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Thesis Summary 

This thesis considers some of the image processing problems in trying to construct 

an automated system for detecting near-shore water-borne pollution (oil slicks) using 

land mounted visible band cameras. In particular, we develop a novel approach to 
the uniform scene illumination problem to retrieve reflectance more accurately, prior 

to segmentation. We also introduce a simple Kalman filter approach to exploit some 
of the dynamic information content across images through time to improve the slick 

segmentation through a probabilistic model. 
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Chapter 1 

The Aims of the Project 

1.1 Introduction 

This project derives from an earlier European Union-funded project called Blue Water. 

Blue Water [1] was an attempt to produce a cheap and semi-automatic shore based 

video monitoring system for the early detection of marine surface oil slicks. The aim 

is to reduce the need for expensive blind spot sampling. Because satellite platform 

sensors have inadequate resolution(> 1km?) for the small scale slicks, the idea is to use 
land-mounted visible band cameras to track these surfaces in the pictures taken. In 

image segmentation and tracking problems, most demonstrations are based on tracking 
people or solid objects, such as cars, across relatively well-lit and relatively station- 

ary backgrounds. With this problem of automated near-shore water-borne pollution 

monitoring using land-mounted cameras, we are interested in the problem of how to 

extract quasi-stable sea surface features such as slick deposits from oil discharges or 

agitated fish shoals or other marine biomaterial. The presence of an oil slick on the 
surface of the water tends to produce a damping effect of capillary waves leaving a 
visible signature which is diffuse but stable. The effect of this damping is to alter the 

local texture leading to regions of more highly reflective surface areas, compared to 

non-slick sea surfaces. Due to the typical camera angles, the reflective areas tend to 

mirror the sky, so leading to areas which appear brighter in intensity than normal sea 
state activity. 

The aim of our project is to identify, locate, segment and track this bright object (the 

oil slick) on the near-shore pictures.
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1.2 Data and Camera Location Characteristics 

1.2.1 Different Sites 

The data used in this project was provided by the Blue Water project. Blue Water 
camera systems are composed of a digital camera controlled by a server. Camera 
systems have been installed in different sites, in Cyprus at Yermasoyia (figurel.1) and 
on the Italian coast, in Sardinia (figurel.2) and River Po. 

  

Figure 1.2: BW system (camera and control room) installed in Sardinia. 

Cameras have been installed at a height to cover an area of a few hundred square 
kilometres. A lot of adjustments were made in the Blue Water projects to ensure that 
the cameras were capturing significantly the prints of pollution. 

1.2.2 Data Selection 

The data was provided on 13 CDROM’s of digital pictures taken from the systems. 5 
CDROM’s are focused on the site of La Casella on the River Po in Italy, the 8 others 
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contain digital pictures taken from a tourist resort in Yermasoyia (Cyprus). Specifica- 
tions of the digital images are part of the Blue Water project. The standard image size 
has been set to 576 x 768 with a resolution of 8 bit/pixel. Most of the images available 
are in greyscale (year 2001-2002). All of the methods in this thesis were applied to 
greyscale images only (using one channel). However, some images have been gathered 
in colour (Yermasoyia November 2001). 

   
Figure 1.3: Pictures produced from the BW system on the Cyprus coast (left) and on 
the River Po (right). 

After observing different samples from both sites, we noted different and specific prob- 

lems for each of them. The data used in this project was specifically taken from the 

Yermasoyia site. 

Eventually, we want to use temporal information to build a simple model capable of 

improving the detection of slicks. The Yermasoyia BW system provides us with a pic- 

ture every 10 minutes comparing to the La Casella site which provides us with one 

every 30 minutes. Moreover, because of the angle chosen for the digital camera in 

La Casella, only a little part of a picture can be objectively used to detect oil slicks. 
The rest of the picture has to be eliminated because of strong reflecting effects of the 

shore or incident angles being too small. (The difference of contrast due to slicks is 

unobservable). If we consider that part of the picture, which represents an area close to 

the shore (a few hundred square meters), the time rate obtained from the camera and 
the current of the River Po, monitoring the same pollution prints on two consecutive 

pictures seems unusable. 

At the other site, pollution can be observed and tracked in an area representing half 

of the picture. Moreover, the low speed of the evolution of oil slicks moving across 
the ocean and the frame rate combined with the area covered (a few dozen square 

kilometres), would hopefully allow us to track the pollution across frames. 

Once the site was selected, the setting was studied, as part of the preliminary work, in 

order to quantify pollution on the sea and quantify how fast a slick is moving. 

1.2.3 Site Characteristics 

The camera system setting in Cyprus was located on the Hotel Miramare. The camera 

was placed on the roof of the hotel, facing the sea area to monitor. 

The idea was to maximise the area that the camera can monitor. The optimal place 

11
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Figure 1.4: Hotel Miramare in Cyprus and the view from its roof. 

chosen (the roof) was around 25 metres above sea level, giving a good view of the sea 

and a good place to locate the camera (the site is a tourist resort where the camera 

has to be discrete (big and not really nice looking object)). 
The camera angle was set so as to capture significant sea area, but not too steep since 

this would image the sea bed instead of the sea surface. Figure 1.5 shows the camera 
orientation employed. 

Sun 

  

Camera    Hotel 

ee 

ee ee 
+ 

First Pixel = 30m Horizon = 18 km 

Figure 1.5: Scheme of the camera setting. 

The camera location and orientation introduces geometry and intensity effects in the 

pictures. 
Indeed, our image space reflects a transformation of the real dimension space. In the 

image, it is obvious that a pixel in the background is representing more space than 

a pixel in the foreground. It is important to identify the transformation (see figure 
1.6) of the pictures and sort out what is the real area represented by each pixel. One 
difficulty is a lack of calibration information regarding the camera field-of-view aspect 
ratio and pixel sizes. When a picture has to be shifted back to real dimensions, some 

extra information about the camera lens (the focal length for example) are needed. The 
camera lens introduces distortion effects on pictures, such as the horizon not appearing 
as a straight line. Even if this distortion could not be removed exactly, we used some 
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general knowledge about distance to horizon and pixel sizes of appearing objects, such 

as boats which we can guess the real size, to approximate distances and area on the 

pictures. 

  

Figure 1.6: Distortion between image space and real space. 

The approximation from pixel space to real space is explained in section 4.2 where it 

is used in the time model setting. 

1.3. The Environmental Noise 

After the preliminary work on the site and the approximation from pixel space to real 

space, an analysis was carried out to establish what the pictures contained. The object 

of interest appears mainly as a bright surface on the sea. Oil slicks appear very rarely 

as dark objects and such phenomena occur only with particular weather conditions 
such as a very dark sky or very cloudy sky. Dark areas within the image of the sea are 

probably the result of wakes created by human activity (such as the objects appearing 
in the left frame in Figure 1.7). 
However, many of the bright objects that appeared on pictures have nothing to do with 
oil slicks. Therefore, it was important to look into the data we had and identify what 
kind of other bright objects are captured by the camera. 

These objects should be classified as noise that we have to eliminate. The noise clas- 

sification includes a study of its possible source and their characteristics. 

1.3.1 The Sun and Weather Activity 

Most of the bright objects are resulting from direct reflection of sun. The sun can 
create a very strong nonuniform illumination on the image. It can be reflecting or 
backscattering across the ocean. 

If the sun is the source of light that allows slicks to shine on a sea surface, it is, at 

the same time, the main source that can annihilate or alter the visual detection of oil 
slicks. 

Therefore, it is important that we find what kind of sun illumination the camera can 
capture, its different forms and the way they can evolve. By looking into the data from 
the same day, different shapes can be found depending mostly on how the weather 

13
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was. Indeed, weather (like strong wind) can change the shape of the sea surface de- 
teriorating the observation of bright objects from a picture to another. For example, 
sun illumination can be diffuse in bright sunlight without wind and can turn into small 

bright objects when the wind creates waves (see figure 1.7). 

  

calm sea agitated sea 

Figure 1.7: Weather can alter the profile of the sun illumination. 

Beyond the different forms that sun illumination can take in the ocean, it is evolving 
according to time (cycles day/night), as it follows seasons. This evolution during a day 

is a slow process that rotates from low light, at early morning and afternoon, to glare, 

around mid day (see figures 1.7 and 1.8). 

   
early morning late evening 

Figure 1.8: Examples of low light pictures. 

In low light pictures, contrast tends to uniformity where brightness of any object is 

equalised. 

Slicks can become hardly detectable. 
In glare pictures (left picture in Figure 1.7), contrast is removed by the extreme illu- 
mination. Any object that should be hidden in the glare become undetectable because 
of the light saturation. 

14



CHAPTER 1. THE AIMS OF THE PROJECT 

1.3.2 Human Activity 

The second category of bright objects identified, that were not oil slicks, was the result 
of human activity. Indeed, the site selected is a tourist resort (Hotel Miramare). It 
is common to observe human activity such as people swimming, wind-surfing, water- 

skiing or yachting (see left picture of figure 1.9). 

  

boat guiding a parachute tanker crossing horizon 

Figure 1.9: Human activity resulting from the tourist resort and ships travelling. 

The other human activity detected on the pictures are tankers that cross the horizon 

leaving in their wake a lighter but stable print (see right picture of 1.9). 

1.3.3. The Landscape and Fauna Activity 

The rest of the bright objects that appear on pictures are part of the landscape. It is 
obvious that there is no need to look for oil slicks in these parts. They are composed of 
the sky and installations of the tourist resort (rocks and a sea path). All these surfaces 

should be ignored. 

Because all these surfaces are stable across frames (the camera location and orientation 
are fixed), we decided to create a black and white template image to express the prior 
knowledge of being part of the background or not (see figure 1.10). 

  

a    
image of the site associated template image 

Figure 1.10: Black and White template image created for Yermasoyia. 
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CHAPTER 1. THE AIMS OF THE PROJECT 

The black and white image will be processed through a Matlab file to retrieve a binary 

matrix (interesting area or not) with the size of a frame. 
Moreover, it is important to note that rocks are known to host micro organisms that 
produce natural oil. This phenomenon due to fauna can appear close to the rocks and 

derives with waves or wind across the sea. This natural oil produces a similar damping 

effect as an oil slick, making it appear as a bright slick hardly differentiable from an 
oil slick. 

1.4 Physics of Image Observations 

Even if most of the data from Yermasoyia appeared as greyscale images, they are com- 
posed of the three classical colour channels (red, green, blue). 
The perception of light and colour comes from specific electro-magnetic radiation. 

Their amplitude radiation which is a function of the wavelength A, should be in a par- 
ticular range (380 — 780 nm). Cameras are built to be sensitive to the same dominant 
wavelengths discretised to the three classical channels (red, blue green). 
Concerning pictures, we are interested in retrieving the intrinsic properties of the ob- 
jects present on a picture. Following the work of H.G. Barrow and J.M. Tenenbaum [2], 
the central problem in recovering intrinsic scene characteristics is that the information 

is confounded in the original light-intensity image: a single intensity value encodes all 

the characteristics of the corresponding scene point. Recovery depends on exploiting 

constraints, derived from assumptions about the nature of the scene and the physics of 

the imaging process. A classical model presented in image processing books for image 

intensity [5] is: 

f(x,y) = i(x,y) x r(z,y) (1-1) 
We will based our approach to suppress illumination effects, i(x,y), on that common 

and simple model. 

Although equation (1.1) appears to provide a simple model, note that from the ob- 

servation f(x,y), we really need the reflectance characteristics r(x, y). However, we 
cannot extract r(x, y) since it is an ill-posed problem: for each pixel we have twice as 

many unknowns as equations. We need to find a technique that could compensate for 

this lack in data knowledge. 

1.5 The Thesis Plan 

After this introduction presenting the issues that appeared in the monitoring of near- 

shore images, the following chapters will present methods to solve some of these issues. 

In chapter 2, the problem of removing the illumination characteristics i(x,y) from 
the observations f(x,y) will be considered. We will present a novel approach to re- 
trieve the reflectance r(z, y). 

The subsequent chapter 3 will consider the segmentation of r(z,y) to extract pos- 
sible slick regions. We will build a model which fits to the data and creates a method 
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to identify and locate the oil slicks. 

In chapter 4, we will consider that equation (1.1) also hides multiple time scale ef- 
fects. In particular, the assumption that slicks evolve on a slow time scale compared 
to background sea-states will allow the introduction of dynamic models to improve the 

initial probabilistic segmentation. 

The thesis plan can be summarised by the following workflow: 

SVD ox aera Preprocessing Mixtutes Mel Segmentation (Observation (Pitre) B+ (Grey Seale Levet J Rafccuace } Density Modeling} Indicator) 
Time 

Mumination Dynamic Models 

  

  

  

  

Figure 1.11: The Global Process. 
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Chapter 2 

Image Preprocessing 

This chapter will present the work achieved on preprocessing of the image.The main 
problem we are concerned with is to compensate for the nonuniform illumination ef- 

fects. A classical filter in image processing to remove illumination from the image, 
and retrieve reflectance [12], is the homomorphic filter. We will explain the theory 
behind this filtering, its implementation, the results obtained, the advantages and the 
drawbacks that can lead us to look for a new preprocessing model. 

This new model [7], consisting of an RBF network fitting intensity, will be described 

later. As for the homomorphic filter, we will explain the theory behind this model, its 

implementation and the results obtained . 

We will conclude with a comparison of the two models used for achieving the prepro- 

cessing. In the intensity model used (see equation (1.1)), we have to invert a product 
which is not a trivial problem in this case due to the lack of informations (twice as 
many unknowns as equations, see section 1.4). 

An idea can be to separate the two factors i and r by taking the logarithm of equation 
(1.1) so that the effects are additive rather than multiplicative: 

g(x,y) = In f(z, y) = In a(x, y) + In r(x, y) (2.1) 

The preprocessing will take place in the log domain in which an additive effect is simpler 

to remove. 

In order to get observable results, images can be rescaled or thresholded using secondary 
filters whose aim is only to enhance the quality of the reflectance image retrieved. 

Rescaling is made using the equation for linear rescaling (2.2): 

a Soa(t,y) = minay(foa(t,Y)) 
fna(,0) = Floorl ee g(fualt9))—Miteg(Fuae yy) 

Thresholding is made by fitting a single Gaussian of the intensity histograms. A new 
lower bound for intensity is determined as the lower intensity value obtained for 5% of 
the Gaussian maximum. A new upper bound for intensity is determined as the higher 

intensity value obtained for 5% of the Gaussian maximum. 

18



CHAPTER 2. IMAGE PREPROCESSING 

2.1 The Homomorphic Filter 

2.1.1 Theory 

The first method used for preprocessing the image was based on homomorphic filtering. 
Indeed, illumination through an image has special properties dealing with frequencies. 
Therefore, instead of using spatial filters, that could fail depending on how the illumi- 
nation source is oriented, we have used a homomorphic filter, specifically focused on 

the characteristic of the object we want to suppress (illumination). 
Illumination is generally of a smooth nature and yields low-frequency components in 
the Fourier transform of the image. Different materials (objects) on the other hand, 
imaged next to each other, cause sharp changes of the reflectance function, which cause 

sharp transitions in the intensity of an image. These sharp changes are associated with 

high-frequency components. 

From equation (2.1), we transform our image to the spectral domain taking the Fourier 

transform: 

F{9(x, y)} = F{infi(z, »)}} + F{inir(@, »)}} (2.3) 
because the Fourier transform is linear we can write (2.3) into: 

G(wz, wy) = I(we, Wy) + R(We, Wy) (2.4) 

where I(wz,wy) is the Fourier transform of In i(z,y) and R(wz, wy) is the Fourier 
transform of In r(z,y). Then, it is possible to apply a filter, with a transfer function 
named H(w,, wy) to the log Fourier transorm of the intensity G(w,, wy): 

S(we, Wy) = A(wz, wy) X G(we, Wy) 

= H(wz, wy) X I (wz, Wy) + H(we, wy) x R(w2, wy) (2.5) 

Using the linearity of the inverse Fourier transform, we get: 

s(z,y) = F(S(wz, wy) 

= FH (wz, wy) X I(we, wy) + FH (we, wy) X R(we, vy)) 
=(c,y) +1r'(z,y) (2.6) 

We then exponentiate s(x, y) to get the enhanced image: 

s'(x, y) = exp[s(z, y)] 

= ezpfi' (x, y)] x exp[r' (a, y)] 

=4'(@,y) xT" (oy) (2.7) 

Now 7”(a,y) and r(x, y) are the illumination and reflectance of the “enhanced” image. 
However, using the spectral properties of illumination and reflectance, we can choose an 
appropriate filter so that the “enhanced” image represents only reflectance, assuming 
that the spectral content of reflectance and illumination is disjoint. 

In the Log-Fourier domain, we have to use a high-pass filter that will suppress the low 

frequencies. Variations of the illumination should then be reduced while edges (and 
details) should be sharpened. The cross section of a homomorphic filter, see figure 2.1, 

presents the spectral property of the desired filter. 
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      os! 0 

Figure 2.1: A cross-section of a homomorphic filter as a function of polar frequency 

r= V(w? + v?). 

Such a filter can be expressed by the following transfer function: 

1 

Lt en 8d +0} wo) a 

where s is the slope, wo the cutting frequency and A the amplification coefficient. 
We summarise our approach in figure 2.2. 

C=r3 So onc. 
Figure 2.2: Homomorphic Filtering Block Diagram. 

H (we, wy) = A (2.8) 

2.1.2 Implementation and Results 

The implementation of the homomorphic filtering, for preprocessing the image (Figure 

2.3), was done in Matlab. 
To shift the image in the Fourier domain, where the homomorphic filter needs to be 
applied, we used the two-dimensional discrete Fourier transform already implemented 

in Matlab (function f£t2). However, we must ensure that our Fourier transform is 
well centred so that our homomorphic filter will cut the right frequencies. Indeed, the 

zero-frequency component should be in the centre of the spectrum so that the high-pass 

filter is effective. Centring was achieved using Matlab function fftshift. Once the 

image has been centred in the spectral domain, we can process it with the homomor- 

phic filter. 
The main problem faced was the setting up of the coefficients of the filter. Each of the 
three coefficients controls a different part of the filter. The cutting frequency wo should 

reflect the boundary, in the spectral domain, that separates details (high frequency) 

20



CHAPTER 2. IMAGE PREPROCESSING 

119 

o 
8 

6 
s
s
 
e
y
 

  

Figure 2.3: Original image to be preprocessed with the homomorphic filter. 

from the illumination structure (smooth nature). Our idea, to figure out a good value 
for wo, was to compute the spectrum of the image and try to identify both clusters 
(Figure 2.4). 

ee, Density of the Spectrum 
Intensity over y 
  

  

      

  

Figure 2.4: Horizontal Intensity and Spectrum Density. 

The spectrum density presents a peak in the low-density region that we believe to be 
the illumination structure of the picture. The rest of the density spectrum is diffuse 
and associated with low coefficients (details have very different structure like wave/boat 
leading to a spread of frequency). Using the spectrum, we set the cutting frequency to 

20. 

The slope s and the amplification factor A are more difficult to set. The slope controls 

the smoothness of the way we cut around wo while the amplification factor is strength- 
ening the effects of the filter (only the uncut frequencies are amplified). 
If we consider a 3D space where the base is made of the 2D spectral domain (w,,wy), 
the setting of s can turn the homomorphic filter from a cone to a cylinder (Figure 2.5). 

If the illumination is assumed to be clearly separated in the spectral domain from the 

reflectance structure, the filter should be set as a cylinder. The slope was set to 5 and 

the amplification factor to 0. 
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A cone with s = 0.01 A cylinder with s = 2 

Figure 2.5: Control of s over the smoothness of the filter. 
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Figure 2.6: Before filtering. Figure 2.7: After filtering. 

As, we can see in figures 2.6 and 2.7, the general decreasing shape of horizontal intensity 

(illumination is coming from horizon) has been flattened. Moreover, secondary peaks 
that represent objects in the pictures are still present with a similar amplitude. The 

levelling of the new curve for intensity (Figure 2.7) is a hint that global illumination 
has been removed from the picture. 
This hint is confirmed by the histograms of intensity in the pictures. Histograms of the 
original include a secondary and significant peak in the high values of intensity. This 
peak, that is in the range 220 — 240, should represent the bright sunshine illumination. 

In the filtered image, this peak has been removed (Figure 2.8). 
At the same scale, the resulting histograms are less spread on the range 0— 250. There- 

fore, the resulting image is darker (Figure 2.9). 
Some rescaling and thresholding was done to ensure there was no important loss in the 
dynamic range. 

2.1.3 Advantages and Drawbacks 

The principal advantage of the preprocessing homomorphic filter comes from its basis. 

Homomorphic filtering is based on intrinsic spectral properties of the two components 

of an image: illumination and reflectance. In theory, the spectral content should be 
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Figure 2.8: Histograms of the intensity of the original image and the filtered image. 

  

  

Figure 2.9: Image before and after filtering. 

disjoint. In such conditions, an homomorphic filter should allow us to remove entirely 
the illumination without removing details that compose reflectance. Another advantage 

of the homomorphic filter is its simple implementation and its low computational cost. 
Most of the process time is due to Fourier transform and inverse Fourier transform. 

The use of the fast Fourier transform (functions fft2 and ifft2) appeared as a good 
solution to reduce this time. 
However, the filtered image can have strong edge effects due to the characteristics 
of the homomorphic filter (Figure 2.9). This is mainly due to the fact that on real 
world images the spectral content is not clearly disjoint. The peak identified for the 

illumination component hides smooth components from the reflectance. 

Moreover, when applying the filter to an image, the quality of the filtering is variable. 

For different conditions of illumination, the homomorphic filter gives variable results. 
In real world images, and in our specific case of sea coast monitoring, these conditions 

can change in a short time range (see section 1.3.1). The setting of the homomorphic 
filter is the key to a good process. That means that for every single frame that we 
have to process, we need to tune properly the filter, finding the optimal parameter s, 
wo and A. If wo can be retrieved from the spectrum, s and A are tuned empirically. 
Therefore, the homomorphic filter can hardly become adaptive. With the amount of 

data that needs to be processed and the diversity of their illumination conditions, a 
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new adaptive filter is needed. 

2.2 The RBF Illumination Filter 

2.2.1 Theory 

Radial Basis Function (RBF) networks [14] are related to kernel methods for density 
estimation and regression and to normal mixture models. The idea of an RBF model 

is to expand a given function f using a set of basis function of the form ®(|| «— <2; ||), 
where ® is a non-linear function to be chosen. The output is then taken to be a linear 

combination of the basis functions: 

F(x) = w,®;(|| x — 2; [l) + (2.9) 

Where w; is the weight given to the j” basis function and wo is the bias. Several 
forms of basis function can be used, the most commonly used are the Gaussian and 
the thin-plate spline. The Gaussian basis function is: 

(x) = exp (- = ) f (2.10) 
20? 

where o controls the smoothness properties of the interpolating function. The Gaussian 
is a localised basis function with the property that lim;_,.. ®(x) = 0. 
The thin-plate spline basis function is 

®(2) = 2” In(z) (2.11) 

A radial basis function network uses several RBFs as hidden units (See Figure 2.10). 
The number M of basis functions needs to be less than the number N of data points, 

Outputs ( yi 
  

basis functions 

  

  

Inputs t Xx, 

Figure 2.10: RBF network. 

each basis function has its own width o;. The interpolation formula (2.9) is then: 

M 
yn() = SD Wej Pj (2) + Who (2.12) 

j=l 
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The Gaussian basis function can be expressed by: 

I] & = my IP ©; (x) = exp oo (2.13) 

and the thin-plate spline basis function by: 

©; (x) =|| x — yj ||? In(|| « — 4, I), (2.14) 

where « is the input vector and ju; is the vector determining the centres of the basis 
function ®;. Once the basis function has been chosen, we have a simple model whose 
parameters can be found by a least squares procedure, or any other optimisation pro- 
cedure. 

For a large class of basis functions, RBF networks are universal approximators [14]. 

Besides, they possess the property of best approximation, which means that the set of 

functions corresponding to all possible choices of the adjustable parameters includes 

the optimal approximation. The advantage of this network family is that RBF mod- 

els are very fast to train as the "first layer parameters” of the basis functions can be 
fixed and then trained as a quadratic optimisation problem. In contrast, networks that 

require non-linear optimisation, such as MLPs, are generally much slower to train. 

2.2.2 Implementation and Results 

The idea is to replace the homomorphic filtering by a RBF fitting of the picture. 

RBF networks may help us to remove a smooth structure which would be assumed 
to be the illumination. To achieve this removal properly, RBF networks will be con- 

structed in an unusual way. 

Fixing the centres 

First, the centres of the RBF structure will be positioned around the pictures with a 
fixed position (Figure 2.11). It is assumed that they will act as virtual sources that 
generate global illumination across the observed scene. 

Netlab was used to create the RBF network and train it. Netlab is a neural network 

extension to Matlab developed by Ian T. Nabney[{11]. A RBF network is created using 
the function rbf and trained using the function rbftrain. In our model, the RBF 

centres are fixed while their locations are optimised in the original Netlab code, using 

a few iterations of the k-means algorithm. 

Choosing the activation function 

An important setting in RBF fitting is the choice of the activation function for the 

network. As explained in section 2.1.1, we suppose that illumination is from a smooth 

structure over the image. In terms of smoothing the image, there was no real reason to 

prefer one activation function from another. Both of the thin-plate spline and Gaussian 

are suitable for smooth fitting even if 3D plot are fundamentally different(Figure 2.12). 

With a Gaussian activation function, the smoothness of the fitting will be directed 
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Figure 2.11: RBF centres as light sources. 
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Figure 2.12: Comparing a 3D Gaussian mapping to the thin-plate spline mapping. 

by the widths of the Gaussian. Indeed, the width parameter is used to set Gaussian 

variances. To ensure a good fitting, the existing rbftrain code uses the largest squared 

distance between centres. 

In practice, both activation functions led to similar results. Both functions can be used 

to train the RBF network. Our choice for the final model ended with the Gaussian 

which appears to be slightly faster in the Matlab implementation (Table 2.1). 

  

Gaussian | Thin-plate spline | Difference 

34.1 40.9 -6.8 
  

          

Table 2.1: Average execution time (in seconds) for each activation function realised on 

20 different pictures. 
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Positioning the centres around the pictures 

In our model, our centres are disposed around the pictures to act “intuitively” as light 
sources. The idea was to distribute equally the centres along the sides of a picture. That 
will allow us to model accurately illumination coming from any particular direction. 

The setting of initial position of the RBF centres was coded in the Matlab function 
initiatecenter. The number of hidden units (number of centres) was settled as a 
multiple of 4 (same number of light sources on each side). 
One issue faced was the setting of the distance from a centre to the picture. This 
distance governs the widths of the Gaussian centres and can consequently act in the 

smoothness of the filter. Positioning a centre very far from the picture will result in 

increasing variance of the Gaussian (square of the maximum inter centres distance). 

Gaussians will then become very broad and result in a flat fitting of the illumination 
as an average intensity. The opposite effect, resulting from placing the centres on 

the edges of a pictures, could be the appearing curvature of sharp Gaussians on the 
illumination mapping. In practise, the width of each picture provides us with wide 
Gaussians even when the centres are positioned on the edges. In the experiments here, 

the centres have been positioned on the edges. 

Choosing the number of hidden units 

In a RBF network, the number of hidden units controls the complexity order of the 
retrieved function. In our model, the hidden units are the virtual light sources that 

have generated the illumination. Increasing the number of hidden units should allow 

us get a finer approximation of the illumination across the picture. However, increasing 

the number of hidden units can also dramatically raise the computational cost and the 

execution time. On the other hand, reducing it to a very small value will generate very 

simple models that will present high error bounds with the true illumination mapping 

(illumination is smooth but nonlinear). 
The choice of the number of hidden units raises the problem of the quality of the illumi- 
nation that we want to fit. Indeed, we have no prior knowledge about the smoothness 

of the illumination mapping. By increasing the number of hidden units, the RBF net- 

works will start to fit details that belong to the reflectance part. By reducing it, the 

fitting will tend to a linear model that will be inaccurate. Moreover, in a broad range 
of value (12 — 20 hidden units), the illumination profile appears as smooth enough not 
to fit details significantly. 
The number of hidden units was set empirically as a good compromise between not 

capturing the reflectance details and quality for the illumination retrieved. The current 
code is using 16 hidden units. 

Training the network 

The input to the RBF network is a 2 dimensional vector of the pixel space coordinates. 
The output is a vector of the corresponding intensity of the inputs. Instead of presenting 
to the network a full image, which corresponds to an input size of 576+768*2 = 884736, 

we generally take a sub-grid of the image as the set of inputs (See left frame in Figure 
2.13), decreasing the size of the training set in the order of a few thousands. 
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Results 

The same code was applied to different pictures to test its generalisation. 

In the first result presented here, the training data was selected on the entire picture. 

The ratio of selected pixels horizontally was set to 1 pixel every 25. The vertical ratio 
was set to 1 pixel every 15. The figure 2.13 presents the illumination structure retrieved 

(right) using this approach. 

Original image 

2s    
Figure 2.13: Retrieving illumination using the RBF model on the full image. 

To measure the efficiency of the new model, we use the same criteria as the ones used 

for the homomorphic filter. The effect observed on the horizontal intensity is similar to 
the one observed previously. Indeed, in the figures 2.14 and 2.15, the general decreasing 

shape of horizontal intensity (illumination is coming from horizon) has been flattened. 
Moreover, secondary peaks that represent the objects in the pictures are still present 

with a similar amplitude. The new curve for intensity (Figure 2.15) is a hint that 
global illumination has been removed from the picture. 

Intensity over y Intensity very 
  

   
        
  

Figure 2.14: Horizontal intensity before Figure 2.15: Horizontal intensity after 
filtering. filtering. 

This hint is confirmed by the histograms of intensity in the pictures. Histograms of 
the original include a secondary and relevant peak in the high value of intensity. This 
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peak, that is in the range 240 — 250, represents the bright sunshine illumination. In 

the filtered image, this peak has been removed (Figure 2.16). 
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Figure 2.16: Comparing intensity histograms before and after filtering. 

For the second and all subsequent images, the illumination was retrieved using a grid 

from the upper part of the picture to speed up the process (Figure 2.17). 

Original image lumination retrieved 
  

  

Figure 2.17: Retrieving illumination using the RBF model. 

The comparison of horizontal intensity before and after filtering reveals the efficiency of 
our RBF model (Figures 2.18 and 2.19). This is confirmed by the intensity histograms 
presented in figure 2.20. 

2.3. Comparison of the two models 

The preprocessing of the image has been achieved using two different techniques. The 
basic technique, called homomorphic filtering, is based on spectral properties of the 

illumination. The low frequency part of the spectrum of the image is dominated by 
the illumination component. The homomorphic filter is a high-pass filter defined by 
three parameters s, wo and A. If wo can be approximated with an analysis of the 

spectrum, the optimal set of parameters requires hand-tuning. Therefore, there is no 
guarantee that the same filter will work across different times of day or seasons. The 
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Figure 2.18: Horizontal intensity before Figure 2.19: Horizontal intensity after 
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Figure 2.20: Comparing intensity histograms before and after filtering. 

homomorphic filter is not adaptive 

The second model was built following the need for an adaptive model. A RBF network 
is set with centres around the pictures and trained on the image intensity. The smooth 

fitting retrieved (mixture between number of hidden units and activation function) is 
taken for the illumination as the centres act as virtual light sources. The main advan- 

tage of this model to the previous one is its adaptiveness. Processing pictures from 

different times of day or season with the same filter still gives good results. 

Concerning the quality of the reflectance image retrieved using both filters, a compar- 

ison seems hard to achieve. Indeed, the true illumination mapping is unknown and 

both reflectance approximations are fairly good. However, the use of the homomorphic 
filter can let edge effects (due to the spectral properties of the filter) appear on the 

picture. These undesired edge effects of the homomorphic filter have to be balanced 

with the unknown error made by fitting details as part of illumination in the RBF 
model (difficult choice of hidden units). 
The final choice for the RBF model was driven by its high adaptiveness and high flex- 
ibility (quality simply directed by number of hidden units). 
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2.4 Summary 

In this chapter we have discussed the problem of nonuniform illumination, which has to 
be compensated for prior to any detailed image segmentation. We have introduced and 
compared two methods, which rely mainly on the smooth profile of the illumination 

compared to the sharp one of the reflectance: 

e an homomorphic filter, which is a high-pass filter applied in the spectral domain 

that solves the problem using assumptions on frequencies. 

e a RBF filter which solves the problem by extracting a smooth structure from the 
intensity mapping. 

Our results indicate that the RBF filter is more accurate (no edge effects) and more 
adaptive (the same filter gave good results on different frames) than the homomorphic 
filter. 
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Image Segmentation 

Once the reflectance image has been retrieved, the image segmentation for detecting 
slicks can start. The idea is to consider that a pixel can belong to one of a different 
set of populations. As discussed in the introduction, the object to be tracked is a 
bright and stable surface on the sea. In our case, one of the population will be labelled 

as “oil slicks”. The task is to achieve a probabilistic classification of each pixel, i.e. 

approximate to which population group they belong to. Classification problems are 

usually solved using clustering algorithms. The aim of such algorithms is to fit a model 

to the data. The model is then used to establish a probability mapping that allows the 

classification of a pixel. The segmentation process is the use of this probability map to 
create and separate specific populations of pixels. 

3.1 Density Modelling 

A useful and popular class of models for clustering and density modelling are Mixture 

Models which are convex combinations of basic model components ((3],[9]). 
Here, we consider models in which the density function is formed from a finite linear 
combination of basis functions. The model for the density will be written as: 

M 

P(x) = D> xls) PC) (3.1) 
j=l 

where M is the number of basis functions, p(x|j) the component densities and P(j) 
the mixing coefficients. 

Such a representation is called a mixture distribution. There is a strong similarity 

between equation (3.1) and the expression of the unconditional density of data taken 
from a mixtures of several classes. P(j) is equivalent to the prior probability of the data 
point having been generated from component j of the mixture. These priors (mixing 

coefficients) are chosen to satisfy the constraints: 

M 

Pu) =1, (3.2) 
j=l 

0< Pi) <1. (3.3) 
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The density modelling of a frame will be achieved using such a model, using for a basic 
component a Gaussian density function. The resulting probabilistic mapping will be 

used to create the segmentation algorithm. 

3.1.1 Gaussian Mixture Model 

Because of their probabilistic nature, Gaussian mixtures are in principle preferred over 

models that cut a data set (x1,...,.xv) € R*4 in discrete parts. They are usually 
providing more information than discrete models, considering a full distribution for 
the data set instead of sampling points. The density components are now Gaussian 

distributions: 

P(x|j) ~ N (uj, ¥5) 
= p(x|H1;, 25) 

a pHs) 5-1) (3.4) 
| SOn) TE] 

The finite mixture model will be expressed by extending equation (3.1) to: 

  

M 

p(xl8) = Ya p(x|q;, 55) (3.5) 

where a; are the mixing coefficients, p(x|;,;) are the Gaussian density functions 

and where @ are the set of constraints (equations (3.2) and (3.3)) rewritten as: 

M 

0 <a; <1and ia; — 1, (3.6) 
j=l 

py; € R* and 5; € R“* is a positive definite matrix. (3.7) 

In our case, the Gaussian mixture model will be used to fit the intensity histograms 

in a frame. The data set of the entities we observed xj,...,xXy will be a vector from 

the size of the picture where each x; is a number in the range 0 — 255. In the one 

dimensional case, the Gaussian distributions can be simplified from equation (3.4) to: 

(x15)? 
1 Tae 

j) = 7 38 p(x|J) pr (3.8) 

where the previous matrix covariance noted ©; is now the positive real number +. 
5 

  

3.1.2 Model Quality 

So assuming that a data set is generated by a certain Gaussian mixture, the task is to 

fit a model to this data, i.e. to estimate the parameters of the generating mixture. For 
this, it is necessary to have some notion of the quality of the model with respect to 

the data set. A standard way is to take the likelihood that the data set was generated 

by the model itself, ie. to what extent the distribution of the data corresponds to 
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the model. We define the log-likelihood L, given the parameters 0 and the data set 

X= Xj, 15%, as: 

L£(0) = log p(X) 
M 

= log [] >> 05 p(x|n3,5,) 
x€X j=l 

N M 

= log [] 33 aj (xnluj, 23) 
n=l j=1 

=) 

N M 

= So log) a; p(xn|p4j, 23) (3.9) 
j=l 

where a; are the mixing weights. Note that independence of the data points is assumed 
and therefore the likelihood of the data set is equal to the product of the likelihoods of 
the data points. Fitting the model to a data set is now the same as maximising (3.9) 
with respect to the parameters @ and the mixing weights a;. Instead of maximising 
the data likelihood, an equivalent computation consists in minimising the negative 

log-likelihood: 
N 

E=-L(6) =—)_logp(xn) (3.10) 

It is important to emphasise that minimising this error function is non-trivial [3]. For 

example, there exist parameter values for which the likelihood goes to infinity. These 

arise when one of the Gaussian components collapses onto one of the data points, as 

it can be by setting 4; = x and then letting a; — 0 (equation (3.8)). 

3.1.3. The Expectation-Maximisation Algorithm 

The most popular algorithm for training a Gaussian mixture is the Expectation- 
Maximisation (EM) algorithm ((10], [13]). The EM algorithm iteratively modifies the 
GMM parameters, the mean j1;, the variance 07 and the mixing coefficients a; for each 
component j , to reach a minimum of the negative log-likelihood EZ. 

Because the component that generated each data point x, is unknown, a variable z, 

is introduced, which takes on integer values in the range of 1...M, and denotes the 
unknown generating component. 

Then using the product rule, the complete-data log-likelihood is given by : 

N N 

£m (9) = Slog p(Xn, Znl0) = )— log{p(xn|zn, 9) P(2nl0)} 
n=1 n=1 

where 0 = {11;,0;,a;}. 

The Expectation step 

As indicated by the name, this step consists of taking the expectation of the log- 
likelihood with respect to the distribution P(z) = ey P(Zn|Xn, 0%). Since z is a 

34



CHAPTER 3. IMAGE SEGMENTATION 

discrete variable, the expectation over all z,, is simply a combination of N sums : 

ead =| SS [] Plenln, 4) logtplenlzn, 4) reelo)| 
n=1 LZ1=1Z2=1 9 Zy=1m=1 

5 oo s 5 fr - TI Penn 8") 
n=1|Zi=1 Zp-1=1Zny1=1 Zy=lm¥n 

Il 

  

M 

x | DO P(znlxn, 0%) log{p(xnlzn, HPteio)| 
Peal 

Since the first square-bracketed term in the last equation evaluates to unity as each of 

the individual sums ae P(2m|Xm; 9%) = 1 according to the constraints, we have 
the following expectation : 

N OM 

£8) = > D> P(znlxn, 6%) log{p(Xn|zn, 4)P(2nl0)} 
n=1 Zn=1 

Considering the previous general notation for a mixture model (equation (3.1)), the 
expectation can be written as: 

N M 

evome (gre) = SS” PU |xn, 69") log{p(xnls, 9) a7} (3.11) 
n=1 j=1 

noting that P(z,|6"”) is simply the mixing coefficient a?” (prior). 

The Maximisation step 

In the M-step, we maximise €°?(8"*”) with respect to the parameters 6". So if we 

differentiate equation (3.11) and set the derivatives to zero in the univariate Gaussian q 
case, we get : 

nen 1 P(I|Xn, 994) Xn new > PG. 

i P(j|%n, 694) 
yew — a Pil, O94) Spe) = ae SS : 

Lat PCI Kn, 094) 
N 

Qnew — old 
io nF (Gln, 0 

(5 

where gold = ZS {u2!4, (0 (02), a4}. 

Each iteration of the Expectation and Maximisation steps is guaranteed to increase 

the likelihood, unless it is already at a maximum, so E and M steps are repeated until 
the algorithm converges. 

Among the EM algorithm advantages are its easy implementation, no need to set extra 
user-defined parameters, and guaranteed monotone increase in model quality. There 

are also some down sides, the most important of which are its high dependency on 

initialisation and computational complexity, which is linear with respect to the size of 

the data set. 
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The K-means algorithm 

The classical method to initialise the mixture before the EM algorithm is the K-means 
algorithm. It is a method for finding K vectors pi; (for j = 1,...,K) that represent 
an entire dataset. The data is considered to be partitioned into K clusters, with each 

cluster represented by its mean vector and each data point assigned to the cluster with 

the closest vector. 

The K-means algorithm works iteratively. At each stage, the N data points x; are 

partitioned into K disjoint clusters S; each containing N; data points. The error 
function that is minimised is the total within-cluster-sum-square: 

M 

B= Sy | asl? (3.12) 
j=1 i€5; 

where j1; is the centre of the jth cluster, given by the mean of the data points belonging 

to the cluster: 

Bw=> yom (3.13) 
1 ies; 

The initial partition of the data is at random. Then the following two steps are iterated 
until there is no further change change to the error EB: 

e The mean vectors for each cluster are calculated using equation (3.13). 

e Each data point is assigned to the cluster containing the closest mean vector. 

The K-means algorithm converges quickly which makes it a good tool to initialise 

Gaussian mixture models before optimisation with the EM algorithm. 

3.1.4 Implementation 

Gaussian mixture model were implemented using Netlab (function gmm). 

Estimating the number of component needed 

The choice of the parameter M is very important. This parameter should reflect the 

number of populations in which a pixel can be labelled. It can also be seen as the 

number of sources that have generated the intensity of a pixel. Therefore, this setting 
requires an analysis of the labels we can expected in a frame. Considering a global 
picture, a pixel can represent part of the sea, part of the sky or part of the background. 

The object we tracked are oil slicks in sea. The sea label should then be divided in 
a minimum of two sub labels such as “oil slicks” and “clean sea”. Moreover, we can 

use prior knowledge about sky and background, mentioned in section 1.3.3, to reduce 

the size of the data. The idea is to fit only the data that are part of the sea using 

a template image. One dilemma that appeared in the choice of parameter M was 

the human activity that could appear on a frame. This unstable phenomena (it can 
disappear from one frame to another) can be seen as an unstable label population. 
Using only the 2 labels defined above (slicks/non-slicks) may bring some errors when 
human activity is present on picture. Pixels from that population may be randomly 
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classified as “oil slicks” or “clean sea”. On the other hand, by choosing 3 labels, the 

Gaussian mixture model will be trained to retrieve 3 populations on a frame that 

intuitively contains 2. In that case, real “oil slick” pixel may be identified as human 

activity pixel. 

The alternative between the two possible values results in the choice of giving more 
importance to True negative (pixels labelled as slicks that are not) or False positive 
(pixels not classified that are). While True negative may be re-filtered later on, False 
positive appear as a real loss of information. For this reason, the number of components 

was set to M = 2. 

Training the GMM 

The Gaussian mixture model was initialised using the gmminit Netlab function. This 
function takes for parameters the Gaussian model to fit to the data (resulting from 

gmm function) and the data to fit (here a sub-frame taken from the sea). The mixture 
is then trained using the EM algorithm coded in the function gmmem. Documentation 

and details of the code of these functions are provided in the Netlab book [11]. 

Density Models retrieved 

The 2 Gaussian mixture model was trained using the code described in section 3.1.4 

on different frames. 

In both case, the data used to fit the mixture model was the part of the sea in which 

we train the RBF network for retrieving the reflectance image. 

3.2 Segmenting the image 

The segmentation process consists of establishing a relevant probability mapping and 

use it to create and separate specific populations of pixels. 

Obviously, the Gaussian mixture fitted to the data will be taken as the model for the 

sources that have generated the different populations. The probability mapping will be 
extracted from the Gaussian mixture model and processed to achieve the classification. 

3.2.1 Principle 

Our Gaussian mixture is composed of 2 normal components that were fitted to the data 

inside a sea window (see Figure 3.1). It provides us with an intensity density model 
of a part of the frame. If we consider a pixel x with an intensity J,, the probability of 

finding this pixel intensity in the selected part of the frame is given by the equation: 

2 

P(Ix) = D> 05-P(Fx| 5, 55) (3.14) 
ja. 

In our classification problem, we are more interested in finding the probabilities of 

the contribution of each source in the pixel intensity. These probabilities are called 

posteriors. They can be computed using Bayes’ formula: 

P(x|Gi)P(Gi) PUs) (3.15) Prost(Gillx) = 
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aie Gmm with 2 Gaussians for Distribution 

    = cS 788 = 
pixel intensity 

Figure 3.1: Gaussian Mixtures retrieved on different frames. 

where G; is the event “The intensity of the pixel x was generated by source i” and I, 

the intensity of the pixel x. Because the sources are Gaussian, we have: 

il _ 45)? 
i 

20? 
  Phost(Ix|Gi) = p(x|t) = (3.16) 

and using the definition of a mixture model 

P(Gi) = a; (3.17) 

where a; is the mixing coefficient associated with the source i. The posterior probability 
mapping can be retrieved by combining equations (3.15), (3.16) and (3.17). 
The next step will be to select a Gaussian that should reflect the feature we want to 

identify: the “oil slicks”. Once the source for our feature is selected, the classification 
of pixel intensity will be achieved in respect of the most probable source for every 
intensity value. In a mixture model with M components, a pixel will be classified as 

generated by the source 2 if: 

Vj € [1, M], Phost(IxlGi) 2 Ppost(x|G;) (3.18) 

With 2 components, equation (3.18) is simplified. Indeed, if we only consider the 2 
sources 7 and j, we have: 

Prost(Ix|Gi) = 1 — Phost(Ix|@3) (3.19) 
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and therefore a pixel will be classified as generated by the source 1 if: 

Prost(Ix|Gi) 2 0.5, (3.20) 

the equality from equation (3.18) being obtained from: 

Prost Lx|Gi) = Phost Lx|Gj) = 0.5 (3.21) 

3.2.2 Selecting the right source 

An important issue, to achieve a good segmentation using a mixture model, is to select 

correctly which component is the suspected source of the desired feature. The choice 
of the source for our frame feature (the oil slick) should be based on specific intensity 
properties of this object, properties that allow to differentiate “oil slick” pixels from 

sea pixels. In our case, the choice is simplified by the fact that the mixture model is 

constituted of only two components. 
The method elaborated to select the source should be very simple, such as a method 
based on a single property, in order to simply its implementation. 

The following paragraphs will present the two methods found to select the source. 
They will be compared in section 3.3. 

Maximum Intensity Centre 

Given the mixture model for our density, the first method to select the source was to 

select the one with the highest intensity value for its centre. This method is based on 

the principal property : the object tracked is supposed to be brighter. Therefore, we 
suppose it has been generated from a distribution centred around the highest intensity 

values. 

Smallest Gaussian 

The second method for selecting the source was based on the properties of “oil slicks” 

as a cluster. The “oil slicks” are supposed to be sparse and diffuse on a frame. Thus, 

they should have been generated from a small source (they are details). On the other 
hand, clear sea surface is usually standing in a background of uniform intensity levels. 

In addition, clear sea surface usually represents most of the pixel intensity space. Thus, 
sea surface should be covered by a sharp and strong Gaussian in the retrieved mixture. 
If the “oil slicks” source can be defined as a small Gaussian, the choice remains between 

the Gaussian with the smallest variance and the Gaussian with the smallest maximum. 
As said previously, “clear sea surface” can be defined by a sharp Gaussian (intensity 

level almost uniform). Therefore, the smallest Gaussian was chosen as the one with 
smallest maximum. 

It is important to note from here that this maximum was compared in respect to 

the normalisation factor retrieved from the mixture. This normalisation factor is the 

mixing weight a; (prior). 
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3.2.3 Implementation 

The posterior probability from the 2 Gaussian mixture model was retrieved using the 

gmmpost Netlab function. This function takes for parameters the Gaussian model fitted 
to the data (resulting from previous training) and the interval of intensity. 
The computation of Gaussian mixture modelling and the posterior probability matrix 
were regrouped in a Matlab function named probmat2g. This function returns the 
specific posterior probability matrix of a pixel from the sea window being generated 
by the selected source. This matrix is used for segmenting the image. 
Segmenting is then achieved finding the pixel whose intensity probability, for belonging 

to the selected source, is higher than 0.5. These pixel are coloured and should represent 

the slicks. 

3.3 Results 

Segmentation on Frames containing Slicks 

Our segmenting methods were tested on two different sets of pictures containing ex- 

amples of slicks. 

e First Set 

The first set was chosen for its diffuse but visible tight prints of slicks. This set is 
representative of frames containing “oil slicks”. The 2 Gaussian mixture was fitted to 
the data preceding the segmentation. 
As shown by the Gaussian mixture retrieved (top left graph in figure 3.2), both methods 

to select the Gaussian source are equivalent. Indeed, in a usual frame containing “oil 
slicks” both properties for this selection are verified (the oil slicks are generated by the 
brightest source and are representing a small area of the picture). 

In the posterior probability graph (right superior corner in Figure 3.2), each of the 

Gaussian sources identified dominate in different intensity levels. Indeed, the posterior 

probability presents only one intersection point, obtained for the intensity value J ~ 

140, which is the boundary for the predominance of each source in each intensity level. 
Using that boundary to colour the frame, segmentation achieved matches with the 
human visual identification of slicks. 

This set reveals that having identified the good source (both methods are equivalent) 

our model is capable of tracking small prints. 

e Second Set 

The second set chosen had the characteristic of containing one of the maximum prints 

of sea surface representing “oil slicks”. The brighter surface is wide and can easily be 
separated from the “clear sea surface” by human eye. 

The aim of using this set is to test the limits of the selection method. In this case 

the second method, which assumes that “oil slicks” represent small area, may fail in 

selecting the right Gaussian. 
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Figure 3.2: Segmentation process on set 1. 
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Figure 3.3: Segmentation process on set 2. 
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As revealed by the mixture graph, both methods lead again to select the same Gaus- 
sian. Even if the Gaussian selected has a bigger maximum value than in the previous 

test, it is still under the maximum of the main Gaussian representing clear sea surface 

which has an almost uniform intensity level. 

Once again, the Gaussians retrieved dominate separate intensity intervals (one inter- 

section point), and segmentation and coloration processes using posterior probability 

give very good results as can be seen by visual comparison between the original picture 

and the segmented picture. 

The next step was testing our segmentation method on random frames. 

Segmentation on a random frame 

The segmentation was compared on different frames randomly chosen from the picture 
database. 

In most of the cases, both selection method for choosing the source had the same re- 
sults. 

However, in frames that appeared to be empty of “oil slicks”, both methods can give 

opposite results. These cases can be illustrated with the following set. 
Using the maximum intensity centre method for selecting the source, we capture the 

principal Gaussian. In the posterior probability, this source is appearing to have gener- 
ated pixels whose intensity is average, in the range 75 — 200. Such a range corresponds 

to the uniform intensity level of clear sea level. As revealed by the segmentation, the 

Gaussian source selected was the wrong one. It leads to colouring the clear sea as oil 
slicks. 

Using the second technique on the same frame, we select the smallest Gaussian which 
is the opposite source as the one selected previously. 

The smallest Gaussian is based on not capturing the clear sea level. It captures details 
which could be from both high level intensity or low level (biggest variance). 

This method was selected as the default one because of its higher adaptability. 

Using the Posterior Probability Mapping 

With its implementation, it is possible to retrieve both posterior probability mappings. 

Another idea could be to use these posterior probability mappings to choose the source 

that has generated the brightest pixel. 

Tests of this method let it appear as similar to the previous except in the case of low 

intensity images. Indeed, in that case, it is frequent that one Gaussian completely 

overlaps another (See Figure 3.5). 
In low intensity frames, oil slick activity is hardly traceable. By using the highest 

posterior method all the sea is coloured as slick which is hardly reliable. This problem 
can be solved with our original method. 

3.3.1 Issues 

As mentioned before, an issue in segmenting the image into two classes is the human 
activity. Human activity usually corresponds in the pixel space to sharp effects on the 

intensity values. 

A fifth set was chosen with the characteristic of containing a significant print of human 
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Figure 3.4: Comparing the methods on set 3. 
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Figure 3.6: Segmentation of frame with prints of human activity. 
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Colouration of both ranges. Colouration of the upper range only. 

Figure 3.7: Enhanced colouration cutting the lower range retrieved from the posterior 
probability mapping. 

activity noise (2 boats). Part of the sea surface, in the range of the boat wakes, has 
properties similar to the bright effect of slicks on sea surface whereas the object itself 
stands in very low intensity level (dark objects). The segmentation process may reveal 

the limits of our two Gaussian mixture model. 

When a third population is appearing, our 2 Gaussian mixture model will be fitted 
according to that data (see section 3.1.4). In the case of human activity, the prints 

usually represent small areas of the sea window processed. 

As presented before, our method of selecting the smallest Gaussian is likely to capture 
the details. Using this method, we are therefore more likely to classify human activity 
as slick. This issue is confirmed by the graphs presented from the segmentation of the 

fifth set (Figure 3.6). 
In the posterior probability space, segmentation will result in selecting two intensity 

ranges: 

e A range of low values (0 — 90) which corresponds to the dark pixel composing 

the human activity (such as boats) 

e A range of high values (150 — 255) which corresponds to the oil slicks and the 

bright pixel composing the human activity (such as the wake of boats) 

The first range, corresponding to the dark part of human activity, can easily be thresh- 

olded using the upper bound retrieved from the segmentation (See Figure 3.7). One 
of the main problems that remains is the bright pixels composing the human activity 

that remains classified as oil slicks. 

3.4 Summary 

In this chapter, we have considered the problem of image segmentation and some of 

the specific problems raised. We found that a Gaussian mixture model was hard to set 
in order to get acceptable results. The main difficulties were: 

e to estimate the number of components of the mixture needed to fit properly the 
population groups in an image. 
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e to create a method for selecting which component is the suspected source of the 

“oil slick” pixels. 

e given the posterior probabilities and the selected Gaussian, to find the intensity 

boundaries that allow to classify a pixel as an oil slick pixel or a clear sea pixel. 

We have not treated slicks as extended continuous features, nor have we considered the 

dynamics of slicks. This latter issue will be considered in the next chapter. The first 

issue could be part of a future project where the prior on spatial continuity is exploited 
as higher level knowledge, based on the lower level probabilistic pixel segmentation 
discussed in this chapter. 
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Chapter 4 

Using a Dynamic Model 

An interesting point of this project is the fact that the camera installed in Yermasoyia 

is providing an image every 10 minutes and so is indirectly giving information on 

sea surface dynamic activity. This chapter describes a preliminary attempt to use 
information across a sequence of frames to improve the segmentation achieved in the 

previous chapter. 

The idea is to establish a model that could fit the motion of slicks across the sea. Using 
a sequence of observations and a reliable model of slick dynamics, we may be able to 

identify and track them more accurately. 

From direct observations of slick activity across the ocean, the parameters involved in 

this evolution are numerous and belong to complex models. The slick dynamics are 
directly linked with the surface wind dynamics and sea dynamics. A model to define 
slick dynamics would appear to be very complex and will involve other sources, such 
as wind and waves, from which no information can be easily extracted from an image. 

However, the motion of slicks across the sea is a slow-time scale process compared to 

sea motion, wind activity or human activity. For example, it is possible to track the 

same slick across two consecutive frames contrary to waves and human activity. 

Even if the dynamics involved are complex, it may be possible to use a discretised 

linear model to fit the evolution of slicks in the frame space. This model should be 

estimated according to observations. 
A general and famous technique to fit such a model to our data is the Kalman filter 

([8), [6], [4])- 

4.1 The Kalman Filter 

4.1.1 Theory 

The idea of Kalman filtering [6] is to consider a system represented by the state vector 
x; that we update in discrete time according to a distribution function p(x;|x;-1). 

This internal state vector is not directly accessible, but rather must be inferred from 
measurements of observable y; which are related to x, by a relation p(y;|x;). The 
Kalman filter provides a general solution to combined the measurements to estimate 

the system’s state. Moreover, this filter allows us to update the state vector iteratively 
every time a new measurement is taken without the need of the previous ones or state 

estimations. 
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The variables involved in the Kalman filter are listed below and associated with figure 
41: 

Xt the model’s parameters vector (or state vector) 
ut the state vector’s uncertainty 
A; the evolution matrix from x;_; to x; 

™ the white noise involved in the evolution process (with co- 

variance matrix D/) 

ye the observation vector 

B the matrix associated to the process from which the obser- 
vation is generated 

W, some weight matrix for 
& the white noise (i.e. Gaussian with zero mean and covariance 

matrix Df) inherent to the observation’s measurement 
Y; the observations set from yo to y; 

Xij-1 our estimation of x; knowing the previous data 

hea our estimation of the covariance matrix for x; knowing the 

previous data 

Ree the best estimation of x, knowing the previous and the new 

data 

ue, our estimation of the covariance matrix for y; knowing the 

previous and new data 

Yet-1 our estimation of y; knowing the previous data 

Ly our uncertainty about the estimation of y; 

Ot, 20) Qt B24)    

   

   
Update Step 

   x. _ Evolution Step 
G2) Gat D4) 

Figure 4.1: Diagram of the Kalman filter. 

The system’s update is assumed to be linear, with additive noise m 

Xp = ApXr-1 + (4.1) 

and that the observable y; (measurements) is linked to the state by the linear relation- 
ship with additive noise e;: 

ye = Bex, + Wire (4.2) 
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Both noise 7 and €; are supposed to be Gaussian white noise and uncorrelated in time. 

They will be defined by two covariances matrices D7 and Df. 
The Kalman filter is a two step iterative algorithm. It basically involves the forecast 

of the state vector using a dynamic rule (evolution step) and its update using the new 
observation (update step). 
It is based on finding the maximum a posteriori (MAP) estimate of the state vector 
at time ¢ given the observable and our estimate of the state at the previous time step 

t—1, ie. Xyx-1. If we denote all the observations received up to and including time t 

by Y;, the posterior density can be written using Bayes’ Theorem as: 

(yelxe) p<e/¥e-1) 
wiyil¥-1) ay 

All these densities are assumed to be Gaussian. 

P(x:|¥2) a 

e Likelihood: It contains the information from the new datum. With the noise 
process € with zero mean and covariance Lf, we have the likelihood 

P(¥e|xt) = NV (Bex, Ut) (4.4) 

e Prior: The prior from equation (4.3) contains all the information obtained from 
previous observations. Assuming a Gaussian, this distribution will be centred on 

the state vector estimate at time t given all the observations up to time t — 1, 
Xzjt-1. The covariance matrix of this distribution will also be an estimate of Df, 

ie. 

P(Xe[Ye-1) = NV (Kee-1, Sea) (4.5) 

e Evidence: In equation (4.3), the denominator gives the probability of the new 
data point observed given all the previous ones. Assuming a Gaussian again, 

the mean of this distribution will be our best prediction of the new data vector 

given the previous data, i.e. yz:~1, and the covariance matrix, denoted dy , will 

represent our uncertainty about that prediction. Thus, evidence can be expressed 

as: 

P(yel¥e-1) = NM (Fep-1, U7) (4.6) 

e Posterior: Given the previous Gaussian, the posterior turns out to be a Gaussian 

centred on the best state vector estimate given all the data up to and including 

time ¢t. The covariance matrix will be our updated estimate of the state vector 

uncertainty Uf: . 

P(xt/¥r) = NV Kye, Lie) (4.7) 

Update step 

The first step is to search for the MAP estimate which is the value of X;, that minimises 

the negative log of the posterior with respect to x; For this, we take the negative 

log of equation (4.3), expressing Bayes’ rule, and rewrite each density applying the 
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previous assumption. Thus, we get the equation, dropping the constant term from 

each Gaussian: 

=In p(x|¥z) oc (x — Kye)? (2 He) (Xe — Rye) (4.8) 

« (ye — Bixi)” (E{)7* (ve — Bixe) 

+ (x1 = Kyea)? (Sha)? (Ke — Kye) 

= (ye — Fer)” (ZY) (ye — Fer) (4.9) 

Equating the quadratic terms in x;, we get: 

(Sh)? = BP (2) * Bs + (Sha) (4.10) 

By differentiating equation (4.9) with respect to x; and setting it to zero in order to 
find the MAP we have: 

Sy = (BF (BB + (Of (hea) yea + BP EY) (4.11) 
By combining equation (4.10) with equation (4.11), we get: 

Ree = Kye + Ke ere-1 (4.12) 

with 

K, = 23, BY (=) 

called the Kalman gain, and 

Cte-1 = Xt — Ret-1 

the estimate error. 

Equation (4.12) states that the new estimate evolves by having added a certain quan- 
tity of error at each step, this quantity being the filter’s gain. 

These expressions involve a large number of matrix inversions to obtain the updated 

state covariance ae It can be shown that they can be rewritten in a more computa- 

tionally tractable form such as: 

K, =Sh. B} (BY) 7 (4.13) 

bs = B, 53,1 BY + 55 (4.14) 

it = (I — K,B,) ihe 1 (4.15) 

where J is identity matrix. 

Evolution step 

In the time interval between two observations, the state vector is evolving according 
to equation (4.1). Thus, the estimates of x and U* have to evolve while waiting for a 

new observation. 

We are interested in obtaining p(x;41/Y,) the probability of the parameters at time 
t+1 given the observation up to time t. 

After processing the last data point, we have obtained the posterior distribution p(x;|Y;), 
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which is the probability of the parameters at time ¢ given the data up to and includ- 

ing time ¢. Since the previous step is a probability, we need to integrate the joint 

probability of x,,; and x; over the whole possible values for x;: 

P(Xt41/¥r) = [roses ¥0) dx, (4.16) 

Using Bayes’ rule on this joint density and the fact that x;,; only depends on the 

observations through x; we get: 

P(x/¥2) = J roses. Y;) dx; 

= [ vlessss] x, ¥0)plael ¥) dx 

= f sees) plod Yo) a (417) 
The posterior p(x;| Y;) was obtained at the previous step using equation (4.7): 

P(x Yi) = NM (Rye, by) 

P(Xt41| X) can be computed using the evolution equation (4.1): 

(X41) = N(Aex:, Ar Dh, AP + We D? W7) 

(the mean of x;41 is the mean of x; after evolution, and the uncertainty is the covariance 

matrix of the weighted evolution’s noise). From there, using the properties of Gaussian 
integration, we obtain the evolved state distribution: 

P(Xe41| Ye) = NM Rep ajes UE aye) (4.18) 

with 

Repije as At Reqije (4.19) 

Dhaye = Ar Dye AP + Wed? We (4.20) 

4.2 Implementation 

The Kalman filter has been implemented in matlab to enhance the tracking of slicks. 

Indeed, the site chosen provides us with an image every 10 minutes. 

The use we made of the Kalman filter was unconventional. A Kalman filter is usually 

used to get a best approximation of a real value which belongs to physical phenomena 

such as an acceleration, a position or a velocity. In our case, we want to enhance the 

detection of slicks from which we have no other information than the probabilistic map- 
ping computed from the segmentation of a frame and some general physics knowledge 
about the movement of oil substances on sea surfaces. 

The Kalman filter was built to take as a state vector x; the “true” and unaccessible 

probability mapping (Figure 4.2) of being a slick pixel whereas the observation y; was 
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Figure 4.2: Implementation of the Kalman filter. 

the posterior probability retrieved from density modelling (driven by equation (3.16)). 
The posterior probabilities are now labelled with time: 

Prost Tx|Gi)iq = P(x|é) tq = (4.21) 

  

where G; represents the Gaussian selected as the oil slick source. The first part of the 

implementation was to code the Kalman filter algorithm. Two files were created to 
achieve the filtering: 

e The function Kstep is representing one iteration of the filter including the two 
steps described in the theory. 

e The function Kfilter is the general procedure that takes a new observation, 

retrieved every 10 minutes, and runs an iteration on it. 

The second part of the implementation was to define the Kalman filter parameters. 

Indeed, in order to run a Kalman filter, we need values for evolution matrix A;, B; 

and W,, uncertainties 5% and SY and the noise covariances Df and D7. 
These parameters are usually obtained from models about the dynamics of the state 

vector. In the case of oil slicks, such models would include dynamics about sea cur- 
rent, dynamics about wind of the sea surfaces and the shape of the site such as 3D 

information about the sea bed. We do not have access to this information. The imple- 

mentation of the Kalman filter that was made is a very crude version of the optimal 

one. Indeed, the optimal model seems far too complicated and requires information 
that could not be obtained. 
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Matrices A;, B; and W;, which should refer to dynamics of the probability mapping, 
were set as A, = J, B, = J and W; =I where J is the identity matrix. First, this 
means that the filtering applied does not imply any interaction between pixels (identity 

matrix is diagonal). It is applied to each pixel separately. Moreover, the state vector, 

which is here the mean of the posterior probability, will evolve only regarding to the 

noise covariances Df and Y/ and the initialisation specified by setting the uncertainties 
D¥ and XY. 
The uncertainties U¥ and LH} about the observation and the true probability are re- 

estimated after each step of the Kalman filter. They were initialised so that U¥ = 0.1x J 
and LY = 0.1 x J where J is a matrix of ones. The initialisation of the true vector 
Xo was done so that every pixel represents an equal probability of being a slick or not. 

Therefore, it was set with xp = 0.5 x J. 

To set values for Df and ¥/, we had to guess about the noise covariances of the mea- 
surements and the true probability. The probability we want to filter is mainly based 

on pixel intensity (chapter 3). It should evolve in respect to it. As presented in the 
introduction part, a pixel represents a distortion of the real space. Due to the inci- 
dent angle, a pixel from the background is representing a much bigger space than a 
pixel present in the foreground (section 1.2.3). Moreover, the intensity captured by a 

pixel can be viewed as the average intensity over the real surface covered. Therefore, 

a bright pixel in the background, segmented as a slick due to its probabilities, should 

be considered more accurate in the way that it is representing an average over a bigger 

surface. Another way to translate this idea, is that, during the same interval of time, 

we expect less changes in the probability from a background pixel than one from the 

foreground. 
Thus, noise covariances matrices were set with: 

  
' 1 

Bi = hi x (4.22) 

1 
_ SY = ha x F (4.23) 

where k, and kp are scalars and Area is a matrix representing the real surface of 

pixels, wa representing a quantity proportional to the uncertainties on the observation 

evolution and the true state evolution. 

As explained in the section 1.2.3, the main problem for retrieving the real size of the 
pixel is the lack of information regarding the camera field-of-view aspect ratio. The 
matrix Area was approximated using general knowledge about distance to horizon 
and using some objects present in the field-of-view. A pixel was approximated to be 

representing a square real surface. An approximation of the real surface could then be 

retrieved by finding the real width and the real height of every pixel. The distortion 
effect due to the camera lens (horizon not appearing as a straight line) was neglected. 

Therefore, two pixels on the same line were considered having the same depth. 

e Depth: Knowing the height of the camera (h = 25m) it is possible to retrieve the 

limit of the view defined by the horizon (figure 4.3). 
This distance to horizon can be approximated using Reartn >> h and the Al 

Kashi Theorem [15] (generalised Pythagoras) to: 

Ditorizon = V2h Rearth 
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Distance to horizon 
computed     
    

Height of the point 
of view 

Figure 4.3: Distance to horizon. 

Using the distance to horizon and the fact that every pixel is representing a 
surface seen under the same unitary angle 40 (see figure 4.4), the depth of the 
pixel on the i” line can be approximated with: 

  

  

a=tan!( (4.24) 
First 

peters (ee) (4.25) 
Ditorizon 

mp 59 = <— (4.26) 

Depth; = h tan(a + 160) (4.27) 

where JN is the vertical resolution of the frame (number of pixels) and Drirs: the 

distance to the lowest pixel appearing on a frame (Dpirs: © 30m). 

  

30m = First Pixel 17km = Last Sea Pixel = Distance to horizon 

Figure 4.4: Scheme to approximate a pixel depth. 

e Width: this approximation was more difficult to achieve. The technique used 

was to observe a few frames containing objects that we can estimate the real 

size, such as boats and tankers, and to compute the corresponding real width of 

a pixel (see table 4.1). 
With a few approximations, we extrapolate the widths of a complete frame by a 
linear approximation (see figure 4.5). 

54



CHAPTER 4. USING A DYNAMIC MODEL 

  

  

  

Object Object Height Estimated Real Size Size Resolution 
(pixel height on a frame) (m) (in pixels) | (cm/pixel) 

Tanker 476 150 26 576 
Tanker 461 150 90 166 
Boat 406 5 Lo 30 

Boat 386 5 27 18 
Boat 126 5 35 5         
  

Table 4.1: Objects used to retrieve the width of a pixel depending on its height. 
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~ Figure 4.5: Extrapolation of the width function using linear functions. 

Once the widths and depths are retrieved depending on the height of the pixel hi, the 

real surface S,; represented by a pixel was approximated by a square: 

Spi = Depthn: x Widthn: (4.28) 

The matrix Area is defined in terms of the coefficients Areay;,;) = Spi, so that lines are 

composed of identical coefficients of the surface at each height. 
Giving the shape of the noise covariance matrices (in z4-) and with respect to the 
models for Dé and Y/ (equations (4.22) and (4.23)), the coefficients k; and kz will allow 
us to direct the filtering in different ways: 

  

e by choosing k, = k2, the uncertainties on the process evolution and the observa- 

tion evolution are equal. The observation is assumed to be as important as the 

previous estimated state in the new estimation achieved. 

e by increasing k, so that k; > k2, the uncertainty on the observation evolution is 
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similarly assumed to be more important than the one on the process evolution. 

We trust more the state estimation than the new observation. 

e by decreasing k; so that k; < ka, the new observation is considered more reliable 

than the state estimation. 

Coefficients k, and kz were empirically chosen so that they are included in the interval 

(1, 10}. 

4.3. Results 

The Kalman filter was run on two different samples of 60 pictures. The results presented 

were taken so that the number of iterations (represented by the time t) was high enough 
not to be altered by the initialisation (¢ > 10). 
It is important to note that the values chosen for k; and ky can be modified. In this 

implementation, the Kalman filter is more sensitive to the ratio between the values 
than the proper values. Using different values, so that a remains unchanged, gives the 

same results. 

Considering different frames segmented, the posterior probability retrieved at each time 
was updated using the next probability observed. 

In the following pages, we present the results obtained for each of the three settings 
for k, and ko. 

4.3.1 Smoothing the posterior 

The behaviour of the Kalman filter was clearly different depending on the setting 

applied for k; and ka. Mainly, after a few iterations, the Kalman filter gives a smooth 
estimation of the true probability. This general behaviour is very sensitive to the chosen 

setting: 

e with k, = ky: the behaviour is a general smoothing of the segmentation process 

(Figure 4.7). The estimated posterior is mainly a smooth mapping of the posterior 

observed, where the isolated pixels, classified as oil slick pixels, are now classified 

as clear sea pixels. 

e with k, > ka: the smoothing turns out to be more important. The figure 4.8 was 

obtained for k; = 8 and ky = 2. 

e with k; < ky: the smoothing is lighter than with the previous settings, mainly 

due to the stronger importance given to posterior observed (Figure 4.9 obtained 

with k, = 2 and kp = 8). 

Can this smoothing really be considered as an enhancement of the segmentation pro- 

cess? 
First, the smoothing is a general effect that tends to level the posterior probability on 

a frame. With the segmentation technique used (select a pixel when its posterior is 

higher than 0.5), the smoothing implies classifying fewer pixels as slicks. For example, 

if a frame contains bright clusters clearly segmented (top right image in Figure 4.11), 
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the filter smooths the general posterior (especially with k; > ka), making the bound- 

aries of the clusters less accurate than before (low right image in Figure 4.11). The 

smoothing implies a loss of precision. 

However, these effects have to be balanced considering frames where segmentation re- 

ally needs enhancement (top left frame in Figure 4.7). Indeed, the smoothing removes 
significantly isolated pixels, making clusters appear more clearly. This effect can corre- 

spond to a real improvement of the segmentation technique as the oil slicks are usually 

continuous extended objects. They are mainly present on the surface as clusters (such 
as the layers of petrol on the sea when a tanker sinks). 

Moreover, an interesting particularity of the smoothing is its disparity between pixels. 

Beyond the general smoothing effect, the pixels in the background seem less affected 
by the levelling than the ones in the foreground. This may result from the noise covari- 

ance matrices chosen. In the tests realised, the Kalman filter appeared sensitive to the 

matrix Df. This matrix represents the profile of the “importance” given to a posterior 

observed, with respect to its position on the frame. In the current implementation, the 

profile (in as) gives a greater uncertainty for pixels standing in the background than 

the ones standing in the foreground. In the test using a uniform uncertainty (Figures 

4.12 and 4.13), the smoothing seems uniform, making the upper pixels, classified as 

slicks, disappear. 

Similar results were obtained with matrix D7. 
These tests reveal that the filter is sensitive to the noise covariance value, whose setting 

appears fairly sensible according to the results obtained. Indeed, with the distortion 
effects of real space in pixel space, oil slick clusters are represented with a smaller 

number of pixels comparing than the ones in the foreground. The setting applied to 

noise covariance matrices compensates efficiently for the distortion effects. 

Concerning the parameters k; and ko, the choice for the setting kj > ke, or fe >1 
relies mainly on the efficient suppression of isolated slick pixels. However, as for noise 

covariances matrices, the filter is very sensitive to the value chosen for both parameters. 

4.3.2 Issues 

The setting chosen for the filter appears difficult to calibrate. The main issue remains 

to find a suitable value for the ratio B, 

By increasing it massively, the observation will be completely neglected. As already 

mentioned in the previous section, the new estimation will then mostly rely on the 

previous estimate. This appeared in the results as cases of loss of precision in the 
segmentation (Figure 4.11) or cases of wrong innovations appearing due to the fact 

that the previous estimation does not match the new frame (Figures 4.15 and 4.16). 
Moreover, with the values tried for k; and k2, the human activity classified as slicks 

could not be removed. Usually, the posterior corresponding to the human activity pixels 
is strong enough not to be suppressed by the smoothing (Figure 4.18). A solution could 
be to increase significantly the ratio B, which is not suitable for the reasons explained 
before. 
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Original Frame from Probability Observed 

  

Figure 4.6: Frame observed at time ¢ + 1. 

Probability Observed Frame Segmented with the Original Probability 

400 

  
Figure 4.7: Original segmentation (up) compare to Kalman estimation (down) based 
on the new observation: Smoothing of the posterior probability. 
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Probability Observed Frame Segmented with the Original Probability 
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Figure 4.8: Strengthening of smoothing with k, > ka. 

   Estimated Probability 

   
Probability Observed Frame Segmented with the Original Probability 

   200 400 600 

Figure 4.9: The posterior observed governs the estimation of the new state with 
ky < ke. 
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Original Frame from Probability Observed     

  

100 600 700 

Figure 4.10: Frame observed at time t + 1. 

Probability Observed Frame Segmented with the Original Probability 

  

200 400 600 

Estimated Probability Frame Segmented with the Estimated Probability 

200 400 600 

Figure 4.11: Loss of precision due to the smoothing. 

  

200 
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Frame Segmented with the Original Probability Probability Observed 

   
Estimated Probability Frame Segmented with the Estimated Probability 

  

Figure 4.12: With a noise covariance based on the surface for the observation. 

Probability Observed Frame Segmented with the Original Probability 

  Figure 4.13: With a noise covariance uniform for the observation. 
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Original Frame from Probability Observed     
eo] 
4] 

  

Estimated Probability 

Figure 4.14: Frame observed at +1. Figure 4.15: Posterior estimated at t — 1. 
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Figure 4.16: Wrong innovations. 
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Criginal Frame from Probability Observed 

  

Figure 4.17: Frame observed at time t + 1. 

Probability Observed Frame Segmented with the Original Probability 

  

Estimated Probability 

   
Figure 4.18: Failure to remove human activity. 
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4.4 Summary 

The results from the Kalman filter are generally disappointing. The Kalman filter was 

implemented as an intention for a model to remove human activity from segmentation 
which failed with the implementation made. 
The reasons for implementing a Kalman filter were based on assumptions of linearity in 

two places: linear observable and dynamics, and linear updates of the state following a 

new measurement. If the frame space dynamics really are close to linear, then a well- 
specified Kalman filter would help in removing activities which appear as nonlinear, 

due to the frame rate, such as human activity for example. 

In the results obtained, the Kalman filter was sensitive. The choice between giving 
more importance to the new observation or the current estimated state (by choosing 

the appropriate ratio 2) ended with a solution in which the posterior is smoothed 

significantly. 

The main advantage of this setting is the suppression of isolated pixels classified as 

slicks. The main drawback is the loss of precision in the segmentation of oil slick clus- 

ters. In extreme values for the ratio, erroneous results are obtained where the new 

estimation corresponds to the previous estimated posterior without giving importance 

to the new posterior observed. 

Moreover, the Kalman filter gives poor results in updating frames containing human 

activity. These poor results may come from the very crude model implemented. In- 

deed, in Kalman filtering, the best estimate given is in respect of a linear evolution of 

observations and dynamics. In our case, the dynamics were unknown and the filtering 

was driven only by the noises. 

In this implementation, the noise sources were assumed to be additive and Gaussian 
with covariance matrices in respect of the real surface represented by a pixel. Even 
if the noise covariance matrices implemented appeared as sensible and suitable, these 

noises may not be Gaussian or additive. One step to make this model evolve would 

be to gather more information about dynamics and build a model for motion of slicks 
across the ocean. Such a model seems hard to build according to the data given, that 
consists only of ocean frames. Some extra information, such as meteorological infor- 

mation, will be needed to build and test a reliable model. 

Moreover, the failure of the Kalman filter may be due to the linear assumption of a 
process that is known to be much more complicated. Even with good estimates of the 
evolution matrix, the system may be driven by non linear equations. To enhance the 

segmentation, the time model may be built from the basis of a complex dynamic model 

taking into account both the sea dynamics and surface wind dynamics. 

In conclusion, although there should be useful exploitable information in the dynamics 

to modify the probability map to produce a more accurate segmentation, the specific 

model and assumptions made here do not work efficiently. On the timescale of this 

project, we were unable to investigate this issue further, and it should be considered 

as a worthwhile topic for future research. 
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Conclusions 

In this thesis, we were interested in processing real world images for detecting near- 

shore water-borne pollution (oil slicks). 

We used a stochastic model where each pixel was allocated a probability of being 

generated by a “slick” model. However, first, a major problem of nonuniform illumi- 

nation corruption had to be compensated for. 

Every image was preprocessed in order to remove strong illumination effects due to 

the sun. The preprocessing of an image was achieved using two different techniques. 

The basic technique, called homomorphic filtering, is based on spectral properties of 

the illumination. The low frequency part of the spectrum of the image is assumed to be 

dominated by the illumination component. The homomorphic filter is a high-pass filter 

whose aim is to separate illumination (low-frequencies) from reflectance (high frequen- 
cies). The homomorphic filter is really effective by empirical tuning of 3 parameters 
only if the spectrum is clearly disjoint. Moreover, there is no guarantee that the same 
filter will work across different times of day or seasons. It is not adaptive. 
The second model was built following the need for an adaptive model. A RBF network 

is set with centres around the pictures and trained on the image intensity. The smooth 

fitting retrieved (mixture between number of hidden units and activation function) is 
taken for the illumination as the centres act as virtual light sources. The main advan- 

tage of this model to the homomorphic filter is its adaptiveness. Processing pictures 

from different times of day or season with the same filter still gives good results. More- 
over, even if no error to the true value can be computed, this filter can be considered 

as more accurate, in the reflectance image retrieved, in the sense that there are no edge 
effects appearing as in the homomorphic filter. 

The final choice for the RBF model was driven by its high adaptiveness and high flex- 

ibility (quality governed by number of hidden units). 

The preprocessing ends by providing a reflectance image which enhances the “oil slicks” 

prints. The image was processed to separate oil slick pixels from other pixels. 

The processing was achieved using a 2 Gaussian mixture model whose aim is to model 
two populations from a frame. By selecting the “oil slicks” source with an appropriate 
method, every pixel can be classified using the posterior probability. Segmentation was 

achieved using a constraint on the posterior probability (most probable source). 
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Results on images containing slicks were good, allowing us to identify and locate accu- 

rately a slick. 

However, one of the main issues remaining from segmentation is the human activity 

noise that can be randomly fitted as a new source, our model failing naturally to model 

3 different populations with only 2 clusters. 

To enhance the processing, a simple Kalman filter was tried on the posterior prob- 

ability. Given only mean and covariance of noises, the Kalman filter is the best linear 
estimator. Using the frame rate which provides us with regular observations, a Kalman 

filter was implemented to update the inaccessible true state of the posterior probability 

mapping. 

Even if the slick dynamics in the ocean are governed by sea dynamics, wind dynamics 
and the geography of the site, the idea was to consider that the posterior probability 
mapping from a frame should evolve linearly with additive Gaussian noises in which 
covariances are determined by using surface pixel values to fit the data. 
The results given by the Kalman filter trained on different sets are average. The op- 
timal setting found achieves a smoothing of the posterior probability (filtering mostly 
based on the current state estimation to predict the new step). This smoothing tends 

to suppress isolated slick pixels, making the segmentation more accurate relatively to 

the spatial continuity of oil slicks (slicks appear as clusters). However, this filtering 
implies a loss of precision in which the boundaries of the clusters retrieved are less 

accurate than in the original observation. Moreover, the human activity mis-classified 

pixels could not be suppressed with a suitable setting (extreme values for f increase 
dramatically the number wrong of innovations). This may be due to the very crude 
model implemented which did not take into account any evolution matrix. Moreover, 

the filter relies on assumptions of linearities that may be wrong. 

Even if the dynamic filter implemented did not give good results, we still believe that 

the time information can help in enhancing the segmentation process. Future work 

could be orientated in gathering information about slick dynamics in order to build 
evolution matrices that may enhance the Kalman filter results. Other fields of research 

could be the implementation of non linear models, such as hidden Markov model using 
the discrete indicator matrix for coloration of a frame, or to build a full model for slick 

dynamics. 

Moreover, in the thesis, we have considered the slicks as a group of pixels individually 

segmented using their intensity. Due to their oil constitution, the slicks appear as 

spatially continuous objects. This information should be included in the future work. 
Filters based on clusters may enhance significantly the segmentation. 
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