-point frequency vector in radians, and H is the L-point complex 

frequency response vector of the filter 4 given numerator and denominator coefficients 

in vectors B and A. 

Figure 5.10 shows 1000 samples of EEG data after the application of our Butter- 

worth filter. We can notice that the signal is smoother after the filtering of the data 

compared to figure 5.1. 
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CHAPTER 5. EXPERIMENTS AND RESULTS 

5.4.2 Results 

We apply the Butterworth filter to the raw EEG data, and then construct the em- 

bedding matrix of window size 30 with the resulting signal. We then perform the 

Independent Component Analysis on this matrix like we did previously. We notice 

that the convergence is faster than for the raw data. 

As a result of the Independent Component Analysis, we get a set a 30 independent 

components on which we project the delay vectors and perform a spectral analysis of 

the sources. After this analysis, we notice that most of them are very similar to the 

previous ones we studied in the previous section. 

Here is an example of signal we obtain. It is very similar to the source displayed 

on figure 5.2 
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Figure 5.11: 10th source of the filtered data and its power spectral density 

The sources are much “cleaner” with filtered data. We got rid of the noise from 

the fluorescent lamp, and of the extraneous noise above 40 Hz. 
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the original signals. In appendices A, B, C and D, we display the whole 30 sources 

and their power spectral densities resulting from our experiments on 1000 samples of 

our data for each task. We notice that after removing the noisy sources (very low or 

very high frequencies on the power spectral densities) and the redundant sources (same 

sources with different scaling, inverted sources), we can classify our sources by order 

of frequencies and that clusters naturally form from there. This allows us to verify 

our first hypothesis (see Chapter 3 section 3.4) : we can really identify four, five or six 

clusters in the interesting output sources which carry information in the signal domain. 

One question remains : How to analyse the behavioral significance of such sources ? 

We must not forget the first aim of this study : can we simply characterize vigilance 

during the EEG trials just by extracting interesting brain activities from the output 

sources of the ICA. Unfortunately, not yet. Specialists only could give further expla- 

nations of the results, and some more experiments should be conducted on particular 

samples of the original EEG signals and compare the results with the “apparent” vig- 

ilance of the subjects during the trials. 
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competitive and unsupervised, meaning that no teacher is needed to define the correct 

output (that is to say the cell into which the input is mapped) for an input. The 

locations of the responses in the array tend to become ordered in the learning process 

as if some meaningful nonlinear coordinate system for the different input features were 

being created over the network. 

The SOM was developed by Professor Teuvo Kohonen in the early 1980s [18]. 

6.2.1 The Self-Organizing Map Algorithm 

Assume that the sample data sets have to be mapped onto the array depicted in 

figure 6.1. The set of input samples is described by a real vector x(t) € R” where t 

is the index of the sample, or the discrete time coordinate. Each node i in the map 

contains a model vector m;(t) € R”, which has the same number of elements as the 

input vector x(t). 

The stochastic SOM algorithm performs a regression process. Therefore, the initial 

values of the components of the model vector, m;(t), may even be selected at random. 

Any input item is thought to be mapped into the location, the m;(t) of which 

matches the best with x(t) in some metric. The self-organizing algorithm creates the 

ordered mapping as a repetition of the following basic task : 

1. An input vector z(t) is compared with all the model vectors m;(t). The best- 

matching unit (node) on the map, i.e., the node where the model vector is most 

similar to the input vector in some metric (e.g. euclidean) is identified. This best 

matching unit is called the winner. 

2. The model vectors of the winner and a number of its neighboring nodes in the 

array are changed towards the input vector according to the learning principle 

specified below. 

The basic idea of the SOM learning process is that, for each sample input vector «(t), 

the winner and the nodes in the neighbourhood are changed closer to x(t) in the input 
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data space. During the learning process, individual changings may be contradictory, 

but the net outcome in the process is that ordered values for the m,(t) emerge over the 

array. 

Adaptation of the model vectors in the learning process may take place according 

to the following equations : 

mi) = m,(t) + a(t)[a(t) — m;(t)] for each i € N,(t) 

m;(t) otherwise 

where t is the discrete-time index of the variables, the factor a(t) € [0,1] is a scalar 

that defines the relative size of the learning step, and N,(t) specifies the neighbourhood 

around the winner in the map array. 

At the beginning of the learning process, the radius of the neighbourhood is quite 

large, but it is made to shrink during the learning. This ensures that the global order 

is obtained already at the beginning, whereas towards the end, the radius gets smaller, 

the local corrections of the model vector in the map will be more specific. The factor 

a(t) also decreases during the training. 

One method of evaluating the quality of the resulting map is to calculate the average 

quantization error over the input samples, defined as E'{||x—m,(zx)||} where c indicates 

the best matching unit for x. After training, for each input sample vector, the best- 

matching unit in the map is searched for, and the average of the respective quantization 

errors is returned. 

6.2.2 Experiments and Results 

The SOM_PAK program, developed by Kohonen, Hynninen, Kangas and Laaksonen, 

was used during all the course of these experiments [18]. 

The Self-Organizing Map was applied to the recognition of topographic patterns on 

the resulting sources of our former Blind Source Separation (see Chapter 5). 

The training set consists of 24 sources of 500 samples each. We do not use any 

labelling at all to characterize the sources on this set. For each task, we obtain a 
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square map and by stronger patterns in its top left and bottom right corner. Whereas 

boring tracking tasks are characterized by lighter patterns in the upper left side and 

brighter patterns in the bottom left of the upper right corner. 

The main problem is that, in that way, we do not determine the kind of brain 

activity these lighter and brighter patterns correspond to. 

6.3. Sammon Mapping 

6.3.1 The Algorithm 

We said in the introductive section that in a topographic map, N data vectors {x;} 

in R? are transformed into a corresponding set of feature vectors {y;} in R? such that 

q <p and the geometric structure of the input data vector remains unchanged. The 

Sammon Mapping is the most intuitive basis for this definition since it is generated 

by the minimization of an error measure EF of the inter-point distances also called 

STRESS 

ee ee 
ae (6.1) 

Eye 
i j<i 

where dj; = ||z; — 2;|| is the distance between points i,j in the input data set and 

di; = \\yi — y,\| is the distance between their images in the map or feature space. 

The procedure for performing the transformation is shown in figure 6.3 and sum- 

marised in Table 6.1. 

Various error minimisation procedures can be used, one of which is the gradient 

descent procedure. But this procedure can get trapped in local minima. 
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1. Compute inter-point distances in the original space. 

2. Initialise target space by a random number generator. 

3. Calculate mapping error between original and target space. 

4. Modify coordinate points in the target space by means of a 

non-linear procedure. 

5. Repeat Step 3 until the mapping error is sufficiently small.       

Table 6.1: Sammon Mapping’s algorithm 

Let us now come back to equation (6.1). The dj, — dj; term represents a measure 

of the deviation between the corresponding distances. The Sammon STRESS thus 

represents an optimal matching of the inter-point distances in the input and map spaces. 

According to [24], normalising the expression by the first fractional term reduces the 

sensitivity of the measure to the number of input points and their scaling. Moreover, to 

render the overall measure dimensionless, the d;; term is included in the denominator 

of the sum to moderate the domination of errors in large distances over those in smaller 

distances. 

In the standard Sammon Mapping, the STRESS is minimised by adjusting the 

location of the points y; directly, according to a gradient-descent scheme. For each 

point y;, we define a parameterised non-linear function of the input f(z;;w), where w 

is the weight vector. Then the STRESS becomes : 

NON 

B= SIG — IF es w) — F(e,w)|l? (6.2) 
aes 

Then, it is straightforward to differentiate E with respect to the mapped coordinates 

y; and optimise the map using standard error-minimisation methods. This gives : 

Oe see Oh 
Ou, : Oy; Owr, 

N ° 
ye OE Of (ai wr) (6.3) 

Oy; Owz
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Figure 6.4: Sammon Maps of a projection of our EEG data on the principal components 

(top) and on the independent components (bottom) 
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The constant term k is added to the inter-point distances of two pairs of points so 

that their separation should be exaggerated in the resultant map. 

In many problems, there may be further knowledge available regarding class rela- 

tionships which we call subjective dissimilarity and will denote in the following section 

'S = [s;j] corresponding to each d;;. The assignment of class dissimilarity means that 

for every pair of data points in addition to the objective dissimilarity, there is a dual 

subjective dissimilarity which stresses alternative knowledge about the data. Thus, one 

can relate the existence of this set of subjective dissimilarities to a subjective metric 

implicitely defined over the input space. 

6.4.3 NeuroScale 

NEUROSCALE is a technique which transforms a p-dimensional input space into a 

q-dimensional feature space (q < p) with a feed-forward radial basis function. The 

network is trained with the same algorithm as with a Sammon Mapping (see Table 

6.1) but by minimizing the following stress measure : 

N N 

B= SY 6s — ll — wll? (6.7) 
i j<i 

where 

Oyj = (1 — a) di; + asi (6.8) 

The parameter a (0 < a < 1) controls the degree to which the subjective metric 

S influences the output configuration. One can say that it helps finding a nice middle 

between an unsupervised and a supervised mapping. 

The main difference between the algorithm of NEUROSCALE and the Sammon 

Mapping algorithm (Table 6.1) is that this latter is fixed, i.e., we know when it has 

converged. We must alter it in order to : include a calculation of the elements of the 

input space distance matrix, take into account the particular value of a. If a equals 

0, then the algorithm computes a parameterized Sammon Mapping. If @ equals 1, 
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6.4.4 Experiments and Results 

To minimize E, a gradient descent algorithm is employed. The network weights are 

initialised at random. 

The data comprises 100 samples for each task taken from the same sets we used for 

performing the ICA on which we do an embedding in order to look for the independent 

components. After computing the ICA on the embedded matrix, we obtain a 400 x 30 

matrix of independent sources on which we can perform the NEUROSCALE algorithm. 

We also choose a subjective metric which only takes into account the task knowledge 

relative to the data. So we build a boolean matrix B corresponding to each task in the 

following way : 

400 

samples 

alge ieee ae 

a eae 
T 

Taskeuiede | 120 020.0" 0 ra 
\ 

pe Tks] 001 10.00 0) 
~ Task6 | 0 Or ots. 0} 

Task7 \ 0 00 o1 v 

Then, to compute our subjective matrix S, we just have to compute the inter-point 

euclidean distances of the matrix B. 

With a = 0.5, we both retain some of the objective spatial topology and impose 

some task knowledge to the output configuration. 

It is interesting to first observe the differences between these two maps and the 

Sammon Maps (see figure 6.4). We can see that the NEUROSCALE algorithm has split 

the clusters up even more to reveal some class knowledge. On the projections on the 

principal components, the algorithm has kept the ordering of the Sammon Mapping, 

69



CHAPTER 6. DATA VISUALISATION BY CLUSTERING 

spiral shape of the principal components). But we are still unable to identify their 

meaning. 

NEUROSCALE displays some advantageous features which the Sammon Mapping 

does not. By incorporating varying degrees of subjective knowledge, we can influence 

the extracted feature space. The resulting sphere, with its four distinct clusters and 

their evolution with the changing of the parameter a gives us a better idea of cluster- 

ing than the Sammon Mapping. And of course, the NEUROSCALE map is far more 

representative than the Kohonen SOM. Moreover, there is a cost function associated 

with a particular mapping which allows us to assess individual maps and to compare 

them. 
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Figure 6.7: NEUROSCALE of a projection of our EEG data on the principal components 

(top) and on the independent components (bottom) with a = 0.9. The value of the 
STRESS measure was : 2.98 for case a), 0.13 for case b) 
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CHAPTER 7. CONCLUSION 

the mixture of sources and remove them in order to extract the information-carrying 

sources that is the main brain activity corresponding to the behavioural state of the 

subject when achieving a particular task during a trial. 

Moreover, these sources characterising brain activity, also provide justification for 

our main fundamental hypothesis that there are only a few of them constitutive of a 

nonlinear system with just a few degrees of freedom. Unfortunately, we are not yet 

able to extract these interesting sources directly without performing a power spectral 

analysis on each of them separately to isolate them from the noisy ones as there is yet 

no existing algorithm to classify these sources. 

In Chapter 6, it was reasoned that the Sammon Mapping and NEUROSCALE were 

most effective strategies for topographic dimension reduction. The main advantage of 

Kohonen’s approach is computational, because realistically, application of the Sammon 

Mapping is restricted to fewer than 1000 data points. 

The feed-forward neural network topographic mapping technique NEUROSCALE , 

was thus based upon the Sammon Mapping and utilises a radial basis function neural 

network. Because of this neural network element, it offers the capability of generalisa- 

tion to new data — a feature absent from Sammon’s original algorithm. 

An important extension embodied in NEUROSCALE is the capacity to exploit ad- 

ditional information in the mapping process. In standard approaches to topographic 

mapping, the geometry of the output space is determined solely according to some 

conventional metric (generally Euclidean) defined over the data space. If alternative 

information is available — such as class labels — then this may be allowed to influence 

the mapping (in order to emphasise clustering, for example). 

The results shown by both Sammon Mapping and NEUROSCALE are interesting in 

a way that they show some clustering according to the types of task, but they also 

prove that there is another important clustering that we are not yet able to interpret 

and which is not related to the time history of the four tasks. One can suggest that 

this particular feature of the map comes from the “way” the subject has undertaken 

75



Bibliography 

{1] Bell A and Sejnowski T. ” An Information-Maximisation Approach to Blind Sep- 

aration and Blind Deconvolution”. Neural Computation, 7:1004—1034, 1995. 

[2] Cichocki A, Kasprzak W, and Amari S. ”Multi-layer Neural Networks with a 

Local Adaptative Learning Rule for Blind Separation of Sources”. Proceedings of 

the Research society of Nonlinear Theory and its Aplications (NOLTA), 1995. 

[3] Cichocki A, Kasprzak W, and Amari S. ”Robust Neural Networks with On- 

line Learning for Blind Identification and Blind Separation of Sources”. [EEE 

Transacions on Circuits and Systems — Fundamental Theory and Applications, 

43, 1996. 

[4] Hyvarinen A. ”A Family of Fixed-Point Algorithms for Independent Component 

Analysis”. Proc. IEEE Int. Conf. on Acoustics, Speech and Signal Processing 

(ICASSP’97), pages 3917-3920, 1997. 

[5] Hyvarinen A. "Independent Component Analysis by Minimization of Mutual 

Information”. Technical Report, Helsinki University of Technology, Laboratory of 

Computer Science, 1997. 

[6] Hyvarinen A and Oja E. ”A Fast Fixed-point Algorithm for Independent Com- 

ponent Analysis”. Neural Computation, 9:1483-1492, 1997. 

[7] Loomis AL, Harvey E, and Hobart GA. ”Cerebral States during Human Sleep 

as studied by Human Brain Potentials”. Journal of Experimental Psychology, 21, 

1937. 

if



(19] 

[20] 

[21 

[22] 

[23] 

[24] 

[25] 

[27] 

[28] 

Karhunen J, Oja E, Wang L, Vigrio R, and Joutsensalo J. ”A Class of Neural 

Networks for Independent Component Analysis”. IEEE Transactions on Neural 

Networks, 1997. 

Karhunen J and Pajunen P. ”Hierarchic Nonlinear PCA Algorithms for Neu- 

ral Blind Source Separation”. Proceeding of the IEEE Nordic Signal Processing 

Symposium (NORSIG), 1996. 

Karhunen J and Pajunen P. Blind Source Separation and Tracking using Non- 

linear PCA Criterion : A Least-squares Approach”. Proceedings of the IEEE 

International Conference on Neural Networks (ICNN), 1997. 

Mao J and Jain AK. ” Artificial Neural Networks for Feature Extraction and 

Multivariate Observations”. Proceedings of the 5th Berkeley Symposium on Math- 

ematics, Statistics and Probability, 1995. 

Cardoso JF and Souloumiac A. ”Blind Beaforming for Non Gaussian Signals”. 

IEE-Proceedings, 140:362-370, 1993. 

Sammon JW. ”A Nonlinear Mapping for Data Structure Analysis”. IEEE Trans- 

actions on Computers, C-18(5):401—409, 1989. 

Knuth KH. ” Difficulties Applying Recent Blind Source Separation Techniques to 

EEG and MEG”. Maximum Entropy and Bayesian Methods, 1997. 

Girolami M and Fyfe C. ”Blind Separation of Sources using Exploratory Pro- 

jection Pursuit”. Proceedings of the International Conference on the Engineering 

Applications of Neural Networks (EANN), 1996. 

Tipping ME. Topographic Mappings and Feed-Forward Neural Networks. PhD 

thesis, 1996. 

Delfosse N and Loubaton P. ” Adaptative Blind Source Separation of Independent 

Sources : A Deflation Approach”. Signal Processing, 45, 1995. 

79



[39] Jung T-P, Makeig S, and Sejnowski T. ”Using Feedforward Neural Networks to 

Monitor Alertness from Changes in EEG Correlation and Coherence”. In Advances 

in Neural Information Processing Systems 8., 1996. 

[40] Li X, Gasteiger J, and Zupan J. ”On the Topology Distorsion in Self-Organizing 

Feature Maps”. Biological Cybernetics, 70, 1993. 

81



 



Appendix B 

Results for task4 
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Figure B.1: 1000 samples taken from Task4 on which we apply the ICA algorithm 
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Appendix D 

Results for task7 
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Figure D.1: 1000 samples taken from Task7 on which we apply the ICA algorithm 
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Chapter 1 

Introduction 

... I shall demonstrate how this tiny sound within, this nothing, contains 

everything; and how, with the bacillary aid of a single sensation — always 

the same one, and deformed at that in its very origins — a brain isolated 

from the world can create a world in itself ... 

Remy de Gourmont — Siztine. 

Measurements of brain activity can be performed by recording the electric potentials 

on the scalp surface : this is known as electroencephalography (EEG). EEG analysis 

has played a key role in the modeling of the brain’s cortical dynamics. If several mental 

states can be reliably distinguished by recognizing patterns in EEG, then is it possible 

to utilise EEG information to automatically estimate car driver or pilot workload for 

example ? By estimating workload, we mean assessing the level of attentiveness or 

vigilance of a pilot. 

There have been many studies of alertness to try to discover whether vigilance 

may be recognized from single or multi-channel EEG traces ( [35], [36], [39]), since 

the first investigation by Loomis et al in 1937 [7]. Most of them have confirmed that, 

despite sincere intentions, few subjects remain vigilant while engaged in monotonous 

monitoring tasks. 

The analysis of the data is problematic due to the fact that multiple neural genera- 

tors of the EEG may be simultaneously active and the potentials and electromagnetic
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are distorted by the head volume conductor), reference electrode effects and algorithm 

effects (algorithms that are adopted to reduce volume conduction effects may introduce 

false coherency estimates) [32]. 

The fundamental reason why EEG analysis is performed in the frequency domain is 

because of the belief in the linear nature of the physical sources generating the potential 

differences measured by the sensors. This linearity suggests that the signal might be 

decomposed into a sum of sinusoidal components. So we are supposed to obtain a 

description of the signal in terms of its fundamental frequency characteristic. 

Recently, blind source separation by Independent Component Analysis (ICA) has 

received attention because of its potential applications in signal processing such as 

in speech recognition systems, telecommunications and medical processing. The goal 

of ICA is to recover independent sources given sensor outputs in which the sources 

have been linearly mixed. In contrast to correlation based solutions such as Principal 

Component Analysis (PCA), ICA not only decorrelates the signals but also reduces 

higher-order statistical dependencies, attempting to make the signals as independent 

as possible. The blind source separation problem has been studied by researchers in 

the field of neural networks [33], [1], [2], [26], [19], [8]. It has also been applied to the 

particular field of EEG in several studies [35], [36], [39], [25]. All these studies only 

consider multi-channel EEG recordings to perform the ICA algorithm. 

For this study, we have made the choice to consider only single channel EEG data 

recorded from wake subjects due to the hypothesis that over short segments of EEG 

data, we can reconstruct the dynamics of the system with a dynamical embedding 

of one single channel. We will question the use of linear Fourier analysis within the 

wake state, essentially because of the nature of the noise sources and complexity of the 

signal. Indeed, we will start from the hypothesis that the complexity in wake EHG is 

due to the nonlinear interaction of a few degrees of freedom rather than the linear in- 

teraction of many degrees of freedom, plus additive noise. This is a dynamical systems 

perspective which considers the existence of an underlying data generator (or attrac- 

11
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consists of finding the statistically independent sources responsible for a set of data. 

The most familiar situation is the “cocktail party problem” where there are many 

speakers, or sources of accoustic signals, and the listener detects mixtures of these 

signals. 

Finally, topographic mappings may be viewed as nonlinear, unsupervised feature 

extraction processes. Here the criterion for selection of features is not to maximise 

variance or any mutual information, but rather that the topology or geometric structure 

of the data be preserved in the feature space. 

In the feature space, delay vectors x are expressed as a linear combination of span- 

ning basis functions v; and a set of “source” signals a;(t) 

a(t) = > ai(t)v; 

In a Principal Component Analysis embedding, the basis functions v; are obtained 

as the eigenvectors of a covariance matrix (see Chapter 3). In an Independent Compo- 

nent Analysis, the expansion basis vectors v; are instead determined as the independent 

components of a demixing matrix (see Chapter 4). 

In both cases (PCA and ICA), we project the data linearly on the embedding 

vectors and therefore reduce the dimensionality of our feature space. This also allows 

us to reduce some of the noise structure (see figure 1.1). 

We can now build a model in this reduced (dimension and noise) feature space (see 

Chapter 6), search for some dynamic structure, identify anomalous behaviour and look 

for interesting structure which might characterise vigilance. 

Figure 1.1 presents a symbolic overview of the structure and function of this thesis. 

13
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Chapter 5 details all the results with ICA applied to our raw or filtered data. It 

discusses these results in terms of frequencies and validates the hypothesis made in 

Chapter 3. 

Chapter 6 applies different methods of topographical mappings to the results of ICA. 

These methods are : Kohonen Self-Organizing Maps, Sammon Mapping, NEUROSCALE 

The different results are then discussed and the methods are compared. 

Chapter 7 concludes this thesis, discusses the major results and gives directions for 

further research. 
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CHAPTER 2. NEOCORTEX AND BRAIN WAVES 

sources rather than sources farther from the sensors. 

e EEG is most sensitive to correlated dipole layer in ab, de, gh (that is perpendic- 

ular fields), less sensitive to correlated dipole layer in hi (that is tangential fields) 

and insensitive to opposing dipole layer in bed, efg. 
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Figure 2.1: Extracranial recording of EEG data 

With all the limitations of extracranial recordings, we can wonder if anything valuable 

can be extracted from EEG signals. However, it has long been appreciated (since 

the first EEG recording in 1928) that electroencephalography is a genuine measure 

of conscious experience. As a matter of fact, EEG recording has long been used in 

medicine as a clinical test for variety of pathologic conditions : epilepsy, Alzheimer’s 

disease, severe head injuries, multiple tumors... 
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2.4 Brain Waves 

Interpreting EEG involves the characterization of wave forms largely defined by their 

frequency and to a lesser extent by their morphology. The difficulty lies, in part, 

in recognizing artifacts and also in being able to differentiate normal variants from 

abnormalities. 

2.4.1 Waves defined by frequency 

Frequency means the number of waves per second. The frequencies of the EEG waves 

run from 0.5 per second to hundreds per second. Waves are usually defined by their 

frequency and are divided, on this basis, into four main groups. Figure 2.2 displays 

these different types of waves and the following sections describe them more precisely. 
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Figure 2.2: Brain waves 
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in children. 

2.4.2 Waves defined by morphology 

Certain waves have characteristic forms irrespective of their frequency and are recog- 

nizable by their shape; in other instances pair or groups of waves have typical appear- 

ances. Single waves that are specially shaped include, for instance spikes or sharp waves 

- waves that rise rapidly to a point and fall away equally dramatically with a base that 

is small compared to the wave’s amplitude. Some wave forms can be recognized by 

their morphology and these include two main types: 

e Specially shaped waves 

e Specially shaped wave complexes 

Artifacts 

Artifacts are disturbances caused by technical defects - usually transitory. Included are 

such things as eye movement, electrode movement with loss of contact, muscle activity 

obscuring the EEG, movements of the head, scratching the scalp, sweating etc... 

Normal variants 

There are several waves or patterns of waves which are unusual in appearance yet 

are not significant for abnormality or disease. These waves can be misinterpreted. 

Amongst the more common ones are mu rhythm, psychomotor variant, lambda waves, 

POSTS, spindles, vertex waves. 
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EEG data was collected on an Oxford Instruments Medilog system utilising 8 sep- 

arate measurement channels at the University of West England on behalf of British 

Aerospace. The electrodes were sited according to a standard 10-20 system and bipolar 

potential differences due to electroencephalographic activity were measured. 

The data was sampled at 128 Hz and scaled and linearly quantised at one byte per 

sample. For this study, only signals extracted from scalp locations T5-Oz were used. 

Cross-channel effects are the subject of future work. 

One major problem with using wake EEG is due to the very poor signal-to-noise 

ratio as a consequence of the overall mental and mechanical activity, giving rise to 

spurious and background electrical activity. Hence our first approach was to con- 

sider approaches to reduce the noise components in the signal and to enhance the 

information-carrying signal components. 
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3.2 Nonlinear Phenomena 

The separation of linear systems into discrete and continuous systems is also appropri- 

ate for nonlinear systems. Our aim is to exhibit a new appreciation for the complexity 

and richness of behaviour of a system such as brain waves with only a few degrees of 

freedom. 

There are different types of behaviour for a deterministic time series : 

equilibrium 

e periodic 

© quasiperiodic 

chaotic 

These four types of behaviour are called attractors. The distinction between these 

different types of attractors are most obvious when applied to systems with relatively 

few degrees of freedom and large signal-to-noise ratio. The problem we are going to 

face is that our electroencephalographic data has a very poor SNR. The generator of 

our data will thus be quite difficult to characterise. 

The general idea is that simple systems (that is systems with a few degrees of free- 

dom) behave simply. This idea is certain for linear systems. However, with nonlinear 

systems, new phenomena have been described that cannot be predicted by linear theory. 

So even very simple systems, if nonlinear, can exhibit extremely complex behaviour. 

Such nonlinear systems are very interesting for appreciating their complexity and rich- 

ness of behaviour despite their few degrees of freedom. They can exhibit chaotic and 

dynamic behaviour characterized by complexity and sensitivity to the initial state of 

the system [32]. 
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a particular physiological state of the brain) typically is estimated by expressing the 

data from our single EEG channel into an M-dimensional space. This is equivalent to 

constructing a delay vector X(t) from the initial time series 

X(t) = (X(t—7),...,X(t-(M —1)r)) ER” 

where T is the time increment (or lag) and M is the embedding dimension (or number 

of lags). According to [15], we choose t = 1 in the whole following. 

A single point in this space is then located by the vector 

Val) = CX Xay-s an) 

and the next location is given by the vector 

Yo(t) = (Xo, X3,..., X41), and so on. 

Hence, in a time series consisting of K measured values, Y(t) can assume L = K—M+1 

discrete values in the embedding space. 

For a D-dimensional attractor, the embedding dimension M must be at least as 

large as D. Takens showed in [16] that for a system of D degrees of freedom, we must 

have M > 2D+1. 

We then have to determine the complexity and the window size M of the embedding. 

In the following study, we will consider K = 1000 samples which is worth 10 seconds 

of EEG data. 

3.4 Determining the Complexity 

As described before, a delay-space embedding can be used to reconstruct a multi- 

dimensional representation. But an important question is “How many dimensions 

should be used in the representation ?”. 

It was shown in [15] that an analysis of the number of degrees of freedom in X 

leads to the singular value problem 

X=Sucr (3.2) 

27



CHAPTER 3. DYNAMICAL EMBEDDING 

by the o;. Furthermore, as 0; decreases, the noise-to-signal ratio (inverse of SNR) 

increases. Thus it is possible to obtain information on the level of noise in the system 

by studying the eigenspectrum. 

So, to make a choice from among all the different singular spectra, we are looking 

for a change in the curvature that displays the limit between the signal space and the 

noise space. We expect a general stability of the spectrum as sufficient information 

content is captured with the window size. Convergence of the singular spectrum is the 

criterion for obtaining a sufficiently large delay window. 

Thus, we know that we have found the right kink when the singular spectrum does 

not change in the signal space when we go on incrementing the window size. This 

means that the window size is big enough to capture the whole dynamics of the signal 

generator. However, because of serial correlations in the data, the length of the delay 

vector is not equivalent to the number of degrees of freedom of the data. It is rather 

determined by the location of the kink on the converged spectrum. The number of 

degrees of freedom is the dimension of the subspace containing the embedding manifold 

rather than the dimension of the manifold in itself. 

For our given EEG data, the singular spectra seem to converge for a window size 

of 30. In figure 3.1 (a), we can observe two kinks occuring at the second eigenvalue 

and at the eigth eigenvalue. We know the first kink is typical of such eigenspectra. 

They relate to the trend of the time series and gather a very large amount of variance. 

Therefore, we know that, they are not enough to reconstruct the signal subspace. The 

kink we are looking for, which shows the singular spectrum of the delay vector for a 

window size of 30, occurs around 8 eigenvalues. 

Figure 3.1 (b) gives us the same singular spectrum by using a delay window of 

8. The delay embedding has therefore 8 degrees of freedom. We can see that the 

curve is smoother in the noise space after the kink at about 5. But there is a residual 

structure in the noise space after this kink. That implies an intrisic dimensionality of 

the underlying manifold generating the EEG signals of about 5. 
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3.5 Principal Component Analysis 

Now that we have chosen to build an embedding matrix of size 30 with our input 

vector, it would be interesting to first perform a Principal Component Analysis on our 

data as a preliminary linear analysis. 

PCA is a commonly used method for analysing data, and it is closely related to 

some other methods such as least squares methods and factor analysis. The objective 

of PCA is to find a set of m orthogonal vectors in data space that have the greatest 

contribution to the data variance. Dimensionality reduction is accomplished by pro- 

jecting the original data with n-dimensional space onto the m-dimensional subspace 

spanned by the orthogonal vectors. This projection often retains most of the essential 

information in the data. PCA is also used to search for clusters. The first principal 

component is taken along the direction of maximum variance, while the second princi- 

pal component has to be the subspace perpendicular to the first one and taken along 

the direction of maximum variance within the subspace. Then the third principal com- 

ponent is a subspace perpendicular to the first two with maximum variance direction, 

and so on. 

The above steps can be generalised that the direction of the kth principal component 

is along an eigenvector direction of the kth largest eigenvalue of the full covariance 

matrix. Proof can be found in reference [17]. 

Unfortunately, this method has a number of problems. For example, extreme points 

in the data set (known as outliers) can generate large errors in the eigenvalues. The 

structure of the data cannot be recovered, i.e., there is a loss of orientation due to 

aliasing along the largest variance of two parallel groups of data. Finally, the linearity 

aspect of PCA will obviously not solve non-linear problems. PCA may yield a relatively 

large number (m > 10) of significant principal components from which we cannot obtain 

information (ordinarily we can visualise 2-3 dimensional data space). Moreover, a large 

number of data can significantly increase computational complexity, e.g., computing 

the inverse of the covariance matrix is typically O(n’). 
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Chapter 4 

Independent Component Analysis 

4.1 Introduction 

We have just seen the results of a Principal Component Analysis applied to our 

data. Recent studies of Independent Component analysis with multi-channel EEG 

have proven promising [35] [36] [39]. That is why we have chosen to apply it to our 

single channel EEG data. The fundamental advantage of ICA over PCA is that the 

signal space is not constrained to be spanned by orthogonal basis vectors and hence 

the independent sources obtained from Blind Source Separation should have a better 

interpretability in terms of the original EEG problem. 

Let us assume that we have some phenomenon which manifests itself through a set 

of n independent random variables. We shall denote the combination of these variables 

with a random vector s = [s152...8,]". Components sj, s2,...8, are called sources 

and s is called the source vector. This name implies independence : the sources are 

assumed to be independent sources of information. 

Now suppose that the original independent source components are observed via a 

linear process. Denote the observed random vector by z. Since the process is assumed 

linear, the relation between s and x can be modelled as 

z= As (4.1) 
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because any constant multiplying an independent component may be cancelled by 

dividing the corresponding column of the mixing matrix A by the same constant. 

e there is no ordering between the independent components. 

4.2 Removing correlations 

Assume that our data has zero mean, that is E{x} = 0. If we can find a linear 

transformation giving relation (4.2), the independent components of s have zero mean 

as well. We assume then that the data has this property, that it has been centered by 

removing its mean and that it has been unit-varianced. So the covariance matrix of 

s is cov{s} = J, and components of s are uncorrelated. Uncorrelatedness is necessary 

but not sufficient for independence. 

We can accomplish uncorrelatedness by transforming « so that its covariance matrix 

will be diagonal. If in addition, all components have unit variance (the covariance 

matrix is unity), the process of accomplishing this is called whitening or sphering. 

Whitening can be done using PCA basis vectors. Let E denote the matrix of 

principal component basis vectors of random data vector z, i.e., the eigenvectors of 

cov{x}, and D = diag(&,,...,&m) a diagonal matrix of corresponding eigenvalues. The 

new whitened data vector v is given by 

y= D VET sy (4.3) 

Matrix V = D-'/?E7 is a whitening matric. The fact that v is really white can be seen 

from 

cou{v} = E{D-? ET g2™ ED-V?} 

D-? ET cov{x}ED-M? 

= D?ETEDETED-Y? 

= J 
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e Karhunen, Oja, Wang, Vigario and Joutsensalo [19] 

e Karhunen and Pajunen [21] 

e Girolami and Fyfe [26] 

e Pearlmutter and Parra [8] 

In Table 4.1, we describe the algorithms we have selected to use before choosing 

the definite one for the experiments and the study. 

  

Method of solution 
  

Mathematical |} Diagonalization Fixed point 

approach 
  
  

Fourth order cu- JADE [23] Original fixed point [5] 

mulants 
  

Contrasts based a Generalized fixed point [4] 

on other nonlin-           earities 
  

Table 4.1: A classification of used ICA algorithms. 

One especially important class of algorithms missing from this list is the set of 

algorithms with foundations in information theory. In section 4.3.2, I will introduce 

the entropy maximization algorithm of Bell and Sejnowski. Then in section 4.3.3, I 

will present algorithms based on batch computations. Finally, in section 4.3.4, I will 

present the fast-fired point algorithm which is a particular method of the generalized 

fixed-point, I have been using for my experiments on EEG data. 
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h=Wx yi= gthi) 
  

  

  

  

  

        

  

  

      

Figure 4.1: Entropy maximization error network 

4.3.3 Jade Algorithm 

The JADE algorithm of Cardoso and Souloumiac is based on joint approximate di- 

agonilization of eigenmatrices [23]. The ICA problem can be solved by computing the 

eigenvectors of the cumulant matrix Q,(M) for any matrix M. JADE diagonalizes a 

set of eigenmatrices representing the whole cumulant matrix set Cy. 

The problem with such an algorithm is that it uses batch tensorial computations. 

The data we are using is too large for such difficult tensorial computations. 

4.3.4 Fast-Fixed Point Algorithm 

One way to approach the ICA problem is to try to form an optimization problem that 

has its solutions as the independent components. We shall call such objective functions 

contrast functions. 

We introduce a measure called kurtosis. Its value is described to measure the 

peakedness of the distribution, with peaked distributions giving positive values of kur- 
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There are two ways of solving this equation. One of them would be by applying 

standard numerical algorithms. Hyvarinen and Oja have chosen to write the equation 

in the form : 

w = scalar x (E{x(w7x)3} — 3]|w||?w) (4.12) 

This is very useful for the scalar takes into account the penalty function which we 

therefore don’t need to compute and hence, we don’t need to take into acount the 

peakness of our signal (sub or super gaussian). 

Then, the iteration obtained is very fast. 

Using the preceding equation, we derive the following algorithm : 

  

1. w := rand() 

2. w= w/||w}l 

3. Word = 0 

4. while ||w — waal| > € A ||w + woiall > € 

© Wold = W 

e w= E{v(w?v)3} — 3w 

° w= u/lull 

end       

Table 4.2: Hyvarinen and Oja’s Fast-Fixed Point Algorithm 

The final vector w equals one of the column of the mixing matrix B, which means 

that one of the non-gaussian independent component has been separated. Thus to 

estimate n independent components, one needs to run the algorithm n times. We are 

sure that we estimate each time a different component thanks to the orthogonalizing 

projection inside the loop. 

Hyvarinen and Oja prove that their algorithm has a cubic convergence. 
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Chapter 5 

Experiments and Results 

5.1 Introduction 

The Independent Component Analysis is ideally suited for performing source separation 

in domains where : 

e the sources are independent 

e the propagation delay of the “mixing medium” are negligible 

¢ the sources are analog and have probability density functions not too unlike the 

gradient of the logistic sigmoid 

e the number of independent signal source is the same as the number of sensors 

In our case of EEG signal, one scalp electrode picked up correlated signals at differ- 

ent times of the day on a wake human being executing four different tasks. We would 

like to know what effectively independent brain sources generated these mixtures. If we 

assume that the complexity of EEG dynamics can be modelled as a collection of sta- 

tistically independent brain processes, the EEG source analysis problem satisfies ICA 

assumption 1. Since volume conduction in brain tissue is effectively instantaneous, 

ICA assumption 2 is also verified. Assumption 3 is plausible. But assumption 4 is 
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5.3 Independent Component Analysis of Raw EEG 

Data 

I have chosen to show here only the most relevant results on task 4 in order to remain 

as concise as possible. 

Figure 5.1 shows the original time serie of 1000 samples we are going to work on. 
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Figure 5.1: 1000 samples time series for task4 

Then, we complete an embedding on our signals (let us bear in mind that we use 

1000 samples which is approximately worth 8 seconds of EEG recording), we can apply 

the fast fixed point algorithm. 

We chose to compute as many independent components as we have delay vectors. As 

a matter of fact, we do not know how many sources such a time series is constituted of. 

We do not want to risk losing any information. Hence, at the end of our computation, 

which is quite long, we obtain 30 independent components. We project each of our delay 

vectors on the corresponding independent component in order to obtain the sources we 

45



CHAPTER 5. EXPERIMENTS AND RESULTS 
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Figure 5.4: 9th source of the raw data and its power spectral density 
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Figure 5.5: 8th source of the raw data and its power spectral density 
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Figure 5.8: 10th source of the raw data and its power spectral density 

As none of our resulting sources are ordered, we had to choose a way to classify 

them. Using the power spectrum of each of them proved to be a good method. As a 

matter of fact, it seems that the sources showing the brain activity during the different 

tasks, display different frequency range. Of course, some of them are identical or fall 

very closely in the same frequency interval. We can then advance that they naturally 

cluster by order of frequency. 

Moreover, knowing the approximate frequency of each of the sources and their 

shape allows us to be able to relate them to an activity of the brain. Let us study each 

preceding source separately : 

© source 16 (figure 5.2) has a very low frequency at about 5 Hz and its morphology 

can make us think that the ICA has isolated some eye movements. 

© source 20 (figure 5.3) shows us the general trend of the signal but if we analyse 

it more closely we see a frequency range from 5 Hz to 10 Hz which characterizes 

alpha activity. 

source 9 (figure 5.4) shows high alpha activity and beta activity mixed. 

e source 8’s morphology (see figure 5.5) displays more spikes and the frequency 

49



CHAPTER 5. EXPERIMENTS AND RESULTS 

chosen to be reasonable (in combination with a reasonable necessary compromise on 

the shape of the rectangle). The Butterworth filter provides the maximum flatness 

in the passband (no ripples) which implies the minimum amplitude distortion and is 

therefore suited for our situation. 

They are causal and of various orders, the lowest order being best (shortest) in 

the time domain, and the higher orders being better in the frequency domain. Well- 

engineered projects often include Butterworth filters. 

Our need is to design a lowpass filter that loses no more than 3 dB in the passband 

and has at least 50 dB in the stopband because we assume that there is no more 

human activity after 50 Hz. 45 Hz and 50 Hz are the passband and stopband edge 

frequencies and the sampling frequency is 128 Hz. The estimated order of the filter is 

7. The order was estimated using MATLAB function butterord. Figure 5.9 shows 

the magnitude of the transfer function of our designed filter. The filter was designed 

using MATLAB function butter. 

Let ae denote the transfer function of the Nth-order digital filter. Then, by 

computing the z-transform of the digital filter, we have : 

jw) — B(z) _ b() + (2)z71 +++ +. O(mp + 1)2-™ CACOTE St coco ra camaro cen re ey 
The vector w is a L-point frequency vector in radians, and H is the L-point complex 

frequency response vector of the filter # given numerator and denominator coefficients 

in vectors B and A. 

Figure 5.10 shows 1000 samples of EEG data after the application of our Butter- 

worth filter. We can notice that the signal is smoother after the filtering of the data 

compared to figure 5.1. 
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5.4.2 Results 

We apply the Butterworth filter to the raw EEG data, and then construct the em- 

bedding matrix of window size 30 with the resulting signal. We then perform the 

Independent Component Analysis on this matrix like we did previously. We notice 

that the convergence is faster than for the raw data. 

As a result of the Independent Component Analysis, we get a set a 30 independent 

components on which we project the delay vectors and perform a spectral analysis of 

the sources. After this analysis, we notice that most of them are very similar to the 

previous ones we studied in the previous section. 

Here is an example of signal we obtain. It is very similar to the source displayed 

on figure 5.2 
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Figure 5.11: 10th source of the filtered data and its power spectral density 

The sources are much “cleaner” with filtered data. We got rid of the noise from 

the fluorescent lamp, and of the extraneous noise above 40 Hz.
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the original signals. In appendices A, B, C and D, we display the whole 30 sources 

and their power spectral densities resulting from our experiments on 1000 samples of 

our data for each task. We notice that after removing the noisy sources (very low or 

very high frequencies on the power spectral densities) and the redundant sources (same 

sources with different scaling, inverted sources), we can classify our sources by order 

of frequencies and that clusters naturally form from there. This allows us to verify 

our first hypothesis (see Chapter 3 section 3.4) : we can really identify four, five or six 

clusters in the interesting output sources which carry information in the signal domain. 

One question remains : How to analyse the behavioral significance of such sources ? 

We must not forget the first aim of this study : can we simply characterize vigilance 

during the EEG trials just by extracting interesting brain activities from the output 

sources of the ICA. Unfortunately, not yet. Specialists only could give further expla- 

nations of the results, and some more experiments should be conducted on particular 

samples of the original EEG signals and compare the results with the “apparent” vig- 

ilance of the subjects during the trials. 
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competitive and unsupervised, meaning that no teacher is needed to define the correct 

output (that is to say the cell into which the input is mapped) for an input. The 

locations of the responses in the array tend to become ordered in the learning process 

as if some meaningful nonlinear coordinate system for the different input features were 

being created over the network. 

The SOM was developed by Professor Teuvo Kohonen in the early 1980s [18]. 

6.2.1 The Self-Organizing Map Algorithm 

Assume that the sample data sets have to be mapped onto the array depicted in 

figure 6.1. The set of input samples is described by a real vector x(t) € R” where t 

is the index of the sample, or the discrete time coordinate. Each node i in the map 

contains a model vector m,(¢) € R”, which has the same number of elements as the 

input vector x(t). 

The stochastic SOM algorithm performs a regression process. Therefore, the initial 

values of the components of the model vector, m;(t), may even be selected at random. 

Any input item is thought to be mapped into the location, the m,(t) of which 

matches the best with x(t) in some metric. The self-organizing algorithm creates the 

ordered mapping as a repetition of the following basic task : 

1. An input vector x(t) is compared with all the model vectors m;(t). The best- 

matching unit (node) on the map, i.e., the node where the model vector is most 

similar to the input vector in some metric (e.g. euclidean) is identified. This best 

matching unit is called the winner. 

2. The model vectors of the winner and a number of its neighboring nodes in the 

array are changed towards the input vector according to the learning principle 

specified below. 

The basic idea of the SOM learning process is that, for each sample input vector z(t), 

the winner and the nodes in the neighbourhood are changed closer to x(t) in the input 
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data space. During the learning process, individual changings may be contradictory, 

but the net outcome in the process is that ordered values for the m;(t) emerge over the 

array. 

Adaptation of the model vectors in the learning process may take place according 

to the following equations : 

fut 2) = m,(t) + a(t)[a(t) — m,(t)] for each i € N,(t) 

m,(t) otherwise 

where ¢ is the discrete-time index of the variables, the factor a(t) € [0,1] is a scalar 

that defines the relative size of the learning step, and N,(t) specifies the neighbourhood 

around the winner in the map array. 

At the beginning of the learning process, the radius of the neighbourhood is quite 

large, but it is made to shrink during the learning. This ensures that the global order 

is obtained already at the beginning, whereas towards the end, the radius gets smaller, 

the local corrections of the model vector in the map will be more specific. The factor 

a(t) also decreases during the training. 

One method of evaluating the quality of the resulting map is to calculate the average 

quantization error over the input samples, defined as E{||x—m,(x)||} where c indicates 

the best matching unit for x. After training, for each input sample vector, the best- 

matching unit in the map is searched for, and the average of the respective quantization 

errors is returned. 

6.2.2. Experiments and Results 

The SOM_PAK program, developed by Kohonen, Hynninen, Kangas and Laaksonen, 

was used during all the course of these experiments [18]. 

The Self-Organizing Map was applied to the recognition of topographic patterns on 

the resulting sources of our former Blind Source Separation (see Chapter 5). 

The training set consists of 24 sources of 500 samples each. We do not use any 

labelling at all to characterize the sources on this set. For each task, we obtain a 

59



CHAPTER 6. DATA VISUALISATION BY CLUSTERING 

square map and by stronger patterns in its top left and bottom right corner. Whereas 

boring tracking tasks are characterized by lighter patterns in the upper left side and 

brighter patterns in the bottom left of the upper right corner. 

The main problem is that, in that way, we do not determine the kind of brain 

activity these lighter and brighter patterns correspond to. 

6.3 Sammon Mapping 

6.3.1 The Algorithm 

We said in the introductive section that in a topographic map, N data vectors {x;} 

in R? are transformed into a corresponding set of feature vectors {y;} in R% such that 

q <p and the geometric structure of the input data vector remains unchanged. The 

Sammon Mapping is the most intuitive basis for this definition since it is generated 

by the minimization of an error measure E of the inter-point distances also called 

STRESS 

: di — diy)? 

EUR os i j<i 

where dj; = ||z; — a;|| is the distance between points i,j in the input data set and 

d;; = ||yi — y;|| is the distance between their images in the map or feature space. 

The procedure for performing the transformation is shown in figure 6.3 and sum- 

marised in Table 6.1. 

Various error minimisation procedures can be used, one of which is the gradient 

descent procedure. But this procedure can get trapped in local minima. 
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1. Compute inter-point distances in the original space. 

2. Initialise target space by a random number generator. 

3. Calculate mapping error between original and target space. 

4. Modify coordinate points in the target space by means of a 

non-linear procedure. 

5. Repeat Step 3 until the mapping error is sufficiently small.     
  

Table 6.1: Sammon Mapping’s algorithm 

Let us now come back to equation (6.1). The di; — dj; term represents a measure 

of the deviation between the corresponding distances. The Sammon STRESS thus 

represents an optimal matching of the inter-point distances in the input and map spaces. 

According to [24], normalising the expression by the first fractional term reduces the 

sensitivity of the measure to the number of input points and their scaling. Moreover, to 

render the overall measure dimensionless, the dj; term is included in the denominator 

of the sum to moderate the domination of errors in large distances over those in smaller 

distances. 

In the standard Sammon Mapping, the STRESS is minimised by adjusting the 

location of the points y; directly, according to a gradient-descent scheme. For each 

point y;, we define a parameterised non-linear function of the input f(2x;;w), where w 

is the weight vector. Then the STRESS becomes : 

N WN 

B= SOG — lf sw) — F@sw)|I)? (6.2) 
no 

Then, it is straightforward to differentiate E with respect to the mapped coordinates 

y; and optimise the map using standard error-minimisation methods. This gives : 

Fue 
nN OE Of (xi; wp) 

= $528 am) (6.3)
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Figure 6.4: Sammon Maps of a projection of our EEG data on the principal components 
(top) and on the independent components (bottom) 
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The constant term k is added to the inter-point distances of two pairs of points so 

that their separation should be exaggerated in the resultant map. 

In many problems, there may be further knowledge available regarding class rela- 

tionships which we call subjective dissimilarity and will denote in the following section 

  

corresponding to each dj;. The assignment of class dissimilarity means that 

for every pair of data points in addition to the objective dissimilarity, there is a dual 

subjective dissimilarity which stresses alternative knowledge about the data. Thus, one 

can relate the existence of this set of subjective dissimilarities to a subjective metric 

implicitely defined over the input space. 

6.4.3 NeuroScale 

NEUROSCALE is a technique which transforms a p-dimensional input space into a 

q-dimensional feature space (¢ < p) with a feed-forward radial basis function. The 

network is trained with the same algorithm as with a Sammon Mapping (see Table 

6.1) but by minimizing the following stress measure : 

NON 

B= SOY (65 — lly — wll)? (6.7) 
i j<i 

where 

Oi; = (1 — a) di; + a8; (6.8) 

The parameter a (0 < a < 1) controls the degree to which the subjective metric 

S influences the output configuration. One can say that it helps finding a nice middle 

between an unsupervised and a supervised mapping. 

The main difference between the algorithm of NEUROSCALE and the Sammon 

Mapping algorithm (Table 6.1) is that this latter is fixed, i.e., we know when it has 

converged. We must alter it in order to : include a calculation of the elements of the 

input space distance matrix, take into account the particular value of a. If a equals 

0, then the algorithm computes a parameterized Sammon Mapping. If a equals 1, 
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6.4.4 Experiments and Results 

To minimize FE, a gradient descent algorithm is employed. The network weights are 

initialised at random. 

The data comprises 100 samples for each task taken from the same sets we used for 

performing the ICA on which we do an embedding in order to look for the independent 

components. After computing the ICA on the embedded matrix, we obtain a 400 x 30 

matrix of independent sources on which we can perform the NEUROSCALE algorithm. 

We also choose a subjective metric which only takes into account the task knowledge 

relative to the data. So we build a boolean matrix B corresponding to each task in the 

following way : 

400 
samples 

Speen Se ee Te 

vent PHS T 

Taskk3 / 1) 910° 0.0. 00 0 

B= Tasks | 0 O73 19.0 0 0 | 
"meres 0 0-0-0110 0 | 

Task7,\-0. 8070 900 - Of «41 

Then, to compute our subjective matrix S, we just have to compute the inter-point 

euclidean distances of the matrix B. 

With a = 0.5, we both retain some of the objective spatial topology and impose 

some task knowledge to the output configuration. 

It is interesting to first observe the differences between these two maps and the 

Sammon Maps (see figure 6.4). We can see that the NEUROSCALE algorithm has split 

the clusters up even more to reveal some class knowledge. On the projections on the 

principal components, the algorithm has kept the ordering of the Sammon Mapping, 
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spiral shape of the principal components). But we are still unable to identify their 

meaning. 

NEUROSCALE displays some advantageous features which the Sammon Mapping 

does not. By incorporating varying degrees of subjective knowledge, we can influence 

the extracted feature space. The resulting sphere, with its four distinct clusters and 

their evolution with the changing of the parameter a gives us a better idea of cluster- 

ing than the Sammon Mapping. And of course, the NEUROSCALE map is far more 

representative than the Kohonen SOM. Moreover, there is a cost function associated 

with a particular mapping which allows us to assess individual maps and to compare 

them. 
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Figure 6.7: NEUROSCALE of a projection of our EEG data on the principal components 

(top) and on the independent components (bottom) with a = 0.9. The value of the 
STRESS measure was : 2.98 for case a), 0.13 for case b) 
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the mixture of sources and remove them in order to extract the information-carrying 

sources that is the main brain activity corresponding to the behavioural state of the 

subject when achieving a particular task during a trial. 

Moreover, these sources characterising brain activity, also provide justification for 

our main fundamental hypothesis that there are only a few of them constitutive of a 

nonlinear system with just a few degrees of freedom. Unfortunately, we are not yet 

able to extract these interesting sources directly without performing a power spectral 

analysis on each of them separately to isolate them from the noisy ones as there is yet 

no existing algorithm to classify these sources. 

In Chapter 6, it was reasoned that the Sammon Mapping and NEUROSCALE were 

most effective strategies for topographic dimension reduction. The main advantage of 

Kohonen’s approach is computational, because realistically, application of the Sammon 

Mapping is restricted to fewer than 1000 data points. 

The feed-forward neural network topographic mapping technique NEUROSCALE , 

was thus based upon the Sammon Mapping and utilises a radial basis function neural 

network. Because of this neural network element, it offers the capability of generalisa- 

tion to new data — a feature absent from Sammon’s original algorithm. 

An important extension embodied in NEUROSCALE is the capacity to exploit ad- 

ditional information in the mapping process. In standard approaches to topographic 

mapping, the geometry of the output space is determined solely according to some 

conventional metric (generally Euclidean) defined over the data space. If alternative 

information is available — such as class labels — then this may be allowed to influence 

the mapping (in order to emphasise clustering, for example). 

The results shown by both Sammon Mapping and NEUROSCALE are interesting in 

a way that they show some clustering according to the types of task, but they also 

prove that there is another important clustering that we are not yet able to interpret 

and which is not related to the time history of the four tasks. One can suggest that 

this particular feature of the map comes from the “way” the subject has undertaken 
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Appendix B 

Results for task4 
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Figure B.1: 1000 samples taken from Task4 on which we apply the ICA algorithm 
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Appendix D 

Results for task7 
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Figure D.1: 1000 samples taken from Task7 on which we apply the ICA algorithm 
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