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Thesis Summary 

This thesis describes a method of recognising handwritten digits by using a recurrent 

neural network to incrementally map a deformed character back to its undeformed 

template. In the deformable templates approach to handwritten character recognition, 

a character is described by a set of control points and spline segments are drawn through 

these points. A forward model of the distribution of characters is then obtained by 

adding a noise process at the location of these control points. This noise process 

should model the way characters are actually written. The inversion of the forward 

model yields a principled approach to HCR. 

However, this inversion is computationally expensive and even often intractable. For 

that reason the general neural network approach to HCR consists of directly mapping 

characters to classification. Nevertheless, this approach does not give any information 

about the character and such information would be relevant both to assess the reliability 

of the classification and to adapt quickly to the characteristics of a single writer. 

The aim of this project is, by relaxing control points to their home position, to compute 

the deformation of the character from the trajectory of the network. This method would 

resolve the problems described in the above paragraph and in addition would make it 

possible to estimate the few parameters of the forward model from a small training set 

if the network provides full inversion of it. 

Keywords: Handwritten character recognition, backward propagation, 

feed forward model, recurrent neural network.
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Chapter 1 

Introduction 

1.1 Previous research 

The goal of this part is not to review the voluminous work on handwritten character 

recognition that has spanned more than three decades (useful reviews can be found in 

[Impedovo 1994] and [Suen, Nadal, Legault, Mai, and Lam 1992]). However, it is 

helpful to summarise the trends. We can distinguish several main different approaches 

to handwritten character recognition. Many research have been done using statistical 

tools, comparing examples with models. But more recently methods involving neural 

network knowledges have been proposed. 

1.1.1 Two main approaches 

Two main approaches to HCR can be discerned. The first one makes use of a 

significant amount of prior knowledge. Though in this case only small training set is 

required, the classification is very slow. The second one which utilises less prior knowl- 

edge, requires large training set but performs quick classification. Good performance is 

obtained using methods of both trends. However, we are more interested in this second 

trend since the method presented in this paper is a combination of both deformable 

templates and neural networks approaches which use only little prior knowledge.



CHAPTER 1. INTRODUCTION 

1.1.2 Statistical methods 

Conventional statistical approach 

Many different statistical methods have been experienced. The conventional statis- 

tical approach to perform classification is to use a discriminant classifier that constructs 

boundaries which discriminate between objects of different categories ([Lee 1991]). Al- 

though the resource requirements of all those methods differ widely, their classification 

performance is remarkable similar as long as no estimate of the reliability of the clas- 

sification is required. Indeed, the misclassification rate is about 1% on the NIST test 

set for the most reliable methods. Nevertheless, in all cases many patterns must. be re- 

jected to achieve low error rates on the remaining ones. In addition, this approach does 

not permit to say anything about the particular way in which the digit is instantiated. 

Optical character recognition 

An alternative approach is to use optical character recognition which starts with 

a structural description of the objects to be recognised and matches it against the 

image ([Burr 1981]). The classical pattern recognition consists of extracting features 

before doing the classification. But many various methods have been experimented. 

Some of them aim at extracting global features whereas some others focus on local 

ones ({[Lam and Suen 1988]). One other method is to use generative models. In the 

simplest version there is one model for each digit. Given an image of the unidentified 

digit, the idea is to search for the model that is the most likely to have generated this 

image. Each of the ten digits has his own elastic model. The image is then recognised 

by choosing the elastic model which best matches the image. During this matching 

process, the model is deformed in an attempt to ensure that every piece of ink in the 

image is close to some part of the model. The fidelity of the final match depends on 

the amount of deformation of the model, and the distance of remaining ink from the 

deformed model. In [Revow, Williams, and Hinton 1996], this deformation is computed 

using a procedure based on the Expectation Maximisation algorithm that maximises 

the likelihood of the model generating the data. 

10



CHAPTER 1. INTRODUCTION 

All these different methods have the attractive property that, in addition to pro- 

viding a label, they can also, in some sense, explain the image. It may indeed be 

interesting for example to know which parts of the digit of the image represent the 

digit and which parts are caused by noise or some incorrectly segmented neighbouring 

digit. In addition, information about the structural description of the objects to be 

recognised such that information about position, size, orientation, shear or elongation 

of the digits should allow us to better estimate the reliability of the match. 

However, so far these approaches require large computational resources. In order 

to speed up the match, methods involving neural networks tools have been proposed. 

1.1.3 Using neural networks for HCR 

First neural network approach to HCR. 

The first approach to handwritten character recognition using neural networks con- 

sists of directly mapping characters to classification. In this case, given an image of a 

digit, the network should be able to determine which digit it is. But this method does 

not provide any information about the pose of the digit either. 

Researchers try a different approach to handwritten character recognition involving a 

feed forward network. 

Using a feed forward network 

‘The goal of this method is to train a feed forward network to provide initial values 

for an elastic match algorithm ([Hinton, Williams, and Revow 1992]). This hybrid 

method should avoid that the elastic model gets trapped in local optima and perform 

quicker classification. But unfortunately, this inversion is in general computationally 

too expensive and even intractable. Hence the first neural networks approach presented 

in the above paragraph has been rather more successful. What is more, besides re- 

quiring huge amounts of training data, this approach does not give much information 

ll



CHAPTER 1. INTRODUCTION 

about the character. 

It was obviously necessary to find a better approach to HCR in order to improve 

the performance of the classification. The goal of this new method would be first to be 

computationally cheaper and then to provide much information about the character so 

as to better estimate the reliability of the match. 

1.2. Presentation of the method used 

1.2.1 General presentation 

As explained in the previous method using a feed forward network, assume we have 

a dynamical system with attractive fixed points which correspond to the undeformed 

objects. If the system has suitable attractive basins, it will restore the undeformed 

object when initialised with a deformed one and thus classify it. We also saw that 

the main problem in this approach is the large computational data which is required. 

However, a cheaper procedure can be used, if we can specify the entire trajectory when 

training the network ((Urbanczik 1991]) and not only initial and final conditions. 

1.2.2 Using a recurrent neural network 

By relaxing control points to their home position we shall use a forward model 

to train a recurrent neural network whose goal is to incrementally map a deformed 

character back to its undeformed template. Indeed, we want the network to undeform 

digits in several steps. The reason of this choice is that then, by analysing the trajectory 

of the network, it becomes possible to compute the deformation of the character and 

consequently to estimate the parameters of the forward model from a small training 

set which is valuable to assess the reliability of the match. 

12



CHAPTER 1. INTRODUCTION 

1.2.3 Combination of both general trends 

A stochastic model of deformable templates is also used in this method, but the 

crucial difference with traditional statistical method is that these deformable templates 

are to be used to train the network, and not anymore to be directly compared to the 

real data. 

Indeed, once this inversion is achieved by the neural network, the classification 

consists of merely comparing the final output to the ten different perfect templates, as 

in the simplest statistical approach. 

1.2.4 Structural identification of the objects 

The key idea of this method is that the trajectory of the network can be analysed 

and associated with a deformation of the underlying plane to provide structural iden- 

tification of a digit. Such a deformation of the plane allows us to provide a vector field 

which translates the trajectory of the network. If the inversion of the forward model is 

full, the position of the control points of the deformed character can be located. The 

advantage of this method is that it would allow the model to adapt quickly to the 

characteristics of a single writer. 

1.3. Thesis overview 

In the next section a stochastic model of handwritten digit generation is presented. 

In this model, characters are described by a set of control points and cubic spline are 

drawn through these points. A forward model of the distribution of the characters is 

then obtained by adding a noise process at the location of these control points. The 

noise process as well as the construction of this forward model will be explained in 

detail. 

These deformed templates built with this stochastic model are to be used to train 

13



CHAPTER 1. INTRODUCTION 

a recurrent neural network described in section 3. 

Section 4 presents the real data and the various processing techniques achieved to 

make them compatible with our model. 

Section 5 displays the results which have been obtained through the evolution of the 

different parameters such as the location of the control points of the perfect templates, 

the parameters of the network or the pre-processing work on data. 

The last section discusses present conclusions of the work achieved so far which can 

be considered as a first part of the whole method to handwritten character recognition 

presented in this introduction. Indeed, the first aim of this project is to provide a 

classification with a reasonable rate of error (we need the misclassification rate to be 

at least less than 10% on real data). Once this is achieved, it would then be possible to 

compute a reliable vector field corresponding to the trajectory of the network, and by 

analysing this vector field, make the stochastic model closer to the real data in order 

to improve again the performance of the classifier. 

14



Chapter 2 

Deformable templates 

This section describes which stochastic model has been used to generate the de- 

formed templates and what structure has been adopted to store them. 

2.1 The deformable template approach 

In the deformable templates approach to handwritten character recognition a char- 

acter is described by a set of control points and line or rather spline segments are 

drawn through these points. The deformable templates are generated by defining a 

noise process at the location of these control points. This noise should model the way 

characters are actually written. 

2.2 The control points 

2.2.1 How to find the location of the control points? 

Obviously the initial location of the control points should describe the perfect. tem- 

plates. However the choice of the position is not an easy task since the idea we have 

of a perfect character is often quite different to the ones which are likely to be met in 

real world data. It is indeed important to stress that the main goal of this project is 

to test the performance of this method against real world data.
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In addition, it is also necessary to consider the fact that the digits are not exactly 

the same all over the world. For example the digit 1 is composed of only one segment 

in the United States and United Kingdom whereas it is composed of two segments in 

the rest of Europe. Therefore we have to consider where the real data come from in 

order to find the most suitable shape for the perfect templates. 

2.2.2 Original values 

The original values which have been utilised in the beginning of the project are 

these Dr R. Urbanczik used in previous research about HCR using Neural Network. 

But as explained just above these values describe the way European people draw the 

digits, and the real data come from a CDROM provided by NIST National Institute. 

That is one of the reasons why modifications have been made to these values. 

The coordinates of the control points which have been originally utilised are reported 

in the table A.1. 

The number of control points depends on the complexity of the digit. For example 

only five points can perfectly describe the digit 1 but 10 points are required to define 

the digit 5. 

We can also point out that the digits 4 and 5 are composed of two segments since we 

have to lift the pen to plot one of these digits. We coded the passage from one segment 

to the other as an artificial control point whose value is ’*eos’!. 

2.2.3. Importance of the location of the control points 

Finally it has to be noticed that the definition of the perfect templates is funda- 

mental since these perfect digits are the basis for the deformable templates we want to 

construct and which are to be used to train the network. Thus the stochastic model 

should generate as many as possible different shapes of characters which are likely to 

! ‘end of segment’ 

16
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be met in real world data. Furthermore, it would be even better to respect in the 

generated distribution the frequency of each different shape. That means that if in the 

real data, a particular shape of character appears, better performance would be reach 

if this specific shape is generated in simulated data in the same proportions. 

We will see the evolution of these control points in the section 5 as well as the 

influence the perfect templates have on the results. 

2.3 Construction of the complete perfect templates 

2.3.1 Structure of the images 

The image of a digit can be considered as a 140 by 160 element matrix in which each 

element corresponds to a pixel of the image. The matrix is binary. The value is 0 if the 

pixel is off and 1 if the pixel is on. In this matrix, the value whose indices are (1,1) rep- 

resent the lower-left corner, (1,160) the upper-left and (140,160) the upper-right corner. 

2.3.2 Utilisation of cubic spline 

Assume we got the coordinates of the control points, the entire digit is built in 

drawing cubic spline segments through these points as shown in figure 2.1 ([Press, 

Teukolsky, Vetterling, and Flannery 1992]). 

Cubic Spline Interpolation 

Given a tabulated function y; = y(«;), 1 = 1...N, linear interpolation in the 

interval x; and x;,; gives the interpolation formula 

y = Ay; + Byj 41 (2.1) 

where 

(2.2) 

  

Le
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X2 

X3 
x1 

X4 

X5 

X6 x7 

Figure 2.1: A digit is drawn by plotting the cubic spline which interpolates the control 

points X;. This figure shows the example of the digit 2 described by 7 control points 

The goal of cubic spline interpolations is to get an interpolation formula that is smooth 

in the first derivative, and continuous in the second derivative, both within an interval 

and at its boundaries. 

Assume we also have tabulated values of the second derivatives y", that is to say the 

set of values y/’, we can then add, within each interval, a cubic polynomial to the right- 

hand side of equation 2.1. If we construct this cubic polynomial such as its second 

derivative varies linearly from a value y/ on the left to a value y/,, on the right, we 

will have the desired continuous second derivative. 

‘The only way to arrange this construction using 2.1 is 

y = Ay; + Byjy1 + Cyj + Dyfi (2.3) 

18
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where A and B are defined in 2.2 and 

C=>(A-A)(@j1-2;)? D=-—(B- B) (2441 —2;)? (2.4) 
1 

6 O
l
e
 

We can check now that y" is in fact the second derivatives of the new interpolating 

polynomial. Taking the derivatives of equation 2.3 with respect to x and replacing 

dA/dx, dB/da, dC/dx, dD/dx by their expressions found from the definitions of A, B, 

C, D, we obtain the following result 

dy — yj -yi =A? -1 3p 1 a 
7 oe LaeG (2541 — 25)yj + — — (tit — £5) 41 (2.5) 

" oF: a 

for the first derivative, and 

& 
Sea = AUS + Bupa (2.6) 

for the second derivative. 

The problem is now that we supposed the y/!’s to be known. However we still have 

to translate the fact that the first derivative, computed from equation 2.5, has to be 

continuous across the boundaries between two intervals. The key idea of a cubic spline 

is to require this continuity and use it to get equations for the second derivatives yj. 

These equations are obtained by setting equation 2.5 evaluated for 2 = x; in the 

interval («;—,,,;) equal to the same equation evaluated for « ; but in the interval 

  

j,%;41). We finally get N — 2 linear equations (for 7 = 2,...,N —1 J J 

  Uj-1 Uj — Uj Yi+i — Y: Yj — YVj-1 Se he ee ea 6 gay — hy oy yet 

  

These are N — 2 linear equations in the N unknowns y’, i = 1,... , N. That is why we 

need to specify two more conditions for a unique solution. Nevertheless only the most 

common way of doing this has been used in the project which consists of setting both 

yf! and yy equal to zero, giving the so-called natural cubic spline. 

Parameterisation of a cubic spline 

As an image is represented by a matrix whose elements correspond to the pixels, 

we need to parameterise the expression of the splines. The goal is so to find the X and 

19
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Y-coordinates of each point of the spline segment as a function of a parameter t. 

Given a segment with N points (2;,y;), fori = 1,...,N, we aim at constructing 

two cubic splines x(t) and y(t) such that 

yi) = Yi (2.9) 

with suitable choice of t;,i=1,... ,N. 

The N values of the parameter t have been chosen recursively as following (for i = 

[men 1) 

ia (2.10) 

tint = ti t+d((ai,yi), (itr, Yin1)) (2.11) 

where d((x;, yi), (vj, y))) is the Euclidean distance between both points whose coordi- 

nates are (2;,y;) and (2;,4;), that is to say 

A (xi, yi), (@j, 4) = (2.12) 

  

If we have chosen the parameter ¢ as described just above, it is in order to find uniformly 

spaced points along the curve even if two following control points are either close or 

distant to each other. 

Once the parameters of these two splines are computed, it is easy to find any 

coordinates of a point of the curve by taking different values of the parameter t. It is 

sufficient to consider for ¢ a range of values lying between 0 and f,, with a small enough 

step to obtain a continuous curve. 

2.3.3 Problem of the line width 

Now we found the curve of the perfect templates, we have to deal with the problem 

of line width. Besides, we shall see in another section that it may be useful to be able 

to modify this parameter in order to quickly adapt the deformable templates to the 
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real data. For that reason, in this project, the line width has to be a parameter which 

is easily modifiable. 

If / is the value of the line width we finally want to obtain in the map of the tem- 

plate, a line segment whose length is / has to be drawn at each point of the curve. This 

segment has to be drawn perpendicularly to the curve at the considered point. 

If we consider two close consecutive points of the curve (x,y) and (x2, y2), the per-     

pendicular vector to the curve at the first point can be defined as V = (Vi, V2) = 

(y2 — yi, %1 — 2). The line width is finally drawn in plotting the line segment limited 

by both points whose coordinates are 

seb Mia wh Yah 
2IVr" 2 Iv 

as IV; 
) and (+ 5iypet apr I: 

ai 2IV1 ) (2.13) 

2.3.4 Map of the perfect templates 

We saw now how to construct the perfect templates. The result is stored in a 140 

by 160 element matrix. Figure 2.2 shows the result of the plot of the perfect templates 

using the original values of the coordinates of the control points. 

2.4 Noise process 

We defined in the previous section the perfect templates. Those templates are 

described by control points. We shall explain in this section how to build deformed 

digits by adding a noise process at the location of these control points. Once this noise 

is added, deformed digits are obtained by merely drawing spline segments through 

these new control points as it has been done for perfect templates. 

2.4.1 Choice of the noise process 

The noise process should model the way characters are actually written. First of 

all it would be a too rough approximation to use identically independent distributed 

noise. This idea is easy to be understood. If a writer, starting drawing a character, 
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Oh 2 Se Se 

BOs. Sik 
Figure 2.2: Perfect templates 

deviates from the perfect curve, he will obviously try to correct this error in order to 

respect the general shape of the whole digit. That explains why we have to consider 

dependent noise at the different control points. 

2.4.2 Definition of the noise process at a point X of the curve 

Ifa template is described by N control points, and assume the noise at these control 

points is equal to V;, fori = 1,... , N this previous idea leads to consider, at a point 

X of the curve, a noise which is defined by 

Vad G)o! 4 Ved OG Xa )ot t+ yd 
ACGoG) dae )= dea) 

  
  f(X)= (2.14) 

where X;, for i = 1,--- ,N are the N control points of the digit, and d(X,Y) is the 

Euclidean distance between both points X and Y as defined in equation 2.12. 
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We can first notice that obviously if equation 2.14 is evaluated at a point X which 

tends to the location of the control point X;, the limit of the result is Vj, that is to say 

equal to the noise at this control point. That can be written as 

fori=1,...,N limf(X)=V; as X 4 X; (2.15) 

That result can be explained by the fact that all the terms of the sum in equation 2.14 

are negligible with respect to the term d(X,X;)~! which tends to infinity in both 

numerator and denominator. After simplification, only the term V; is left. 

In addition it is important to point out that the closer to one of the control points 

X is, the more influent the noise at this control point is. That is still due to the term 

d(X, X;)~! of the sum which dominates over all the others as the point X is close to 

Xj. 

2.4.3 Definition of the noise process at the control points 

General expression 

We aim at defining a noise process at the location of the control points. The 

method employed is to define the noise process recursively. In other words, although 

we saw in equation 2.14 that the noise at a point X on the curve depends on the noise 

defined at all the control points, we assume that the noise at control point X; only 

depends on the noise which has been defined at the previous points X;, Xo,--- ,Xj-1. 

‘That can be understood by considering a writer who is drawing a digit. The devia- 

tion from the perfect curve at a point X only depends on what has already been drawn. 

We note the actually drawn points by XE x! is so the former control point X; to 

which we added the noise Vj, that is to say 

M=aX+V (2.16) 

The location DG for the next point, given that the previous points have been drawn 
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at Xf, 9 =1,... 4-1, is 

Xi = Xia + View (2.17) 

The ideal location does not occur for V;;; = 0, but the best choice is to choose Visi as 

a weighted average of the previous V; (2.3). 

fr 

  

Figure 2.3: The noise is defined recursively at the control points. Assuming the noise 

V2 at the control point X2, we want the ideal location of the third point to be chosen in 

order to respect the general shape of the digit. For that reason, this point is not X3, but 

X3 which is located by adding a weighted average of the noise at the previous control 

points to X3. Gaussian noise is then added which translates the possible deviation that 

the writter may make. We finally find the actual drawn point xe 

  

‘Thus, if we consider a digit described by N control points, the expression of the 
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noise V;, i= 1,... , N is defined by using the following expressions 

Xin = X;+ f (Xi   (Xi, Vi), (Xa, Va), --- (Xi Vi) (2.18) 

where f is the function described by expression 2.14 computed with i control points. 

Xe 1 is a weighted average of the noises defined at the previous control points. 

Xhy = Xin +nyj d(Xi, Xin) (2.19) 

where 7; is independent Gaussian random variable with zero mean and variance o to 

be determined. Xie is the actually drawn point. The noise Vj at the point X; is finally 

Vin = Xia eG) (2.20) 

We can see in expression 2.18 that the term XG of the noise only depends on the 

noise at the previous control points as explained just above. 

In expression 2.19 we add to the noise another term which is the product of Gaussian 

noise and the Euclidean distance between X; and X;4;. If we chose the noise at the 

point X;,; proportional to the distance separating this point from the previous one, it 

is because the longer the drawn distance is, the higher the risk of deviation from the 

perfect curve is. 

Expression of the noise at the first three control points 

In order to make this description of the noise clearer, we shall explain in this 

paragraph the expression of the noise at the first three control points. 

e At the first point Y,, V; =0 

That result means we chose that no noise is added to the first control point X,. 

Indeed adding noise to X; would be equivalent to merely translating the whole 

character. Besides, we shall see how this problem can be resolved in aligning 

characters on their center of mass. 

e At the second point X2, V2 = n d(X,, X2) — X2 
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As V, = 0, XG is equal to zero in 2.18. The first term in the expression of V2 

comes from 2.19 and the second one from 2.20. As we said in the above paragraph, 

Gaussian noise process which is added is proportional to the distance drawn from 

the previous control point Xj. 

e At the third point X3, we obtain 

d(X3,X2)"Vo 

  

ea 221 o © aXe Xo 2 ate, ta) eau) 
= X,47 d(Xs,X) (2.22) 

5 d(X3, X2)7'Va ne i 
Vs = es dt (2.23) 

d(X3,.X1)-! + d(X3, Xo) 

In expression 2.23 we see how the noise V3 depends on the noises defined at the 

previous control points and, like for the noise V2, on the distance between X» and 

X3. 

2.4.4 Value of the amplitude of the noise 

The noise process which is added at the location of the control points is presented 

in equation 2.18, 2.19, and 2.20. The parameter to be defined is the standard deviation 

o of Gaussian noise 7; which represents the amplitude of the noise. The initial value 

has been found in considering a sample of simulated data. This value has to be great 

enough to generate as many different shapes of characters as possible, but of course 

characters have to be recognisable, at least for human. The initial value we chose is 

0.20. That means that if for example the distance drawn from the previous control 

point corresponds to 100 pixels, the typical deviation from the original position is about 

20 pixels, in a 140 by 160 pixel frame. 

2.5 Sample of simulated data 

Figure 2.4 shows a sample of the distribution built with the stochastic model pre- 

sented in this section. The coordinates of the control points used to plot these digits 
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are the original ones, and are given in table A.1. 
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Figure 2.4: Sample of simulated data using original values of the coordinates of the 

control points 
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These deformed templates are built in order to train a recurrent network which is 

presented in the next section. 
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Chapter 3 

The recurrent network 

We shall first explain what the input and the required output to the network are. 

Then we shall discuss the different possible networks which could have been used to 

achieve the desired result and the reasons which led us to the final choice. 

3.1 Goal of the neural network 

As we saw in the introduction, the desired behaviour of the network is to incremen- 

tally undeform characters. In other words that means that, at each step, we want the 

output to the network be an image whose shape is slightly closer to the corresponding 

perfect template than at the previous step. The data which is used to train the neural 

network is built according to the stochastic model described in the previous part. 

3.2 Input to the neural network 

We saw that the image of a character is stored in a 140 by 160 element matrix, that 

is to say 22400 elements. Even if the matrix is binary', it would not be efficient to use 

this matrix as an input to the network because of huge computational resources which 

would be required. That is the reason why we decided to utilise a smaller and coarser 

gray-scale of this image as an input to the network. 

! The value of each element of the matrix is 1 if the element corresponds to an inked pixel and 0 if 

it corresponds to an uninked one 
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3.2.1 Utilisation of a gray-scale 

Dimensions of the gray-scale 

The main problem in the construction of the gray-scale is to find the most suit- 

able dimensions. Obviously this parameter can strongly affect the performance of the 

network. If the size is to small, not enough information will be given to the network. 

Indeed characters (and particularly smallest ones) would be then indecipherable, even 

for humans. The network would be so unable to learn correctly. On the other hand, if 

we would choose a too large gray-scale size, the problem would become computation- 

ally impossible to solve. One reason is that we have to consider that each element of 

the gray-scale corresponds to an input unit of the neural network. 

Consequently the choice of the dimensions of the gray-scale has been made by choosing 

the smallest values which preserve the main features of characters. According to the 

complexity of the characters, we can estimate that a gray-scale size of 14 by 16 is a 

reasonable and suitable choice. However it is important to keep in mind that this pa- 

rameter can still be modified and increasing the values of the dimensions would allow 

us to obtain better results. 

We shall see now how this gray-scale has been constructed from the original frame. 

Structure of the gray-scale 

We aim at transforming the original frame containing the image of a character and 

whose dimensions are 140 by 160 into a gray-scale format whose dimensions are 14 by 

16. This gray-scale image can so be considered as a 14 by 16 element matrix. Like 

for the original one, the element whose indices are (1,1) corresponds to the lower-left 

corner and (14,16) to the upper-right corner. Besides, we have to conserve as much 

information as possible in the gray-scale. Thus we did the two following choices: 

e We will not use anymore binary type element in the gray-scale matrix, but each 

value lies between -1 and 1 according to the percentage of inked pixels in the 

input window?. 

? the value is close to 1 if most of pixels in the window are inked and close to -1 if most of them are 

uninked 
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e The gray-scale image of the digit is centered on its center of mass. Thanks to 

this process, we avoid the problem of position of the image in the frame. It may 

be especially useful to achieve this transformation on real data for which we do 

not have any information about the position of characters in the frame. 

3.2.2 Construction of the gray-scale 

How to center the image on the center of mass? 

Assume the original image of a character is stored in the two dimensional matrix 

whose name is frame(i,j), where 1 < i < 140 and 1 < j < 160. The center of mass 

(Gx, Gy) of the figure is computed as follows 

TMA THe frameliss) 4 CMY ENS J srame(i) 
N oe N 
  Gx= (3.1) 

where N = ed pa ~, frame(i,j) is the weight of the whole image. Once we found 

the center of mass of the character, we just have to consider this point as the center 

of the middle window of the gray-scale. In our example, the center of mass will be 

aligned with the middle pixel of the window whose indices are (7,8). 

Values of the gray-scale 

Each element of the gray-scale matrix represents a 10 by 10 pixel window in the 

original image. The first value which is calculated for each window is the number of 

inked pixels in the window. For example, if we denote M the number of inked pixels 

of the window whose coordinates of the central pixel are (Xj, Yi), we obtain 

i=4 jad 

M= > OS frame(Xu +i, Yu +3) (3.2) 
i=—5 j=-5 

We can compute all the different values of M for each window in replacing the values 

of Xj, and Yyy in equation 3.2 by 

Xu ll Gx + (k—7).10 (3.3) 

Yu = Gy +(l-8).10 (3.4) 
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fork =1,...,14and/=1,... ,16, and where Gy and Gy are defined in equation 3.1. 

The number M of inked pixels in one window obviously lies between 0 and 100. 

However we want every values of the gray-scale to lie between -1 and 1. Thus the 

final value actually stored in the matrix is tanh (A.M +B) where A and B are two 

constant parameters to be determined. We use the tangent hyperbolic function in order 

to obtain values between -1 and 1. Both parameters A and B have to be adjusted to 

actually find a complete range of values lying into the interval (—1, 1). 

3.2.3. Example of transformation 

Figure 3.1 shows an example of transformation of a deformed character into the 

gray-scale format. 

a> 

  

Figure 3.1: Example of the transformation of a character into the gray-scale format 

The 14 by 16 element matrix built from the original 140 by 160 element matrix is 

the input to the neural network. An example of matrix corresponding to figure 3.1 is 

presented in table 3.1. 
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-1.0 | -1.0 | -1.0 | -1.0 | -1.0 | -1.0 | -1.0 | -1.0 | -1.0 | -1.0 | -1.0 | -1.0 | -1.0] -1.0 

-1.0 | -1.0 | -1.0 | -1.0 | -1.0 | -1.0 | -1.0 | -1.0 | -1.0 | -1.0 | -1.0 | -1.0 | -1.0 | -1.0 

-1.0 | -1.0 | -1.0 | -1.0 | -1.0 | -0.9 | 1.0 | 1.0 | -0.9 | -1.0 | -1.0 | -1.0 | -1.0 ] -1.0 

-1.0 | -1.0 | -1.0 | -1.0 | 0.7 | 1.0 | 1.0 | 1.0 | 1.0 | -1.0 | -1.0 | -1.0 | -1.0 | -1.0 

-1.0 | -1.0 | -1.0 | 0.5 | 1.0 | 1.0 | 0.9 | 1.0 | 1.0] 0.9 | -1.0 | -1.0 | -1.0 | -1.0 

-1.0 | -1.0 | -1.0 | -0.7 | 1.0 | 0.8 | -1.0 | -0.8 | 1.0 | 1.0 | -1.0 | -1.0 | -1.0 | -1.0 

-1.0 | -1.0 | -1.0 | -1.0 | -1.0 | -1.0 | -1.0 | 1.0 | 1.0 | 1.0 | -1.0 | -1.0 | -1.0 | -1.0 

-1.0 | -1.0 | -1.0 | -1.0 | -1.0 | -1.0 | 0.9 | 1.0 | 1.0 | -0.9 | -1.0 | -1.0 | -1.0 | -1.0 

-1.0 | -1.0 | -1.0 | -1.0 | -1.0 | 1.0 | 1.0 | 1.0 | -0.5 | -1.0 | -1.0 | -1.0 | -1.0 | -1.0 

-1.0 | -1.0 | -1.0 | -1.0| 1.0 | 1.0 | 1.0 | -0.9 | -1.0 | -1.0 | -1.0 | -1.0 | -1.0 | -1.0 

-1.0 | -1.0 | -0.9 | 1.0 | 1.0 | 1.0 | -0.9 | -1.0 | -1.0 | -1.0 | -1.0 | -1.0 | -1.0 | -1.0 

-1.0 | -1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | -0.9 | -1.0 | -1.0 | -1.0 

-1.0 | -1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | -0.8 | -1.0 | -1.0 | -1.0 

-1.0 | -1.0 | -0.9 | 0.8 | -0.9 | -1.0 | -1.0 | -1.0 | -1.0 | -1.0 | -1.0 | -1.0 | -1.0 | -1.0 

-1.0 | -1.0 | -1.0 | -1.0 | -1.0 | -1.0 | -1.0 | -1.0 | -1.0 | -1.0 | -1.0 | -1.0 | -1.0 | -1.0 

-1.0 | -1.0 | -1.0 | -1.0 | -1.0 | -1.0 | -1.0 | -1.0 | -1.0 | -1.0 | -1.0 | -1.0 | -1.0 | -1.0 

  

  

  

  

  

  

  

  

  

  

  

  

  

  

                                  

Table 3.1: Example of 14 by 16 gray-scale matrix. The bold font values correspond to 

the values greater than 0. It so represents the more inked windows of the gray-scale. 
Thus we can discern through these values the deformed digit 2 whose map is drawn in 

figure 3.1 

3.2.4 The gray-scale matrix is the input to the network 

The gray-scale matrix of the character is to be utilised as an input to neural net- 

work. Thus we have to consider a recurrent network with 224 input units*. As we 

want the output to the network to be a slightly less deformed image of the character, 

the number of output units is 224 as well. 

Note that this dimension is high. This method would be computationally less 

expensive if it could be possible to reduce the dimension of the feature space by using 

PCA methods for example. Nevertheless, it is important to keep in mind that the goal 

of this method is not merely to provide a classification but also to construct a vector 

field corresponding to the trajectory of the network. For that reason, the geometrical 

structure of the image has to be preserved. 

We shall now explain the different possible networks which could have been used, 

and which choice has finally been made. 

* the dimensions of the gray-scale matrix are 14 by 16 which represents 224 elements 

32



CHAPTER 3. THE RECURRENT NETWORK 

3.3 Different possible networks 

According to previous work, several different recurrent networks could have been 

used to achieve what is expected. We shall see in this section different ways and the 

reasons which led us to the final choice. 

3.3.1 Presentation of the problem 

We want the network to progressively undeform the image of characters. Consid- 

ering the stochastic model we described, deformed templates are generated by adding 

noise called ji at the control points of the perfect templates. We shall call J! the 

perfect template to which we have added the attenuated noise 0.9'.j. A sample of sim- 

ulated data is so constructed with different values of the noise j:. The corresponding 

output to the network at the step ¢ is called OM". 

The idea is that, given an example of deformed character [!", we expect the out- 

put to the network to be f/'+! at the next step. We assume the full inversion of the 

deformed digit to the corresponding perfect template is supposed to be achieved in 20 

#320 steps. Indeed the character [° is very close to the perfect template since 0.92 = 0.12. 

Consequently that means that we shall train the neural network using a sample of 

distribution of characters and, at each step, the target oM' for the input J" shall be 

[ett 

Besides, in order to find a progressive transformation of the digit, we choose to 

define the dynamic of the network at the step t as following 

Of = (1- Ayr 4+ AOt (3.5) 

where ) is a parameter lying between 0 and 1 to be determined and J’ is the input to 

the network at the step t. We can see that, at each step, a fraction of the previous 

input is added to the output in order to slow down the transformation. The error 
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measure is defined as 

E = =(0t — fut? (3.6) 

m
i
e
 

3.3.2 Three different possibilities of learning 

First possibility 

The first method would be to train the network with the ideal input at each step. 

That means that at the step t, for a character [, the input is the perfect template 

to which the noise 0.9‘ has been added (figure 3.2). In other words, the input at the 

step ¢ is 

T= fut (3.7) 

and the target is 

ott — fut+t (3.8) 

In this case, the output at each step is not considered anymore in the next input. 

Step 1 Step 2 Step 20 

tt 
Ht, 20 

  

I=I I=I 

Figure 3.2: First possibility of recurrent network. We can note that in this case the 

successive inputs are independent and equal to the target at the previous step. 

The main disadvantage of this method is that one does not have any control on the 

output. It is in fact difficult to understand the way the network learns. No information 
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is provided before testing the performance of the network against data. Indeed we do 

not exactly know the behaviour of the trained network if the input at each step is not 

the target at the previous step anymore as during training, but the previous output 

of the network. This fact means that if at one step, the output OM is not similar to 

what was expected (that is to say Putt), the network could never manage to correct 

the former error, and the inversion would not be achieved. 

Second possibility 

An other idea is to train the network using as input the previous output (figure 3.3). 

At the step t, the input is 

B= i (t=) (3.9) 

rt = Ot fort>2 (3.10) 

where O is defined in 3.5. Of course the target at the step t is still defined by [#'+!, 

Step 1 Step 2 Step 20 

  

Figure 3.3: Second possibility of recurrent network. At each step, the input is equal to 

the previous output. 

In order to understand the problem of this method, we have to consider an untrained 

network, at the beginning of the learning period. For an example of deformed character, 

at the second step (t = 2), the input to the network is O'. However, O! is probably 

totally different to the target o”° since the network is not trained yet. That would 

mean that at the next step, we will make the network learn something incoherent. 

Actually, such a network is similar to a 20 hidden layers network, if we suppose to 

achieve the inversion of the forward model into 20 steps. We do not say that this 
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method does not work, but it would probably require huge amounts of training data 

to reach acceptable results. 

Third possibility: a combination of the last two approaches 

This third method, which is a combination of the last two approaches, consists of 

using an input composed of a fraction of the previous output and of a fraction of the 

previous target (figure 3.4). The expression of the input is 

Po = f# (¢=1) (3.11) 

Je (1—A)Ot1 4 AI"* fort >2 (3.12) 

where A is a constant parameter lying in the interval (0,1) which shall be determined 

empirically. We also shall see what the influence of this parameter is on the perfor- 

mance of the classifier in chapter 5. 

   
+athe? tro 

=i" I=(1-AyOealt 2 Te(1-A)OPHAEH 20 

Figure 3.4: Third possibility of recurrent network. At each step, the input is composed 

of a fraction of the previous output to which a fraction of the previous target is added. 

This third method has been used in this project since it should allow us to avoid 

the problems we exposed in the last two methods. Indeed, in including in the input a 

fraction of the output, the network is allowed to deviate from the expected trajectory 

but it also learns how to correct these errors. Assume that during the learning period, 

after the first pass through the neural network, the output is different from the expected 

target. What it is learnt by the network at the next step is not incoherent because 
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of the fraction of the target we added to the next input. Indeed, the main difference 

compared to the second possibility is that in this present case a fraction of the target 

is included in the new input in order not to lose the main features of the deformed 

character we want the network to learn. 

3.4 The neural network 

We have just explained in the above paragraph what the input and expected output 

to the neural network are. We shall see now in detail what kind of neural network has 

been used to achieve the inversion of the forward model. 

3.4.1 Presentation of the network 

We consider a network with ninpuz input units as well as njpp,, output units. This 

value corresponds to the number of element of the gray-scale matrix which contains 

the image of the character we want to classify and thus is equal to 224‘. However the 

only way to find the most appropriate number of hidden units is to try different values 

and to test the performance of the network against real data. There is no algorithm to 

determine a priori what would be the best number of hidden units. The performance 

of the classifier as a function of the number of hidden units npiaden is displayed in the 

next part. 

We aim at training a neural network whose first layer weights are stored in the 

matrix A and whose dimensions are Mpidden by Ninpur- The second layer weights are 

stored in the matrix B whose dimensions are Minpur by Mnidaen. Figure 3.5 gives a 

representation of the network we used. 

4 The dimensions of the gray-scale matrix are 14 by 16 
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Input Hidden Output 

layer layer layer 

Figure 3.5: Representation of the neural network. We used 224 input and output units. 

A and B respectively correspond to the weights of the first and second layers. 

3.4.2 Explanation of the algorithm used 

We shall see now how to find the output O to the network given an input J, and 

the two matrices A and B corresponding to the weights of both first and second layers. 

The first vector to compute is the value h, of the input just after the first layer 

y= AL (3.13) 

We use sigmoidal hidden units. Thus the result after the hidden layer is : 

hg = tanh(h,) = [tanh(h,(1)), tanh(hy(2)),... , tanh(hi (mp iaaen))] (3.14) 

Consequently we obtain before the output layer the vector 

O' = B.hg (3.15) 

and finally the output to the network is 

O = tanh(O') = [tanh(O;), tanh(O3),... ,tanh(O%,..4.,)] (3.16) 

We know now what is the output to the network given an input. We shall now explain 

which method has been used for learning. 
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3.4.3 Learning period 

The choice of the learning method 

First of all, it is important to notice that on-line learning has been used to train the 

network. The main reason of this choice is the amount of data which is required. The 

memory to store a set of deformed characters is so important that on-line learning is the 

most adapted optimisation method. Furthermore we saw that we want the inversion of 

the forward model to be achieved in several steps. That would mean that to make the 

network learn one character, several different maps are utilised which would increase 

again the memory which would be required to store a set of data. 

Thus deformed characters are built one after the other during learning period and the 

weights of both layers A and B of the network are updated after each example. 

The optimisation function 

To update the weights of the neural network, a gradient descent method computing 

by back-propagation has been used. We saw that after each step, and for each example, 

the error £ is computed as follows 

pat 

E=5))Oi- a) (3.17) 
i=l 

where O; and o;, fori =1,... , N represent respectively the output O and the target o 

to the network. Both are 224 element vectors. We want now to update both matrices 

A and B using 

A=A-AAn (3.18) 

B=B-ABn (3.19) 

where 17 is the learning rate of the network and where AB and AA are computed using 

the formulas 

AB Tp he (3.20) 

AA Ti (3.21) 
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where Z’ denotes the transpose matrix of Z. The matrix Ty is defined as 

(O; — 01)(1 - 07) 

(C= “at — 63) oe 

(Or24 — 0224)(1 — O34) 

The vector Ty in equation 3.21 is computed using the value of the vector Tg defined 

in equation 3.22 

Ts = BTTgD (3.23) 

where D is the diagonal matrix 

(1 — ha(1))? 0 “a 0 

oe te Rae 0 Aes 

t : ore ho(Mnidden))? 

3.4.4 Visual example 

Figure 3.6 shows an example of transformation of a character in 20 steps. Each 

figure corresponds to an output to the neural network at a different step. We can see 

that the inversion can be considered as total with this number of steps. 

3.5 The classification 

We saw how the network is used to transform deformed characters to their corre- 

sponding templates. However the output to the recurrent network is the gray-scale 

matrix of the corresponding perfect template if we assume that the inversion has been 

completely achieved. Thus the final classification is done by computing the quadratic 

error between the final output, that is to say after the 20 passes through the network, 

and the ten perfect templates. In other words, if O denotes the final output to the 

network and T the gray-scale of one of the ten perfects templates, the error is computed 
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Figure 3.6: Example of transformation of a deformed character to its corresponding 

template. We can see that the inversion of the forward model (from left to right and 

from top to bottom) is progressively achieved in 20 steps. The last figure represents 

the gray-scale image of the corresponding perfect template. 
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Obviously, we assume that the digit which corresponds to the template for which the 

value of this error is the lowest is the final result of the classification. 

So far, we constructed a forward model to build deformed characters. These char- 

acters were to be used to train the network network we presented in this chapter. We 

shall now explain how this method can be applied to classify real world data. 
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Chapter 4 

The real data 

This chapter gives information about the real data which has been used to test the 

classification. We shall also see which modifications have been made to this data to 

make it compatible to the model which has been presented so far in this thesis. 

4.1 The real data 

4.1.1 General presentation 

The real data used to test the performance of the networks comes from the NIST 

Handwritten Segmented Characters database. This database has been created in scan- 

ning 2100 forms. The fields on these forms have been isolated and the characters 

within those fields have been segmented, extracted, and placed into individual 128 by 

128 pixel images, one character per image. 

The structure of the real data is so quite similar to the structure of the digits we 

built. The image is stored in a binary matrix representing the frame. Indeed, as for the 

simulated data, the value of an element in the matrix is 1 if the corresponding pixel is 

on and 0 otherwise. However the size of the frame, and consequently of the matrix, is 

now 128 by 128, whereas a 140 by 160 element matrix is used for the simulated data. 

The first processing on the real data is to convert the size of the matrix into the desired 
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format. 

4.1.2 Conversion of the format 

It has been noticed in the first approach that the general size of characters is very 

small compared to the size of the frame which is used. Actually, the digits which 

have been pre-centered on the middle of the frame are only drawn on half the frame. 

The main problem we would have met if the size of the digits would have been left 

unchanged is that, in computing the gray-scale, much information would have been 

lost. Indeed the digit would have been drawn only on a few central windows of the 

gray-scale. Such an image would have been indecipherable even for human and it is of 

course not likely to be classified by the network. That is the reason why the conversion 

of the format has been done in doubling the size of the image to obtain a 256 by 256 

element matrix. The required 140 by 160 matrix is built in only keeping a central 

window of this new frame. 

4.1.3 Sample of distribution of the real data 

It is relevant to compare real data (whose a sample is shown in figure 4.1) to the 

simulated data (in figure 2.4) in order to check if the stochastic model we have defined 

in the second chapter really models the way characters are written. It is also useful 

to adjust different parameters of the model such as the amplitude of the noise at the 

control points, or the average of the size of the digits. However it is hardly possible to 

assess this kind of values in just considering a sample of data. It was indeed necessary 

to find some reliable estimates of these values on real data and then to adapt the sim- 

ulated data. 

Besides, the main different shapes of the characters in the real data have to be 

generated by the stochastic model. That means in other words that, if a particular 

shape of a digit often appears in the real data, it has to be generated in the simulated 

data as well. The ideal model would be to be able to generate each specific shape in 
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the same proportions than in the real data. But of course this is impossible to achieve. 

Nevertheless, we can compute different estimates to assess the main features of the real 

data and then to be able to make the simulated data closer to them. 
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Figure 4.1: Sample of real data 

Note that all tests and computations on real data have been done on a sample of 

about 400 examples for each digit digit. So, for the ten digits it represents about 4,000 

characters. Of course, when some results are compared between real and simulated 

data, the number of examples considered is the same for real and simulated data. 

4.2 Different estimates of the data features 

As revealed in figure 4.1, the real data is heterogeneous compared to the sample 

of simulated data. We saw that it is important for the simulated data to be as close 
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as possible to the real data to improve the performance of the classification. Thus we 

shall see now which estimates have been used to adapt the stochastic model to the 

characteristics of the real data. 

4.2.1 Average of the size 

The size estimate 

The first estimate we have used deals with the average of the size of digits. However, 

there is no direct means to compute this size. The solution adopted is to compute the 

percentage of gray-scale windows which are predominately inked. As the values of 

the gray-scale matrix lie between -1 and 1, and according to examples (table 3.1), it 

seems to be reasonable to consider the size of the whole character as the percentage of 

elements into the gray-scale matrix whose value is greater than 0.9. 

Comparison between real and simulated data 

Table 4.1 shows the comparison of this estimate between the simulated and real 

data. 

  

Simulated data 
  

  

  

  

  

  

  

  

  

  

    

0 26.4 18.8 

1 15.6 97 
2 27.0 18.8 

3 29.5 19.8 

4 24.6 18.7 

5 26.5 20.0 
6 3d 18.6 

it 16.8 16.0 

8 33.0 21.4 

9 25.9 19.4 

average 25.7 18.1         

Table 4.1: Comparison of the average of the size between simulated and real data for 

each digit 

Table 4.1 reveals that the average of the size of the simulated data is greater than 

this of the real one for all digits. The modification of the average of the size on the 
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simulated data can be achieved by merely scaling the size of all the simulated data by a 

factor. Practically, this is achieved in multiplying the coordinates of the control points 

by a scaling factor. More accurate changes could be done after that, in considering for 

example the size of only one specific digit and redefining the location of the control 

points. Furthermore, changing the size of the characters obviously leads to consider 

different perfect templates, whose size is scaled as well. 

4.2.2 Fluctuation of the size 

The choice of the estimate 

An other important factor we have to deal with is the fluctuation of the size of the 

characters. Figure 4.1 shows how the fluctuation of the size can be important in real 

data. The performance of the classifier could also be improved if this characteristic 

would also be taken into account. The estimate we chose in order to have an reliable 

value of the fluctuation is the variance of the size over a sample of examples. The 

different values for each digit on simulated and real data are reported in table 4.2. 

Simulated data 
  

  

  

  

  

  

  

  

  

  

  

    

0.06 0.32 
1 0.02 0.08 

2 0.07 0.40 

3 0.07 0.41 
4 0.06 0.31 

5 0.08 0.41 
6 0.12 0.37 

eC 0.05 0.21 

8 0.13 0.48 

9 0.10 0.30 

average 0.08 0.33         

‘Table 4.2: Comparison of the fluctuation of the size between real and simulated data 

Table 4.2 reveals that the variance of the size is much greater for the real data than 

for the simulated data. These values could be more similar by adding a size fluctuation 

to the simulated data. 
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How to add a fluctuation of the size? 

Given a uniform variable s with zero mean, the scaling factor is defined by (1+). 

The size of a character is then modified by multiplying the coordinates of the control 

points by this factor. However in this case the perfect templates are left unchanged. 

That means that at each pass through the neural network, this factor has to be re- 

duced in order to finally reach the corresponding perfect template. This is achieved in 

considering at the step t a scaling factor whose value is 0.9'(1 + s). 

4.2.3 The line width 

We can find a good estimate of the line width of the characters in computing the 

percentage of gray-scale windows which are either partially or predominately inked. 

Thus we chose to define an estimate of the size width by calculating the percentage of 

elements into the gray-scale matrix whose value is greater than -0.9. 

Nonetheless, this estimate depends on the average of the size of the characters since 

we take into consideration all values greater than -0.9. Thus we shall see in the next 

section the comparison between the real and the simulated data for this estimate, after 

having adjusted the average of the size on the simulated data. 

4.2.4 Complexity of the data 

The last estimate used to adapt the simulated data to the real data assesses the 

general complexity of the data. This value is found in computing the average quadratic 

error between the gray-scale image of the deformed digit and its corresponding perfect 

template. For example, given the gray-scale matrix of a digit frame; fori =1,... ,14 

and j = 1,... ,16, and the corresponding perfect template T;;, the complexity of the 

digit is calculated as following 

Complexity = 

ro
le
 

    
14 16 
ST DE (frame; ; — T;;)? 
i=l j=l
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Table 4.3 shows the different values of this estimate for each digit in real and 

simulated data. 

Simulated data 
  

  

  

  

  

  

  

  

  

  

  

0 94.1 152.3 

iL 46.1 51.9 

2 103.8 114.4 

3 105.6 119.0 

4 79.4 95.2 
5 119.7 140.7 

6 99.7 113.1 

7 65.5 73.4 

8 110.1 122.1 

9 84.6 107.3 

average 90.9 108.9           

Table 4.3: Comparison of the average complexity of characters between real and sim- 
ulated data. We can see that for all digits, the value is greater for the real data than 

for the simulated data. 

This estimate may be useful to adjust the amplitude of the noise in the simulated 

data. 

4.2.5 How to adjust these estimates? 

The method to adjust these different parameters on simulated data would be first 

to reach a similar average of size by multiplying the data by a scaling factor. Then the 

method of computation of the line width becomes reliable and usable to adjust this 

second parameter. The fluctuation of the size can be so adapted according to the value 

of the variance of the size. Finally, the final estimate we presented, the complexity, 

can be utilised to find the more suitable noise amplitude to build the simulated data. 

We shall see the evolution of all these parameters in the next chapter as well as 

their influence on the performance of the classification. 
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Results and improvements 

‘This section displays the results of the classification obtained throughout the evolu- 

tion of the different parameters. We shall also see which pre-processing work has been 

done in order to make either the simulated data closer to real data, or the real data 

more homogeneous. 

5.1 Original choice of the different parameters and 

first results 

Some parameters presented so far in the thesis have been chosen arbitrarily and then 

adjusted according to the results of the classification. Here we presente the original 

values of most of the parameters used. We shall see then their influence and how they 

can be modified to improve the performance of the classifier. 

5.1.1 Parameters of the network 

The input to the network 

We saw that the input to the network is defined at each step as the sum of a fraction 

of the previous output and a fraction of the previous target. In other words, the input 
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at the step t is 

TH = (1 — d)OF + aTHt (5.1) 

where O is defined in 3.5 by 

Of = (1-d)I' +408 (5.2) 

We aim at finding the most suitable values for both parameters \ and A. Since those 

parameters can widely influence how well the network learn, the most suitable values 

have been found empirically, testing the performance of the network for a range of values 

lying between 0 and 1. Note that some experiments showed that both parameters 

and \ are independent. For that reason, we do not need to find a couple of values. 

Consequently, some experiments have been carried out to find A with a constant value 

of \, and some others to find \ with a constant value of A. Figure 5.1 shows the 

error rate according to the value of A. The minimum of the error rate is reached for 

A= 0.175. 

  30 T r r r T r T 

  

    0 1 L 
0.41 02 0.3 0.4 05 0.6 O7 0.8 0.9 
  

Figure 5.1: The misclassification error rate according to the value of the parameter 
A. The classification has been taken over a sample of 2000 simulated patterns. The 

minimum of the error rate occurs for \ = 0.175.
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The similar figure 5.2 gives the performance of the classification on simulated data 

according to the value of the parameter \. The minimum of the error rate is reached 

for \=0.1. 

  20 7 T r a T r 

  

      

4p 4 

2p 4 

0 L L 1 1. L L 1 1 
0 o.4 0.2 03 04 05 0.6 07 08 09 

Figure 5.2: The misclassification error rate according to the value of the parameter d. 

The minimum of the error rate occurs for \ = 0.1. 

These values of \ and \ shall stay unchanged for all the future tests. 

Number of hidden units 

There is no algorithm to define the ideal number of hidden units. However the first 

tests have been done with 20 hidden units whereas only the first five digits have been 

considered. Indeed, the first experiments only aim at adjusting different parameters, 

and for that reason, we are more interested in the comparison between the different 

results than in the results themselves. 

Learning rate and number of input patterns 

The value of the learning rate has been initially set equal to 0.0001 and the first 

experiments have been done in training the network with 10000 different input patterns. 

51



CHAPTER 5. RESULTS AND IMPROVEMENTS 

The evolution of the quadratic error during the learning period is an important estimate 

to know if it is worth to modify these values. Indeed, increasing the number of input 

patterns is relevant only if the error is decreasing during the whole learning period. 

Methodology of the experiments 

As explained, the training set is constitued of simulated digits built from perfect 

templates. The performance of the network is then evaluated using a validation set of 

real data constitued of a large sample of 4000 real handwritten digits. The performance 

of the network has finally been confirmed bu measuring its performance on an other 

set of 4000 real digits. Note that the classification rate has been the same using either 

validation set or test set. This shows that the parameters have never been adapted to 

a specific set of data. 

Results 

As explained just above, the network has been trained only with digits 0 to 4. 

Indeed, the first aim was to adjust the various parameters of the network and simulated 

data, which are the same for all digits. It is so sufficient and quicker to only consider 

several digits. Figures 5.1 and 5.2 show that the classification is performed on the 

simulated data with an error rate of about 5%. But though results are satisfactory on 

simulated data, the error rate on real data is about 70% on a sample of 2106 examples. 

Explanations 

The results obtained on the simulated data prove that the dynamic model of the 

network which has been defined is efficient. The reason of the bad classification on real 

data is due to the too wide differences between real and simulated data. Thus, the first 

improvements to make aim at adapting the simulated data to the real data.
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5.1.2 Training and recognition time 

Classification speed is also of prime importance when testing the performance of a 

classifier. Using this method, the time required on a Sparc 5 to recognise a test pattern 

starting with 140 by 160 pixel map image is about 0.1 second. The training period 

over 10000 input patterns takes about 4 hours which represents less than 1.5 seconds 

for one input pattern. 

5.2 First improvements 

The first improvements concern the stochastic model defining the forward model 

of the distribution. The goal is actually to make the simulated data closer to the real 

data, using the estimates presented in the previous chapter. 

5.2.1 Average of the size 

The previous chapter showed that the average of the size is greater for the simulated 

data than for the real data. The idea is so to determine a scaling factor such that the 

average of the size of the simulated data is as close as possible to this of the real data. 

The average of the size of each digit has been computed using several different values 

of the scaling factor. The results are displayed in table 5.1. 

The table reveals that the more adapted value for this factor of attenuation is 0.72. 

This value shall stay unchanged from now and for all the future experiments. 

5.2.2 Fluctuation of the size 

We also saw in the previous chapter that the fluctuation of the size is greater in 

the real data than in the simulated data. It may be useful to make the size of the 

simulated data fluctuate in order to make them closer to reality and to obtain more 

uniform results between simulated and real data. The idea is to define a uniform 

variable s with zero mean and variance o, to be determined. We can then scale the
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0 [145[189/i194| 188 
fia 74 | 9.1 | 93 07 

2 [144/188] 192| 188 
3. |140/192/19.3] 19.8 
4 [129|162[168] 18.7 
5 |162/198|202|[ 20.0 
6 [161/196] 20.0] 186 
7 [122/155 /15.7[ 16.0 
Sue iB belo) | 20i7 |emaid 
9 |151/191|195| 194 

average | 14.1 | 17.8 | 18.2 18.1         

Table 5.1: Average of the size of the simulated data for various values of the scaling 

factor. The size of a character is computed in counting the number of elements of the 

gray-scale matrix whose value is greater than 0.9. 

size of the digit by the factor (1+). Table 5.2 shows the variance of the size for each 

digit and for various values of the variance o, of the uniform variable s. 

ee 
  

  

  

  

  

  

  

  

  

  

    

0 0.13 | 0.14 | 0.16 0.32 
i 0.02 | 0.03 | 0.04 0.08 
2 0.11 | 0.15 | 0.18 0.40 

3 0.12 | 0.17 | 0.20 0.41 
4 0.10 | 0.13 | 0.15 0.31 
5 0.14 | 0.15 | 0.17 0.41 
6 0.21 | 0.23 | 0.28 0.37 
7 0.07 | 0.08 | 0.09 0.21 

8 0.21 | 0.25 | 0.30 0.48 
9 0.14 | 0.17 | 0.18 0.30 

average | 0.13 | 0.15 | 0.18 0.33             

‘Table 5.2: Variance of the size of simulated according to the variance o, of the uniform 

variable s 

Whatever the value of the variance a, is, the variance of the size is always lower in 

the simulated data than in the real data. The problem is that it would not be efficient 

to set the variance a, equal to a value greater than 0.9 since many digits would then 

be either larger than the window or on the other hand too small. What is surprising 

is that we cannot find a suitable value for the simulated data which would allow to 

obtain similar results to the real data for the variance of the size. That would actually
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mean that the real data are either small or large. 

5.2.3 Complexity of the data 

We shall try now to adjust the amplitude of the noise in computing the complexity 

of the simulated data using various values. The amplitude of the noise actually corre- 

sponds to the variance of the Gaussian noise added to the coordinates of the control 

points. This Gaussian noise appears in equation 2.19 and is called 1;. The complexity 

of the data is given in table 5.3 for different values of the variance. 

  

  

     
  

  

  

  

  

  

  

  

  

            

0 E a 152.3 

1 37.1 | 39.7 51.9 
2 103.9 | 106.3 114.4 

3 111.0 | 114.8] 119.0 
4 72.6 | 79.9 95.2 

5 113.7 | 117.2 140.7 

6 102.6 | 106.1 113.1 

7 65.3 | 70.5 73.4 
8 112.9 | 117.7 122.1 

9 87.4 | 90.5 107.3 
average | 93.5 | 97.4 108.9 
  

Table 5.3: Complexity of the simulated data according to the value of the variance of 
the Gaussian noise 7; 

This table reveals that the computation of this estimate gives greater values for the 

real data than for the simulated data. As for the fluctuation of the size, it would not 

be efficient to construct a model with too important noise since the characters would 

be indecipherable and less close to the real data. 

5.2.4 The line width 

The line width has also been adjusted. However this parameter is not constant in 

the real data. That is why it has been defined as a uniform variable in order to make 

the line width fluctuate in the simulated data as well. We want the network to perform 

the classification whatever the line width is, and to reach the corresponding templates 

whose line has an average width.
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5.2.5 Performance of the classifier 

Two different neural networks have been trained, one for digits 0 to 4, and another 

one for digits 5 to 9. Besides, networks have been trained with both values of the 

variance of the noise n; 2.0 and 2.5. 

Amplitude of the noise of 2.0 

The classification on the simulated data has been performed with an error rate of 

14.1% for a variance of the noise n; equal to 2.5. Those results are of course worse than 

previously. Indeed the simulated data is now more complex since it has been built with 

a fluctuation of the size and of the line width. The results of the classification on real 

data are reported for each digit in table 5.4. 

  

  

  

  

  

              

0 37.5 5 65.3 

il 8.2 6 24.4 

Z 47.3 ia 38.6 
a 18.1 8 69.9 
4 58.1 9 36.1 

average | 33.8 average | 46.9 
  

Table 5.4: The misclassification performance on real data after the first modifications. 

The values represent the error rate of the classification which has been taken over 4081 

examples for the 10 digits. The global average of the error rate for the 10 digits is 

39.55%. 

We can see that the results are still not satisfactory on real data and that the 

performance of the classifier widely depends on the digit. This last point may mean 

that some templates are not adapted to the real data. 

Amplitude of the noise of 2.5 

We shall see now the influence of the amplitude of the noise. Table 5.5 shows the 

results on real data for digits 0 to 4 only. 

If the results are worse on real data with a greater value for the amplitude of 

the noise, it means that the problem does not come from the ability of the network 

56



CHAPTER 5. RESULTS AND IMPROVEMENTS 

  

  

  

  

  

        

0 36.1 

al 15.5 

2 49.9 

3 21.4 

4 48.4 

average | 34.3 
  

Table 5.5: Performance of the misclassification on real data for digits 0 to 4 with an 

amplitude of the noise equal to 2.5. The classification has been taken over a sample of 

2106 examples. 

network to learn, but rather from the templates which are not close enough to real- 

ity. This idea is emphasised by the fact that training the network with more hidden 

units gives results which are even worse on real data. Indeed, the average of the error 

rate is 42% on the same sample of real data when using a network with 25 hidden units. 

We shall now see how to increase again the complexity of the simulated data with 

a view to translating various ways real characters may be written. 

5.3 Increasing the complexity of the simulated data 

The goal is now to increase the complexity of the simulated data in order to reach 

similar performance between real and simulated data. We can notice for example that 

we did not consider any orientation in our model, whereas many characters from the 

real data are skewed. Thus a random orientation shall be added to the simulated data. 

5.3.1 Orientation of the characters 

How to construct skewed characters? 

The idea here is to define a random angle of rotation w, whose value is determined 

according to a uniform variable with zero mean and variance o,,. The figure is then 

rotated with the angle 7) around the lower-left corner of the figure. In other words, the



CHAPTER 5. RESULTS AND IMPROVEMENTS 

   
new coordinates (2’,y') after rotation of the point (2, y) are 

zw = xcosp+ysiny (5.3) 

< Il —asiny + y cosy (5.4) 

Of course, we aim at training the neural network in order to reach the same perfect 

template which means that during training, the initial value of 7) computed for each 

character shall actually be at the step t: 0.9'. The problem is now to find the most 

suitable value of oy. 

Influence of the rotation on the complexity 

The complexity of the simulated data is now expected to be increased after this 

new modification. Table 5.6 shows the results for both values = and = of oy. 3 4 v 

[ETE [eal dat] 
  

  

  

  

  

  

  

  

  

  

    

0 141.8 | 143.4 152.3 

i 44.7 | 46.9 51.9 

2 116.5 | 117.9 114.4 

3 118.2 | 120.9 119.0 

4 90.7 | 90.3 95.2 
5 120.7 | 121.8 140.7 

6 107.8 | 108.9 113.1 

a 83.3 | 85.3 73.4 

8 118.1 | 118.7 122.1 

9 92.4 | 93.5 107.3 

average | 103.4 | 104.8 | 108.9           

Table 5.6: Complexity of the simulated data according to the value of oy, the variance 

of the uniform variable ~ which defines the angle of rotation of the characters 

Table 5.6 shows that the complexity is now almost similar between simulated and 

real data thanks to this new modification. We shall see now the results of the classifi- 

cation if the network is trained with this new model. 

5.3.2 Results of the classifier 

Again, two different networks have been trained, one for digits 0 to 4, and one for 

digits 5 to 9. We shall see now the results in detail, for each digit of the simulated and 
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real data. 

The simulated data 

  
The cl 

  

fication has been taken over a sample of 2000 examples for each network 

is given in table 5.7 for oy, = z 

  

  

  

  

  

              

0 12:2. 5 47.0 

1 0.4 6 21.2 

2 21.2 7 4.2 

3 15.8 8 50.6 

4 16.4 § 45.6 

average | 13.2 average | 31.9 
  

Table 5.7: The misclassification error rate on simulated data with oy = 7. The global 
average of the error rate for the ten digits is 22.6%. 

The real data 

The results obtained on real data are given in table 5.8 for the same value of oy = . 

  

  

  

  

  

  

0 30.3 5 91.76 

1 11.6 6 50.25 

2 65.1 @ 19.06 

3 14.1 8 62.25 

4 62.21 o 62.66 

average | 35.5 average | 55.8               

Table 5.8: Performance of the misclassification on real data with oy = 7. The global 
average of the error rate for the ten digits is 45.3%. 

Besides, the same networks have been trained with a value of oy equal to ie The 

error rate on simulated data is greater than for oy = } as it could be expected since 

the data are more complex. However, the error rate on real data also is greater whereas 

table 5.6 shows that the difference of complexity between real and simulated data is 

less important for this value of oy. The global error rate obtained for the ten digits is 

indeed about 50%. 
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Explanations of the results 

As it has been pointed out, increasing the complexity, by for example adding a 

rotation of the characters, really improves the performance of the classifier. However, 

this complexity cannot be increased too much since the digits would be then even less 

closer to the reality. That is why we shall try rather now to decrease the complexity of 

the real data in achieving pre-processing work on characters before classifying them. 

5.4 Decreasing the complexity of the data 

We saw that the complexity of the characters in real data is very important. The 

key idea is now to decrease this complexity in first normalising the size of the characters. 

Besides we do not have much information about the orientation of the characters since 

a reliable estimate of this parameter is difficult to find. Thus we decided to modify 

the procedure which transforms the initial image into its gray-scale format, in order to 

normalise the size of the characters and suppress the skew angle. 

5.4.1 Method adopted 

The coordinates of the center of mass of the image are (Gy, G)-). The computation 

of those coordinates has been explained in equation 3.1. 

Normalisation of the size 

The size of the characters is normalised in constructing the gray-scale image such 

that the average distance between the center of mass and the different points of the im- 

age is constant for all digits. The former value of this average distance Dg is computed 

as follows 

Dit DIS frame(i, i) /G— Gx? + G— GP? 
De = WN (5.   
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where N is the total weight of the image. Every point («,y) is moved to the new one 

(2', y') using 

i; a—Gx)C 
Do tas GG) x) (5.6) 

) y—Gy)C 
ai Go Gae ce (5.7) 

where C is a constant which determines the average of the size of the digits. 

Suppression of the skew angle 

‘The skew angle of the characters is computed as the average angle of every point 

of the image with respect to the X-axis. Obviously, this computation does not give 

the real skew angle of the figure as it is usually defined, but what is important here is 

to apply the same method to all characters in order to reach more homogeneity in the 

data. The average angle W is calculated as 

  

fi Seppe frame(i, j) arctan E&* j=l 
2 N (5.8) 

The image is then rotated with an angle (—W) using the method explained in the above 

paragraph (equations 5.3 and 5.4). 

5.4.2 Visualisation on examples 

Figure 5.3 shows several examples of transformation of characters to their gray-scale 

format. Compared to figure 3.1, the size of the digits is now normalised and the skew 

angle is suppressed. 

5.4.3 New results 

New experiments have been carried out. Several networks have been trained with 

different values of the amplitude of the noise. The best results on real data have been 

reached for a noise factor of 0.25. Those results are displayed in table 5.9. 

Table 5.9 reveals that if this last modification improves the performance of the 

classifier, we still obtain bad results for specific digits such that digit 5 or digit 2, 
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Ae Be te he A 
Figure 5.3: Examples of the transformation of a character into its gray-scale format 

after normalisation of the size and suppression of the skew 

  

  

  

  

  

              

0 19.8 5 74.7 

1 0.0 6 25.1 

2 59.0 7 20.5 

3 10.5 8 52.7 

4 8.6 9 16.9 

average | 18.8 average | 37.0 
  

Table 5.9: The misclassification performance on real data after normalisation of the 

size and suppression of the skew. The global average of the error rate for the ten digits 

is 27.6%. 

whereas simulated digits are well recognised. Indeed, an error rate of about 5% is now 

obtained on simulated for digits 0 to 4, and about 20% for digits 5 to 9. In this case, 

the problem is definitely due to the non-adapted perfect templates used to define those 

digits. We shall see now which modifications have been made to the templates. 

5.5 Last improvements and final results 

5.5.1 The new perfect templates 

The main point here is to find perfect templates whose shapes are as close as possible 

to the real data. In other words, we aimed at finding control points whose location 

is the average position of the corresponding control points of the real data. To find 

the most suitable location, several experiments have been carried out with different 

templates. Obviously, the main modifications have been achieved to digits for which 
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the classifier gave the worst results. The best performance has been obtained using the 

  

templates shown in figure 5.4. Table A.2 shows the corresponding coordinates of the 

new control points. 

eS ait 

50.7: 829 
Figure 5.4: New perfect templates 

Comparing figure 5.4 to figure 2.2 which shows the original perfect templa 

  

can point out several modifications: 

e Digits 0 and 8 are less wide 

e Digit 1 is now drawn with only one straight line 

e The location of the control points of digit 2 are less distant to each other on the 

lower-left corner in order to construct more digits whose shape possesses a loop 

  

as in the real data 

e The second segment of digit 4 has been moved 

e Digit 5 is more skewed 
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Besides, it has been useful to increase the amplitude of the noise with those new 

templates since they are closer to the real data in order to construct as many different 

shapes of characters as possible which are likely to be met in real data. 

5.5.2 Performance using those new templates 

The problem to be solved now is quite different since the performance of the classifier 

is better on real data than on simulated data. Indeed the error rate is now about 16% 

on real data but it has increased up to 24% on simulated data. Those results would 

lead to think that the classification performance could be improved in modifying the 

parameters of the network, and that the templates are now adapted to the real data. 

To understand how the network is learning, we computed the error function such as 

it has been defined in equation 3.6 after each input pattern. Figure 5.5 shows the 

evolution of this error over the 10000 examples of the learning period. 

We can see that the error is decreasing all over the learning period. That obviously 

means that better results could be reached in increasing the number of input patterns. 

Now that the templates are more adapted to the real data, it is worth increasing the 

number of hidden units as well. Several new experiments have been done with different 

values of hidden units. The actual best results are displayed in table 5.10. A network 

with 50 hidden units has been trained over 50000 input examples. 

  

  

  

  

  

              

0 4.7 5 13.6 

i 0.2 6 11-9 

a 18.2 te 9.5 

3 23.6 8 19.6 
4 5.3 9 23.3 

average | 10.1 average | 15.5 
  

Table 5.10: The misclassification performance on real data using a network with 50 

hidden units and trained over 50000 examples. The global error rate for the ten digits 

is 12.7%. 

With those same parameters, the performance is still worse on simulated data as 

shown in table 5.11. 
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0 12.0 5 14.7 

au 3.4 6 17.4 

2 14.8 7 13.0 

3 26.6 8 18.5 

4 19.2 9 26.3 

average | 15.2 average | 18.0 
  

Table 5.11: The misclassification performance on simulated data using a network with 
50 hidden units and trained over 50000 examples. The global error rate for the ten 

digits is 16.6%. 

5.6 Present conclusions 

The problem after the first experiments was to reach the same performance on real 

data as on simulated data. In this case, the problem came mainly from the perfect tem- 

plates which were not adapted to the real data. However the problem finally changed 

since better performance is achieved on real data than on simulated data. We saw that 

different modifications to the parameters of the network such as increasing the number 

of input patterns or the number of hidden units improve that performance. Neverthe- 

less new experiments show that longer learning period would not help anymore to reach 

better results. Indeed, by considering the misclassified digits from the real data, and 

on the other hand from the simulated data, we can understand why such results are 

obtained on simulated data. Actually figure 5.6 shows that misclassified simulated dig- 

its are especially constituted of indecipherable digits which are generated by our model 

whereas misclassified real digits seem to be quite easy to be recognised (figure 5.7). 

This idea leads to think that the high error rate we obtained on simulated data is due 

to these junk characters. In addition, if real digits such these shown in figure 5.7 are 

not recognised, that means that the location of the control points is still not adapted 

to the real world data and that better performance on real data would be achieved by 

modifying the perfect templates in order to make them again closer to reality. 

Finally, a single network has been trained to classify all ten digits. Obviously, the 

performance is lower than before since the network is more likely now to confuse digits.
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The results achieved on real data are displayed in table 5.12. 

  

  

  

  

  

  

  

  

  

  

        

0 25.2 

L 1.5 

2 29.9 

3 52.6 

4 47.1 

5 15.9 

6 24.9 

a 20.0 

8 27.7 

9 33.8 

average | 27.6 
  

Table 5.12: The misclassification performance on real data training a network for the 

ten digits 

We can see that the performance of the classifier is still not reliable enough. Im- 

provements on simulated data are still to be done in order to attain more acceptable 

results. 
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digit 1 digit 2 digit 2 digit 2 digit 3 

digit 3 digit 3 digit 4 digit 8 digit 9 

62S20..3 5 
Figure 5.6: Sample of misclassified simulated data 

digit 2 digit 2 digit 2 digit 3 digit 3 

Roo wee 

digit 3 digit 5 digit 8 digit 9 digit 9 

oa. -Foy 
Figure 5.7: Sample of misclassified real world data 
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Chapter 6 

Conclusions and future work 

6.1 Conclusions 

A method combining deformable templates and neural networks for handwritten 

characters recognition has been presented. As in the deformable templates approach 

to HCR, a character is described by a set of control points and spline segments are 

drawn through these points. A forward model of the distribution of characters is then 

obtained by adding a noise process at the location of those control points. We saw 

how this noise process has been chosen in order to translate the way characters are 

actually written. For that reason, the noise at each control point has been computed 

recursively as a weighted average of the noises defined at the previous points. 

This forward model of the distribution has been built in order to train a recurrent 

neural network whose aim was to incrementally undeform the characters back to their 

corresponding perfect templates. It was required that the full inversion be achieved in 

20 steps. Due to the large amount of data which was required to train the network, 

on-line learning was utilised. The weights of the two layers of the network were up- 

dated using gradient descent optimisation in conjunction with back-propagation. 

The main goal of this project was to test this method against real world data. Unfor- 

tunately, the model was not sufficiently adaptive to be able to handle the large diversity 
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of characters which are likely to be met in practice. Indeed, the first experiments gave a 

misclassification rate of about 70% on real data whereas this rate was only of about 5% 

on simulated data. Therefore techniques to improve the model were investigated in the 

form of adapting the simulated data to the real data by either adjusting the location 

of the control points, or increasing the complexity (fluctuation of the size, rotation of 

the whole characters). We also saw how the complexity of the data was reduced by 

normalising its size and suppressing its skew. The best performance provided by the 

classifier was a misclassification rate of approximatively 10% on real data in considering 

only 5 digits. In addition, the last experiments gave worse results on simulated data 

than on real data. We pointed out that this fact was due to the junk characters which 

were built by the stochastic model and consequently, the classification performance on 

real data can be improved further by making the simulated data closer to the real data. 

At this present time, the classifier is not reliable enough to confidently build the 

vector field associated with the trajectory of the network. The next paragraph explains 

how to construct this vector field. 

6.2 Future work 

So far the model we built aimed at classifying real data with a reasonable error 

rate. We wanted this classification to be achieved by progressively making unidentified 

characters less deformed in order to be able to analyse the entire trajectory of the 

network. This trajectory can be associated with a vector field, which then allows to 

find the deformation of the underlying plane corresponding to the deformation of the 

character and to provide structural identification of it. 

6.2.1 How to find the vector field? 

The aim of this paragraph is to determine how to find the vector corresponding to 

the trajectory of the network at a point x. This vector is denoted by the function h. 
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The function f corresponds to the output to the network at the step ¢, and g at the 

step t+ 1. 

The one dimensional problem 

We shall first see how this problem can be solved in one dimension. Given both 

functions f and g, the problem consists of finding the function h such that g = f(h(a)). 

f(x) 

  

  

  

Figure 6.1: Given functions f and g, we aim at finding the function h such that 

9 = f(h(x)) 

We note ¢ the function defined as g(x) = h(x) —z. If we assume that y(z) is small, 

we can compute g(a) as 

g(x) = f(h(x)) = fw + ola) ~ f(a) + F(a) (a) (6.1) 

We can so deduce 

_ g(x) — f(a) ote) = (6.2) 
Equation 6.2 might also have been obtained from requiring that (a) minimises 

(f(a) + f'(@)9() — g(a)? = (F(e + v(a)) — g(a)? (6.3) 
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The two dimensional problem 

We conserve the same notations than in the above paragraph, but now x and 

y € R’. The expression of g(x) becomes 

9(2) = f(h(x)) = f(@ + v(a)) = F(x) + grad(f(x))"9(a) (6.4) 

and for each point x, we choose y(x) to minimise 

(f(x) + grad(f(2))"9(z) — g(x)? (6.5) 

The problem we have to deal with now is that we have two unknowns for the only 

equation 6.4. The idea is then to choose the function y(a) such that if a point x is 

close to another point @, then y(zx) is close to y(#). 

To solve the problem numerically, assume points X;,; form a grid in the real plane 

and denote by yj, the value y(X;,;). Since Xj41,; is a neighbouring point of X;;, we 

want yj; to be close to yj41,;. Setting 

1 it 
Gig = Pits + Yi-15 + Yigsi + ig-1) (6.6) 

we thus require 

Pig = Pid (6.7) 

Combining constraint 6.7 with equation 6.5, we thus choose ¥;,; to minimise 

E(vig) = » (f (Xing) + gradf (Xi.3) Pig — 9(Xig))? + wy (Pig — Gig)” (6.8) 

where the parameter ji controls the smoothness of the vector field y. Note 6.8 is 

quadratic in yj,;, and so it is straightforward to solve. 

Figure 6.2 shows an example of vector field translating the deformation of one 

character. The character is the deformed one, and the vector field corresponds to the 

trajectory of the network. 
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Figure 6.2: Example of vector field associated with the deformation of a character 

We found how to compute the trajectory corresponding to one pass through the 

network. Nevertheless, the total deformation of a character is computed in integrating 

y over all time steps. 

6.2.2 The control points of the deformed data 

Once this vector field is found, it becomes possible to locate the position of the 

control points on deformed real data. Indeed, from the deformed template, a vector 

field associated with the deformation of the character can be constructed. If this vector 

field is applied to the original deformed digit, the corresponding perfect template should 

73



CHAPTER 6. CONCLUSIONS AND FUTURE WORK 

be reached for which the location of the control points is perfectly known. Therefore, 

it is also possible to find the location of the control points for real data by applying 

the opposite vector field to the perfect template. 

6.2.3 Reliability of the match 

Assuming the vector field corresponding to the trajectory of the network is found, 

the reliability of the match can be assessed by applying the vector field to the unde- 

formed character and computing the average quadratic error between the result and 

the corresponding perfect template. The value of this error is then a good estimate of 

the reliability of the classification. 

6.2.4 New location of the control points 

The idea is that once the control points of the real data are known, we can define 

the new locations of the control points for the stochastic model by averaging the known 

locations over the real data. In addition, it would also be possible to define the noise 

process at these points by computing the deformation at the different points. In other 

words, this first approach allows us to define a new forward model of the distribution 

which will be well adapted to the real data since it is constructed from it. Furthermore, 

it becomes possible to adapt the classifier to the characteristics of a single writer in 

computing the average location of those specific control points and defining the main 

features of the characters. 

Finally, this new forward model can be used to retrain the network. What is 

interesting about this method is that it is possible to repeat this process as many times 

as we want in order to improve the performance of the classifier since each time the 

resulting forward model is closer to reality. 
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Location of the control points 

  

  

  

  

  

  

  

  

  

  

  

A.1 Original values 

Digit Coordinates of the control points 
0 650 400 150 150 400 650 650 sh a 

700 850 700 300 150 300 700 

1 250 400 450 435 400 : ~ a i f 

650 850, 900 580 100 

9 170 400 600 300 150 200 650 i = . 

700 900 750 315 100 100 100 

3 150 400 650 300 250 300 650 400 150 “ 

750 900 700 505 500 495 200 100 250 

yi 300 100 700 He 400 400 400 a i 5 

900 500 500 800 500 100 

5 100 100 100 400 600 100 Ben 100 350 600 

890 700 650 550 250 150 2 900 900 900 

6 600 100 350 600 350 100 100 ty i ' 

900 300 100 300 500 310 300 

7 | 100 500 700 600-200 i i ; a 
900 900 900 800 100 

8 600 400 200 650 400 150 550 600 Z “ 

700 900 700 300 100 300 620 700 

9 600 400 150 400 640 650 640 300 i ‘i 

700 900 700 500 650 700 650 100     
  

Table A.1: Coordinates of the original control points. In the work of Dr R. Urbanczik 

the size of the frame used was 800 by 1000. The coordinates of the control points 

had to be converted to the new smaller frame size. This has been achieved in merely 

multiplying the X-coordinates by 140/800 and the Y-coordinates by 160/1000. 
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A.2 Final values 

We saw that it was useful to modify the coordinates of the control points used to 

define the perfect templates in order to make them closer to real world data. The final 

values which have been used for the last experiments are given in table A.2. 

  

  

  

  

  

  

  

  

  

  

      

Digit Coordinates of the control points 

; 650 400 200 200 400 600 600 ; A 
700-850), 700-300. «150 300700 

1 400 450 470 455 420 ¢ , 5 i 5 
820. 850 900 580 100 

A 170) 400 550 220-150-200) 7720 3 a - 
700 9) 900) 750 110. 100 ©1380). 7100 

: 150/00 ms C50 an 20 280m) S20 mn GOU men z00NNNNELSO : 
750 900 700 505 500 495 200 100 250 

i 200 100 750 800560520 : " J 
900 400 400 900 500 100 

; 180 140 290 450 290 0 eos 180 390620 
890 650 580 250 100 140 890 910 930 
600 100 350 600 350 100 100 

c 900 300 100 300 500 310 300 ‘ ci = 
100 500 700 650 350 

fe \es00'e 870.900.8800 9100 : : ; ; 
550 400 240 580 400 220 500 650 

. 700 900 700 300 100 300 620 700 ; il 
650 450 150 400 640 650 640 300 

y 700 900 700 500 650 700 650 100 : > 
  

Table A.2: Coordinates of the control points we finally used 
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Appendix B 

Code 

B.1 Generating deformed templates 

The goal of this procedure is, given a value d of digit between 0 and 9, and a value 

t corresponding to the step, to construct a 140 by 160 element matrix corresponding 

to the frame which contains the image of a digit d to which the noise 0.9'y: is added. 

The noise is initialised at the first execution of this procedure which corresponds to a 

value of ¢ equal to 0. This procedure has been implemented in C and is called from a 

Matlab routine ([Mokhtari and Mesbah 1997]). 

/* Input : 2 arguments, digit ’d’ and step ’time’ */ 
/* if ’time’ = 0, it generates noise ’mu’ for the desired digit */ 
/* if ’time’ <>0, it gives a frame of the digit to which it 

has been added the noise ’time’ times attenuated */ 

#include "include_file.h" 

#include "declaration.h" 

/* Initialisation of the static array noise */ 
void init_noise() 
{ 

int i7 

static long idum = ; 

scale = (rani(&idum)-0.5)*fluctuation_factor; 
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angle = (rani (&idum)-0.5)*angle_fluctuation_factor; 
width_factor = (rani(&idum)-0.5)*width_fluctuation; 

for (i=0;i<2*nb_max_points;i++) 

noise[i] = gasdev(&idum) *noise_level; 

void init_x_y(int d, double x[], double y[]) 

{ 
sbkr my 

for (i=0;i<number_point[d];i++) { 

if (digit [d] [0] [i]==eos) 
x[it+1] = eos; 

else { 

x({i+1] = 

digit [d] [0] [i] *( (double) framex/(double)framex_init)*size_attenuation + 
20.0; 

yli+1] = 

digit [d] [1] [i] *( (double) framey/(double)framey_init)+*size_attenuation + 
205.05) 

fe 
} 

+ 

void add_noise(int time, int d, double x[], double y[], double 

x_mod[], double y_mod[]) 

t 
int count = 0; 

InGed, 9: 

double denom, numx, numy, 1, xm, ym, num; 

double fluctuation; 

  

double phi; 

x_mod[1] = x[1]; 
y_mod[1] = y[1]; 

for (i=2;i<=number_point[d];i++) { 
if (x[i]==eos) 

x_mod[i] = eos; 

else { 
denom = 0; 

numx = 0; 

numy = 0; 

for (j=1;j<=i-1;j++) { 
if (x[j]!=eos) { 

1 = 1/(dist(x[i] ,yi] ,xfj],y[j])+epsilon) ; 
numx += 1 * (x_mod[j]-x[j]); 

numy += 1 * (y_mod[j]-y[j]); 
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denom += 1; 

} 
} 
if (denom!=0) { 

numx = numx/denom; 

numy = numy/denom; 

} 
x_mod[i] = x[i] + numx + noise[count] * 

pow(attenuation_factor,time)*sqrt (1/1-epsilon) ; 
y_mod[i] = y{i] + numy + noise[count+1] * 

pow(attenuation_factor,time) *sqrt(1/l-epsilon) ; 
count += 2; 

} 
} 
fluctuation = 1.0 + scale * pow(attenuation_factor,time) ; 

phi = angle * pow(attenuation_factor,time) ; 
for (i=1;i<=number_point[d];i++) { 

if (x_mod[i]!=eos) { 
x_mod[i] = fluctuation * x_mod[i]; 

y_mod[i] = fluctuation * y_mod[i]; 
x_mod[i] = x_mod[i] * cos(phi) + y_mod[i] * sin(phi); 
y_mod[i] = -x_mod[i] * sin(phi) + y_mod[i] * cos(phi); 

} 
} 
num = 0; 

xm = 0; 

ym = 0; 
for (i=1;i<=number_point[d];i++) { 

if (x_mod[i] != eos) { 
num +=1; 

xm += x_mod[il; 
ym += y_mod[i]; 

tg 
eo 
xm /= num; 

ym /= num; 

for (i=1;i<=number_point[d];i++) { 

if (x_mod[i] != eos) { 
x_mod[i] = x_mod[i] -xm + framex/2; 
y_mod[i] = y_mod[i] -ym + framey/2; 

} 
- 

} 

/* Returns the number of points ’n’ of the following segment */ 

int nb_points(int break_point, double x_mod[]) 
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int n = 0; 

while (x_mod[n+1+break_point] != eos) 
nt++; 

return(n) ; 

ay 

/* Initialisation of the variables x_seg[], y_seg[] and t[] */ 
void init_segment(int n, int break_point, double x_mod[], double 

y-mod[], double x_seg[], double y_seg[], double t[]) 

{ 
In 33 

for (i=1;i<=n;it++) { 
x_seg[i] = x_mod[it+break_point] ; 
y_seg[i] = y_mod[itbreak_point] ; 

é 
/* Initialisation of the parameter t */ 

t[1] = 
for (i=1;i<n;i++) 

titi] = tli] + dist (x_seg[i] ,y_seg[i] ,x_segli+1] ,y_seg[i+1]) ; 

/* plot the point (x,y) into the frame */ 

void plot_point(int x, int y, double frame[]) 

{ 
if ((x= nN 0) & (y<framey) ) 
frame[y*framextx] = 1; 

/* plot the line between (x1,y1) and (x2,y2) into the frame */ 
void plot_line(double x1, double y1, double x2, double y2, double frame[]) 

{ 
double p; 

double length; 

double x_direct,y_direct ,norm; 

length = dist(x1,y1,x2,y2); 

x_direct = x2-x1; 

y-direct = y2-y1; 

norm = sqrt (pow(x_direct ,2)+pow(y_direct,2)); 
x_direct /= norm; 

y_direct /= norm; 

for (p=0;p<=length;pt=step) 
plot_point (floor(x1+p*x_direct) ,floor(y1+p*y_direct) ,frame) ; 
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void generate_curve(int time, double t[], double x[], double yf], 
double y2_0[], double y2_1[], int n, double frame[]) 

if 
double p; 

double x1,y1,x_old,y_old,x_norm, y_norm,norm; 

int x2,y2; 

double linewidth; 

linewidth = width + width_factor * pow(attenuation_factor,time) ; 

for (p=0;p<=t[n];pt=step) { 
splint(t,x,y2_0,n,p,&x1); 
splint(t,y,y2_1,n,p,&y1) ; 
if (po) { 

x_norm = -(y1 - y_old); 

y_norm = x1 - x_old; 

norm = sqrt (pow(x_norm,2)+pow(y_norm,2)); 
x_norm /= norm; 

y_norm /= norm; 

plot_line(x1-(linewidth/2)*x_norm, y1-(linewidth/2)*y_norm, 
x1+(linewidth/2) *x_norm, y1+(linewidth/2)*y_norm, frame) ; 

ie 
x_old 

y-old 

xi; 

yi; 
i 

+ 

main(int time, double frame[]) 

ft 
int break_point = 0; 

ING 5: 

int i; 

double t[nb_max_points+1], x[nb_max_points+1], y[nb_max_points+1] ; 
double x_mod[nb_max_points+1], y_mod[nb_max_points+1] ; 
double x_seg[nb_max_points+1], y_seg[nb_max_points+1] ; 
double y2_0[nb_max_points+1], y2_1[nb_max_points+1] ; 

double yp1 = 130; 

double yp2 = 130; 

/* Initialisation of the frame and array digit */ 
init_points (frame) ; 

/* Initialisation of x[] and y[] */ 
Init we yds toy) 

/* Addition of the noise */ 

add_noise(time, d, x, y, x_mod, y_mod); 
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/* At each pass through this loop, one segment of the digit is drawn */ 
do { 

/* Gives the number of control points of the following segment */ 

n = nb_points(break_point, x_mod); 
/* Initialisation of the points for the current segment */ 

init_segment(n, break_point, x_mod, y_mod, x_seg, y_seg, t); 

/* Generation of the two splines for the segment */ 

spline(t,x_seg,n,yp1,yp2,y2_0) ; 

spline(t,y_seg,n,yp1,yp2,y2_1); 
/* Generation of the digit */ 

generate_curve(time,t,x_seg,y_seg,y2_0,y2_1,n,frame) ; 

break_point += nt+1; 

} 
while (break_point != number_point[d]); 

} 

void mexFunction(int nlhs, mxArray *plhs[], int nrhs, const mxArray 

*prhs []) 

{ 

ant 19's 

double *frame; 

int time; 

init_rand(); 
time = (int) mxGetScalar(prhs[1]) ; 
if (time==0) { 

d = (int) mxGetScalar(prhs[0]) ; 
if ((d<0) || (a>=10)) 

/* We generate a random integer in the range 0-9 if the value of the 

input ’d’ is not an integer lying between 0 and 9 */ 

d = rand()%(10) ; 

/* Initialisation of the vector noise[] */ 
init_noise(); 

} 
else { 

frame = mxCalloc(framex*framey ,sizeof(double)) ; 

plhs[0] = mxCreateDoubleMatrix(framex,framey ,0) ; 

frame = mxGetPr(plhs[0]); 
main(time, frame) ;
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B.2 Creation of the gray-scale 

This procedure computes the elements of the gray-scale matrix, given the 140 by 160 

element matrix calculated thanks to the procedure presented in the above paragraph. 

/* Input : 140 by 160 matrix containing the image of the digit */ 

/* Output : 14 by 16 element matrix containing the gray-scale of the 

input frame */ 

#include "include_file.h" 

/* Returns the value of the element (i,j) of the frame */ 

double frame_value(double frame[], int i, int j) 

{ 
double value = 0; 

if ((i>=0) &&(i<framex) &&(j>=0) &&(j<framey) ) 
value = frame[j*framextil] ; 

return(value) ; 

z 

main(double frame2[], double frame[]) 

x 
double N = 0; 

double M; 

double XS = 0 

double YS = 0; 

double phis = 

double ds = 0; 

int i,j,k,1; 
double gX,gY,X,Y,phi, lambda; 

/* Computation of the center of mass (XS,XY) */ 

for (i=0;i<framex;i++) { 
for (j=0;j<framey;j++) if (frame[j*framexti] != 0) { 

N++; 

XS += (i+1); 
¥S"+= (j*1); 

J: 
a 
XS /= N; 
YS /= N; 

/* Computation of the average skew angle phi */ 
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for (i=0 

for (j 

gx = 
gy 

ds + 

phi 

Est 

phis 

} 
e 
ds /= N; 
phis /= 

ji<framex;i+t+) { 

=0;j<framey; j++) if (frame[j*framext+i] != 0) { 
(i+1)-XS; 

(j+1)-Ys; 
= sqrt (gX*gX+gY*gy) ; 

= atan2(gY,gX); 
phi < 0) phi += 2*3.14159; 
+= phi; 

N; 
phi = phis - 3.14159; 

/* Suppression of the skew and normalisation of the size */ 

lambda = 35/ds; 

for (i=0;i<framex_scale;i++) 

for Gj =0; j<framey_scale; j++) 
frame2[j*framex_scaleti] = 0; 

for (i=0;i<framex;it++) { 

for (j=0;j<framey;j++) if (frame[j*framex+i] != 0) { 
X= 

Y= 
((it+1)-XS)* lambda; 

((j+1)-YS)* lambda; 

gX = X*cos(phi) + Y*sin(phi) ; 
gY = -X*sin(phi) + Y*cos(phi) ; 
gX = (gX*framex_scale) /framex; 
gY = (gY*framey_scale) /framey; 

k = floor( gX + 0.5* framex_scale +0.0); 

1 = floor( gY + 0.5* framey_scale +0.0); 

if ( (0 <= k) && (k < framex_scale) && 

(0 <= 1) && (1 < framey_scale) ) 
frame2[1*framex_scale+k] += lambda; 

7 
2 
for (i=0;i<framex_scale;it++) 

for (j=0;j<framey_scale; j++) 
frame2[j*framex_scale+i] = tanh( frame2[j+framex_scale+i]/3 -6); 

void mexFunction(int nlhs, mxArray *plhs[], int nrhs, const mxArray 

*prhs[]) 

{ 
plhs [0] = mxCreateDoubleMatrix(framex_scale,framey_scale,0) ; 

main (mxGetPr(prhs[0]) ,mxGetPr(plhs[0])) ; 

} 
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