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Thesis Summary 

The lack of uniqueness arising from a redundant representation for a signal is shown 

to provide a way of transmitting additional hidden information. A coding/decoding 
system developed on the basis of such a possibility is proposed. The system is devised 

with the double purpose of a) enabling the transmission of an arbitrary signal b) al- 

lowing for the transmission of a hidden code. 
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Chapter 1 

Introduction 

1.1 Overview 

Signal transmission (coupled with that signal’s accurate recovery) is a fundamental 

problem in applied mathematics and engineering. Redundant representations are one 

way of dealing with this problem. A redundant representation is a way of characterising 

a signal by a non-unique set of numbers. Notably, redundant representations have a 

good deal of resilience to noise that may be added in the transmission process. 

In this thesis we propose and explore a novel approach to sending information 

covertly, embedded within a predetermined signal. This method takes advantage of 

the presently evolving methods and theory behind redundant representations for such 

signals, commonly referred to as frames. We propose an encoding/decoding procedure, 

which will enable the transmission of additional ‘hidden’ information when transmitting 

some arbitrary signal. The problem is viewed using multiple representations for the 

signal and the effect of additive noise in the transmission channel is also considered. 

1.2 Thesis Outline 

We begin in Chapter 2 with some basic definitions and preliminary results. Specifi- 

cally, we will lead up to the definition of a basis as a means for obtaining a unique and 

convenient way to represent elements in a vector space. Then we will naturally move
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to frames as a sort of overcomplete basis where the representation is no longer unique. 

Some useful theorems and properties will be discussed. 

In Chapter 3 we will look at three examples of frames. The three frame types ex- 

amined - Fourier, Gabor and Mexican hat wavelets - will provide a sampling of possible 

redundant representations. Chapter 4 will detail the focus of this thesis - an encod- 

ing/decoding system which can be used to transmit a hidden code while transmitting 

an arbitrary signal. 

The following three chapters will give the experimental results of this encoding/decoding 

system with the three frame types seen in Chapter 3. At the end of each of these three 

chapters we will summarize the results for that representation. Finally we will have a 

summary chapter with composite conclusions. 

1.3 Notes 

Before we begin, we need to take particular note of a few items: 

e This thesis is intended to illustrate the possibility of a novel way for using the 

theory of frames and redundant representations for transmitting data covertly 

while also transmitting an arbitrary signal. We do not attempt here to prove this 

method’s usefulness or robustness in real-world scenarios. 

e Unless otherwise noted all plots of complex variables show the real component 

only.



Chapter 2 

Frame Theory 

The central theme we present here is that of overcompleteness, or redundancy, of a 

representation which is treated in the context of the theory of frames. We start by 

giving some basic definitions and properties which will be relevant to our work. Most 

of the theory presented in this chapter is taken from [2] and [12]. We refer to those 

books for further details. 

2.1 Preliminaries 

Finite Energy Functions 

We will choose to restrict our applications to L*, which is the space of complex-valued 

finite energy signals defined on the real line R. The norm of an element f € L?(R) is 

wai=(f~ ina) me 
The inner product on L?(R) is defined as 

(fo) = [ f(0)aTBat for J,9,€ L4(R). 
where g(t) denotes the complex conjugate of g(t). 

The span of a sequence of functions { f,} is the set of functions generated from arbitrary 

linear combinations of { fn}; i.e. 

span{fn} = {J enfn : tn € C} 

10
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Finite Energy Sequences 

@(Z) is the space of complex-valued finite energy sequences defined on the integers Z. 

The norm of an element c € ¢?(Z) is 

= 1/2 

lll = ( s Int) a 

The @ inner product on ¢*(Z) is defined as 

cs 

(exd) = Se (ndn for c,d,€ @(Z). 
n=—00 

As we continue with definitions, we will assume that V and W are finite dimensional 

vector spaces over C each equipped with an inner product and a norm. 

Orthogonality and Normality 

Two elements x,y € V are orthogonal if (x,y) = 0; and the orthogonal complement of 

a subspace U of V is 

Ut :={reEV: (2,y) =0,Vy € U}. 

An element « € V has been normalized if ||a|| = 1. 

Open and Closed Sets 

A set O of real numbers is called open if for each x € O there exists a 6 > 0 such that 

all y satisfying |a — y| < 6 are also in O. 

A set F is called closed if the complement of F' is open. 

Operators 

Given a linear operator T : V + W, the adjoint operator T* : W — V is characterized 

by 

(Tz, y) = (v,T*y), cEV, ye W. 

le
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The kernel or null space for T is 

Null(T) := {ce €V: Tx = 0} 

The range for T is 

Range(T) := {Tr: « € V}. 

It is important to note that Null(7)=Range(T*)+. 

T is surjective or onto if T(V) = W. T is called injective or one-to-one when Tf = Tg 

if and only if f = g. An operator that is both injective and surjective is called bijective. 

Ur(t) is called the characteristic or indicator function on the interval [—T,T] if 

Ur(t) = 
0 otherwise. 

| 1 if te[-7,7] 

An operator T is said to be bounded if there exists a constant k > 0 such that 

[ITollw <kllolly, V0 eV. 

Additionally, three specific classes of operators will be of importance later: translation, 

modulation and dilation. Their definitions are: 

Translation by a € R, T, : L?(R) — L?(R), (Taf)(x) = f(a — a); 

Modulation by b € R, #,: L?(IR) > L?(R), (Eyf)(x) = e?""* f (x); 

A a 
Dilation by a #0, D, : L?(R) + L?(R), (Daf)(x) = Le   

la| 

Inverse 

The inverse of an operator T : V —> W is defined by T-! : W — V such that for all 

v € V and w € W we have T~!(T(v)) =v and T(T~!(w)) = w. 

It is often desirable to find some kind of inverse for an operator which is not invertible 

in the strict sense. If T : V - W where W is closed, then the pseudo-inverse of T is 

the unique operator Tt : W — V satisfying 

12
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1. TTt and T'T are both self-adjoint 

2 TNT =T 

3. TITTt =Tt, 

Proposition 2.1. Tt has the property that for a system of equations Tx = y it provides 

the minimal norm solution to the system. 

For proof please see [2]. 

Basis 

Definition 2.2. A sequence {f,}{, in V is a basis if the following two conditions are 

satisfied: 

1. V = span{ fx}; 

2. if ye crf = 0 for some scalar coefficients {cy}M,, then ch = 0 for all k = 

WD rerety the 

Condition 2 above is called linear independence. 

The definition of a basis gives us necessary and sufficient conditions such that every 

f €V has a unique representation in terms of the basis elements. That is, there exist 

unique scalar coefficients {c,})“, such that 

M 

f=Voevfe (2.1) 
k=l 

Additionally, if {f,}{4, is an orthonormal basis, i.e., a basis for which 

1 if k=j 
(fies fi) = Sk, = | 

Of Rey 

then the coefficients {c,}/“, can be obtained by taking the inner product of f in (2.1) 

with an arbitrary f;: 

(Ei) = (Sass) = ye Ca fis 5) = 65 

13
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so. 
M 

f= AAS (2.2) 
kei 

2.2 Frames 

Of particular interest in this thesis, will be a sequence {f,}!4, which is not linearly 

independent, i.e. where property 2 for a basis is not satisfied. Such a set is no longer 

a basis but instead a frame. 

Definition 2.3. A countable family of elements {fx}ker in V is a frame for V if there 

exist constants A,B > 0 such that 

AILF? < SO AP < BIINIP.V F € V. (2.3) 
kel 

The numbers A and B are called frame bounds. One should note that these bounds 

are not unique. The optimal lower frame bound is the supremum over all lower frame 

bounds, and the optimal upper frame bound is the infimum over all upper frame bounds. 

The frame is normalized if || f,|| =1,V k € I. 

For the purposes of practicality and applicability we will consider only finitely many 

elements { f,}{,,M € IN. With this restriction, the Cauchy-Schwarz’ inequality shows 

that 

SK fife s Soilalr IlfIP. VF € V, 
el 

i.e. the upper frame condition is automatically satisfied with the upper bound )>(“, || fel|?- 

In order for the lower condition in 2.3 to be satisfied, it is necessary that span{ fi, }M, = 

V. 

Theorem 2.4. Let {f,}!4, be a sequence inV. Then {fx}ML, is a frame for span{ f,}i2,. 

For proof we refer to [2]. 

Corollary 2.5. A family of elements{ f,}{_, in V is a frame for V if and only if 

V = span{ fx} i). 

14
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By this corollary, we see that every basis is a frame, but the converse is not neces- 

sarily true. That is, the elements of a frame are not necessarily linearly independent. 

Every frame in a finite-dimensional space contains a subfamily which is a basis for the 

same subspace. If {f,}{4, forms a frame but not a basis, we will refer to it as over- 

complete, redundant or oversampled. These redundant representations are of central 

interest here for reasons we will see later. 

Consider now a vector space V equipped with a frame { f,}#4, and define the linear 

mapping 
M 

THOM Oy, Tio} = DD cee. 
k=l 

T is usually called the pre-frame operator. The adjoint operator is given by 

THY VOM oT th tren 

and is sometimes called the analysis operator. By composing T with its adjoint T* we 

obtain the frame operator: 

M 

S:V3V, Sf=TT*f => {f, fe)fe- 
k=1 

Lemma 2.6. Let {f,}M, be a frame for V with frame operator S. S is invertible and 

self-adjoint. 

For proof please see [2]. 

Note that in terms of the frame operator, 

M 

(SAA = MAA, fe Vv. (2.4) 
k=1 

Theorem 2.7. If {f,}{4, is a frame for V with frame operator S then every f € V 

can be represented as 
M 

f= DOU S fe) fe (2.5) 
k=l 

Proof: Let {f,}L, be a frame for V with frame operator S. Then 

f = ss"f 

15
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= Trsf 
M 

SOS, fa) fe 
k=l 
M 

(f, 57" fr) fe since S (and hence S~') is self-adjoint. O 
k=l 

{I 

Theorem 2.8. If f € V has the representation f = Do crf for some scalar coeffi- 

cients {cx }{4, where {fx}ML, is a frame for V with frame operator S , then 

M M M 

Sle? = TIS AAP + Do lee — (STAD (2.6) 
k=1 k=l k=l 

For proof we refer to [2]. 

The consequence of this result will be of central importance to us as we progress, 

so we will state it in the following Corollary: 

Corollary 2.9. Of all possible representations satisfying f = Some crf, the set of 

coefficients of minimal 2-norm are 

ce = (f, 5" fe). (2.7) 

The set {(f,S~'f,)}M@, is generally called the set of frame coefficients. Note that 

because S: V > V, is bijective, the sequence {g,}#_, = {S-!f, }44, is also a frame; it 

is called the canonical dual of {fx}, [2]. 

Theorem 2.10. Let {f,}£, be a frame for C", with pre-frame operator T and frame 

operator S. Then 

T'f = {((f, 5" fa) Ho VF € ©”. (2.8) 

Proof: Let f € C”. Expressed in terms of the pre-frame operator T’, the equation 

f = DM cefe means that T{c,}#4, = f. The result now follows from Corollary 2.9 

and Proposition 2.1. 

Computationally, the operator in (2.8) means that 

a esis (Tse) 

16
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a formula that is known to hold generally for the pseudo-inverse of an arbitrary sur- 

jective operator T. 

Definition 2.11. A frame is said to be tight if we can choose A = B such that 

M 

De fA)? = Alls, VF eV (2.9) 
k=1 

where A is called the frame bound. 

This definition together with Theorem 2.4 leads directly to the following: 

Corollary 2.12. If {f,}{4, is a tight frame for V with frame bound A, then S = AI 

(where I is the identity operator on V), and 

M 

£=4 Ul, WPEV (2.10) 
k=1 

This result gives us the fact that when {f,}M, is a tight frame, the minimum-norm 

coefficients satisfying f = ye 1 kf, ave defined by 

c= GU fi). (2.1) 
Furthermore, tight frames can lead us back to the idea of an orthonormal basis. 

Proposition 2.13. If {f,}4, is a tight frame for V with frame bound A = 1 and 

\|fel| =1 for all k € {1,2,...,M}, then {fx}42, forms an orthonormal basis for V. 

For proof please refer to [4]. 

Some comments: 

We now discuss how overcomplete frames can be useful in signal transmission. If we 

wish to transmit a signal f, all we need to do is transmit the frame coefficients {c,}4, 

to the intended receiver which he/she may use to reconstruct the signal, provided that 

the receiver has knowledge of the frame functions { f,}/“,. It is important to note that 

in the case where {f,}/, forms a basis, the elements f, are linearly independent, and 

hence the representation 
M 

f= Dat (2.12) 
k=l 

17
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is unique and is exactly that which was described in (2.5). If the frame {f,}//, is not 

a basis, i.e. the elements f, are not linearly independent, and hence the set of scalar 

coefficients {c,}/, satisfying (2.12) is not unique, the representation given in (2.5) is 

only one of the many possibilities. 

Let us now consider the case where the frame elements are not linearly independent 

(ie overcomplete or redundant). The redundancy inherent in a set {f,}/, which is 

not linearly independent implies that there exist non-zero sequences {cj,}, such that 

M 

SS Cf, =0 (2.13) 

k=1 

(ie. T{c,}2, = 0). It is useful to note that if we take the inner product of both sides 

of (2.13) by an arbitrary frame element f; we get 

M M 

(Seius) = So alfehs) =0. 
k=1 k=1 

This can also be written as 

Gd =0 (2.14) 

where the matrix G is defined elementwise by 

mn = (fry fm) (2.15) 

Therefore, any vector ¢ € Null(G) satisfies the following: 

M M 
f=, Sh fiet Doth. (2.16) 

k=1 k=1 

This is exactly what we will use in Chapter 4 to devise a method of sending information 

covertly. 

Now that we have the basics down, we will dive right into some specific examples of 

frames in Chapter 3. Three different frame representations will be explored. We will 

then proceed to the proposed encoding/decoding system in Chapter 4 and apply those 

methods given in Chapter 5-7. 

18



Chapter 3 

Examples of Frames 

In this chapter we begin to look at some different ways of representing signals by using 

redundant representations (frames). We will explore three types of these common 

frame expansions used in signal analysis: Fourier, Gabor, and Mexican hat wavelets. 

These three examples are meant to demonstrate how the method of transmitting a 

hidden code along with a predetermined signal can be accomplished with varied signal 

representations. 

3.1 The Fourier Case 

Fourier analysis attempts to break down a signal into constituent sinusoids of different 

frequencies. So one may think of Fourier analysis as a frequency-based mathematical 

technique for breaking down a signal. We will pay particular attention to the Fourier 

methods because they provide a good foundation to explain our novel way of transmit- 

ting a hidden code along with a signal. 

We start by the standard use of complex exponentials as a basis for the space of 

periodic functions, then naturally extend it to an overcomplete representation. 

Theorem 3.1. The set {Q,Ur}kez with y, defined by 

kext 
er al- yr (t) = 

forms an orthonormal basis for L?[—T,T]. 

19
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For a proof of this theorem the reader is referred to [12]. 

Hence any f € L?[—T,T] has the representation 

f= » ChPR 
n=-0o 

where 

Pop ee 
Ce = (f, 0%) = oa | fe dt. (3.1) 

3.1.1 Oversampled Fourier 

Now to bring in the redundancy required for our method of hiding information, we 

consider the re-scaling operation: t + at, with a € R(0, 1]. If the restriction t € [-T,T] 

is maintained, the exponentials {et*#* }oo, are not linearly independent. Furthermore, 

aket 
the functions ya, = Se"? no longer form a basis but instead a tight frame with oT B 

frame-bound A = 1 [8]. 

Theorem 3.2. For a positive real number a < 1, the set {p,(at)Ur(t)}rez defined by 

aknt 

et 
  

pr(at) = Par(t) = al
s 

forms a tight frame with frame-bound A = 1 for the space of time-limited functions 

such that f(t) =0 for |t| > T. 

Proof: Let f € L?(R) such that f(t) =0 for |t| > T. We must show that 

D> Mf, Ga Ur)? = IFIP. 
n=—00 

By extension of Theorem 3.1, the functions {~q,},¢z constitute an orthonormal basis 

for L?[—£, £], so we have 

FO = YS cuvar(t) 
k=-00 

with 

ce = (f, Pa) 

and then from Parseval’s identity 

IFIP? = Do leel?. 
k=-00 

20
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Now because f(t) = 0 for |t| > T, f(t) = f(t) Ur(t) and hence 

  

oe = . 1 Pak) 
i aket = fos F at 

v2T J_r/a 

= fe f (te dt fora <1 
=i 

= (f, par Ur). 

Thus we finally have 

DY lee? = D0 MF, eae Ur). 
k=-00 k=—00 

IFIP? I 

Notice that ||axUr|| = a so we will only fall under the jurisdiction of Proposition 2.13 

(and hence have an orthonormal basis) when a = 1. 

Consequently we have 

f(t) = So ce gar(t) Ur(t) 

  

where 

  
T 

ea oa is (the dt 

For practical reasons we will use a finite approximation of (3.2) 

aket 
ey cee’ T Ur(t) 

21 
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Figure 3.1: Three Fourier Expansion Functions 

  

3.1.2 Using the FFT computational algorithm 

The aforementioned calculations can also be computed by using the highly efficient 

FFT and IFFT algorithms. We will treat these methods roughly for the purpose of 

demonstrating the applicability for our method of transmitting hidden information. 

For a more complete treatment of the methods, uses and advantages of the FFT please 

see [1] and [10]. 

The FFT algorithm is defined by the discrete Fourier transform 

M 
X(k) = So 2(n) exp [Pe 8] , for k € {1,..., M}. (3.5) 

n=1 

The inverse DFT (computed by IFFT) is given by 

M 
= WX Wee eee) , for n€ {1,..., M}. 

k=l 

  

x( 

That is, the number of points at which our signal is evaluated is necessarily equal to 

the number of coefficients that we will use to estimate the signal. To simulate the 

oversampling then, we will ‘pad’ the signal with zeros. Let us see an example of how 

this is done. 

First, we translate horizontally such that we have 

T 
a ef sje Fat 

2T 

= vf f(t— Te at 
Vv 0 

a 2T 

= AS eit [F(t — Tle dt 
Vv 0 

    

  

22 
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which we can estimate by the Riemann sum where f is evaluated at N points 

oe Va etn) sal (een) = Tet A 

where A = a. Now we find 

V2Ta sake a 20 _y2rak(n=1 
ae © Vi (He-v-7)¢ x. 

Now if we are considering M coefficients, then by setting N = aM and f (4(n -1)- T) = 

0 for n > N we find that 

ce = xt ony (3 (ai r) ee (3.6) 

Note that except by the constant and a phase factor this is equivalent to (3.5). 

  

So, if we consider the signal f to be transmitted represented by an N-dimensional 

data vector and we desire an oversampling parameter a € (0,1) then we will need to 

add Mina) zeros to the end of our vector f to achieve the desired number of coefficients 

M=%, a 

3.2 Gabor Frames 

Another common example of a frame expansion is that of Gabor frames. 

Definition 3.3. A Gabor frame is a system {9mn}mnez defined by 

Ymn(x) = 2" g(x — nb) a,beE Rt, g € L?(R) (3.7) 

that also satisfies the frame condition (2.3). 

Gabor frames are sometimes also called Weyl-Heisenberg frames [4]. 

Basically, a Gabor frame is a series of elementary functions, which are constructed 

from a single building block by translation and modulation. This type of representation 

has a relative strength over the Fourier expansions discussed previously because it yields 

a method of frequency analysis that, unlike Fourier, is local in time [4] [5] [10]. Two 

23
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particular choices for g for which the system {9mn}m,nez can produce an orthogonal 

basis are [12] 

1 03 <1, 

  

g(x) = (3.8) 
0 otherwise 

and 

sin 72 
D2) ee (3.9) 

Not all values of a and 6 in (3.7) will yield a frame, but we may classify these 

systems according to the corresponding sampling density of the time-frequency lattice 

[4] and [6]: 

1. oversampling - ab < 1: Frames with excellent time-frequency localisation exist 

(a particular example are frames with Gaussian g and appropriate oversampling 

rate). 

Be)
 

critical sampling - ab = 1: Frames and orthonormal bases are possible, but 

without good time-frequency localization. 

3. undersampling - ab > 1: In this case any Gabor family will be incomplete, in the 

sense that the span is a proper subspace of L?(R). 

  

    
     

Figure 3.2: Three Gabor Func- Figure 3.3: Three Gabor Func- 
tions with g defined in (3.8) tions with g defined in (3.9) 
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3.3 Mexican Hat Wavelets 

Wavelets are another way to create a frame to represent a signal. Wavelet analysis 

replaces the complex exponential building blocks of Fourier analysis with more flexible 

units, the wavelet functions [4], [5], [9]. 

Definition 3.4. A wavelet frame is a set of functions {tmn}mnez for L?(IR) consisting 

of functions of the form 

Umn(z) = a-™/?(a-™x — nb) a,b € Rt 

where wp is a unit vector in L?(IR) that also satisfies the frame condition (2.3). 

The function w that generates the basis is called a wavelet. A sample wavelet is the 

Mexican hat function, the second derivative of the Gaussian e-®’/2. if we normalise it 

so that ||7|| =1, then 

2A =a)? 2, vee) = 
Although we will choose to restrict our later applications to the Mexican hat 

wavelet, two other well-known choices for ~ for which the system {tmn}mnez COn- 

stitutes an orthonormal basis for L?(IR) are 

1 

w(z)=4 -1 

0 otherwise 

o IA
 gL< 

B< 

NI
H 

’ 

, wi
e 

IA
 

known as the Haar wavelet and 

sin 27x — sinra 
¥(z) Tx 

called the Shannon wavelet [12]. 

Wavelet expansions are especially useful when modelling a function with disconti- 

nuities or sharp spikes. For more details on wavelets and their uses please see [4], [7], 

[1], ete.. 

With these three frame examples in hand (Fourier, Gabor and Mexican hat wavelet) 
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Figure 3.4: Three Mexican Hat Wavelets 

  

we proceed to the real purpose of this thesis: to propose an encoding/decoding system 

capable of sending a hidden code while utilising the structure already in existence for 

sending a signal. 
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Chapter 4 

Proposed Encoding/Decoding 

System 

Let us now assume that we have an overcomplete frame {f,}, for the space of time- 

limited functions L?[-T,T]. As previously explained in Chapter 2, any f € L*[-T,T] 

can be written as f = M4, ce fe with cy = (f,S7! fx) and furthermore, because of the 

overcompleteness, 

M M M 

f= och + >the = Do othe (4.1) 
k=l k=1 k=1 

with cf = cy +c, where ¢ € Null(G) where G is defined elementwise by 

mn = (frs fm) (4.2) 

for n,m € {1,...,M}. That is, for any possible vector d € Null(G), all coefficients c’ = 

é+¢ reproduce an identical signal as coefficients @. This provides us with the foundation 

to construct an encoding/decoding scheme for transmitting hidden information. The 

vectors ¢, @ and c! will hereafter be refereed to as signal coefficients, hidden code 

coefficients and transmitted coefficients respectively. 
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&€= {(f,S-'f,) }44, minimum norm coefficients 

d € Null(G) hidden code coefficients 

ad=é+e transmitted coefficients 

The key idea that we present here is that, as long as the vector é is in the Null 

space of G, that vector’s presence and attributes would not be obvious to an unintended 

receiver. So, we are transmitting two pieces of information - the signal and the hidden 

vector @. It is a fairly easy and straightforward process to recover the signal from 

the transmitted coefficients ¢’ for a given frame expansion. However, an uninformed 

person might assume that the signal is the entire body of transmitted information, 

when it is not. 

Once we agree that the presence of, and hence the information contained in, the 

vector @ is not obvious to an uninformed party, we now set up a way in which to use the 

vector @ to transmit the desired hidden information. We explore a very simple method 

whereby our hidden information is a sequence of real numbers, each used as a coefficient 

on eigenvectors of G that are also in Null(G@). This method was chosen because of its 

simplicity since our purpose here is to show only that such a way of disseminating 

information is possible, although many other ways in which to code information into 

the vector @ can be imagined which may have additional desirable properties. A few 

of these will be mentioned later. 

4.1 The Encoding-Decoding System 

Let us assume that, in addition to transmitting an arbitrary signal f through an 

overcomplete frame expansion { f,}2, and we also wish to transmit a hidden code Rh 

consisting of K numbers. Consider that G is an (M) x (M) square matrix of elements 

as given in (4.2). We select K eigenvectors of G corresponding to zero eigenvalue, 

which are orthonormal, and construct a vector @ € Null(G) as follows: 

d=Uh (4.3) 
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where U is a M x K matrix, the columns of which are the K selected eigenvectors. 

Encoding process 

Consider that the signal f to be transmitted is discretised as an N-dimensional data 

vector and proceed as follows: 

¢ Compute the minimum 2-norm signal coefficients ¢ through (2.11) if {f,}}4, is a 

tight frame or as in (2.8) if not. 

¢ Compute the hidden code coefficients @ as prescribed in (4.3). 

Transmit the coefficients ec’ = @+ ¢ to receiver. 

Decoding Process 

© Use the received vector c for recovering the signal f as in (4.1). 

¢ Use the signal f and knowledge of the frame {f,}{_, to compute the signal 

coefficients @ as in (2.11) or (2.8). 

¢ Compute vector @ = c! — @ 

e Recover the hidden vector h by noticing that, since the columns of matrix U in 

(4.3) are orthonormal vectors, we have 

h=U'd 

where U* indicates the transpose conjugate of matrix U. 

In practice, the vector é is generally scaled so as to make desired ratios with the 

minimum norm coefficients ¢ and the noise (as will be discussed later). As such, we 

choose to transmit ¢’ = @+ sc! where s is some scalar. 

Summing up, what the receiver needs to know is: 

1. The transmitted coefficients c’. 
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2. The frame expansion { f,}#4, used. 

3. The scaling value s used to desirably size the hidden code coefficients ¢. 

4.2 Noise and the Quality of the Data Recovery 

It provides a far more interesting a practical investigation if we also include a discussion 

on the effect of noise on the recovery of a hidden code in the prescribed system. As such, 

we will attempt to explore the interplay between redundancy and its effect on the noise 

apparent in signal reconstruction and the recovery of a hidden code. Much literature 

is available on how oversampling can be used to reduce noise when transmitting an 

arbitrary signal. For examples please see [5], [7], [8]. 

As in any system, there is a tradeoff between the amount of noise that is present 

and the quality of the data recovery. In our system, consider that we transmit the 

coefficients cy through a noisy channel such that the receiver obtains cj + € where 

E(e) = 0 and Var(e) = 02. Remembering, of course, that c’ = @+ @ where é contains 

the information necessary to reconstruct the signal and ¢ contains the information 

necessary to reconstruct the hidden code, we will need the noise € to be small with 

respect to both @ and ¢. 

We define the signal-to-noise ratio as 

lla? 
dim(é) 

where dim(@) is the size of the vector & The signal-to-noise ratio will give us some 

and Vy = 0? (4.4)   S/N = 10log (#) where Vs = 
Vy 

measure of how well we will be able to reconstruct the signal. We will limit our 

experiments to two levels of the signal-to-noise ratio - 10 and 20 dB. An illustration of 

what a signal recovery might look like when S/N = 10 dB is given in Figure 4.1. This 

signal recovery was accomplished through a Fourier expansion as in 3.2 where N = 40 

(and M = N/a) in each case for a = 0.05 and a = 0.5. The recovered signals are shown 

in Figure 4.1. We take particular note that when a = 0.5 we (Figure 4.1c) we recover 

a noisy signal, when we increase redundancy ( a — 0 as in Figure 4.1b) less noise is 

apparent in the reconstruction [8] [7]. From this point on, we will consider the variance 

30



CHAPTER 4. PROPOSED ENCODING/DECODING SYSTEM 

of the noise 0? to be fixed with respect to the signal coefficients at a level equivalent 

to S/N = 10 or 20 dB. In the case where S/N = 20 dB we have less noise with respect 

to the coefficients ¢ and even a non-redundant representation only has a small amount. 

of visible noise in the reconstruction. 

Figure 4.1: Illustration of Signal Reconstruction with S/N=10 dB 
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Figures 4.la-4.1c, from top to bottom. 4.la depicts the signal, 4.1b the signal re- 

construction with S/N=10 dB and a = 0.05, and 4.1c the signal reconstruction with 

S/N=10 dB and a = 0.5. 

Additionally, we need to be concerned with the size of the hidden coefficients ¢ 

with respect to the noise. We define this relationship by 

max(c) 

max(c’)” 
  p= (4.5) 

Consider the illustrations in Figure 4.2 of the coefficient systems ¢, 7, and c” (from top 

to bottom respectively) are shown for p = 10 on the column on the left and p = 0.1 for 

the column on the right. As can be seen in Figure 4.2, by defining p to be either small 

or large we will be able to dictate whether the transmitted coefficients look more like 

the minimum norm coefficients or the hidden code coefficients. We will take advantage 

of this in the following chapter to obtain the desired accuracy in the recovery of the 

hidden code. 
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Figure 4.2: Coefficient systems resulting from p = 10 and p= 0.1 
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Figures 4.2a-4.2f, from top to bottom, left to right. 4.2a-c in the first column depicts 

the signal coefficients, hidden coefficients and transmitted coefficients respectively for 

the case where p = 10 while 4.2d-f in the second column show the signal coefficients, 

hidden coefficients and transmitted coefficients respectively for the case where p = 0.1. 
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4.3 Problem Setup 

This proposed method allows for the transmission of two things: 1) coefficients which 

are used to recover an arbitrary signal, and 2) a vector of numbers that are invisible 

to anyone wishing only to recover the signal. We choose to use two signals for our 

illustrations (shown in Figures 4.3 and 4.4). Note that the signal shown in Figure 4.3 

has a relatively low frequency and is not smooth, whereas Signal 2 shown in Figure 4.4 

has higher frequency and is smooth. 

  

      
  

Figure 4.3: Sample Signal 1 Figure 4.4: Sample Signal 2 

The same code of real numbers will be used in all experiments. There is a limitation 

of how long such a code could be in this system - and that limit is exactly equal to 

the number of eigenvectors in Null(G) with G defined uniquely for the specific frame 

{fx }{4, elementwise by 

Gmn = (fas fm): (4.6) 

That is, high redundancy in the frame will allow a greater number of digits to be sent 

in this code. 
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Chapter 5 

Application: Oversampled Fourier 

Expansion 

Consider that we wish to transmit the signals shown in Figure 4.3 and Figure 4.4 and 

the hidden code h in Table 4.1 through the overcomplete Fourier expansion previously 

discussed in Section 3.1 given by 

  

    

Vn OF von SS ce’? fort €[-T,T], a€ (0,1) (5.1) 
k=—-M 

with 

a Es aknt ae ef 10 et at, (5.2) 

Let us assume that for the case where a = 1, the number of coefficients needed to 

represent the signal f is 2M +1=2N-+1. Then we know that fora <1, M = %. a 

Therefore, our system will be completely described by N, a < 1, the signal-noise ratio 

S/N defined in (4.4), and p defined in (4.5). 

5.1 Recovery of Signal and Code without Noise 

We start with the transmission of the signal and code in a system whereby a=ét+d 

is transmitted to the receiver without additional noise. 
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Signal 1: (No noise, p = 100, N = 40, a= 0.5) 

We may achieve a very good recovery of the signal with the signal coefficients € 

plotted in Figure 5.la. The hidden code coefficients ¢ are plotted in Figure 5.1b. The 

transmitted coefficients c’ = @+ ¢ are those of Figure 5.1c. In the absence of noise 

we can scale the @ to be arbitrarily small. The value p = 100 ensures that the hidden 

coefficients are sufficiently small relative to the signal coefficients (i.e. c = @+¢ ~ @). 

This would be useful if we wish to conceal the presence of the coefficients d. 

As the theory has suggested, our decoding system is capable of reconstructing 

the hidden code up to the precision of the numerical calculations, although for space 

limitation reasons we have shown only 5 digits (see Table 5.1). 

Figure 5.1: Fourier Coefficients for Signal 1 without Noise 
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Figures 5.1la-5.1c, from top to bottom. 5.la depicts the signal coefficients, 5.1b the 

hidden code coefficients scaled to be small with respect to the signal coefficients, and 

5.1c the transmitted coefficients (i.e. the sum of the previous two figures). 
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Table 5.1: Recovered Code without Noise 

code | no noise 
p= 100 = 

3.1492 | 3.1492 
2A2T | 2.1271: 

6.1312 | 5.1312 

1.2835 | 1.2835 
7.7976 | 7.7976 
3.7160 | 3.7160 

8.4139 | 8.4139 
1.9791 | 1.9791 
0.5863 | 0.5863 
5.8321 | 5.8321 
8.1032 | 8.1032 
6.4908 | 6.4908   

Signal 2: (No noise, p = 100, N = 80, a= 0.5) 

In this experimental setup, we achieve a very good recovery of the original signal 

with the signal coefficients @ plotted in Figure 5.2a. The hidden code coefficients @ are 

plotted in Figure 5.2b and the transmitted coefficients c’ = @+¢ are those of Figure 

5.2c. Once again, the code is recovered with accuracy limited only by the precision of 

the calculations involved (table not given). 

Two primary observations that can be made with regard to the noiseless Fourier 

case: 

1. Consistent with the theory previously discussed, the vector c does indeed pro- 

duce an identical signal to the coefficients ¢ on the interval [—T, T] (we will discuss 

what happens outside that interval in Section 5.3.3). 

2. The code h can be recovered from the prescribed system with accuracy limited 

only by the precision of the calculations involved. 
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Figure 5.2: Fourier Coefficients for Signal 2 without Noise 
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Figures 5.2a-5.2c, from top to bottom. 5.2a depicts the signal coefficients, 5.2b the 

hidden code coefficients scaled to be small with respect to the signal coefficients, and 

5.2c the transmitted coefficients (i.e. the sum of the previous two figures). 

5.2 Recovery of Signal and Code with Noise 

Now let us illustrate the effect of adding zero mean random Gaussian noise to the 

transmitted coefficients. As explained in Section 4.2, the quality of the recovery of our 

signal and hidden code depends on the variance of the noise (o7) relative to the size of 

the signal and hidden code coefficients respectively. 

Signal 1: (S/N = 20 dB, p € {0.1,1, 10}, N = 40, a=0.5) 

As previously discussed, there is a relationship between the signal-to-noise ratio, 

redundancy and quality of signal recovery. For most examples considered in this thesis, 

a signal-to-noise ratio of 20 dB has been chosen because it will allow for a signal recoy- 

ery with a relatively small amount of noise distortion even for relatively large values of 

a, like the a = 0.5 used here. Once we are able to recover the signal, the focus shifts 

to the recovery of the code. We will consider three different values of p as defined in 

(4.5): 0.1, 1, and 10. 

These three cases appear dramatically different in terms of the transmitted coef- 
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ficients, but will by definition, produce identical signal reconstructions. Let us recall 

that @ is by definition in Null(G), so these coefficients cannot affect the signal in any 

way. A plot of the three sets of transmitted coefficients is shown in Figure 5.3. 

Note that in the case when p = 0.1 the transmitted coefficients are dominated by 

the size of the hidden coefficients (ie. c’ = +c ~ @) which makes them ‘visible’ 

during the transmission, this has no effect whatsoever on the signal reconstruction. 

The same can be said, although to a slightly lesser degree, of the case where p = 1. 

Hence, in these cases the hidden code coefficients @ actually play a double role. On one 

hand they cover the coefficients € conveying the information for recovering the signal 

f and on the other hand they contain the information necessary to recover the hidden 

code. The recovered code for all three cases is shown in Table 5.2. 

Figure 5.3: Transmitted Coefficients for Signal 1 for Fourier Frame with Noise 
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Figures 5.3a-5.3c, from top to bottom. 5.3a depicts the transmitted coefficients for 

p = 0.1, 5.3b shows the transmitted coefficients for p = 1 and 5.3c the transmitted 

coefficients for p = 10. 
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Table 5.2: Fourier - Recovered Code from Signal 1 with Noise 

codel|ip—=C1 p=) fo—10 
3.1492 | 3.1501 3.1581 3.2383 

2.1271 | 2.1272 2.1285 2.1412 

5.1312 | 5.1319 5.1380 5.1995 

1.2835 | 1.2832 1.2800 1.2490 

7.7976 | 7.7965 7.7867 7.6887 
3.7160 | 3.7169 3.7253 3.8088 
8.4139 | 8.4142 8.4169 8.4438 
1.9791 | 1.9797 1.9850 2.0382 
0.5863 | 0.5862 0.5854 0.5776 
5.8321 | 5.8329 5.8403 5.9142 
8.1032 | 8.1029 8.1006 8.0777 
6.4908 | 6.4906 6.4891 6.4737   

Signal 2: (S/N = 20 dB, p € {0.1,1,10}, N = 80, a=0.5) 

In reference to Signal 2, we find transmitted coefficients as shown in Figure 5.4 for 

the same three values of p and recovered code as shown in Table 5.3. 

From these results we make the following observations: 

1. The proposed encoding/decoding system is resilient in the face of a small amount 

of Gaussian noise. The system maintains its ability to recover the hidden code 

embedded in both of the signals used. 

2. By changing the value of p (thereby scaling d appropriately) we have some level 

of control over accuracy of the recovered code. 
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Figure 5.4: Transmitted Coefficients for Signal 2 for Fourier Frame with Noise 
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Figures 5.4a-5.4c, from top to bottom. 5.4a depicts the transmitted coefficients for 

p = 0.1, 5.4b shows the transmitted coefficients for p = 1 and 5.4c the transmitted 

coefficients for p = 10. 

Table 5.3: Fourier - Recovered Code from Signal 2 with Noise 

code |p=0.1 p=1 p=10 

3.1492 | 3.1504 3.1610 3.2668 

2.1271 | 2.1326 2.1818 2.6745 
5.1312 | 5.1331 5.1498 5.3175 

1.2835 | 1.2846 1.2943 1.3913 
7.7976 | 7.7994 7.8153 7.9741 
3.7160 | 3.7154 3.7098 3.6540 

8.4139 | 8.4100 8.3744 8.0190 
1.9791 | 1.9755 1.9431 1.6194 

0.5863 | 0.5860 0.5837 0.5607 
5.8321 | 5.8351 5.8622 6.1335 
8.1032 | 8.1010 8.0811 7.8821 
6.4908 | 6.4901 6.4834 6.4165   
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5.3 Importance of Oversampling Parameter a 

5.3.1 Recovery of Code Only 

It is interesting to note that it is not necessary to have an accurate recovery of the 

signal to recover the hidden code through this system. 

Signal 1: (S/N = 20 dB, p=1, N € {2,40}, a= 0.2) 

Recall that the previous signal reconstruction used N = 40 and we obtained a very 

good signal recovery. Now assume that we have no interest in the signal and hence 

choose to use only N = 2. Although if we oversample with a = 0.2, M = N/a = 10. If 

we once again use a small amount of noise at the level of S/N = 20 dB, the admittedly 

horrible recovery of the signal will look like that shown in Figure 5.5. 

  

Figure 5.5: Poor Signal Recovery for Fourier Frame 

os 7) 

      

Yet even with this woefully inadequate recovery of the signal, the recovery of the code 

through this system is remarkably good. If we compare the results with the code recov- 

ery for a system with N = 40 (and hence 2(N/a) + 1 = 401 total terms with a = 0.2) 

we see in Table 5.4 that the less accurate signal reconstruction does not affect the code 

recovery greatly. 
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Table 5.4: Recovered Code - Poor Signal Recovery 

code |/N=2 iN =40 

3.1492 | 3.1296 3.1594 

2.1271 | 2.1673 2.1315 

5.1312 | 5.1461 5.1245 
1.2835 | 1.3414 1.3096 
7.7976 | 7.8149 7.8045 
3.7160 | 3.7059 3.7319 

8.4139 | 8.3966 8.4019 

1.9791 | 2.0146 1.9904 

0.5863 | 0.6040 0.5890 
5.8321 | 5.7937 5.8308 
8.1032 | 8.1281 8.1142 

6.4908 | 6.5392 6.4983   
5.3.2 Increased Redundancy vs. Code Recovery 

As discussed in Section 4.2 as the redundancy increases the noise apparent in the signal 

reconstruction decreases. This, however is not the case for the hidden code. For the 

fixed N = 40, and p = 1 and S/N = 10 dB we compare the code recovery for two 

different values of a in Table 5.5 (recall that the signal recovery for these two cases 

was shown in Figure 4.1). Increased redundancy improves the signal reconstruction 

noticeably but has made minimal impact to the quality of reconstruction of the hidden 

code. 

Therefore we make the following observations for a system as a > 0: 

e K (the size of the hidden code h) may increase. This is because the upper limit 

on the number of numbers that may be sent in this coding system is exactly 

the size of Null(G). As redundancy increases the number of vectors in Null(G) 

increases as well. . 

e The signal reconstruction improves, but as shown in Section 5.3.1, there is not a 

tight relationship between the quality of signal reconstruction and the quality of 

the code recovery. The quality of code reconstruction is largely unchanged with 

increased redundancy. 
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Table 5.5: Recovered Code - Two different values of a 
code |a=0.05 a=0.5 

3.1492 | 3.1265 3.0661 
2.1271 | 2.1319 2.1073 

5.1312 | 5.1033 5.1013 
1.2835 | 1.2928 1.2476 
7.7976 | 7.7589 7.8460 
3.7160 | 3.7377 3.6617 
8.4139 | 8.3576 8.3950 
1.9791 | 2.0156 1.9189 

0.5863 | 0.5797 0.5765 
5.8321 | 5.8048 5.8274 

8.1032 | 8.0923 8.1097 

6.4908 | 6.4298 6.4555   
5.3.3 Recovery of Signal Only - IFFT 

As discussed in Section 4.1, the receiver needs to know the particular frame expansion 

used in order to recover the signal and the code. In the case of an oversampled Fourier 

expansion, this amounts to knowing the value of a € (0,1]. In all of the previous 

applications it was assumed that the receiver knows the exact value for the oversampling 

parameter a, although for some signals it is possible to estimate the value of a by 

extending the signal reconstruction outside the interval [—T, T]. 

Note how the expansion in (5.1) was specifically limited to the interval [—T7, 7]. 

That is, of course, because the functions e“F* are periodic with period 2T/a. Further 

recall the discussion in Section 3.1.2 regarding how the frame expansion assumes that 

the signal f is identically zero outside the interval [-T,T]. However, if one takes 

advantage of the periodicity of the complex exponentials e'“**, an astute observer can 

approximate the value of a from the relative number of zeros that appear on either side 

of the signal. Let us now illustrate exactly how this might work. 

Consider that we transmit the coefficients representing Signal 1 given in 5.1. It is not 

necessary to know the value of a to recover the signal. If we simply perform an IFFT 

on the signal ¢ and transmitted coefficients a, we are able to recover the signal shown 

in Figure 5.6. Due to the oversampling, the desired signal is only a portion of what we 
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reconstruct. In the reconstruction from @ seen in Figure 5.6a we see zeros on either side 

of our signal and in the reconstruction from c’ shown in Figure 5.6b we see something 

else shows up in the region ‘outside’ the desired signal. Either way, now a may be 

estimated from the fraction of the ‘signal’ portion of the reconstruction divided by the 

total length of the reconstruction. In our case, it can be seen that the ratio is about 

0.5. 

It is interesting to note though that the reconstruction from & = %4+¢é is not exactly 

zero outside the ‘signal region’. In fact, this equates to the hidden coefficients d being 

invisible’ to the signal reconstruction on the interval [—T,T], not for |t| € [T,T/a]. 

This might prove to be misleading to the supposed intruder who recovers the signal 

without knowing our system. He/she might suppose that this is also part of signal 

(and hence not realize the oversampling used). 

Figure 5.6: Recovery of Signal via IFFT 

  

  

  

— Signal 
‘ IFFT Reconstruction 

      
=2 AS A 05 0 0s 1 15 2 

Figures 5.6a-5.6b, from top to bottom. 5.6a depicts the actual signal reconstruction 

from IFFT(@), 5.6b signal reconstruction from IFFT(c”) 

5.3.4 Code Recovery with Estimated Value of a 

Although the value of a is not necessary to reconstruct the signal, it is necessary to 

construct the matrix G (and hence the vector @). As shown in the previous section, 
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Table 5.6: Recovered code with using estimated value of a 

code |@=045 @=049 @=05 G@=0.51 &@=0.55 
3.1492 | 2.9084 -0.3558 3.1492 -0.8148 -0.1612 
2.1271 | -0.3329 -2.4142 2.1271 0.3971 -0.9358 

5.1312 | 0.6310 1.7099 5.1312 1.3653 1.3704 

1.2835 | 4.3648 3.6917 1.2835 -2.8833 0.4765 
7.7976 | -0.2767 -1.6103 7.7976 0.9148  -2.5939 
3.7160 | -0.7192 3.5668 3.7160 2.1330 5.1632 
8.4139 | 1.9982 -2.9628 8.4139 1.6322 2.3983 

1.9791 | -2.8462 -1.4827 1.9791 1.0098 0.9996 
0.5863 | -0.8905 1.4986 0.5863 5.1530 —-3.3656 
5.8321 | 1.2973 3.3235 5.8321 -0.0694  -2.6822 
8.1032 | 2.0936 -0.3457 8.1032 2.7877 -0.2217 
6.4908 | 2.1772 0.5635 6.4908 -2.7708 —_-0.8845 

  

  

  
  

we can estimate the value of a via the IFFT (the estimate of a will be called a. In 

practice, however, it is not feasible to reconstruct the hidden code from @. That is, 

even very small values of |a — G| lead to very large errors in the recovered hidden code. 

Observe the recovery of code when the value of a = 0.5 is perturbed by a small error 

like 0.05 or 0.01 as shown in Table 5.6. In fact, we have found that in order to recover 

the code one needs to know the value of a up to machine precision (i.e. |a—a| & 10719). 

The feature that extremely small perturbations yield extremely large errors is a typical 

effect. of ill-posed problems. 
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5.4 An Additional Safeguard for the Hidden Code 

We examine the case where we add another safeguard against recovery of the hidden 

code (A containing K elements). Recall that we previously defined 

d=Uh 

where U is a (2M+1) x K matrix, the columns of which are the K selected eigenvectors. 

We may instead consider 

d =UB,h 

where B, is a K x K unitary random matrix. Note: the subindex s indicates the 

random generator used for constructing the matrix is initialized at state s. Such a 

state is needed to be known at the decoding stage. Hence, when the intended receiver 

goes to recover h they may do so by noticing that 

e For constructing the matrix U one can use all eigenvectors of the matrix G 

corresponding to eigenvalues less than a previously specified tolerance parameter. 

Matrix U is unitary, ie. U~! = U* and then we have Bh = U*d where U* 

indicates the transpose conjugate of matrix U. 

e The dimension of matrix B, can be determined from the number of non-zero com- 

ponents of vector U*¢. Thereby, state s allows the reproduction of the random 

matrix B,. Since this is also a unitary matrix, By! = B?. 

Hence the vector h is obtained as: 

h= Brute. 

Let us now see how this addition of the random matrix B, affects the recovery of the 

signal and hidden code. Consider the case where a = 0.2, N = 40, S/N = 20 dB and 

p = 1 which yields the recovered code shown in Table 5.7. The second column of Table 

5.7 shows the results when B, is the identity matrix and the third column shows the 

code recovery when B, is a randomized matrix with initialization value s. 

This method allows for an additional layer of protection for the hidden code, with 
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Table 5.7: Recovered Code with Random Matrix B, 

code | B, =I RandomB, 

3.1492 | 3.1594 3.1317 

2.1271 | 2.1315 2.1391 

5.1312 | 5.1245 5.1392 

1.2835 | 1.3096 1.2887 

7.7976 | 7.8045 7.7916 
3.7160 | 3.7319 3.7148 
8.4139 | 8.4019 8.4196 
1.9791 | 1.9904 1.9856 

0.5863 | 0.5890 0.5878 
5.8321 | 5.8308 5.8257 
8.1032 | 8.1142 8.0946 

6.4908 | 6.4983 6.4737   
at minimal cost (i.e. the initialisation value s). Accuracy in the signal and code 

reconstruction is largely unaffected by this safeguard. 

5.5 Summary of Results 

A Fourier expansion provides a natural way to take an orthonormal basis and then al- 

ter it so as to make an overcomplete frame capable of transmitting hidden information 

in a novel way. In the absence of noise, the accuracy of the recovery is only limited 

by the precision of the calculations involved. When there is a small amount of noise, 

the code may still be recovered, with precision affected primarily by the relative size of 

the hidden coefficients to that noise. The highly efficient and well-known fast Fourier 

transform may also be utilised in both sending and recovering the signal and hidden 

information as described in Section 3.1.2. 

The recovery of both the signal and code is possible with accuracy limited only by 

the size of the noise with respect the coefficients ¢ and ¢ respectively, but only the 

code is substantially hidden. The recovery of the signal is straightforward (for both 

the intended receiver and anyone else) with a simple application of an IFFT. Once the 

signal has been recovered, the value of the oversampling parameter a may be estimated, 

although not with sufficient accuracy to recover the code. In fact, accurate recovery of 
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the code requires that the value of a needs to be known exactly. 

Therefore, even though we can get a rough estimate of a from the signal recon- 

struction, the estimate can not possibly be of sufficient accuracy to recovery the code. 

Therefore, the value of a in this system will need to be predetermined instead of either 

being transmitted (with added error) or estimated from the signal reconstruction. It is 

therefore concluded that the Fourier case, because of its common use and efficient FFT 

algorithm, likely provides a very good framework for exploring such a coding system. 

48



Chapter 6 

Application: Gabor Frames 

Here we will employ the methods outlined in 3.2 for the frame expansion to represent 

the signal. As previously discussed, the frame is {9m,n}mnez defined by 

Gmn(x) = "7 o(¢ — nb) a,bE R*, g € L?(R) (6.1) 

which also satisfies the frame condition (2.3). We will consider g a Gaussian with mean 

%q and standard deviation oz. 

  

with zp = 0, og = 0.4. 

Recall that we have discussed two ways of computing the coefficients cy. 

1. For any frame {f,}{4, the coefficients c, = (f,S~!f,) may be computed via the 

pseudo-inverse of the pre-frame operator by 

Tf ={(f, Sf) Ha: (6.2) 

where the operator T was defined by 

M 

Tle}, = do efi. 
k=1 

This will be referred to the general case or the pseudo-inverse method. 
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2. In the case where {f,}/4, forms a tight frame (which we used exclusively in 

Chapter 5), we may compute the coefficients c, of the expansion f = Ey crf 

as 

a= Gh he) (63) 
where A is the frame bound. In this chapter and Chapter 7 we will only deal with 

general frames, but we will also compute the coefficients as in (6.3) and refer to 

it as a tight approximation. We choose to do this because of our preference for 

the compuational methods utilised for tight frames. We then attempt to see if 

the more straightforward computations of this estimation (which do not require 

inversion of the frame operator S) will yield an adequate representation of either 

the signal or code. 

For the computation of the pseudo-inverse we will use a tolerance of 10~’, i.e. any 

singular value less than this tolerance will be treated as zero. We will continue in 

both this chapter and Chapter 7 to compute the coefficients, signal reconstruction and 

code recovery using both the appropriate method for the general case and the tight 

approximation to compare the results. 

6.1 Recovery of Signal and Code with Noise 

Signal 1: a = 2, b = 0.25, S/N = 20 dB, p € {0.1,1, 10}, m € {0, +1 +2, +3, +4}, 

n€ {0,+1,..., +20} 

This problem setup will give us a total number of coefficients M = 369 where 208 of 

those have singular values less than our tolerance of 10-". We see in Figure 6.1 the sig- 

nal recovery is very good from the pseudo-inverse method but the tight approximation 

is inadequate. 

The associated signal and hidden code coefficients for the pseudo-inverse method are 

shown in Figure 6.2. Notice how many coefficients we are using in this case compared 

to the Fourier, and how very few coefficients are significantly close to zero in 6.2a. 

The code recovery shown in Table 6.1, however, is roughly the same as was achieved 
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Table 6.1: Gabor - Recovered code from Signal 1 

codesiip—0.1 p= p= 10 
3.1492 | 3.1478 3.1353 3.0105 
2.1271 | 2.1255 2.1107 1.9628 

5.1312 | 5.1837 5.1562 5.3816 

1.2835 | 1.2810 1.2589 1.0376 
7.7976 | 7.7956 7.7773 7.5944 
3.7160 | 3.7115 3.6712 3.2684 

8.4139 | 8.4150 8.4244 8.5189 

1.9791 | 1.9792 1.9799 1.9873 
0.5863 | 0.5892 0.6149 0.8721 

5.8321 | 5.8323 5.8339 5.8500 
8.1032 | 8.1054 8.1251 8.3227 

6.4908 | 6.4949 6.5314 6.8965   
from the oversampled Fourier frame, as can be seen in Table 5.2. 

Figure 6.1: Signal 1 Reconstruction from Gabor Frame 
  

os} 

  

  

  

  

      

Figures 6.1a-6.1c, from top to bottom. 6.1a depicts Signal 1, 6.1b the recovered signal 

through the equation through the pseudo-inverse method and 6.1c the recovered signal 

from the tight approximation 
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Figure 6.2: Gabor - Signal coefficients for Signal 1 
  

  

  

    
Figures 6.2a-6.2b, from top to bottom. Plot of modulus of the 6.2a signal coefficients 

and 6.2b hidden code coefficients in the general case. Sorted in ascending order of m 

and n respectively. 

Signal 2: a= 2, b=0.25, S/N = 20 dB, p € {0.1,1,10}, me {0,41 +2, +3, +4}, 

neé {0,+1,...,+20} 

We see in Figure 6.3 the signal recovery for both the pseudo-inverse and tight frame 

approximation. The tight approximation shown in Figure 6.3c is a little better than 

seen with the previous signal, but still not very good. We therefore conclude that this 

frame setup (which is the same as used in the analysis of Signal 1) is not substantially 

tight. 

The coefficients for the general (pseudo-inverse) case are shown in Figure 6.4 (6.4a 

shows the signal coefficients and 6.4b shows the hidden code coefficients). 

The code recovery from the general case is shown in Table 6.2 and the accuracy is 

similar to what we saw in the Fourier case (in Table 5.3). 
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Figure 6.3: Signal 2 Reconstruction from Gabor Frame 
1 

os| 
| 

-05| 

“ = 2 + ° + 2 3 4 

os} 
° 

-05| 

. = 2 A 0 t 2 3 4 Me 

  

  

  

  

  

      le = 2 = ° 1 2 3 4 

Figures 6.3a-6.3c, from top to bottom. 6.3a depicts Signal 2, 6.3b the recovered sig- 

nal through the pseudo-inverse method, and 6.3c the recovered signal from the tight 

approximation 

Figure 6.4: Gabor - Signal and Code Coefficients for Signal 2 
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Figures 6.4a-6.4b, from top to bottom. Plot of modulus of the 6.4a signal coefficients 

and 6.4b hidden code coefficients in the general case. Sorted in ascending order of m 

and n respectively. 
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Table 6.2: Gabor - Recovered Code from Signal 2 

coden| a= 0.) p= ap —10 

3.1492 | 3.1515 3.1725 3.3826 
2.1271 | 2.1294 2.1505 2.3616 
5.1312 | 5.1334 5.1534 5.3536 
1.2835 | 1.2819 1.2677 1.1252 

7.7976 | 7.7986 7.8074 7.8953 
3.7160 | 3.7191 3.7466 4.0221 
8.4139 | 8.4170 8.4452 8.7274 

1.9791 | 1.9758 1.9462 1.6500 
0.5863 | 0.5829 0.5520 0.2433 
5.8321 | 5.8298 5.8088 5.5989 
8.1032 | 8.1025 8.0961 8.0320 
6.4908 | 6.4925 6.5079 6.6620     

6.2 Other Investigations 

It is also interesting to note what happens if we extend the signal recovery outside of 

the interval [—T,T]. Recall that in the Fourier case the periodicity of the functions 

eZ ensured that the signal would repeat with period 2T/a. Because our chosen 
  

function g is a Gaussian (and hence local in time), this will not be the case here. In 

fact, outside the interval on which the signal is defined, the signal reconstruction goes 

to zero (except at the borders). 

Figure 6.5: Gabor - Signal Reconstruction Outside [—T, T] 
12,   
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6.3 Summary of Results 

The Gabor frame with function g as a Gaussian allowed for an adequate recovery of 

the signals and the code, albeit with more coefficients than in the Fourier case. Neither 

signal was well approximated by tight frame approximation. The code recovery in the 

Gabor case was similar to that achieved in the Fourier case. 

We also note that although the results were not given here, the code recovery from 

the tight approximation of this non-tight frame does produce a good recovery of the 

code, even though it does not produce an accurate recovery the signal. 
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Chapter 7 

Application: Mexican Hat Wavelets 

Recall the definition of the Mexican hat wavelet frame as {mn}m,nez for L?(R) con- 

sisting of functions of the form 

Wm,n(z) = a-™/?p(a-™a — nb) a,b € Rt 

with 

w(x) = ara —2Je"/?, 

We will consider the values of a = 2, 6 = 0.25 which was reported in [4] to be a 

frame with bounds 13.091 and 14.183. The ratio of frame bounds 14.183/13.091 ~ 1, 

so we will examine the frame signal reconstruction and signal coefficients through the 

pseudo-inverse and tight frame approximation as set up in Chapter 6. 

7.1 Recovery of Signal and Code with Noise 

Signal 1: a = 2, b = 0.25, S/N = 20 dB, p = {1,10,100}, m € {0,1,2,3}, 

n € {0,+1,...,+V} where N is defined by N = 5(1/(2™) — 1)/b. 

This will yield 1045 with 820 of which have singular values below the previously speci- 

fied tolerance of 10~’. The number of coefficients is far greater than used in either the 

Fourier or Gabor cases, but sufficiently represents the signal in the general case given 

in Figure 7.1b. The tight approximation shown in 7.1c is still not very good. 

The associated signal and hidden code coefficients for the general case are shown in 
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Figure 7.2. As we see in the plot of Figure 7.2a there are a few large coefficients at the 

low scales (scale or m increases moving left to right) then a lot of high scale coefficients. 

The code recovery is shown in Table 7.1 which when compared to the Fourier case 

in Table 5.2 we see the Mexican hat expansion appears to give a similar code recovery. 

Figure 7.1: Signal 1 Reconstruction from Mexican Hat Frame 
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Figures 7.la-7.1c, from top to bottom. 7.1a depicts Signal 1, 7.1b the recovered signal 

in the general case and 7.1c the recovered signal from the tight approximation 
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Figure 7.2: Mexican Hat - Signal 1 Coefficients 
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Figures 7.2a-7.2b, from top to bottom depicting the modulus of the signal and hidden 

code coefficients for the general case. Note that the coefficients are ordered in ascending 

order by m and n respectively. 

Table 7.1: Mexican Hat - Recovered code from Signal 1 

code |p=01 p=1 p=10 

3.1492 | 3.1503 3.1601 3.2578 

2.1271 | 2.1264 2.1203 2.0589 

5.1312 | 5.1328 5.1470 5.2895 
1.2835 | 1.2836 1.2846 1.2950 

7.7976 | 7.7972 7.7938 7.7596 

3.7160 | 3.7180 3.7356 3.9122 
8.4139 | 8.4119 8.3937 8.2123 
1.9791 | 1.9776 1.9640 1.8279 
0.5863 | 0.5859 0.5827 0.5505 
5.8321 | 5.8325 5.8363 5.8739 
8.1032 | 8.1035 8.1063 8.1342 

6.4908 | 6.4902 6.4849 6.4315   
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Signal 2: a = 2, b = 0.25, S/N = 20 dB, p = {1,10,100}, m € {0,1,2,3, 4}, 

n € {0,+1,...,+N} where N is defined by N = 5(1/(2”) — 1)/b. 

Here we see the closest match yet between the signal (Figure 7.3a) and the tight 

approximation of the signal recovery (Figure 7.3c). The recovery from the pseudo- 

inverse is shown Figure 6.3b and is still far superior to the tight approximation. 

The associated signal and hidden code coefficients for the general case are shown 

in Figure 7.4. As we see in the plot of Figure 7.4a there are some large coefficients 

at the low scale (note that m increases moving left to right) then a lot of high scale 

coefficients of smaller magnitude. 

The code recovery is shown in Table 7.2 which when compared to the Fourier case 

in Table 5.3 and Table 6.2 we find that the recovery here is not as good as in either 

the Gabor of Fourier cases. 

Figure 7.3: Signal 2 Reconstruction from Mexican Hat Frame 
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Figures 7.3a-7.3c, from top to bottom. 7.3a depicts Signal 2, 7.3b the recovered sig- 

nal through the pseudo-inverse method and 7.3c the recovered signal from the tight 

approximation 

59



CHAPTER 7. APPLICATION: MEXICAN HAT WAVELETS 

Figure 7.4: Mexican Hat - Signal 2 Coefficients 
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Figures 7.4a-7.4b, from top to bottom depicting the modulus of the signal and hidden 

code coefficients for the general case. Note that the coefficients are ordered in ascending 

order by m and n respectively. 

Table 7.2: Mexican Hat - Recovered code from Signal 2 

Code ulti OL =e pO 

3.1492 | 3.2211 3.8682 10.3396 
2.1271 | 2.3855 4.7107 27.9630 

5.1312 | 5.0440 4.2597 -3.5842 

1.2835 | 1.4452 2.9005 17.4535 
7.7976 | 7.9956 9.7775 27.5965 

3.7160 | 3.7938 4.4939 11.4946 

8.4139 | 8.5550 9.8250 22.5248 
1.9791 | 1.9589 1.7770 -0.0424 
0.5863 | 0.5314 0.0377 -4.8998 

5.8321 | 5.9817 7.3286 20.7967 

8.1032 | 8.2156 9.2274 19.3455 

6.4908 | 6.5963 7.5461 17.0434   
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7.2 Other Investigations 

Like in the Gabor case, the lack of periodicity in the expansion functions means that 

outside the interval of [-T,T] the signal reconstruction goes to zero except at the 

borders. 

7.3 Summary of Results 

The Mexican hat wavelet provides yet another frame expansion with which to exam- 

ine the proposed system for transmitting a hidden code while sending a signal. Even 

though the ratio of frame bounds for the case used here is nearly 1, the estimation 

of this frame by the methods derived for use with tight frames yields an inadequate 

signal recovery. The number of coefficients used was much higher, and hence required a 

greater deal of computation time, but small changes in the values of a and b both have 

great impact on the number of coefficients needed. In addition the tolerance used to 

compute the pseudo-inverse has a very large impact on the signal coefficients and code 

recovery. The code recovery is similar to that achieved from the Fourier and Gabor for 

Signal 1, although was inferior for Signal 2. 
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Chapter 8 

Conclusions 

The fact that redundant representations are necessarily not unique has been used as 

a vehicle to transmit additional information. An encoding/decoding system was pro- 

posed that is capable of transmitting 1)an arbitrary signal, 2)a code of digits whose 

presence is not obvious in the signal reconstruction. The mathematical setting for such 

a development was the one provided by the theory of frames. 

Three types of frames were examined - Fourier, Gabor and Mexican hat wavelets. 

As expected, in all three frame expansions the code was recovered to the level of ma- 

chine accuracy in the case without noise. The presence of noise in the transmission 

channel has also been considered. It was seen that when a relatively small amount of 

zero-mean Gaussian noise is added to the transmitted coefficients the code may still 

be recovered within some error margin, which does not disqualify the procedure in the 

presence of noise. 

Two different signals for transmitting an identical code were considered. Interest- 

ingly, in all three frame representations the code recovery with Signal 1 was largely 

similar across the fixed range of errors. However, with Signal 2 the accuracy of the code 

recovery was different - we found the accuracy from the Gabor and Fourier frames to 

be superior to that from the Mexican hat. In fact, for the most noisy case considered, 

only the Mexican hat reconstruction was not even accurate in the first digit. The signal 

recovery was shown to be dependent on the level of noise (signal-to-noise ratio) and 

the level of redundancy. - high redundancy yielding reduction of the noise. 
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Out of the three frames considered here, only the Fourier case formed a tight frame. 

The Gabor and Mexican hat wavelet dual frames were computed via a general (non- 

tight) method. The tight frame approximation was shown to be inappropriate in both 

types of frames. The number of coefficients used in each different expansion was wildly 

different in each case, with the smallest number needed in the Fourier case for both 

signals. 

The quality of the signal reconstruction and level of redundancy used was found 

to have little effect on the accuracy in the recovery of the code. In fact, we examined 

a case where a very poor signal yielded a recovery of the code with a good deal of 

accuracy. This suggests the possibility of designing a more efficient coding system, 

resigning the goal of transmitting an arbitrary signal at the same time. This matter 

seems to be worth looking at and it is left as a proposal for future work. 

From the experiments given here, the Fourier case appears to be the least costly. 

The main advantage is the fact that it can be implemented by a FFT tool, but this 

also seems to be the main weakness. Namely, by using the IFFT on the transmitted 

coefficients the oversampling and inclusion of hidden coefficients may become evident 

from the noisy ends in the reconstructed signal. However, even if the existence of hid- 

den information were evident, the hidden code would be impossible to obtain without 

an exact value for the oversampling parameter. Additionally, a random transformation 

could be used to further protect the code. 

The proposed encoding/decoding system seems to be difficult to crack, yet is com- 

pletely indefensible against attacks. The hidden coefficients can easily be eliminated 

without destroying the information containing the signal. Hence it would be useful to 

consider more sophisticated redundant representations to prevent the easy elimination 

of the information relevant to the code. 
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Possible modifications and improvements 

There are many forseeable extensions and/or modifications that could be made to this 

setup to make it more useful and practical for transmitting secret information. A few 

obvious and rather straightforward modifications that might yield to a system with 

appealing properties are: 

e Although we defined the coefficients ¢ to be the set of minimal /? norm it might 

also be possible to use some other definition, e.g. those of minimal l!-norm. 

These coefficients and some of the properties associated with them are discussed 

in [2]. 

The hidden code coefficients could be redefined such that the code h is encoded 

as the coefficients themselves. That is, if h consists of K numbers, then the first 

K elements in ¢ could be exactly h. 

e The code could be used to carry some useful information about the signal, such 

that without it the recovered signal from the transmitted coefficients would be 

useless (or misleading). 

Additional investigations are certainly needed so as to be able to evaluate whether 

the proposed encoding/decoding system could be transformed into one suitable for 

real-world scenarios. However, this project has produced evidence that redundant rep- 

resentations are worthy of consideration as a possibility in that direction. Some other 

suggestions for future work include: measurement and maximization of the efficiency 

of the system, other tight (and non-tight) frame expansions, and protection of the 

information containing the hidden code from distortion and/or data loss. 
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Appendix A 

Time-Frequency Limitedness 

A basic assumption of direct sampling is that the signal to be sampled is band-limited. 

A band-limited function is one where 

f(A) =0 for |A| > w. 

When w is the smallest frequency for which the preceding equation is true, the natural 

frequency 

w 

0 OR 

is called the Nyquist frequency [1]. However, this assumption presents a bit of a 

dilemma. On the one hand, it is intuitive that practical signals can have neither infinite 

duration nor infinite bandwidth; yet, on the other hand, fundamental mathematical 

considerations preclude the existence of simultaneously time-limited and bandlimited 

signals. This is the so-called paradox of simultaneously time-limited and bandlimited 

signals. One cause of this paradox comes from the very concept of limitedness itself, 

that is, the idea that a signal is exactly zero outside some finite interval. From a prac- 

tical viewpoint, it is not possible to measure a signal to enough accuracy to determine 

if it is exactly zero and, hence, assuming so is nothing more than a mathematical 

convenience. An assumption of limitedness has ramifications that may lead to various 

paradoxes and must therefore be used with caution. Even so, it is undeniable that 

real-world signals are of finite duration [10]. In defence of this paradox, we offer the 

result of the Shannon-Whittaker Sampling Theorem [1]. 
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Shannon- Whittaker Sampling Theorem 

Theorem A.1. (Shannon-Whittaker Sampling Theorem) Suppose that f(X) is piece- 

wise smooth, continuous, and bandlimited for some fixed, positive frequency w. Then f 

is completely determined by its values at the points t; = jn/w,j € Z. More precisely, 

f has the following series expansion: 

= YS sina) RD (A) 
j=-00 

where the series on the right converges uniformly. 

Proof: Using a standard Fourier expansion of f(A) in a Fourier series on the interval 

[-w, w]: 
x head 1 a 
N= Dae ey = xf fQjes eax. 

-w k=-00 

Since f(A) = 0 for |\| > w, the limits in the integrals defining cz can be changed to 

—00...00: 

e JenmbMan gy, 
ce 2w of. fa 

As defined in 3.1, 

= Ory 
= =f (-kr/w). 

If we use this expression for cz in the preceding series, and if at the same time we 

change the summation index from k to 7 = —k, we obtain 

FQ) os F(j/w)e IN, (A2) 
j=-00 

Since f is a continuous, piecewise smooth function, the series A.2 converges uniformly 

{1]. Using the definitions in 3.1 again, we have 

1 aes 
t) = Ajedr f) = se E, fe 

= =f FO Jedd since f(A) =0 for |\| > w. 
T Jw 

Using A.2 for f and interchanging the order of integration and summation, we obtain 

ag fay : 
f(t) = fir ented, (A.3) = Soe lOn/e) ai 
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APPENDIX A. TIME-FREQUENCY LIMITEDNESS 

The integral in A.1 is 

Fis RN of sin(tw — j7) 

—w tw — jn 

which leads directly to A.1 after a small amount of algebra [1]. 0 
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