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Thesis Summary 

The intention of this project is to examine whether it is possible to measure alertness 

using EEG recorded on awake subjects. This thesis tries to examine if a measure of 

attentiveness could be derived from measures of complexity of EEG data. 

Tn order to avoid averaging required by Fourier analysis, a dynamical embedding 

is realised. As well, it allows us to reconstruct and to characterise the underlying 

generator of the data. On the results of this embedding, a signal filtering is proposed 

and different measures of complexity are derived. An analysis of these measures is 

performed by comparing them with information available about the attentiveness of 

the subject during the experiments. 

Finally, a feature extraction is performed. On the basis of this feature extraction, 

a filtering of the signal is realised. It may allows us to improve the accuracy of the 

different measures proposed. 

Keywords: EEG, Dynamical Embedding, Principal Component Analysis, Singular 

Value Decomposition, Complexity, Independent Component Analysis
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Chapter 1 

Introduction 

Among the different techniques used to investigate brain activity, the most used method 

is without any doubt the recording of the electric potentials on the scalp. This technique 

is known as electroencephalography (EEG). Since its first development by Berger in 

1928, EEG has been widely used as a clinical tool for the diagnosis of brain diseases, 

and used as a non-invasive approach for research in the quantitative study of human 

neurophysiology. 

EEG and brain states 

Correlation between human behaviours and changes in the spectrum of the EEG was 

noted first by Lomis et al. in 1937 when they observed that the EEG spectrum mostly 

shifts towards lower frequencies at transition to sleep. The link between the changes 

in the EEG spectrum and the behavioral states of the mind is strong enough that the 

EEG spectra can be used to discriminate alert and asleep states. 

If several mental states can be distinguish using only the EEG spectra, we can then 

ask if it is possible to estimate the vigilance and the attentiveness of a subject using 

only the EEG record. Several studies of alertness have confirmed that despite sincere 

intentions, few people remain vigilant while engaged in monotonous monitoring tasks 

(22], [11]. 

The most common approach to study electroencephalograms is Fourier Analysis
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with the study of the power and coherence spectra. The main reason why the EEG 

are studied in the frequency domain is the belief of the linear nature of the biological 

phenomena recorded by the EEG. This method supposes that EEG could then be 

described in term of sinusoidal components. 

Fourier Analysis and frequency analysis require an averaging of the time series to 

compute the Fourier transformations. In order to avoid this averaging and to consider 

shorter segments of time series, we can use the embedding approach. The strength of 

this method is that it allows us to reconstruct the manifold and to study the dynamical 

properties of a system without any knowledge about the original manifold. 

The first intention of this project was to examine whether it is possible to derive 

a measure of attentiveness from human electroencephalograms obtained from wake, 

normal individuals. In this thesis, we do not propose a measure of vigilance but we 

rather inspect several measures of complexity and we inspect the link between the 

changes in these measures and the behaviour of the subject. 

Complexity measures 

When visually inspecting signals, one of the first impressions they give is that some 

of them seem to vary more than others. It could then be interesting to characterise 

the complexity and richness of these signals. The measure of the complexity can then 

be used as an intuitive description of signals. More, it allows us to compare signals 

recorded in different conditions, such as a set of patients in a biomedical area. 

Many different methods have been proposed to attempt to quantify signal com- 

plexity. Some of them are not suited to analysis of biological signals because they are 

variant in the presence of noise or non-stationarities [15]. 

Several measures were investigated with electroencephalograms, such as Optimal 

Model Order under regressive modelling, Spectral Entropy and Approximate Entropy, 

and measures based on the Embedding-space Decomposition [14]. Because there is no 

absolute definition of complexity, each of these methods measures different features of 

the signal. For example spectral entropy measures the spectral entropy of the signal
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using the Fourier Transformations when Optimal Model Order measures the number 

of past samples required to predict the time series in a autoregressive model. 

From these methods, the embedding-space decomposition give better results, so the 

presented measures are based on the singular values resulting from this decomposition. 

Plan of the thesis 

The first chapter is this introduction. 

The second chapter gives a brief presentation of electroencephalography. It presents the 

biological phenomena which generate the electrical potentials recorded and describes 

the common brain waves observed in wake subjects. Finally, the data used in this 

thesis are presented. 

The third chapter is an introduction to the embedding approach used in this work, 

Taken’s delay coordinate maps. It gives also a description of the embedding-space 

decomposition method. At the end of the chapter the methods used to choose the 

parameters of the embedding are presented. 

In chapter 4, different measures are proposed and discussed. The correlation with their 

changes and the behaviour of the subject is also discussed. 

In chapter 5, a feature extraction is performed on the data using the Independent 

Component Analysis (ICA). The results of this decomposition are discussed and some 

measures proposed in chapter 4 are applied on selected independent sources. 

Chapter 6 concludes this thesis and discusses the major results.



Chapter 2 

Brain waves and EEG data 

Introduction 

The human brain can be studied in many different ways. Several methods allow us 

to measure physical processes inside living tissues. These methods include positron 

emission tomography (PET), magnetic resonance imaging (MRI), electroencephalog- 

raphy (EEG) or magnetoencephalography (MEG). They differ by temporal and spatial 

resolutions and by the physical process recorded. PET records chemical consumption 

of oxygen and glucose by the neurons when MEG and EEG record electrical activity 

of the brain. The temporal resolutions can vary in a range of minutes for PET and 

milliseconds for EEG and MEG [13]. 

Each method has its own region of applicability. Nevertheless, the oldest method 

(and probably the cheapest one), the electroencephalography, has been used for years 

in the study of human behaviour. 

2.1 Electroencephalography 

Electroencephalography (EEG) is a medical imaging technique that measures brain 

function by analyzing the scalp electrical activity generated by brain structures. It 

is a completely noninvasive and painless procedure that can be applied repeatedly in 

patients, normal adults, and children with no risks or limitations. 

10
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EEG recorder 

1.0-1.2cm 

  

Figure 2.1: Extracranial recording of electroencephalographic data 

For these reasons, electroencephalography has been used for years in the diagno- 

sis of a large variety of brain diseases, the most common of which are epilepsy (a 

brain disorder usually not accompanied by any abnormalities detectable with nonfunc- 

tional imaging techniques), sleep disorders, stroke, head trauma, encephalopathies, 

Alzheimer’s disease, etc. For the same reasons, it has been widely used to study brain 

organisation of cognitive processes such as perception, memory, attention, language, 

and emotion in normal adults and children. 

The spatial resolution of EEG is limited about to 10 cm? [13]. The reasons are the 

size of the sensors and the diffusion caused by tissue conductivity of the skull and the 

scalp. Due to the technique used, the EEG are more sensitive to the sources present in 

the neocortex rather than deep sources in the brain. The sources (shown as arrows on 

figure 2.1) are the macrocolumns of the neocortex. A macrocolumn is a macrostructure 

of the brain which contains about 10° neurons and about 10'° synapses. The EEG are 

more sensitive to correlated fields perpendicular to the surface of the scalp (as in regions 

a-b or d-e) than correlated tangential fields in the sculcus as in region e-g. Finally, 

EEG is completely insensitive to opposing dipoles in sculcus (b-d). 

11
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2.2 Brain waves 

Interpreting EEG involves the characterisation of waves usually defined by their fre- 

quencies and their morphologies. 

The raw EEG is usually described in terms of frequency bands. The frequencies of 

the human EEG waves vary between about 0.5 Hz and 50 Hz (we can assume that all 

signals with frequencies greater than 50 Hz are simply noise because no physiological 

mechanisms can produce such signals). This range has been divided in four main bands 

which are known as alpha, beta, theta and delta waves. 

e Alpha activity 

Alpha waves are the EEG waves with frequencies between 7 and 13 Hz. They are 

strongest over the occipital cortex (posterior region of the head) and also over 

frontal cortex. a-activity is brought out by closing the eyes and by relaxation, 

and abolished by eye opening or alerting by any mechanism (thinking, calcu- 

lating). Alpha has been linked to extraversion (introverts show less), creativity 

(creative subjects show alpha when listening and coming to a solution for cre- 

ative problems), and mental work. It is the major rhythm seen in normal relaxed 

adults - it is present during most of life especially beyond the thirteenth year 

when it dominates the resting tracing. 

e Beta activity 

Beta activity is ‘fast’ activity. It has a frequency of 13 Hz and greater. It is 

usually seen on both sides in a symmetrical distribution and is most evident 

frontally. It is the normal rhythm when we have our eyes open and are listening 

and thinking. It reflects desynchronised active brain tissues. It is the dominant 

rhythm in patients who are alert or anxious. 

e Theta activity 

Theta activity has a frequency of 3.5 to 7.5 Hz and is classed as ‘slow’ activity. 

It is abnormal in awake adults but is perfectly normal in children up to 13 years 

12
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and in the first stages of sleep. It can be seen as a focal disturbance in focal 

subcortical lesions and in generalized distribution in diffuse disorders. 

e Delta activity 

Delta activity is 3 Hz or below. It tends to be the highest in amplitude and the 

slowest waves. It is quite normal and is the dominant rhythm in infants up to 

one year and in stages 3 and 4 of sleep. It may occur focally with subcortical 

lesions and in general distribution with diffuse lesions, metabolic encephalopathy 

hydrocephalus or deep midline lesions. It is usually most prominent frontally in 

adults and posteriorly in children. 

Sometimes, the terms of gamma or mu activity are used. The gamma band corre- 

sponds to signals with frequencies greater than 30 Hz. Often, the gamma activity is 

included in the beta band. The mu activity is the beta activity recorded in a particular 

area of the scalp. 

  

o tne yh Ayes Ae UM, «AY ma nen eh an Powe tele 

  

  

  

          

(a) Alpha rhythm (b) Beta rhythm 

coment agar 
(c) Theta rhythm (d) Delta rhythm 

Figure 2.2: The four kinds of brain waves 

Another way to describe EEG waves is to define their morphology. Certain waves 

have characteristic forms irrespective of their frequency and are recognisable by their 

shape: in other instances pairs or groups of waves have typical appearances. Single 

waves that are specially shaped include, for instance spikes or sharp waves - waves that 

rise rapidly to a point and fall away equally dramatically with a base that is small 

compared to the wave’s amplitude. 

13



CHAPTER 2. BRAIN WAVES AND EEG DATA 

The difficulty in EEG reading lies in recognising the artifacts and also in being able 

to differentiate normal variants from abnormalities. 

The normal variants are waves or patterns of waves which are unusual in appear- 

ance but which are not significant for abnormalities or diseases. These waves can be 

misinterpreted. The artifacts are disturbances in EEG, caused by technical defects 

such as electrode movements with loss of contact, scratching the scalp, sweating, etc 

or by natural human activity, muscular activity obscuring the EEG, eyes movements, 

etc. 

2.3. Data and experiment 

The data used in this thesis was provided by Dr Helen Stone of British Aerospace 

(Sowerby). The data collected on awake subjects who were monitored continuously 

from 10 am to 5 pm during a series of four tasks and including normal rest and lunch 

breaks. The subjects for this experiment are people from both genders and handedness. 

A timetable was drawn up to ensure that all subjects carried out their tasks at similar 

time-of-day to allow comparison between them. In this thesis we only use data collected 

on a righthanded female (referenced as subject bal6kb) and no comparison between 

different subjects has been done. 

The main goal of this study is to attempt to define a measure of alertness, so the 

subjects were monitored during four tracking tasks. These trials were designed to be 

particularly monotonous and repetitious and they consist of a mixture of three different 

activities: 

e A tracking activity which is present in all four tasks. The subject must maintain a 

horizontal line which deviates vertically and horizontally under computer control. 

e A response activity which requires the subject to press the first joystick button 

when a particular signal appears on the screen. 

e Another response activity where the signal is now a number on the screen. The 

subject must press the second button of the joystick if the number is +2 equal 

14
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to the previous one. 

The timetable 2.1 corresponds to activities followed by subject 16. The starting 

and stopping times were collected using a video recording of the experiments. Due to a 

problem with the sensor on channel P4, the EEG recording was stopped from 11:43 to 

11:53, but strange records with this channel can be detected even earlier so the period 

11:20-11:53 was excluded from the study. 

The EEG data were collected on an Oxford Instruments Medilog system utilising 

multiple measurement channels. The electrodes were sited according to the interna- 

tional 10-20 system. The sampling rate used for the recording was 256 Hertz and the 

data was quantised to two bytes per sample. 

Eighteen different channels are present in the dataset. Some of them are synchro- 

nisation information from the task program. The following channels were available: 

e Bipolar C4-Al 

e EOGI/FP1 and EOGr/FP2, these channels measure eyes movement activity. 

e EOGinf/FPinf and EOGsup/FPsup, these channels provide information about 

blink activity and eyelid position. 

e C3 

e T3 

° 14 

e Ol 

e O02 

e P4 

e Cz 

e Fz 

15
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Task Number | Activity Start | Stop 

1 EOG calibration 10:13 | 10:14 

2 Trial 1 (Tracking + event) 10:15 | 11:15 

3 EOG calibration 11:16 | 11:19 

4 Refreshment break 11:20 | 11:53 

5 EOG calibration 11:53 | 11:58 

6 Trial 2 (Tracking only) 11:59 | 12:59 

ia EOG calibration 13:00 | 13:01 

8 Lunch break 13:02 | 13:39 

9 EOG calibration 13:40 | 13:44 

10 Trial 3 (Tracking + number + event) | 13:47 | 14:47 

aL EOG calibration 14:48 | 14:52 

12 Refreshment break 14:53 | 15:04 

13 EOG calibration 15:05 | 15:09 

14 Trial 4 (Tracking + number) 15:10 | 16:11 

15 EOG calibration 16:11 | 16:17 

16 Refreshment break and final debriefing | 16:18 | 17:00 
  

Table 2.1: Timetable for subject 16 

16 
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e EMG1 and EMG? these locations are used to monitor muscle activity. 

Tn the study, several channels were used in order to consider handedness and effects 

of the muscular activity over the measures of complexity (the region which controls the 

muscular activity is a frontal one). 

  

Figure 2.3: Electrodes placement: international 10-20 system 

In addition to the EEG, a recording of the output of the task program is available. 

It consists of a measure of the deviation of the tracking line from the centred and 

horizontal position. The scaling rate for this measure was 10 hertz. This record 

contains also the information about the random events and the numbers shown on 

the screen and the corresponding responses from the observer. It allows us to compute 

the performance of the subject during the trials but we cannot guarantee that this 

performance is correlated with alertness and then that it can be used to validate our 

own EEG-based measures of attentiveness. 

Finally, a video recording of each trial and EOG calibration is available. This 

video allows us to check for abnormal behaviours during the trials, for example eating, 

drinking, movements, etc. A list of these events for the four trials is presented in 

Lh
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appendix A. On the basis of this video record, we chose not to use the performance 

recorded by the computer described in the previous paragraph because we observe no 

correlation between the performance and the observations we can do using the video 

tape. For example, around 14:30, the subject fell asleep for several minutes, with no 

major correlation with the performance. 

18



Chapter 3 

Embedding Approach 

Introduction 

Several methods can be applied to EEG analysis. Traditional approaches rely upon 

averaging long segments of time series and performing Fourier analysis to examine the 

resulting power and coherency spectra. The main reason why EEG data are studied 

in the frequency domain is the belief of the linear nature of the biological phenomena 

recorded by the electroencephalograms. This method suggests that the signals could 

be decomposed in a sum of sinusoidal components. The signals could then be described 

in term of their harmonics. Several studies of alertness use this approach [12], [11] and 

claim that the EEG spectrum and vigilance are correlated. 

In this thesis, we use another method, the embedding approach, which allows us to 

consider shorter segments of time series. Also, it allows us to reconstruct the underly- 

ing generator of the time series and then to consider the parameters of this generator. 

Another interest of the embedding approach consists in the possibility to perform a 

temporal analysis of the EEG channels instead of a spatial analysis: usually, the dif- 

ferent channels from the different regions of the scalp are considered and a Principal 

Component Analysis (PCA) or Independent Component Analysis (ICA) is performed 

on the resulting data. Using the embedding approach, we can compute a PCA or an 

ICA on the data from a single channel: we only consider the data from the embedding 

space instead of the raw EEG. For these different reasons, we chose to use the embed- 

19
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ding theory instead of time analysis using Fourier Transforms. The embedding theory 

will be described in the following sections. 

First, this chapter discusses the embedding approach applied to analysis of elec- 

troencephalographic data and in the last two sections, the methods used to choose the 

parameters of the embedding are presented. 

3.1 Dynamical embedding 

3.1.1 Dynamical systems and the method of delays 

Consider a continuous system governed by the set of N first-order differential equations 

aX; (t) 
dt 
  = F(X, Xo,...,Xw,t), t=1,...,N (3.1) 

where the F; are non-linear functions of the independent variables X;. Each X(t) = 

(Xi,...,Xw,t) represents the state of the system at time t and may be thought as 

a point in a vector space S. The dimensionality of S, since it controls the number of 

possible states, will be associated with the degrees of freedom of the system. 

Often, as the system evolves, the set of vectors X(t) could be contained in a sub- 

space D of the space S and the flow of points will contract onto sets of lower dimensions 

than the dimension of S. These sets are called attractors and the knowledge of their 

description is useful to describe the system itself. An important measure of the dy- 

namics of a system is its complexity, which is related to the dimension of the subspace 

containing the attractors. 

We wish now to use the same principle to measure the complexity of the EEG 

data. The theorem which allows us to reconstruct the unknown dynamical system 

was demonstrated by Takens [18] and the method of delays we use was introduced 

first by Broomhead and King [2]. The vocabulary used in the following sections is the 

vocabulary introduced by these authors. 

The method of delays consists in projecting the time series samples x; in a vector 

space, the embedding space. In this space, the data are represented by the embedding 

20
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vectors X(t) defined by 

X(t) = : (3.2) 

Zt-(M-1)r 

where 7 represents the time increment or lag and M is the embedding size. The lag T 

is chosen as a multiple of the sampling time 7,. With our data, the sampling frequency 

is 256 Hz, so the sampling time is tr, = 1/256. According to [2], we choose 7 to be 

equal to 7, so we use all the samples from the EEG records. This choice allows us to 

assimilate the singular value decomposition to a PCA of the initial data [2]. 

There is no absolute criterion to choose the second parameter M. We only know 

that the window size M must be greater than 2xD+1 where D represents the dimension 

of the manifold (condition required by the proof of Taken’s theorem [18]). The method 

we adopt for the study is explained in section 3.2. 

Consider now the sequence of vectors X(t) = X1,X(t+7) = Xo,X(t+2r) = 

X3,-..,X(t + (n+1)r) = Xj. Each of these vectors will represent a point in the 

embedding space R™. The sequence will then draw the discrete trajectory of the data. 

Let us define X to be the trajectory matrix. 

     
Te Tipp +e Tetnr 

wes Ss 1 Lepr Ttp2r +++ Lt4(n41)r 
1X2, X3,--- Xp] TN 

Tt4(M-1)r Ttt+Mr +++ Lt4+(M4n-1)r 

(3.3) 

where [> has been introduced as a convenient normalisation [2]. 

We want to characterise this trajectory, and if possible measure the dimension of the 

subspace containing the attractors. It was shown that the analysis of the complexity 

of the trajectory matrix leads to the singular values decomposition problem. 

21
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3.1.2 Embedding space decomposition 

Consider the real (and not square) matrix X, we may decompose it as 

Me UeSev" (3.4) 

In this decomposition, the matrix S is diagonal. Let o; be the diagonal elements 

of S, then o? is the i** eigenvalue of C = K * X7. We also know that o; > 0. The 

columns of the matrix V are the eigenvectors of C and the matrix U is the matrix of 

projections of X onto the eigenvectors of C. This decomposition is usually referred to 

as the singular value decomposition. 

When we constructed the trajectory matrix X, we know that the window size must 

respect the inequality 

M>2*D+1 (3.5) 

Since D is not known a priori, this means that in practice the embedding dimension 

M is chosen large enough such that redundancy appears in the embedding results. This 

redundancy manifests itself as a rank deficiency in the embedding matrix X. We may 

decompose the trajectory matrix using equation 3.4 to investigate this redundancy. 

For noiseless systems, some 0; are zero and the number of non-zero singular values is 

the dimension of the manifold. Real systems (and EEG data in particular) are always 

corrupted by noise, noise from the recording process, quantisation noise, etc. The 

trajectory will then explore all the dimensions of the embedding space. This results 

in a spreading out of the cloud of embedding vectors in the embedding space around 

the manifold. The result on the singular spectrum is a shifting of the singular values. 

If the noise is randomly distributed, there is no preferred direction in the embedding 

space and the noise appears as a noise-floor in the singular spectrum. 

If we are able to identify the noise floor in the singular values spectrum, we can 

then determine the dimension of the manifold. Moreover, it allows us to partition 

the embedding space in two parts, the first one where the signal is dominant and the 

22
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second one where the noise is the dominant feature. If we suppose we can split the set 

of singular values in two parts, a signal set and a noise one, we can then define the 

projection operators on the two corresponding subspaces. Using the notation of the 

equation 3.4, the projection operator on the signal subspace will be made up of the 

columns of V corresponding to the singular values above the noise floor. In the same 

way, the matrix U is the projection of the embedding matrix X on the eigenvectors of 

X * X7, so the projection of the embedding vectors are the corresponding rows of the 

matrix U. 

This decomposition of the embedding space corresponds to a PCA on the embedding 

vectors, because the singular values o; are the square root of the eigenvalues of the 

covariance matrix X * X7. It can be used to enhance the signal to noise ratio, but ICA 

methods have been proposed to perform feature extraction on EEG data with better 

results [7], [6] and [8]). The ICA method will then be used in the last part of this thesis 

to enhance the signal to noise ratio, but singular value decomposition will be used to 

characterise the manifold using the singular values. 

3.2 Characterisation of the window size 

In the previous sections, we haven’t chosen any value for the window size. Finding 

such a window size is a very subjective problem. Takens, in his proof of his theorem 

shows that M must respect the inequality 3.5. Usually, M is chosen large enough to 

respect this inequality. A too large window size will introduce a lot of redundancy in 

the embedding. In this section, we wish to find a “good” value for this value which 

respects the inequality in order to capture the whole dynamics in the embedding, but 

not too big in order to decrease as much as possible the computation time and the 

computation complexity. 

Some of the measures presented in this thesis are based on the computation of the 

singular values. To allow comparison between measures at different times of the day, 

we must choose a window size which respects the inequality for the different periods of 

the day. We must also try to reduce the influence of the window size on the singular 
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values. 

3.2.1 A toy example 

In order to present the method developed for the choice of M, a simple toy example is 

used. Consider the following mixture of sinusoidal components: 

f(t) = sin (20rt) + 0.9 sin (58rt) + ... (3.6) 

cos (227t) + 1.1 * cos (367t) + a * m 

Where 7 is a Gaussian noise source of unit variance. From this equation we generate 

3000 points with 256 points per second. The frequencies of these sine waves correspond 

to frequencies observed in EEG signal. We then apply the method of delays as described 

previously and we compute the singular values for different values of Mf between 5 and 

100 by step of 5. 

The figure 3.1 presents the results of noiseless data i.e. a = 0. The dimension of 

the manifold is clearly equal to eight. In the embedding space, each sinusoid has two 

degrees of freedom: the curve defined by the points (2, @t41,--- ,©t4a-1) is an ellipse 

if the samples are generated from one sinusoid, a four-dimensional ellipsoid for two 

sinusoid and an eight-dimensional ellipsoid for our example. 

With this example, we see that a lag greater than 10 is useless (after 8 the singular 

values are zero), but on the graph, it becomes obvious only for a lag greater than 20. 

This example is unrealistic because no noise corrupted the signal so we consider now 

a noisy signal. 

The next figure (3.2) is the same figure but with some noise (a set to 1). As said 

before, due to the presence of noise the trajectory will explore all the dimension of the 

embedding space. On the spectra of the singular values, the noise is visible as the noise 

floor present in figure 3.2(b). The level of this floor depends of the level of noise in the 

toy signal: increasing a will raise the floor. 

Here, The choice of a correct embedding dimension could be determined by the 

observation of a “convergence of the spectra”. With this example, the convergence is 

24



CHAPTER 3. EMBEDDING APPROACH 

  

            
  

  

of 20s ca os 06 a7 om OSA 
Tine 
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Figure 3.1: Noiseless sine wave example: (a) Noiseless data sequence used in the 

construction of the delay vectors (b) Effect of variation of the windows size on the 
spectra of singular values, the numbers correspond to the window sizes of the different 
spectra. 

observed for M > 40. With EEG data, this criterion cannot be applied strictly because 

the convergence of the spectra of the singular values is not visible. 

As a last example, the same function (described in equation 3.6) is used but with 

a poor signal to noise ratio (now a is set to be equal to 3). As shown in figure 3.3, the 

signal is now highly corrupted (a). As an effect of this corruption, the spectra now do 

not converge but a spread effect and a right shift of the singular values are observed 

(b). 

Tf we look closer to the spectra on figure 3.3(b), we can see that the curve seems 

to adopt the same shape when the number of delays increase and a convergence of the 

shapes of the curves may be expected. Figure 3.3(c) presents the method used to see 

if such a convergence exists. The shortest spectra are stretched to the length of the 

longest one and plotted on the same graph. The method used to stretch the spectra 

consists of interpolating the curves with the same number of points as the longest 

curve, 100 in the present case. 

Finally, the euclidean distance between two successive stretched spectra is used to 
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(a) Noisy signal (b) Spectra of singular values 

Figure 3.2: Noisy sine wave example: (a) Noisy data sequence (b) Effect of varia- 
tion of the windows size on the spectra of singular values, the numbers on the graph 

represent the window sizes used to compute the spectra. 

characterise the convergence, 

(3.7) 

  

where g; and o} are the interpolated singular values for the spectra of length M and 

the consecutive one. This function is not really adapted to characterise convergence, 

but it allows us to determine the effects of the variation of the window size on the 

spectra. The lower values of this distance function will indicate that the variation in 

the number of delays will less modify the shape of the spectrum. In our case, it may 

be an interesting criterion for the choice of the lag. Nevertheless, using the results 

of figure 3.3, a correct value for M seems to be around 80 when we know that the 

trajectory is contained in a subspace of dimension 8 (figure 3.1). So we may expect big 

values for M. 

3.2.2 Using the EEG data 

The EEG data behave as the last example of the previous section, i.e. we observe a 

right shift of the singular values. An explanation can be a poor signal to noise ratio 
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(b) Spectra of singular values 

  

    
  

(c) Stretched spectra 

Figure 3.3: Sine wave with poor signal 

o_o 700 Wena sre a a a) 

(d) Error function 

to noise ratio: (a) Noisy data sequence 
(b) Effect of variation of the windows size, the numbers represent the window sizes of 
the different spectra (c) Stretched spectra (d) Quadratic error between two successive 

spectra. 
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but the presence of artifacts in the signal or the nonstationarity of the generator may 

also explain this effect. In the previous section, we studied the effects of noise on the 

singular spectra and we presented a criterion to choose the window size. The effects of 

nonstationarities have not been studied in this thesis and could be part of future work. 

In this section, the EEG data are collected on the channel O1. The results for other 

channels are presented in appendix B.1. 

We apply the method of delays and the singular values decomposition to an em- 

bedding matrix which represents the different periods of the day. This matrix is made 

up of 5000 embedding vectors chosen at different times of the trials and the breaks. So 

we expect to capture the different behaviours of the singular spectra and then be able 

to chose a value for M which will apply anytime. The figure 3.4 presents the spectra 

of the singular values for number of delays between 10 and 250 by step of 10. 

If we use the error function defined for the sine wave example, we observe a minimum 

at about 150. In previous work ([8]), a window size equal to 30 was used for a sampling 

frequency equal to 100. If the sampling rate is doubled, we then need twice more points 

to capture the same period of signal so we may expect a value about 80 if the sampling 

rate is equal 256. We know that the criterion we used with the toy example gives to 

high values for M. So a value of 150 may not be a bad choice for the window size. 

This is the value we choose for our computation in the rest of the study. 

3.3. Determining the number of delay vectors 

In the previous section, we choose to use 5000 delay vectors. This choice is rather 

subjective. Now the lag is determined, could it be possible to reduce the number of 

embedding vectors ? Using a lag of 150, 5000 delay vectors represent about 20 seconds 

of the initial time series. A smaller number of embedding vectors will reduce the 

length of time series required as well as it will reduce the computation complexity and 

calculation time. 

If the number of delay vectors is too small, the embedding matrix will be unable 

to capture the dynamics of the data. The results will be a change in the shape of the 
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(a) Singular values (b) Stretched spectra 

Figure 3.4: Spectra of singular values for different window size: (a) Spectra of 
singular values, the numbers are the window sizes (b) Stretched singular spectra 
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Figure 3.5: Plot of the distance between consecutive spectra 
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spectrum of the singular values. Once the embedding matrix is large enough to capture 

the dynamics of the time series, the addition of embedding vectors to the trajectory 

matrix will not modify the spectrum of the singular values. So, the criterion for a 

sufficient number of delay vectors could be a convergence of the spectra. 

Using data from channel 01, we compute the singular value decomposition on a 

set of 20 trajectory matrices, with a lag of 150 but a number of delay vectors varying 

between 500 and 10000 by step of 500. Figure 3.6 presents the 20 spectra (a) and 

the plot of the error functions (b). The error function used is the euclidean distance 

between two successive spectra. The plot of error function tell us that 2500 delay are 

sufficient to observe a convergence of the spectra and then to capture the dynamics for 

the day. If the sampling rate is rt; = 256, 2500 embedding vectors correspond then to 

about 10 seconds of the time series. 
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(a) Singular spectra (b) Error function 

Figure 3.6: Effects of the number of delay vectors on the singular spectra 
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Chapter 4 

Measures of complexity 

4.1 Introduction 

One important piece of information about a time series is its complexity. Several 

measures exist to estimate the complexity of a time series. In this thesis, we apply em- 

bedding theory on the EEG data. This theory allows us to reconstruct the underlying 

generators of the time series in an embedding dimension R™. The different measures 

proposed in this chapter try to estimate the parameters of this manifold. They can 

estimate either the dimension of the subspace containing the generators or the shape 

of the manifold. 

Embedding theory is subject to the choice of several parameters. In the following 

sections, the value used for the window size will be the value determined in the previous 

chapter (M = 150). 

In this chapter, only data from 12:00 to 15:00 are used. We choose this period to 

consider only a continuous segment of recording, without any recording break inside 

it (there is a break in records between 11:43 and 11:53 in the data used). This period 

starts with the second trial and stops at the end of the recording. 

Some of the proposed measures use the results of the singular value decomposition 

to estimate the complexity. The same procedure was used for the calculation of the 

singular values for each measure: 
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e We split the range 12:00-17:00 in sections of one minute. This duration can be 

reduced to sections of 10 seconds because 2500 embedding vectors capture the 

dynamics of the signal (previous chapter). We chose to consider sections of one 

minute in order to reduce the number of singular value decomposition which is 

quite long to compute. 

e For each minute, we construct an embedding matrix as described in equation 

3.3. The number of embedding vectors to construct this matrix is equal to 2500. 

It represents about 10 seconds of the EEG signal. In order to avoid ignoring 

50 seconds of signal for each section, the embedding vectors are chosen to be 

uniformly spaced in the section (the embedding vectors are constructed with an 

overlapping equal to 144). 

e We then perform a singular value decomposition on each embedding matrix. The 

computed singular values represent the characteristics of the embedding (the 

lengths of the cloud of embedding vectors in the embedding space). They are 

then stored and be used for the calculation of the different measures. 

We may expect that in EEG time series, the complexity is related to the states 

of the brain, i.e. that the complexity of EEG varies with the activity realised by the 

subject and his concentration. The problem with this hypothesis is that the complexity 

may vary for a large number of different reasons and we do not know if the the effects 

of concentration and attentiveness can be isolated among the other sources of brain 

waves. 

4.2 Determining the complexity 

4.2.1 Characterisation of the complexity 

As mentioned in the previous chapter, finding the complexity (here an upper bound of 

the dimension of the underlying manifold) leads to finding a noise floor in the spectrum 

of singular values. In the case of a signal with a good signal to noise ratio, the detection 
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of this floor can be obvious (the second sine wave example in the previous chapter). 

But as the noise increases, the noise floor raises and can then reach the same level as 

signal. 

To find the noise floor in this case, one of the most simple tests, and probably the 

most used is the scree test [3]. It derives from a visual inspection of the singular values 

plotted against their root number. A typical plot of singular values shows a steep slope 

over the first roots and a gradual trailing off for the rest of the eigenvalues (the scree). 

The term scree derives from the resemblance to the rubble that forms at the foot of a 

mountain. 

The main problem with the scree test is that this criterion is rather subjective and 

the separation between the signal part and the noise dominated one is often not obvious. 

The method is then to detect the kink in the shape of the spectrum. Sometimes several 

kinks can be observed and may increase the difficulty of applying the method. 

4.2.2 Visual inspection of complexity 

To apply the scree test to our data and estimate the complexity, we compute the 

singular values spectra using the procedure described before. The 300 embedding de- 

compositions are then visually analyzed to determine the number of significant values, 

which we take to imply complexity. 

We perform this analysis on four different channels, the 2 occipital channels 01 and 

Q2, a frontal one FZ and the channel P4 in order to see the differences between the 

different locations on the scalp. 

The results of these inspections are shown in figure 4.1. The dashed lines in the 

plots represent the start and end times of breaks/trials. The stars represent the sections 

where inattention of the subject can be observed (group 3 and 4 of the appendix A). 

The plus signs and the crosses represent the events of groups 1 and 2 respectively. 

These events are plotted to inspect their effects on the measure. 

As mentioned previously, the main problem of these inspections is that we cannot 

reproduce these results due to the subjectivity of the method. Nevertheless, some 
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Figure 4.1: Number of significant singular values determined using the scree 
test: four EEG channels were inspected, 2 occipital ones O1 (a) and O2 (b), one 
frontal channel FZ (c) and the channel P4 (d). 
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interesting points can be observed: 

e First, during the analysis of the spectra, we observed that the spectra may be 

split in two groups by their shapes. The first ones are more present during the 

periods of concentration, during the experiments. They often present an obvious 

kink around the 18 eigenvalue. The second shape seems to characterise the 

periods of rest. It is characterised by higher eigenvalues and by the absence of 

kinks in the curve. A change in the curvature could sometimes be observed for 

eigenvalues near 70, but it is often too smooth to be considered. 

e Strong differences can be observed between the channel FZ and the three others. 

An explanation could be that we observe here the effects of the muscular activity 

(the frontal channels are located over the regions of the cortex controlling the 

muscular activity [13]). 

e This measure of complexity may be used to cluster the periods of activity (minutes 

0-59, 107-167 and 190-250) from the breaks. The rest periods are characterised by 

a lower complexity than the experiment periods. Using a threshold as clustering 

criterion, the best separation is obtained with channel O1. We can observe also 

that the the number of significant singular values decreases at the end of each 

trials when it stays constant for channel O1. Another remark concerns the period 

around the minute 150 (14:30): the number of significant singular values stays 

constant contrary to other channels. According to the video, during this period, 

the subject is subject to several mini-sleep periods. 

4.2.3 Simple measures of complexity 

To remove the subjective analysis in the previous computation, we wish to define a 

measure of complexity. One simple way to do it is just to consider the percentage of 

variance explained by the first n dominant eigenvectors: 
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  Percentage of variance explained = a (4.1) 

on 
k=l 

Usually, this formula is used with n constant. Here we want to define a measure 

which gives us an estimation of the number of significant singular values. We will 

instead choose a percentage of variance to explain and find the number of dominant 

eigenvectors required to explain this variance. The definition of the measure will then 

be: 

: 
doe 

M,(t) =n, with respect a = Constant (4.2) 

es 
j=l 

On the same model, we can define three other measures: 

  

M,(t) =n, with respect oa, = Constant (4.3) 
n 

M(t) =n, with respect De 2: = Constant (4.4) 
i=1 

2 

M(t) =n, with respect = Constant (4.5)   

oy 

&. W M
s 

The results of these four measures are highly dependent on the choice of the thresh- 

old. As shown in figure 4.2, functions M,, M3 and My give similar results. In addition, 

the variations of these functions are anticorrelated with the results of the scree test: 

the measure increases during the break periods. Only measure Mp presents results 

similar to the scree test. 

Once again, the measures are able to differentiate the lunch or refreshment break 

periods from the trials. The break periods are certainly characterised by a larger num- 

ber of movements from the subject, especially during the lunch break. This suggests 

that our measures once again are high sensitive to artifacts. 
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Figure 4.2: Number of significant singular values determined using the four 
measures (channel O1): (a) measure M, with a threshold of 2500, (b) M, with a 
threshold of 80000, (c) M3 with a threshold of 7.5 * 10-* and (d) M, with a threshold 
equal to 0.5. 
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4.3 Entropy Measure 

4.3.1 Definition and comments 

The concept of entropy was originally developed by physicists to discriminate order 

from disorder in the physical sciences, initially in thermodynamics. Entropy was in- 

troduced into information theory by Shannon in 1948. It could be interpreted as a 

measure of disorder or as a measure of the information content [1]. For a continuous 

function p with 0 < p(x) < 1, its definition is 

E=- [re log p(x) dx (4.6) 

To describe and measure the variation of the spectrum of singular values, we may 

use the discrete measure of entropy defined by 

eos ees oO; (4.7) 
i=1 

where the oj are the normalized singular values, i.e. of = te 
i= Fi 

We can note that the entropy reflects the number of states of the system: when the 

complexity increases, the dimension of the manifold will rise and then the number of 

singular values above the noise floor will increase too. With the definition used, the 

entropy will rise too. The counterpart is that the entropy is subject to the level of noise. 

If it rises, then the value of entropy will rise too. In the case of a system with a constant 

level of noise, the entropy is a good measure to observe the evolution of the system. In 

the case of EEG data, it is highly improbable that the level of noise (artifacts, overall 

mental activity, ... ) remains constant for several hours. Nevertheless, we will apply 

this measure to our data and try to deal with the presence of this noise. 

4.3.2 Results 

To apply the entropy measure to our data, we compute the singular values using the 

procedure described at the beginning of this chapter. We then compute the entropy for 
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Figure 4.3: Result of the entropy measure on channel O1: the stars denote the 

minutes characterised by a high level of inattention, the dashed lines represent the start 

and end times of the trials. 

each of the 300 sections of one minute. The results computed using data from channel 

O1 are shown in figure 4.3. Once again, the dashed lines represent the start and end 

times of breaks/trails and the plus signs, the crosses and the stars represent the events 

described in appendix A. 

Using the figure, we can observe the following points: 

e The entropy measure distinguishes the periods of attentiveness from the lunch 

break and the refreshment breaks. During the break periods, only a few points 

present lower values of entropy. Among them are all the points after 16:30. These 

strange values are present in all the defined measures, and are probably due to a 

recording problem at the end of the day. We have no explanation for these points 

due to the absence of video record or any information. In the same way, at the 

beginning and at the end of each break, we can observe peaks with low values of 

entropy. These periods occur during the EOG test, and can be explained by the 

behaviour of the observer: the tests require attention and during several minutes 
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the subject is as attentive as during the experiments. It seems then normal to 

observe the same measure as during periods of concentration (this remark is true 

for the previous measures). 

e The analysis of the video tape tells us that the fourth trial is characterised by a 

large number of small movements from the subject. On the plot we can see that 

the curve presents on average higher values than during the two other trials. the 

reason of this effect could be either a bigger complexity of EEG or a higher noise. 

At present we have no way to choose between these hypotheses. 

e Finally, the entropy measure does not allow us to isolate the sections which are 

considered as sections of inattention (except the separation between trials and 

breaks). 

4.3.3 Improvements 

The entropy function considers all singular values, including a large part of noise dom- 

inated eigenvalues. Could it be possible to modify the entropy measure to consider 

mainly the singular values which are not dominated by the noise ? 
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Figure 4.4: Spectrum of singular values of channel O1 
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Consider the embedding matrix composed of 5000 embedding vectors chosen at 

different times of the day (with a window size equal to 150). This matrix represents then 

the mean state of the channel during the day. Using the singular value decomposition, 

the scree test on the spectrum of singular values allows us to compute the complexity of 

this matrix (figure 4.4). Here, the scree test supposes an average complexity of about 

20. 

This values suggests that only the 20 first eigenvalues are not noise dominated. A 

variant of the proposed entropy measure could then be to only consider the 20 first 

eigenvalues in the computation of the entropy. The new entropy measure is shown 

in figure 4.5. The main observation is the presence of a floor for entropy during the 

experiments. the variations between points during trials are reduced. The main peaks 

above this floor correspond now to periods where the subject was eyes closed or half 

closed (minutes 145 to 151 and 152 to 154) or mien she was eating and talking with 

an experimenter for half a minute (minute 113). Nevertheless one half of the test 

points (the stars) stay in the floor, which does not allow us to use entropy to realise a 

classification. 
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Figure 4.5: Entropy measure restricted to the 20 first eigenvalues of chan- 
nel O1 
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Previous results suggest us that the channel O1 is not the best channel to identify 

the periods of inattention (Cf. the remark page 35). The results using channel O2 and 

P4 are presented in appendix B.3. 

The differences between the results of the two entropy measures suggest that the 

shape of the spectra could inform us about the activity and about the concentration 

of the subject. We will now inspect a measure which will emphasise the ‘shape’ of the 

values and not the values themselves. 

4.4 Fisher’s Information based measure 

4.4.1 Definition 

In statistical sciences, a more common measure of information content is Fisher’s Infor- 

mation. It was proposed by Fisher in 1934. The Fisher’s Information /,,(0) is defined 

as the “amount of information” (information about @) in a sample of n independent 

observations. Its definition is [16] 

I,(0) = E |(4)] (4.8) 

where L is the likelihood of the sample. 

  

Fisher’s Information can also be defined for a function G by [16] 

(*35))] aug (2) | (4.9) 

To compute our measure, we apply this formula to the discrete function G defined 

I(c) = EB   

    

by G(n) =o, = ea using for the first derivative 22 = of — o!,,. The formula we 
=i 

use for the measure is then 

(= G41)? ' where of = 
ve Cle eae :

   (4.10) 
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Figure 4.6: Fisher’s information based measure applied on channel O1 

4.4.2 Results 

To apply the measure, we use the same procedure as for the entropy, i.e. we compute 

the singular value decomposition for each minute from 12:00 and 17:00 and we calculate 

the measure on the resulting singular values. The resulting graph is shown in figure 

4.6. 

Once again, the measure separates the periods of experiments from the other periods 

of the day but the Fisher’s Information based measure highlights a larger number of 

periods of attentiveness than the first entropy measure. But the measure is still unable 

to select all these points, so we may expect an improvement using the same criterion 

as we used for entropy. 

When we compute the Fisher’s measure restricted to the 20 first eigenvalues, we 

do not observe major differences between the two graphs. This may suggest that the 

major part of the Fisher’s information is contained in the first eigenvalues. Actually, 

the first 5 eigenvalues represent more than 95 percent of the total of the Fisher’s 

information. During the visual inspection, we observed different kinks of curve, but 

due to the predominance of the first singular values, the measure does not reflect the 
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Figure 4.7: Fisher’s information based measure restricted to singular values between 5 

and 150 

variation of the shape. 

The improvement we propose is to remove these first terms in the computation of 

the measure, and just to consider the eigenvalues from root number 5 to 150. 

The modified measure will then be: 

M-1 Sind 
64 ao =) 

Restricted Measure =   
1 

ae (4.11) 

  

The graph obtained with this measure is shown in figure 4.7. We observe that 

the periods of rest (lunch break for instance) are characterised by lower values of 

the measure. It is true too for some times during the experiments when the subject is 

moving (minutes 28 and 158 when she stretches and minute 113 when she eats and talks 

with the experimenter) and for some events characterised by movements (represented 

by crosses). Alternatively, the periods when the subject dozes off are characterised by 

higher values (around minute 150). 
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4.5 Angular Measure 

Finally, a last measure is presented. This measure is not related to the complexity 

contrary to the other measures of this chapter. Previous work considered only the 

eigenvalues of the covariance matrix. In this section we will use the other parameters 

obtained when computing a PCA or a singular value decomposition. 

Considering the flow of embedding vectors, the singular values represent the pa- 

rameters of cloud formed by these vectors in the embedding space. The variation of 

the eigenvalues will then characterise the variations in size of the cloud. The second 

kind of parameters which is available with a PCA is the main directions of the cloud. 

These directions are given by the eigenvectors computed during the PCA. 

Considering two successive decompositions, we may order the eigenvectors by their 

eigenvalues, from the biggest one to the smallest one. We can then compare the 

eigenvectors of corresponding rank. Here, we will compute the cosine of the angle 

formed by these successive vectors using the definition of the scalar product: 

vi(t) -vi(t +1) 
llos(E)I1 * leet + II 

This angular measure is then computed for the 300 minutes between midday and 5 

cos 6;(t) = (4.12) 

o'clock for the 150 different eigenvectors. Of course, only the measures corresponding to 

about the 10 first directions have meaning: when the order increases, the eigenvectors 

become more and more subject to fluctuations due to increases of noise level. 

The following figure presents the angular measures computed for the 5 first series of 

eigenvectors. The changes in the directions of the cloud appear mainly during periods 

of doze or weariness (around minutes 150 for example) when there is fewer movements 

but during the periods of rest, the angular measure stays constant. 

4.6 Discussion 

The first aim of this project is to try to characterise vigilance using EEG. In this 

chapter we investigate several measures of complexity, expecting a correlation between 
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the measures are applied 

to the 6 first series of eigenvectors, from the most significant (top) to the less (bottom 
on next page). 

Figure 4.8: Angular measure applied to channel O1 
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the behaviour of the subject and the complexity of EEG. 

The simplest measure we presented, the scree test, is a very subjective method, 

which requires the visual inspection of a large number of spectra. This first measure 

provides some interesting results. First, just using the value of this measure, we can 

cluster the rest periods from experiments. One explanation could be the presence of 

artifacts due to the movements during the lunch or the refreshment breaks. But if 

we consider the beginning and the end of each tasks, we can observe that peaks in 

the curve of the number of significant singular values. These peaks correspond to the 

calibration tests: for one or two minutes, the subject is waiting for the experimenters 

and for the tests. During these periods, she remains sitting and she do not move and 

we observe a low value like during the lunch. So this measure does not only measure 

the presence of artifacts. This remark is still valid for the other measures. 

To remove the subjective analysis, we then defined four simple measures, but they 

are not completely objective due to the presence of an arbitrary threshold in their 

definition. Nevertheless, these five measures show us that the singular spectra contain 

enough information to distinguish the periods of activity from the break periods. More, 

these four measures are able to reproduce the results of the visual inspection with less 

subjectivity. But the problem is that we have no criterion to determine if a measure is 

a good measure. We then use information obtained using the video tape to compare 

the different measures, expecting to a good measure to be able to cluster the break 

periods and the sections of inattention (represented by stars on the plots). 

As a complete objective measure, we then use the entropy measure. This measure 

and its improvement allow us to detect few periods of inattention during the afternoon, 

but not all of them. To improve this detection and to emphasise the ‘shape’ of the 

spectra, a measure based on the slope of the spectra is proposed. This measure presents 

better results in term of separation of the periods of inattention during the trials. It 

may suggest that the shape of the singular spectra vary with the attention of the 

subject. 

Finally, a last measure is presented. Contrary to the other measures, it is not 
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related to the complexity but it measures the variation of the main directions of the 

manifold. It tells us that the principal directions of the manifold are relatively constant 

except for few times, principally during the breaks and during the mini-sleep periods. 

The results of this measure differ from the results of the previous measures. The 

angular measure presents the best results in term of separation between the periods of 

inattention during the tasks and the rest of the experiments. Another point is that it 

remains constant during the break periods. Future work could then be to study more 

closely this measure to understand the reasons of the variations of the angular measure. 

This measures is also probably the best measure to classify the periods with events of 

groups 3 and 4 (described in appendix). 
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Chapter 5 

Feature Extraction 

5.1 Independent Component Analysis 

Recently, Independent Component Analysis has been used in several studies to remove 

the artifacts from multi-channel EEG with promising results [7], [6] as well from single 

channel EEG {8}. In this section, we choose to perform an ICA decomposition on our 

data and then to apply the previous measures on the results of this decomposition. 

The goal of ICA is to recover independent sources given only records that are 

unknown mixtures of these sources. In contrast to correlation-based transformations 

such as Principal Component Analysis, ICA not only decorrelates the signal (using 

2"4 order statistics) but also reduces higher-order statistical dependencies, attempting 

to make the signals of the decomposition as independent as possible. In other words, 

Independent Component Analysis attempts to produce projections by finding directions 

(not necessarily orthogonal, contrary to PCA) which are statistically independent. 

Several methods have been proposed for Independent Component Analysis. Here, 

we will use the algorithm proposed by Hyvarinen and Oja [5], the fast-fixed point 

algorithm. 
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5.2 Independent Component Analysis on the EEG 

data 

The aim of the feature extraction is to improve the signal by selecting some of its 

characteristics. Here, we expect to be able to separate the noise (i.e. the sources 

containing a lot of signals with frequencies beyond 50 Hz) from the normal waves of 

the brain (alpha and beta activities). We can then improve the signal by removing the 

noise components. We wish afterwards to apply the previous measures to the result of 

the extraction. 

To extract the different sources of the signal, we perform ICA on an embedding 

matrix which represents the period 12:00-17:00. We choose this approach instead of 

dividing the data in epochs because we wish to apply the same linear transformation to 

all our data. If we do not always use the same projection, we may modify the dynamics 

of the time series by introducing differences between the different periods of the day. 

To construct the embedding matrix, we construct the delay vectors from the time 

series with no overlapping, using a window size of 150. The size of this trajectory 

matrix is then 150 rows for about 30000 columns. 

Because we do not know how many sources are present in the signal, we compute 

as many independent components as we have delay vectors i.e. 150 independent com- 

ponents. We then select the sources according to their power spectra. The following 

figures present some interesting sources. The plots of sources are reduced to a length 

of 10 seconds for more clarity. They correspond to the 10 first seconds after midday. 

Among the 150 sources, a large number of them have their power spectra charac- 

terised by the presence of high frequencies, such as the 97'" source (5.1 (h)), so we 

exclude them from the rest of the computation. The study of the power spectra shows 

us that only 22 sources are not dominated by noise, i.e. they have the major part 

of their frequencies below 50 Hz. In figure 5.1 (b) to (g), some of these sources are 

presented. 

© the 52“ source (b) corresponds to frequencies below 3 Hz. It may suggest that this 
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Figure 5.1: Independent sources and their power spectral densities 
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source corresponds to a muscular activity (eyes movements or hands movements). 

In terms of frequency bands, this range corresponds to the delta activity. 

the 150" source (c) corresponds to frequencies in the theta bands. 

sources 106 and 147, (d) and (e) have frequencies characterising the alpha activity. 

e source 139 shows us some beta activity, with a peak in the power spectrum near 

18 Hz. 

© source 137 shows us a mixture of alpha and beta activity. 

It is difficult to give a good interpretation of these sources, particularly for the sources 

in the theta and delta bands because they correspond to abnormalities if they are 

present in the raw EEG signal. 

5.3 Results 

The study of the power spectra tells us that only 22 sources are not dominated by 

noise, with no frequency beyond 50 Hz. More, these sources present always the same 

power spectra at different times of the day, so it may suggest that the ICA isolate the 

sources of the dynamics of the EEG. 

The first goal of our feature extraction was to try to improve the signal to noise 

ratio to improve the measures of complexity. By projecting the embedding vectors on 

the 22 selected independent components, we are able to reduce the proportion of the 

noise in the signal. We will now try to apply the measures of the complexity to the 

results of the feature extraction. 

Tn the previous chapter, we applied the measures to the results of the singular values 

decomposition of the trajectory matrices. Now, the trajectory matrices are projected 

in a smaller vectorial space, the feature space (IR). The singular value decomposition 

is then now applied on the projections of the trajectory matrices instead of the matrices 

themselves. The two measures (entropy and Fisher’s Information based measure) are 

then computed using the resulting singular values spectra. 
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5.3.1 Results with entropy 

The figure 5.2 presents the results of the entropy measure when we use the ICA de- 

composition of the signal. Now, almost all periods of inattention are clustered by the 

measure. Only four of them stay in the floor. More, all the points corresponding to 

mini-sleep periods are now at the same level as the periods of break. Once again, the 

third trial is characterised by higher values of entropy than the two others. 

Contrary to the improvement of entropy measure proposed in section 4.3.3, the 

entropy measure of this section does not cluster the periods of activity/break as well 

as the improvement, but it allows to separate more points from the floor. 
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Figure 5.2: Entropy measure after ICA decomposition 

5.3.2 Results with Fisher 

In the same way, the Fisher’s Information based measure introduced in section 4.4 was 

applied on the singular values computed using the projected data. The results are 

shown in figure 5.3. The first remark is that the Fisher’s measure does not cluster as 

many test points (the stars which represent the periods of inattention) as the entropy 

measure in the previous figure, but these points are now more distinct from the other 
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points. An interesting effect appears at the end of the first trials (period 12:00-12:59). 

This effect does not appear with any of the other measures proposed. We have no 

explanation for it. 
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Figure 5.3: Fisher’s Information based measure after ICA decomposition 

5.4 Discussion 

In this chapter, we try to perform a feature extraction on our data in order to reduce 

the noise in the signal. The method we use consists of an ICA decomposition using the 

algorithm proposed by Hyvarinen and Oja, the fast-fixed point algorithm [5]. ICA de- 

compositions are usually performed on multi-channel records, but according to [8], ICA 

can cluster the different sources of EEG signals even using a single channel recording. 

On our data, ICA decomposition allows us to isolate a large range of noise and 

remove them from remaining sources. We also recover some sources which seem to 

correspond to the brain activity such as alpha activity, beta activity, etc. 

Using 22 sources which do not have noise in their spectra we then try to characterise 

the projection of the embedding vectors using the last two measures presented in the 
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previous chapter, i.e. the entropy measure and the measure based on the Fisher’s 

Information. 

The results of these measures are interesting. They allows us to discover new effects 

which are not visible with any other measures, as well they better classify the periods of 

inattention from the other periods of the trials. The main problem with the comparison 

of the different measures is that we do not have any criterion to order the results of the 

measures, and the method we used, the clustering of periods of inattention, is subject 

to the analysis of the video tape, and these test periods occur only on a few occasions. 
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Chapter 6 

Conclusions 

Throughout this thesis, we have used a technique called embedology, more precisely 

a class of embedding method known as Taken’s method of delay [18], [2] and [17]. 

The strength of this method is that it allows to study the dynamical properties of 

the underlying generators of the data by reconstructing an image of the manifold in 

an embedding space. Even if the attractor is deformed, the topological properties are 

preserved. 

The main problem with embedology is the absence in the theory of criterions to 

choose correct values for the parameters of the embedding. In this thesis, we proposed 

a method based on the convergence of the singular spectra. We do not know if this 

criterion allows us to find correct values for the window size and for the number of 

delay vectors, but it allows us to reduce the effects of these parameters on the spectra 

of singular values. It is then a good criterion in our case because the presented measures 

depend in the majority on the singular values. Another interesting point is that annex 

B.1 shows that the results are consistent across different electrodes. 

Using the embedding approach and the singular value decomposition, we then pro- 

pose several measures of complexity. The first measure we proposed, the scree test 

attempts to determine the number of significant singular values. This method is rather 

subjective, so we then proposed alternatives to the scree test. These alternative are 

able to reproduce the results of the scree test but are still dependent on subjective 

parameters due to the presence of a threshold in their definitions. As a completely 
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objective measure, we then computed the entropy measure and a measure based on 

the Fisher’s Information measure used in statistical sciences. 

The results of all these measures are quite promising: they all allow us to isolate 

the trials from the breaks and they can detect some periods of inattention but not all 

the periods. The definite distinction between the periods of activity and the break 

periods can however be interpreted as an effect of the level of artifacts due to the 

movements of the subject. In the same way, all the measures clearly distinguish the 

minute 113, when the subject eats her apple and talks to the experimenters for half 

a minute. Nevertheless, some measures isolate the periods around minute 150 (14:30) 

from the other points. During this period, the observer is subject to mini-sleep periods, 

characterised by few movements, eyes closed, etc. So we can expect that if the presented 

measures are sensitive to the muscular activity, they record too some information about 

the brain states. 

The main difficulty we encountered is that we have no criterion to compare the 

different measures we proposed: as mentioned in the second chapter, the performance 

measure recorded by the task program is very weakly correlated with the behaviour 

of the subject observed using the video tape. We then used the observations obtained 

using the video tape to compare the measures, which is probably not the best way 

to compare them. A possible future work could be to develop a scoring method of 

these measures, for instance by computing the percentage of (mis)classified sections. 

No measure is able to correctly classify all the sections of inattention so the suggestion 

for a future work could then be to try to use the results of the different measures as 

input of a classifier. 

In a third part, to improve the signal to noise ratio, we apply an ICA decomposition 

to our data. On the results of this decomposition, we then compute the entropy measure 

and the Fisher’s Information based measure. These two measures give better results in 

terms of separation between the periods of inattention and the rest of the trial periods. 

Finally, in this thesis, we computed the measures for several channels and we com- 

pare the results, but we use EEG data recorded only on one subject, so we do not know 
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if the results we observed are particular to one subject or if they can be extended to 

other people. 
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Appendix A 

Analysis of the video tape 

This appendix presents the abnormal behaviours of the subject during the three trials. 

In the following table we have reported all events which seem to be interesting for the 

study, for example abnormal behaviours (eating, drinking), movement (for the presence 

of artifacts in the EEG), moments of inattention (periods with eyes fully or half-closed, 

periods when the subject is not looking at the screen, ... ) or clues for tiredness (yawn, 

a) 

The events have been ordered in four groups. The two first groups just denotes clues 

or behaviour which may reveal loss of attention contrary to the two last groups which 

indicate that the subject is inattentive to the experiment, for instance not looking at 

indications on the screen or sleeping. 

e The first group consists of events which can produce artifacts in the EEG signals 

and are not related to attentiveness, but nevertheless, present in a large propor- 

tion, they can be clues for tiredness. They are mainly movements of the left arm, 

to scratch the head, to rub the eyes or the face near the sensors, and so on. They 

are just reported to detect abnormalities in EEG, for example in case of loss of 

contact when scratching the head. 

e The second group corresponds to the events which can raise the number of ar- 

tifacts (by increasing the muscular activity) and which can be used as clues for 

attentiveness. These events can be interpreting as attempts to recover attentive- 
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ness: changes of position, movements in seat to find a better position, etc. Yawns 

are also reported in this group. 

e The third group is the set of events incompatible with the experiments. On these 

periods, we are sure that the subject is not attentive to events on the screen, for 

example because she is eating, drinking, speaking with the experimenters, not 

looking at the screen, stretching or because she is not holding the joystick. 

e The last group denotes periods of complete loss of attention, for example periods 

of drowsiness with eyes closed or half-closed. 

A.1_ Trial 2: 12:00-12:59 

Table A.1: Events during trial 2 

  

Level | Time | Event Duration 
  

11:59:30 | Beginning of trial 2 

2 12:06:55 | Movements, looking for a new position 10s 

1 12:07:42 | Movements of left arm 40s 

1 12:12:40 | Movements of left arm 25 s 

2 12:16:10 | Movements, she adopts a new posture 20s 

Z 12:20:26 | Movements in seat 10s 

2 12:21:03 | Yawn 

it 12:24:50 | She approaches the screen, she rubs her eyes 

2 12:27:03 | She adopts a new posture and yawns 

S 12:28:40 | She stretches, scratches her head 

2 12:28:57 | She yawns 

1 12:30:35 | She rubs her face 15s 

2 12:33:24 | Movements 

Zz 12:36:59 | She adopts a new position           
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Level | Time | Event Duration 

2 12:38:02 | New position 

2 12:39:21 | New position (closer to the screen) 

1 12:41:41 | She scratches her head 10s 

2 12:41:55 | Movements 

i 12:42:53 | She rubs her face 5s 

2 12:44:05 | Movements 10s 

1 12:47:55 | She scratches her head 15s 

ai 12:48:30 | She rubs her left eye 5s 

3 12:49:21 | She looks at the ground 5s 

3 12:51:20 | She drinks water 15s 

el 12:52:36 | She scratches her head 10s 

2 12:55:25 | She adopts a new posture 

2 12:55:53 | She yawns 

2 12:57:14 | Movements 20s 

12:59:25 | End of trial 2 
  

A.2 Trial 3: 

This trial can be split in two parts. Until the middle of the experiment, the subject 

seems really attentive to the tracking test except when she eats at minute 113. The 

second part contrary to the first one corresponds to a period of huge inattention. The 

maximum of inattention is reached around 14h30, when she has her eyes completely 

closed for several minutes. This trial can then be considered as a good test for a measure 

13:47-14:47 

of attentiveness, due to the presence of the complete range of level of attention. 
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Table A.3: Events during trial 3 

  

  

        

Level | Time | Event Duration 

13:47:36 | Beginning of trial 3 

3 13:53:18 | Eat an apple, Intervention of experimenter 20s 

2 13:56:10 | Movements, she adopts a new position 15s 

2 14:02:20 | Movements 10s 

3 14:10:27 | Stops looking the computer screen 5s 

1 14:11:03 | She rubs her eyes 15s 

Z: 14:12:26 | Sigh followed by movements 

3 14:14:35 | Loss of attention for 25 seconds 

2 14:16:08 | Change of position 

1 14:19:02 | Movements of left arm 35s 

3 14:19:40 | She scratches her head with her right hand 10s 

4 14:19:50 | Eyes closed 5s 

2 14:20:09 | New position 

D 14:20:12 | She scratches her head with left hand 10s 

2 14:20:30 | Yawns and movements 30s 

2 14:24:03 | Change of posture 

4 14:25:48 | Eyes closed 12s 

2 14:26:00 | She adopts a new posture 

4 14:26:47 | Eyes half-closed and weariness 13s 

4 14:27:00 | Eyes fully closed for 1 minute 60s 

4 14:28:00 | Eyes closed 20s 

4 14:29:35 | Eyes closed 15s 

4 14:30:06 | Eyes closed 5s 

2 14:30:40 | Movements, she changes her posture 

4 14:32:36 | Eyes half-closed 10s 

  

66 

 



APPENDIX A. ANALYSIS OF THE VIDEO TAPE 

  

  

      

Level | Time | Event Duration 

4 14:33:35 | Eyes half-closed 20s 

3 14:34:10 | She stops looking at the screen 10s 

2 14:34:40 | Movements 10s 

3 14:35:00 | She moves her left arm 

2 14:36:35 | Change of posture 

3 14:38:54 | She stretches and changes her posture 

2 14:39:35 | Change of posture 

il 14:40:07 | She scratches her head 

2 14:41:45 | Yawn 

14:47:35 | End of trial 3       

A.3 Trial 4: 15:10-16:11 

This trial could be characterised by a large number of small movements during the 

experiment. In this trial, the subject is very often moving her arm, changing her 

posture in the seat, and so on. It should considerably increase the noise due to muscular 

activity and hide the rest of signal. 

Table A.5: Events during trial 4 

  

  

      

Level | Time | Event Duration 

15:11:20 | Beginning of trial 4 

1 15:19:30 | Movements and she rubs her face with her left hand 20s 

2 15:22:00 | Movements, she bends forwards for 15 seconds 20s 

‘i 15:25:30 | She rubs her eyes 10s 

2 15:28:40 | Movements, Change of posture 10s 

3 15:28:50 | Looks at something on the ground 5s 

2 15:31:33 | Change of posture     
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Level | Time | Event Duration 

1 15:41:50 | Movements of left arm, she rubs her face 10s 

3 15:43:20 | Looks at the ground then at the roof 20s 

1 15:43:55 | She rubs her face 10s 

1 15:46:25 | She rubs her face 10s 

2 15:50:00 | Change of posture 

1 15:50:20 | She rubs her face 10s 

2 15:50:37 | Change of posture 

2 15:51:00 | She yawns 

2 15:51:10 | Movements, she bends forwards 

3 15:54:30 | Weariness: she closes her eyes 

2 16:07:20 | Change of posture 

16:11:24 | End of trial 4 
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Comparisons between channels 

B.1 Comparisons in the choice of the parameters 

of the embeddings 

In section 3.2, we have developed criteria for the choice of the parameters of the em- 

beddings. These criteria were applied only to data from channel O1. We want now to 

extend them to the different EEG channels to know if the chosen parameters can be 

used safely. 

We then apply the criteria to data recorded from the different regions of the head. 

The results for the different channels are presented in the following figures (from figure 

B.1 to figure B.3). 

The first interesting point is that we observe a strong convergence of the spectra on 

all different channels. It suggests that all channels have poor signal to noise ratio. The 

second point is about the plot of the error functions: all error curves share the same 

shape and reach a minimum for the same value of window size. So we can conclude 

that a window size equal to 150 is a good choice. Using the same lag for the different 

channels will allow us to compare the different measures when applied on different 

channels. 
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Figure B.2: Convergence of stretched spectra and error for channel P4 
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Figure B.3: Convergence of stretched spectra and error for channel FZ 
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Figure B.4: Convergence of stretched spectra and error for channel C3 
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B.2 Simple measures of complexity 

In this section, we present the results obtained with the four measures defined in section 

4.2.3 when applied on channel P4. 
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Figure B.5: Complexity determined using the four measures: (a) measure M, 
with a threshold of 2500, (b) M with a threshold of 80000, (c) M3 with a threshold of 
7.5 * 107% and (d) M, with a threshold equal to 0.5. The stars represent the sections 
characterized by a poor attention of the subject 
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B.3 Entropy measure applied to other channels 

In section 4.3 about entropy measure, we only applied the measure to channel O01, but 

previously, on page 35, we said that channels P4 and O1 present better clustering effects 

for the test points than channel O1. In this section we will apply the entropy measure 

and its variant on these two channels. The plots of the computation are present on 

figures B.6 and B.7. 
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Figure B.6: Entropy measures for channel O2: using all singular values (top) and 

the 20 first (bottom) 
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B.4 Fisher based measure applied to other channels 

In this section, we present the results of the measure based on the Fisher’s Information 

when applied to channel 02 (on this page) or to channel P4 (next page).     
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Figure B.8: Fisher’s Information based measures for channel O2: using all 
singular values (top) and excluding the 5 first values (bottom) 
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Figure B.9: Fisher’s Information based measures for channel P4 
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