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Thesis Summary

Message passing techniques in general and belief propagation in particular are highly
useful tools for inference, especially when the problem can be represented by a sparse
graph. They have been used to solve a range of computational problems such as
decoding, graph colouring, satisfiability problems etc.

In this approach, messages containing probabilistic information about nodes in the
graph are being passed from node (variable) to node to facilitate the calculation of
joint and conditional probabilities of the variables, which are then used for inferring
their most likely value. One of the great advantages of message passing techniques on
sparse graphs is that they are distributed and scale well with the system size (i.e., the
computational effort involved grows linearly with the system size).

Extending the problem to densely connected systems where the number of mes-
sages is very high has been recently suggested. This approach is based on looking at
macroscopic properties of sums of messages and modifying them locally (e.g., they can
be represented by a Gaussian distribution of some mean and variance which could be
modified locally).

The task in the project is to devise an algorithm for carrying out updates in a case
where sparse strong links exist in conjunction with dense weak links, using features of

both algorithms.
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Chapter 1

Inference and Belief Propagation

1.1 Inference, the Bayesian approach

Inference is the process of predicting an observation using some facts that are already
known. For example, if you see through the window that it’s raining, it’s quite natural
to infer that the sky is grey. The process of inference was already studied by the
Greeks philosophers who defined inference rules to help people to prove a deduction.
The method called “syllogism” is a set of three inferences, the most famous of which

18:

All men are mortal
Socrates is a man
Therefore Socrates is mortal.

This kind of reasoning was later formally enunciated by logicians, who created

quantifiers like:

the negation of X : —X
forall X: VX
it exists an X : JX

Some softwares like the programming language Prolog has been created to automati-
cally find if a given fact can be inferred provided a set of propositions and rules.
Some scientists prefer to follow another principled way for probabilistic inference
which is called the Bayesian framework [1], [2]. It uses rules about probabilities to
find the best result, prediction or explanation to a problem. According to them the
probability is identified as the belief of a proposition. When this proposition is certainly
true, its probability is 1, and on the contrary, when it is certainly false, the proposition
is assigned the probability 0. The way to find the best answer to a problem is to select
the one which has the highest probability among all possible answers. The name of
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that field of mathematics was given by a central rule called the Bayes theorem which
enables one to define the probability of an event A given an event B as a function of

the probability of B given A:

Theorem 1.1.1 Bayes Rule

P(A|B) = %’3@

1.2 Graph representation and message passing

Message passing techniques are used to solve problems involving variables which are
linked by a set of constraints. The goal of such problems is to find the values of variables
compatible with all constraints and possibly with some probabilistic bias. If all of them
cannot be respected, the number of violated constraints tries to be minimised. This
can also be referred to as inferring the most probable value of the set of variables.

1.2.1 Graph representation

Because there could be many dependencies between a given set of events, it could be
a good idea to summarise them by a graph. This representation simplifies the proba-
bilistic dependencies and makes them easy to group and identify. Each node represents
a variable, and a link is created between the variables linked by a constraint (Figure
1.1). That representation by a graph is very useful when the number of dependencies

O8O

Figure 1.1: A graphical representation of a probabilistic dependence between two vari-
ables.

is quite high.

1.2.2 Intuitive approach

The boolean satisfiability problem (SAT) is a decision problem considered in complexity
theory. The question is: given the expression, is there some assignment of TRUE and
FALSE values to the variables that will make the entire expression true? For example

the following expression can be considered:
E = (by or bz or —by) and (—bs or bs or by),

where E has two clauses and four literals (b, by, bs, bs) and { b;=TRUE, b,=FALSE,
by=TRUE, b,=FALSE } is one solution of the problem. Figure 1.2 shows how to model
this problem by a graph.
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Figure 1.2: SAT problem modelled by a graph where circles represent the variables
and edges a constraint between two variables

Once the problem has been modelled by a graph, a message passing technique may
be used for infering the most probable solution, consisting in exchanging messages of
probabilistic nature along the links. The problems described above are NP-complete
[3] and the algorithms to find a solution are generally computationaly very expen-
sive. Message passing provides a solution by looking at constraints locally and tries to
converges through iterations.

Message can be considered as a degree of belief given by all the nodes linked by
a constraint. The neighbours of a node send to it the probability that it can take a
value. An intuitive explanation is given below with the satisfiability problem.

Let us assume that each node were initialised with a random value {b;=FALSE,
b,=FALSE, b3=TRUE, by=TRUE }. Then we can focus on the constraint (b; or —b; or —by).
Given the values of by and b4, which value should b, take to satisfy the constraint (Fig-
ure 1.3)7 the resulting constraint on b, will be message passed through the edge.

Figure 1.3: Message passing in the SAT problem.

By iterating these messages, the values of variables progressively change to satisfy
the constraints. The next section shows explicitly the expression of the messages from
which an iterative algorithm can be devised.

10
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1.3 Message passing in a bipartite graph

In what follows, we’ll not devise an algorithm for general graphs, but for a subset called
bipartite graph because our problems will be modelled using such graphs. A bipartite
graph is made of two sets of nodes {z}x=1.x and {y,},=1.~ and edges link two nodes
of the different sets. That is to say that links exists only between zi, and y,. Let us
first define the notation used in the case of a bipartite graph. We denote the set of
linked nodes by K (i) = {k : z is linked to y,} and M(k) = {4 : y, is linked to 4}

Figure 1.4: A bipartite graph.

Two messages will be passed through edges: one from y, to z; and another one
in the other direction. Let us define r. = P(yu|zr, {¥usn}) and qux = P(zx[{tsn})-
Then we’ll pass messages using the following formulae:

rae = Y,  Pllssda}) [T (1.1)
Tk L EK (1) l#k
gk = euPlrel 1. Ta (1.2)

veEM (k) v

Looking at 7, one can notice that the message sent from y, to x; and depends on
the messages that the others neighbours of y, send to it (Figure 1.5).

Figure 1.5: Message in the bipartite graph.

Message passing is used in problems such as K-Sat or graph colouring, but the
issues I've tackled in the projects are error correction and CDMA multiuser detection.
The first one is an application on a sparse graph whereas the second is an application
on a dense graph. Finally a toy problem has been addressed in order to mix both

approaches.

11
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Besides, the belief propagation algorithm is exact only when the associated graph
is a tree, that is to say it has no cycles [1]. But in lots of application there are cycles,
so we'll just apply the algorithm, hoping that it will converge to the right solution.
Some studies of the convergence in graphs with loops show that only short cycles are

practically a problem.

12



Chapter 2

Belief Propagation (BP) in a Sparse
Graph

The first case where the algorithm will be applied is a sparse graph. A sparse graph is
a graph where there are a few links between nodes (for example 3 or 4 links by node
where there are 1000 nodes). We'll see why this kind of graph has been chosen by
looking at the complexity of the algorithm.

The message 7 is defined as 3, iex () P(Yul@k, {21}) Tigr G- If we denote K
the number of neighbours, then this message is a sum of 2! terms. Looking at inside
the sum, the number of terms of the product is K — 1. So, to compute one term,
K2K-1 gperations are needed. Moreover, there are NK messages to compute for each
iteration.

The result is that the number of calculations highly depends on the number of
neighbours. And this is exactly why belief propagation were first applied to sparse
graphs. In this chapter we’ll be interested in a problem that can be modelled with this
type of graph, it is the well known problem referred to as decoding in Low Density
Parity Check (LDPC) error correcting codes.

2.1 Noisy channel

In information theory, many models of communication may be considered, and the one
we are interested in, in this chapter, is a communication through a channel known as
Binary Symmetric Channel (BSC). The word Binary means that bits (0 or 1) are sent.
During transmission, some noise will corrupt the message. Assume that we want to
send a value 0, the probability that this is (correctly) received is p and the probability
that an incorrect value (1) is (incorrectly) received is 1 — p. This channel is called
Symmetric because the probability of a 1 becoming a 0 and of a 0 becoming a 1 are
assumed to be the same as represented in Figure 2.1.

13
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0 p 0
4
I-p
Sent Received
I-p
K N
1 1

Figure 2.1: Representation of a Binary Symmetric Channel (BSC).

Another commonly used model which will be used later is the Gaussian Channel,
which is also referred to as Additive White Gaussian Noise (AWGN) channel. In this
case, real numbers are transmitted instead of bits. Then during the transmission some
noise n is added, where n is a zero normally distributed random variable with some
variance o. The channel becomes noisier as the value of o grows.

2.2 Error correcting codes

Error correction and error detection are areas of information theory which have great
importance. They enable people who are transmitting data, to check them in order to
ensure that the message has not been corrupted during transmission. Error detection
only determines if data were corrupted during transmission, so that they need to be
re-sent. Error correction is more powerful since it allows to retrieve the original data
from the corrupted message. It is used when there is a need for reliable data, typically
during transmission through noisy media or for data storage on noisy devices.

In order to correct errors, data need to be added to the sent message. An obvi-
ous way to correct errors is to repeat the message several times and then choose the
value according to the majority. The process whereby data is added to provide better
protection against corruption is called structural redundancy. However, detecting and
correcting errors can be done with far less redundant data than that of basic repeti-
tion codes. A very popular method is called the Reed-Solomon codes [4] which are
used in Compact Disc for example. Turbo codes [5] are another class of powerful error
correction codes that were introduced in 1993.

2.3 Low-density parity check codes

In this chapter we're interested in a method known as low density parity-check (LDPC)
error correction. LDPC codes were invented by Robert Gallager [6] in his PhD thesis.
The principle is as follows.

14
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First, a generator matrix G is used to encode the signal s. The errors occurring
during the transmission can be viewed as a noise vector n corrupting the transmission
giving rise to a received vector 7 such that 7 = G7s + n (mod 2). In decoding,
one uses a matrix H known as parity check matrix, that has the property HG” (mod
2) = 0. For Gallager codes, the parity-check matrix is a matrix built as a concatenation
H = [C,|C,] of two sparse matrices, C, being an invertible square matrix. On the
other hand GT = [I|C5'C] (mod 2) , where I is the identity matrix.

Using the parity-check matrix, we can write: Hr = H (GTS +n) = Hn. With
z = Hr (called the syndrome vector), the decoding problem is summarised by the
following equation: z = Hn (mod 2).

The syndrome vector z is computed from the received data and n is the vector we
want to find. Then knowing the noise vector and the received one, it is easy to retrieve
the original signal.

2.4 Messages

Belief propagation is an iterative algorithm based on the following recursive messages
[7], [8]:

o (zulnka {Zu?%u}) = Z P(Z#ln)gcpt(ni[{zv¢#})s (2.1)
P! (nil{zpu}) = afuP(m) [1 P (2lmn, {2ome}) s (2.2)
vEL

where, as defined previously, n describes a noise vector, z the syndrome vector and
o, a normalisation constant.

If we look at the first message, the number of terms in the sum is O(25-!) with K
the size of n ; the product has K — 1 terms. That means that the complexity of one
message is O(K2%) which is very high.

But here we're doing an approximation: the only n components taken into account
are the ones selected by the corresponding row of the matrix H for any given syndrome
element. This matrix is sparse, that is to say that it is mostly filled with 0, which
reduces consistently the complexity of the calculations . It depends on the code used,
but usually, the size of n is 4 or 5. So the complexity of computing messages is finally
not high.

The problem can be modelled by a graph, where a link between ny and z, is created
each time there is a 1 in the matrix H. It gives the representation shown in Figure
2.2,

Belief Propagation can be viewed as an algorithm passing messages between the
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Figure 2.2: Representation of the code by a bipartite graph.

two kinds of nodes through edges:

0

I = pred (zulnk = 0, {zuu})
r}‘k = P (v dne =1 1500
g = P'(ne=0|{zo24})
g = PO =1Ham))

2.5 Improvement

(2.5)
(2.6)

There is no need to pass 4 messages through nodes because all the information is

contained in the difference between ¢°, ¢* and 7° and r! respectively.

pass the following messages:

6?"“]; = T'gk — T'Jl‘k
Oque = qﬁk_ql::,k‘
In (8] the messages are finally expressed as:
orye = (=1)™ Héqm
[
6‘«1{;.‘: o= qf.-,k o q:‘k
using:
rgk = (1+dru)/2
?"Lk = (1—3ar.e)/2
ng = auP(n =0) H '*'"Bk
veEM (k) v#u
Q:;k = auP(m=1) H ?ﬁlzk-
veM (k) v#u

We therefore

(2.7)
(2.8)

(2.9)

(2.10)

(2.11)
(2.12)
(2.13)

(2.14)

The initial values of ¢, and ‘I;I;k are set according to the flip probability which is

the probability of having ny = 1.

16
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2.6 Experiments

The first task to do some experiments is to generate sparse graphs. K = 3 parity
checks has been used and H has been set to a (750,1000) matrix. That means that
each z, is linked to 3 ny, and each ny to 4 z,.

In order to study the efficiency of the algorithm, experiments have been carried
out: 10 graphs were generated, and for each of them, 50 noise vectors were created.
The algorithm was applied to each of the graphs and noise vectors and the number of
errors between the estimated noise vector and the found one was recorded. The flip
probability has been increased and recorded the percentage of incorrect bits and the
results are shown in Figure 2.3.

The efficiency of decoding a code is measured by its dynamical transition which is
the limit where the code achieves excellent results. Considering the chosen values, the
transition currently achieved by error correcting codes is about 0.16 where the Shannon
Limit is 0.21. My experiments gives similar results as shown in Figure 2.3.

1.02¢

0981

0861

overlap

0.941

0.92

09r

0.88 i L 1 L 1 J
0.11 0.12 0.13 0.14 0.15 0.16 017

flip probability

Figure 2.3: Percentage of correctly decoded noise components found in the estimated
noise vector. The size of the noise vector is 1000, and the number of parity-checks is
3. The dynamical transition is a bit below what is expected (flip probability of 0.15
instead of 0.16).

The second part of the experiment was to record the evolution of the system through
iterations. The results are shown in Figure 2.4. The graph settings are the same as
above, and as expected, the algorithm converges quite fast for a small amount of noise.
It finishes when all the constraints due to the parity-check matrix are respected. But
when the flip probability becomes high, a maximum number of iterations has been

17
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fixed. This maximum of iterations directly influences the results of the limit where we
can consider that the algorithm converges or not, i.e. the dynamical transition. For
example, if the maximum number of iterations had been set to 10, then the algorithm
doesn’t allways converges from a flip probability of 0.13 .

Error rate through iterations

L ——— flip probability=0.12
L ——— flip probability=0.13
: —— flip probability=0.14
——— flip probability=0.15
0.12 flip probability=0.16
0.1
@
© 008} |
: | |
006}
B
—~
004}
0.02¢ .
| | - |
| : .
o} R .
—‘0.02 i 'S A s e J
0 5 10 15 20 25 30

iterations

Figure 2.4: Percentage of errors found between the true noise vector, and the estimated
one after each iteration. We can see that after 30 iterations, when the signal is too
noisy, the algorithm doesn’t converge.

When the update rules are known, the algorithm to update the messages is not
really difficult to devise. However there are two points to take care of. The first one is
the initial state of the system, we have seen that it is a logical choice to start by setting
the value of P* (ny = 1|{z,2,}) to the flip probability used to generate the noise vector.
The other aspect of the programming task is to choose how to carry out the updates on
messages. There are basically two approaches. The first one is the sequential update
where, when a message is computed, it is used immediately when updating the others.
And the second approach is the simultaneous update where all the messages updates
are computed, and at the end of the iteration, they are all updated in the same time.
There wasn’t big differences, so the simultaneous update, which was the first tried, was
kept.

18



Chapter 3

BP in Dense Graphs

3.1 CDMA

In the telecommunication area, people often face the problem to send different signals
at the same time. This creates the problem of interferences between signals and the
need for a method that enables one to avoid such interference. Several methods have
been devised to that effect. The first of the multiple access technique used today is
the Frequency Division Multiple Access (FDMA). In this scheme, the signals are sent
on different frequencies to avoid interference. Message retrieval is done by “listening”
at the desired frequency. This technique is used with radios of wide spectrum. A new
problem raises when several people need to communicate through the same frequency
channel.

That’s why a second technique, Time Division Multiple Access (TDMA) may be
used. It allows users to share the same frequency by dividing the time in slots. The
users transmit in rapid succession their data, one after each other, using their own time
slot (Figure 3.1). Thus, this allows multiple users to share the same frequency band.
To get the data, the receiver need to synchronise their transmission with the time slots.

1% user timeslot

2™ user timeslot
4 »

AT

time

Figure 3.1: TDMA: Users send their data one after each other.

Used in the GSM, PDC and iDEN digital cellular standards, among others, TDMA
is also used extensively in satellite systems and local area networks. But a drawback of

19
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TDMA systems is that they create interference at frequencies which are directly linked
to the time slot length. This is the irritating buzz which can sometimes be heard if a
GSM phone is left next to a radio. Another disadvantage is that “dead time” between
time slots limits the potential bandwidth of a TDMA channel. That’s why the next
mobile phone generation will use a technique called CDMA for Code Division Multiple
Access. This is the scheme used in the UMTS, one of the third-generation mobile
phone technologies.

CDMA can be referred to as the use of spreading codes by transmitters to share the
same frequency channel. The transmitted data are first multiplied by a user spreading
code and then summed leading in a single signal containing all data, as will be explained
in details later.

The term CDMA is also widely used to refer to a family of specific implementations
of the CDMA technique pioneered by Qualcomm for use in digital cellular telephony.

3.2 CDMA in detail

This chapter is based on the work of Kabashima who studied this dense case in [9)].
We'll look at how the users bits are mixed, using spreading codes. A CDMA signal is

expressed as

1 K
ﬁ Zspkbka (31)
k=1

where 1 € {1,2,...,N} and k € {1,2,...,K} are indices for samples and users,
respectively. That is to say that K users try to send their bit by, using their spreading
code sequence s,k, and the resulting signal length is N > K.

We assume that the signal is transmitted through a Gaussian Channel, thus some
Gaussian noise is added during transmission, resulting in the following received signal:

\/— z Sukbr + oony, (3.2)

where n,, is a Gaussian white noise component with zero mean and unit variance and oo
the standard deviation of Additive White Gaussian Noise (AWGN). The transmission
process is summarised in Figure 3.2. Using these normalisations, the signal to noise
ratio is defined as SNR = (3/(20%) where § = K/N is referred to as the system load.
In the following, we assume a situation where both of N and K are large keeping [
finite.

The decoding problem can be modelled by a graph, where each by is linked to all
Yy if be. So the graph is dense and we cannot apply the previous belief propagation
algorithm because there are too many neighbours, and also very short cycles as shown
in Figure 3.3.

20
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Figure 3.2: CDMA: User messages are spread on modulated transmission.
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Figure 3.3: Graph modelling the CDMA decoding problem.

3.3 Messages

Also here, belief propagation can be defined as an algorithm passing messages between
the two kinds of nodes through edges as

P (yulbk, {ysnd) = Y P(yuld) [T P (0ul{tnsul), (3.3)
bisk l#k
Pt (bk]{yu#,u}) = a:.lk l;él Pt (yulbka {yo';év}) ’ (34)
vFEp

where t = 1,2, ... is an index for counting the number of updates. There is also a con-
stant aj,, due to the constraints 35, _4, Pt (yulbr, {yuzu}) = 1and ¥y, —iq P (bel{yzu}) =
1, respectively. The marginalised posterior at tth update is evaluated from P* (y,|bx, {yv2u})
as P'(brly) = ax l'[ﬁ‘;l P (y,|bk, {Yusu}), where a4 is again a normalisation constant.

21
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As by is a binary variable, one can parameterise the above functions as

P (yplbk: {yu;ép}) & (1 s Tﬁ;kbk)/z
P (ocl{yuru}) = 1+ T”Lkbk)/2
and  Pibely) = (1+miby)/2

without loss of generality, which simplifies the expressions to

m! by
> bk P(yp|b) [ier (l%L—)

ML = (3.5)
k 14+mt b\
Tb P(yulb) Tk (_'_2&)
mi, = tanh (Z tanh ™ Thik) . (3.6)
vFEp

Employing these variables, the approximated posterior average of by at tth update can
N

=

be computed as mj, = tanh (Z ; tanh ™ ﬁsz) After convergence, the value of by is 1

if m{ > 0 and —1 if mj, < 0.

3.4 Complexity

To calculate 7i,, a total of O(K2X) computations are required. It grows so fast that
it becomes quickly intractable. That is the reason why some approximations need to
be done. The first approximation used in the previous chapter which was to consider
only a few neighbours, cannot be used here. But there is another way to approximate
the big sum due to its large number of weakly correlated terms.

3.5 Derivation
The noise model leads to the following expression:

1 1 :
Pyb=————exp[——y—AI ], 37
) = e |33 = 8 (37)

where A, = v’%ﬁ Yot SukDk.
Since s,kbi/ V/N is small for large N, we expand this conditional probability as

1 exp [_ (yﬂ- = Ayk)2 ot S#k(y,u. —p Ap,k) bkl

12

P(y,|b)

2mod 20¢ VNa§
1 (y.u N Apk)zl ( S,uk(y.u = Auk) )
o~ exp |——~———| |1+ —=——b |, 3.8
\/2?703 [ 203 VNUg ; 9.8)

where Aux = Y1k Subi/ V/N. As the spreading codes are generated independently, s,
and b would be uncorrelated when b, is generated from P'(bi|{yu}) = (1+mi;bi)/2.
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CHAPTER 3. BP IN DENSE GRAPHS

3.5.1 Macroscopic property

In the previous algorithm, each neighbour was considered in order to calculate the
messages. This could be referred to as looking at microscopic properties of the node.
But, because there are many considered nodes in this dense case, we can use some
quantity describing the whole set. This macroscopic property of the neighbours is the
sum found in P(y,|b) which is Ak = Y1k Subi/ V/N. This is represented on Figure
3.4 by an area linking b components to y,,.

L e

Figure 3.4: The messages use macroscopic properties from the neighbours.

The central limit theorem implies that A, obeys a normal distribution whose mean

is < Lk> and whose variance can be written G(1 — Q}).
i

(ALQP =3 sumy/VN and Q% = (1/K) Y (mly)?
Ik I#k
. Those two quantities don’t depend explicitly on b anymore but only on messages
coming from neighbours.
Now that we know the distribution of Ak, we can use the following property

P(ulb) = [ d2uP(A) P(Wly),

which finally doesn’t depend at all on the particular components of b. This is a great
improvement since it is calculated only once for each message. Further calculations
in [9] leads to final formulae which are much simpler and the computational cost has
been reduced to O(K) per pair (uk) which implies a total of O(NK?) computations
per update. Without optimisations it would have been O(N2¥ K) per update.

3.6 Experiments

The algorithm has been implemented and then used with increasing values of g in order
to see how the algorithm converges. The number of users has been set to K = 500, and
the number of message samples is N = 1000. So the graphic shows how the number of
errors evolves when the noise grows. The following graphs are made by averaging 500

experiments with the same level of noise.
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CHAPTER 3. BP IN DENSE GRAPHS

OF = 0.35
05 =0.29
Of = 0.25
Gg =022/
Of =0.20

error rate

iterations

Figure 3.5: Experiment on a dense graph. It shows the number of errors between the
true vector and the estimated one after each iteration. The divergence threshold is
about o3 = 0.25

Figure 3.5 shows the influence of noise parameter o on algorithm convergence.
Each points represents the simulation average after each iteration, and error bars are
too small to be viewed. We can see that the algorithm converges to the right solution
until 02 = 0.22 and starts to diverge after. After each iteration, the posterior proba-
bility was evaluated and recorded. It shows that the convergence is very fast; after 4
or 5 iterations the number of errors doesn’t change a lot.

Another quantity is commonly used instead of o is called the signal to noise ratio
defined as SNR = f3/(20%) with 8 = K/N.

24



Chapter 4

BP in a Dense Graph with a Few
Strong Links

The main purpose of this chapter is to mix the two previous algorithms in order to use
belief propagation in dense graphs where there are still a few strong links. A practical
problem is not tackled here but instead we've created a toy model to investigate the
efficiency of the algorithm. This is a first step towards its application to a real problem.

4.1 A toy problem

The issue addressed in the toy problem is very similar to the CDMA decoding problem.
K bits are modulated using spreading coefficients and the resulting signal of size N is
sent through a Gaussian channel. The components y,, p € {1..N} of the received

signal can be written:

Z Sukbi; + \/— Z Subj + o0y, (4.1)

The number of signal bits N is a quite big number, and K scales as O(NN) whereas
J scales as O(1). The factors V’F and —= 75 are very important since they measure the
influence of a b component on the final 51gnal.

Looking at # ZkK=1 sukbk, we notice that each by does not contribute a lot (its
participation scales as O(\—}j-;)), whereas each b; is much more important since its
contribution scales as O(1). Links between by and y, are termed weak, whereas a link
between b; and y,, are termed as strong. Figure 4.1 shows the two groups of nodes.

The other components of the signal are the spreading code s,; € {—1,1} which
is generated such as P(s, = +1) = P(su = —1) = 1/2, n, which is a Gaussian
white noise sample with zero mean and unit variance and o the standard deviation of
AWGN.
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CHAPTER 4. BP IN A DENSE GRAPH WITH A FEW STRONG LINKS

(bj ] strong nodes
\ F

i

Figure 4.1: Representation of the toy problem by a graph: there are a lot of weak links,
and only a few strong.

4.2 Messages

4.2.1 Messages overview

Using the same notation as in the CDMA decoding problem, we are interested in

computing the following message for each link:

14+mt b
o TpbPle) M (<)
ik, T 1+mt b ’
b P(yulb) ik (“LZM)

where, due to the Gaussian noise added through the transmission,

P(ygzib) =

1 1 2
exp | == (yu — A )},
\/ 2mad { 208 3

and A, = 2= Yy sk + 75 Y71 Su;bj, which now includes the strong components.

The value A, has to be computed for each possible value of b. That’s why, in the
same way as what was done in the previous chapter, we’ll look at the macroscopic
properties of the incoming messages. If such general property can be found, there will
be no need to compute A, for each new set.

The problem is that it cannot be found with respect to A, because the strong b;s
are too influent. And for each new set of b components, the statistical properties of
A, may change completely. But, we can split the marginalisation over the whole set
into one sum over the strong one (b,) and another one over the weak one (b,,). This
enables us to consider that for each strong set, the quantity ﬁ Z};l s,ib; is fixed and
known.

The messages then become:

1+mt b

b, Lby, kP Yulb) Tz (__2L)

14+mt b ?
25 2by P(y,|b) TTisx (—2‘“‘!'1)

~ t+1
T
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CHAPTER 4. BP IN A DENSE GRAPH WITH A FEW STRONG LINKS

m!, = tanh (Z tanh™" ﬁzf,k) :

v

There are some differences when derivating the messages through a strong or weak
link. on the other hand. The whole derivations can be found in Appendix A. Moreover
derivation on the numerator and the denominator are very similar only the numerator
is studied in detail here.

Let us define S(iz) the subset of indices such as b;,l € S(u) denotes a strong b
component. In the same way, b, € W(u) denotes a weak component.

The numerator is first split into two sums:

S S ur I1 (”m b)

i#k

> H{u)(1+mlb£)zbk (wulb) TI ("—2'“‘—)

b, l#k.j€S 1#k LEW (1)
In both case. the sum over b, cannot be avoided, so we’ll focus on the quantity
P(y,|b). We want to find it independent on the value of b,,. This derivation is not
the same if the message is sent through a strong or a weak link because if by is strong

then it can be moved out of the sum over by,.

4.2.2 Derivation if k is strongly connected

In this case, we look at the quantity A, = 71— YK | sube + 71= Zj 1 Sujbj, where
f ):J 1 8,5b; is considered as a constant. Using the central limit theorem, A, obeys
a Gaussian distribution. The mean is <A:‘># = ﬁ > Sp,gmm + 73 ijl su;b; and the
variance (1 — Q') where Q' = (1/K) S rew () (mi)?. The effect of the strong b; is finally
a shift of the mean.

Then using the marginalisation over A,

P(yulb) = /dApP(A“)P(yAAp)
R ) |

\/27) \Jod +1 - Q! 2(0f +1-QY)
which doesn’t depend on b,, anymore.

And finally using the property Zb [iew () (}i”_‘ﬂ) = 1 the final message is:

1+m Eb'l

b, b P(Ypulb) Ties(u) (——‘*_)
b, Pyulb) Tles (m)

o
iy =
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CHAPTER 4. BP IN A DENSE GRAPH WITH A FEW STRONG LINKS

4.2.3 Derivation if k is weakly connected

The differences with the strongly connected case is that the macroscopic property of
Doy = # Z{i,#k Sub + \/_I”J' ijl $ujb; 1s studied instead of A,. The term containing
by is removed.

Once again, this quantity obeys a Gaussian distribution whose mean is <Aik> =

I

—\/1——}3 ik SuMiy+ 75 >7_, suyml,; and the variance (1—Q") where Q* = (1/K) Yi(mb)2.
The detailed derivation can be found in Appendix A, and the following result is found
in the same way as the previous part:

1+m! ib‘

b, A.Blies (_2‘“_)

Thttl
uk 1+m! b
Zba BTLies( (__2‘&)
where
o [yji o <Auk>] Sk
[08 +1 - QY] VK
and ,
F 1 exp l_ (yluz_ (A.uk))t ] s
\/2?r(a§+1—Q£) 2(0+1-Q")

4.3 Experiments

To validate the results obtained so far, numerical experiments were performed on sys-
tems of size N = 1000 and K = 750. The number of strong bits was set to J = 3. All
the graphs and vectors were randomly generated, and as in the sparse case, very short
cycles were avoided in the strong links generation.

The simulations results are shown on Figures 4.2 and 4.3. Each point represents
the average error on 500 trials and an error bar represents the variance obtained from
the simulations results. As it may be done in other papers, error is not represented as
the overlap between the original vector and the decoded one, but as a percentage of
wrong bits on the whole signal.

On Figure 4.2 this number of errors was first recorded, while increasing the level
of noise. It was set gradually increased and we can see that the true signal is almost
perfectly retrieved until a Gaussian noise with variance 0.25 .

And finally, we can see the convergence of the algorithm through iterations. This
is what Figure 4.3 shows. We can notice that the convergence is slower than in the
CDMA case but it still converges until o = 0.3.

As in the previous problems, the number of errors was recorded as a function of .
But the effect of o is not the same as in the previous case, because the signal is made
of 2 sums in the toy problem whereas there is only one in CDMA decoding. Moreover,

the normalisation is not exactly the same (1/v/K and 1/v/J instead of 1/ v/N). So in
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CHAPTER 4. BP IN A DENSE GRAPH WITH A FEW STRONG LINKS

order to compare the efficiency of the algorithms, it is better to compare the number of
errors using the signal to noise ratio (SNR) which is defined at the end of the previous
chapter.

0.081
0.07F
0.06

0.05F

0.041

error rate

0.031
0.02F

0.01 I'

_0‘01 1 | | 1 1 1 J
0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4

sigma

Figure 4.2: Experiment carried out with a dense graph and a few strong links. The
number of weak links for each y, was set to 747 and there was 3 strong links.
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0.3r
—&— sigma = 0.05
—&+— sigma = 0.10
0.25+ & sigma = 0.20
—+&— sigma = 0.30
— &+ sigma = 0.40
0.2 I
§ 015F
e
@
= 04r
0.05F
o — e £
-0.05 5 4 )
0 5 10 15

iterations

Figure 4.3: The number of wrong estimated bits where recorded after each iteration.
The algorithm converges very slowly with a high level of noise
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Chapter 5
Conclusion

In the first part of the project, we have seen that message passing techniques are a useful
tools for inference. In this approach, messages containing probabilistic information
about nodes in the graph are being passed from node to node. Some equations were
devised from which an algorithm can be deduced to solve iteratively our problems
modelled by a graph. This algorithm is known as “belief propagation”.

However, the number of calculations on each iteration scales exponentially as the
number of neighbours of a node. This is why the first application of belief propagation
has been done on a sparse graph. Such a sparse graph is found in the error correction
theory, and more precisely in Low Density Parity Check Codes. The efficiency of the
algorithm has been shown through experiments were the estimated vector matches the
true one until a flip probability of 0.15 . Moreover, a look at the iterations shows
that the belief propagation algorithm converges quickly and is thus computationally
efficient.

Due to the exponential complexity of the algorithm, belief propagation to a dense
graph couldn’t be applied in a reasonable amount of time. Moreover, a dense graph
is made of a lot of short cycles, which is a problem as regards algorithm convergence.
However, it has been recently performed successfully on a dense graph modelling a
decoding problem used in the CDMA protocol. Contrary to the previous error decoding
problem, a Gaussian channel is used instead of a binary channel during transmission.

The reason why there are so many computations to do in the message, is the
marginalisation over the set of neighbours linked to the node which is about 750. This
means a sum of 270 terms. But that big number of nodes allows one to study the
set globally, looking for some macroscopic properties. This property was found to
be independent of the particular values of the nodes, it was just a function of the
incoming messages. The marginalisation over the set of node was not needed anymore
and update rules were simplified. The final rules were finally surprisingly simple to
program, so the results were very close to those in the corresponding article.

The final task of the project was to mix both approaches. A toy problem wad
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CHAPTER 5. CONCLUSION

considered, based on the CDMA decoding problem. The signal was made of two sums:
one made of a lot of weakly connected terms (about 750), and the other one of only
a few strongly connected. Both terms were “normalised” by the squared root of the
number of term. Both sum contribution were of a similar order. That “normalising”
factor also means that the terms in the big sum had less effects that the one in the
sum of only a few terms. The first were said weak, and the other strong.

The derivation of update rules uses both previous approaches, since the marginali-
sation over the strong components couldn’t be avoided whereas the one over the weak
links was simplified looking at the macroscopic property of the nodes. Finally an algo-
rithm was devised, where the messages through strong links were not the same as the
messages through weak links. Due to the strong links, the update rules could not have
been simplified as much as the CDMA detection rules. The experiments show that the
algorithm converges quite quickly for a low level of noise and converges slower as the
noise is increased. It could be compared to the convergence in a dense graph, it seems
slower due to the strong links.

Finally, some future work can be done on error correcting codes. Indeed, it is
known that some correlation exists between nodes which are not directly linked. This
motivates the view that nodes which participates in the parity check are strongly
connected, whereas all others are weakly connected. Unfortunately, update rules could
not be easily devised in this case. Besides the new decoding algorithm devised in this
project considers a real signal transmitted to a Gaussian channel. The updates rules
also use the fact that the infered values are bits, so using the update rules to another

problem may need some adaptation.
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Appendix A

Toy Problem: Message Derivation

In this chapter, two cases need to be examinated when calculating my,, . If k is in the
strongly connected local neighbourhood then the equations will be build as in the case
of the sparse graph, whereas the approximations used in the CDMA problem are used
to deal with the case where k is in the weakly connected group.

A.1 Strong case : k is in the strongly connected

local neighbourhood

The messages 1, and my; can be decomposed by writing two sums, one over the
strongly connected bits, and the other over the weakly connected bits.

1+m! b
$b, Tty 0P ulb) Mg (54

ﬁlfﬁl % 14mt b ?
Ly, b, P(y,|6) ITixx (—2&“)
m,, = tanh (Z tanh ™’ Thf,k) ;
e

Considering A, = 71?? S sub + % ZJ.L] s,jb;, and using the central limit theo-
rem: A, obeys a Gaussian distribution N’ ((AL)M ,(1— QL)), where

1 |
<AL>.“ = ﬁ ; S“;?Tlid + 7—‘}‘ ; Sﬁjbj (Al)
and
i = (1/K) Z(m:‘l)z. (A.2)
{
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which is well approximated by
= (1/K) > (mL)* (A.3)
k

Back to the probability

1 2
P(y |b): exp{__ y;_Ae)];
2 2?ror§ 203( ! ‘

as we know the probability density function of A,, we can use the following formula:

P(y,|b) = /dAnP(A#)P(y;=|Au),

which leads to:

1 1 exp l_ (Y — (A.u>)2 }
\/Q_w) o2 4+1-Q 2(0f +1-Q)

Back to the messages, we have now approximated the first probability P(y,|b) and

it doesn’t depend on the bg. This is important because now it can be moved out of the

sum over the weakly connected bits. However there is still another term in that sum
b

which would lead to many calculations if not modified : [Tjew () (ﬂ*‘——i) This term

is quite simple to remove because we can also write it as :

0 Z(1+me;) .3

leW (i) b

1+m /b Taimti b
Zb bk P (y,|b) itk tes(u) ( E) Zb [iew () ( = pl !)

mitl = (A.4)
1k 1+mt b 1+mt by
Zb (?1';115) Hf;ékte.s (1) ( e ) Zb nlew(p) ( s )
m, by
b, bk P(Yulb) Thes (H—"—)
= (A.5)

1+m' b
>b, PYulb) Thesw) (+—‘"—I)

A.2 Weak case : k is weakly connected

One of the main difference with the first case, is that we don’t consider A,. Instead
we remove one term, the one depending on by as it was done with the CDMA signal.
We now consider A, = # Th ek Sutby + ﬁ Zj;l Sujbj, and using the central

limit theorem: A, obeys a Gaussian distribution N ( (A%, ) (1 — Q%) ), where
H sk / uk

=
(A ) \/_ > sumly + lJstﬂjbj (A.6)

Li#k
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and
Lk = (1/K) ;(mixe)z- (A.7)

The conditional probability which was written previously as

P(y,|b) =

1 1 2
b A
2rod [ 205 :

is now written using A

% (yp ~ Bk = Sﬂkbk/ﬁ)z} .

And since s,.bi/ V/N is small for large N, we expand the conditional probability as

1 (Yo — Duk)” | Suk(Yp — D)
Ply. b)) = ————rexpn |—2F R it
2
- sl e O
A exp {_ (’U,u 5 %#k) l (1 4 bﬂ-‘»(yn - uk)bk) ,
2mod 0 VKo

The fact, that it now depends linearly on by is very important. That is why lot of
terms in the sum will be removed due to two properties. The first one is that the sum
over by of a quantity which doesn’t depend on it is 0, and the other is that the product
bibr = 1.

As we know the probability density function of A is

Plyulb) = [ AP () Pyl Sy

Then it is expanded to provide

P(ulb) = [dBu ZAex [_rL]( HOSE

1Qc eXpl 2(1@) ]

So the final result is

3 [y, — (A ,uk)]s.ukbk] 1 - l_ (W — (D))’ ]
B [1+ 03 +1-QIVK \/21r(00+1~Q‘) i 2(03+1-Q")

Back to the message with :

[y.u =i <A#k)] Sk

TR+ 1-QIVE
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and
B

= 1 ax [_ (yu — (A.uk>)2 l
\/Q?T(J§+1—Q‘) 2(6§ +1-Q")

then :

14+mt b
Zb, brPWulb) ies (—a““—‘)

~ t4+1 S A8)
Hk 1+m' b (
st P(yﬂlb) I-[!:ES(,U.} (_”2"—;‘1‘)
14+mt b
st A.B [liesw (+_2L£)

2 1+m’!b; (A’g)

2b, Blliesw (—i"—“)
(A.lU)

If we evaluate the complexity of the found formula, we can see that there is still a

sum over b, as in the sparse case.
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