
Combining deformable templates

and neural networks for HCR

FRANCK MERTZWEILLER

Master by Research in Pattern Analysis and Neural Networks

ASTON UNIVERSITY

September 1999

This copy of the thesis has been supplied on condition that anyone who
consults it is understood to recognise that its copyright rests with its
author and that no quotation from the thesis and no information derived
from it may be published without proper acknowledgement.

ASTON UNIVERSITY

Combining deformable templates

and neural networks for HCR

FRANCK MERTZWEILLER

Master by Research in Pattern Analysis and Neural Networks, 1999

Thesis Summary

This thesis describes a method of recognising handwritten digits by using a recurrent

neural network to incrementally map a deformed character back to its undeformed

template. In the deformable templates approach to handwritten character recognition,

a character is described by a set of control points and spline segments are drawn through

these points. A forward model of the distribution of characters is then obtained by

adding a noise process at the location of these control points. This noise process

should model the way characters are actually written. The inversion of the forward

model yields a principled approach to HCR.

However, this inversion is computationally expensive and even often intractable. For

that reason the general neural network approach to HCR consists of directly mapping

characters to classification. Nevertheless, this approach does not give any information

about the character and such information would be relevant both to assess the reliability

of the classification and to adapt quickly to the characteristics of a single writer.

The aim of this project is, by relaxing control points to their home position, to compute

the deformation of the character from the trajectory of the network. This method would

resolve the problems described in the above paragraph and in addition would make it

possible to estimate the few parameters of the forward model from a small training set

if the network provides full inversion of it.

Keywords: Handwritten character recognition, backward propagation,

feed forward model, recurrent neural network.

Acknowledgements

I would like first to thank my supervisor Dr. Robert Urbanczik for his help, advice

and useful comments during the nine months of this project. I would also like to thank

him for answering all my questions with so much kindness during the meetings we had.

I am also grateful to all PhD, Master students as well as to all staff of the NCRG

for their help.

And finally, I am very thankful to people I have met this year who have supported

me in the realisation of this project. In particular, I would like to thank Nicholas

Hughes, Frédéric Viot as well as all the Msc IT students.

Contents

1 Introduction 9

ele Previous Tesearch aera sr. wh Sayeed ee ee

1.1.1 Two main approaches

1.1.2 Statistical methods 10

Tues, Using neuralmetworks for HOR. 7. 8-1) ee ee 11

1.2 Presentation of the method used’. . 2. es je ee et ee ee 12

12:1) ,General presentation s% «2956 cag tae eie pees 2

7.2.2 Using a recurrent neural network... 7.0.5.3. 5254. 12

1.2.3 Combination of both general trends... 13

1.2.4 Structural identification of the objects 13

Lid, SU ReBIS OVERVIEW.) 5S to Ri ets a apres See e o n e = 13

2 Deformable templates 15

2.1 The deformable template approach3...-.+:54+ 15

2M LNG COULTOl pOlitds eRe he, Co euace vets serch =) combat eal wen ee tae oy 15

2.2.1 How to find the location of the control points? 15

222" Origimalvalues Gis: aealy = sunt ee Bede ol eee ane eee 16

2.2.3 Importance of the location of the control points 16

2.3 Construction of the complete perfect templates 17

2S7le Shructure of thcimagesecs 2. aes ai es yak eee ie

2.3.2 Utilisation of cubic spline 17

23:3 Problem-of the line width i920) «fs. ass ec). eee 20

2:34. “Map of the pertect templates. 5 0). .c.0.8s hes a. Bs = 21

Dis INGISe DYOCeas aie Jars, lol aren ART Muy gst ol gt enh Peet A, aes ae 21

2.4.1 Choice of the noise process... 1... 2 ee et ee el

2.4.2 Definition of the noise process at a point X of the curve 22

2.4.3 Definition of the noise process at the control points 23

Value of the amplitude of the noise... 26

CONTENTS

2:5) sSamplejofsimulated datas. 34 sa fas sen es oe ee eS 26

3 The recurrent network 28

Sule Goal of themneuralnet work (sit) sant ees ws whl pees Se 28

3.2 a Input to;theneuralneiwork! 2. «Genelec uae, ake ee ae oe 28

Os litalisaiton Of-a Bray-scale tems. Mri ole hs. eine 29

3.2.2 Construction of the gray-scale 30

3.2.3 Bxampleiof transformation... <2. ss 2+ +h es 31

3.2.4 The gray-scale matrix is the input to the network oe

3:2) | Different’ possible networks A535. aac: sos 20. ee ees we es 33

3:3.0, Presentation of the problem =) 5 29. = 2): © 6 se ee 33

3.3.2 Three different possibilities of learning 34

o-46 Theneural networke-021) 2-05 sae Sas ee se es see 37

3.4.1 Presentation of the network 37

3.4.2 Explanation of the algorithm used...4. 38

DAD mm CRINING DELO wees eedee omdeld auch’ 2 Sua eee Vea. mee 39

34 A aVisuallexamplel’. @.ccdee.- Pos ct eneenene Rca a tuls Seiye omnes 40

/Dy Whe ClAsgIhGAbOMs omc cn s, sige wos Sueruy: 5 ovacl=e cul eS, Pate Nem eed: 40

4 The real data 42

Asie Therrealdataay~ 2h eee asd as yn or he ca aes meek, nee Rie waver or tal 42

arlel General presentation: wy. seve os i 2 esis ee ee ee 42

4.1.2 Conversion‘of-the format’. = si .5.5 26 a4 «os & Mais go = 43

4.1.3 Sample of distribution of the real data 43

4.2 Different estimates of the data features .. 2 056. See ees 44

AD “Average of the'size © con. 2 oes pe es ve ee 45

4.2.2 Wluctiation of the size 52g. O8G vv ss oy Vee oe oe cee 46

4208) pe Uhellinegwidthins Bape) 2:8 actin Peet n alan Awe: eS 47

404 Complexity of the data ee been emer c. atom ean 47

4.2.5 How to adjust these estimates? 48

5 Results and improvements 49

5.1 Original choice of the different parameters and first results 49

5.1.1 Parameters of the network 49

Dalez = Draining and recoenition tine a so tas os a es ge 53

0.2) Hitst improvemientes. .c6). see ada. Sere ars els le as ene 53

S21, Wvreragevof the size 20005. a we a ee Head 53

CONTENTS

5.2:2.) Bluctuation ofithesize. a... ee ee

5:2 ee © omplexitysot the datawen. «aki. og): ne ha ee ee

D2 mene line width =e ema a heme case cn ar ee. See.

5.2.0) Performance’ ot the classifier) tala; 6). 44a ee «aoe

5.3 Increasing the complexity of the simulated data

Odie Orientation. of the characters «ahem ss Ge Aca0e egies ones ae

Do 2h Results of the classifiers... 25 yk: SAU Whe alee

5.4 Decreasing the complexity of thedata...................

bit dey Method adGptediye oti aien cM ayy te cee egies eietl, oll Oo Rel ei

5.4.2) Visualisation'on examples. 2. eo. dee tee es a ne

DUAO)) a NE WaTeSH tS ate Stent caeerinn marine Tite olay eel uee |) aoea as

5.5 Last improvements and final results+.422-

5.5.1 The new perfect templates

5.5.2 Performance using those new templates.

5:6 =“Presenticonclisionses. 205 a0. Wrasse es en ee es a

6 Conclusions and future work

6:1) Gonchisions 9%): ia Se ee es otal. os Go Gee aes

O:25 Future work. ee. pice west are fhe ee i Ree os eters

6:28 How to find the vector field? © 05 2 2 Se eo ie. te

6.2.2 The control points of the deformed data

6.2.3) "Reltabilityiottie matches. ¢.). 2.16.8 1. oe eee

6.2.4 New location of the control points

A Location of the control points

Act. cOriginal vales Gcsere ee se fas we Sets De ee ee ee

AD) Pinalevalucse srl Ac cea eres Ee a Ses Soe Ee see

B Code

B.1 Generating deformed templates5....5-.+2--02

Bi2- Creation’ ot theipray-scale’. 7 3. eee ee

69

69

70

70

73

74

74

75

75

76

List of Figures

2.1

2.2

2.3

2.4

3.1

3.2

3.3

3.4

3.5

3.6

4.1

on

on

a
o
n

on

N
O
G

&
on

6.2

A digit is drawn by plotting the cubic spline which interpolates the

CONLLOMDOMIS EA car to) eet es ge, AR eet. Bcd g

Initial perfect templates of the ten digits

Construction of the noise at the control points

Sample of simulated data using original values of the coordinates of the

Coritrol POMS) skis. ke ta seh eens ves es sel ae ey Cae wih Ceuta ons

Example of transformation of a character into the gray-scale format . .

First possibility of recurrent network+..+-%

Second possibility of recurrent network

Third possibility of recurrent network.............-..2--.-

Representation of the neural network actually used

Example of transformation of a deformed character to its corresponding

templatejoeg. vacgsee es t Cane vies woe pee e Gee wee See

Sample ofreal detain... tema enee et a re ae eee eae eee

Influence of the parameter \ on the performance of the classifier

Influence of the parameter \ on the performance of the classifier... .

Transformation of characters into a gray-scale format after normalisation

of the size and suppression of the skew0...-

Perfect templates of the ten digits after modifications

Evolution of the error during the learning period...

Sample of misclassified simulated data

Sample of misclassified real world data-..--.%

Given functions f and g, we aim at finding the function h such that

GRR) MN ons Sy Gone ee Ore ee ieee” Meek oi Pon me eee

Example of vector field associated with the deformation of a character .

List of Tables

3.1 Example of 14 by 16 gray-scale matrix

4.1 Comparison of the average of the size between real and simulated data 45

4.2 Comparison of the fluctuation of the size between real and simulated data 46

4.3 Comparison of the average complexity of characters between real and

Sintlated data viec vee ee en ves) eee en ue eee a 48

5.1 Average of the size of the simulated data for various values of the scaling

fACtOE “Fis see =, Son a A GR ea eae Cares ee eas 54

5.2 Fluctuation of the size of simulated data according to the variance o, of

thepunitorm variables s.r sec ey ccs Sue tes) een 54

5.3 Complexity of the simulated data according to the value of the variance

Of ihe Gaussian noise.7) area sea ts cede ene 55

5.4 The misclassification performance on real data after the first modifications 56

5.5 The misclassification performance on real with an amplitude of the noise

GRUB 250 arr Pe Leh Td el ee he AREA Oy eee ee cea 57

5.6 Complexity of the simulated data according to the value of oy, 58

5.7 The misclassification performance on simulated data with oy = z ae Cb Oo)

5.8 Performance of the misclassification on real data with 0, =F 59

5.9 The misclassification performance on real data after normalisation of the

size and'suppression of the skews 72.9: denwsls ny a ees se 62

5.10 The misclassification performance on real data using a network with 50

hidden units and trained over 50000 examples 64

5.11 The misclassification performance on simulated data using a network

with 50 hidden units and trained over 50000 examples. 65

5.12 The misclassification performance on real data training a network for

CREM GEM GIBItG: cess cay eeseny Oot nee ee cae gat ae Ie Mee 66

A.1 Coordinates of the original control points.5 75

A.2 Coordinates of the control points we finally used... 2... ee 76

Chapter 1

Introduction

1.1 Previous research

The goal of this part is not to review the voluminous work on handwritten character

recognition that has spanned more than three decades (useful reviews can be found in

[Impedovo 1994] and [Suen, Nadal, Legault, Mai, and Lam 1992]). However, it is

helpful to summarise the trends. We can distinguish several main different approaches

to handwritten character recognition. Many research have been done using statistical

tools, comparing examples with models. But more recently methods involving neural

network knowledges have been proposed.

1.1.1 Two main approaches

Two main approaches to HCR can be discerned. The first one makes use of a

significant amount of prior knowledge. Though in this case only small training set is

required, the classification is very slow. The second one which utilises less prior knowl-

edge, requires large training set but performs quick classification. Good performance is

obtained using methods of both trends. However, we are more interested in this second

trend since the method presented in this paper is a combination of both deformable

templates and neural networks approaches which use only little prior knowledge.

CHAPTER 1. INTRODUCTION

1.1.2 Statistical methods

Conventional statistical approach

Many different statistical methods have been experienced. The conventional statis-

tical approach to perform classification is to use a discriminant classifier that constructs

boundaries which discriminate between objects of different categories ([Lee 1991]). Al-

though the resource requirements of all those methods differ widely, their classification

performance is remarkable similar as long as no estimate of the reliability of the clas-

sification is required. Indeed, the misclassification rate is about 1% on the NIST test

set for the most reliable methods. Nevertheless, in all cases many patterns must. be re-

jected to achieve low error rates on the remaining ones. In addition, this approach does

not permit to say anything about the particular way in which the digit is instantiated.

Optical character recognition

An alternative approach is to use optical character recognition which starts with

a structural description of the objects to be recognised and matches it against the

image ([Burr 1981]). The classical pattern recognition consists of extracting features

before doing the classification. But many various methods have been experimented.

Some of them aim at extracting global features whereas some others focus on local

ones ({[Lam and Suen 1988]). One other method is to use generative models. In the

simplest version there is one model for each digit. Given an image of the unidentified

digit, the idea is to search for the model that is the most likely to have generated this

image. Each of the ten digits has his own elastic model. The image is then recognised

by choosing the elastic model which best matches the image. During this matching

process, the model is deformed in an attempt to ensure that every piece of ink in the

image is close to some part of the model. The fidelity of the final match depends on

the amount of deformation of the model, and the distance of remaining ink from the

deformed model. In [Revow, Williams, and Hinton 1996], this deformation is computed

using a procedure based on the Expectation Maximisation algorithm that maximises

the likelihood of the model generating the data.

10

CHAPTER 1. INTRODUCTION

All these different methods have the attractive property that, in addition to pro-

viding a label, they can also, in some sense, explain the image. It may indeed be

interesting for example to know which parts of the digit of the image represent the

digit and which parts are caused by noise or some incorrectly segmented neighbouring

digit. In addition, information about the structural description of the objects to be

recognised such that information about position, size, orientation, shear or elongation

of the digits should allow us to better estimate the reliability of the match.

However, so far these approaches require large computational resources. In order

to speed up the match, methods involving neural networks tools have been proposed.

1.1.3 Using neural networks for HCR

First neural network approach to HCR.

The first approach to handwritten character recognition using neural networks con-

sists of directly mapping characters to classification. In this case, given an image of a

digit, the network should be able to determine which digit it is. But this method does

not provide any information about the pose of the digit either.

Researchers try a different approach to handwritten character recognition involving a

feed forward network.

Using a feed forward network

‘The goal of this method is to train a feed forward network to provide initial values

for an elastic match algorithm ([Hinton, Williams, and Revow 1992]). This hybrid

method should avoid that the elastic model gets trapped in local optima and perform

quicker classification. But unfortunately, this inversion is in general computationally

too expensive and even intractable. Hence the first neural networks approach presented

in the above paragraph has been rather more successful. What is more, besides re-

quiring huge amounts of training data, this approach does not give much information

ll

CHAPTER 1. INTRODUCTION

about the character.

It was obviously necessary to find a better approach to HCR in order to improve

the performance of the classification. The goal of this new method would be first to be

computationally cheaper and then to provide much information about the character so

as to better estimate the reliability of the match.

1.2. Presentation of the method used

1.2.1 General presentation

As explained in the previous method using a feed forward network, assume we have

a dynamical system with attractive fixed points which correspond to the undeformed

objects. If the system has suitable attractive basins, it will restore the undeformed

object when initialised with a deformed one and thus classify it. We also saw that

the main problem in this approach is the large computational data which is required.

However, a cheaper procedure can be used, if we can specify the entire trajectory when

training the network ((Urbanczik 1991]) and not only initial and final conditions.

1.2.2 Using a recurrent neural network

By relaxing control points to their home position we shall use a forward model

to train a recurrent neural network whose goal is to incrementally map a deformed

character back to its undeformed template. Indeed, we want the network to undeform

digits in several steps. The reason of this choice is that then, by analysing the trajectory

of the network, it becomes possible to compute the deformation of the character and

consequently to estimate the parameters of the forward model from a small training

set which is valuable to assess the reliability of the match.

12

CHAPTER 1. INTRODUCTION

1.2.3 Combination of both general trends

A stochastic model of deformable templates is also used in this method, but the

crucial difference with traditional statistical method is that these deformable templates

are to be used to train the network, and not anymore to be directly compared to the

real data.

Indeed, once this inversion is achieved by the neural network, the classification

consists of merely comparing the final output to the ten different perfect templates, as

in the simplest statistical approach.

1.2.4 Structural identification of the objects

The key idea of this method is that the trajectory of the network can be analysed

and associated with a deformation of the underlying plane to provide structural iden-

tification of a digit. Such a deformation of the plane allows us to provide a vector field

which translates the trajectory of the network. If the inversion of the forward model is

full, the position of the control points of the deformed character can be located. The

advantage of this method is that it would allow the model to adapt quickly to the

characteristics of a single writer.

1.3. Thesis overview

In the next section a stochastic model of handwritten digit generation is presented.

In this model, characters are described by a set of control points and cubic spline are

drawn through these points. A forward model of the distribution of the characters is

then obtained by adding a noise process at the location of these control points. The

noise process as well as the construction of this forward model will be explained in

detail.

These deformed templates built with this stochastic model are to be used to train

13

CHAPTER 1. INTRODUCTION

a recurrent neural network described in section 3.

Section 4 presents the real data and the various processing techniques achieved to

make them compatible with our model.

Section 5 displays the results which have been obtained through the evolution of the

different parameters such as the location of the control points of the perfect templates,

the parameters of the network or the pre-processing work on data.

The last section discusses present conclusions of the work achieved so far which can

be considered as a first part of the whole method to handwritten character recognition

presented in this introduction. Indeed, the first aim of this project is to provide a

classification with a reasonable rate of error (we need the misclassification rate to be

at least less than 10% on real data). Once this is achieved, it would then be possible to

compute a reliable vector field corresponding to the trajectory of the network, and by

analysing this vector field, make the stochastic model closer to the real data in order

to improve again the performance of the classifier.

14

Chapter 2

Deformable templates

This section describes which stochastic model has been used to generate the de-

formed templates and what structure has been adopted to store them.

2.1 The deformable template approach

In the deformable templates approach to handwritten character recognition a char-

acter is described by a set of control points and line or rather spline segments are

drawn through these points. The deformable templates are generated by defining a

noise process at the location of these control points. This noise should model the way

characters are actually written.

2.2 The control points

2.2.1 How to find the location of the control points?

Obviously the initial location of the control points should describe the perfect. tem-

plates. However the choice of the position is not an easy task since the idea we have

of a perfect character is often quite different to the ones which are likely to be met in

real world data. It is indeed important to stress that the main goal of this project is

to test the performance of this method against real world data.

CHAPTER 2. DEFORMABLE TEMPLATES

In addition, it is also necessary to consider the fact that the digits are not exactly

the same all over the world. For example the digit 1 is composed of only one segment

in the United States and United Kingdom whereas it is composed of two segments in

the rest of Europe. Therefore we have to consider where the real data come from in

order to find the most suitable shape for the perfect templates.

2.2.2 Original values

The original values which have been utilised in the beginning of the project are

these Dr R. Urbanczik used in previous research about HCR using Neural Network.

But as explained just above these values describe the way European people draw the

digits, and the real data come from a CDROM provided by NIST National Institute.

That is one of the reasons why modifications have been made to these values.

The coordinates of the control points which have been originally utilised are reported

in the table A.1.

The number of control points depends on the complexity of the digit. For example

only five points can perfectly describe the digit 1 but 10 points are required to define

the digit 5.

We can also point out that the digits 4 and 5 are composed of two segments since we

have to lift the pen to plot one of these digits. We coded the passage from one segment

to the other as an artificial control point whose value is ’*eos’!.

2.2.3. Importance of the location of the control points

Finally it has to be noticed that the definition of the perfect templates is funda-

mental since these perfect digits are the basis for the deformable templates we want to

construct and which are to be used to train the network. Thus the stochastic model

should generate as many as possible different shapes of characters which are likely to

! ‘end of segment’

16

CHAPTER 2. DEFORMABLE TEMPLATES

be met in real world data. Furthermore, it would be even better to respect in the

generated distribution the frequency of each different shape. That means that if in the

real data, a particular shape of character appears, better performance would be reach

if this specific shape is generated in simulated data in the same proportions.

We will see the evolution of these control points in the section 5 as well as the

influence the perfect templates have on the results.

2.3 Construction of the complete perfect templates

2.3.1 Structure of the images

The image of a digit can be considered as a 140 by 160 element matrix in which each

element corresponds to a pixel of the image. The matrix is binary. The value is 0 if the

pixel is off and 1 if the pixel is on. In this matrix, the value whose indices are (1,1) rep-

resent the lower-left corner, (1,160) the upper-left and (140,160) the upper-right corner.

2.3.2 Utilisation of cubic spline

Assume we got the coordinates of the control points, the entire digit is built in

drawing cubic spline segments through these points as shown in figure 2.1 ([Press,

Teukolsky, Vetterling, and Flannery 1992]).

Cubic Spline Interpolation

Given a tabulated function y; = y(«;), 1 = 1...N, linear interpolation in the

interval x; and x;,; gives the interpolation formula

y = Ay; + Byj 41 (2.1)

where

(2.2)

Le

CHAPTER 2. DEFORMABLE TEMPLATES

X2

X3
x1

X4

X5

X6 x7

Figure 2.1: A digit is drawn by plotting the cubic spline which interpolates the control

points X;. This figure shows the example of the digit 2 described by 7 control points

The goal of cubic spline interpolations is to get an interpolation formula that is smooth

in the first derivative, and continuous in the second derivative, both within an interval

and at its boundaries.

Assume we also have tabulated values of the second derivatives y", that is to say the

set of values y/’, we can then add, within each interval, a cubic polynomial to the right-

hand side of equation 2.1. If we construct this cubic polynomial such as its second

derivative varies linearly from a value y/ on the left to a value y/,, on the right, we

will have the desired continuous second derivative.

‘The only way to arrange this construction using 2.1 is

y = Ay; + Byjy1 + Cyj + Dyfi (2.3)

18

CHAPTER 2. DEFORMABLE TEMPLATES

where A and B are defined in 2.2 and

C=>(A-A)(@j1-2;)? D=-—(B- B) (2441 —2;)? (2.4)
1

6 O
l
e

We can check now that y" is in fact the second derivatives of the new interpolating

polynomial. Taking the derivatives of equation 2.3 with respect to x and replacing

dA/dx, dB/da, dC/dx, dD/dx by their expressions found from the definitions of A, B,

C, D, we obtain the following result

dy — yj -yi =A? -1 3p 1 a
7 oe LaeG (2541 — 25)yj + — — (tit — £5) 41 (2.5)

" oF: a

for the first derivative, and

&
Sea = AUS + Bupa (2.6)

for the second derivative.

The problem is now that we supposed the y/!’s to be known. However we still have

to translate the fact that the first derivative, computed from equation 2.5, has to be

continuous across the boundaries between two intervals. The key idea of a cubic spline

is to require this continuity and use it to get equations for the second derivatives yj.

These equations are obtained by setting equation 2.5 evaluated for 2 = x; in the

interval («;—,,,;) equal to the same equation evaluated for « ; but in the interval

j,%;41). We finally get N — 2 linear equations (for 7 = 2,...,N —1 J J

 Uj-1 Uj — Uj Yi+i — Y: Yj — YVj-1 Se he ee ea 6 gay — hy oy yet

These are N — 2 linear equations in the N unknowns y’, i = 1,... , N. That is why we

need to specify two more conditions for a unique solution. Nevertheless only the most

common way of doing this has been used in the project which consists of setting both

yf! and yy equal to zero, giving the so-called natural cubic spline.

Parameterisation of a cubic spline

As an image is represented by a matrix whose elements correspond to the pixels,

we need to parameterise the expression of the splines. The goal is so to find the X and

19

CHAPTER 2. DEFORMABLE TEMPLATES

Y-coordinates of each point of the spline segment as a function of a parameter t.

Given a segment with N points (2;,y;), fori = 1,...,N, we aim at constructing

two cubic splines x(t) and y(t) such that

yi) = Yi (2.9)

with suitable choice of t;,i=1,... ,N.

The N values of the parameter t have been chosen recursively as following (for i =

[men 1)

ia (2.10)

tint = ti t+d((ai,yi), (itr, Yin1)) (2.11)

where d((x;, yi), (vj, y))) is the Euclidean distance between both points whose coordi-

nates are (2;,y;) and (2;,4;), that is to say

A (xi, yi), (@j, 4) = (2.12)

If we have chosen the parameter ¢ as described just above, it is in order to find uniformly

spaced points along the curve even if two following control points are either close or

distant to each other.

Once the parameters of these two splines are computed, it is easy to find any

coordinates of a point of the curve by taking different values of the parameter t. It is

sufficient to consider for ¢ a range of values lying between 0 and f,, with a small enough

step to obtain a continuous curve.

2.3.3 Problem of the line width

Now we found the curve of the perfect templates, we have to deal with the problem

of line width. Besides, we shall see in another section that it may be useful to be able

to modify this parameter in order to quickly adapt the deformable templates to the

20

CHAPTER 2. DEFORMABLE TEMPLATES

real data. For that reason, in this project, the line width has to be a parameter which

is easily modifiable.

If / is the value of the line width we finally want to obtain in the map of the tem-

plate, a line segment whose length is / has to be drawn at each point of the curve. This

segment has to be drawn perpendicularly to the curve at the considered point.

If we consider two close consecutive points of the curve (x,y) and (x2, y2), the per-

pendicular vector to the curve at the first point can be defined as V = (Vi, V2) =

(y2 — yi, %1 — 2). The line width is finally drawn in plotting the line segment limited

by both points whose coordinates are

seb Mia wh Yah
2IVr" 2 Iv

as IV;
) and (+ 5iypet apr I:

ai 2IV1) (2.13)

2.3.4 Map of the perfect templates

We saw now how to construct the perfect templates. The result is stored in a 140

by 160 element matrix. Figure 2.2 shows the result of the plot of the perfect templates

using the original values of the coordinates of the control points.

2.4 Noise process

We defined in the previous section the perfect templates. Those templates are

described by control points. We shall explain in this section how to build deformed

digits by adding a noise process at the location of these control points. Once this noise

is added, deformed digits are obtained by merely drawing spline segments through

these new control points as it has been done for perfect templates.

2.4.1 Choice of the noise process

The noise process should model the way characters are actually written. First of

all it would be a too rough approximation to use identically independent distributed

noise. This idea is easy to be understood. If a writer, starting drawing a character,

21

CHAPTER 2. DEFORMABLE TEMPLATES

Oh 2 Se Se

BOs. Sik
Figure 2.2: Perfect templates

deviates from the perfect curve, he will obviously try to correct this error in order to

respect the general shape of the whole digit. That explains why we have to consider

dependent noise at the different control points.

2.4.2 Definition of the noise process at a point X of the curve

Ifa template is described by N control points, and assume the noise at these control

points is equal to V;, fori = 1,... , N this previous idea leads to consider, at a point

X of the curve, a noise which is defined by

Vad G)o! 4 Ved OG Xa)ot t+ yd
ACGoG) dae)= dea)

 f(X)= (2.14)

where X;, for i = 1,--- ,N are the N control points of the digit, and d(X,Y) is the

Euclidean distance between both points X and Y as defined in equation 2.12.

nN
 oS

CHAPTER 2. DEFORMABLE TEMPLATES

We can first notice that obviously if equation 2.14 is evaluated at a point X which

tends to the location of the control point X;, the limit of the result is Vj, that is to say

equal to the noise at this control point. That can be written as

fori=1,...,N limf(X)=V; as X 4 X; (2.15)

That result can be explained by the fact that all the terms of the sum in equation 2.14

are negligible with respect to the term d(X,X;)~! which tends to infinity in both

numerator and denominator. After simplification, only the term V; is left.

In addition it is important to point out that the closer to one of the control points

X is, the more influent the noise at this control point is. That is still due to the term

d(X, X;)~! of the sum which dominates over all the others as the point X is close to

Xj.

2.4.3 Definition of the noise process at the control points

General expression

We aim at defining a noise process at the location of the control points. The

method employed is to define the noise process recursively. In other words, although

we saw in equation 2.14 that the noise at a point X on the curve depends on the noise

defined at all the control points, we assume that the noise at control point X; only

depends on the noise which has been defined at the previous points X;, Xo,--- ,Xj-1.

‘That can be understood by considering a writer who is drawing a digit. The devia-

tion from the perfect curve at a point X only depends on what has already been drawn.

We note the actually drawn points by XE x! is so the former control point X; to

which we added the noise Vj, that is to say

M=aX+V (2.16)

The location DG for the next point, given that the previous points have been drawn

23

CHAPTER 2. DEFORMABLE TEMPLATES

at Xf, 9 =1,... 4-1, is

Xi = Xia + View (2.17)

The ideal location does not occur for V;;; = 0, but the best choice is to choose Visi as

a weighted average of the previous V; (2.3).

fr

Figure 2.3: The noise is defined recursively at the control points. Assuming the noise

V2 at the control point X2, we want the ideal location of the third point to be chosen in

order to respect the general shape of the digit. For that reason, this point is not X3, but

X3 which is located by adding a weighted average of the noise at the previous control

points to X3. Gaussian noise is then added which translates the possible deviation that

the writter may make. We finally find the actual drawn point xe

‘Thus, if we consider a digit described by N control points, the expression of the

24

CHAPTER 2. DEFORMABLE TEMPLATES

noise V;, i= 1,... , N is defined by using the following expressions

Xin = X;+ f (Xi (Xi, Vi), (Xa, Va), --- (Xi Vi) (2.18)

where f is the function described by expression 2.14 computed with i control points.

Xe 1 is a weighted average of the noises defined at the previous control points.

Xhy = Xin +nyj d(Xi, Xin) (2.19)

where 7; is independent Gaussian random variable with zero mean and variance o to

be determined. Xie is the actually drawn point. The noise Vj at the point X; is finally

Vin = Xia eG) (2.20)

We can see in expression 2.18 that the term XG of the noise only depends on the

noise at the previous control points as explained just above.

In expression 2.19 we add to the noise another term which is the product of Gaussian

noise and the Euclidean distance between X; and X;4;. If we chose the noise at the

point X;,; proportional to the distance separating this point from the previous one, it

is because the longer the drawn distance is, the higher the risk of deviation from the

perfect curve is.

Expression of the noise at the first three control points

In order to make this description of the noise clearer, we shall explain in this

paragraph the expression of the noise at the first three control points.

e At the first point Y,, V; =0

That result means we chose that no noise is added to the first control point X,.

Indeed adding noise to X; would be equivalent to merely translating the whole

character. Besides, we shall see how this problem can be resolved in aligning

characters on their center of mass.

e At the second point X2, V2 = n d(X,, X2) — X2

25

CHAPTER 2. DEFORMABLE TEMPLATES

As V, = 0, XG is equal to zero in 2.18. The first term in the expression of V2

comes from 2.19 and the second one from 2.20. As we said in the above paragraph,

Gaussian noise process which is added is proportional to the distance drawn from

the previous control point Xj.

e At the third point X3, we obtain

d(X3,X2)"Vo

ea 221 o © aXe Xo 2 ate, ta) eau)
= X,47 d(Xs,X) (2.22)

5 d(X3, X2)7'Va ne i
Vs = es dt (2.23)

d(X3,.X1)-! + d(X3, Xo)

In expression 2.23 we see how the noise V3 depends on the noises defined at the

previous control points and, like for the noise V2, on the distance between X» and

X3.

2.4.4 Value of the amplitude of the noise

The noise process which is added at the location of the control points is presented

in equation 2.18, 2.19, and 2.20. The parameter to be defined is the standard deviation

o of Gaussian noise 7; which represents the amplitude of the noise. The initial value

has been found in considering a sample of simulated data. This value has to be great

enough to generate as many different shapes of characters as possible, but of course

characters have to be recognisable, at least for human. The initial value we chose is

0.20. That means that if for example the distance drawn from the previous control

point corresponds to 100 pixels, the typical deviation from the original position is about

20 pixels, in a 140 by 160 pixel frame.

2.5 Sample of simulated data

Figure 2.4 shows a sample of the distribution built with the stochastic model pre-

sented in this section. The coordinates of the control points used to plot these digits

26

CHAPTER 2. DEFORMABLE TEMPLATES

are the original ones, and are given in table A.1.

=~
©

O
h

V
o
w

&§
wo

Wh
aA

Oo

®
y
a
w

+
r
W
h

=a
CO

9
A

A
U
S

D
O
N
A

OC
g

Figure 2.4: Sample of simulated data using original values of the coordinates of the

control points

l
o
p

Kv
A
W
S

W
W
D
~

O

D
P
N
G
g

A
F
t
o
O
N

These deformed templates are built in order to train a recurrent network which is

presented in the next section.

27

Chapter 3

The recurrent network

We shall first explain what the input and the required output to the network are.

Then we shall discuss the different possible networks which could have been used to

achieve the desired result and the reasons which led us to the final choice.

3.1 Goal of the neural network

As we saw in the introduction, the desired behaviour of the network is to incremen-

tally undeform characters. In other words that means that, at each step, we want the

output to the network be an image whose shape is slightly closer to the corresponding

perfect template than at the previous step. The data which is used to train the neural

network is built according to the stochastic model described in the previous part.

3.2 Input to the neural network

We saw that the image of a character is stored in a 140 by 160 element matrix, that

is to say 22400 elements. Even if the matrix is binary', it would not be efficient to use

this matrix as an input to the network because of huge computational resources which

would be required. That is the reason why we decided to utilise a smaller and coarser

gray-scale of this image as an input to the network.

! The value of each element of the matrix is 1 if the element corresponds to an inked pixel and 0 if

it corresponds to an uninked one

28

CHAPTER 3. THE RECURRENT NETWORK

3.2.1 Utilisation of a gray-scale

Dimensions of the gray-scale

The main problem in the construction of the gray-scale is to find the most suit-

able dimensions. Obviously this parameter can strongly affect the performance of the

network. If the size is to small, not enough information will be given to the network.

Indeed characters (and particularly smallest ones) would be then indecipherable, even

for humans. The network would be so unable to learn correctly. On the other hand, if

we would choose a too large gray-scale size, the problem would become computation-

ally impossible to solve. One reason is that we have to consider that each element of

the gray-scale corresponds to an input unit of the neural network.

Consequently the choice of the dimensions of the gray-scale has been made by choosing

the smallest values which preserve the main features of characters. According to the

complexity of the characters, we can estimate that a gray-scale size of 14 by 16 is a

reasonable and suitable choice. However it is important to keep in mind that this pa-

rameter can still be modified and increasing the values of the dimensions would allow

us to obtain better results.

We shall see now how this gray-scale has been constructed from the original frame.

Structure of the gray-scale

We aim at transforming the original frame containing the image of a character and

whose dimensions are 140 by 160 into a gray-scale format whose dimensions are 14 by

16. This gray-scale image can so be considered as a 14 by 16 element matrix. Like

for the original one, the element whose indices are (1,1) corresponds to the lower-left

corner and (14,16) to the upper-right corner. Besides, we have to conserve as much

information as possible in the gray-scale. Thus we did the two following choices:

e We will not use anymore binary type element in the gray-scale matrix, but each

value lies between -1 and 1 according to the percentage of inked pixels in the

input window?.

? the value is close to 1 if most of pixels in the window are inked and close to -1 if most of them are

uninked

29

CHAPTER 3. THE RECURRENT NETWORK

e The gray-scale image of the digit is centered on its center of mass. Thanks to

this process, we avoid the problem of position of the image in the frame. It may

be especially useful to achieve this transformation on real data for which we do

not have any information about the position of characters in the frame.

3.2.2 Construction of the gray-scale

How to center the image on the center of mass?

Assume the original image of a character is stored in the two dimensional matrix

whose name is frame(i,j), where 1 < i < 140 and 1 < j < 160. The center of mass

(Gx, Gy) of the figure is computed as follows

TMA THe frameliss) 4 CMY ENS J srame(i)
N oe N
 Gx= (3.1)

where N = ed pa ~, frame(i,j) is the weight of the whole image. Once we found

the center of mass of the character, we just have to consider this point as the center

of the middle window of the gray-scale. In our example, the center of mass will be

aligned with the middle pixel of the window whose indices are (7,8).

Values of the gray-scale

Each element of the gray-scale matrix represents a 10 by 10 pixel window in the

original image. The first value which is calculated for each window is the number of

inked pixels in the window. For example, if we denote M the number of inked pixels

of the window whose coordinates of the central pixel are (Xj, Yi), we obtain

i=4 jad

M= > OS frame(Xu +i, Yu +3) (3.2)
i=—5 j=-5

We can compute all the different values of M for each window in replacing the values

of Xj, and Yyy in equation 3.2 by

Xu ll Gx + (k—7).10 (3.3)

Yu = Gy +(l-8).10 (3.4)

30

CHAPTER 3. THE RECURRENT NETWORK

fork =1,...,14and/=1,... ,16, and where Gy and Gy are defined in equation 3.1.

The number M of inked pixels in one window obviously lies between 0 and 100.

However we want every values of the gray-scale to lie between -1 and 1. Thus the

final value actually stored in the matrix is tanh (A.M +B) where A and B are two

constant parameters to be determined. We use the tangent hyperbolic function in order

to obtain values between -1 and 1. Both parameters A and B have to be adjusted to

actually find a complete range of values lying into the interval (—1, 1).

3.2.3. Example of transformation

Figure 3.1 shows an example of transformation of a deformed character into the

gray-scale format.

a>

Figure 3.1: Example of the transformation of a character into the gray-scale format

The 14 by 16 element matrix built from the original 140 by 160 element matrix is

the input to the neural network. An example of matrix corresponding to figure 3.1 is

presented in table 3.1.

31

CHAPTER 3. THE RECURRENT NETWORK

-1.0 | -1.0 | -1.0 | -1.0 | -1.0 | -1.0 | -1.0 | -1.0 | -1.0 | -1.0 | -1.0 | -1.0 | -1.0] -1.0

-1.0 | -1.0 | -1.0 | -1.0 | -1.0 | -1.0 | -1.0 | -1.0 | -1.0 | -1.0 | -1.0 | -1.0 | -1.0 | -1.0

-1.0 | -1.0 | -1.0 | -1.0 | -1.0 | -0.9 | 1.0 | 1.0 | -0.9 | -1.0 | -1.0 | -1.0 | -1.0] -1.0

-1.0 | -1.0 | -1.0 | -1.0 | 0.7 | 1.0 | 1.0 | 1.0 | 1.0 | -1.0 | -1.0 | -1.0 | -1.0 | -1.0

-1.0 | -1.0 | -1.0 | 0.5 | 1.0 | 1.0 | 0.9 | 1.0 | 1.0] 0.9 | -1.0 | -1.0 | -1.0 | -1.0

-1.0 | -1.0 | -1.0 | -0.7 | 1.0 | 0.8 | -1.0 | -0.8 | 1.0 | 1.0 | -1.0 | -1.0 | -1.0 | -1.0

-1.0 | -1.0 | -1.0 | -1.0 | -1.0 | -1.0 | -1.0 | 1.0 | 1.0 | 1.0 | -1.0 | -1.0 | -1.0 | -1.0

-1.0 | -1.0 | -1.0 | -1.0 | -1.0 | -1.0 | 0.9 | 1.0 | 1.0 | -0.9 | -1.0 | -1.0 | -1.0 | -1.0

-1.0 | -1.0 | -1.0 | -1.0 | -1.0 | 1.0 | 1.0 | 1.0 | -0.5 | -1.0 | -1.0 | -1.0 | -1.0 | -1.0

-1.0 | -1.0 | -1.0 | -1.0| 1.0 | 1.0 | 1.0 | -0.9 | -1.0 | -1.0 | -1.0 | -1.0 | -1.0 | -1.0

-1.0 | -1.0 | -0.9 | 1.0 | 1.0 | 1.0 | -0.9 | -1.0 | -1.0 | -1.0 | -1.0 | -1.0 | -1.0 | -1.0

-1.0 | -1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | -0.9 | -1.0 | -1.0 | -1.0

-1.0 | -1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | -0.8 | -1.0 | -1.0 | -1.0

-1.0 | -1.0 | -0.9 | 0.8 | -0.9 | -1.0 | -1.0 | -1.0 | -1.0 | -1.0 | -1.0 | -1.0 | -1.0 | -1.0

-1.0 | -1.0 | -1.0 | -1.0 | -1.0 | -1.0 | -1.0 | -1.0 | -1.0 | -1.0 | -1.0 | -1.0 | -1.0 | -1.0

-1.0 | -1.0 | -1.0 | -1.0 | -1.0 | -1.0 | -1.0 | -1.0 | -1.0 | -1.0 | -1.0 | -1.0 | -1.0 | -1.0

Table 3.1: Example of 14 by 16 gray-scale matrix. The bold font values correspond to

the values greater than 0. It so represents the more inked windows of the gray-scale.
Thus we can discern through these values the deformed digit 2 whose map is drawn in

figure 3.1

3.2.4 The gray-scale matrix is the input to the network

The gray-scale matrix of the character is to be utilised as an input to neural net-

work. Thus we have to consider a recurrent network with 224 input units*. As we

want the output to the network to be a slightly less deformed image of the character,

the number of output units is 224 as well.

Note that this dimension is high. This method would be computationally less

expensive if it could be possible to reduce the dimension of the feature space by using

PCA methods for example. Nevertheless, it is important to keep in mind that the goal

of this method is not merely to provide a classification but also to construct a vector

field corresponding to the trajectory of the network. For that reason, the geometrical

structure of the image has to be preserved.

We shall now explain the different possible networks which could have been used,

and which choice has finally been made.

* the dimensions of the gray-scale matrix are 14 by 16 which represents 224 elements

32

CHAPTER 3. THE RECURRENT NETWORK

3.3 Different possible networks

According to previous work, several different recurrent networks could have been

used to achieve what is expected. We shall see in this section different ways and the

reasons which led us to the final choice.

3.3.1 Presentation of the problem

We want the network to progressively undeform the image of characters. Consid-

ering the stochastic model we described, deformed templates are generated by adding

noise called ji at the control points of the perfect templates. We shall call J! the

perfect template to which we have added the attenuated noise 0.9'.j. A sample of sim-

ulated data is so constructed with different values of the noise j:. The corresponding

output to the network at the step ¢ is called OM".

The idea is that, given an example of deformed character [!", we expect the out-

put to the network to be f/'+! at the next step. We assume the full inversion of the

deformed digit to the corresponding perfect template is supposed to be achieved in 20

#320 steps. Indeed the character [° is very close to the perfect template since 0.92 = 0.12.

Consequently that means that we shall train the neural network using a sample of

distribution of characters and, at each step, the target oM' for the input J" shall be

[ett

Besides, in order to find a progressive transformation of the digit, we choose to

define the dynamic of the network at the step t as following

Of = (1- Ayr 4+ AOt (3.5)

where) is a parameter lying between 0 and 1 to be determined and J’ is the input to

the network at the step t. We can see that, at each step, a fraction of the previous

input is added to the output in order to slow down the transformation. The error

33

CHAPTER 3. THE RECURRENT NETWORK

measure is defined as

E = =(0t — fut? (3.6)

m
i
e

3.3.2 Three different possibilities of learning

First possibility

The first method would be to train the network with the ideal input at each step.

That means that at the step t, for a character [, the input is the perfect template

to which the noise 0.9‘ has been added (figure 3.2). In other words, the input at the

step ¢ is

T= fut (3.7)

and the target is

ott — fut+t (3.8)

In this case, the output at each step is not considered anymore in the next input.

Step 1 Step 2 Step 20

tt
Ht, 20

I=I I=I

Figure 3.2: First possibility of recurrent network. We can note that in this case the

successive inputs are independent and equal to the target at the previous step.

The main disadvantage of this method is that one does not have any control on the

output. It is in fact difficult to understand the way the network learns. No information

34

CHAPTER 3. THE RECURRENT NETWORK

is provided before testing the performance of the network against data. Indeed we do

not exactly know the behaviour of the trained network if the input at each step is not

the target at the previous step anymore as during training, but the previous output

of the network. This fact means that if at one step, the output OM is not similar to

what was expected (that is to say Putt), the network could never manage to correct

the former error, and the inversion would not be achieved.

Second possibility

An other idea is to train the network using as input the previous output (figure 3.3).

At the step t, the input is

B= i (t=) (3.9)

rt = Ot fort>2 (3.10)

where O is defined in 3.5. Of course the target at the step t is still defined by [#'+!,

Step 1 Step 2 Step 20

Figure 3.3: Second possibility of recurrent network. At each step, the input is equal to

the previous output.

In order to understand the problem of this method, we have to consider an untrained

network, at the beginning of the learning period. For an example of deformed character,

at the second step (t = 2), the input to the network is O'. However, O! is probably

totally different to the target o”° since the network is not trained yet. That would

mean that at the next step, we will make the network learn something incoherent.

Actually, such a network is similar to a 20 hidden layers network, if we suppose to

achieve the inversion of the forward model into 20 steps. We do not say that this

35

CHAPTER 3. THE RECURRENT NETWORK

method does not work, but it would probably require huge amounts of training data

to reach acceptable results.

Third possibility: a combination of the last two approaches

This third method, which is a combination of the last two approaches, consists of

using an input composed of a fraction of the previous output and of a fraction of the

previous target (figure 3.4). The expression of the input is

Po = f# (¢=1) (3.11)

Je (1—A)Ot1 4 AI"* fort >2 (3.12)

where A is a constant parameter lying in the interval (0,1) which shall be determined

empirically. We also shall see what the influence of this parameter is on the perfor-

mance of the classifier in chapter 5.

+athe? tro

=i" I=(1-AyOealt 2 Te(1-A)OPHAEH 20

Figure 3.4: Third possibility of recurrent network. At each step, the input is composed

of a fraction of the previous output to which a fraction of the previous target is added.

This third method has been used in this project since it should allow us to avoid

the problems we exposed in the last two methods. Indeed, in including in the input a

fraction of the output, the network is allowed to deviate from the expected trajectory

but it also learns how to correct these errors. Assume that during the learning period,

after the first pass through the neural network, the output is different from the expected

target. What it is learnt by the network at the next step is not incoherent because

36

CHAPTER 3. THE RECURRENT NETWORK

of the fraction of the target we added to the next input. Indeed, the main difference

compared to the second possibility is that in this present case a fraction of the target

is included in the new input in order not to lose the main features of the deformed

character we want the network to learn.

3.4 The neural network

We have just explained in the above paragraph what the input and expected output

to the neural network are. We shall see now in detail what kind of neural network has

been used to achieve the inversion of the forward model.

3.4.1 Presentation of the network

We consider a network with ninpuz input units as well as njpp,, output units. This

value corresponds to the number of element of the gray-scale matrix which contains

the image of the character we want to classify and thus is equal to 224‘. However the

only way to find the most appropriate number of hidden units is to try different values

and to test the performance of the network against real data. There is no algorithm to

determine a priori what would be the best number of hidden units. The performance

of the classifier as a function of the number of hidden units npiaden is displayed in the

next part.

We aim at training a neural network whose first layer weights are stored in the

matrix A and whose dimensions are Mpidden by Ninpur- The second layer weights are

stored in the matrix B whose dimensions are Minpur by Mnidaen. Figure 3.5 gives a

representation of the network we used.

4 The dimensions of the gray-scale matrix are 14 by 16

37

CHAPTER 3. THE RECURRENT NETWORK

S77
sg

Input XBS Output

I oO

Input Hidden Output

layer layer layer

Figure 3.5: Representation of the neural network. We used 224 input and output units.

A and B respectively correspond to the weights of the first and second layers.

3.4.2 Explanation of the algorithm used

We shall see now how to find the output O to the network given an input J, and

the two matrices A and B corresponding to the weights of both first and second layers.

The first vector to compute is the value h, of the input just after the first layer

y= AL (3.13)

We use sigmoidal hidden units. Thus the result after the hidden layer is :

hg = tanh(h,) = [tanh(h,(1)), tanh(hy(2)),... , tanh(hi (mp iaaen))] (3.14)

Consequently we obtain before the output layer the vector

O' = B.hg (3.15)

and finally the output to the network is

O = tanh(O') = [tanh(O;), tanh(O3),... ,tanh(O%,..4.,)] (3.16)

We know now what is the output to the network given an input. We shall now explain

which method has been used for learning.

38

CHAPTER 3. THE RECURRENT NETWORK

3.4.3 Learning period

The choice of the learning method

First of all, it is important to notice that on-line learning has been used to train the

network. The main reason of this choice is the amount of data which is required. The

memory to store a set of deformed characters is so important that on-line learning is the

most adapted optimisation method. Furthermore we saw that we want the inversion of

the forward model to be achieved in several steps. That would mean that to make the

network learn one character, several different maps are utilised which would increase

again the memory which would be required to store a set of data.

Thus deformed characters are built one after the other during learning period and the

weights of both layers A and B of the network are updated after each example.

The optimisation function

To update the weights of the neural network, a gradient descent method computing

by back-propagation has been used. We saw that after each step, and for each example,

the error £ is computed as follows

pat

E=5))Oi- a) (3.17)
i=l

where O; and o;, fori =1,... , N represent respectively the output O and the target o

to the network. Both are 224 element vectors. We want now to update both matrices

A and B using

A=A-AAn (3.18)

B=B-ABn (3.19)

where 17 is the learning rate of the network and where AB and AA are computed using

the formulas

AB Tp he (3.20)

AA Ti (3.21)

39

CHAPTER 3. THE RECURRENT NETWORK

where Z’ denotes the transpose matrix of Z. The matrix Ty is defined as

(O; — 01)(1 - 07)

(C= “at — 63) oe

(Or24 — 0224)(1 — O34)

The vector Ty in equation 3.21 is computed using the value of the vector Tg defined

in equation 3.22

Ts = BTTgD (3.23)

where D is the diagonal matrix

(1 — ha(1))? 0 “a 0

oe te Rae 0 Aes

t : ore ho(Mnidden))?

3.4.4 Visual example

Figure 3.6 shows an example of transformation of a character in 20 steps. Each

figure corresponds to an output to the neural network at a different step. We can see

that the inversion can be considered as total with this number of steps.

3.5 The classification

We saw how the network is used to transform deformed characters to their corre-

sponding templates. However the output to the recurrent network is the gray-scale

matrix of the corresponding perfect template if we assume that the inversion has been

completely achieved. Thus the final classification is done by computing the quadratic

error between the final output, that is to say after the 20 passes through the network,

and the ten perfect templates. In other words, if O denotes the final output to the

network and T the gray-scale of one of the ten perfects templates, the error is computed

40

CHAPTER 3. THE RECURRENT NETWORK

i
te

tw
 o
N

on

i
ta

ot

CN

ce

t
t

tA

oN

 C
N

t
t
 A

Figure 3.6: Example of transformation of a deformed character to its corresponding

template. We can see that the inversion of the forward model (from left to right and

from top to bottom) is progressively achieved in 20 steps. The last figure represents

the gray-scale image of the corresponding perfect template.

as

N
i
e

Obviously, we assume that the digit which corresponds to the template for which the

value of this error is the lowest is the final result of the classification.

So far, we constructed a forward model to build deformed characters. These char-

acters were to be used to train the network network we presented in this chapter. We

shall now explain how this method can be applied to classify real world data.

41

Chapter 4

The real data

This chapter gives information about the real data which has been used to test the

classification. We shall also see which modifications have been made to this data to

make it compatible to the model which has been presented so far in this thesis.

4.1 The real data

4.1.1 General presentation

The real data used to test the performance of the networks comes from the NIST

Handwritten Segmented Characters database. This database has been created in scan-

ning 2100 forms. The fields on these forms have been isolated and the characters

within those fields have been segmented, extracted, and placed into individual 128 by

128 pixel images, one character per image.

The structure of the real data is so quite similar to the structure of the digits we

built. The image is stored in a binary matrix representing the frame. Indeed, as for the

simulated data, the value of an element in the matrix is 1 if the corresponding pixel is

on and 0 otherwise. However the size of the frame, and consequently of the matrix, is

now 128 by 128, whereas a 140 by 160 element matrix is used for the simulated data.

The first processing on the real data is to convert the size of the matrix into the desired

42

CHAPTER 4. THE REAL DATA

format.

4.1.2 Conversion of the format

It has been noticed in the first approach that the general size of characters is very

small compared to the size of the frame which is used. Actually, the digits which

have been pre-centered on the middle of the frame are only drawn on half the frame.

The main problem we would have met if the size of the digits would have been left

unchanged is that, in computing the gray-scale, much information would have been

lost. Indeed the digit would have been drawn only on a few central windows of the

gray-scale. Such an image would have been indecipherable even for human and it is of

course not likely to be classified by the network. That is the reason why the conversion

of the format has been done in doubling the size of the image to obtain a 256 by 256

element matrix. The required 140 by 160 matrix is built in only keeping a central

window of this new frame.

4.1.3 Sample of distribution of the real data

It is relevant to compare real data (whose a sample is shown in figure 4.1) to the

simulated data (in figure 2.4) in order to check if the stochastic model we have defined

in the second chapter really models the way characters are written. It is also useful

to adjust different parameters of the model such as the amplitude of the noise at the

control points, or the average of the size of the digits. However it is hardly possible to

assess this kind of values in just considering a sample of data. It was indeed necessary

to find some reliable estimates of these values on real data and then to adapt the sim-

ulated data.

Besides, the main different shapes of the characters in the real data have to be

generated by the stochastic model. That means in other words that, if a particular

shape of a digit often appears in the real data, it has to be generated in the simulated

data as well. The ideal model would be to be able to generate each specific shape in

43

CHAPTER 4. THE REAL DATA

the same proportions than in the real data. But of course this is impossible to achieve.

Nevertheless, we can compute different estimates to assess the main features of the real

data and then to be able to make the simulated data closer to them.

Oo o o O °
~
 /

a

2

af

a

é

7

g

~
o>

VY
8

G&
N
W

D
S

a
i
e

JY
©
H
K
 WwW

HB

O
s

Ss
F
&
F

W
w

Bw
~

x

H
R
A
r
I
S
H

F

U
a
r
n
r
~
s

-

Figure 4.1: Sample of real data

Note that all tests and computations on real data have been done on a sample of

about 400 examples for each digit digit. So, for the ten digits it represents about 4,000

characters. Of course, when some results are compared between real and simulated

data, the number of examples considered is the same for real and simulated data.

4.2 Different estimates of the data features

As revealed in figure 4.1, the real data is heterogeneous compared to the sample

of simulated data. We saw that it is important for the simulated data to be as close

44

CHAPTER 4, THE REAL DATA

as possible to the real data to improve the performance of the classification. Thus we

shall see now which estimates have been used to adapt the stochastic model to the

characteristics of the real data.

4.2.1 Average of the size

The size estimate

The first estimate we have used deals with the average of the size of digits. However,

there is no direct means to compute this size. The solution adopted is to compute the

percentage of gray-scale windows which are predominately inked. As the values of

the gray-scale matrix lie between -1 and 1, and according to examples (table 3.1), it

seems to be reasonable to consider the size of the whole character as the percentage of

elements into the gray-scale matrix whose value is greater than 0.9.

Comparison between real and simulated data

Table 4.1 shows the comparison of this estimate between the simulated and real

data.

Simulated data

0 26.4 18.8

1 15.6 97
2 27.0 18.8

3 29.5 19.8

4 24.6 18.7

5 26.5 20.0
6 3d 18.6

it 16.8 16.0

8 33.0 21.4

9 25.9 19.4

average 25.7 18.1

Table 4.1: Comparison of the average of the size between simulated and real data for

each digit

Table 4.1 reveals that the average of the size of the simulated data is greater than

this of the real one for all digits. The modification of the average of the size on the

45

CHAPTER 4. THE REAL DATA

simulated data can be achieved by merely scaling the size of all the simulated data by a

factor. Practically, this is achieved in multiplying the coordinates of the control points

by a scaling factor. More accurate changes could be done after that, in considering for

example the size of only one specific digit and redefining the location of the control

points. Furthermore, changing the size of the characters obviously leads to consider

different perfect templates, whose size is scaled as well.

4.2.2 Fluctuation of the size

The choice of the estimate

An other important factor we have to deal with is the fluctuation of the size of the

characters. Figure 4.1 shows how the fluctuation of the size can be important in real

data. The performance of the classifier could also be improved if this characteristic

would also be taken into account. The estimate we chose in order to have an reliable

value of the fluctuation is the variance of the size over a sample of examples. The

different values for each digit on simulated and real data are reported in table 4.2.

Simulated data

0.06 0.32
1 0.02 0.08

2 0.07 0.40

3 0.07 0.41
4 0.06 0.31

5 0.08 0.41
6 0.12 0.37

eC 0.05 0.21

8 0.13 0.48

9 0.10 0.30

average 0.08 0.33

‘Table 4.2: Comparison of the fluctuation of the size between real and simulated data

Table 4.2 reveals that the variance of the size is much greater for the real data than

for the simulated data. These values could be more similar by adding a size fluctuation

to the simulated data.

46

CHAPTER 4. THE REAL DATA

How to add a fluctuation of the size?

Given a uniform variable s with zero mean, the scaling factor is defined by (1+).

The size of a character is then modified by multiplying the coordinates of the control

points by this factor. However in this case the perfect templates are left unchanged.

That means that at each pass through the neural network, this factor has to be re-

duced in order to finally reach the corresponding perfect template. This is achieved in

considering at the step t a scaling factor whose value is 0.9'(1 + s).

4.2.3 The line width

We can find a good estimate of the line width of the characters in computing the

percentage of gray-scale windows which are either partially or predominately inked.

Thus we chose to define an estimate of the size width by calculating the percentage of

elements into the gray-scale matrix whose value is greater than -0.9.

Nonetheless, this estimate depends on the average of the size of the characters since

we take into consideration all values greater than -0.9. Thus we shall see in the next

section the comparison between the real and the simulated data for this estimate, after

having adjusted the average of the size on the simulated data.

4.2.4 Complexity of the data

The last estimate used to adapt the simulated data to the real data assesses the

general complexity of the data. This value is found in computing the average quadratic

error between the gray-scale image of the deformed digit and its corresponding perfect

template. For example, given the gray-scale matrix of a digit frame; fori =1,... ,14

and j = 1,... ,16, and the corresponding perfect template T;;, the complexity of the

digit is calculated as following

Complexity =

ro
le

14 16
ST DE (frame; ; — T;;)?
i=l j=l

CHAPTER 4. THE REAL DATA

Table 4.3 shows the different values of this estimate for each digit in real and

simulated data.

Simulated data

0 94.1 152.3

iL 46.1 51.9

2 103.8 114.4

3 105.6 119.0

4 79.4 95.2
5 119.7 140.7

6 99.7 113.1

7 65.5 73.4

8 110.1 122.1

9 84.6 107.3

average 90.9 108.9

Table 4.3: Comparison of the average complexity of characters between real and sim-
ulated data. We can see that for all digits, the value is greater for the real data than

for the simulated data.

This estimate may be useful to adjust the amplitude of the noise in the simulated

data.

4.2.5 How to adjust these estimates?

The method to adjust these different parameters on simulated data would be first

to reach a similar average of size by multiplying the data by a scaling factor. Then the

method of computation of the line width becomes reliable and usable to adjust this

second parameter. The fluctuation of the size can be so adapted according to the value

of the variance of the size. Finally, the final estimate we presented, the complexity,

can be utilised to find the more suitable noise amplitude to build the simulated data.

We shall see the evolution of all these parameters in the next chapter as well as

their influence on the performance of the classification.

48

Chapter 5

Results and improvements

‘This section displays the results of the classification obtained throughout the evolu-

tion of the different parameters. We shall also see which pre-processing work has been

done in order to make either the simulated data closer to real data, or the real data

more homogeneous.

5.1 Original choice of the different parameters and

first results

Some parameters presented so far in the thesis have been chosen arbitrarily and then

adjusted according to the results of the classification. Here we presente the original

values of most of the parameters used. We shall see then their influence and how they

can be modified to improve the performance of the classifier.

5.1.1 Parameters of the network

The input to the network

We saw that the input to the network is defined at each step as the sum of a fraction

of the previous output and a fraction of the previous target. In other words, the input

49

CHAPTER 5. RESULTS AND IMPROVEMENTS

at the step t is

TH = (1 — d)OF + aTHt (5.1)

where O is defined in 3.5 by

Of = (1-d)I' +408 (5.2)

We aim at finding the most suitable values for both parameters \ and A. Since those

parameters can widely influence how well the network learn, the most suitable values

have been found empirically, testing the performance of the network for a range of values

lying between 0 and 1. Note that some experiments showed that both parameters

and \ are independent. For that reason, we do not need to find a couple of values.

Consequently, some experiments have been carried out to find A with a constant value

of \, and some others to find \ with a constant value of A. Figure 5.1 shows the

error rate according to the value of A. The minimum of the error rate is reached for

A= 0.175.

 30 T r r r T r T

 0 1 L
0.41 02 0.3 0.4 05 0.6 O7 0.8 0.9

Figure 5.1: The misclassification error rate according to the value of the parameter
A. The classification has been taken over a sample of 2000 simulated patterns. The

minimum of the error rate occurs for \ = 0.175.

CHAPTER 5. RESULTS AND IMPROVEMENTS

The similar figure 5.2 gives the performance of the classification on simulated data

according to the value of the parameter \. The minimum of the error rate is reached

for \=0.1.

 20 7 T r a T r

4p 4

2p 4

0 L L 1 1. L L 1 1
0 o.4 0.2 03 04 05 0.6 07 08 09

Figure 5.2: The misclassification error rate according to the value of the parameter d.

The minimum of the error rate occurs for \ = 0.1.

These values of \ and \ shall stay unchanged for all the future tests.

Number of hidden units

There is no algorithm to define the ideal number of hidden units. However the first

tests have been done with 20 hidden units whereas only the first five digits have been

considered. Indeed, the first experiments only aim at adjusting different parameters,

and for that reason, we are more interested in the comparison between the different

results than in the results themselves.

Learning rate and number of input patterns

The value of the learning rate has been initially set equal to 0.0001 and the first

experiments have been done in training the network with 10000 different input patterns.

51

CHAPTER 5. RESULTS AND IMPROVEMENTS

The evolution of the quadratic error during the learning period is an important estimate

to know if it is worth to modify these values. Indeed, increasing the number of input

patterns is relevant only if the error is decreasing during the whole learning period.

Methodology of the experiments

As explained, the training set is constitued of simulated digits built from perfect

templates. The performance of the network is then evaluated using a validation set of

real data constitued of a large sample of 4000 real handwritten digits. The performance

of the network has finally been confirmed bu measuring its performance on an other

set of 4000 real digits. Note that the classification rate has been the same using either

validation set or test set. This shows that the parameters have never been adapted to

a specific set of data.

Results

As explained just above, the network has been trained only with digits 0 to 4.

Indeed, the first aim was to adjust the various parameters of the network and simulated

data, which are the same for all digits. It is so sufficient and quicker to only consider

several digits. Figures 5.1 and 5.2 show that the classification is performed on the

simulated data with an error rate of about 5%. But though results are satisfactory on

simulated data, the error rate on real data is about 70% on a sample of 2106 examples.

Explanations

The results obtained on the simulated data prove that the dynamic model of the

network which has been defined is efficient. The reason of the bad classification on real

data is due to the too wide differences between real and simulated data. Thus, the first

improvements to make aim at adapting the simulated data to the real data.

CHAPTER 5. RESULTS AND IMPROVEMENTS

5.1.2 Training and recognition time

Classification speed is also of prime importance when testing the performance of a

classifier. Using this method, the time required on a Sparc 5 to recognise a test pattern

starting with 140 by 160 pixel map image is about 0.1 second. The training period

over 10000 input patterns takes about 4 hours which represents less than 1.5 seconds

for one input pattern.

5.2 First improvements

The first improvements concern the stochastic model defining the forward model

of the distribution. The goal is actually to make the simulated data closer to the real

data, using the estimates presented in the previous chapter.

5.2.1 Average of the size

The previous chapter showed that the average of the size is greater for the simulated

data than for the real data. The idea is so to determine a scaling factor such that the

average of the size of the simulated data is as close as possible to this of the real data.

The average of the size of each digit has been computed using several different values

of the scaling factor. The results are displayed in table 5.1.

The table reveals that the more adapted value for this factor of attenuation is 0.72.

This value shall stay unchanged from now and for all the future experiments.

5.2.2 Fluctuation of the size

We also saw in the previous chapter that the fluctuation of the size is greater in

the real data than in the simulated data. It may be useful to make the size of the

simulated data fluctuate in order to make them closer to reality and to obtain more

uniform results between simulated and real data. The idea is to define a uniform

variable s with zero mean and variance o, to be determined. We can then scale the

CHAPTER 5. RESULTS AND IMPROVEMENTS

0 [145[189/i194| 188
fia 74 | 9.1 | 93 07

2 [144/188] 192| 188
3. |140/192/19.3] 19.8
4 [129|162[168] 18.7
5 |162/198|202|[20.0
6 [161/196] 20.0] 186
7 [122/155 /15.7[16.0
Sue iB belo) | 20i7 |emaid
9 |151/191|195| 194

average | 14.1 | 17.8 | 18.2 18.1

Table 5.1: Average of the size of the simulated data for various values of the scaling

factor. The size of a character is computed in counting the number of elements of the

gray-scale matrix whose value is greater than 0.9.

size of the digit by the factor (1+). Table 5.2 shows the variance of the size for each

digit and for various values of the variance o, of the uniform variable s.

ee

0 0.13 | 0.14 | 0.16 0.32
i 0.02 | 0.03 | 0.04 0.08
2 0.11 | 0.15 | 0.18 0.40

3 0.12 | 0.17 | 0.20 0.41
4 0.10 | 0.13 | 0.15 0.31
5 0.14 | 0.15 | 0.17 0.41
6 0.21 | 0.23 | 0.28 0.37
7 0.07 | 0.08 | 0.09 0.21

8 0.21 | 0.25 | 0.30 0.48
9 0.14 | 0.17 | 0.18 0.30

average | 0.13 | 0.15 | 0.18 0.33

‘Table 5.2: Variance of the size of simulated according to the variance o, of the uniform

variable s

Whatever the value of the variance a, is, the variance of the size is always lower in

the simulated data than in the real data. The problem is that it would not be efficient

to set the variance a, equal to a value greater than 0.9 since many digits would then

be either larger than the window or on the other hand too small. What is surprising

is that we cannot find a suitable value for the simulated data which would allow to

obtain similar results to the real data for the variance of the size. That would actually

CHAPTER 5. RESULTS AND IMPROVEMENTS

mean that the real data are either small or large.

5.2.3 Complexity of the data

We shall try now to adjust the amplitude of the noise in computing the complexity

of the simulated data using various values. The amplitude of the noise actually corre-

sponds to the variance of the Gaussian noise added to the coordinates of the control

points. This Gaussian noise appears in equation 2.19 and is called 1;. The complexity

of the data is given in table 5.3 for different values of the variance.

0 E a 152.3

1 37.1 | 39.7 51.9
2 103.9 | 106.3 114.4

3 111.0 | 114.8] 119.0
4 72.6 | 79.9 95.2

5 113.7 | 117.2 140.7

6 102.6 | 106.1 113.1

7 65.3 | 70.5 73.4
8 112.9 | 117.7 122.1

9 87.4 | 90.5 107.3
average | 93.5 | 97.4 108.9

Table 5.3: Complexity of the simulated data according to the value of the variance of
the Gaussian noise 7;

This table reveals that the computation of this estimate gives greater values for the

real data than for the simulated data. As for the fluctuation of the size, it would not

be efficient to construct a model with too important noise since the characters would

be indecipherable and less close to the real data.

5.2.4 The line width

The line width has also been adjusted. However this parameter is not constant in

the real data. That is why it has been defined as a uniform variable in order to make

the line width fluctuate in the simulated data as well. We want the network to perform

the classification whatever the line width is, and to reach the corresponding templates

whose line has an average width.

CHAPTER 5. RESULTS AND IMPROVEMENTS

5.2.5 Performance of the classifier

Two different neural networks have been trained, one for digits 0 to 4, and another

one for digits 5 to 9. Besides, networks have been trained with both values of the

variance of the noise n; 2.0 and 2.5.

Amplitude of the noise of 2.0

The classification on the simulated data has been performed with an error rate of

14.1% for a variance of the noise n; equal to 2.5. Those results are of course worse than

previously. Indeed the simulated data is now more complex since it has been built with

a fluctuation of the size and of the line width. The results of the classification on real

data are reported for each digit in table 5.4.

0 37.5 5 65.3

il 8.2 6 24.4

Z 47.3 ia 38.6
a 18.1 8 69.9
4 58.1 9 36.1

average | 33.8 average | 46.9

Table 5.4: The misclassification performance on real data after the first modifications.

The values represent the error rate of the classification which has been taken over 4081

examples for the 10 digits. The global average of the error rate for the 10 digits is

39.55%.

We can see that the results are still not satisfactory on real data and that the

performance of the classifier widely depends on the digit. This last point may mean

that some templates are not adapted to the real data.

Amplitude of the noise of 2.5

We shall see now the influence of the amplitude of the noise. Table 5.5 shows the

results on real data for digits 0 to 4 only.

If the results are worse on real data with a greater value for the amplitude of

the noise, it means that the problem does not come from the ability of the network

56

CHAPTER 5. RESULTS AND IMPROVEMENTS

0 36.1

al 15.5

2 49.9

3 21.4

4 48.4

average | 34.3

Table 5.5: Performance of the misclassification on real data for digits 0 to 4 with an

amplitude of the noise equal to 2.5. The classification has been taken over a sample of

2106 examples.

network to learn, but rather from the templates which are not close enough to real-

ity. This idea is emphasised by the fact that training the network with more hidden

units gives results which are even worse on real data. Indeed, the average of the error

rate is 42% on the same sample of real data when using a network with 25 hidden units.

We shall now see how to increase again the complexity of the simulated data with

a view to translating various ways real characters may be written.

5.3 Increasing the complexity of the simulated data

The goal is now to increase the complexity of the simulated data in order to reach

similar performance between real and simulated data. We can notice for example that

we did not consider any orientation in our model, whereas many characters from the

real data are skewed. Thus a random orientation shall be added to the simulated data.

5.3.1 Orientation of the characters

How to construct skewed characters?

The idea here is to define a random angle of rotation w, whose value is determined

according to a uniform variable with zero mean and variance o,,. The figure is then

rotated with the angle 7) around the lower-left corner of the figure. In other words, the

CHAPTER 5. RESULTS AND IMPROVEMENTS

new coordinates (2’,y') after rotation of the point (2, y) are

zw = xcosp+ysiny (5.3)

< Il —asiny + y cosy (5.4)

Of course, we aim at training the neural network in order to reach the same perfect

template which means that during training, the initial value of 7) computed for each

character shall actually be at the step t: 0.9'. The problem is now to find the most

suitable value of oy.

Influence of the rotation on the complexity

The complexity of the simulated data is now expected to be increased after this

new modification. Table 5.6 shows the results for both values = and = of oy. 3 4 v

[ETE [eal dat]

0 141.8 | 143.4 152.3

i 44.7 | 46.9 51.9

2 116.5 | 117.9 114.4

3 118.2 | 120.9 119.0

4 90.7 | 90.3 95.2
5 120.7 | 121.8 140.7

6 107.8 | 108.9 113.1

a 83.3 | 85.3 73.4

8 118.1 | 118.7 122.1

9 92.4 | 93.5 107.3

average | 103.4 | 104.8 | 108.9

Table 5.6: Complexity of the simulated data according to the value of oy, the variance

of the uniform variable ~ which defines the angle of rotation of the characters

Table 5.6 shows that the complexity is now almost similar between simulated and

real data thanks to this new modification. We shall see now the results of the classifi-

cation if the network is trained with this new model.

5.3.2 Results of the classifier

Again, two different networks have been trained, one for digits 0 to 4, and one for

digits 5 to 9. We shall see now the results in detail, for each digit of the simulated and

58

CHAPTER 5. RESULTS AND IMPROVEMENTS

real data.

The simulated data

The cl

fication has been taken over a sample of 2000 examples for each network

is given in table 5.7 for oy, = z

0 12:2. 5 47.0

1 0.4 6 21.2

2 21.2 7 4.2

3 15.8 8 50.6

4 16.4 § 45.6

average | 13.2 average | 31.9

Table 5.7: The misclassification error rate on simulated data with oy = 7. The global
average of the error rate for the ten digits is 22.6%.

The real data

The results obtained on real data are given in table 5.8 for the same value of oy = .

0 30.3 5 91.76

1 11.6 6 50.25

2 65.1 @ 19.06

3 14.1 8 62.25

4 62.21 o 62.66

average | 35.5 average | 55.8

Table 5.8: Performance of the misclassification on real data with oy = 7. The global
average of the error rate for the ten digits is 45.3%.

Besides, the same networks have been trained with a value of oy equal to ie The

error rate on simulated data is greater than for oy = } as it could be expected since

the data are more complex. However, the error rate on real data also is greater whereas

table 5.6 shows that the difference of complexity between real and simulated data is

less important for this value of oy. The global error rate obtained for the ten digits is

indeed about 50%.

59

CHAPTER 5. RESULTS AND IMPROVEMENTS

Explanations of the results

As it has been pointed out, increasing the complexity, by for example adding a

rotation of the characters, really improves the performance of the classifier. However,

this complexity cannot be increased too much since the digits would be then even less

closer to the reality. That is why we shall try rather now to decrease the complexity of

the real data in achieving pre-processing work on characters before classifying them.

5.4 Decreasing the complexity of the data

We saw that the complexity of the characters in real data is very important. The

key idea is now to decrease this complexity in first normalising the size of the characters.

Besides we do not have much information about the orientation of the characters since

a reliable estimate of this parameter is difficult to find. Thus we decided to modify

the procedure which transforms the initial image into its gray-scale format, in order to

normalise the size of the characters and suppress the skew angle.

5.4.1 Method adopted

The coordinates of the center of mass of the image are (Gy, G)-). The computation

of those coordinates has been explained in equation 3.1.

Normalisation of the size

The size of the characters is normalised in constructing the gray-scale image such

that the average distance between the center of mass and the different points of the im-

age is constant for all digits. The former value of this average distance Dg is computed

as follows

Dit DIS frame(i, i) /G— Gx? + G— GP?
De = WN (5.

60

CHAPTER 5. RESULTS AND IMPROVEMENTS

where N is the total weight of the image. Every point («,y) is moved to the new one

(2', y') using

i; a—Gx)C
Do tas GG) x) (5.6)

) y—Gy)C
ai Go Gae ce (5.7)

where C is a constant which determines the average of the size of the digits.

Suppression of the skew angle

‘The skew angle of the characters is computed as the average angle of every point

of the image with respect to the X-axis. Obviously, this computation does not give

the real skew angle of the figure as it is usually defined, but what is important here is

to apply the same method to all characters in order to reach more homogeneity in the

data. The average angle W is calculated as

fi Seppe frame(i, j) arctan E&* j=l
2 N (5.8)

The image is then rotated with an angle (—W) using the method explained in the above

paragraph (equations 5.3 and 5.4).

5.4.2 Visualisation on examples

Figure 5.3 shows several examples of transformation of characters to their gray-scale

format. Compared to figure 3.1, the size of the digits is now normalised and the skew

angle is suppressed.

5.4.3 New results

New experiments have been carried out. Several networks have been trained with

different values of the amplitude of the noise. The best results on real data have been

reached for a noise factor of 0.25. Those results are displayed in table 5.9.

Table 5.9 reveals that if this last modification improves the performance of the

classifier, we still obtain bad results for specific digits such that digit 5 or digit 2,

61

CHAPTER 5. RESULTS AND IMPROVEMENTS

Ae Be te he A
Figure 5.3: Examples of the transformation of a character into its gray-scale format

after normalisation of the size and suppression of the skew

0 19.8 5 74.7

1 0.0 6 25.1

2 59.0 7 20.5

3 10.5 8 52.7

4 8.6 9 16.9

average | 18.8 average | 37.0

Table 5.9: The misclassification performance on real data after normalisation of the

size and suppression of the skew. The global average of the error rate for the ten digits

is 27.6%.

whereas simulated digits are well recognised. Indeed, an error rate of about 5% is now

obtained on simulated for digits 0 to 4, and about 20% for digits 5 to 9. In this case,

the problem is definitely due to the non-adapted perfect templates used to define those

digits. We shall see now which modifications have been made to the templates.

5.5 Last improvements and final results

5.5.1 The new perfect templates

The main point here is to find perfect templates whose shapes are as close as possible

to the real data. In other words, we aimed at finding control points whose location

is the average position of the corresponding control points of the real data. To find

the most suitable location, several experiments have been carried out with different

templates. Obviously, the main modifications have been achieved to digits for which

62

CHAPTER 5. RESULTS AND IMPROVEMENTS

the classifier gave the worst results. The best performance has been obtained using the

templates shown in figure 5.4. Table A.2 shows the corresponding coordinates of the

new control points.

eS ait

50.7: 829
Figure 5.4: New perfect templates

Comparing figure 5.4 to figure 2.2 which shows the original perfect templa

can point out several modifications:

e Digits 0 and 8 are less wide

e Digit 1 is now drawn with only one straight line

e The location of the control points of digit 2 are less distant to each other on the

lower-left corner in order to construct more digits whose shape possesses a loop

as in the real data

e The second segment of digit 4 has been moved

e Digit 5 is more skewed

63

CHAPTER 5. RESULTS AND IMPROVEMENTS

Besides, it has been useful to increase the amplitude of the noise with those new

templates since they are closer to the real data in order to construct as many different

shapes of characters as possible which are likely to be met in real data.

5.5.2 Performance using those new templates

The problem to be solved now is quite different since the performance of the classifier

is better on real data than on simulated data. Indeed the error rate is now about 16%

on real data but it has increased up to 24% on simulated data. Those results would

lead to think that the classification performance could be improved in modifying the

parameters of the network, and that the templates are now adapted to the real data.

To understand how the network is learning, we computed the error function such as

it has been defined in equation 3.6 after each input pattern. Figure 5.5 shows the

evolution of this error over the 10000 examples of the learning period.

We can see that the error is decreasing all over the learning period. That obviously

means that better results could be reached in increasing the number of input patterns.

Now that the templates are more adapted to the real data, it is worth increasing the

number of hidden units as well. Several new experiments have been done with different

values of hidden units. The actual best results are displayed in table 5.10. A network

with 50 hidden units has been trained over 50000 input examples.

0 4.7 5 13.6

i 0.2 6 11-9

a 18.2 te 9.5

3 23.6 8 19.6
4 5.3 9 23.3

average | 10.1 average | 15.5

Table 5.10: The misclassification performance on real data using a network with 50

hidden units and trained over 50000 examples. The global error rate for the ten digits

is 12.7%.

With those same parameters, the performance is still worse on simulated data as

shown in table 5.11.

64

CHAPTER 5. RESULTS AND IMPROVEMENTS

0 12.0 5 14.7

au 3.4 6 17.4

2 14.8 7 13.0

3 26.6 8 18.5

4 19.2 9 26.3

average | 15.2 average | 18.0

Table 5.11: The misclassification performance on simulated data using a network with
50 hidden units and trained over 50000 examples. The global error rate for the ten

digits is 16.6%.

5.6 Present conclusions

The problem after the first experiments was to reach the same performance on real

data as on simulated data. In this case, the problem came mainly from the perfect tem-

plates which were not adapted to the real data. However the problem finally changed

since better performance is achieved on real data than on simulated data. We saw that

different modifications to the parameters of the network such as increasing the number

of input patterns or the number of hidden units improve that performance. Neverthe-

less new experiments show that longer learning period would not help anymore to reach

better results. Indeed, by considering the misclassified digits from the real data, and

on the other hand from the simulated data, we can understand why such results are

obtained on simulated data. Actually figure 5.6 shows that misclassified simulated dig-

its are especially constituted of indecipherable digits which are generated by our model

whereas misclassified real digits seem to be quite easy to be recognised (figure 5.7).

This idea leads to think that the high error rate we obtained on simulated data is due

to these junk characters. In addition, if real digits such these shown in figure 5.7 are

not recognised, that means that the location of the control points is still not adapted

to the real world data and that better performance on real data would be achieved by

modifying the perfect templates in order to make them again closer to reality.

Finally, a single network has been trained to classify all ten digits. Obviously, the

performance is lower than before since the network is more likely now to confuse digits.

CHAPTER 5. RESULTS AND IMPROVEMENTS

The results achieved on real data are displayed in table 5.12.

0 25.2

L 1.5

2 29.9

3 52.6

4 47.1

5 15.9

6 24.9

a 20.0

8 27.7

9 33.8

average | 27.6

Table 5.12: The misclassification performance on real data training a network for the

ten digits

We can see that the performance of the classifier is still not reliable enough. Im-

provements on simulated data are still to be done in order to attain more acceptable

results.

66

CHAPTER 5.

140

RESULTS AND IMPROVEMENTS

120-

80

60

40

20

 t A t

2000 3000 4000 5000 6000 7000 8000 9000 10000

Figure 5.5:

L L L L \
3000 4000 5000 7000 8000 10000

Evolution of the error over the 10000 examples of the learning period

CHAPTER 5. RESULTS AND IMPROVE.

digit 1 digit 2 digit 2 digit 2 digit 3

digit 3 digit 3 digit 4 digit 8 digit 9

62S20..3 5
Figure 5.6: Sample of misclassified simulated data

digit 2 digit 2 digit 2 digit 3 digit 3

Roo wee

digit 3 digit 5 digit 8 digit 9 digit 9

oa. -Foy
Figure 5.7: Sample of misclassified real world data

68

Chapter 6

Conclusions and future work

6.1 Conclusions

A method combining deformable templates and neural networks for handwritten

characters recognition has been presented. As in the deformable templates approach

to HCR, a character is described by a set of control points and spline segments are

drawn through these points. A forward model of the distribution of characters is then

obtained by adding a noise process at the location of those control points. We saw

how this noise process has been chosen in order to translate the way characters are

actually written. For that reason, the noise at each control point has been computed

recursively as a weighted average of the noises defined at the previous points.

This forward model of the distribution has been built in order to train a recurrent

neural network whose aim was to incrementally undeform the characters back to their

corresponding perfect templates. It was required that the full inversion be achieved in

20 steps. Due to the large amount of data which was required to train the network,

on-line learning was utilised. The weights of the two layers of the network were up-

dated using gradient descent optimisation in conjunction with back-propagation.

The main goal of this project was to test this method against real world data. Unfor-

tunately, the model was not sufficiently adaptive to be able to handle the large diversity

69

CHAPTER 6. CONCLUSIONS AND FUTURE WORK

of characters which are likely to be met in practice. Indeed, the first experiments gave a

misclassification rate of about 70% on real data whereas this rate was only of about 5%

on simulated data. Therefore techniques to improve the model were investigated in the

form of adapting the simulated data to the real data by either adjusting the location

of the control points, or increasing the complexity (fluctuation of the size, rotation of

the whole characters). We also saw how the complexity of the data was reduced by

normalising its size and suppressing its skew. The best performance provided by the

classifier was a misclassification rate of approximatively 10% on real data in considering

only 5 digits. In addition, the last experiments gave worse results on simulated data

than on real data. We pointed out that this fact was due to the junk characters which

were built by the stochastic model and consequently, the classification performance on

real data can be improved further by making the simulated data closer to the real data.

At this present time, the classifier is not reliable enough to confidently build the

vector field associated with the trajectory of the network. The next paragraph explains

how to construct this vector field.

6.2 Future work

So far the model we built aimed at classifying real data with a reasonable error

rate. We wanted this classification to be achieved by progressively making unidentified

characters less deformed in order to be able to analyse the entire trajectory of the

network. This trajectory can be associated with a vector field, which then allows to

find the deformation of the underlying plane corresponding to the deformation of the

character and to provide structural identification of it.

6.2.1 How to find the vector field?

The aim of this paragraph is to determine how to find the vector corresponding to

the trajectory of the network at a point x. This vector is denoted by the function h.

70

CHAPTER 6. CONCLUSIONS AND FUTURE WORK

The function f corresponds to the output to the network at the step ¢, and g at the

step t+ 1.

The one dimensional problem

We shall first see how this problem can be solved in one dimension. Given both

functions f and g, the problem consists of finding the function h such that g = f(h(a)).

f(x)

Figure 6.1: Given functions f and g, we aim at finding the function h such that

9 = f(h(x))

We note ¢ the function defined as g(x) = h(x) —z. If we assume that y(z) is small,

we can compute g(a) as

g(x) = f(h(x)) = fw + ola) ~ f(a) + F(a) (a) (6.1)

We can so deduce

_ g(x) — f(a) ote) = (6.2)
Equation 6.2 might also have been obtained from requiring that (a) minimises

(f(a) + f'(@)9() — g(a)? = (F(e + v(a)) — g(a)? (6.3)

71

CHAPTER 6. CONCLUSIONS AND FUTURE WORK

The two dimensional problem

We conserve the same notations than in the above paragraph, but now x and

y € R’. The expression of g(x) becomes

9(2) = f(h(x)) = f(@ + v(a)) = F(x) + grad(f(x))"9(a) (6.4)

and for each point x, we choose y(x) to minimise

(f(x) + grad(f(2))"9(z) — g(x)? (6.5)

The problem we have to deal with now is that we have two unknowns for the only

equation 6.4. The idea is then to choose the function y(a) such that if a point x is

close to another point @, then y(zx) is close to y(#).

To solve the problem numerically, assume points X;,; form a grid in the real plane

and denote by yj, the value y(X;,;). Since Xj41,; is a neighbouring point of X;;, we

want yj; to be close to yj41,;. Setting

1 it
Gig = Pits + Yi-15 + Yigsi + ig-1) (6.6)

we thus require

Pig = Pid (6.7)

Combining constraint 6.7 with equation 6.5, we thus choose ¥;,; to minimise

E(vig) = » (f (Xing) + gradf (Xi.3) Pig — 9(Xig))? + wy (Pig — Gig)” (6.8)

where the parameter ji controls the smoothness of the vector field y. Note 6.8 is

quadratic in yj,;, and so it is straightforward to solve.

Figure 6.2 shows an example of vector field translating the deformation of one

character. The character is the deformed one, and the vector field corresponds to the

trajectory of the network.

72

CHAPTER 6. CONCLUSIONS AND FUTURE WORK

T T T T T
L ; i jo

r ‘ 5 4+

‘ =

E = & 4a 4 ~

; =

L ~ s Jo

s .

bees ‘ \ . + do

\ ‘ “a

ey x Sd

A

ee 4a

Fa Dat. Den

k yaar aap ys 7 e 40

L L L L 1 L 1
a + o 0 o a +

Figure 6.2: Example of vector field associated with the deformation of a character

We found how to compute the trajectory corresponding to one pass through the

network. Nevertheless, the total deformation of a character is computed in integrating

y over all time steps.

6.2.2 The control points of the deformed data

Once this vector field is found, it becomes possible to locate the position of the

control points on deformed real data. Indeed, from the deformed template, a vector

field associated with the deformation of the character can be constructed. If this vector

field is applied to the original deformed digit, the corresponding perfect template should

73

CHAPTER 6. CONCLUSIONS AND FUTURE WORK

be reached for which the location of the control points is perfectly known. Therefore,

it is also possible to find the location of the control points for real data by applying

the opposite vector field to the perfect template.

6.2.3 Reliability of the match

Assuming the vector field corresponding to the trajectory of the network is found,

the reliability of the match can be assessed by applying the vector field to the unde-

formed character and computing the average quadratic error between the result and

the corresponding perfect template. The value of this error is then a good estimate of

the reliability of the classification.

6.2.4 New location of the control points

The idea is that once the control points of the real data are known, we can define

the new locations of the control points for the stochastic model by averaging the known

locations over the real data. In addition, it would also be possible to define the noise

process at these points by computing the deformation at the different points. In other

words, this first approach allows us to define a new forward model of the distribution

which will be well adapted to the real data since it is constructed from it. Furthermore,

it becomes possible to adapt the classifier to the characteristics of a single writer in

computing the average location of those specific control points and defining the main

features of the characters.

Finally, this new forward model can be used to retrain the network. What is

interesting about this method is that it is possible to repeat this process as many times

as we want in order to improve the performance of the classifier since each time the

resulting forward model is closer to reality.

74

Appendix A

Location of the control points

A.1 Original values

Digit Coordinates of the control points
0 650 400 150 150 400 650 650 sh a

700 850 700 300 150 300 700

1 250 400 450 435 400 : ~ a i f

650 850, 900 580 100

9 170 400 600 300 150 200 650 i = .

700 900 750 315 100 100 100

3 150 400 650 300 250 300 650 400 150 “

750 900 700 505 500 495 200 100 250

yi 300 100 700 He 400 400 400 a i 5

900 500 500 800 500 100

5 100 100 100 400 600 100 Ben 100 350 600

890 700 650 550 250 150 2 900 900 900

6 600 100 350 600 350 100 100 ty i '

900 300 100 300 500 310 300

7 | 100 500 700 600-200 i i ; a
900 900 900 800 100

8 600 400 200 650 400 150 550 600 Z “

700 900 700 300 100 300 620 700

9 600 400 150 400 640 650 640 300 i ‘i

700 900 700 500 650 700 650 100

Table A.1: Coordinates of the original control points. In the work of Dr R. Urbanczik

the size of the frame used was 800 by 1000. The coordinates of the control points

had to be converted to the new smaller frame size. This has been achieved in merely

multiplying the X-coordinates by 140/800 and the Y-coordinates by 160/1000.

APPENDIX A. LOCATION OF THE CONTROL POINTS

A.2 Final values

We saw that it was useful to modify the coordinates of the control points used to

define the perfect templates in order to make them closer to real world data. The final

values which have been used for the last experiments are given in table A.2.

Digit Coordinates of the control points

; 650 400 200 200 400 600 600 ; A
700-850), 700-300. «150 300700

1 400 450 470 455 420 ¢ , 5 i 5
820. 850 900 580 100

A 170) 400 550 220-150-200) 7720 3 a -
700 9) 900) 750 110. 100 ©1380). 7100

: 150/00 ms C50 an 20 280m) S20 mn GOU men z00NNNNELSO :
750 900 700 505 500 495 200 100 250

i 200 100 750 800560520 : " J
900 400 400 900 500 100

; 180 140 290 450 290 0 eos 180 390620
890 650 580 250 100 140 890 910 930
600 100 350 600 350 100 100

c 900 300 100 300 500 310 300 ‘ ci =
100 500 700 650 350

fe \es00'e 870.900.8800 9100 : : ; ;
550 400 240 580 400 220 500 650

. 700 900 700 300 100 300 620 700 ; il
650 450 150 400 640 650 640 300

y 700 900 700 500 650 700 650 100 : >

Table A.2: Coordinates of the control points we finally used

76

Appendix B

Code

B.1 Generating deformed templates

The goal of this procedure is, given a value d of digit between 0 and 9, and a value

t corresponding to the step, to construct a 140 by 160 element matrix corresponding

to the frame which contains the image of a digit d to which the noise 0.9'y: is added.

The noise is initialised at the first execution of this procedure which corresponds to a

value of ¢ equal to 0. This procedure has been implemented in C and is called from a

Matlab routine ([Mokhtari and Mesbah 1997]).

/* Input : 2 arguments, digit ’d’ and step ’time’ */
/* if ’time’ = 0, it generates noise ’mu’ for the desired digit */
/* if ’time’ <>0, it gives a frame of the digit to which it

has been added the noise ’time’ times attenuated */

#include "include_file.h"

#include "declaration.h"

/* Initialisation of the static array noise */
void init_noise()
{

int i7

static long idum = ;

scale = (rani(&idum)-0.5)*fluctuation_factor;

77

APPENDIX B. CODE

angle = (rani (&idum)-0.5)*angle_fluctuation_factor;
width_factor = (rani(&idum)-0.5)*width_fluctuation;

for (i=0;i<2*nb_max_points;i++)

noise[i] = gasdev(&idum) *noise_level;

void init_x_y(int d, double x[], double y[])

{
sbkr my

for (i=0;i<number_point[d];i++) {

if (digit [d] [0] [i]==eos)
x[it+1] = eos;

else {

x({i+1] =

digit [d] [0] [i] *((double) framex/(double)framex_init)*size_attenuation +
20.0;

yli+1] =

digit [d] [1] [i] *((double) framey/(double)framey_init)+*size_attenuation +
205.05)

fe
}

+

void add_noise(int time, int d, double x[], double y[], double

x_mod[], double y_mod[])

t
int count = 0;

InGed, 9:

double denom, numx, numy, 1, xm, ym, num;

double fluctuation;

double phi;

x_mod[1] = x[1];
y_mod[1] = y[1];

for (i=2;i<=number_point[d];i++) {
if (x[i]==eos)

x_mod[i] = eos;

else {
denom = 0;

numx = 0;

numy = 0;

for (j=1;j<=i-1;j++) {
if (x[j]!=eos) {

1 = 1/(dist(x[i] ,yi] ,xfj],y[j])+epsilon) ;
numx += 1 * (x_mod[j]-x[j]);

numy += 1 * (y_mod[j]-y[j]);

78

APPENDIX B. CODE

denom += 1;

}
}
if (denom!=0) {

numx = numx/denom;

numy = numy/denom;

}
x_mod[i] = x[i] + numx + noise[count] *

pow(attenuation_factor,time)*sqrt (1/1-epsilon) ;
y_mod[i] = y{i] + numy + noise[count+1] *

pow(attenuation_factor,time) *sqrt(1/l-epsilon) ;
count += 2;

}
}
fluctuation = 1.0 + scale * pow(attenuation_factor,time) ;

phi = angle * pow(attenuation_factor,time) ;
for (i=1;i<=number_point[d];i++) {

if (x_mod[i]!=eos) {
x_mod[i] = fluctuation * x_mod[i];

y_mod[i] = fluctuation * y_mod[i];
x_mod[i] = x_mod[i] * cos(phi) + y_mod[i] * sin(phi);
y_mod[i] = -x_mod[i] * sin(phi) + y_mod[i] * cos(phi);

}
}
num = 0;

xm = 0;

ym = 0;
for (i=1;i<=number_point[d];i++) {

if (x_mod[i] != eos) {
num +=1;

xm += x_mod[il;
ym += y_mod[i];

tg
eo
xm /= num;

ym /= num;

for (i=1;i<=number_point[d];i++) {

if (x_mod[i] != eos) {
x_mod[i] = x_mod[i] -xm + framex/2;
y_mod[i] = y_mod[i] -ym + framey/2;

}
-

}

/* Returns the number of points ’n’ of the following segment */

int nb_points(int break_point, double x_mod[])

79

APPENDIX B. CODE

int n = 0;

while (x_mod[n+1+break_point] != eos)
nt++;

return(n) ;

ay

/* Initialisation of the variables x_seg[], y_seg[] and t[] */
void init_segment(int n, int break_point, double x_mod[], double

y-mod[], double x_seg[], double y_seg[], double t[])

{
In 33

for (i=1;i<=n;it++) {
x_seg[i] = x_mod[it+break_point] ;
y_seg[i] = y_mod[itbreak_point] ;

é
/* Initialisation of the parameter t */

t[1] =
for (i=1;i<n;i++)

titi] = tli] + dist (x_seg[i] ,y_seg[i] ,x_segli+1] ,y_seg[i+1]) ;

/* plot the point (x,y) into the frame */

void plot_point(int x, int y, double frame[])

{
if ((x= nN 0) & (y<framey))
frame[y*framextx] = 1;

/* plot the line between (x1,y1) and (x2,y2) into the frame */
void plot_line(double x1, double y1, double x2, double y2, double frame[])

{
double p;

double length;

double x_direct,y_direct ,norm;

length = dist(x1,y1,x2,y2);

x_direct = x2-x1;

y-direct = y2-y1;

norm = sqrt (pow(x_direct ,2)+pow(y_direct,2));
x_direct /= norm;

y_direct /= norm;

for (p=0;p<=length;pt=step)
plot_point (floor(x1+p*x_direct) ,floor(y1+p*y_direct) ,frame) ;

80

APPENDIX B. CODE

void generate_curve(int time, double t[], double x[], double yf],
double y2_0[], double y2_1[], int n, double frame[])

if
double p;

double x1,y1,x_old,y_old,x_norm, y_norm,norm;

int x2,y2;

double linewidth;

linewidth = width + width_factor * pow(attenuation_factor,time) ;

for (p=0;p<=t[n];pt=step) {
splint(t,x,y2_0,n,p,&x1);
splint(t,y,y2_1,n,p,&y1) ;
if (po) {

x_norm = -(y1 - y_old);

y_norm = x1 - x_old;

norm = sqrt (pow(x_norm,2)+pow(y_norm,2));
x_norm /= norm;

y_norm /= norm;

plot_line(x1-(linewidth/2)*x_norm, y1-(linewidth/2)*y_norm,
x1+(linewidth/2) *x_norm, y1+(linewidth/2)*y_norm, frame) ;

ie
x_old

y-old

xi;

yi;
i

+

main(int time, double frame[])

ft
int break_point = 0;

ING 5:

int i;

double t[nb_max_points+1], x[nb_max_points+1], y[nb_max_points+1] ;
double x_mod[nb_max_points+1], y_mod[nb_max_points+1] ;
double x_seg[nb_max_points+1], y_seg[nb_max_points+1] ;
double y2_0[nb_max_points+1], y2_1[nb_max_points+1] ;

double yp1 = 130;

double yp2 = 130;

/* Initialisation of the frame and array digit */
init_points (frame) ;

/* Initialisation of x[] and y[] */
Init we yds toy)

/* Addition of the noise */

add_noise(time, d, x, y, x_mod, y_mod);

81

APPENDIX B. CODE

/* At each pass through this loop, one segment of the digit is drawn */
do {

/* Gives the number of control points of the following segment */

n = nb_points(break_point, x_mod);
/* Initialisation of the points for the current segment */

init_segment(n, break_point, x_mod, y_mod, x_seg, y_seg, t);

/* Generation of the two splines for the segment */

spline(t,x_seg,n,yp1,yp2,y2_0) ;

spline(t,y_seg,n,yp1,yp2,y2_1);
/* Generation of the digit */

generate_curve(time,t,x_seg,y_seg,y2_0,y2_1,n,frame) ;

break_point += nt+1;

}
while (break_point != number_point[d]);

}

void mexFunction(int nlhs, mxArray *plhs[], int nrhs, const mxArray

*prhs [])

{

ant 19's

double *frame;

int time;

init_rand();
time = (int) mxGetScalar(prhs[1]) ;
if (time==0) {

d = (int) mxGetScalar(prhs[0]) ;
if ((d<0) || (a>=10))

/* We generate a random integer in the range 0-9 if the value of the

input ’d’ is not an integer lying between 0 and 9 */

d = rand()%(10) ;

/* Initialisation of the vector noise[] */
init_noise();

}
else {

frame = mxCalloc(framex*framey ,sizeof(double)) ;

plhs[0] = mxCreateDoubleMatrix(framex,framey ,0) ;

frame = mxGetPr(plhs[0]);
main(time, frame) ;

APPENDIX B. CODE

B.2 Creation of the gray-scale

This procedure computes the elements of the gray-scale matrix, given the 140 by 160

element matrix calculated thanks to the procedure presented in the above paragraph.

/* Input : 140 by 160 matrix containing the image of the digit */

/* Output : 14 by 16 element matrix containing the gray-scale of the

input frame */

#include "include_file.h"

/* Returns the value of the element (i,j) of the frame */

double frame_value(double frame[], int i, int j)

{
double value = 0;

if ((i>=0) &&(i<framex) &&(j>=0) &&(j<framey))
value = frame[j*framextil] ;

return(value) ;

z

main(double frame2[], double frame[])

x
double N = 0;

double M;

double XS = 0

double YS = 0;

double phis =

double ds = 0;

int i,j,k,1;
double gX,gY,X,Y,phi, lambda;

/* Computation of the center of mass (XS,XY) */

for (i=0;i<framex;i++) {
for (j=0;j<framey;j++) if (frame[j*framexti] != 0) {

N++;

XS += (i+1);
¥S"+= (j*1);

J:
a
XS /= N;
YS /= N;

/* Computation of the average skew angle phi */

83

APPENDIX B. CODE

for (i=0

for (j

gx =
gy

ds +

phi

Est

phis

}
e
ds /= N;
phis /=

ji<framex;i+t+) {

=0;j<framey; j++) if (frame[j*framext+i] != 0) {
(i+1)-XS;

(j+1)-Ys;
= sqrt (gX*gX+gY*gy) ;

= atan2(gY,gX);
phi < 0) phi += 2*3.14159;
+= phi;

N;
phi = phis - 3.14159;

/* Suppression of the skew and normalisation of the size */

lambda = 35/ds;

for (i=0;i<framex_scale;i++)

for Gj =0; j<framey_scale; j++)
frame2[j*framex_scaleti] = 0;

for (i=0;i<framex;it++) {

for (j=0;j<framey;j++) if (frame[j*framex+i] != 0) {
X=

Y=
((it+1)-XS)* lambda;

((j+1)-YS)* lambda;

gX = X*cos(phi) + Y*sin(phi) ;
gY = -X*sin(phi) + Y*cos(phi) ;
gX = (gX*framex_scale) /framex;
gY = (gY*framey_scale) /framey;

k = floor(gX + 0.5* framex_scale +0.0);

1 = floor(gY + 0.5* framey_scale +0.0);

if ((0 <= k) && (k < framex_scale) &&

(0 <= 1) && (1 < framey_scale))
frame2[1*framex_scale+k] += lambda;

7
2
for (i=0;i<framex_scale;it++)

for (j=0;j<framey_scale; j++)
frame2[j*framex_scale+i] = tanh(frame2[j+framex_scale+i]/3 -6);

void mexFunction(int nlhs, mxArray *plhs[], int nrhs, const mxArray

*prhs[])

{
plhs [0] = mxCreateDoubleMatrix(framex_scale,framey_scale,0) ;

main (mxGetPr(prhs[0]) ,mxGetPr(plhs[0])) ;

}

84

Bibliography

Bishop, C. M. (1995). Neural Networks for Pattern Recognition. Oxford University

Press.

Burr, D. (1981, November). Elastic matching of line drawings. [EEE Transactions

on Pattern Analysis and Machine Intelligence 3, 708-713.

Hinton, G., C. Williams, and M. Revow (1992). Combining two methods of recogniz-

ing hand-printed digits, pp. 53-60. Elsevier.

Impedovo, S. (1994). Fundamentals in handwriting recognition. Springler- Verlag.

Lam, L. and C. Y. Suen (1988). Structural classification and relaxation matching of

totally unconstrained handwritten zip-code numbers. Pattern Recognition 21 (1),

19531)

Lee, Y. (1991). Handwritten digit recognition using k nearest-neighbor, radial-basis

function, and backpropagation neural networks. Neural Computation 3(6), 440—

449.

Mokhtari, M. and A. Mesbah (1997). Apprendre et maitriser MATLAB, pp. 286-298.

Springer-Verlag.

Press, W. H., S. A. Teukolsky, W. T. Vetterling, and B. P. Flannery (1992). Numer-

ical Recipes in C (Second ed.). Cambridge University Press.

Revow, M., C. K. I. Williams, and G. E. Hinton (1996). Using generative models

for handwritten digit recognition. JEEE Transactions on Pattern Analysis and

Machine Intelligence 18(6), 592-606.

BIBLIOGRAPHY

Suen, C. Y., C. Nadal, R. Legault, T. A. Mai, and L. Lam (1992, July). Com-

puter recognition of unconstrained handwritten numerals. Proceedings of the

IEEE 80(7), 1162-1180.

Urbanczik, R. (1991). Learning temporal structure by continuous backpropagation.

Second International Conference on Artificial Neural Networks, 124-128.

86

