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Thesis Summary 

Message passing techniques in general and belief propagation in particular are highly 

useful tools for inference, especially when the problem can be represented by a sparse 

graph. They have been used to solve a range of computational problems such as 

decoding, graph colouring, satisfiability problems etc. 

In this approach, messages containing probabilistic information about nodes in the 

graph are being passed from node (variable) to node to facilitate the calculation of 

joint and conditional probabilities of the variables, which are then used for inferring 

their most likely value. One of the great advantages of message passing techniques on 

sparse graphs is that they are distributed and scale well with the system size (i.e., the 

computational effort involved grows linearly with the system size). 

Extending the problem to densely connected systems where the number of mes- 

sages is very high has been recently suggested. This approach is based on looking at 

macroscopic properties of sums of messages and modifying them locally (e.g., they can 

be represented by a Gaussian distribution of some mean and variance which could be 

modified locally). 

The task in the project is to devise an algorithm for carrying out updates in a case 

where sparse strong links exist in conjunction with dense weak links, using features of 

both algorithms. 
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Chapter 1 

Inference and Belief Propagation 

1.1 Inference, the Bayesian approach 

Inference is the process of predicting an observation using some facts that are already 

known. For example, if you see through the window that it’s raining, it’s quite natural 

to infer that the sky is grey. The process of inference was already studied by the 

Greeks philosophers who defined inference rules to help people to prove a deduction. 

The method called “syllogism” is a set of three inferences, the most famous of which 

is: 

All men are mortal 

Socrates is a man 

Therefore Socrates is mortal. 

This kind of reasoning was later formally enunciated by logicians, who created 

quantifiers like: 

the negation of X: 7X 

for all X: VX 

it exists anX: IX 

Some softwares like the programming language Prolog has been created to automati- 

cally find if a given fact can be inferred provided a set of propositions and rules. 

Some scientists prefer to follow another principled way for probabilistic inference 

which is called the Bayesian framework [1], [2]. It uses rules about probabilities to 

find the best result, prediction or explanation to a problem. According to them the 

probability is identified as the belief of a proposition. When this proposition is certainly 

true, its probability is 1, and on the contrary, when it is certainly false, the proposition 

is assigned the probability 0. The way to find the best answer to a problem is to select 

the one which has the highest probability among all possible answers. The name of
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that field of mathematics was given by a central rule called the Bayes theorem which 

enables one to define the probability of an event A given an event B as a function of 

the probability of B given A: 

Theorem 1.1.1 Bayes Rule 

PAR ae ae “ 

1.2 Graph representation and message passing 

Message passing techniques are used to solve problems involving variables which are 

linked by a set of constraints. The goal of such problems is to find the values of variables 

compatible with all constraints and possibly with some probabilistic bias. If all of them 

cannot be respected, the number of violated constraints tries to be minimised. This 

can also be referred to as inferring the most probable value of the set of variables. 

1.2.1 Graph representation 

Because there could be many dependencies between a given set of events, it could be 

a good idea to summarise them by a graph. This representation simplifies the proba- 

bilistic dependencies and makes them easy to group and identify. Each node represents 

a variable, and a link is created between the variables linked by a constraint (Figure 

1.1). That representation by a graph is very useful when the number of dependencies 

OO 
Figure 1.1: A graphical representation of a probabilistic dependence between two vari- 

ables. 

is quite high. 

1.2.2 Intuitive approach 

The boolean satisfiability problem (SAT) is a decision problem considered in complexity 

theory. The question is: given the expression, is there some assignment of TRUE and 

FALSE values to the variables that will make the entire expression true? For example 

the following expression can be considered: 

E = (by or bg or by) and (2 or bs or by), 

where E has two clauses and four literals (by, bo, b3,b4) and { b,=TRUE, b.=FALSE, 

b3=TRUE, b4=FALSE } is one solution of the problem. Figure 1.2 shows how to model 

this problem by a graph.
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Figure 1.2: SAT problem modelled by a graph where circles represent the variables 

and edges a constraint between two variables 

Once the problem has been modelled by a graph, a message passing technique may 

be used for infering the most probable solution, consisting in exchanging messages of 

probabilistic nature along the links. The problems described above are NP-complete 

[3] and the algorithms to find a solution are generally computationaly very expen- 

sive. Message passing provides a solution by looking at constraints locally and tries to 

converges through iterations. 

Message can be considered as a degree of belief given by all the nodes linked by 

a constraint. The neighbours of a node send to it the probability that it can take a 

value. An intuitive explanation is given below with the satisfiability problem. 

Let us assume that each node were initialised with a random value {b,=FALSE, 

b2=FALSE, bs=TRUE, bs=TRUE }. Then we can focus on the constraint (b; or bs or by). 

Given the values of b3 and b4, which value should b; take to satisfy the constraint (Fig- 

ure 1.3)? the resulting constraint on b; will be message passed through the edge. 

  

Figure 1.3: Message passing in the SAT problem. 

By iterating these messages, the values of variables progressively change to satisfy 

the constraints. The next section shows explicitly the expression of the messages from 

which an iterative algorithm can be devised. 

10
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1.3 Message passing in a bipartite graph 

In what follows, we’ll not devise an algorithm for general graphs, but for a subset called 

bipartite graph because our problems will be modelled using such graphs. A bipartite 

graph is made of two sets of nodes {xx }x=1.« and {Y}u=1..n and edges link two nodes 

of the different sets. That is to say that links exists only between z,, and y,. Let us 

first define the notation used in the case of a bipartite graph. We denote the set of 

linked nodes by K(j:) = {k : zx is linked to y,,} and M(k) = {: y, is linked to x} 

QO © © 

  

    

Figure 1.4: A bipartite graph. 

Two messages will be passed through edges: one from y, to x, and another one 

in the other direction. Let us define rpx = P(yplte, {yzu}) and que = P(ael{yveu})- 

Then we'll pass messages using the following formulae: 

he = ESD Pyles {ai} an (1.1) 
aig leK (1) 1¢k 

Gur = Quer) - [tee (1.2) 
vEM(k),v#u 

Looking at r,,. one can notice that the message sent from y, to a, and depends on 

the messages that the others neighbours of y, send to it (Figure 1.5). 

  

  

Figure 1.5: Message in the bipartite graph. 

Message passing is used in problems such as K-Sat or graph colouring, but the 

issues I’ve tackled in the projects are error correction and CDMA multiuser detection. 

The first one is an application on a sparse graph whereas the second is an application 

on a dense graph. Finally a toy problem has been addressed in order to mix both 

approaches. 

1
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Besides, the belief propagation algorithm is exact only when the associated graph 

is a tree, that is to say it has no cycles [1]. But in lots of application there are cycles, 

so we'll just apply the algorithm, hoping that it will converge to the right solution. 

Some studies of the convergence in graphs with loops show that only short cycles are 

practically a problem. 

12,



Chapter 2 

Belief Propagation (BP) in a Sparse 

Graph 

The first case where the algorithm will be applied is a sparse graph. A sparse graph is 

a graph where there are a few links between nodes (for example 3 or 4 links by node 

where there are 1000 nodes). We'll see why this kind of graph has been chosen by 

looking at the complexity of the algorithm. 

The message ry is defined as Dz,,,1eK(u) P(Yulve, {ti}) Mize qut- If we denote K 

the number of neighbours, then this message is a sum of 2-1 terms. Looking at inside 

the sum, the number of terms of the product is K — 1. So, to compute one term, 

K2*-! operations are needed. Moreover, there are VK messages to compute for each 

iteration. 

The result is that the number of calculations highly depends on the number of 

neighbours. And this is exactly why belief propagation were first applied to sparse 

graphs. In this chapter we'll be interested in a problem that can be modelled with this 

type of graph, it is the well known problem referred to as decoding in Low Density 

Parity Check (LDPC) error correcting codes. 

2.1 Noisy channel 

In information theory, many models of communication may be considered, and the one 

we are interested in, in this chapter, is a communication through a channel known as 

Binary Symmetric Channel (BSC). The word Binary means that bits (0 or 1) are sent. 

During transmission, some noise will corrupt the message. Assume that we want to 

send a value 0, the probability that this is (correctly) received is p and the probability 

that an incorrect value (1) is (incorrectly) received is 1 — p. This channel is called 

Symmetric because the probability of a 1 becoming a 0 and of a 0 becoming a 1 are 

assumed to be the same as represented in Figure 2.1. 

13
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0 p 0 
v 

Lp 
Sent Received 

l-p 

i » 
1 1 

Figure 2.1: Representation of a Binary Symmetric Channel (BSC). 

Another commonly used model which will be used later is the Gaussian Channel, 

which is also referred to as Additive White Gaussian Noise (AWGN) channel. In this 

case, real numbers are transmitted instead of bits. Then during the transmission some 

noise n is added, where n is a zero normally distributed random variable with some 

variance a. The channel becomes noisier as the value of o grows. 

2.2 Error correcting codes 

Error correction and error detection are areas of information theory which have great 

importance. They enable people who are transmitting data, to check them in order to 

ensure that the message has not been corrupted during transmission. Error detection 

only determines if data were corrupted during transmission, so that they need to be 

re-sent. Error correction is more powerful since it allows to retrieve the original data 

from the corrupted message. It is used when there is a need for reliable data, typically 

during transmission through noisy media or for data storage on noisy devices. 

In order to correct errors, data need to be added to the sent message. An obvi- 

ous way to correct errors is to repeat the message several times and then choose the 

value according to the majority. The process whereby data is added to provide better 

protection against corruption is called structural redundancy. However, detecting and 

correcting errors can be done with far less redundant data than that of basic repeti- 

tion codes. A very popular method is called the Reed-Solomon codes [4] which are 

used in Compact Disc for example. Turbo codes [5] are another class of powerful error 

correction codes that were introduced in 1993. 

2.3 Low-density parity check codes 

In this chapter we're interested in a method known as low density parity-check (LDPC) 

error correction. LDPC codes were invented by Robert Gallager {6] in his PhD thesis. 

The principle is as follows. 

14
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First, a generator matrix G is used to encode the signal s. The errors occurring 

during the transmission can be viewed as a noise vector n corrupting the transmission 

giving rise to a received vector r such that r = G7s +n (mod 2). In decoding, 

one uses a matrix H known as parity check matrix, that has the property HG? (mod 

2) = 0. For Gallager codes, the parity-check matrix is a matrix built as a concatenation 

H = [C,|C,] of two sparse matrices, C2 being an invertible square matrix. On the 

other hand GT = [I|Cz'C] (mod 2) , where I is the identity matrix. 

Using the parity-check matrix, we can write: Hr = H(G’s +n) = Hn. With 

z = Hr (called the syndrome vector), the decoding problem is summarised by the 

following equation: z = Hn (mod 2). 

The syndrome vector z is computed from the received data and 1 is the vector we 

want to find. Then knowing the noise vector and the received one, it is easy to retrieve 

the original signal. 

2.4 Messages 

Belief propagation is an iterative algorithm based on the following recursive messages 

(7), (8): 

Bee (zur, {zv¢n}) = » PCenlm) TT Pi(ril {zor} (2.1) 

P*(ngl{zrgu}) = eP (re) T] P (zlre, {2oev}) (2.2) 
ve 

where, as defined previously, n describes a noise vector, z the syndrome vector and 

Q,. a normalisation constant. 

If we look at the first message, the number of terms in the sum is O(2~") with K 

the size of n ; the product has K — 1 terms. That means that the complexity of one 

message is O(K2*) which is very high. 

But here we’re doing an approximation: the only n components taken into account 

are the ones selected by the corresponding row of the matrix HH for any given syndrome 

element. This matrix is sparse, that is to say that it is mostly filled with 0, which 

reduces consistently the complexity of the calculations . It depends on the code used, 

but usually, the size of n is 4 or 5. So the complexity of computing messages is finally 

not high. 

The problem can be modelled by a graph, where a link between n, and z, is created 

each time there is a 1 in the matrix H. It gives the representation shown in Figure 

2.2. 

Belief Propagation can be viewed as an algorithm passing messages between the
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QQ © @ Ke 1) k ie wy 

= een 

Figure 2.2: Representation of the code by a bipartite graph. 

       

two kinds of nodes through edges: 

Tue = PM (zylme = 0, {2vzu}) (2.3) 

Thue = PM (zylme = 1, {2v¢u}) 

Oe = P*(n, = 0|{z¢n}) (2.5) 

ue = PY(me = 1 {zven}) (2.6) 

2.5 Improvement 

There is no need to pass 4 messages through nodes because all the information is 

contained in the difference between q°, q! and r° and r! respectively. We therefore 

pass the following messages: 

one. = Toe — Tak (2.7) 

5quk = Yue — Gane (2.8) 

In [8] the messages are finally expressed as: 

Ore = (-1)*T] Say (2.9) 
l 

5quk = Que — Gu: (2.10) 

using: 

ree = (1+ 6ryx)/2 (2.11) 

Tie = (1—6ryx)/2 (2.12) 

Ge = OnP(re=0) TT 1% (2.13) 
veM(k)vAu 

Ge = eP(rme=1) TT te (2.14) 
vEM(k),véu 

The initial values of g?, and qj, are set according to the flip probability which is 

the probability of having nz = 1. 

16
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2.6 Experiments 

The first task to do some experiments is to generate sparse graphs. K = 3 parity 

checks has been used and H has been set to a (750, 1000) matrix. That means that 

each 2, is linked to 3 ng, and each nz to 4 z,. 

In order to study the efficiency of the algorithm, experiments have been carried 

out: 10 graphs were generated, and for each of them, 50 noise vectors were created. 

The algorithm was applied to each of the graphs and noise vectors and the number of 

errors between the estimated noise vector and the found one was recorded. The flip 

probability has been increased and recorded the percentage of incorrect bits and the 

results are shown in Figure 2.3. 

The efficiency of decoding a code is measured by its dynamical transition which is 

the limit where the code achieves excellent results. Considering the chosen values, the 

transition currently achieved by error correcting codes is about 0.16 where the Shannon 

Limit is 0.21. My experiments gives similar results as shown in Figure 2.3. 

1.02 

0.98 

0.96: 

ov
er
la
p 

0.94: 

0.92 

  6 er eae, ee 
0.11 0.12 0.13 0.14 0.15 0.16 0.17 

flip probability 

Figure 2.3: Percentage of correctly decoded noise components found in the estimated 

noise vector. The size of the noise vector is 1000, and the number of parity-checks is 
3. The dynamical transition is a bit below what is expected (flip probability of 0.15 
instead of 0.16). 

The second part of the experiment was to record the evolution of the system through 

iterations. The results are shown in Figure 2.4. The graph settings are the same as 

above, and as expected, the algorithm converges quite fast for a small amount of noise. 

It finishes when all the constraints due to the parity-check matrix are respected. But 

when the flip probability becomes high, a maximum number of iterations has been 

17
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fixed. This maximum of iterations directly influences the results of the limit where we 

can consider that the algorithm converges or not, i.e. the dynamical transition. For 

example, if the maximum number of iterations had been set to 10, then the algorithm 

doesn’t allways converges from a flip probability of 0.13 . 

Error rate through iterations 

    

    

   

  

  

0.16 
k ——Tlip probabilty=0.12. 

Gadi —— ip probability=0.13 
: flip probability=0.14 

—— flip probabilty=0.15 
0.12 flip probability=0.16     

bit
 e

rr
or

 
ra

te
 

iterations 

Figure 2.4: Percentage of errors found between the true noise vector, and the estimated 
one after each iteration. We can see that after 30 iterations, when the signal is too 

noisy, the algorithm doesn’t converge. 

When the update rules are known, the algorithm to update the messages is not 

really difficult to devise. However there are two points to take care of. The first one is 

the initial state of the system, we have seen that it is a logical choice to start by setting 

the value of P* (n, = 1|{z,¢,}) to the flip probability used to generate the noise vector. 

The other aspect of the programming task is to choose how to carry out the updates on 

messages. There are basically two approaches. The first one is the sequential update 

where, when a message is computed, it is used immediately when updating the others. 

And the second approach is the simultaneous update where all the messages updates 

are computed, and at the end of the iteration, they are all updated in the same time. 

There wasn’t big differences, so the simultaneous update, which was the first tried, was 

kept. 

18



Chapter 3 

BP in Dense Graphs 

3.1 CDMA 

In the telecommunication area, people often face the problem to send different signals 

at the same time. This creates the problem of interferences between signals and the 

need for a method that enables one to avoid such interference. Several methods have 

been devised to that effect. The first of the multiple access technique used today is 

the Frequency Division Multiple Access (FDMA). In this scheme, the signals are sent 

on different frequencies to avoid interference. Message retrieval is done by “listening” 

at the desired frequency. This technique is used with radios of wide spectrum. A new 

problem raises when several people need to communicate through the same frequency 

channel. 

That’s why a second technique, Time Division Multiple Access (TDMA) may be 

used. It allows users to share the same frequency by dividing the time in slots. The 

users transmit in rapid succession their data, one after each other, using their own time 

slot (Figure 3.1). Thus, this allows multiple users to share the same frequency band. 

To get the data, the receiver need to synchronise their transmission with the time slots. 

1* user timeslot 
2™ user timeslot 

4 - 

JEU 
> 

  

        

time 

Figure 3.1: TDMA: Users send their data one after each other. 

Used in the GSM, PDC and iDEN digital cellular standards, among others, TDMA 

is also used extensively in satellite systems and local area networks. But a drawback of 

19
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TDMA systems is that they create interference at frequencies which are directly linked 

to the time slot length. This is the irritating buzz which can sometimes be heard if a 

GSM phone is left next to a radio. Another disadvantage is that “dead time” between 

time slots limits the potential bandwidth of a TDMA channel. That’s why the next 

mobile phone generation will use a technique called CDMA for Code Division Multiple 

Access. This is the scheme used in the UMTS, one of the third-generation mobile 

phone technologies. 

CDMA can be referred to as the use of spreading codes by transmitters to share the 

same frequency channel. The transmitted data are first multiplied by a user spreading 

code and then summed leading in a single signal containing all data, as will be explained 

in details later. 

The term CDMA is also widely used to refer to a family of specific implementations 

of the CDMA technique pioneered by Qualcomm for use in digital cellular telephony. 

3.2 CDMA in detail 

This chapter is based on the work of Kabashima who studied this dense case in [9]. 

We'll look at how the users bits are mixed, using spreading codes. A CDMA signal is 

expressed as 

K 
SY Sunde, (3.1) 

  

where p € {1,2,...,N} and k € {1, 

respectively. That is to say that K users i to send their bit b,, using their spreading 

.., K} are indices for samples and users, 

code sequence s,, and the resulting signal length is N > K. 

We assume that the signal is transmitted through a Gaussian Channel, thus some 

Gaussian noise is added during transmission, resulting in the following received signal: 

=D s Sunbdk + FM, (3.2) 

where n,, is a Gaussian white noise component with zero mean and unit variance and go 

the standard deviation of Additive White Gaussian Noise (AWGN). The transmission 

process is summarised in Figure 3.2. Using these normalisations, the signal to noise 

ratio is defined as SNR = 3/(203) where 3 = K/N is referred to as the system load. 

In the following, we assume a situation where both of N and K are large keeping 3 

finite. 

The decoding problem can be modelled by a graph, where each b, is linked to all 

Yu if by. So the graph is dense and we cannot apply the previous belief propagation 

algorithm because there are too many neighbours, and also very short cycles as shown 

in Figure 3.3. 

20
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Figure 3.2: CDMA: User messages are spread on modulated transmission. 

  

  

Figure 3.3: Graph modelling the CDMA decoding problem. 

3.3. Messages 

Also here, belief propagation can be defined as an algorithm passing messages between 

the two kinds of nodes through edges as 

PY (yb, {Wen}) = Do P(ylb) I] P*bltyzu}), (3.3) 
[ ifk 

P(bel{uzu}) = Oe I P* (yp |be, Yoxr}) » (3.4) 
vép 

where t = 1,2,... is an index for counting the number of updates. There is also a con- 

stant at, due to the constraints Dy, <1 P* (yulbx, {yozu}) = Land Dp, nai PP (bel {Qeen}) = 

1, respectively. The marginalised posterior at th update is evaluated from P* (y,|bi, {Y-zu}) 

as Pt(bjly) = ax TIL, Pt (Yulbe, {y-¢u}), where ax is again a normalisation constant. 
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CHAPTER 3. BP IN DENSE GRAPHS 

As by is a binary variable, one can parameterise the above functions as 

Fs (Yplbes {¥v2u}) ox {1 + 1,xbr)/2, 

P (bel {Yueuh) = (1+ mjxbe)/2 
and = P*(by|y) (1 + mjby)/2 

without loss of generality, which simplifies the expressions to 

mtb 
Do beP(yulb) Mize (“*) 

mh = ———____,~___+ (3.5) 
i 14mtjb\ ’ BE 

Lo P(yulb) Mize (=*) 

mi, = tanh (x tanh? wt) : (3.6) 
vA 

Employing these variables, the approximated posterior average of b, at tth update can 

be computed as mi, = tanh Oe tanh! tint). After convergence, the value of by is 1 

if mi > 0 and —1 if mj, < 0. 

3.4 Complexity 

To calculate 77,4, a total of OK! 2*) computations are required. It grows so fast that 

it becomes quickly intractable. That is the reason why some approximations need to 

be done. The first approximation used in the previous chapter which was to consider 

only a few neighbours, cannot be used here. But there is another way to approximate 

the big sum due to its large number of weakly correlated terms. 

3.5 Derivation 

The noise model leads to the following expression: 

1 1 i 
P(y,|b) = —= = exp |—-—5 (yy, — Ap i; 3 (nl) = oe 2 ag - 44) (32) 

where A, = Tr SE subi. 

Since syxbp/ VN is small for large N, we expand this conditional probability as 

1 Y= Auk)? Suk (Yu — Aut) exp |-~4#— +. 
y 2n08 | 208 VNo} . 

1 (Yu — Aur)? ( Six Ya— Aya) ) exp |— ets be}, (3.8) 
4/2708 | 208 VNo 

where Ayk = Dige Sabi/ VN. As the spreading codes are generated independently, s,1 

and b; would be uncorrelated when by is generated from P'(bi|{yr4,}) = (1+ mjahi)/2. 

P(yulb) (2   

  I 
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CHAPTER 3. BP IN DENSE GRAPHS 

3.5.1 Macroscopic property 

In the previous algorithm, each neighbour was considered in order to calculate the 

messages. This could be referred to as looking at microscopic properties of the node. 

But, because there are many considered nodes in this dense case, we can use some 

quantity describing the whole set. This macroscopic property of the neighbours is the 

sum found in P(y,|b) which is Az = Dige sybi/VN. This is represented on Figure 

3.4 by an area linking 6 components to y,. 

ee ea et    

  

Figure 3.4: The messages use macroscopic properties from the neighbours. 

The central limit theorem implies that A,,, obeys a normal distribution whose mean 

is ( i), and whose variance can be written 6(1— Q',,)- 

(Miu), = Do SutMa/ VN and Qhue = (1/K) (miu)? 
Ik ik 

. Those two quantities don’t depend explicitly on 6 anymore but only on messages 

coming from neighbours. 

Now that we know the distribution of A,,, we can use the following property 

P(yplb) = f ddyP(Aue)P(ysldne) 
which finally doesn’t depend at all on the particular components of b. This is a great 

improvement since it is calculated only once for each message. Further calculations 

in [9] leads to final formulae which are much simpler and the computational cost has 

been reduced to O(K) per pair (uk) which implies a total of O(N?) computations 

per update. Without optimisations it would have been O(N2* K) per update. 

3.6 Experiments 

The algorithm has been implemented and then used with increasing values of 9 in order 

to see how the algorithm converges. The number of users has been set to K = 500, and 

the number of message samples is NV = 1000. So the graphic shows how the number of 

errors evolves when the noise grows. The following graphs are made by averaging 500 

experiments with the same level of noise. 
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Figure 3.5: Experiment on a dense graph. It shows the number of errors between the 
true vector and the estimated one after each iteration. The divergence threshold is 

about 03 = 0.25 

Figure 3.5 shows the influence of noise parameter o2 on algorithm convergence. 

Each points represents the simulation average after each iteration, and error bars are 

too small to be viewed. We can see that the algorithm converges to the right solution 

until ¢2 = 0.22 and starts to diverge after. After each iteration, the posterior proba- 

bility was evaluated and recorded. It shows that the convergence is very fast; after 4 

or 5 iterations the number of errors doesn’t change a lot. 

Another quantity is commonly used instead of g? is called the signal to noise ratio 

defined as SNR = 3/(202) with B = K/N. 
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Chapter 4 

BP in a Dense Graph with a Few 

Strong Links 

The main purpose of this chapter is to mix the two previous algorithms in order to use 

belief propagation in dense graphs where there are still a few strong links. A practical 

problem is not tackled here but instead we’ve created a toy model to investigate the 

efficiency of the algorithm. This is a first step towards its application to a real problem. 

4.1 <A toy problem 

The issue addressed in the toy problem is very similar to the CDMA decoding problem. 

K bits are modulated using spreading coefficients and the resulting signal of size N is 

sent through a Gaussian channel. The components y,,  € {1..N} of the received 

signal can be written: 

> Sunde + — = $450; + FON, (4.1) 

The number of signal bits N is a quite big number, and K scales as O(V) whereas 

J scales as O(1). The factors Tk and Wi are very important since they measure the 

influence of a b component on the final signal. 

Looking at TR DK, suxbk, we notice that each bj, does not contribute a lot (its 

participation scales as O(Fz))s whereas each b; is much more important since its 

contribution scales as O(1). Links between b, and y, are termed weak, whereas a link 

between b; and y, are termed as strong. Figure 4.1 shows the two groups of nodes. 

The other components of the signal are the spreading code s,; € {—1,1} which 

is generated such as P(sy; = +1) = P(syi = —1) = 1/2, n, which is a Gaussian 

white noise sample with zero mean and unit variance and op the standard deviation of 

AWGN. 
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me aos 

( b, ) at (, ) strong nodes 
Va Se 

as aan 
LOE mK) weak nodes    

  

Ee 
Figure 4.1: Representation of the toy problem by a graph: there are a lot of weak links, 

and only a few strong. 

  

4.2 Messages 

4.2.1 Messages overview 

Using the same notation as in the CDMA decoding problem, we are interested in 

computing the following message for each link: 

Lemt b Tp bePCUplb) Tze (3) 
l+mijb\ ? 

Lp Pulb) Mize (=}*) 

where, due to the Gaussian noise added through the transmission, 

1 2 
= exp [-se3 (yu — Ay) ; 

106 
  P(y,b) = 

and A, =JR Wy Sunbdee + W DJ. 8,jbj, which now includes the strong components. 

The value A,, has to be computed for each possible value of b. That’s why, in the 

same way as what was done in the previous chapter, we'll look at the macroscopic 

properties of the incoming messages. If such general property can be found, there will 

be no need to compute A,, for each new set. 

The problem is that it cannot be found with respect to A, because the strong bjs 

are too influent. And for each new set of b components, the statistical properties of 

A, may change completely. But, we can split the marginalisation over the whole set 

into one sum over the strong one (bs) and another one over the weak one (b,). This 

enables us to consider that for each strong set, the quantity Wi eS 8,3; is fixed and 

known. 

The messages then become: 

Ep, Db, MP CYulb) Tage (GH) 
Lem, bi 

Lo, Ub, Pulb) Mize SS ; a t+] Mak 
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CHAPTER 4. BP IN A DENSE GRAPH WITH A FEW STRONG LINKS 

mi, = tanh (= tanh? a) : 
vee 

There are some differences when derivating the messages through a strong or weak 

link. on the other hand. The whole derivations can be found in Appendix A. Moreover 

derivation on the numerator and the denominator are very similar only the numerator 

is studied in detail here. 

Let us define S(j) the subset of indices such as j,1 € S() denotes a strong b 

component. In the same way, ;,! € W(j.) denotes a weak component. 

The numerator is first split into two sums: 

rrare I ae + rgb s) 
a#R 

1+ mb 1+ mi,bj 
= Ss) alll (ee ee Gree Il (4e*). 

bg '#RIES(u) LAk,LEW (u) 

In both case, the sum over b, cannot be avoided, so we’ll focus on the quantity 

P(y,|b). We want to find it independent on the value of by». This derivation is not 

the same if the message is sent through a strong or a weak link because if bj, is strong 

then it can be moved out of the sum over by. 

4.2.2 Derivation if k is strongly connected 

¥ this case, we look at the quantity A, = = Fe Ub 1 Sipe Wie 1 8436;, where 

W Se 1 uj; is considered as a constant. Using the central limit theorem, A, obeys 

a Gaussian distribution. The mean is (d4), = Tk Li swmy + Ww Djs 8,j6j and the 

variance (1— Qt) where Qt = (1/K) Cxewyy(mj). The effect of the strong 6; is finally 

a shift of the mean. 

Then using the marginalisation over A,,, 

P(ilb) = 2 dd,P(A,)P(upldy) 
Sie E i: (uy — (Ay)? 

fon) ace 2(o§ +1-Q4)]’ 

which doesn’t depend on b,, anymore. 

And finally using the property Ube Thew(w) (#3*) = 1 the final message is: 

mt by 

Lp, %P Yulb) Mresquy (=) 
l+mt br 

Lo, Pub) Mes) (*) 
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4.2.3 Derivation if k is weakly connected 

The differences with the strongly connected case is that the macroscopic property of 

ie Tk ae Suid + Wi wa s,jb; is studied instead of A,,. The term containing 

by is removed. 

Once again, this quantity obeys a Gaussian distribution whose mean is ea) = 
M 

Tk Dige Sut Mut Fy Dj s,m; and the variance (1—Q') where Qt = (1/K) dtm)? 

The detailed derivation can be found in Appendix A, and the following result is found 

in the same way as the previous part: 

1+mt, bj 

_ Xp, 4-8 Thesw (=#*) 

  

my = 

He 1+m* by 
Xp, BIhesw) (=#*) 

where 
oA [yu — (Axx) Suk 

0 +1-QVK 
and 5 

B= 1 bo [- Wu (Bu)) i 
Qn (o? +1 — Qt) 2(o§ +1- Q') 

4.3. Experiments 

To validate the results obtained so far, numerical experiments were performed on sys- 

tems of size N = 1000 and K = 750. The number of strong bits was set to J = 3. All 

the graphs and vectors were randomly generated, and as in the sparse case, very short 

cycles were avoided in the strong links generation. 

The simulations results are shown on Figures 4.2 and 4.3. Each point represents 

the average error on 500 trials and an error bar represents the variance obtained from 

the simulations results. As it may be done in other papers, error is not represented as 

the overlap between the original vector and the decoded one, but as a percentage of 

wrong bits on the whole signal. 

On Figure 4.2 this number of errors was first recorded, while increasing the level 

of noise. It was set gradually increased and we can see that the true signal is almost 

perfectly retrieved until a Gaussian noise with variance 0.25 . 

And finally, we can see the convergence of the algorithm through iterations. This 

is what Figure 4.3 shows. We can notice that the convergence is slower than in the 

CDMA case but it still converges until o = 0.3. 

As in the previous problems, the number of errors was recorded as a function of o. 

But the effect of o is not the same as in the previous case, because the signal is made 

of 2 sums in the toy problem whereas there is only one in CDMA decoding. Moreover, 

the normalisation is not exactly the same (1//K and 1/VJ instead of 1/V/N). So in 
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order to compare the efficiency of the algorithms, it is better to compare the number of 

errors using the signal to noise ratio (SNR) which is defined at the end of the previous 

chapter. 
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Figure 4.2: Experiment carried out with a dense graph and a few strong links. The 

number of weak links for each y,, was set to 747 and there was 3 strong links. 
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Figure 4.3: The number of wrong estimated bits where recorded after each iteration. 

The algorithm converges very slowly with a high level of noise 
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Chapter 5 

Conclusion 

In the first part of the project, we have seen that message passing techniques are a useful 

tools for inference. In this approach, messages containing probabilistic information 

about nodes in the graph are being passed from node to node. Some equations were 

devised from which an algorithm can be deduced to solve iteratively our problems 

modelled by a graph. This algorithm is known as “belief propagation”. 

However, the number of calculations on each iteration scales exponentially as the 

number of neighbours of a node. This is why the first application of belief propagation 

has been done on a sparse graph. Such a sparse graph is found in the error correction 

theory, and more precisely in Low Density Parity Check Codes. The efficiency of the 

algorithm has been shown through experiments were the estimated vector matches the 

true one until a flip probability of 0.15 . Moreover, a look at the iterations shows 

that the belief propagation algorithm converges quickly and is thus computationally 

efficient. 

Due to the exponential complexity of the algorithm, belief propagation to a dense 

graph couldn’t be applied in a reasonable amount of time. Moreover, a dense graph 

is made of a lot of short cycles, which is a problem as regards algorithm convergence. 

However, it has been recently performed successfully on a dense graph modelling a 

decoding problem used in the CDMA protocol. Contrary to the previous error decoding 

problem, a Gaussian channel is used instead of a binary channel during transmission. 

The reason why there are so many computations to do in the message, is the 

marginalisation over the set of neighbours linked to the node which is about 750. This 

means a sum of 27° terms. But that big number of nodes allows one to study the 

set globally, looking for some macroscopic properties. This property was found to 

be independent of the particular values of the nodes, it was just a function of the 

incoming messages. The marginalisation over the set of node was not needed anymore 

and update rules were simplified. The final rules were finally surprisingly simple to 

program, so the results were very close to those in the corresponding article. 

The final task of the project was to mix both approaches. A toy problem wad 
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considered, based on the CDMA decoding problem. The signal was made of two sums: 

one made of a lot of weakly connected terms (about 750), and the other one of only 

a few strongly connected. Both terms were “normalised” by the squared root of the 

number of term. Both sum contribution were of a similar order. That “normalising” 

factor also means that the terms in the big sum had less effects that the one in the 

sum of only a few terms. The first were said weak, and the other strong. 

The derivation of update rules uses both previous approaches, since the marginali- 

sation over the strong components couldn’t be avoided whereas the one over the weak 

links was simplified looking at the macroscopic property of the nodes. Finally an algo- 

rithm was devised, where the messages through strong links were not the same as the 

messages through weak links. Due to the strong links, the update rules could not have 

been simplified as much as the CDMA detection rules. The experiments show that the 

algorithm converges quite quickly for a low level of noise and converges slower as the 

noise is increased. It could be compared to the convergence in a dense graph, it seems 

slower due to the strong links. 

Finally, some future work can be done on error correcting codes. Indeed, it is 

known that some correlation exists between nodes which are not directly linked. This 

motivates the view that nodes which participates in the parity check are strongly 

connected, whereas all others are weakly connected. Unfortunately, update rules could 

not be easily devised in this case. Besides the new decoding algorithm devised in this 

project considers a real signal transmitted to a Gaussian channel. The updates rules 

also use the fact that the infered values are bits, so using the update rules to another 

problem may need some adaptation. 
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Appendix A 

Toy Problem: Message Derivation 

In this chapter, two cases need to be examinated when calculating m,,. If k is in the 

strongly connected local neighbourhood then the equations will be build as in the case 

of the sparse graph, whereas the approximations used in the CDMA problem are used 

to deal with the case where k is in the weakly connected group. 

A.1 Strong case: k is in the strongly connected 

local neighbourhood 

The messages 7% and m,, can be decomposed by writing two sums, one over the 

strongly connected bits, and the other over the weakly connected bits. 

1+mt, by 
fae Xp, Ub, «PYulb) Mize (=H) 

hd L4mt by 
Db, Lbgt (yu\b) Tien es 

mix = tanh (x tanh! ats) ; 
vey 

Considering A, = JR ee 1 Sub + a Be 1 $,j0;, and using the central limit theo- 

rem: A,, obeys a Gaussian distribution NV ((a%), s(1- Qi); where 

(At = TED DY sutty + ar S 84505 (A.1) 

and 

Qi, = (1/K) Lm). (A.2) 
7 
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APPENDIX A. TOY PROBLEM: MESSAGE DERIVATION 

which is well approximated by 

=(/K) ims (A.3) 
k 

Back to the probability 

1 1 
P(y,|b) = exp | aay Ya — An) 3 2 206 2105 

as we know the probability density function of A,,, we can use the following formula: 

P(yplb) = f dd,P(O,)P(UnlAn)» 
which leads to: 

P(ylb) = [an pea (Yn — Any? 
205 | In(1 — Qt)? 

SS exp 5 (Au) | 

ms ae 2(a +1 — Q') 

Back to the messages, we have now approximated the first probability P(y,|b) and 

oo | Ser | 

it doesn’t depend on the by. This is important because now it can be moved out of the 

sum over the weakly connected bits. However there is still another term in that sum 
o 

which would lead to many calculations if not modified : Trew (u) see . This term 

is quite simple to remove because we can also write it as : 

Il > (=) ube 

leW(u) Buy 

Lm bt by 14+mt_b 

oe Ss, beP(yslb) Therceswo (“5 oe) oo Thew (wu) ( = yt) (A4) 
Mik = Let be imi bi 3 

Lop, PYulb) Mize tes (=F =") Yo, Tiew ( a) 
1+m¢ by 

Ep, beP(Unlb) Thesun (“F*) 
Lo, P(y,\b) Thesquy (=) 

  

(A.5) 

A.2 Weak case : k is weakly connected 

One of the main difference with the first case, is that we don’t consider A,,. Instead 

we remove one term, the one depending on bj as it was done with the CDMA signal. 

We now consider A, = Tk Sele Sabi + W a $,36;, and using the central 

limit theorem: A,, obeys a Gaussian distribution NV ((At‘,.) ,(1— Qi) }, where i uk) ul 

pity ie oe (ie), = Tt sums + Tau (A.6) 
ek 
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and 

Qh = (1/5) Lm) (A-7) 

The conditional probability which was written previously as 

Ply) = eg exp [= 325 (v4 — O4)"| 

is now written using A, 

1 1 2 
P(y,|b) = exp [-si3 (up a Sunbe/ VK) ‘ 

2 2705 

  

And since syxbp/ VN is small for large N, we expand the conditional probability as 

  

2 
P(yilb) ~ 1 = exp [-™ mt + Syke (Yue a 

  

2706 VKo§ 

1 (Yu = oat] ( Suk (Yu a Auk) ) 
S exp |— ee be} 5 

2x08 | 208 VK" 
The fact, that it now depends linearly on by is very important. That is why lot of 

terms in the sum will be removed due to two properties. The first one is that the sum 

over by of a quantity which doesn’t depend on it is 0, and the other is that the product 

byby = 1. 

As we know the probability density function of A, is 

P(uslb) = f duc P(Aus)PUplAyn)- 
Then it is expanded to provide 

: 
Plyslb) = f dx sige [-3"] (2+ sage aus)s,) 

1 (Queue)? 
Vam-a’) XP 2-9) |? 

So the final result is 

P(yjlb) = f 4 ee cuca 1 ee [- (Wu = (Aut))? 
[o3 +1-QY VK} \/on(o2 +1- Q4) 2(o§ +1-Q!) 

Back to the message with : 

= Ya = (Aue) Se 
~ (8 +1-Q4) VK 
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and 

then : 

TOY PROBLEM: MESSAGE DERIVATION 

i cL. (Yu = (Aux)? 

‘ oe 

l+mt bo 
Lp, Pe P(Yulb) Thesuw ( 2 ) 
mete Ween os oe ty a 
Lp, Pulb) Thesqu) ( Ts ") 

14+mt by 
Xp, 4-8 Mheswy (=#*) 

1+mt bi 55, Baw (4) 

att Tak 
  

(A8) 

(A.9) 

(A.10) 

If we evaluate the complexity of the found formula, we can see that there is still a 

sum over bg, as in the sparse case. 
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