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Thesis Summary 

Automatic music analysis has long been attempted, yet it is still far from achieving 
practically useful results. Musical audio signal consists of perceptual features such as 
pitch, loudness, duration and timbre, and structural aspects features such as harmony, 
melody, rhythm, and tempo. Complexity analysis is performed on segments of music 
in order to better understand the underlying generator of signals, then Independent 
Component Analysis was used in an attempt to extract such underlying sources. This 
is proved to be unsuccessful, so we investigated an alternative method of feature ex- 
traction. A simple harmonic model was used to model musical signals and an optimi- 
sation method for the parameters of the model was discussed. 

Keywords: Pattern analysis, Music recognition, Independent Component Analy- 
sis, Complexity analysis, Harmonic analysis.
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Chapter 1 

Introduction 

The advance of the Internet has enabled us to handle huge amounts of data, and with 

the expansion of the Internet community, multimedia content, including audio data, is 
growing exponentially. There have been significant improvements in search engines to 

search and to explore the information available on the Internet, yet it remains difficult 

to search through the actual information content of multimedia data automatically. 

With the support of the continuous development of different types of instruments and 

technology, styles of music have evolved tremendously in a multitude of genres. When 

we search for music, we are often interested in a particular style of music and genre is 

not a rigid classification. For example in jazz music, a piece may sound very like clas- 

sical music, and another may sound very like a hip hop piece. This is because of their 

similarity in the type of instruments they use and how they are played. When music 

is played, a listener perceives the atmosphere and mood created, and looks for distinc- 

tive features in the piece to help identify the style. Such features can be explained in 

terms of components of music and how they are organised. 

There are four perceptual components in a musical note; pitch, loudness, duration and 

timbre [28]. Physical properties of pitch, loudness and duration are better understood 

than timbre. Pitch is closely related to the fundamental frequency, which is the lowest 
frequency in harmonic vibration and it is also referred to as the 1st harmonic of the 
note or fo (Formant 0). Loudness of a sound can be explained by its intensity, which 

is proportional to the square of the amplitude of a sound played, and duration simply 

is the temporal duration of a tone. The definition of timbre is more vague. ‘Timbre’ 

refers to a quality of sound, or ‘colour’ of sound. It allows us to distinguish between 

the same note played on musical instruments of different types. The timbre of music 

has an important role in differentiating instruments, and tone is a key component of 

the process of distinguishing musical styles. 

The structural aspects of music, such as harmony, melody, rhythm, and tempo are an- 

other important issue. Harmony is a relationship between tones played at the same 

time (e.g. chord and triad), while melody is the relationship between tones played one 
after the other. Rhythm is an important element in melody, it affects the progression 
of harmony, and many dance movements in classical music have a characteristic rhyth- 

mic foundation. Tempo is a characteristic rate or rhythm of activity.
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Figure 1.1: Pure sine wave of 440Hz. 
  

  

Figure 1.2: Sound wave of Piano at 440Hz. 
  

  

Figure 1.3: Sound wave of Violin at 440Hz. 
  

  

Figure 1.4: Sound wave of flute at 440Hz. 

ae 

Figure 1.5: Sound wave of Clarinet at 440Hz. 
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In Figure 1.1, a pure sine wave at 440Hz (orchestral A or A4) is sampled for 0.01 sec- 
onds at sampling rate of 44100Hz. In Figures 1.2, 1.3, 1.4 and 1.5 respectively, sound 

waves of piano, violin, flute and clarinet are shown. Although the shape of waves dif- 
fer, it is clear that the basic pattern which repeats is unique to each instruments. In 

these graphs, it is not hard to imagine that it contains vibrations of higher frequencies 

in addition to the fundamental frequency. 

In Figures 1.6, 1.7, 1.8 and 1.9, the frequency spectrum of the signals above are shown. 

It is clear from the plots, that each note played by the instrument consists of partials 
or the harmonics of the fundamental frequency, which are integer multiples of the fun- 

damental, and different relative intensities of such harmonics give a unique colour of 

sound. The series of those harmonics of a note is called a harmonic series. An ex- 
ample of harmonic series starting arbitrarily on C2 is shown in Figure ??. Those fig- 

ures show that there are many more harmonics observed on the frequency spectrum 

of the piano, while the violin contains more distinctive harmonics and the flute has 

stronger peaks at lower harmonics. There are very distinctive characteristics shown on 
the frequency spectrum of clarinet, where much stronger peaks at odd harmonics are 

recorded. The study [7] also shows the characteristics in the intensity of partials and 

the anharmonicity of the notes played by instruments. Thus the tone of the notes are 

produced mainly by the harmonics existing within the signal.
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Figure 1.6: Spectrum of piano played for Figure 1.7: Spectrum of violin played for 
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Figure 1.8: Spectrum of flute played for 0.1 Figure 1.9: Spectrum of clarinet played for 

second at 440Hz. 0.1 second at 440Hz. 

The piano and the violin are instruments whose tones are produced by strings. The vi- 
bration of the strings travels through the air and reaches our ear when we recognise it 

as a musical sound. Violin strings are vibrated by the action of bow on the string, or 

simply plucking the string, in which case it clearly produces different timbre. When it 
is played, the body of a violin acts as a medium for the string to transmit its vibration 
to the air so that it is audible to the ear. Thus the quality of sound produced by violin 

depends not only on the resonance of the string itself, but also how those vibrations 

are transmitted through the bridge to the body of the violin and thence to the air. Be- 

nade’s study on resonance curves for a violin suggests that the main air resonance would 
enhance the D string and the main wood resonance would enhance the A string [5]. 

Piano produces its sound by striking three strings set on the bridge by the pin, that 

are used to alter the tension on the string. The three strings are typically tuned so 
the strings for each note covers spreads up to 8cents around the note!. This slight de- 

tuning of the strings in piano is proven to give longer lasting notes compared to those 

tuned exactly together is [5]. 

Both flute and clarinet are woodwind instruments. Woodwind instruments make use 

of an air column whose natural frequencies are properly arranged prior to playing. A 

1A cent is a unit that is 1/100 of a tempered semi-tone [1]. 

10
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Figure 1.10: The first twelve notes of the harmonic series. 

clarinet acts as a closed air column instrument with a mouthpiece acoustically acting 

as a closed end and it does not produce even harmonics. On the other hand, the flute 

is made in the form of an open cylindrical air column, where the air is blown into from 

the mouth hole. When flute is played, a skilled player can alter the strength of even 

and odd harmonics to produce tones that gives different impressions of the note. How- 

ever, in most cases physical properties of the flute means that it produces a tone whose 

harmonics are precisely at integer multiples, although in some cases, this harmonicity 

balance may intentionally be broken by the technique that is used to produce a pop- 

ping sound in which exact harmonicity would produce tone that may sound ‘odd’ [5]. 

1.1 Motivation 

Recently, with the aid of computers, the area of automatic music analysis has attracted 
many people such as musicologists, computer scientists, and music lovers. There are 

many active researchers internationally and numbers of commercial software system 

have been developed for automatic retrieval of musical data using templates for this 
musical data. Because of the need for a wide range of expertise in music analysis, events 
organised by consortia of research groups, such as the Digital Music Research Network 

and conferences such as International Conference on Music Information Retrieval (IS- 
MIR), enable us to view the current state of art in Music Information Retrieval (MIR). 

There are numerous practical approaches to the problem, and one of the possible ap- 

plications of the field of study is a content-based searching system, which enables users 
to search for a sound signal by the actual data content in the waveform. As men- 
tioned earlier, there are many features in the musical signals, which should be consid- 

ered when identifying the ‘style’ of music. Timbre is one of the most fundamental com- 
ponents of the music, and it is also related to the instrumental content in the piece. 

Providing a robust semantic labelling system of such components will help us to un- 

derstand better the contents of the music signals. 

The development of MPEG-7 has broadened the possibility of information retrieval 
from multimedia. It is a standard for describing the multimedia content data us- 
ing XML developed by Motion Pictures Expert Group. There are several ‘description 

11
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schemes’ (DSs) available in MPEG-7. The content DS has two main levels: syntactic 
and semantic [19] [27] [30]. Such description schemes can be broken down to several 
lower levels of information to form hierarchical structure. Each lower-level DS block 
may contain structural descriptions of the multimedia content, such as the informa- 

tion related to the tonal structure of music, and/or the colour found in the image cap- 

tured, and also the physical and logical aspects of this information. Such low level de- 

scriptions are used as building blocks for mid-level and high-level descriptions to en- 
able easy access to the multimedia informaation needed. MPEG-7 addresses different 
types of applications, therefore it gives flexible and extensible framework to describe 
different types of multimedia data. This standard given to multimedia data means that 

given the data that describes the multimedia data stored in the DS block, it enables 
users to easily search the content of the multimedia data. This leads us to explore the 
possibility of describing multimedia data in a most efficient and meaningful way. 

1.2 Approach 

Musical signals consist of a mixture of one or more sound sources producing sound 

waveforms. Each sound source consists of its own internal dynamic, which is tempo- 

rally well structured. Our aim is to characterise such sound sources by analysing the 

structure of musical signals. First, complexity analysis was performed on segments of 

music in order to better understand the underlying generator of signals, then Indepen- 
dent Component Analysis was used in an attempt to extract such underlying genera- 

tors. This proved to be unsuccessful, so we investigated an alternative method of fea- 

ture extraction. A simple harmonic model was used to model musical signals and an 
optimisation method for the parameters of the model will be discussed. 

In Chapter 2, we review research done on Audio Information Retrieval and related ar- 
eas of interest. In Chapter 3, some methods to analyse the complexity of the musical 
signal are reviewed and applied. Extraction of underlying sources of the musical signal 
has also been attempted. In Chapter 4, we describe the simple harmonic model used 
in [14], and suggest a method for optimisation of the parameters. Finally in Chapter 5, 
there is a summary of the study, and possible directions for future work are suggested. 

12



Chapter 2 

Literature Survey 

Many studies have been performed on audio source recognition in the past, and the 

problem of Audio Information Retrieval (AIR) is widely recognised [16]. When solving 
such problems, there are two key tasks; parameterising features of the music and man- 
aging such feature information for retrieval. Practically, for the classification of musi- 

cal instruments within a recorded musical signal, segmentation of the data should be 

performed with care. In a typical piece of music, many parts contain complex mixes of 

sound sources (i.e. musical instruments). This suggests the need for appropriate seg- 

mentation method that is capable of extracting a single source within the musical data 

prior to the harmonic analysis for the recognition of timbre. In this project, we will 

perform sound source separation followed by the structural analysis of harmonics pro- 

duced by each sound source. In this chapter, we provide a brief survey of the relevant 

literature. 

2.1 Sound Source Separation 

In an environment where a mixture of sound sources exist (e.g. at a party, or on the 
train), a human listener has the ability to identify and focus on a sound source of inter- 

est (e.g. a friend’s voice). This problem is called the ‘Cocktail Party Problem’ [11], and 
it was one of the earliest studies in Sound Source Separation. Since then, researchers 

have been attempting to build a system that is capable of separation of sound sources 
making use of the cocktail party effect. There have been two main ways of solving this 
problem. The first approach is Blind Source Separation (BSS), where no assumption 
is made about the sources except that they are statistically independent. The second 

is the model-based approach, where the model can be anything from the harmonicity 

of sounds to rhythmic complexity and onset/offset detection. As one example of the 

model based approach, a pattern matching algorithm was successfully used in conjunc- 

tion with the recorded sound database to separate percussive beats from music in [18]. 
This approach showed good results providing there are enough model templates stored 

within the system, and thus it was computationally expensive in the general case. 

Blind Source Separation was first used by Jutten and Herault [24], and Comon [13]. 
Comon further studied the problem of ICA (Independent Component Analysis) [12], 
in which he proposed cost functions related to the minimisation of mutual informa- 

13
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tion between sources. In this approach, an estimate of mutual information is needed, 

which involves approximating the pdf using polynomial expansions of Gram-Charlier 

or Edgeworth. This leads to the use of higher-order cumulants, which are highly sen- 
sitive to outliers. This problem has led to the development of other approximations of 
entropy. In [20], Hyvarinen suggested using maximum entropy together with a ‘mea- 

suring’ function, which is the objective function introduced to approximate differential 

entropy. This method has shown more accuracy than conventional cumulant-based ap- 

proximations used in [12]. 

On the other hand, the use of the infomax principle first advocated by Linsker [25] be- 

came a popular method for blind source separation in linear systems. This idea was 

developed from the redundancy reduction across the input signals as coding strategy 
in neurons denoted by Barlow [2] [3]. The aim of this process is to maximise the mu- 
tual information between the inputs and outputs of a neural network. To achieve this, 

each neuron should be encoded as statistically independent from other neurons. Bell 

and Sejnowski derived stochastic gradient learning rules for the maximisation of mu- 
tual information following the principle described by Laughlin in 1981 [4]. 

For most ICA algorithms, the number of source signals which can be extracted is lim- 

ited to the number of recordings N provided. One of the problems in applying this 

for the separation of musical audio data is that in most cases the musical data is ei- 

ther mono or stereo recordings. This has led to the development of an algorithm to 

enable the separation of the single recorded signal into underlying sources. In [23], an 

ICA method of extracting multi-source brain activity from a single EM channel was 

described. This was performed by viewing the EEG activity as a dynamical system, 

and build an embedding matrix from a series of delay vectors. This embedding ma- 

trix was used in ICA and desired signal was successfully extracted from a single chan- 

nel signal with numbers of underlying sources. 

2.2 Parameterisation of feature space 

The term ‘feature’ has many different interpretations in musical signal analysis. It 

ranges from surface features such as timbre, pitch, tempo and loudness to more contex- 

tual features such as melody and rhythm. As mentioned, the timbre of music strongly 

relates to the frequency content of a sound signal. There are many methods for the 

spectral analysis of a signal, the simplest and the most popular of which is the Fourier 
Transform. However, psychophysical studies on human perception has led to the de- 

velopment of the warped frequency scale, in which it follows the ‘subjective pitch’ of 
pure tones [32]. One of the common warped frequency scale used to model the features 

of musical signal is Mel-Frequency Cepstrum Coefficients (MFCC). The Mel-frequency 
is a subjective pitch proposed by Stevens, Volkman and Newman in 1937. MFCC pro- 

vides a reduction in the number of spectral features compared with the Fast Fourier 

Transform. The use of MFCC for music modelling was shown to be applicable [26] 
and it is now widely used in music signal processing community. Brown has also used 

MFCC for the parameterisation of features for the identification of the various wood- 

wind instruments played in solo, and using Gaussian mixture models, it showed bet- 

14
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ter results in identification of instruments than the untrained human listener [8] [9]. 

Another popular method to extract the features of the signal is Singular Value De- 

composition (SVD). The method is closely related to Principal Component Analysis 
(PCA), and in the context of signal processing, it characterises the time series by its 

most relevant components in a delay embedding space (a more detailed explanation 

can be found in Section 3.2.1). SVD is widely used to reduce the dimensionality of 
data whilst retaining the maximum variation. The use of singular value spectra is pop- 
ular as a complexity measure for EEG signal[23] [33], and is often used as a subspace 
analysis tool and/or pre-processing tool for BSS in biomedical and audio signal pro- 
cessing communities [10] [39]. 

A recorded musical signal, which was originally produced by several instruments, is a 
product of several different underlying sources (four for a quartet). Thus the system 
dimensionality is also related to the complexity of each component signal, while it is 

restricted to lower dimensional manifolds by the recording process. Although it is hard 
to define exactly the ‘dimension’ of a recorded signal, the dimensionality of the data is 

closely related to the complexity of the data. 

In this thesis, a recorded musical signal is first examined for its complexity, and an 

embedding matrix will be constructed using the results obtained from the complexity 

analysis. The ICA algorithm will then be applied to the embedding matrix in order to 

extract information related to the underlying sources of the recorded musical signal. 

2.3. Harmonic analysis 

As briefly discussed in the introduction, the tone structure of a note can be represented 

as a sum of a fundamental frequency and its partials. Now, sound is a vibration of the 

air, and musical instruments are the creators of this air vibration. When the air vibra- 

tion reaches our ear, it translates the vibration of the air into a electrical signal that 

we perceive as a sound. Benade recorded and analysed a sound produced by a nylon- 
stringed guitar [5] to show the harmonics of each sound produced. The results he ob- 
tained are shown in Table 2.1. The result clearly suggests that the harmonics of a fun- 
damental pitch are at frequencies which are approximately integer multiples. 

Combining this knowledge of musical acoustics and the fundamental theory of signal 
processing, additive synthesis was one of the first attempts made in sound synthesis. 

Following the leading study in musical instruments tones by Risset and Mathews in 

1969, many attempts have been made to model such tone structures as a summation of 

sine waves and cosine waves [35] [34]. This approach to the analysis of sound sources 
requires two steps, peak detection in frequency domain, and groupings of such peaks. 

It is easy to find local maxima in the magnitude spectrum, but some problems may 

arise as some of these peaks may not be related to the main tonal structure. In [34], 
Hidden Markov Models (HMM) were used to put detected peaks together as a group 
of partials, and the additive synthesis of sinusoidal and the residual noise method was 

proven to be successful for musical signal analysis and synthesis. However, this ap- 
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String Pitch Characteristic Harmonics: 

  

Number Name _ Lowest 2nd 3rd 4th 5th 
1 E4 300 600.9 900.2 1200.0 1500.9 

2 B3 300 599.2 900.0 1200.1 1500.0 
3 G3 300 602.0 902.8 1204.6 1504.1 
4 D3 —-300 600.6 900.0 1204.5 1508.2 
5 A2 300 595.4 897.0 1198.1 1500.0 
6 E2 300 603.7 900.0 1201.9 1500.0 
  

Note: To aid comparison, the sounds of the strings have been transposed by variable-speed tape 
recorder to make the frequencies of their lowest component match. 

Table 2.1: Measured values of Components of a Set of Guitar Strings. 

proach relies heavily on the spectrum of the musical signal, as discussed further in [34], 

thus it is difficult to model fast transient in the musical signal (e.g. a musical signal 

created by piano consists of sounds created by attacking of the key and the following 
sustained note). This problem was overcome by introducing High Resolution Match- 

ing Pursuit (HRMP) together with a set of decomposition vectors called a dictionary. 

2.4 Pitch Detection 

Pitch, as discussed in the introduction, is a perceptual feature of an audio signal. There 

have been two main theories of how humans perceive pitch, place theory and temporal 

theory [28]. Place theory has two postulates. The first suggests that there is some sort 
of spectral analysis taking place in the inner ear, such that different frequencies excite 

different. places along the basilar membrane (BM), and the second suggests that the 
pitch of a stimulus is related to the excitation pattern produced by that stimulus. Tem- 
poral theory suggests that the nerve firings tend to occur at a particular phase of the 
stimulation waveform, and thus intervals between successive neural impulses are used 

to approximate the period of the waveform. The theory could not work at very high 
frequencies, since phase locking does not occur for sinusoids with frequencies above 

about 5kHz [28]. On the other hand, a difficulty arises for complex tones when we fit 
the place theory. The complex tones will produce distribution of excitation with many 

maxima. This problem somewhat relates to the harmonic analysis problem of Rodet 

[34] mentioned in Section 2.3. In it, the problems have been overcome by applying sta- 
tistical analysis on the peaks detected to resolve ‘best-fitting’ fundamental frequency, 

fo. Thus the problem of pitch detection is equivalent to fo estimation. 

Autocorrelation analysis is one of the simplest and commonly used techniques for pitch 

detection [31]. It measures the similarity of waveforms at different time intervals. Let 
us consider a simple periodic wave shown in Figure 2.1, in which autocorrelation func- 

tion is shown in Figure 2.3. As can be seen from the plots, the similarity is exact at 

a time lag of zero, and as we increase the time lag to half of the period of the wave- 

form, the correlation decreases to a minimum, since the waveform become totally out. 

of phase with comparison to the original. Likewise, the correlation attains its max- 

imum as the time lag increases to one period of the waveform. The problem arises 
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when we consider harmonically complex waveform. If we look at an example shown 
in Figure 2.2, in which autocorrelation function is shown in Figure 2.4, the correlation 

reaches its local maxima at around half of the period, as well as at one period of the 

waveform. This means that some form of peak detection algorithm that is able to dis- 
tinguish between large and small peaks is needed to successfully apply autocorrelation 
function as a pitch estimator. 
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Figure 2.4: Autocorrelation function calcu- 

lated from the waveform in Figure 2.2. 
Figure 2.3: Autocorrelation function calcu- 

lated from the waveform in Figure 2.1. 

The YIN fo estimator was developed based on an autocorrelation algorithm [15], and 
it was developed as a pitch detection algorithm for a speech signal. While the ap- 

proach of using a lagged window is similar, it uses the difference function in an attempt 

to minimise the difference between the waveform, instead of maximising the product. 

To reduce the occurrence of harmonic errors (fg being estimated as harmonics of true 
fo), it employs a cumulative mean function to have less emphasis on higher harmon- 

ics. It has been tested on a database of a mixture of speech signals and used the sig- 
nal of a laryngograph (an apparatus that measures electrical resistance between elec- 

trodes placed across the larynx) as a ‘ground-truth’ estimate to derive the error. It 

was shown to have 99% accuracy within 20% of the ground-truth estimate, 94% within 
5%, and 60% within 1%. More details of the algorithm can be found in Section 4.3.2. 

Other than the methods mentioned above, there are many pitch estimation methods 

that are based on the nonlinearity of human perception of pitch. As briefly discussed 

in Section 2.2, many studies have been performed in the psychology of pitch percep- 
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tion for both pure and complex tones. Some pitch extractors make use of such knowl- 

edge in human perception in an attempt to extract the pitch of various kinds of au- 

dio data including musical audio and speech audio. One example is the use of Lyon’s 
cochlea model in Slaney’s Auditory Toolbox [38], in which the input audio signal is fil- 
tered using a model of the human auditory system. It consists of series of filters that 

model the travelling pressure waves with Half Wave Rectifiers (HWR) to detect the 
energy in the signal and several stages of Automatic Gain Control (AGC) [36] [37]. 
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Chapter 3 

Signal Decomposition 

In this chapter, we shall discuss a method for extracting underlying sources from a sin- 

gle channel recorded musical signal. A small sample taken from a music audio signal 
was analysed in terms of complexity, and the decomposition of such a signal into its 

components was attempted. First, a brief overview of Independent Components Anal- 

ysis and related algorithms will be discussed in Section 3.1, followed by the complex- 

ity analysis of music in Section 3.2.1. Then the algorithm will be evaluated and results 
are shown in Section 3.3 and 3.4. 

3.1 Sound Source Separation 

As briefly discussed in Section 2.1, Independent Component Analysis (ICA) was de- 
veloped as a tool for sound source separation. Because of the nature of this statisti- 

cal method, it can sometimes be used to find ‘interesting’ features in multidimensional 

data. The algorithm looks for underlying factors/components from such data by min- 

imising the statistical dependence between them. First, we shall look into the defini- 
tion of ICA, followed by the definition of statistical independence. Then the FastICA 

algorithm described by Hyvarinen [21] will be discussed. 

3.1.1 Definition of ICA 

If we observe n random variable x = {1,...,@,}, modelled as a linear combination of 

n latent random variables s = {s;,...,8,}, then, 

x= As, (3.1) 

where A is an n x n mixing matrix. If A is invertible, this model can be re-written us- 
ing the constant weight matrix W: 

s= Wx, (3:2) 

so that the linear transformation of the observed variables can be obtained and gener- 

ating variables extracted. 
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3.1.2 Independence and Uncorrelatedness 

A collection of n random variables x1, 22,...,2n are said to be independent if and only 

ift 

p(a1,...,%n) = |] (ai). (3.3) 
i=l 

In addition, independent variables have the following properties: 

Rojxj = € (zi, xj] = [zi] e [x;] fori #j (3.4) 

Cases = €[(ti-me)(vj-Me,)]=0 ford Aj (3.5) 

where R;,,2, and Cz,,2, are the cross-correlation and covariance of 2;,x; respectively, 

and ¢[-] denotes expectation. If Equation 3.4 is true, random variables x; and 2; (i # j) 
are also said to be uncorrelated, but satisfying only Equation 3.4 does not mean they 

satisfy Equation 3.3, thus independence implies uncorrelatedness, but uncorrelatedness 
does not imply independence. 

3.1.3. Whitening 

Whitening is a transformation process to remove correlation of variables. As discussed 

in Section 3.1.2, uncorrelatedness does not imply independence, nevertheless, whiten- 

ing is a useful pre-processing technique to be applied before ICA. The correlation of 
the components in vector x is removed by a linear transformation, so that we obtain a 

new ‘whitened’ vector x. 

& = Qx, (3.6) 

whose covariance matrix equals the identity matrix, 

elle |e. (3.7) 

Generally, a covariance matrix can be re-written in the form: 

EDE’ =C, 

where £ is the orthogonal matrix of eigenvectors and D is the diagonal matrix of its 
eigenvalues. Now, if we apply the following transformation to x; 

x= DPE, 

its covariance will become: 

[x7] = DB [xx™] ETD? 
C-¥20¢0-1/2 

= 1. (3.8) 

Let 

Q=DE, 
then, 

<= Ox 
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The whitening matrix Q is by no means the only whitening matrix for x. Let us con- 
sider an orthogonal matrix R, then it is clear that any matrix RQ is also a whitening 

matrix. If 

x ROX 

then; 

e [Xx"] RQDQ?™R 
T, (3.9) 

Il 

Now, from Equation 3.1, Equation 3.6 can be re-written as: 

% = RQAs = As. 

This can be re-written as: 

€ [xx"] = Ae [ss”] At 

= AAT 

Ts (3.10) 

Since the new mixing matrix A is also orthogonal, the search for the mixing matrix 

can be restricted to the space of orthogonal matrices with n(n — 1)/2 degrees of free- 

dom, while for an arbitrary matrix, n? parameters should be estimated. Since whiten- 

ing is a simple procedure which reduces the complexity of the problem tremendously, 

it is a good idea to employ whitening as a pre-processing step of ICA. 

3.1.4 Non-Gaussianity and Independence 

The central limit theorem is one of the most important statistical results, which ex- 

plains why the Gaussian distribution occurs so frequently in nature. It is the core of 

ICA and it states that the distribution of a sum of identically distributed independent 

random variables tends towards a Gaussian distribution as the number of random vari- 

ables increases [22]. This means that, if we have a sum of two independent random 
variables, the distribution of the sum will be closer to Gaussian than either of the orig- 
inal random variables. 

Now, consider the general ICA model to estimate s stated in Equation 3.2. To es- 

timate one of the independent components, one can consider a linear combination of 
variables x;. Let us denote this by y = b?x = es b;x;, where b is a vector to be deter- 

mined, and this can be re-written as: y = b’ As. Thus y can also be expressed as lin- 

ear combination of s;, and let us define the coefficients r™ = b’ A. Then, 

y= b’x=r's= Sons. 

i 

2 As stated in central limit theorem, y = r7s, a linear combination of s;, is usually more 

Gaussian than any of individual s;, and becomes least Gaussian when it equals one of 
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the s;, because of its statistical independence. Obviously, in this case, only one of the 
elements of r; is nonzero. Since bx = rs, we can pick the optimal b by monitor- 

ing the distribution of b’x. Thus by finding the vector b which maximises the non- 
Gaussianity of b’x, we could find one of the independent components [22]. 

3.1.5 Mutual Information 

As discussed in Section 3.1.4, ICA looks for the vector or direction b, so that the pro- 

jection of the data x is most non-Gaussian. There are several different methods for es- 

timating such a b and one of the most popular is to use the concept of mutual infor- 

mation. Mutual information is a measure of the relationship between members of a set 

of random variables. Mutual information can be defined as follows. First, let us con- 
sider the differential entropy H of a random vector y = {y1,..-, Yn} with density g(.): 

Aly) = - | a(u) toe 9(u) dy. (3.11) 

Differential entropy can be interpreted as a measure of randomness in the same way as 

entropy. If the random variable is concentrated in small intervals, then the differential 
entropy becomes small. Note that the differential entropy is a relative measure of ran- 

domness, and is at its maximum with a Gaussian distribution. This leads to the defi- 

nition of negentropy J, which can be used as a measure of non-Gaussianity: 

J(y) = H(Ygauss) — H(y), (3.12) 

where Ygauss is a Gaussian random vector with the same covariance matrix as y. By nor- 

malising differential entropy obtained in Equation 3.11, negentropy J(y), would equal 

zero for a Gaussian variable, and always be non-negative. Knowing this, the mutual 

information J can be expressed as: 

Tyn,-+-9m) = Jv) — D7 Iw)- (3.13) 

Mutual information is a natural measure of the dependence between random variables, 

thus it can be applied for finding ICs by ICA. As shown in Equation 3.2, ICA of a ran- 
dom vector x is an invertible transformation to s. Thus the matrix W is determined so 
that the mutual information of the transformed components s; is minimised. Since ne- 
gentropy is invariant under any linear invertible change of coordinates [12], the prob- 

lem of finding a transformation W that minimises the mutual information can be in- 

terpreted as finding directions to project data x in which the negentropy is maximised, 
thus ICA is sometimes referred to as a form of projection pursuit. 

3.1.6 Estimation of Negentropy 

As mentioned in Section 3.1.5, the concept of negentropy is the key to extract inde- 
pendent sources from mixed signal, and it is very well justified by statistical theory 

as a measure of non-Gaussianity. However, estimation of negentropy can be a difficult 

task as it may require estimation of a pdf, for example using the polynomial expansion 

known as Edgeworth expansion or Gram-Charlier expansion [12]. This involves the use 
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of higher-order cumulants, and thus it is sensitive to outliers as their values may heav- 

ily depend on only a few erroneous observations. In [20], an approximation of differ- 

ential entropy using a contrast function derived further from a conventional polyno- 

mial expansion method was shown. The result of the classical method of negentropy 

approximation using the polynomial density expansion is of the form: 

J(y) aE fy’}'+ qghurto)? (3.14) 
This was generalised to use expectations of general nonquadratic function. In the sim- 

plest case, the new approximation of negentropy is of the form [21]: 

I(yi) « [e[Gy)] — [G@)]P, 
where c is a constant, v is a Gaussian variable of zero mean and unit variance, and G 

is a contrast function, which practically can be any non-quadratic function. For sym- 

metric variables, using cumulant based approximation in [12], G(y;) = y}. 

(3.15) 

As Equation 3.15 is generalised to use any non-quadratic function as a contrast func- 

tion, there are many choices of G(y) that can be used. In [21], they have tested three 
choices of G(y): 

Gily) = <logecosh(asy), _ gu(y) = tanh(asy), (3.16) 

Galy) = = exp(—any2/2), 92(v) = vex(—aay?/2), (3.17) 

G= ast) =v, (3.18) 
where 1 < a; < 2, aj © 1 are constants, and g;, go and g3 are derivatives. The con- 

clusion was that G is a good general-purpose contrast function, while Gy worked bet- 

ter when expected independent components are highly super-Gaussian, and G3 (kur- 
tosis) is suited for estimating sub-Gaussian independent components. Figures 3.1, 3.2 

and 3.3 shows the distribution of piano, violin and flute played at 440Hz. This sug- 

gest that the sound wave of instruments are sub-Gaussian, thus using G3 as a contrast 

function in order to extract such independent components from recorded signal would 

be an appropriate option. 

  

a ry 05 + a “a5, 08 : a a5 08 1 ° Nomaled Apt 

Figure 3.1: The distribu- 

tion of piano played at 

440Hz. 

Nomad Apt 

Figure 3.2: The distribu- 
tion of violin played at 
440Hz. 
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3.1.7 Fixed-point ICA Algorithm 

Fixed-point algorithms, also known as FastICA were developed by Hyvarinen [21] for 

a more robust and computationally efficient algorithm, which can be used for ICA in 

practical analysis. The FastICA uses a fixed-point iteration scheme to find the direc- 
tion, w, such that the projection wx, maximises non-Gaussianity. In Section 3.1.6, the 

efficient approximation method of negentropy using contrast function was discussed. 
Using Equation 3.15, to find one independent component as y; = w’ x, it gives a new 

objective function: 

Ja(w) = le [G(w?x)] — € (G(r), (3.19) 
where w is an m-dimensional weight vector constrained so that ¢ [(w?x)?] = 1. By 

finding the optima of ¢ [G(w?x)], one can maximise Jg. 

According to Kuhn-Tucker conditions, the optima of € [G(w?x)], under the constraint 
e [G(w?x)?] = ||w||? = 1 are obtained at points where [21]: 

e [xg(w"x)] — Bw =0, (3.20) 

where ( is a constant that can be evaluated to give 3 = [wo: xg(wax)], where wo is 
the value of w at optimum and g denotes the derivative of G. 

Let us denote the left hand side of Equation 3.20 by F’, and using Newton’s method, 

the Jacobian matrix JF (w) is obtained: 

JF(w) =e [xx"g!(w?x)] — GI. 

Note that g’ denotes the derivative of g. As the data is sphered, we can approximate; 

é [xx’g'(w?x)] we [xx?] e [9 (w?x)] =e [9'(w"x)] I. 

Thus the Jacobian matrix becomes diagonal, so it can easily be inverted. So we obtain 
the approximative Newton iteration: 

Teo aw, 
eee Baw = (3.21) 

wt obtained here is normalised for the stability, so the new value becomes w* = 
w*/||w*||. This can be simplified by multiplying both sides of 3.21 by B+e [9 (w?2)], 
and it gives the fixed-point algorithm defined in [21]: 

w* =e [xg(w’x)] —e [9'(w7x)] w, (3.22) 

with the normalisation w* = w*/||w*|| to give new value w*. 

This process is repeated until the value of w and w* converged to the same direction 
so that their dot product is equal to one. Note that because of the normalisation per- 
formed to obtain w*, y estimated will have unit variance. 

To obtain the whole matrix W, this process is repeated as follows. After estimating the 
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pth independent component w,, we run the algorithm shown in Equation 3.22 to esti- 

mate w,+1, and after every iteration step, subtract the ‘projections’ why Wiwi for all 

i=1,...,p estimated independent components from w,,1, and then renormalise [21]: 

P 

whys = Wp Yo wr wii, fori=1,...,p (3.23) 

Wei = Woia/ weer (3.24) 

In the next section, we will discuss the method of estimating independent sound sources 

from a WAVE audio format file using this Fast-point algorithm. 

3.2 Audio as a dynamical system 

One of the problems that arises when applying the ICA algorithm to a digital audio 
file is the limitation in the number of recordings available in the sound file. As dis- 
cussed earlier, the ICA model approximates the source signal s by estimating w, for 
i= 1,...,n. Thus the number of sources that can be estimated is limited to the num- 

ber of available recordings, and this is, for audio recordings, either one or two. 

To overcome this problem, one can consider a musical signal as a form of determinis- 
tic nonlinear dynamical system. Takens’ Theorem! states that, for a dynamical system 
manifold A of dimension d, one can construct a (2d + 1)-dimensional vector from the 

data that represents the system. 

When applying this theorem, an embedding matrix is constructed using a rectangular 
sliding window of window size m, 

Zt Ltpr vee Tt4Nr 

Lepr Tep2r +++ Lt4(N41)r 
x= : ‘ : ; 

Tet(m—1)r  Lt+(m)r +++ Lt4(m+N-1) 

Our intention is to extract. frequency-related information from the independent com- 
ponents, after applying ICA, and thus the delay between the windows is fixed to T = 1. 
When constructing an embedding matrix, one has to ensure that the window size is 
‘large’ enough, so that the matrix created captures the information content in the sig- 
nal, but not so large that we capture non-stationarity. To investigate this, we employ 
Singular Value Decomposition (SVD) to monitor how the singular value spectrum con- 
verges as the window size changes. 

1See [6], which provides a good explanation of the theorem. 
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3.2.1 Complexity Analysis 

In [23], the complexity of an embedding matrix was analysed using the singular spec- 

trum obtained from the matrix. In a musical signal, pure tones (pure sine wave signal) 

have lower complexity (lower dimensionality). As discussed in Section 1, tones created 
by instruments consist of different ratios of harmonics of the fundamental frequency, 
and their amplitude may increase or decrease with time depending on how instruments 

are played. This is because timbre often depends on volume and pitch. When such 
partials change over time, the complexity of the signal increases. It may also increase 
as more tones are played together or played in sequences. The complexity of random 
noise is of very large dimensionality and considered very complex. Such complexity 
can be studied by analysing singular values of the embedding matrix. 

Using SVD, the embedding matrix X can be re-written in the form: 

X =UxV", 

where U and V are orthogonal matrices of singular vectors, such that the matrix U is 
the matrix of projections of X on to eigenvalues of X X7 and ¥ is a diagonal matrix of 
singular values © = diag(s1,..., Sn). The singular values are equal to the square roots 

of the eigenvalues of XX7. Thus monitoring the singular spectrum does not directly 
determine the contents of the actual data in embedding matrix X, but it enables us 
to have a measure of the structure of the data. For example, the data shown in Fig- 
ures 3.4 and 3.5 would share the same singular spectrum ¥ so the complexity of the em- 

bedding matrices are the same, but the actual data in matrices U and V are different. 

   
  

Figure 3.4: Data Space 1 with Singular Figure 3.5: Data Space 2 with Singular 
Spectrum ¥. Spectrum © 

3.3. Complexity of Music 

To analyse the complexity of a music signal, WAVE file format mono audio with 
44100Hz sampling rate and 16 bit depth was used. The list of samples used can be 
found in Appendix and are provided by RWC Music Database [17]. The WAVE file 
format records amplitude at each sampling point, and bit depth denotes the number of 

26



CHAPTER 3. SIGNAL DECOMPOSITION 

bits used to represent such amplitudes. Samples of length 0.1 second were taken from 

various points in several different genres of music?. 

3.3.1 Framework 

Singular spectra of different segments of music were calculated for k = 1,...,K for 

K = 77 windows where the window size m increases with an interval of 5 som = 5(k+3) 
and 20 < m < 400. The power of each spectrum increases as the window size gets 

larger since it start capturing more complexity of the signal. However, we are not so 

interested in the actual power of complexity, but the structure of the complexity cap- 

tured in the embedded matrix. To do this, we first calculate the relative singular val- 

ues D! for each singular spectrum by normalising it with the maxima of the spectrum, 
so that D! = s;/max;|s;| for all i = 1,...,n, then the power of each spectrum ||Zx|| is 
calculated for S = {X},..., 2%}. Let us denote the maximum power 

P = max (|||. 
bes 

Then the power ratio of each spectrum is ; 

ratio, = [al fork = 1). 0K 

For each spectrum S = {X},..., Di}, this ratio is used to stretch in the x-direction 
to obtain Xj, so it enables us to monitor how the power spreads on the spectra as the 

window size increases. The source code for this MATLAB operation is as follows; 

for k = 1:K 

ratios = ratio(k):1/ratio(k) :50/ratio(k) ; 

ratios = ratios - 1; 

spectrum_range = 0:1:49; 

Snew = interp1 (ratios ,Soriginal,spectrum_range)’; 
end 

where the MATLAB function 

YI = interp1(X,Y,XI) 

interpolates to find YI, the values of the underlying function Y at the points in the vec- 

tor XI, and the vector X specifies the points at which the data Y is given. After this 

operation, the change in structure of the spectra can be observed, thus we can moni- 

tor the change in the complexity of the embedded matrix. 

The Sum-Squared Error (SSE) was used to monitor the convergence of the singular 
spectra as window size increases; 

N 

B= or —2R,) 
n=l 

where 7” is nth singular value of the kth spectrum obtained and EF, is the error be- 

tween kth and (k + 1)th spectra. 

?Please see Appendices for the details of some of the segments of music used. 
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3.3.2 Results 
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Figure 3.7: SSE calculated be- 

tween the Singular Spectra of 
011nof25.wav (piano A2,110Hz)at 
successive window sizes. 

Figure 3.6: Normalised Singular 
Spectra of O11nof25.wav (piano 

A2, 110Hz). 
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Figure 3.9: SSE calculated be- 

tween the Singular Spectra of 

Ol1nof49.wav (piano A4,440Hz)at 
successive window sizes. 

Figure 3.8: Normalised Singular 

Spectra of Ollnof49.wav (piano 
A4, 440Hz). 

In Figures 3.6 and 3.8 C normalised singular spectra L’ obtained from a piano playing 
A2 and A4 are plotted for all k, and Figures 3.7 and 3.9 show the SSE calculated be- 
tween the normalised singular spectra. From Figures 3.6 and 3.8, spectra convergence 

to some structure at certain window sizes can be monitored. The spectra repeatedly 

converge to new structures as the window size increases. This convergence in structure 

can be monitored easier by the SSE plot on Figures 3.7 and 3.9. The SSE decreases as 

it converges to a structure and increases when new structure is captured as the win- 

dow size grows. For note A2, the SSE reaches its 10% of the starting error when the 

window size is at 115, but it soon captures new structure, and does not stabilise until 

quite a large window size. For note A4, it reaches stabilisation quite quickly and the 
repeat in pattern in SSE shows that it repeat in capturing the similar structure. The 
repeat in the sequence occurs as the window size increases to m ~ 100. 

These results, however, agree with the frequency range it captured by each window. 
The lowest frequency that could be captured by a window size of m is Es, where F's 

is the sampling frequency. Thus for F's = 44100, it will be ue = 110Hz, in which it 

just captures all the complexity in a signal played at 110Hz. 

In Figures 3.10 and 3.12, normalised singular spectra for violin and flute playing A4 
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Figure 3.11: SSE calculated be- 
tween the Singular Spectra of 
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Figure 3.10: Normalised Singu- 

lar Spectra of 151nof27.wav (violin 
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Figure 3.13: SSE calculated be- 
tween the Singular Spectra of 
331nof10.wav (flute A4,440Hz)at 
successive window sizes. 

Figure 3.12: Normalised Singular 

Spectra of 331nof10.wav (flute A4, 
440Hz). 

are plotted together with corresponding SSE plots in Figures 3.11 and 3.13. Again, the 
convergence to the structure can be monitored. The SSE of these samples decreases 

steadily and reaches stabilisation quicker than those of the piano. This means that the 

complexity of the piano is greater than that of violin and flute. 

Figures 3.14 and 3.16 plot the normalised singular spectra of sample playing violin and 

piano chord respectively, and Figures 3.15 and 3.17 show their change in SSE with the 
window size grow. From these plots, it is confirmed that the complexity of the signal 
takes role in the convergence to the structure, while the frequency component takes 

role in the stability. 

3.3.3. Conclusion to the singular spectra analysis 

The normalised singular spectra were obtained for different window sizes. From the 
plots, the convergence to the structure in singular spectra is monitored as the window 

size grows to capture more complexity of the signal. To monitor these structures eas- 

ily, SSE of successive singular spectra were calculated and plotted. It was shown that 
as the window size increases, it repeats convergence in structure, and finally reaches 

the stabilisation. While the size of window to converge to the structure relates to the 

complexity of the signal, it also has a strong correlation with the frequency content of 

the signal. As we would not want to capture noise from the audio signal, window size 
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Figure 3.17: SSE calculated be- 
Figure 3.16: Normalised Singular tween the Singular Spectra of 
Spectra of MamB02-1.wav (piano MamB02-1.wav (piano chord E4 & 
chord E4 & G5, 330Hz & 784Hz). G5, 330Hz & 784Hz) at successive 

window sizes. 

has to be relatively small, but also it has to be large enough to capture all the com- 

plexity needed. Thus we have come to choose a window size of m = 200 to build the 

embedding matrix for the later process. 

3.4 Application of ICA to the embedding matrix 

The embedding matrix was built using the experiments reported above to choose the 

window size, and FastICA was applied. Recall Equations 3.1 and 3.2, when FastICA is 

applied, the de-mixing matrix W is estimated, thus the mixing matrix A is easily cal- 

culated. In it, each column i shows the contribution of source signal s; to the recorded 

signal x according to Equation 3.1. The magnitude of each column is calculated by 

taking the square of the values in the column and summing; 

M= SA, 
j=l 

The magnitudes are sorted in descending order; the first 9 ICs extracted are shown in 
Figure 3.18. 
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Figure 3.18: First 9 ICs extracted from MamB02-1.wav, piano chord playing E4 & G5, 

and the original signal used to extract those ICs. 

Although there were some frequency components that can be observed, most of the re- 

sults obtained did not look very useful in the time domain. However, spectrum plots 

of 1st and 2nd IC shown in Figures 3.19 and 3.20 suggests those signals extracted have 

some peaks in the frequency components, and some matches with the peaks of origi- 

nal signal. 

The Yin fundamental frequency estimator [15] was applied to each IC extracted in an 

attempt to verify its fo. The estimated fo together with estimated note and its magni- 
tudes are shown in Table 3.4. In Figure 3.21, the magnitude of the independent com- 

ponents is shown. From Figure 3.21, it can be seen that the magnitude of each ICs 

drops dramatically with its order. Note that the magnitude of ICs can be translated as 
the importance of each ICs to the original signal. The estimated fo of all ICs extracted 

is plotted in accordance with the magnitude calculated and shown in Figure 3.22. 

From the graph, one can clearly see the peaks in the fundamental frequencies extracted. 

The actual notes played were almost extracted with note G extracted at one octave 

lower. Other components such as note C, are the residues of the notes played from 

the moment just before the sample was taken. This will always happen with large in- 

struments since the body of an instrument resonates, and thus the note tends to last 

longer. This is especially true when a low note is played as the attenuation of the 
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Figure 3.19: Spectrum of the original 
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& G5, plotted against the Ist IC ex- 
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Figure 3.20: Spectrum of the original 

signal, MamB02-1.wav, piano chord E4 

& G5, plotted against the 2nd IC ex- 
tracted. 
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Figure 3.21: Magnitude of indepen- 

dent components shows the weight of 

each independent components to recon- 

struct the original signal. 

Figure 3.22: fo of ICs extracted from 

MamB02-1.wav (piano chord E4 & G5) 
plotted in accordance with the magni- 

tude. 

sound wave is less at lower frequency. 

In Figures 3.23 and 3.24, the magnitude plot of ICs of a violin played at A4 on the D 
string and the A string are plotted. On Figure 3.24, a very distinct clear peak on A4 
is recorded while there are some other peaks around A4 is recorded for the one played 

on D string on Figure 3.23. This is suspected to be due to a little hand movement such 
as vibrato on the string. 

In Figures 3.25 and 3.26, the magnitude plot of ICs where flute is played at A5 and A6 

are shown. In both cases the maxima of the magnitude plot is apparent, and the fre- 

quency components at the right fundamentals are extracted. However, the dispersal of 

peaks at non-related frequencies suggests that many underlying sources that are not 

explicitly related to the fundamental frequency of the instruments are being extracted. 
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Figure 3.19: Spectrum of the original 

signal, MamB02-1.wav ,piano chord E4 

& G5, plotted against the 1st IC ex- 
tracted. 
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Figure 3.20: Spectrum of the original 
signal, MamB02-1.wav, piano chord E4 

& G5, plotted against the 2nd IC ex- 
tracted. 
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Figure 3.21: Magnitude of indepen- 
dent components shows the weight of 
each independent components to recon- 
struct the original signal. 

Figure 3.22: fo of ICs extracted from 
MamB02-1.wav (piano chord E4 & G5) 
plotted in accordance with the magni- 
tude. 

sound wave is less at lower frequency. 

In Figures 3.23 and 3.24, the magnitude plot of ICs of a violin played at A4 on the D 
string and the A string are plotted. On Figure 3.24, a very distinct clear peak on A4 

is recorded while there are some other peaks around A4 is recorded for the one played 

on D string on Figure 3.23. This is suspected to be due to a little hand movement such 

as vibrato on the string. 

In Figures 3.25 and 3.26, the magnitude plot of ICs where flute is played at A5 and A6 
are shown. In both cases the maxima of the magnitude plot is apparent, and the fre- 
quency components at the right fundamentals are extracted. However, the dispersal of 
peaks at non-related frequencies suggests that many underlying sources that are not 

explicitly related to the fundamental frequency of the instruments are being extracted. 
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Original signal: 301.3283Hz (Gd -3 cents 
TC number in   

  

order of Mag 1 2 3 4 5 6 
Estimated 
fo/Hz 131.617 | 131.678 | 65.927 | 268.192 | 332.034 | 131.718 
  

Estimated note 
+ detuning/cents | C3 +11 | C3411 | C2+14 | C4 +43 | E4 +13 | C3 +12 

Magnitude 0.1416 0.0467 0.0418 0.0396 0.0368 0.0365 
    
  

  

7 8 9 10 il 12 13 14 

331,002 | 131.929 | 268.109 | 132.121 | 265.814 | 401.830 | 131.763 | 131.782 
E4 +7 | C3 +15 [ C4 +42 | C3 +17 | C4 +27 | G4 +43 | C3413 | C3 +13 

0.0339 0.0292 0.0227 0.0190 0.0175 0.0168 0.0161 0.0152 

  

  

    
  

  

15 16 17 18 19 20 21 22 

266.524 | 132.154 | 265.893 | 65.995 65.946 131.979 | 131.94 | 1572.473 

C4 +32 [C3 +18 | C4 +28 [C2416 [ C2+14 | C3 +15 [ C3+15 G6 +5 
0.0143 | 0.0139 | 0.0134 [0.0127 [0.0124 | 0.0102 | 0.0097 | 0.0096 

  

  

      
  

  

23 24 25 26 27 28 29 30 
1567.571 | 265.227 | 132.066 | 268.278 | 131.842 | 65.873 65.907 132.560 

G6 -0 C4 +24 [C3 +17 | C4 +43 | C3 +14 [| C2 +12 [C2 +13 | C3 +23 

0.0095, 0.0087 0.0085, 0.0085, 0.0083, 0.0082 0.0078 0.0078 

  

  

                        
Table 3.1: Estimated fo, notes, and their magnitudes of first 30 ICs extracted from 

MamB02-1, piano playing chord A4 & G5, 330Hz & 784Hz. 

This may be due to the aspiration noise occurring when the flute is played. In Fig- 

ures 3.27 and 3.28, the magnitude plot of ICs extracted for piano played at A2 and A3 
are shown. The peaks are found around the expected fundamental frequency, but the 

peaks are found dispersed around the maxima. Note that for each note on a piano, 

there are 3 strings tuned around the desired frequency that are hit by the hammer ac- 
tion. Those strings are slightly detuned so the notes lasts longer when the strings are 

hit. Thus the dispersal around the desired frequency is thought to be the outcome of 

such physical properties of the piano. 

We have also carried out some analysis for chords. In Figure 3.29, the magnitude plot 
of a piano chord sample is shown. This shows the peaks at an octave lower than ex- 

pected, and along with those octave errors, some inexplicable peaks have been pro- 

duced. Figure 3.30 shows the magnitude plot of the chord played shortly after the 
chord played for Figure 3.29. It shows peaks where they are expected and residuals 

from the chord played before, together with some inexplicable peaks. In Figure 3.31, 
the magnitude plot of a violin chord is shown. This has shown the peaks at the ex- 
pected pitches with suspected vibrato components around the notes, but also it has 

shown some erroneous components at lower octaves together with some inexplicable 

results. However, for the chord played by violin shown in the Figure 3.32, there are 
clear peaks at the expected frequencies. 

3.4.1 Conclusion to the FastICA on the Embedded matrix 

Some frequency-related underlying sources of the original signals have been extracted. 
The notes played by violin showed little error around the fo due to the vibrato. The 
fo estimated from the ICs extracted for notes played by flute showed the clear peak at 
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Figure 3.23: fo of ICs extracted from 

151nof21.way (A4 violin) plotted in 
accordance with the magnitude. 
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Figure 3.24: fo of ICs extracted from 

151nof27.wav (A4 violin) plotted in 
accordance with the magnitude. 
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Figure 3.26: fo of ICs extracted from 
331nof34.wav (A6 flute) plotted in 
accordance with the magnitude. 

Figure 3.25: fo of ICs extracted from 
331nof22.wav (A5 flute) plotted in 
accordance with the magnitude. 

the expected fo but also showed large dispersal of the fo along many frequency ranges. 
This may be due to the aspiration noise and frication noise produced when flute is 
played. The notes played by piano showed the dispersal of the peaks around the note 
played. This is suspected to be caused by the three strings. The results of a single note 

played somehow reflected the tonal quality of each instruments; however some of the 

results shown for the chords played were erroneous while some showed good estimation. 

Because of the limitation of the material available at the time, it was not possible to 
test for chords produced by a mixture of instruments. It would be interesting to see 

how well they could be extracted as the sound sources would be physically independent. 
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Figure 3.27: fo of ICs extracted from 
011nof25.wav (A2 piano) plotted in 
accordance with the magnitude. 
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Figure 3.28: fo of ICs extracted from 
011nof37.wav (A3 piano) plotted in 
accordance with the magnitude. 
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Figure 3.31: fo of ICs extracted 

from GavB02-1.wav (B4 & A5 vio- 
lin) plotted in accordance with the 
magnitude. 
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Figure 3.30: fo of ICs extracted 
from MamB25-3.wav (C3 & C5 pi- 
ano) plotted in accordance with the 
magnitude. 
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Figure 3.32: fo of ICs extracted 

from GavBO08-l.wav (E4 & E5 vio- 
lin) plotted in accordance with the 

magnitude.



Chapter 4 

Timbre Analysis 

In this chapter, we shall discuss a method of modelling a musical signal generated by 
different instruments and estimating the size of the harmonics for each note. First, 

additive synthesis of a pure sine wave and its harmonics for modelling a single tone 

(monophonic) and mixture of several tones (polyphonic) are described, followed by the 
estimation method for the parameters of the model. Then the estimation method is 

evaluated and results are discussed. 

4.1 Harmonic Model (monophonic) 

In a basic theory of signal processing, it is stated that any finite power periodic signal 

can be represented as a summation of sine waves and cosine waves. In Chapter 1, we 

have discussed that the colour of the sound created by the instrument can be analysed 
using the ratio of partials found in each note played, and in Chapter 2, a brief history 
of additive synthesis, which attempts to model the tonal structure as a summation of 
sine waves and cosine waves, was discussed. Davy and Godsill [14] developed a har- 
monic model based on such method, and the basic model of a single note for a short 

time interval is, 

N 
y(t) = Se A, cos(2rn fot) + Bn sin(2mn fot) + v(t) 

n=1 (4.1) 
fort = 0'o e408 — 1 

where fo is the fundamental frequency, N is the number of partials present, A, and B, 
are the amplitude of these partials, and v(t) is the noise component. This model agrees 

with the FFT given by the note played by the instruments in Figure 1.8 and 1.7, where 

there are peaks at the harmonics of the fundamental frequency. However, in the above 

model it is assumed that the amplitude of each partial is constant throughout the inter- 

val (0, T—1]. For longer intervals, this may not be true, so they generalised the model, 

N 

y(t) = S> Any cos(2rn fot) + By,sin(2rn fot) + v(t), (4.2) 
n=1 

so the amplitudes A, and B, can now depend on time. In this model, it is impor- 

tant to model the true frequency of the fundamental, and to cater for low frequency 
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variation in amplitudes (e.g. vibrato). Thus smooth basis function ¢; fori = 1,..., J, 
were introduced to represent the amplitude A, and B,, 1; 

I I 

Ant = So Anidien and Baz = Se Bridit- 
i=1 i=1 

The basis function can be any sufficiently smooth interpolation function. Here we shall 

use half over-lapping raised cosine functions (Hanning windows). It is important to 

choose the window size large enough to eliminate the unwanted low frequency compo- 
nents, but small enough, so it can include the audible frequencies played by the instru- 

ments. Also, by introducing basis functions, the number of parameters in the model 

becomes much lower as J would typically be much smaller than T. For a monophonic 

signal, the model becomes; 

N 

ult) = D2 Yo bie {Ane cos(2zn fot) + Bn,esin(2nn fot)} + v(t). (4.3) 
n=1 i=1 

Now, the unknown parameters to determine the model in Equation 4.3 are; the fun- 

damental frequency fo, and the amplitudes @ = {A,1, Bii,..., Aw,r, By,r}. More pre- 

cisely; 

92(i-+n)—1] = Ang (4.4) 
O2(itn)] = Bry. (4.5) 

With the assumption that J and N are already specified, the model is written as; 

y=D0+0, (4.6) 

where y = {yo,...,yr-1}7, v = {vo,...,Ur_1}7, the matrix D contains the Gabor 
atoms stacked in columns [14], such that; 

Dit+1,2(@+n)-1] = ¢izcos(2rnfo) (4.7) 

Dit + 1,2(é+n)] G2 8in (27 fo) . (4.8) ll 

The background noise v also includes components created by instruments which do not 

fit in the harmonic model. For example, when a person plays a wind instruments, it 

may also emit air sounds, or aspiration noise. Here we assume the noise to be an au- 

toregressive (AR) model of order M; 

M 

u(t) = D> amvem + ets (4.9) 
m=1 

where €; is a zero mean Gaussian white noise of variance oe?. Given the linear model 

in Equation 4.3, and the assumption of iid. Gaussian excitation for the AR process, 
the likelihood function will be [14]: 

202 € 

i 1 Hu, fo Ns0,02) = rg ex? [-sEaly— DO)"ATACY— DO). (4.10) 
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Ais aT x T-dimensional matrix constructed by stacking the AR coefficients a in rows: 

1 0 0 

-a, 1 0 0 

A=|-amM - a; iL 0 0 

0 

0 
0 +++ O -ay :*- -—a 1 

Let us use S to denote the 2NJ-dimensional square matrix 

S= DATAD, (4.11) 

and the distribution of @ conditional on the other parameters is defined by; 

P(O|fo, N, a, 02,y) = N(u, 02S), (4.12) 
where ju is the 2NJ-dimensional vector, 

p= SDTAT Ay. (4.13) 

4.2 Harmonic model (polyphonic) 

In the section above, we have discussed the method of estimating fundamentals and re- 

lated parameters in the harmonic model given in Equation 4.3. However, in most cases 

in the musical signal, several notes are recorded at the same time (polyphony). For 

the modelling of polyphonic signals with K notes present at a time, the Equation 4.3 
can quite easily be extended to a mixture of monophonic models; 

KONI 
Pit {Ak ne Cos(27n fort) + Bene sin(2rnfoxt)} +v(t). (4.14) 

k=1 n=1 i=1 

The matrix D from Equation 4.7 then should be of the form; 

Dt +1, 2Ry-1([ +1) + 2(N,i +n) - 1] i Cos (27 fo) 

Dit +1, 2Rpa( +1) +2(Mitn)] = dizsin(2rnfo). (4.15) 

where Ry = Syn N;. Also @ from Equation 4.4 should be; 

O[(2Re-r(I +1) +2(é+n)-1] = Ani (4.16) 

O[2Rx-1(I +1) + 2(¢+n)] (4.17) I S 
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4.3 Estimation of Parameters 

In [14], all the parameters defined in Section 4.1 are estimated from Markov Chain 
sampling. However, given the number of parameters which have to be sampled in their 

model, this method requires many samples to be made for the optimisation process, and 

thus the simulation can run for hours, or sometimes days. Markov chain sampling, how- 

ever, is a very straight forward technique, which we will be using as the core algorithm 

for the estimation of the parameters defined in Section 4.1 together with other meth- 
ods for optimisation of parameters. The sampling method is called a Markov chain if 

each sample x(t+1) is generated from the last sample x(t) by taking a step determined 
by a stochastic transition. The aim is to sample from a Markov chain whose station- 

ary distribution is our posterior distribution. To do this, we generate a new state from 

an old state by generation of a candidate state from a proposal distribution, and then 

we decide whether to accept or reject the state. If the new state is accepted, then the 

state now becomes a candidate state, otherwise we keep the previous state [29]. There 
are several other sampling methods available, but here we will be using the Metropolis- 

Hasting algorithm because of its simplicity, and to make use of the fact we can easily 
build the probability density distribution p(foly), proportional to the spectrum of y, 
for the proposal distribution of fo. First in this section, we shall discuss using Markov 

chain sampling for estimation of fo. Later in this section, the method of using other 

fo estimators, such as Yin fundamental frequency estimator [15] will be discussed. 

4.3.1 Markov Chain Sampling and Estimation 

As mentioned earlier, Markov chain sampling is a computationaly expensive process as 

it involves generating many samples to get a good estimate. Thus generating samples 

for each parameter defined in the model as suggested in [14] seemed computationally 
too demanding. We suggest the following algorithm which uses Markov chain sampling 

with maximum likelihood estimation by Yule-Walker equation for monophonic record- 

ings to minimise the number of samples needed to achieve a fair result given the com- 

putational time needed. 

1. Build the probability density distribution p(fo|y) proportional to the spectrum 
of y. This now becomes our proposal distribution. 

2. Generate the candidate state f* from the proposal distribution. 

3. Accept the first candidate state and let f’ = f* where / is the number of ac- 

cepted state, and f! denotes the lth accepted state. 

4. Sample wu from U/[0, 1] . 

(a) Ifu< Ay 
Generate the new candidate state f* from proposal distribution p(foly). 

(b) Else if u <A, +22 
Sample k from U(0, 1]. 

i. IfkK>0.5 
Generate a new candidate state f* from N(2f',0?). 
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ii. Else ? 
Generate a new candidate state f* from NV) (&, 07). 

(c) Else 
Generate a new candidate state f* from N(f', 7) 

where \; and 2 are parameters to switch between sampling methods. 

5. Update matrix D. 

6. Estimate matrix A and @ (see later for more details). 

7. If n(f*) > n(f'), accept the candidate state; 
let J =1+1, and f!= f*. 
Else reject the candidate state. 

8. Back to step 4 and repeat. 

Steps 4(b)i and 4(b)ii allow us to perform an octave jump between frequencies to han- 
dle the case where the fundamental frequency fo should be an octave higher or lower 
than its current value. This process is important to handle the strong overlap of par- 

tials for notes on octave apart generated by instruments. In step 7, the energy or cost 

function E is calculated as the negative log likelihood of the model; this is given by 
Equation 4.10 so p(y|9, fo, N, a, 0?) x exp(—E(y|®, fo, N,a,02)). The test always ac- 
cepts candidate states with low energy, but only accepts candidate states of higher en- 

ergy with probability exp(E(y|6!, f', a!, N,o?) — E(y|6*, f*,a*, N,o2)). So step 7 can 
be re-written as [29]; 

El. If E(y|0*, f*,a*, N,o2) < E(y|6', f',a', N,o?), then accept f*. 

E2. If E(y|0*, f*,a*, N,o2) > E(y|6', f',a', N,o?), then accept f* with probability; 

exp(E(yl6", f!,a!, N, 02) — E(yl6*, f*, 0°, N,02)) (4.18) 

For the estimation of matrix A and 6 we make use of Equations 4.11 to 4.13. 

1. Let A be an identity matrix of size T x T. 

2. Update S and y using Equations 4.11 to 4.13. 

. Let O* = p. 

. Re-calculate noise v according to Equation 4.6. 

5. Fit AR model to the noise v by maximum likelihood, and re-build matrix A. 

6. Back to step 2 and repeat until sum-squared error between @ and 64+! converges, 

where j is the iteration number. 

40



CHAPTER 4. TIMBRE ANALYSIS 

Estimation of the coefficients a of the noise model in step 5 was performed using the 
Yule-Walker method. Recall the AR process of Equation 4.9, by multiplying both sides 
by v(t—7), taking expectation values, and normalising, the autocorrelation coefficients 

can be found by solving the set of linear equations; 

M 

f= 0 Onprem: 
m=1 

Then by solving the system, AR coefficients can be determined. 

4.3.2 YIN fundamental frequency estimator 

The fundamental frequency (fo) of a signal is the lowest frequency component, which 

relates to the other partials. For a periodic signal, fo relates to the periodicity of the 

signal, and is the inverse of its period. As discussed briefly in Section 2.4, there exists 

many methods of fo estimation, and using the autocorrelation method would be the 
simplest method available where it measures the ‘similarity’ between two windowed 

waveform with time lag. However, a problem arises when it is applied to the complex 

waveform as it would produce many maxima between ‘true’ maxima. To solve such 

problem, some form of peak detection algorithm is needed. 

To overcome this problem, the YIN fo estimator was developed on similar principles 
to the autocorrelation algorithm [15]. It is based on the difference function, which at- 
tempts to minimise the difference between the waveform and time shifted waveform: 

w 

d, = (7) (2; — 2547), 
j=l 

where d;(r) is the difference function of lag r. So the function starts at 1 and it re- 
mains high until the difference in the function drops to its dip. Thus by searching for 

the values of 7 for which the function is zero, the period of the waveform is found. As 
for autocorrelation method, several dips may be found at subharmonics. This has been 

overcome by first, introducing the ‘cumulative mean normalised difference function’: 

ots 8 (ails ifr =0, d,(r) -{ &(7)/((1/r7) Xy-1-ag)) otherwise, 

and introducing an absolute threshold and choose the smallest value of 7 that gives a 

minimum of d;(r) deeper than the threshold. 

With this fo estimator, the process of parameter estimation is shortened: 

1. Estimate fo using Yin estimator. 

2. Update matrix D. 

3. Estimate matrix A and @ (see the algorithm in Section 4.3.1 for detail). 
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4.4 Experimental Framework 

A collection of short segments of piano, violin, clarinet, and flute playing a single tone 

and chords are taken from RWC Music Research Database [17] for the analysis. The 
list of details on each samples can be found in Appendix A. The samples are sampled 
at 44100Hz sampling frequency, and 3300/sample size. Hanning windows of size 512 
samples with 50% overlapping were used as a basis function. 

4.5 Results and Discussion 

We are expecting to see the results with the highest amplitude at the fundamental fre- 
quency, and different sizes of partials depending on the instrument. It is hoped that we 

could observe some characteristic features in how the amplitude parameters @ are or- 

ganised within the segments. The amplitude parameters @ shows the change in power 
ratio of each partials with time, which relates to the timbre of the instrument. 

4.5.1 Results using Markov chain sampling for fo estimation 

For the estimation process using Markov chain sampling, the number of iterations were 

set to 50, and the average acceptance ratio of the Markov chain sampling was ~ 14%. 

The estimates made for fo had an accuracy of 56% accuracy with + 5% precision and 

if those mis-estimated by an octave are included, the accuracy then becomes 76%. 

The resulting @ were re-organised and plotted as a density map in Figures 4.1 and 4.2 

with estimated fundamental frequency shown next to the corresponding plots. The x- 

direction denotes the ith basis function (equivalent to time segments), and y-direction 

denotes the partials, in which the intensity of the partials are calculated by 

Gn = (62,1 + 03,)"? for n = {1,...,N}. (4.19) 

The results obtained for piano notes are shown as Sample 1 to 10 in Figure 4.1. Most 
results obtained for piano did not show the results as expected. The estimation of the 

fo was proven to be very unsuccessful. For Samples 5, 9, 10, fp were estimated with oc- 

tave error, and showed the brightest line at the lst harmonic f;. However, for Sample 

8, fo was correctly estimated, and a bright line at the fo was recorded. For results ob- 

tained for violin shown as Sample 11 to 20, fo estimations did not work so well for lower 
notes played on the G and D strings. However, for notes played on higher strings (A 

and E), the fo estimation showed better results, thus a bright line at fy was observed. 
The results obtained for clarinet again showed better fp estimation at lower frequen- 
cies, and the same for the results obtained from flute notes. Overall, fo estimation 

worked better at higher frequencies. This is because of the nature of the model, that is 

based on the periodicity of the data. When a note is produced at lower fo, the partials 

are also found at lower frequencies. This reduces the periodicity of the signal captured 
within the windowed segments, thus the model used, which is based on the periodicity 
of the data cannot model the signal well anymore. Even with fairly good estimation 

of fo, the density plot did not show consistent characteristics for each instrument. 

In Figure 4.3, the original signal of Sample 1 (piano A2 at 110Hz) and the recovered 
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Figure 4.1: Graphical view of estimated amplitude of each partials obtained by Markov 

chain sampling for samples 1 to 18. 

signal from the estimated parameters are plotted on the same graph, and in Figure 4.4, 

spectra of these signals can be found. From those graphs, especially in Figure 4.3, it 

can be seen that the signal recovered by the estimated parameter fits very well to the 

original signal, although as shown in Figure 4.1, the fo estimation did not work well 

and the density plot of the harmonics did not show what was expected. Also in Fig- 

ure 4.3, a transient in the first 0.01s with a different structure to the main note is ob- 

served. This is due to the hammer striking a string when a piano is played. The model 

fits this transient well, but this leads to inaccurate estimation of parameters. In Fig- 

ure 4.4, it was shown that the estimated signal had many peaks that match with the 

original up to around 1500Hz, this is because of the fact that the estimated fy was at 

130.16Hz, and parameters were estimated for the first. 10 harmonics. 

Similarly in Figures 4.5, the signal and recovered signal of Sample 13 (violin E4 330Hz 

on D string) are shown, and 4.6 shows their spectrum. fo was estimated as 107.77Hz, 

and it showed matching peaks up to slightly above 1000Hz on Figure 4.6. Again, the 

recovered signal showed good fit to the original even though the density plot shown in 
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Figure 4.2: Graphical view of estimated amplitude of each partials obtained by Markov 

chain sampling for samples 19 to 33. 
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Figure 4.1 was not what was expected. 
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Figure 4.5: Sound wave of Vio- Figure 4.6: Spectrum of Violin E4, 
lin E4, 330Hz, and signal recovered 330Hz, and signal recovered from 

from the estimated parameters. the estimated parameters. 

4.5.2 Results using YIN f estimator 

fo was estimated and using the algorithm explained in Section 4.3.2, other parameters 

are obtained. By using Equation 4.19, intensity of the partials are calculated and plot- 

ted in Figures 4.7 and 4.8. 

YIN fo estimator was proven to be an effective fo estimator with its estimation time 

considerably faster than using Markov chain sampling. With its estimation of fo, the 

density plot of the harmonic model seemed almost as expected for more samples. How- 

ever, for Sample 1, the density plot did not show clear lines at the harmonics. From 

the plot of the original signal shown in Figure 4.3, it can be seen that this is caused 

by the transient in the original signal. The phenomenon observed on Sample 2 on Fig- 

ure 4.7, which can also be observed a little on Sample 1 and on Sample 21 on Fig- 

ure 4.8 is caused by the window size that is too small to capture whole period of wave. 

This can be proven on the plot shown in Figures 4.9, in which the window size of 1024 

with overlap of 512 is used. 

    

The density plots of piano did not show much characteristics apart from showing some 

partials existing. This may be because of its inharmonicity of the partials, so it be- 

comes impossible to monitor the correct amplitude at each harmonics by modelling the 

tone as simply summation of multiples of fo. However, results produced by violin sam- 

ples have shown many strong lines up to few partials. There were very clear charac- 

teristics observed for the notes played by clarinet. This is because of the construction 

of clarinet, as briefly discussed in Introduction. Again, it showed clear lines around fo 

in the results produced by flute notes, but no clear characteristics were observed. 

Overall results shown more harmonics being observed at the notes played at lower fre- 

quency. This is because attenuation of sound wave being greater at high frequency and 

many partials produced were attenuated for the notes played at higher fo.
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Figure 4.7: Graphical view of estimated amplitude of each partials obtained by YIN 

fo estimator for samples 1 to 18. 

4.5.3 Harmonic density plot on polyphonic tone 

We have performed harmonic estimation on the polyphonic tones to observe how well 

the model would work for the polyphonic tones providing correct fp can be estimated. 

fo was manually searched from the spectrum of the signal, and estimation of 6 and 

A was performed using maximum likelihood. The result of this process to Sample 34 

(a chord of E4 and Bé4 played by violin), are shown in Figure 4.10 together with fre- 

quency spectrum of the chord shown in Figure 4.11. 

There are many peaks in spectrum where harmonics of two notes share the same fre- 

quency. This makes the modelling of harmonic density of polyphonic tones using the 

model shown in Equation 4.14 very difficult. 
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4.5.4 Conclusion of Harmonic Analysis 

It was not possible to monitor the harmonic characteristics of most instruments. The 

sound production of string instruments are triggered by the oscillation of the string. 

For piano, it is done by hammering 3 strings that are tuned around the desired fre- 

quency. The harmonic density plots obtained for piano were very unsatisfactory. This 

is due to high complexity in the physical construction and the sound production of the 

piano. Because of its system construction, anharmonicity of piano is very well known 

and is necessary for the better sound production that gives the characteristics of dif- 

ferent piano tones [5] [1]. This anharmonicity of course will be increased if the piano 
has not been tuned for a long time. 

Another type of string instrument is a violin. The sound is produced either by pluck- 

ing a string, or bowing a string. The results obtained by correctly estimated fo using 
YIN estimator showed many bright lines at lower harmonics. This suggests the con- 

tribution of many low harmonics for the production of its tone. Tonal quality of vio- 

lin could easily differ by the bowing point when it is played. It can also be differed by 
the finger damping. However, because of its physical characteristics, inharmonicity of 

the violin is considerably smaller compared with the piano. 

The density plot shown for the clarinet showed clear properties of woodwind instru- 

ments with a closed cylindrical air column. As discussed in Section 1, when flute is 

played, a skillful player can alter the strength of even and odd harmonics to produce 
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tones that gives different impression of the note. Even its physical property produces 
a tone whose harmonics are precisely at integer multiples, the model was not capable 

of detecting such characteristic. 

In the estimation process using Markov chain sampling, for some cases, fo were esti- 

mated at where it was not expected. The graph shown in 4.12 reveals that in fact, 

the error calculated using likelihood function from Equation 4.10 were smaller in most 
cases than when parameters were estimated using the algorithm based on Markov chain 

sampling. This means that even if the right fo is sampled in the process that employs 
Markov chain sampling, it would not be accepted as a new state after sampling the 
fo that has been accepted as a final result for this experiment. Also from Figures 4.3, 
4.4, 4.5 and 4.5, the recovered signal by estimated parameters shows a good fit to the 

original data. The model had a great flexibility to model the complexity of tones from 

musical instruments, thus monitoring characteristics only from amplitude parameters 

were found impossible. 
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Figure 4.12: Negative log-likelihood (error) calculated for the recovered signal esti- 
mated using Markov chain sampling and YIN fo estimator 
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Chapter 5 

Conclusion 

First, we have discussed a method to analyse the complexity of musical audio signals 
using Singular Value Decomposition. The complexity of data increased as the window 

size of the embedding matrix increases and captures the new structure of the data. 

Monitoring the change in complexity, we have found that the window size of m = 200 

is large enough to capture all the complexity needed but it is not too large, so it starts 
capturing unwanted low-frequency components such as non-linearity of the data. 

An embedding matrix of suitable window size was constructed after the complexity 
analysis of matrix, and ICA was performed on the data to extract underlying sources 

of data. However, this method proved to be unsuccessful, and showed that embedding 

matrices and ICA are inappropriate for feature extraction from musical signals. 

We then investigated an alternative method of feature extraction. A harmonic model 
based on additive synthesis was used to model musical signals. We have used two dif- 

ferent approaches to the harmonic analysis of instruments tones. For the estimation 

of fo, Markov chain sampling and the YIN fo estimator was employed. The optimisa- 

tion of other parameters within the harmonic model was performed, and different rela- 

tive intensity of the harmonics are shown as a density plot. For the estimation process 

that uses Markov chain sampling, fp estimation was found to be inaccurate because of 

the flexibility of the parameters within the model. On the other hand, YIN fo estima- 

tor was found to be very efficient, and produced clear density plots for the relative in- 
tensity of harmonics. However, very consistent characteristics of each instruments are 

observed from the results. 

Although the timbre of notes differs within the same instrument depending on the 

pitch and how it is played, some similarities have been found within the intensity map 

of each instruments. The model may be extended to cater for the anharmonicity of 

the data and the pitch variation in notes played (e.g vibrato) to give a better estima- 
tion of the relative intensity of different harmonics. Also many more datasets should 
be tested for the analysis of pitch dependency of the relative intensity of harmonics. 
Only once this is completed estimation of the intensity of harmonics is reliable, and it 
may be possible to build a timbre classifier. 
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Appendix A 

List of samples used 

  

  

  

  

FILE(.wav) | Instrument | Note(MIDI) | Frequency / Hz 

1 | Ol1nof25 piano A2(45) 110 
2 | Olinof32 piano E3(52) 165 
3 | O11nof37 piano A3(57) 220 
4 | 011nof44 piano E4(64) 330 
5 | O11nof49 piano A4(69) 440 
6 | O11nof56 piano E5(76) 659 
7 | O11nof61 piano A5(81) 880 
8 | 011n0f68 piano E6(88) 1319 

9 | 011nof73 piano A6(93) 1760 

10 | 011nof80 piano E7(100) 2637 

11 | 151nof03 violin A3(57) on G 220 
12 | 151nof10 violin E4(64) on G 330 

13 | 151nof16 violin E4(64) on D 330 
14 | 151nof21 violin A4(69) on D 440 

15 | 151nof27 violin A4(69) on A 440 

16 | 151nof34 violin E5(76) on A 659 
17 | 151nof39 violin A5(81) on A 880 

18 | 151nof40 violin E5(76) on E 659 
19 | 151nof45 violin A5(81) on E 880 

20 | 151no0f52 violin E6(88) on E 1319 

21 | 311nof03 clarinet E3(52) 220 
23 | 311nof15 clarinet E4(64) 330 

24 | 311nof20 clarinet A4(69) 440 

25 | 311nof27 clarinet E5(76) 659 
26 | 311nof32 clarinet A5(81) 880 

27 | 311nof39 clarinet E6(88) 1319 
28 | 331nof05 flute E4(64) 330 

29 | 331nof10 flute A4(69) 440 
30 | 331nof17 flute E5(76) 659 
31 | 331no0f22 flute A5(81) 880 

32 | 331no0f29 flute E6(88) 1319 
33 | 331n0f34 flute AG(93) 1760         

Table A.1: Single note samples used. 
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APPENDIX A. LIST OF SAMPLES USED 

  

  

  

        

FILE(.wav) | Instrument Note(MIDI) | Frequency / Hz 
34 | GavB00-1 violin F4(64) B4(71) 330 494 
35 | GavB02-1 violin B4(71) A5(76) 494 659 
36 | GavBOs-1 violin (64) E5(76) 330 659 
37 | SicBO1-1 piano & flute n/a n/a 
38 | SicB02-1 piano & flute n/a n/a 
39 | SicB02-2 piano & flute n/a n/a 

40 | MamB02-1 piano 4(64) G5(79) 330 784 
41 | MamB09-1 piano F4(64) G5(79) 330 784 
42 | MamB25-0 piano C3(48) D5(74) 131 587 
43 | MamB25-1 piano C3(48) D5(74) 131 587 

27 | MamB25-2 piano 3(48) ots 131 523 
28 | MamB25-3 piano €3(48) C5(72) 131 523 

Table A.2: Chord samples used. 

e Each notes and frequencies stated are the notes and frequencies reported to be played, not ac- 
tually recovered from the recording, thus it may differ in reality. 

e For notes 11 to 20, ‘on G’, ‘on D’, ‘on A’ and on E’ means the notes played on G string, D 
string, A string, and E string. 

e Sample of the chords are taken from musical pieces. 

— Gav - Gavotte en Rondeau, J. S. Bach 

— Sic - Sicilienne, G. Fauré 

— Mam - Variations on ‘Ah! Vous dirai-je, Maman’, W. A. Mozart 
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