
COMPUTER BASED APPROACHES TO MANAGERIAL DECISION

MAKING: OPTIMISATION, HEURISTICS, AND SIMULATION

Ling LING

B.Sc. (Peking University),

M.Sc. by Research in Business Management

THE UNIVERSITY OF ASTON IN BIRMINGHAM

September, 1995.

This copy of the thesis has been supplied on condition that any one who consults it

is understood to recognise that its copyright rests with its author and that no

quotation from the thesis and no information derived from it may be published

without proper acknowledgement.

THE UNIVERSITY OF ASTON IN BIRMINGHAM

COMPUTER BASED APPROACHES TO MANAGERIAL DECISION MAKING:

OPTIMISATION, HEURISTICS, AND SIMULATION

Ling Ling

M.Sc. by Research in Business Management

September, 1995

This research studies three computer based approaches - optimisation, heuristic, and simulation, to

numerical optimisation problem in managerial decision making.

In Chapter 2 we first discuss computer based mathematical programming with the focus on linear

programming (LP) and its software in the application of the simplex and interior-point methods. We study
non-linear programming (NLP) and its software through unconstrained optimisation methods and

constrained optimisation methods. Instead of discussing dynamic programming (DP) directly, we discuss an
important large-scale optimisation technique - decomposition. A number of definitions for heuristics are
discussed and clarified in Chapter 3. Substitution is proposed as a principle which can be used to classify
heuristics. Since many well-known heuristics can be categorised as problem substitution heuristics, model
substitution heuristics, or algorithm substitution heuristics. The heuristic approach is then studied according
to these classifications. The concept of computer simulation is discussed in Chapter 4. The method to
categorise computer simulation according to the major objectives: problem-finding, problem-understanding,
and problem-solving. In order to demonstrate these approaches, a case study using different approaches is
proposed in Chapter 5.

On the basis of the discussion on managerial decision making and an interview with the OR professionals,

we carried out an extensive discussion on these three approaches through methodology consideration,
modelling consideration, feasibility consideration, and applicability consideration.

This research indicates that heuristics are more suitable for managerial decision making in many situations
because optimisation approach still needs to be improved for managerial decision making. It is concluded
that onerations management should consider integrating these heuristic methods into a decision support
system. Simple, understandable and usable heuristic approaches for solving managerial decision making
problems are needed. Heuristics will be more attractive to managers in the future with the development of
IT. Such approaches will undoubtedly be built around computer-based decision support systems. Computer
simulation may then be regarded as the last resort. Despite this, it is surprising how often such an approach
is needed. There are certain advantages in employing a simulation approach in management science and it

may be the only way of tackling some managerial decision making problems. Diversified heuristics will be

widely applied in managerial decision making.

Key words: optimisation, heuristics, simulation, computer based approach, decision making.

Acknowledgements

I am most indebted to my supervisor, Mr J. B. Kidd who introduced and encouraged me

to explore this interesting problem area, for his excellent guidance, constant help, and

considerations throughout this research.

My acknowledgements are this to Dr. J. S. Edwards for his kind concern, constructive

criticism, and precious advice. I would like to thank specially Mr. K. Rapley and his

colleagues (Dr. Roger Blackburn, Dr. Himadri Chatterjee, and Ms Chand Akbar) at

British Airways for their kind-hearted help and valuable information during my visit to

Heathrow.

I am grateful to my colleague Mr. D. Pritchard for his excellent translation of an

important paper from the German, as well as to Mr. S. L. Robinson for providing me with

some precious literature.

I would like to thank Mr. C. Hart who greatly improved the quality of the English in this

thesis. I will also remember many members of staff at Aston Business School, especially

Mrs. P. E. Lewis who was always willing to help throughout my study.

Finally, I am deeply indebted to my family for their concern, encouragement, help, and

love.

CONTENTS

page
Introduction 6

1.1. Numerical optimisation problems in managerial decision making

6

1.2 Popular approaches 7

1.3. The nature of managerial decision making 9

1.4 A story learnt from British Airway 13

1.5 The objective of this research 17

1.6 The layout of this research 18

Optimisation approach 19

2.1 Introduction 19
2.2 Mathematical programming approach 20

2.2.1 Linear programming and its software 20
a) Introduction 20

b) The simplex method 21

c) Interior-point methods 22

2.2.2 Non-linear programming and its software 25

a) Introduction 25

b) Unconstrained optimisation methods 25
c) Constrained optimisation methods 26

2.2.3 Decomposition techniques for large-scale optimisation

problems 28
a) Background 28

b) Dantzig-Wolfe (dual) and Benders (primal)

Decomposition 29
c) Cross Decomposition 30
d) LU Decomposition 32
e) Batels-Golub decomposition 33
f) Some implementations based on decomposition 33

2.3. Summary 35

Heuristic approach 36

3.1 Introduction 36

3.1.1 Background 36

3.1.2 Clarification of the concept 36

3.1.3 Classification of heuristics 41

3.2 Heuristic approach 42
321 Problem substitution heuristics 42
3.2.2 Model substitution heuristics 43

3.2.3. Algorithm substitution heuristics 44

3.3. Summary 47
Simulation approach 48
4.1 Introduction 48

4.1.1 Background 48

4.1.2 Clarification of the concept of computer simulation 49

4.1.3 Categorising computer simulation 51

4.2 Computer simulation approach 52

4.2.1 Simulation modelling 52

4.2.2 Simulation programming 53

4.2.3 Simulation experimentation 55

4.3 Verification and validation 56

44 Summary 58
Ss A case study through different approaches 59

5.1. The problem for case study 59

5.2 An optimisation approach 61

5.3 Heuristic approaches 62

5.3.1 Examples of problem substitution heuristics 62
a) Knowledge-based heuristic 62

b) Common sense heuristics 63

5.3.2 Examples of model substitution heuristics 64

a) Relaxation on objective 64
b) Relaxation on horizon 65

5.3.3. Examples of algorithm substitution heuristics 67

a) An eclectic heuristic 67

b) An approximation heuristic 67

c) An analytic heuristic 68
d) An improvement heuristic 69

5.4 A computer simulation approach 70

a) The simulation model 70

b) The simulation program 70
c) The experimentation 70

5.5 A comparison of 12 problems 13

6. Extensive discussion on the three approaches 76
6.1 Methodology consideration 76

a) Optimisation methodology 76

b) Heuristic methodology 77

c) Simulation methodology 78

6.2 Modelling consideration 79
a) Model modification 79

b) Program development 79

c) Data processing 80
6.3. Feasibility consideration 81

a) Optimality 81
b) Complexity of algorithm 82

c) Sensitivity analysis 83

6.4 Applicability consideration 83

a) Computational time 84

b) Managerial preference. 84
c) Maintenance effort 85

a. Major conclusions and summary 86
7.1 Major conclusions 86

7.2 Summary 90

References 91
Appendices 95

i Available Commercial Optimisation Software 96

2. Programs for Testing Twelve problems in the Case Study 109

Table 3.2.2a

Table 4.2.3a

Table 5.3.1a

Table 5.3.1b

Table 5.3.2a

Table 5.3.2b

Table 5.4b

Table 5.5a.

Table 5.5b

Figure 5.4a

Figure 5.4b

List of Tables, Figures etc.

Substitution pattern

Three types of computer implementation

The computational results obtained by CTPP

The computational results obtained by CLUC

The computational results obtained by Silver's

The computational results obtained by Ritchie's

The computational results obtained by computer simulation

The parameters of the sample problems

The computational results obtained by various algorithms

The total cost y. parameter A

The number of replenishments y. parameter 1

1. Introduction

1.1. Numerical optimisation problems in managerial decision making

The task of managers is to plan, organise, and control the activities of a business. To

accomplish this, management is usually in a constant state of decision making. Generally,

management makes such decisions in two ways: First, the manager’s understanding and

perception of the problems involved and their resolutions serve as the basis for choice.

Second, mathematics, numerical methods, and simulation systems expressed in computer

programs can assist in the decision process.

We do not wish to make an instant judgement of a particular problem, various modes of

approach are possible. Firstly, it may be possible to conduct experiments directly on the

real system or physical system. Second, he may be able to construct and use a

mathematical model of the system of interest. A third possibility is to simulate the system

through a PC or mainframe environment.

Referring to a managerial decision making problem, it can be mathematically classified

into three groups:

1) Well-structured problem such as a mathematical programming based problem or

other standard OR problems, where it has been proved that there exists an optimal

solution.

2) — Ill-structured problem such as some dynamic or stochastic problems, where it has

been proved that there is not an optimal solution.

3) Unknown structured problem such as some complex system, where it has not been

proved whether there is or not an optimal solution.

A managerial decision making problem may be modelled as any one of the above. An

optimal algorithm for a well-structured problem is a procedure which is guaranteed to

converge to an optimal solution at any given accuracy.

Numerical optimisation problems occur in all areas of managerial decision making,

arising whenever there is a need to minimise (or maximise) an objective function that

depends on a set of variables while satisfying some constraints if necessary.

1.2.‘ Popular approaches

It is well-known that an optimisation algorithm will determine an optimum of a well-

formulated numerical optimisation problem. By definition, there does not exist any other

solution which gives a better value of the objective than that of the optimum. Attempting

to improve the quality of managerial decisions, many OR/MS people continue to explore

the opportunity to develop optimisation algorithms and their mathematical theory.

Basically, five ways exist for finding an optimum once a model has been developed:

1. The most commonly used method is the intuitive procedure.

2. The first most commonly used method for finding an optimum is differential

calculus, a branch of classic mathematics.

3. A form of optimisation is known as mathematical programming or extremum-

finding, e.g., linear programming, and non-linear programming etc.

4. A currently used method is the heuristic method, which is capable of formal

presentation, but does not guarantee optimality.

5. A direct search in conjunction with computer simulation for the optimum becomes

necessary when a model does not fulfil the requirements for either calculus or

extremum-finding.

The first method is not capable of formal presentation and, therefore, will not be

discussed further.

Assumptions on the second method must be made about the continuity or even

differentiability of the process, that is, the process cannot have discrete changes of value.

These assumptions do not hold in many business situations. The techniques of calculus,

apparently so powerful for studying the physical world, fail in many elementary business

situations because of the difficulty in defining an adequate mathematical expression of the

problem. So they will also not be discussed further.

Mathematical programming algorithms require that the model be formulated according to

specific assumptions. As an example, the linear programming procedure is the prototype

extremum-finding algorithm. Linear programming, which became significant with the

discovery of the simplex algorithm, assures that the optimum will be found efficiently in

linear allocation problems. Other extremum-finding procedures are available for

inventories, equipment replacement, and some simple queuing situations.

Mathematicians discovered that the golden principle of optimisation: to check every

feasible solution and to find the best, was wrong. This approach is far from being practical

since the feasible solutions of a selection and arrangement problem would increase

sharply with the size of the problem. In this situation, heuristics are the only way to solve

a combinatorial optimisation problem. Therefore, it is not surprising that people choose

heuristics when optimisation becomes impossible. The heuristic depends upon a concrete

modelling situation. Simplification is the major principle whenever it is applied to an

optimisation problem.

In the final method, the word ‘search’ should not be confused with search theory, which is

a particular type of model dealing with situations in which one object searching tor

another.

Some managerial decision making problems fall into combinatorial optimisation where

objects are discrete, such as sequencing, scheduling, routing, layout and design problems.

Apart from the above five optimisation methods, a relatively new area of mathematics is

termed combinatorial optimisation. It is often described as the selection and arrangement

of discrete objects. There is usually a finite number of feasible solutions to each instance

of these problems. Therefore it seems intuitive that the fundamental theorem of

combinatorial optimisation could be employed: examine every feasible solution and

choose the best. Unfortunately, there are usually far too many solutions for this approach

to be practical. In order to search for optimum decisions, sometimes solution procedure is

purely intuitive; sometimes it is made under a set of guidelines or rules of thumb or

heuristics; sometimes it is made by using more formal techniques such as hill climbing or

random search.

Managers expect powerful tools for comparing alternative scenarios quantitatively, for

making the effects of decisions visible and hence open to discussion, and for reducing

uncertainty in complex situations. None of us should take the decision out of the

manager's hands; we should help him to improve the quality of his decisions and to

shorten the time to reach them. When it is necessary for managers to make decisions,

Operational Research (OR) and Management Science (MS) can do more for them than

many of the managers think. This is achieved by revealing the consequences of possible

decisions in as quantitative a way as possible.

1.3. The nature of managerial decision making

After a decade of belt-tightening recession, intense cost pressure and fierce competition

are driving companies to extract even more efficiency and productivity from managerial

decision making, which becomes one of the decisive drivers of success or failure for

companies of all sizes. In this section we briefly discuss the nature of managerial decision

making.

Managers are often regarded as rational, purposeful, and decisive. However, we see them

as going through a series of stages of analysis before deciding what to do.

The doing comes from the planning, planning comes from the thinking. Isenburg (1984)

explored how senior managers think, he suggests two findings: First, it is hard to pinpoint

if or when they actually make decisions about major business or organisational issues on

their own. And second, they seldom think in ways that one might simply view as

"rational," i.e., they rarely systematically formulate goals, assess their worth, evaluate the

probabilities of alternative ways of reaching them, and choose the path that maximise

expected return. Rather, managers frequently bypass rigorous, and analytical planning

altogether, particularly when they face difficult, novel, or extremely entangled problems.

When they do use analysis for a prolonged time, it is always in conjunction with intuition.

On what basis does the manager make his decision? Economists assumed complete

rationality: The model was that of an economic man who deals with the real world in all

its complexity, and who selects the rationally determined best course from all those

available to him in order to maximise his return. It can be seen that classical theory tends

to view a firm as an entrepreneur rather than as an organisation, assuming perfect

knowledge of all market conditions, stress profit maximisation as the goal. It takes a firm

to be an omnisciently rational system of business.

In place of an economic man Herbert Simon proposed a model of administrative man.

While economic man selects the best course from those available to him, administrative

man looks for a course of action that is satisfactory or good enough(Pugh, Hickson,

Hingings, 1979).

In the place of an omnisciently rational system Richard Cyert and James March view a

firm as an adaptively rational system, adapting and responding to a variety of internal and

external constraints in arriving at decisions. Their behavioural theory of the firm is a

notable effort to link classical economics theory to contemporary organisation theory. It is

an attempt to describe and to explain how business decisions come to be made. Cyert and

March take business firms as their starting point, and specifically have in mind the large

10

multi-product organisation operating under imperfect competition. The theory is about

decisions such as what price to aim at, what volume to produce, and how resources are to

be allocated within a firm. Decisions of these kinds are seen as choices, made in terms of

objectives, from among a set of alternatives on the basis of whatever information is

available(Pugh, Hickson, Hingings, 1979).

The three approaches to the numerical optimisation problem in managerial decision

making can be regarded as method of selecting decision. Rivett (1994) proposed three

basic elements in any decision:

1) The range of choice.

2) The consequences of each of these choices.

3) The objective(s) involved.

According to these elements, we will examine whether numerical optimisation plays an

important role in managerial decision making.

In this research we suppose that a managerial decision making problem can be modelled

well as a numerical optimisation problem in the cases where the range of choice is so

limited, the consequence of each of them is so well determined and measured, and the

objective is a single statement.

Referring to the range of choice, the modeller should have the knowledge that all the

choices will be compared within the permitted time and available resources.

Referring to the consequences of each of these choices, all measurement involves a

viewpoint of the modeller's in managerial decision making, for the units express what is

thought to be important. Measures can be different, e.g., the cost consideration in the

replenishment problem is expressed in cost per unit item, or cost per unit time, which deal

with different objectives and are of interest to different people.

11

Referring to the objective(s) involved, there might be a number of conflicting objectives

in a company. We often find many managers would like to accomplish more in less time.

One of the implications is that when a manager addresses any particular problem, he calls

a number of related problems to mind at the same time. For example, a sales manager may

prefer better quality and their product line to be as full as possible with a large number of

options but ignore the limited capacity and additional cost; a production manager may

insist on the importance of synchronous manufacturing but ignore high inventory cost; a

purchasing manager may emphasise the availability of raw materials and components but

ignore financial difficulty and limited warehouse space; an inventory manager may

attempt to reduce his inventory level but ignore current production capacity or favourable

purchase prices. However, the managerial decision making here is much more concerned

with single objective problem.

Any numerical optimisation problem should be represented by a mathematical model. In

other words, model-building plays an important part in managerial decision making.

Models offer insight and the possibility to compare decision scenarios with each other.

Almost always the computer is an indispensable tool in today's management practice. A

large part of the OR techniques can be used on the personal computers, software is

becoming more and more user-friendly and cheaper. In recent years, there has been an

enormous growth in the ease with which a problem area can be represented by a

numerical model that the managers consider sufficiently realistic. Large quantities of data

can easily be stored in databases that are simple to access. Operational research has

developed powerful tools for comparing alternative scenarios quantitatively and for

reducing uncertainty in complex situations.

When it is necessary for managers to make quantitative decisions, a numerical

optimisation problem can help them more than many of them think. OR workers do not

take decisions out of the manager's hands; but help him to improve the quality of the

decisions and shorten the time to reach them. We also fully understand intuition,

12

experience and common-sense of the manager remain indispensable for the final two

steps: the selection of a chosen solution and its implementation.

1.4 Astory learnt from British Airways

In the previous section we discussed the nature of managerial decision making. Basically,

most decisions are concerned not with searching for the sharpest needle in the haystack

but with searching for a needle sharp enough to sew with. The development in

management has been due to the application of such techniques as optimisation,

heuristics, and computer simulation. Bearing this thought in mind, it is necessary to find

out their characteristic, implications, and influence on managerial decision making.

At the initial stage of this research, I interviewed some key OR staff at Heathrow. The OR

group at British Airways is a very active and successful team. They first admitted that they

did do work for the engineering group but very little optimisation. During the interview,

they kindly provided me with a set of papers, and plotted the history of one of their

problems, which was most amenable to optimisation techniques.

The interesting managerial decision making problem is the so-called Ground Staff

Rostering Schedule in British Airways: Basically the twenty four hours of the day are split

into 15 minute periods, so each line up is 15 minutes. The assignment is the number of

ground staff you need in that 15 minute period in order to complete the work. This is,

ground staff checking people in for flights at terminal one at Heathrow. So you can see it

peaks in the morning, right, ..., and peaks in the evening. The task is then to minimise the

number of ground staff that you need in the day to actually work this roster. But you have

got a different work load for different days of the week (i.e., the constraints vary with

time). Furthermore, you also have got different ways of doing the rostering (i.e., the

objective function varies with different service patterns).

13

So it is an integer program in that you need polynomials as input. You can formulate it as

a linear program or you can solve it by using heuristics. | am very much more interested in

which approach is most suitable.

It is said that four aspects of change in British Airways combined to influence the use of

one of the popular optimisation ‘techniques for this problem - Linear Programming.

1) Changes in the business environment

The increasing intensity of competition has put pressure on costs and efficiency, and

produced an increase in the frequency and degree of schedule changes. An increasing

realisation that manpower planning and rostering are both necessary and desirable

has developed. This has been matched by a decrease in staff/union resistance to

flexible rostering.

2) Changes in the nature and ability of users

" Many of the changes were enabled and encouraged by OR's contribution. The story

tells of users who were initially resistant to change and to computers becoming

skilled roster analysts and model users; then partners in the development of methods

and techniques, and finally highly skilled, computer literate, demanding users.

3) Changes in information technology

The introduction of a mainframe DEC 10 prefaced a successful approach to OR

epitomised by heuristic modelling within a user-friendly, computerised decision

support system. PCs raised user expectations even further making the DEC 10 user

interface look primitive. LP packages have improved dramatically over the period of

its introduction.

14

4) Changes in the practice of OR in British Airways

OR was changed by the growth and success of the DSS approach to OR, with its

mistrust of black box solutions, and its reliance on user friendly DSS. In recent

years, OR has been further changed by the loss of uniqueness and the leverage that

DSS development has offered, as the I.T. professionals began to realise the power

and need for a good DSS. Both of these points had some impact on the applicability

of an optimisation approach such as LP.

It is also said that the OR group at British Airways has moved from a position of

intellectual leadership to one of intellectual partnership (Graeme Davison, 1989). As a

consequence, British Airways has achieved cost savings that run into many millions of

pounds, while many other British industries have struggled and failed to reach first base in

the quest to introduce flexible rosters.

On the basis of OR practice in British Airways, Graeme Davison (1989) described when

they used linear programming and when they used heuristics and why. He described the

on/off story of ground staff rostering in British Airways and the perhaps over-ambitious

attempt to use the optimisation approach of LP or solve the workload cover and rostering

problems in one step, How its black box image of LP was its downfall, leading to two

separate heuristic models being used and how LP has recently re-emerged to solve a cut

down version of the total requirement (i.e., covering problem), and how, alongside, some

simple heuristics have been used.

Referring to the ground staff rostering problem, the expectation from the managers and

limitation of the linear programming are summarised as follows:

1) Management and unions had quickly realised that the model was not always realistic,

in that it could not model soft constraints (‘nice to haves’). Also, it could not deal

with the social aspects of rostering.

15

2) As users began to understand what was possible the constraints had become ever more

complex. e.g. The model could not recommend shift start and finish times; it did not

handle meal breaks well.

3) The LP could produce only one solution. Negotiations are obviously not very

worthwhile if only one option is available. The unions were particularly unhappy

about this aspect. This unhappiness was unnecessary, since there are usually many

feasible roster patterns, for a given set of workload cover requirements.

4) Increasingly, the management wanted to apply the model more widely to more work

areas. New applications required re-modelling of LP formulation that only OR

analysts could do. It was also necessary for OR analysts to run the model to manage

the integer heuristic when it did not work.

5) The users wanted to evaluate more options. They started saying "what if?", "yes

but!". By necessity, the model became surrounded with simple heuristic and even

deterministic models. These often included graphs to help explain what was going on

in the model.

Tt goes without saying that these facts enforced some viewpoints shared by a number of

OR professionals as well.

OR practitioners may take one final lesson from this story in British Airways. We believe

that the disadvantages of LPs are also those of optimisation algorithms. What I leant from

the interview definitely convinced me that my research direction was basically right. It is

then necessary to study major computer based approaches (optimisation algorithms,

heuristics, and simulation) to numerical optimisation problems, and their suitability in

managerial decision making.

1.5 The objective of this research

A number of OR specialists are proud of their ability in problem-solving, especially for

well-known standard problems. Some of them restrict themselves to standard problems so

16

as to gain recognition from colleagues within their academic circle. The crisis in OR has

been forecast by several leading OR/MS professionals. Most of the work in Operational

Research has been on the existence and finding of an optimal solution theoretically, while

there should have been increasing emphasis on finding the best solution practically.

Precisely the problem is partly caused by too much effort being wrongly put on pure

optimisation.

Optimisation methods are not the only approach in managerial decision making. Two

other closely-related approaches, central to numerical optimisation problems, are the

heuristic and computer simulation methods.

Heuristic methods often determine good solutions to numerical optimisation problems.

These methods play an important role in many managerial decision making problems.

Simulation is defined as a solution procedure that determines the best solution of a

simulated problem. It may not be regarded as an efficient tool for optimisation problems,

but becomes more important in managerial decision making with the development of

information technology (IT).

Criteria commonly used to choose algorithms include accuracy, effectiveness, simplicity,

and how economical they are. Referring to any algorithm, however, managers more often

take into account efficiency, competency, and handiness. It can be seen that rules of

thumb are used to select these three approaches. With conventional optimisation

techniques, controversial heuristics, and formidable computer simulation, the question

that has been raised during the last decade is:

"Which technique is more suitable for managerial decision making?"

Optimisation algorithms, heuristics, and computer simulation are considered as the

available mathematical and computational tools. We will concentrate on why and how

one should use them in certain circumstances.

17

In this research, we intend to identify feasible directions of promising areas for future

research and application, and especially to question the position of optimisation

algorithms in managerial decision making.

16 The layout of this research

A fairly general managerial problem can be formulated as a linear programming or non-

linear programming model. Without the assistance of a computer, these optimisation

algorithms can hardly be applied to a practical problem. Currently, there is a leree amount

of mathematical programming based software available. In Chapter 2 we intend to

investigate the algorithms and their software associated with mathematical programming.

In order to compare blossoming heuristics, we will focus on investigating different

heuristic thoughts in Chapter 3. A fully parallel study on heuristics is not possible since

there are few commercial packages available although a large number of packages are

coming forth at company or research level.

Simulations are even more difficult to analyse. Therefore, we will study the three

procedures in computer simulation in Chapter 4.

In order to clarify major principles in the three approaches, we will undertake further

examination through a case study. A number of heuristic methods are presented in order

to illustrate some of the ideas discussed in Chapter 5.

Referring to methodology, modelling, feasibility, and applicability, we extensively discuss

their roles in the three approaches to managerial decision making in Chapter 6.

18

2, Optimisation approach

21 Introduction

According to mathematical structure, we will discuss mathematical programming, which

has been widely used in managerial decision making. Mathematical programming means

different things to different people. To those interested in convex analysis, it is a branch

of pure mathematics. To those interested in algorithms, it is a branch of numerical

analysis. To those interested in the implementation of algorithms, it is a branch of

computer science. To those interested in advising management, it is a branch of

operational research.

Although mathematical programming does not solve all the world's problems, it does

provide a convenient way to derive the quantitative conclusions that follow from a set of

assumptions. So its application will continue to expand with the increasing availability of

powerful computing facilities.

Many management applications are established linear programming (LP) models that are

run regularly every quarter, month, week or even day as an established routine of

management control. We noticed that LP codes can not handle many decision ating

problems because some constraints may not be so rigid as linear, the objective itself may

be non-linear, and some variables may be uncertain. Many managers may regard non-

linear programming (NLP) as a technical matter of no direct relevance to them. There is

still lack of evidence that major progress has been made in non-linear optimisation. We

notice that the progress over the last 30 years owes as much to better mathematics as to

better computers.

We do not intend to discuss here dynamic programming in breadth, but note it often

becomes a large-scale optimisation problem or can be handled by heuristics. Such a

formulation containing an unusually large number of nonzero coefficients may cause

19

unexpected difficulties. We are interested in the main features underlying recent progress.

These are triangular factorisation of the basis and the use of element pools. Thus we will

discuss an important large-scale optimisation technique - decomposition, which can be

applied to dynamic programming.

2.2 Mathematical programming approach

2.2.1 Linear programming and its software

a) Introduction

There are many applications of linear programming in managerial decision making. The

basic problem of linear programming is to minimise a linear objective function of

continuous real variables, subject to linear constraints.

For purposes of describing and analysing algorithms, the problem is often stated in the

standard form

min{c'x : Ax =b, x20},

where x € 9" is the unknown vector, c € KR" is the cost vector, and A € RMN js the

constraint matrix.

The feasible region described by the constraints {x : Ax = b, x 2 0} is a polytope, or

simplex. It can be proved that at least one member of the optimal solution set lies at a

vertex (extreme point) of this poiytope.

After its discovery by Dantzig in the 1940s, the simplex method was unrivalled until the

late 1980s for its utility in solving practical linear programming problems (Moore and

Wright, 1993). Although never observed in practical problems, the worst-case behaviour

of the algorithm is that the number of iterations or operations may be exponential in the

20

number of unknown variables. This poor performance led to an ongoing search for

algorithms with better computational complexity.

This search continued until the late 1970s, when the first polynomial-time algorithm -

Khachiyan's ellipsoid method appeared (Moore and Wright, 1993). Most interior-point

methods, which we describe later, also have polynomial complexity.

b) The simplex method

This method generates a sequence of feasible iterates by repeatedly moving from one

vertex of the feasible set to an adjacent vertex with a lower value of the objective

function. The optimum can then be finally obtained at a vertex.

Beale (1984) noticed that "In nearly all practical mathematical programming problems, a

typical variable occurs in not more than about 6 constraints. This is true whether the

constraints are linear or non-linear, and whether the variables are continuous or discrete.

So large problems are nearly always very sparse."

Computer programs for solving linear programming problems by the simplex method

have existed since the early 1950s. They retain their central place in mathematical

programming systems because successive implementations have exploited sparseness

more and more efficiently. The steady progress that continues to be made in this process is

remarkable.

The CPLEX, C-WHIZ, FortLP, LAMPS, LINDO, MINOS, OSL, and PC-PROG packages

can be used to solve large-scale problems. Each of these packages accepts input in the

industry-standard MPS format. Additionally, some have their own customised input

format(for example, CPLEX LP format for CPLEX, direct screen input for PC-PROG).

Others can be operated in conjunction with modelling languages (CPLEX, LAMPS,

MINOS, and OSL interface with GAMS; LINDO and OSL interface with AMPL).

21

Recently, interfaces between spreadsheet programs and linear programming packages

have become available. The What's Best! package links a wide range of standard

spreadsheets (including Lotus 1-2-3 and Quattro-pro) to LINDO.

The IMSL and NAG libraries contain simplex-based subroutines. The BQPD package is

aimed primarily at quadratic programming problems, but it does solve linear

programming problems as a special case. It can take advantage of sparsity; as with the

libraries above, but it is the user's responsibility to supply the problem data through

subroutine arguments.

The packages LSSOL and QPOPT are aimed at linear least squares or quadratic

programming problems but, as part of their capability, they can solve small to medium

scale linear programming problems.

c) Interior-point methods

The announcement by Karmarkar (1984) that he had developed a fast algorithm that

generated iterates that lie in the interior of the feasible set (rather than on the boundary,

such as simplex methods). Since then, there has been intense research into a variety of

methods that maintain strict feasibility of all iterates, at least with respect to the inequality

constraints.

Interior-point products such as OB1, OSL, and KORBX have emerged and have proven to

be competitive with, and often superior to, the best simplex packages, especially on large

problems.

Some general patterns emerge in glancing at the survey of LP software. The most

noticeable change is in the size of LP problems that can be solved on a PC. Compared to

the earliest LP packages available for microcomputers, there has been an enormous

22

increase in the size of LP problems that can be tackled by a PC program. This has come

about due to the extended memory addressing capabilities of software.

Most programs do not specify any internal limits on problem size any more. By adding

memory, one can solve fairly large problems. According to one test mentioned by Sharda

(1992), operational researchers were able to solve LP problems with as many as 367,000

non-zeroes; 16,000 rows or 69,000 columns on a desktop machine in about two hours.

The practical time limit may be a more significant restriction than the advertised size limit

in considering any of these programs. Software optimised for workstations solved the

problem in even less time. This suggests that serious optimisation is rapidly becoming

practical on a desktop computer.

One other limitation is in the ability to move large problems from one computer to

another using secondary storage media. This proved to be a bigger bottleneck than the

capacity of the software. Of course, one can use the super high capacity disk drives or

portable hard disks to move problems from one computer to another. Until these

technologies become affordable and widely available, networks are obviously the only

way to move problems from one environment to another. Thus the problem size capacity

does not appear to be a significant issue any more.

Sharda (1992) surveyed linear programming software for personal computers. The

availability and capability of linear programming (LP) software has kept pace with the

growth in computer hardware technology. In order to keep OR/MS protessionais abreasi

of recent development in this area, OR/MS Today initiated a new service in October 1990

by publishing a survey of LP software for desktop computers. This is an update of the

earlier survey. It indicates that several exciting trends in LP software are emerging.

Referring to hardware requirements, if a program can run on any of the IBM-PC

compatible computers (XT/AT and higher), then it is able to run on PC/MS-DOS

23

machines. If a program requires a computer based on an Intel 80386 or higher processor,

it is regarded as another class. Obviously, all programs capable of running on “IBM

compatible machines” can run on 80386/80486 machines. Several programs such as Best

Answer!M, GINO, LINDO, LINGO, Microsoft Excel 4.0, What's Best! and XA, are

available for the Macintosh environment and workstations.

24

2.2.2 Non-linear programming and its software

a) Introduction

Considerable progress has been made recently on hill-climbing methods for finding

possibly local optima for non-linear functions, subject to linear or non-linear constraints.

Either Quasi-Newton or conjugate gradient methods can be used to solve unconstrained

optimisation problems, assuming that function values and first derivatives, but not second

derivatives,can conveniently be computed.

A consensus seems to be emerging about the general strategy for adapting these methods

to constrained optimisation. The trial solutions should satisfy linear constraints. They

should also satisfy linear approximations to non-linear constraints, with the non-linearities

thrown into the objective function through the Lagrangean multipliers.

We need not be concerned with these methods if our non-linear optimisation problems are

all small, on the grounds that a primitive algorithm should be able to solve a small

problem on a powerful computer. But this is a dangerous conclusion, since inefficient

algorithms usually produce very inaccurate answers because of round-off errors.

b) Unconstrained optimisation methods

The unconstrained optimisation problem is central to the development of optimisation

software since constrained optimisation algorithms are often ‘extensions of unconstrained

algorithms. In the unconstrained optimisation problem

min{ f(x): xe R2 }

we seek a local minimum of a real-valued function f defined on 94, that is, a vector x €

SR" such that f(x*) < f(x) for all x € KR" near x*. We do not discuss global minimisation

algorithms because at present there is no widely available code for global minimisation.

25

The well-known algorithm is probably the Newton method based upon the computation of

the gradient vector and/or the Hessian matrix. According to Moore and Wright (1993),

versions of Newton's method are implemented in BTN, GAUSS, IMSL, LANCELOT,

NAG, OPTIMA, PORT 3, PROC NLP, TENMIN, TN, TNPACK, UNCMIN, and VE08.

These codes enforce convergence when the initial point is not close to a minimise by

using either a line-search or a trust-region approach, These two approaches differ mainly

in the way they treat indefiniteness in the Hessian matrix.

Nevertheless, Quasi-Newton methods can be used when the Hessian matrix is difficult or

time-consuming to evaluate. Instead of obtaining an estimate of the Hessian matrix at a

single point , these methods gradually build up an approximate Hessian matrix by using

gradient information from some or all of the previous iterates visited by the algorithm.

GAUSS, IMSL, MATLAB, NAG, OPTIMA, and PROC NLP implement Quasi-Newton

methods.

c) Constrained optimisation methods

The general constrained optimisation problem is to minimise a non-linear function subject

to non-linear constraints.

min{ f(x) : gj(x) $0, iel, gj(x) = 0, i €B},

where each gj(x) is a mapping from KR" to K, and I and E are index sets for inequality and

equality constraints respectively.

The main techniques that have been proposed for soiving consirained opiimisation

problems are reduced-gradient methods, sequential linear and quadratic programming

methods, and methods based on augmented Lagrangeans and exact penalty functions.

In order to express first-order and second-order conditions for a local minimum, the

Lagrangean function is defined as

26

L(x,A) = f+ Ajgi(x).
ielVE

The well-known first-order necessary conditions for the existence of a local minimum x*

of the constrained optimisation problem require the existence of Lagrangean multipliers 1

j* such that

VxL(x*,A*) = VE(x*)+ >, Aj*Vgi(x*) = 0,
icA

where

A= {i: iel, gi(x*) = 0}UE,

Ay* 20, ie ATL

The second-order sufficiency condition requires that (x*,A*) satisfy the first-order

condition VxL(x*,A*) = 0 and that the Hessian of the Lagrangean

V2L(x*,A*) = V2EK*)+ >) Ay*V2gi(x*) ,
icA

satisfy w'V2L(x*,A*)w>0 for all non-zero w in the set

{w: Vgi(x*)'w =0, i € IFUE; Vgj(x*)'w <0, i€ 19},

where

It= {ie ANI: Aj >0},

={ie ANI: A; =0}.

Optimisation packages are based on different optimisation algorithms. Here we can only

name some of them. The sequential quadratic programming algorithm is a generalisation

of Newton's method for unconstrained optimisation in that it finds a step away from the

current point by minimising a quadratic model of the problem. A number of packages,

including NPSOL, NLPQL, OPSYC, OPTIMA, MATLAB, and SQP, are found with this

approach. The OPTIMA and OPTPACK libraries also contain augmented Lagrangean

codes. Reduced-gradient algorithms avoid the use of penalty parameters by searching

along curves that stay near the feasible set. The standard reduced-gradient algorithm,

implemented in CONOPT, searches along the steepest-descent direction in the super basic

27

variables. The generalised reduced-gradient codes GRG2 and LSGRG2 use more

sophisticated approaches.

Optimisation software is progressing at a rapid rate. Growing availability of linear and

non-linear programming techniques in spreadsheets is an encouraging indicator of

acceptance of OR/MS approaches. Other developments in modelling languages, user

interfaces and parallel processing suggest that some modelling efforts are being facilitated

through optimisation software.

As Beale (1984) said, a typical variable occurs in not more than about 6 constraints in

nearly all practical mathematical programming problems. Thus large problems are nearly

always very sparse. General mathematical programming systems must be applicable to

large problems, so they must use algorithms that exploit sparseness efficiently, even if this

makes them slower than special-purpose programs on small dense problems.

2.2.3 Decomposition techniques for large-scale optimisation problems

a) Background

Decomposition was recognised as a natural tool for handling large-scale linear

programming problems. If a special structure can be identified, decomposition can often

be used to reduce a large-scale problem to components of a more manageable size, or to

admit enhancement of solution procedures. This review provides a historical perspective

as well as recent LP decomposition approaches, including its ciassificaiion and some

implementations.

The idea of decomposition was first proposed by Dantzig in 1959, and subsequently

many research results have been published. The decomposition principles of Dantzig-

Wolfe (1960) lead to algorithms that transform the original problem into a sequence of

subproblems corresponding to the uncoupled subsystems. The primal or Benders

28

decomposition method (1962) was also introduced shortly after the Dantzig-Wolfe

decomposition method was developed.

Some computer-based algorithms/programs for decomposition are reported, research into

decomposition of linear programs using parallel computation has also been reported by

Ho, Lee and Sundarraj (1988).

In contrast to the linear case, the application of nested primal or dual decomposition to

non-linear programs and stochastic problems has received comparatively little attention.

Many LP based decomposition techniques have been proposed for different purposes.

Basically, we classify decomposition into Dantzig-Wolfe (dual) and Benders (primal)

decomposition, cross decomposition, LU decomposition, and Bartels-Golub

decomposition.

b) Dantzig-Wolfe (dual) and Benders (primal) Decomposition

Dantzig and Wolfe (1960) developed a decomposition principle that imposes on each

subproblem additional constraints so that the optimal solution of one subproblem is

independent of the solutions of the other subproblems. The additional constraints are

selected so that the union of the solutions of the subproblems will be optimal for large-

scale problems.

It is well known that Dantzig-Wolfe decomposition and Benders decomposition are dual

pairs, i.e., the Benders algorithm (1962) that is applied to pure linear programming,

coincides with Dantzig-Wolfe decomposition algorithm applied to the dual of this

problem. The decomposition principle in its primal or dual form has provided very

efficient algorithms for many MIP problems. The technique allows advantage to be taken

of the special structure of the problem by solving a sequence of subproblems. Hence, one

exploits either the primal or the dual substructure of the problem.

29

The subproblems are co-ordinated by a master problem corresponding to the global

constraints through primal (proposal) and dual (prices) information. While the

application of primal decomposition on the dual problem is equivalent, in terms of final

results, to the use of dual decomposition on the primal, the two methods can differ

significantly from a computational point of view. In particular, models with a large

number of columns and a comparatively small number of rows will require a smaller

basis when handled through the primal method. In contrast, column generation is more

compatible with the matrix representation adopted in commercial codes, than the addition

of cuts. This would favour the use of the dual problem.

Another dual decomposition is known as the Lagrangean relaxation method. Geoffrion

(1974) showed that the method can be generalised via Lagrangean relaxation to deal with

mixed integer programming. The dual subproblem is obtained by taking the Lagrangean

relaxation of the original problem relative to some constraints. Each iteration consists of

1) selecting a new set of Lagrangean multipliers by the dual master problem and 2)

solving the dual subproblem for given values of the multipliers. The dual decomposition

algorithm solves successively a "dual subproblem" and a "master problem" until the

optimum is achieved and verified. This algorithm may become computationally attractive

if the "complicating" constraints are relaxed so as to obtain a relatively easy-to-solve sub-

problem. The dual decomposition algorithm effectively solves the formal Lagrangean

dual relative to the given subset of constraints. Hence , when applied to MIP, a duality

gap may arise and customarily is closed by an enumeration scheme of the branch-and-

bound type. Lower bounds on the value of the (minimisation) problem are obtained at

every iteration of the dual decomposition algorithm instead of solving the formal

Lagrangean dual optimally.

) Cross Decomposition

The complete cross decomposition algorithm is developed for solving mixed integer

linear programming problems. Van Roy (1983) proposed the basic idea underlying cross

30

decomposition to use both subproblems in one single decomposition procedure as

follows: (PS) and (DS) are the primal and dual subproblems respectively.

(1) Initialise. Select initial values for the Lagrangean multipliers and set up the

corresponding (DS).

(2) Solve the (DS). Perform convergence test CTp: either stop, or go to 4), or set up the

(PS) corresponding to the optimal solution of the current (DS) and go to (3).

(3) Solve the (PS). Perform convergence test CTp: either stop, or go to (4), or set up

the (DS) corresponding to the optimal dual solution of current (PS) and go to (2).

(4) Master problem. Find new values for either the Lagrangean multipliers, or the

primal variables that are held fixed in (DS) or (PS). Set up the corresponding

subproblem and go to (2) or (3) respectively.

Actually, the convergence tests CTp and CTp control the sequence of primal and dual

subproblems as well as the master problem.

Not every algorithm that employs primal and dual subproblems relates to cross

decomposition, e.g., the branch and bound procedure, primal-dual ascent algorithm by

Fisher, Northup, and Shapiro (1975).

Holmberg (1992) developed a modification of cross decomposition, called mean value

cross decomposition for linear programming problems. The method is a generalisation of

the Kornai-Liptak (1965) method and eliminates the need for using master problems. The

base for the method is the subproblem phase in cross decomposition, where performance

between the duai subproblem and the primal subproblem is iterated. However, instead of

using the last solution of one subproblem as input to the other and vice versa, the average

(mean value) of all previously obtained solutions is used. It is shown that this is

equivalent to the Brown (1949) and Robinson (1951) method for a matrix game, and this

fact is used to prove convergence of the procedure.

31

d) LU Decomposition

LP models may represent large, complex systems consisting of independent subsystems

coupled by global constraints. Such LP problems are said to have a block-angular

structure. We first consider solving a large set of simultaneous linear equations

Ax=b

where A is a sparse matrix of order n. If the matrix A can be factored as a product of

lower and upper triangular matrices, that is

A=LU,

then a solution for x can be obtained by forward and backward substitution of the two

triangular systems:

Ly=b,

Ux=y.

This is the so called LU decomposition.

In large-scale linear programming the computation time is greatly influenced by the

method of finding an accurate and compact form of the inverse of a sparse matrix B. It

has been recognised that if the product form of B is used, and in particular the LU form,

then, by pivoting first on the diagonal elements of U in reverse order, a product form

representation can be obtained that does not reduce the degree of sparseness.

A more extensive decomposition to solve the above linear equations is accomplished by

decomposing the matrix A into a product

A=PLUQ

where P and Q are permutation matrices, L is a lower-triangular matrix with units on its

main diagonal, and U is an upper triangular matrix. According to this decomposition, the

system may be written in equivalent form:

Px(1) =b,

Lx(2) = x(1),

Ux(3) = x(2),

32

Qk = x(3),

Each subsystem can be easy solved by eliminating the subsidiary vectors x(1), x(2), and

x(3).

LU decomposition is effective compared to various types of preliminary transformations

to eventually obtain serial relationships among the original equations in terms of the x's

only.

e) Bartels-Golub Decomposition

Bartels (1971) first considered a stabilisation of the simplex method for handling linear

programming bases in the sparse case, i.e., many zeros in those bases. Probably the best-

known research is that of Forrest and Tomlin (1977) on updating triangular factors of the

basis to maintain sparsity in the product form simplex method. Goldfarb (1977) studied

some properties on the Bartels-Golub decomposition for linear programming bases.

Reid (1982) describes a sparsity-exploiting variant of the Bartels-Golub decomposition

for linear programming bases. It includes interchanges that, whenever this is possible,

avoid the use of any elimination (with consequent fill-ins) when revising the factorisation

at an iteration. Test results on some medium scale problems are presented and

comparisons made with the algorithm of Forrest and Tomlin. Reid's algorithm has "better

stability and fill-in properties than the closely related algorithm of Forrest and Tomlin"

although numerical experiments indicate that these advantages are usually quite slight in

practice.

f) Some implementations based on decomposition

The decomposition technique was proposed for travelling salesman problems,

scheduling, multi-commodity networks, facility location, lot sizing, set partitioning, and

matching etc.

33

Ho and Loute (1983) described their computational experience with codes DECOMPSX

and LIFT which are built on IBM's MPSX/370LP software for large-scale structured

programs. DECOMPSX is an implementation of the Dantzig-Wolfe decomposition

algorithm for block-angular LP's. LIFT is an implementation of a nested decomposition

algorithm for staircase and block-triangular LP's. A diverse collection of test problems

drawn from real applications is used to test these codes, including multinational energy

models and global economic models.

Ho, Lee and Sundarrj (1988) reported their DECOMPAR code: an implementation of the

Dantzig-Wolfe decomposition algorithm for block-angular linear programs using parallel

processing of the subproblems. The software is based on a robust experimental code for

LP decomposition and runs on the CRYSTAL multicomputer at University of Wisconsin-

Madison. Their initial computational experience is also reported.

Cross decomposition was first implemented by Van Roy (1982) for solving capacitated

facility location problems. The algorithm performed well on a common set of standard

test problems, compared with alternative algorithms.

Kaliski and Ye (1993) developed a short-cut potential reduction algorithm for linear

programming. They examined decomposition techniques which greatly reduce the

amount of work required by such interior point methods as the dual affine scaling and the

dual potential reduction algorithms. In an effort to judge the practical viability of the

decompositioning, the performance of the dual potential reduction algorithm with and

without decompositioning is compared over a set of randomly generated transportation

problems. Accompanying a theoretical justification of these techniques, the

implementation details and computational results of one such technique are presented.

By using decomposition, the subproblems in a large-scale LP problem have the property

that any key matrix can be triangularized. This allows network-like techniques to be

34

implemented on nodes of existing multicomputers to handle the subproblems. Using a

multicomputer with multiple nodes, the decomposition approach is expected to be viable.

23 Summary

To operational research analyst interested in the implementation of algorithms, it is a

combination of operational research, numerical analysis, and computer science. We

discussed computer based mathematical programming in this Chapter. We focus on linear

programming and its software arround the simplex method and interior-point methods.

We study non-linear programming and its software through unconstrained optimisation

methods and constrained optimisation methods. Instead of discuss dynamic programming

directly, we discussed an important large-scale optimisation technique - decomposition,

Dantzig-Wolfe (dual) and Benders (primal) Decomposition, Cross Decomposition, LU

Decomposition, Batels-Golub decomposition, and some computer implementations based

on decomposition, which are applied to large-scale optimisation problem. In the

appendix, we attatched some further details of the software mentioned here.

35)

os Heuristic Methods

3.1 Introduction

3.1.1 Background

Recently, attention in the literature has been increasingly focused on so-called heuristic

methods as an aid to decision-making. As the following passage demonstrates, the

literature contains sharply diverging views about heuristic methods in theory. and in

practice. It should be pointed out that there is no clear, objective way of establishing

whether or not a particular definition is correct.

It is said as early as 300 A.D. Pappas wrote to Euclid, and suggested an approach of

approximate methods - which are easy to use but which do not guarantee optimality. The

subject - heuristics has gradually been accepted through the work of well-known

mathematicians Descartes and Leibniz.

3.1.2 Clarification of the concept

There are many definitions of a heuristic method of problem solution. Researchers in

different fields often define heuristics in different ways. The following selection of

definitions should illustrate how inconsistently the term “heuristic methods” is used in the

literature.

Nicholson (1971) defines a heuristic method as a procedure "... for solving problems by

an intuitive approach in which the structure of the problem can be interpreted and

exploited intelligently to obtain a reasonable solution."

Tonge (1961) uses a definition: "by heuristics we mean principles or devices that

contribute, on the average, to reduction of search in program-solving activity. Heuristic

36

programming is the construction of problem-solving programs organised around such

principles or devices."

Wiest (1966) formulates his definition as follows: "in simplest terms a heuristic program

is a collection or combination of heuristics used for solving a particular problem",

whereby "we may describe a heuristic as any device or procedure used to reduce problem-

solving effort - in short, a rule of thumb used to solve a particular problem"

Minsky (1967) proposes that: "A program which independently decides what should be

done next is referred to as ‘heuristic’.

Newell (1969) defines heuristic methods as "programs that performed tasks requiring

intelligence when performed by human beings."

Wheeling (1969) ascribes the attribute "heuristic to any procedure (which) may sometimes

fail."

According to McMillan (1970), a heuristic method is "a computational procedure which,

when applied to any one of the class of problems for which it is applicable, will yield a

good solution in a finite number of steps."

Hinkle and Kuehn (1970) describe a method as heuristic "which searches for a satisfactory

rather than an optimal solution."

With reference to Klein (1971), Kirsch formulates his definition as follows: "A heuristic

program is a usefully defined problem-solving method with great heuristic power and

without any guarantee of finding a solution" (Kirsch,1971, pp.157).

37

Miiller-Merbach (1971, 1973a, 1973b) describes heuristic methods simply as methods of

approximation. However, if the two terms refer to the same methods and can be extended

to refer to the same methods, and are thus identical, it would be better to use the old, well-

known term “methods of approximation”. If they are, however, not identical, it is not clear

whether heuristic methods are merely a subset of the methods of approximation, or

whether the methods of approximation represent only some of the possible heuristic

methods.

Herroelen (1972) uses the following definition: "since then the terms ‘heuristic’ and

‘heuristic method’ are used to describe each rule of thumb, strategy, trick, simplification or

any other means, that may reduce the effort in the search for solutions of complex

problems by the elimination of possible but less interesting solution alternatives and thus

may lead to useful solutions that are usually non-optimal."

Beier (1973) explains the heuristic method thus: "Heuristic decision-making methods are

systematic, - i.e. non-mathematical problem-solving procedures which attempt to solve a

particular class (domain) of problems or very specific problems with the help of general

or specific heuristic rules (principles, strategies or procedural instructions), but which are

unable to guarantee an acceptable solution in individual cases and which can never

guarantee an optimal solution. A heuristic rule is a systematic procedural instruction

which tries, among other things, to reduce the complexity of the problem being solved and

to structure the procedure. Its objective is to arrive at an acceptable solution to the

problem within a pre-set time period, taking into account known methods of decision-

making and existing processing capacity."

Silver, Vidal, and Werra (1980) once defined a heuristic method as "a procedure for

solving a well-defined mathematical problem by an intuitive approach in which the

structure of the problem can be interpreted and exploited intelligently to obtain a

reasonable solution."

38

Foulds (1983) proposed "......heuristics means a method which, on the basis of experience

or judgement, seems likely to yield a good solution to a problem but which cannot be

guaranteed to produce an optimum."

Foulds (1983) suggested 5 possible ways to the strategy of developing and using

approximate methods to solve a complicated NP problem:

(1) find an efficient algorithm for the problem;

(2) show that only special cases of the problem are of interest and find an efficient

algorithm for them;

(3) relax some of the constraints of the problem and develop an algorithm for the relaxed

(easier) problem;

(4) construct an algorithm that runs quickly on most of the problems likely to be

encountered;

(5) give up the quest for optimality and provide a method which runs quickly and

produces useful but not necessarily optimal solutions.

It is extremely unlikely that aim (1) can then be achieved. Aims (2) and (3) are usually

more appropriate. However, Churchman (1970) has quite rightly warned of the dangers of

discarding the problem at hand for a surrogate which is not equivalent but which can be

solved by known methods. This practice has raised the criticism that sometimes O.R.

practitioners "bend a client's problem" so that it can be solved by a standard method,

thereby producing solutions of little interest to the client. Aim (4) is often attempted by

O.R. consultants and often achieves customer satisfaction. The simplex algorithm of

linear programming is a good illustration. Unfortunately, sometimes such an algorithm

cannot be found. He then discussed the condition of using a heuristic approach - what can

be done when we are reduced to aim (5).

Ballou (1989) also found that heuristics are not difficult to specify because researchers are

in the habit of using them constantly in daily activities.

39

This list of definitions is sufficient to illustrate that there is disagreement in the literature

about which characteristics of a heuristic method uniquely define it as “heuristic”. It is

therefore also unclear how the term can be extended to cover other methods which claim

to be “heuristic”.

According to Newell, Tonge, and Minsky, the calculations involved in differential

calculus or in the simplex method would be heuristic methods, because they without

doubt reduce in an “intelligent way” the search effort required to find a solution.

Wheeling's view is also problematic, because it does not explain whether methods should

also still be described as heuristic if they produce no solution as a result of being

prematurely interrupted, e.g. because of lack of time or money.

Hinkle/Kuehn and McMillan emphasise the search for good or satisfactory solutions. A

solution is satisfactory when it meets the requirements of the individual decision-maker.

However, because different decision-makers usually have requirements which differ in

their stringency, these attempts to produce a definition cannot differentiate between

“heuristic” and “non-heuristic” methods with any inter-subjective clarity.

Heuristic methods are, according to Wiest and Herroelen, those methods which contain

“rules of thumb”; Klein uses instead the phrase “heuristic principles”. Kirsch maintains

that heuristic methods are characterised by a “great heuristic power’, by which he means,

that these methods can, in a particular length of time, solve a great number of the

problems belonging to the class of problems for which they were developed. Since,

however, this formulation offers no quantitative information about the number of

problems to be solved or about the length of time to be specified, it also lacks inter-

subjective clarity. These comments are also valid for Beier's very detailed definition.

Furthermore, his remarks about the essential characteristics of heuristic rules are not very

40

instructive, because most of the methods that are universally regarded as “non-heuristic”

share the sort of rules that Beier claims are particularly characteristic of heuristic methods.

It is thus clear from these examples that a definition of the concept is urgently required.

One reason for the lack of precision in the definitions is that concepts are often used in the

definition which themselves need to be defined. Another reason is that every one of these

attempts at a definition lacks the necessary refinement to unambiguously distinguish

heuristic from “non-heuristic” methods.

Note that the some of above definitions are out of our discussion. It is not an easy task to

examine what the vaguely used term “heuristic methods” means in concrete terms within

a theoretical framework. We do not intend to ally heuristic with logic, philosophy, or

psychology, where it aims at investigating invention and discovery. A heuristic is

therefore defined as an algorithm which it cannot be mathematically proved to find an

optimal solution for a problem.

3.1.3. Classification of heuristics

People use similarity, precision, fruitfulness and simplicity as criteria for the heuristic

approach. However, what is the essence of heuristics? In this research we propose that

substitution is the essence of any heuristics. Heuristics must be often simpler than any

known optimisation algorithms (if exist). This simplification is carried out on

qd) prototype - problem substitution, or

(2) mathematical model - model substitution, or

(3) known or unknown algorithm - algorithm substitution.

Based on this idea, we attempt to classify major heuristics and clarify some implications

of these heuristics in this chapter.

41

3.2. Heuristic approach

3.2.1 Problem substitution heuristics

On the basis of experience or judgement, if a numerical optimisation problem is difficult

to solve, we can substitute the original problem with a solvable problem. So-called

knowledge-based heuristics and common sense heuristics may fall within this type of

heuristics, which constitutes the most interesting area in managerial problems.

Generally, knowledge representation methods may be practised as three tasks:

1) declarative knowledge, for rule based reasoning,

2) heuristic methodologies, for the deterministic and context-dependent decision

making, and

3) strictly algorithmic procedures, for the tasks inclined to data abstraction and

mathematical manipulations.

Knowledge-based heuristics are based upon the understanding of the background of the

optimisation problem.

Distribution and scheduling problems with dynamic or combinatorial structure often fall

in NP-hard. In order to solve these problems, expertise or common-sense is often a source

of inspiration.

Good heuristics are frequently the result of common sense procedures that work

effectively. They may be based on concepts, principles, and theories that relate to a

specific problem, or they may result from observing the form of optimised solutions and

mimicking them. It is not easy to recognise when good heuristics have been found, since

testing them against other methods is difficult when practical size problems are involved.

42

3.2.2 Model substitution heuristics

We consider so-called model relaxation with bounding method, as one of model

substitution heuristics, which relaxes the mathematical model of the optimisation problem

when the optimum solution can not be found. Hence, it has to provide a bound on the

value of the optimal solution, i.e., the value of the optimum solution can not be better than

the bound.

We also put model relaxation without bounding method into this category, which relaxes

the original model out of some simple rules. For example, Silver, Vidal, and Werra (1972)

presented two illustrations: 1) In an integer linear programming problem, a bound can be

obtained by ignoring the-integer constraints and solving the much simpler, continuous

variable problem. 2) In a travelling salesman problem the difficulty of solution is caused

by the constraint that every city must be visited precisely once in a single tour. Removing

the single tour constraint leads directly to a bound on the original problem.

Whenever the original problem is substituted its model will be naturally different. Model

relaxation with bound implies a restricted relaxation, i.e., even if a relaxed solution itself

may not be found, its objective value, or a bound must be determined. The value of an

optimal solution must lie between the value of the heuristic solution and the Bound:

However, it is wrong to suppose that if the value of the heuristic solution is very close to

the bound, it must be very close to an optimal solution. Actually, a heuristic solution itself

constitutes an opposite bound for optimal solution.

Another type of heuristic is to relax the mathematical properties of the original model

without bounding. Here, In Table 3.2.2a, we summarised the possible ways to substitute

the original characteristics of the mathematical model.

43

Original characteristics Substituted characteristics

NP P

Discontinuous Continuous

Non-smooth Smooth

Integer Mixed

Discrete Non-discrete

Random Determinative

Infinite Finite

Capacitated Incapacitated

Multiple Single

Derivable Differentiable

Table 3.2.2a Substitution Pattern

3.2.3 Algorithm substitution heuristics

This kind of heuristics could be the extreme value method case, which generates many

solutions and chooses the best. The so-called improvement method can also be included in

this heuristic, which searches repeatedly for a better solution on the basis of a feasible

solution. Also, it could be the modified mathematical programming method, which

simplifies the whole optimisation procedure so as to save computational effort

Substitution is not merely approximation. The question now arises as to the precise

nature of a heuristic problem-solving method. Some of the definitions cited in the

previous section regard the reduction of the search effort required to find a solution as an

essential characteristic of a heuristic method.

What is clearly meant by this is that a heuristic method does not generate every possible

node on the problem-solving tree. In an extreme case, its application may result in an

straight, unbranched solution path. If one describes the terminal nodes of the general

problem-solving tree as candidate solutions, the following statement is also valid:

heuristic methods are structured in such a way, that some of the candidate solutions are

not generated. It is thus established that the enumeration of all possible solutions is not a

heuristic method. The only criterion that has so far been established - that of neglecting

candidate solutions in the search process - is not sufficiently precise to allow any further

statements to be made about heuristic methods. However, since there are many other

methods apart from that of exhaustive enumeration which are not classified in the

literature as heuristic, the definition of a heuristic method must contain further defining

characteristics. One such characteristic referred to in the literature is the lack of a

guaranteed optimal solution. In other words, a feature which distinguishes heuristic

methods from other methods is that applying them does not guarantee that an optimal

solution will be arrived at. Therefore, of all the known methods, all those can be

eliminated as non-heuristic which converge on an optimal solution in a finite number of

transformations.

Among these are the classical analytical methods and the numerical-iterative linear

optimisation methods, to name but a few examples. In addition to these, there are a

number of methods for solving particular types of problem which usually only converge

after an infinite number of steps (e.g. methods for solving uni-dimensional problems:

Fibonacci method, Golden Section method, and most gradient methods). Since in

practice every search must be interrupted after a finite number of transformations, one

cannot guarantee that this group of methods will produce a solution either. Nevertheless,

the author's view is that these methods should not be described as “heuristic”, because

they allow an approximation to the required optimal solution to be calculated to any

degree of accuracy. In other words: after the procedure has been interrupted, a

correspondingly small neighbourhood can be identified, within which the solution must

lie. According to the view represented here, these methods are therefore not heuristic

methods, but rather approximation methods. Equally, one must conclude from this that

45

heuristic methods are not approximation methods, because they offer no proof of

convergence,

Some heuristic methods are designed for solving a special class of decision-making

problems, namely, problems which involve extreme values and upon which

supplementary conditions are imposed. These are characterised by a further property, and

this will become clear by comparing them with the corresponding convergent methods.

A distinction is normally made in relation to such problems between feasible and optimal

solutions. A result of the problem-solving process is described as feasible when it

complies with the constraints; any permissible result where the objective function has an

extreme value is optimal. If one compares the heuristic methods designed to solve this

type of problem with the corresponding non-heuristic methods which guarantee a

solution, the following difference emerges: many convergent methods, e.g., the dual

simplex and Gomory's sectional plane methods, only produce a feasible solution in the

last transformation, a solution which is however also optimal. Therefore, if the search

procedure is interrupted prematurely one cannot even get a feasible solution.

In contrast, most of the special heuristic methods for this type of problem-solving place

particular emphasis on achieving and retaining feasibility. Because this property is not

essential for our definition of heuristic methods, although numerous such methods possess

it, it should also only be seen as peripheral.

We can see that problem-solving methods should only be described as heuristic when

they

(1) work with the help of non-arbitrary decision variables;

(2) exclude potential solutions from the search process (leave some nodes unexplored);

(3) cannot give proof of convergence.

46

Thus, methods which actually do converge are also heuristic, as long as convergence

cannot be proved. Methods which were originally heuristic, but which prove to be

convergent, can therefore become finite methods with a guaranteed solution or

approximation methods.

The use of such heuristic methods is motivated by the emergence of the theory of NP-

completeness, i.e. the study of the complexity of algorithms. There is usually a finite

number of feasible solutions for a combinatorial problem. For example, a logistics

manager must, among other things, plan the structure of the logistics network, set

inventory policies, select transportation modes, set plans for contingencies to assure that

plans are being met.

33 Summary

In this Chapter we listed a number of definitions for heuristic, discussed the difference

among them, and clarified of the concept. A principle - substitution is proposed so as to

classify heuristics. Many well-known heuristics are therefore categorised as Problem

substitution heuristics, Model substitution heuristics, and Algorithm substitution

heuristics. Heuristic approach is then studied according to this classification.

47

4. Computer simulation

4.1 Introduction

4.1.1 Background

Computer simulation methods have been developed since the early 1960s and may well be

the most commonly used of all the analytical tools of operational research. Computer

simulation is a technique used to model the operation of a system and employs a computer

program to model the operation and perform simulation computations.

Then why simulate when it will be time consuming and there may be alternative

approaches? In many problems the mathematical manipulations required to derive

consequences from a symbolic model can be carried only to a point where the optimising

values of the variables are stated in terms of a complex functional relationship. As with

other models that do not utilise an explicit mathematical calculus, optimal combinations

of controllable variables must be found by a search process or some other form of

enumeration. This is a consequence of the structure of the problem, for if there were a

mathematical theory for finding the optimum, simulation would not be needed.

Though simulation can be time consuming and therefore expensive in terms of skilled

manpower, real experiments may also turn out to be expensive, particularly if something

goes wrong! Admittedly it takes a significant amount of time to produce working

computer programs for simulation models. However, once these are written then an

attractive opportunity presents itself. Namely, it is possible to simulate weeks, months or

even years in seconds of computer time. Hence a whole range of policies may be properly

compared.

Anderson et al (1991) gave some of the reasons why computer simulation is so widely

used:

48

(1) It can be used for a large number of practical problems.

(2) It can obtain good solutions to problems that are too complex to be solved with

procedures such as linear programming, waiting line models, or inventory models.

(3) The simulation approach is straightforward and hence is relatively easy to explain and

understand. As a result management confidence is increased, and consequently,

acceptance of the model is more easily obtained.

(4) Computer manufacturers have developed extensive software packages consisting of

specialised simulation programming languages, thus facilitating use of simulation in

practice.

Today management scientists are not easily separated from their computers and with good

reason. Computers have become smaller, cheaper, more powerful and easier to use by

non-specialists. In particular, the development of powerful and cheap portable machines

has opened up wide areas of work for the management scientist. With other advantages,

computer simulation may become an inevitable approach to numerical optimisation

problems.

Computer simulation is applicable in complex cases where analytical procedures cannot

be employed. The simulation model and simulator provide a convenient experimental

laboratory. Simulations are often used to compare the performance of different potential

solutions to a problem. We think that computer simulation, even without absolute

optimisation, is important because it results in a forward-looking point of view; it tries to

provide the tools that will permit the decision maker to arrive at better decisions in the

future.

4.1.2 Clarification of the concept of computer simulation

Computer simulation is a trial-and-error procedure; a variety of values is generated for the

decision variables, and the best of the feasible solutions is chosen. The principles of

49

computer simulation are simple enough. Management scientists build a model of the

system of interest, write computer programs which embody the model and use a computer

to imitate the system's behaviour when subject to a variety of operating policies. Thus the

most desirable policy may be selected.

Computer simulation provides a tool for evaluation and comparison of alternative basis of

action during decision making. It can be used as an approach to a numerical optimisation

problem.

However, there are some different opinions on this issue. Anderson et al. (1991)

concluded that "The computer simulation is one of the most frequently used management

science tools but computer simulation should not be viewed as an optimisation

technique."

Pidd (1988) pointed out that "Management scientists tend to employ mathematical and

logical models rather than scale models. These represent the important factors of a system

by a series of equations which may sometimes be solved to produce an optimal solution."

In fact, such a series of equations may sometimes to be solved to produce an optimal

solution. This is true when, for example, the model fits the structure required for linear

programming or non-linear programming.

Although computer simulation requires an additional expenditure for computing, the

results can be shown to produce the optimum which mathematical theory predicts. If

formulae for specific values cannot be derived, it is possible to obtain the optimum values

of the variables by means of a numerical approximation. Computer simulation provides a

tool for evaluation and comparison of alternative courses of action during decision

making, i.e., which can be applied to a numerical optimisation problem.

50

The word optimal solution or optimum in computer simulation may be somewhat

misleading. It does not mean the optimal solution in any absolute sense, but refers instead

to the best solution that the decision maker can attain with the resources and time

available. His method of optimising is often intuitive and therefore not explicit.

4.1.3 Categorising computer simulation

The real world is rarely kind enough to allow precise replication of an experiment. One of

the skills employed by physical scientists is the design of experiments which are

repeatable by other scientists. This is rarely possible in management science. It seems

unlikely that an organisation's competitors will sit idly by as a whole variety of pricing

policies are attempted in a bid to find the best. It is even less likely that a military

adversary will allow a replay of a battle.

Simulations are precisely repeatable. Furthermore, one of the objectives of a simulation

study may be to estimate the effect of extreme conditions and to do this in real life may be

dangerous or even illegal. An airport authority may take some persuading to allow a

doubling of the flights per day even if they do wish to know the capacity of the airport.

Simulated aircraft cause little damage when they run out of fuel in a simulated sky.

First of all, we categorise computer simulation according to the major objectives:

1) Problem-solving;

2) Problem-finding;

3) Problem-understanding.

Models that are useful to decision makers must predict the consequences of specific

actions or inputs. The ability to predict accurately a system's behaviour is not sufficient to

satisfy the decision maker's needs. They always desire the ideal action - that combination

of inputs which will most nearly obtain the goals. Throughout this research, we will focus

on computer simulation for problem-solving although it is difficult to distinguish these

purposes.

51

In problem-solving, the simulation work of such a project can be viewed as having three

phases: modelling, programming, and experimentation. Precisely, logical models are

usually required though in the case of system dynamics these are expressed in

mathematical form, which behave like or simulate the real system; at this stage, great care

ig taken to ensure that the computer simulation model is descriptive of the real system.

Accordingly, they have to make a simulation program that can be executed in a computer

environment. Then, through a series of computer runs, or experiments, they learn about

the behaviour of the simulation model. The characteristics that are observed in the model

are then used to make references about the real system. Because simulation is an

experimental approach, modelling and programming can be regarded as preliminaries to

the real business of simulation.

4.2 Computer simulation approach

4.2.1 Simulation modelling

A simulation model is a model of some situation in which the elements of the situation are

represented by arithmetic and logical processes that can be executed on a computer to

predict the dynamic properties of the situation. A simulation model construction, even

without absolute optimisation, is important because it results in a forward-looking point

of view; it tries to provide the tools that will permit the decision maker to arrive at a better

decision in the future.

In modelling even when we understand some aspects of our system better than other

aspects, we should try to avoid developing a disproportionately detailed model of the

familiar aspects. The accuracy of the resulting performance measured data will usually be

no better than the accuracy of the performance measured in the less detailed part of our

model.

52

A management scientist must be satisfied that he knows the system well enough to be sure

that the model is valid. Without this knowledge, no amount of sophisticated programming

and statistical wizardry will prevent the inevitable disaster.

4.2.2 Simulation programming

A simulation program or simulator is a computer program written to perform the

simulation computations. Any sequence of clear instructions can form the basis of a

computer program. Hence programs can be written which embody the logical processes

which make up the system.

The creators and vendors of special purpose simulation languages will argue, quite

correctly, that there is no point whatsoever in redesigning the wheel. Thousands of

simulations have been programmed since the early 1960s and general principles have

emerged from these experiences. We noticed that many programming languages are not

designed to ease the task of logical expression. A situation for numerical optimisation is

often unique in that it can not be effectively modelled using a template package or

simulation language, therefore, general-purpose programming languages must be used.

The main issue of language choice is whether to program in a specially designed

simulation language or whether to use a more general purpose language like FORTRAN,

C, C++, or Pascal. According to Thesen and Travis (1992), three types of computer

implementation of discrete event simulation are summarised in Table 4.2.3a.

53

Model type Interface User input Flexibility & Typical tool

Difficulty

Template Menus, Parameters Very low XCELL+,

mouse TBS

Simulation language | Text editor Structure, High GPSS,

parameters, SIMAN,

performance SIMSCRIPT,

measures SLAM.

Programming Text editor Structure, parameters, | Very high C, FORTRAN,

language performance Pascal measures, time-

keeping

Table 4.2.3a Three types of computer implementation

There is a growing tendency for a highly disciplined and structured approach to be taken

to the programming. This is particularly important in large or complex programs. If large

sums of money hang on the outcome of a computer simulation, then a professional

approach is clearly necessary.

It is clear that certain specific features must be provided in any simulation, e.g., a time

flow mechanism and sophisticated error messages. The latter are important because

simulation programs are notoriously difficult to debug. In addition, the tasks of debugging

and verification can be greatly eased if the syntax of the language employs simulation

terminology and also allows the entities of the system to have meaningful names. For

many reasons it may seem correct to argue that the sensible course is always to write

simulation programs in a special purpose simulation language.

54

However, there is another point of view. It can often be more convenient to write in a

general purpose language. One commonly cited reason is that the analyst may be a

member of a group which already has a significant investment of time and expertise in the

general purpose language. Thus there will be someone around to sort out the programs

later if the analyst has moved on to another job, possibly, in another organisation. A

second reason is that some of the special purpose simulation languages are suited for only

some types of system and it may be easier to write better programs in the general purpose

language. Often there is no need to write these programs as sets of simulation subroutines

are available on a commercial basis. These carry out many of the commonly occurring

tasks of a simulation.

Programming with well-defined subroutines or procedures of a manageable size is to be

encouraged for two reasons:

(1) All programs need to be verified; that is, the programmer should make certain that the

program accurately reflects the model; the model itself having been validated. This is

easier if the program consists of modules which can be individually tested.

(2) Many simulation models grow in an evolutionary manner rather than following a

precise design. This is rather easier to do in a well-structured program.

Both program design and the choice of appropriate programming languages should te

considered.

4.2.3 Simulation experimentation

Computer simulation involves experimentation on a computer-based model of some

system. The model is used as a vehicle for experimentation. Simulation is an experimental

approach; modelling, and programming can be regarded as preliminaries to

experimentation.

55

When a simulation model has been constructed, debugged, and validated, the analyst must

design an efficient method for using it to solve the problems he had first formulated. The

experiment can not be carried out without realistic data.

Some applications of computer simulation involve probabilistic components. For

example, when the computer simulation involves generating values from probability

distributions, it is called Monte Carlo simulation. Computer simulation may also be used

when there are no probabilistic components in the model. It is natural to think in terms of

adjusting the parameters of the model in order to improve the performance of the system.

When good parameter settings have been found for the model, these settings can be used

to improve the performance of the real system. In some applications where a simulator has

been developed, we can use the simulator to find the set of controllable variables that

yields the best performance of the system. This approach is suitable for the situation

where many adjustable parameters are involved.

4.3 Verification and validation

Throughout the discussion, we have made four important but unstated assumptions on

simulation:

1) The model is appropriate for the decision it is intended to support.

2) The model is a correct representation of the situation being studied.

3) The model is correctly implemented.

4) The data set collected during a run is correctly manipulated and displayed.

Unfortunately, it is not possible to guarantee that these assumptions hold for any specific

situation.

56

In order to reduce the chance of serious mistakes, verification and validation are used to

make sure that the model is correctly implemented (verification) and that it is a correct

representation of reality (validation).

Verification includes structured walk-through, diagnostic simulation runs, comparison of

a well-understood problem, and trace analysis etc.

When a simulation model has been constructed, debugged, and validated, the analyst must

design an efficient method for using it to solve the problems he had first formulated.

Usually it means the two following things that are closely linked in validation.

We may first ask: would the manager of the system accept that the results of the

simulation are effectively the same as those produced by his system? Firstly there is black

box validity; that is, ignoring the detailed internal workings of the model, does its output

accurately reflect that of the real system? In this sense, black box validity is concerned

with the predictive power of the model. Does it adequately predict how the system would

behave under given conditions? This is obviously a tricky question, but it must be faced.

The issue of black box validity is complicated by the common fact that the simulation

may be carried out because something is going wrong with the real system. Even worse, it

may be a simulation of a system that does not yet exist and there is nothing with which the

model may be directly compared.

We may also ask: do the components of the model represent known behaviour and/or any

valid theory which exists? The second consideration is that of white box validity. One

example of this is the process used to describe the arrival of customers at a queue. If the

queuing system actually exists, then data may be collected which describe the arrival

times of successive customers. At this point known theory can be useful. For arrival

processes, certain probability distributions are known to provide a good description of the

range of possible values which the inter-arrival time may take. For instance, if there is no

Sf

pattern to the arrival times then a negative exponential distribution may be appropriate -

particularly if the number of potential customers is very large. Should there be no

explanation of why the arrival pattern should be so random, then the suspicion is

heightened. If analysis reveals that the mean and standard deviation of the inter-arrival

times have very similar values then the case for accepting a negative exponential

distribution is very strong indeed. This is likely to be a valid representation of the arrival

process. In this case then, the arrival component of the model was verified by reference to

the appropriate theory. This implies that the analyst needs to be fully conversant with the

relevant theory. The same applies in the forms of simulation used in economic

forecasting. Here, the aim is to develop models which show the effect of the various

competing theories.

Some type of model is essential in computer simulation, the real system being mimicked

by unfolding the model through time. Most managerial decision making is carried out

under severe time pressure, verification and validation are something easily pushed to the

back of the mind when time is short. Whatever the type of model employed, it must be

valid if it is to be useful at all. This may seem obvious and so it should.

4.4 Summary

We discusseed clarification of the concept of computer simulation in this section. The

method to categorise computer simulation according to major objective: problem-finding,

problem-understanding; or problem-solving. Simulation approach is then studied by the

stage of simulation, ie., modelling, programming, and experimentation. We also

discussed verification and validation, which are indispensible in simulation.

58

5; A case study through different approaches

5.1 The problem for case study

In order to illustrate optimisation, heuristic, and simulation approaches, we will present a

managerial decision making problem as a concrete example. As we know, the classical

steady demand no-shortage inventory control policy using the square root formula was

established by 1915 and it is surprising that the analytical method has not been extended

to cover cases of irregular demand. This omission has been apparent during lengthy

periods of calculation (and recalculation) required by the solution of quite simple

problems using dynamic programming methods. In this Chapter we will study a case - the

replenishment decision making when demand increases in a linear trend. The notations

used in this case are as follows:

D(t) the demand rate at time t (D(t) =a + bt, b > 0);

A set-up cost, i.e., the fixed cost of a replenishment;

I stock holding cost per item per unit time;

M AJL, normalised cost;

H the time horizon;

ti the time point of the ith replenishment;

Tj the ith time interval found by the analytic algorithm;

RC; _ the cost of the ith replenishment;

RQ; __ the quantity of the ith replenishment;

TC _ the total cost.

The following analysis might have been carried out many years ago if the time variable T;

(replenishment cycle) rather than the variable RQ; (replenishment quantity) usually

chosen as the means of expression. The cycle-time is also preferable because it facilities

classification of items into groups when the inventory situation involves a large number

of items. It has the technical disadvantage in extending the analysis to the case of

stochastic demand (which will not be discussed here).

59

The instantaneous demand rate at time t is assumed as a continuous function D(t). The

demand for an inventory item in the time interval (t, t+dt) is represented by D(t)dt. The
4

replenishment quantity to be ordered at time t; is therefore J D(t)dt.
fa

It is assumed that no shortages are allowed and that a replenishment can be made at any

time point. A number of methods have been proposed for the determination of the

replenishment policy for a product where demand is increasing linearly. Without loss of

generality, we assume that the planning horizon H is finite. The initial and final inventory

levels are zero. In practice, demand will not usually cease at the horizon, the solution will

be sub-optimal, and the procedure would be to review the situation and calculate new tjs

at some point before the horizon is reached.

Referring to a replenishment policy, 0 = tg <t] <... <tj ... <tp-] < tn =H, the objective

of this managerial decision making problem is to minimise the total replenishment cost TC,

ie.,

min TC = }° RCj_1
i=l

where

RCj= Ad f (t-t;_1)D(t)dt =A + I (1/2)D(tj-1)T;? + (b/3)T; 3)

is the replenishment cost for replenishment at time t; for time period Tj = t;-t}_].

We will study this case through various methods. As an example of this algorithm, let the

demand D(t) = 900t, and H= 1, A=9,1=2.

60

5.2 An optimisation approach

Donaldson (1977) developed an analytical optimal algorithm for the replenishment policy

when there is a linear trend in demand within a time horizon. Using methods of calculus a

computationally simple procedure for determining the optimal times for replenishment of

inventory is established.

The procedure can be described as the following two cases:

Case A (D(t) = atht with a= 0)

Step 1. Determination of the optimal number of replenishment intervals - n.

a) Evaluate K = M((H3b);

b) The optimal value of n is that for which

g(n) > K 2 g(n+1),

where

g(n) = G(n) - G(n-1), n> 2,
where

nl

1/g, >-g, (1-1/Z, n>2 Gn =| & 28, ()

0 n=1

where

Wz i22
8 =) j=2

1 i=1

and

Z |=,

Zi+1 = G-2/Z;)'/2, i=.

Step 2. Determination of the optimal replenishment times.

a) The initial value is set as

to = 0; and ty = H/gp.

61

b) The analytic procedure is given as follows:

tj = (gj/gn)H, i=2,....n-1.

Case B (D(t) =a+bt witha #0)

Step 1. Solve the associated problem with demand rate D(t) = bt and time horizon H+a/b.

By using the above procedure in Case A and find the optimal number of replenishments

ne:

Step 2. Determine a non-zero replenishment point r such that t, Sa/b < tp).

It follows that the optimal number of n for the original problem is either n*-r or n*-r-1.

Step 3. Determine optimal replenishment points for each possible values of n.

a) With given equations

Zin = 3-2/2;)'/2, i=2,...0

and

Il Zj = 1+ (b/a)H,
isl

determine Zj and then Z;j for i = 2,..,n.

b) According to the above {Zj;}, the replenishment points are then given by

t= (#b)(T] Zj- 0.
jal

Step 4. Evaluate the two values of the TC to choose the optimal policy.

Since the optimisation algorithm is not only lengthy but also complex in nature, it is not

surprising a number of researchers have proposed a variety of different heuristics.

53 Heuristic approaches

5.3.1 Examples of problem substitution heuristics

a) Knowledge-based heuristics

In the above case, one of well-known heuristic algorithm is the continuous time part

period algorithm (CTPP). It is based on the principle of choosing lot sizes so as to

equalise set-up and inventory cost:

62

Ne if (t-t).,)D(t)dt
ha

This heuristic method ignores the original optimisation problem, and simply relaxes the

optimisation model to an equation. The numerical optimisation problem is replaced by an

iteration problem.

It is easy to show that the necessary condition for the CTPP can be derived as

T;2[D(tj-1)/2+(1/3)bT;] = M,

and we then have the following result (Table 5.3. 1a):

No. Replenishment Point Replenishment Cost Replenishment Quantity

ti RC. RQi-]

ik 0.0000 18.0013 27,3725

2 0.2466 18.0000 49.6639

3 0.4138 18.0000 _ 61.1491

4 0.5541 18.0000 69.5144

S} 0.6794 18.0000 76.2720

6 0.7944 18.0000. 82.0223

7 0.9018 17.3876 84.0058

Table 5.3.1a Computational results obtained by CTPP

The total replenishment cost is 125.3889, and the number of replenishments is 7.

b) Common sense heuristic

It is common sense to reduce unit cost so as to reduce the total cost. In the above case,

another well-known heuristic algorithm is the Continuous Least Unit Cost method

(CLUC). It selects the duration of the replenishment interval at each replenishment, which

63

minimises the relevant cost per item over this interval. Consequently, the optimisation

model can also be replaced by

min (cast (t+.1)D(aty f D(t)dt}

fi fet

This heuristic method is straightforward: to minimise the unit cost per period so as to

reduce the total cost.

Similarly, the necessary condition for CLUC can be then derived as follows:

T;2[D(tj.1)/2+(1/6)bT;] = M

and we have (Table 5.3. 1b):

No. Replenishment Point Replenishment Cost Replenishment Quantity

fel RC RQj-1

1 0.0000 27.0026 43.4512

2 0.3107 19.3557 58.5369

3. 0.4761 18.7950. 67.9093

4 0.6145, 18.5651 75.1611

5 0.7380, 18.4390 81.2049

6 0.8515 18.3592 86.4483

a 0.9577 10.5897 37.2884

Table 5.3.1b The computational results obtained by CLUC

The total cost is 131.1063, and the number of replenishments is 7.

5.3.2 Examples of model substitution heuristics

a) Relaxation on the objective

An adaptation of the Silver-Meal heuristic selects the next replenishment interval by

minimising the relevant cost per unit time over the duration of the replenishment interval.

64

For any given replenishment point t;_], the next replenishment point tj can be determined

by the following optimisation model

min (A+ J (t,.1)D()dt)/(t;-t)-1)
ten

That is, the heuristic method iterates the optimal solution of the relevant cost per unit

time.

The necessary condition for Silver's model can be derived as

T;2[D(t)-1)/2+(2/3)bTj] = M,

and we have (Table 5.3.2a):

No. Replenishment Point Replenishment Cost Replenishment Quantity

tel RC, RQ j-]

1 0.0000 13.5006 17.2436

2 0.1958 15.6739 38.7817

rat 0.3528 16.4672 51.8208

4 0.4895 16.8665 61.3428

5 0.6132 17.1043 68.9497

6 0.7275 17.2611 75.3476

us 0.8346 17.3720 80.9091

8 0.9362 12.5877 55.6047

Table 5.3.2a The computational results obtained by Silver's

The total replenishment cost is 126.8333, and the number of replenishments is 8.

b) Relaxation on horizon

Back to our example, Ritchie (1984) modified Donaldson's optimisation method, for a

linear increasing demand function with zero initial demand, by noting that a ratio, used by

65

Donaldson for calculating the first replenishment interval, approached a constant, 0.43, as

the number of replenishment intervals approached infinity.

Tsado (1985) extended Ritchie's result for demand functions with a non-zero initial

demand, and proposed a cubic equation to give the duration of the replenishment.

With that constant, Ritchie's cubic equation is given as follows

T;2[D(t;-1)/2+0.43bT;] = M,

and we have (Table 5.3.2b):

No. Replenishment Point Replenishment Cost Replenishment Quantity

fey RC j-1 RQj-1

1 0.0000 15.9757 23.0942

2 0.2265 17.2214 45.8176

3 0.3913 17.5245 58.0381

4 0.5311 17.6592 66.8570

3. 0.6563 17.7349 73.9231

6 0.7713 17.7833 79.8992

7 0.8789 17.8168 85.1228

8 0.9806 9.3349 17.2480

Table 5.3.2b The computational results obtained by Ritchie's

The total replenishment cost is 131.0506, and the number of replenishments is 8.

66

5.3.3. Examples of algorithm substitution heuristics

a) An eclectic heuristic

An interesting result is that the necessary conditions of the above 4 heuristics have the

same mathematical structure, and differ only by a single parameter in an equation

although these cubic equations are derived from different considerations. That is,

Tj2[D(t;-1)/2+AbT;] = M.

The parameter A is then considered as adjustable and its original economic explanation is

clear only if A € { 0.43, 2/3, 1/6, 1/3 }.

Amrani and Rand (1990) used an iterative method to solve the cubic equation, and then

chose the best replenishment policy which minimises the total replenishment cost. The

existence of a real positive solution of the cubic equation can be proved strictly, the

convergence rate of an iteration method is not satisfactory and even fails in some cases.

When compared with the results in Yang and Rand (1993), computational results show

that rounding errors were present when using the iterative method.

b) An approximation heuristic

Amrani and Rand (1990) proposed an algorithm to solve the cubic equation. An iterative

method was proposed to find the right solution out of three roots of a cubic equation. Let

T(k) be the value of Tj obtained on the kth iteration, then the cubic equation can be

rewritten as

T(k+1) = [2M D(t-1) + 2AT(K))]!/2

Initially, set T(0) = 0 when D(t;-1) > 0, normally T(k) is approaching to a positive root of

the cubic equation.

The disadvantages of an iterative algorithm are that the convergence rate and indeed

convergence itself can not be guaranteed, and moreover, the computation error

accumulates as the number of replenishments increases.

—<$<$<$—$—_—

67 ASTON UNIVERSITY
LIBRARY AKO

INFORMATION SERVICES |

c) An analytic heuristic

Yang and Rand (1993) proposed an analytic algorithm for the cubic equation. Therefore,

the above iteration heuristic can be regarded as an approximation. As indicated before, the

key requirement is to choose the particular root of a cubic equation. There is not a general

algebraic analytic formula for the roots of a polynomial equation up to power 5 or more,

implied by the Abel Theorem. ;

For the cubic equation, if the adjustable parameter > 0 and b > 0, the existence of a

unique positive root can be proved based on the mathematical properties of this common

form, especially the distribution of the three roots of the cubic equation.

Step 0. Initially, set the starting time tj and a parameter A > 0.

Step 1. Computer the following values

U = D(tj-1)/(2Ab), V =-M/(Ab);

Q=-U2/9, R= -(27V+2U3)/54;

and then the discriminate

A=Q34R2.

Step 2. If the discriminate A > 0, then go to Step 3; otherwise, go to Step 4.

Step 3. Since it can be shown that if A > 0, the other two roots are conjugate imaginary;

set

S1 =Sign(R+A!/2) Abs(R+A1/2 1/3,

So = Sign(R-A!/2) Abs(R-A!/2 1/3;

where Sign (.) is sign function and Abs(.) is the absolute value function. So the

solution required is

Tj =$1+S2-U/3,

and then stop.

Step 4. Since it can be shown that if A = 0, the other two roots are negative and equal;

and if A <0, the other two roots are negative, set

@ = arccos(R(-Q)?/2),

and

68

TA = 2(-Q)!/2cos(6/3)-U/3,

Tb = 2(-Q)!/2cos(6/3+2n/3)-U/3,

Te = 2(-Q)!/2cos(6/3+41/3)-U/3;

hence, the solution required

Tj = Max { Ta, Tb, Te },

and then stop.

Needless to say, this analytic algorithm can solve the cubic equation with greater accuracy

and less computation time than the previously proposed iterative method. -

d) An improvement heuristic

It is believed that much of the cost penalty arises from the fact that the replenishment

intervals do not coincide exactly with the time horizon H. The time of final replenishment

usually has to be adjusted to ensure coincidence with the time horizon H.

An alternative way to deal with the final replenishment, when the interval (kp-1, H) is too

narrow, is to reduce the total cost by cancelling the (n-1)th replenishment. Then the final

replenishment cost is,

RCp.2 = A+I((1/2)D(tp-2)(H-tp-2)? +(1/3)b(H-tp-2)1,

instead of (RCp-2 + RCp-1).

Obviously, if

(RCy-2 + RCp-1) > RC'p-2,

then final replenishment point tp-2 is meant by the new total cost

TC= s 2X RCj +RCp.2.
Jal

This is also a kind of algorithm substitution heuristic.

69

5.4 A computer simulation approach

a) The simulation model

The recognition of this common structure allows not only an eclectic heuristic approach,

which simply calculates the results for all four heuristic methods, but also a search

procedure. According to an analytic procedure, some other replenishment plans can be

obtained by adjusting this parameter with less computation time.

Based on this consideration, Yang and Rand (1993) present a generalised eclectic model:

Minimise { TC(A): A >0 }.

Where TC(.) is a mapping determined by the analytic procedure in Yang and Rand

(1993). Since we can find the right root of the equation quickly and accurately by the

analytic procedure, it is more practical to minimise the total cost TC by simulation with a

large number of values of the parameter A.

b) The simulation program

A program written in Turbo-Pascal is attached in the Appendix.

c) The experimentation

Referring to the well-known problem a = 0, b = 900, H = 1, A=9, and I = 2, Yang and

Rand (1990) simulate this replenishment policy with A € S2 ={i/100 : i = 1,...,99}, each

parameter determines a set of replenishments, as well as the total cost.

Figure 5.4a illustrates the total cost TC, and Figure 5.4b illustrates the number of

replenishments.

70

350

300

250

9 10 20 30 40 50 60 70 80 90 100

Lemda*100

Figure 5.4a__The total cost v. parameter 1

No
.

of

Re
pi
en
is
hm
en
ts

0 10 20 30 40 50 60 70 80 90 100

lemda*100

Figure 5.4b The number of replenishments v. parameter

Compared to the optimization approach and heuristics, the simulation approach can

provide more information about the problem. According to above figures, we can see that

71

(1) if the number of replenishments is fixed, the total cost TC is more likely to be a

decreasing convex function;

(2) it is not always a continuous one, because the final replenishment is determined;

(3) the larger A is, the greater will be the number of replenishments.

Better performance of such a decision making pattern can be found by more complicated

computer simulation. For example, for A = i/1000 where i = 1,...,1000, the more

satisfactory result is found when A = 0.3460. That is (Table 5.4b).

a2

No. Replenishment Point Replenishment Cost Replenishment Quantity

tit RC i} RQ i]

1 0.0000, 17.6718 26.7005

oy 0.2436 17.8940 49.1177

B 0.4105 17.9370. 60.7170

4 0.5508 17.9552 69.1485

5 0.6761 17.9653 75.9501

6 0.7911 17.9717 81.7321

7 0.8986 17.9412 86.6341

Table 5.4b The computational results obtained by computer simulation

The total cost is 125.3362, and the number of replenishments is 7.

Compared with the previous eclectic algorithm, the percentage increase in total cost above

the optimal is reduced from 0.1029% to 0.06%. By using this simulation approach, a

balance can be easily struck between the number of replenishments and the cost penalty.

For example, we can compare the above result when A = 0.3460 with that obtained when

A = 0.0970: the number of replenishments can be reduced from 7 to 6 at a cost penalty of

9.0377 (= 134.3739-125.3362).

The simulation can generate many alternative replenishment plans: some of which may be

more practical. For instance, if a certain period is not suitable for replenishment, we can

choose a replenishment plan by adjusting the parameter, to minimise the total cost with

the constraint.

5.5 A comparison on 12 problems

For an inventory problem with a finite planning horizon and zero initial and final

inventory level, different methods can be compared on a range of problems. The result

73

depends on the demand rate, set-up cost, stock holding cost per item per unit time, as well

as the time horizon. One may argue that one specific problem can not be representative.

Different heuristics can be tested in a specified problem so as to check the efficiency. The

results of simulation on a group of problems can indicate which heuristics’ perform the

best. In order to compare the above algorithms, the following 12 sample problems have

been tested(Table 5.5).

No. a b H A I

1 0 900, 1 9 2

2 0 900, 2 9 2

3 0 100 4 100 2

4 0 1600 3 42 0.56

5 6 1 io 30 1

6 6 1 ub 50. 1

ud 6 2 uu 60 1

8 6 1 iy 70. 1

9 6 1 ub 90 1

10 100 150 1 30 2

i 100 150 LS. 30 2

12 100 150 2 30 2

Table 5.5a. The parameters of the sample problems

We suggest a less time-consuming simultion approach by searching

Ae $1 ={i/10:i=1,...,9},

instead of

Xe $2 ={i/100 : i= 1,...,99}.

The computational results are different from Yang and Rand (1993) by column S1(Table

5.5b.).

14

Problem || The optimal %_above the optimal

No. Donaldson's _| Ritchie's _| Silver's CLUC PPA Ecl. S1 S2

1 125.26 4.6229 1.2555 4.6673 _| 0.1029 0.1029 0.3319 0.0608

2 345.78 0.5959 2.1104 1.3381 1.6275 0.5959 0.0469 0.0463

3 1122.60 0.2016 | 5.3479 10.0957_| 1.3820 0.2016 0.0158, 0.0155

4 977.17 0.0357 1.5876 5.4091 0.6230__| 0.0356 0.1319 0.0029

5 291.21 0.0258 7.6566 1.0968 __| 0.2085 0.0258 0.0619 0.0019

6 378.05 0.1748 11.7907_| 2.0514 __| 0.5622 0.1748 | 0.0414 0.0043

7 418.05, 2.2302 __| 0.5930 6.6906 3.4220 | 0.5930__| 0.0586 0.0307,

8 450.84 7.3633__| 4.2506 14.3612_| 9.3362__| 4.2506 __| 0.2269 0.0907,

9 510.84 0.0690 14.4429 | 2.0304__| 0.3953 0.0690 __| 0.0017 0.0010

10 150.42 2.7269 | 0.8682 __| 7.8399 | 4.0666 0.8682 __| 0.1534 0.0176

1 242.46 9.1443 5.4716 __| 0.4576 11.3779 _| 0.4576 __| 0.2626 __| 0.0100

12 347.64 0.0529 6.0923 1.7656 __| 0.3529 __| 0.0529 _| 0.0018 0.0005,

Overall 1.2601 4.8847 __| 5.6409 _| 2.0181 0.5418 0.1111 0.0171

Table 5.5b The computational results obtained by various algorithms

The analytic eclectic algorithm, just using the four heuristics, reduced the average

percentage above the optimum down to 0.5418%. However, the improved eclectic $1

reduces it again to 0.1111%, and S2 finally reduces the average result to only 0.0171%.

A particular heuristic may have a very poor behaviour caused by rare values of some

parameters, yet perform excellently under most other conditions. For example, Silver's

heuristic gives a good result in problem 7, while giving a poor result in problem 9. One

may even suggest that the simulation might find an optimal solution if all feasible values

for parameter A had been tested. However, we have pointed out that this approach is still a

heuristic algorithm unless it can be proved mathematically.

75

6. Extensive discussion on the three approaches

6.1 Methodology consideration

Structured approaches to numerical optimisation problems have generally evolved along

three approaches: optimisation, heuristics, and simulation. All have been used as an

integral part of decision support tools. Each offers valuable characteristics and

uniqueness.

a) Optimisation methodology

Optimisation is potentially the ideal way to solve a decision problem. The problem is

represented by means of mathematical expressions, and then the best alternative is found

through the application of mathematical logic.

This mathematical logic is embodied in such well-known procedures as differential

calculus and mathematical programming. However, this ideal approach exacts its price.

Because guaranteeing that the best solution will be found can require significant computer

running time and memory, real-world problem descriptions frequently must be

approximated and abbreviated. That is, problem descriptions can rarely be as extensive

and in as much detail using an optimisation approach as they can be for a simulation

approach.

Problem description detail must often be sacrificed for the capability to find the optimal

solution. The danger, of course, is finding an optimal solution to a problem description

that is not sufficiently close to reality to be convincing, or of experiencing computer

running times so long as to make this approach impractical. Some attempts have been

made to develop special approaches that take advantage of specific problem structures in

order to overcome some of these disadvantages.

76

b) Heuristic methodology

Well-known heuristic decision rules may not only have a sound basis in economic or

mathematical theory, but are evidently the best way to incorporate economic logic into a

stream of fast-moving decisions.

It is easy to examine an optimisation algorithm since there is only one short cut to Rome.

However, it is difficult to examine heuristics systematically since "all roads lead to

Rome". These rules that guide the solution-finding process abound in problem solving.

They are not difficult to specify because researchers are in the habit of using them

constantly in daily activities.

Good heuristics are frequently the result of common sense procedures that work

effectively. They may be based on concepts, principles, and theories that relate to a

specific problem, or they may result from observing the form of optimised solutions and

mimicking them. It is not easy to recognise when good heuristics have been found, since

testing them against other methods is difficult when practical-size problems are involved.

The use of heuristics in solving problems attempts to maintain the level of problem

description detail of simulations while offering the best solution search capability of

optimisation approaches. Simply put, heuristics are rules of thumb that direct the solution

approach toward the best solution, but do not guarantee that it will be found more

specifically.

A heuristic is a short cut process of reasoning that searches for a satisfactory, rather than

an optimal solution. The heuristic, which reduces the time spent in the searches for a

satisfactory, rather than an optimal solution, comprises a rule or a computational

procedure which restricts the number of alternative solutions to a problem, based upon the

77

analogous human trial-and-error process of reaching acceptable solutions to problems for

which optimising algorithms are not available.

The performance of this approach depends a great deal on the quality of the heuristics

used. Quality heuristics would allow optimal or near optimal solutions to be found in a

fraction of the computational time required for optimising approaches. The resulting

savings in computational time, and corresponding memory, can be used to provide more

realism in the problem description. Finding such good heuristics can be elusive and it is

often difficult to show that they work well in realistically-sized problems.

e) Computer simulation methodology

Computer simulation is a mathematical description of a decision problem, usually in

significant detail. The mathematical description is typically manipulated with the aid of a

computer due to the burdensome computations required. However, it is the extent of this

problem description detail that distinguishes simulation from other decision approaches.

Problems are solved by “costing out” various alternatives as replicated by the simulation.

Repeating the simulation numerous times produces a cost profile for the various

alternatives from which the most desirable one may be selected. Although simulations

may be written in general programming languages (FORTRAN, C, C++, BASIC, and

PASCAL), special-purpose languages exist to facilitate simulation development (SLAM,

SIMSCRIPT, and GPSS). Some simulation programs are prewritten to solve specific

problem types (SIMFACTORY and LREPS).

A characteristic of detailed simulations is that they require substantial computer running

time, especially if the problem is replicated in great detail. They also place the burden on

the user to seek out the best alternative to test.

78

We do not discuss which methodology is better for numerical optimisation problems in

managerial decision making. Throughout the rest of this Chapter we use notation "o" for

“is not better than".

6.2 Modelling consideration

Algorithms are applied to concrete model structures. Modelling effort is an important

factor in the choice of a suitable approach. We attempt to conclude some modelling

criteria for evaluating the different approaches.

a) Model modification

It is often necessary to modify a specific problem or model so as to apply known

algorithms to them. Optimisation algorithms require modification. Heuristics normally

need no modification. However, simulation requires a lot of modification.

Our judgement: Simulation e< Optimisation e Heuristics.

b) Program development

In managerial decision making it is almost impracticable to apply an algorithm without

computer or program in this IT revolution time. One such class of procedures is

computerisation. To be considered an effective alternative to model based decision

making effort, a good model must possess the following features: substantial simplicity,

reasonable computer storage requirements, reasonable computing time and cost,

acceptable accuracy and validity of solutions, robustness, generation of multiple solutions,

and user friendliness.

One is reluctant to develop a program when optimisation software is available. A standard

optimisation algorithm normally does not require program development. A non-standard

19

optimisation algorithm requires program development, which is often more complicated

and often requires much more effort than heuristics.

Heuristics normally need program development, but, it is usually not difficult to develop a

program for a heuristic algorithm. Compared to simulation, heuristics require less effort in

developing a program.

For a simulation algorithm, however, program development is usually a substantial

undertaking. Realistic simulations often require long computer programs of some

complexity. There are special purpose simulation languages and packaged systems

available to ease this task,-but it is still rarely simple. For a particular problem, one should

certainly not attempt to develop a simulation language.

Our judgement: Simulation « Optimisation « Heuristics.

c) Data processing

Some industrial problems are so complex that the standard models of operational research

are inappropriate. This sometimes occurs because: 1) the number of pieces of information

needed to describe the problem is enormous; 2) the problem has features which are

difficult to quantify or involve a conflict of objectives; 3) it may be difficult to collect

accurate data (Foulds, 1983).

If an optimisation algorithm is supported by commercial optimisation software then data

processing is not an easy task. However, data processing may be easier if the optimisation

algorithm is programmed for a specific problem.

Heuristics are often more flexible in data processing whether supported by a program or

not. A heuristic program is normally developed for a particular problem, which does not

80

have to transform crude data into specified parameters, but uses crude data directly.

Therefore, a heuristic algorithm reduces the chance of information distortion.

Similarly, the design of a simulation program often takes data processing into account.

which means that computer simulation normally requires simpler data processing.

Our judgement: Optimisation « Simulation « Heuristics.

6.3 Feasibility consideration

We provide no comfort whatsoever when telling a manager that there does not exist an

efficient method for finding a solution. However, Privately we think hard about the

technical feasibility of all the possible approaches. We attempt here to conclude some

feasibility criteria for evaluating the different approaches.

a) Optimality

The word optimality here means the difference between the optimal solution and the

solution found by one of these approaches. However, it may be indicated by the difference

between the values of the objective. With the support from optimisation software, the

optimisation approach is still a powerful tool for standard OR/MS problems where

optimality has a high priority.

An optimisation algorithm can guarantee to find an optimal solution for any instance of

the problem.

A heuristic method cannot guarantee to find an optimal solution at least in one instance of

the problem. Different heuristics may be suitable for different situations of a problem.

Optimality of a heuristic can be checked by the least upper bound according to the

conditions in a specified problem. In model relaxation with bound, we have briefly

discussed the implication of bound. A least upper bound can be used as a criterion when

81

comparing a group of heuristics. Certainly, heuristics are no panacea. A heuristic solution

would appear doubtful to managers when it is impossible to estimate its closeness to the

optimal (even if it exists).

A computer simulation cannot guarantee to find or converge on an optimal solution.

However, a trial-and-error approach can find the best solution. The word best in

simulation may be somewhat misleading. It does not mean the optimal solution in any

absolute sense, but refers instead to the best solution that the decision maker can attain

with the resources and time available. One usually selects those values of the parameters

to test in the model that have a good chance of being near the optimal solution.

Our judgement: Heuristics « Simulation « Optimisation.

b) Complexity of algorithm

Computer experts often use the term polynomially-bound time, as it is assumed that

computational time is linearly proportional to the number of elementary computational

steps. The size of a specified instance of a problem is defined to be the number of the

symbols required to describe it. So-called P or NP become very important in evaluating an

algorithm, especially for a combinatorial problem. An algorithm is considered to be

effective if it can guarantee to solve any instance of the problem for which it was designed

by performing a number of elementary computational steps where this number can be

expressed as a polynomial function of the size of the problem.

An optimisation algorithm is often of higher complexity than other algorithms. Many

numerical optimisation problems in managerial decision making fall into NP-hard

problems such as capacitated lot-sizing, and machine-scheduling, etc. This implies that no

polynomial optimisation algorithm can be possibly found.

82

A heuristic algorithm is simple and effective, therefore non-NP is being considered in the

first place.

A computer simulation is often very time-consuming and therefore is no longer judged by

the complexity of its algorithm.

Our judgement: Simulation « Optimisation « Heuristics

e) Sensitivity analysis

When using forecasts to assist in decision making, we often try to protect our solution

from forecasting errors by obtaining a measure of the sensitivity of the solution.

It is much easier to undertake sensitivity analysis using an optimisation algorithm.

Sensitivity analysis can also measure the effects on the heuristic solution, however, it is

not straightforward.

In computer simulation it is difficult to undertake sensitivity analysis because it is a trial

and error approach.

Our judgement: Simulation e Heuristicse: Optimisation

6.4 Applicability consideration

In practical OR, the hard task is to discover precisely what the real problem is. Then,

either an adequate solution can be found without detailed calculations, or alternatively

some new option must be envisaged, and this requires inspiration rather than calculation.

Different models can also help decision-makers in new situations. The decision problem

may well change significantly before a satisfactory solution is produced by a suitable

83

approach. An approach that survives and is widely used will have to be user friendly and

have other good qualities for solving numerical decision making problems. The only

accepted measure is whether it has a strong applicability. We attempt to conclude some

applicability criteria for evaluating the different approaches.

a) Computational time

The computational time of an algorithm can be tested on a specified sample or a group of

samples. It owes as much to better mathematics as to better computers.

An optimisation algorithm normally requires reasonable time whenever a low

convergence rate occurs in some optimisation algorithms.

Heuristics often require little time since the design of a heuristic algorithm takes

convergence rate into account.

Searching for an optimal solution from a computer simulation can turn out to be a

surprisingly time-consuming process.

Our judgement: Simulation « Optimisation « Heuristics

b) Managerial preference

The intuition, experience and common-sense of the manager remain indispensable for the

selection of an alternative solution and its implementation. Nevertheless, there is

something strange about that intuition: sometimes the optimal solution may appear not to

be the "best", when compared with the heuristic or simulated solution. Managers require

different alternatives for one reason or another, the more alternatives, the better.

An optimisation algorithm normally determines merely one optimal solution, e.g., some

convexity condition is satisfied.

84

A heuristic method also often determines one solution. However, since heuristics are

simpler it is possible to produce more alternatives according to different considerations.

It can be seen that simulation allows managers to explore the whole range of feasible

options in a decision problem. These options could not be explored without a powerful

computer, even though the selection process would be very slow.

Our judgement: Optimisation e Heuristics « Simulation

c) Maintenance effort

The effectiveness of maintenance directly affects the quality of managerial decision

making, which is a relatively neglected part of OR. For example, when a series of similar

products are being produced to order using the same technology, the requirement for

maintenance is minimal. However, when the technology is changing rapidly, constant

maintenance becomes necessary.

Without expert help from OR professionals, the maintenance of optimisation software is

difficult whenever there is a change in the managerial problem.

Heuristic packages normally suit actual data well so that the maintenance of such a

package would be much easier.

Maintenance of a simulation system is far more difficult or even impossible.

Our judgement: Simulation « Optimisation « Heuristics

85

Ts Major conclusions and summary

7.1 Major conclusions

The current tendency in decision making shows that companies today have to take an in-

depth look at these approaches which propel them toward a higher level. Any OR/MS

professionals may note that it is difficult to examine these approaches systematically.

We attempt to conclude the following eight points on the basis of this research:

1) No evidence can proved breakthrough in the use of optimisation algorithms and

theory

It can be seen that apart from a certain class of traditional management problems which is

solvable using standard optimisation algorithms, there is a strong possibility pure

optimisation will not be undertaken extensively for managerial decision making. But

there is no evidence that optimisation has made a breakthrough in the major areas of

optimisation such as linear programming (LP), non-linear programming (NLP), and

large-scale programming (LSP). In Chapter 2 and appendix 1, it can be shown by the fact

that most available optimisation software was still designed by classical optimisation

theory and methods, e.g., varied simplex algorithms for LP, and modified Lagrangean or

Newton algorithms for non-linear programming etc. We can conclude that it is unlikely

that some breakthrough had been made for optimisation on the basis of traditional linear

programming and non-linear (convex) programming, otherwise, we should have very

powerful optimisation-software designed by new algorithm.

2) The simplicity consideration is most important in managerial decision making

On the basis of the survey at British Airway, we found heuristics are proposed for

simplification through a kind of substitution in problem, model, or algorithm. This helps

us to classify heuristics and study them in depth. Relaxation of optimality requirements is

the central idea of heuristics. Decision making is always an on-going process so that

86

managers may not describe their problem well in the first place. Over-enthusiastic effort

becomes unnecessary or does not match a roughly defined managerial decision making

problem. In many situations, a heuristic algorithm is more suitable to be used than an

optimal algorithm. We can conclude that the simplicity of the heuristic approach makes it

an attractive decision support tool for managers because they are more interested in

decision analysis, rather than decision making.

3) Decomposition and heuristics together may solve large-scale problem

According to the study on decomposition, we found early experiences may have left a

generally negative and misleading imprint on the entire approach due to lack of extensive

and systematic studies of the behaviour of decomposition algorithms. For well-behaved

LP models, the convergence as measured by the number of times the master problems

must be resolved, is actually surprisingly fast. Slow convergence may be caused, at least

in part, by the propagation of numerical errors. There are indeed meaningful, large-scale

optimisation applications that eventually may have to rely on decomposition. Theoretical

results including principles are leading to mathematical representation, and then more

robust algorithms. New computer architecture allowing parallel computation will provide

further opportunities to realise the potential of the decomposition approach. The prospect

of decomposition using heuristics may also have significant impact on many real-world

applications.

4) Time restriction prevents managers from using optimisation approach

It goes without saying that simulation is the most unpopular approach according to time

restriction. However, it can be seen optimisation approach often fails as well. As we

know, managers would like to examine a managerial problem in breadth rather than in

depth because of time restriction. Many known managerial problems are so-called NP

problems, i.e., there does not exist a P algorithm for such a problem. Once an algorithm

falls in NP-hard or NP-complete, the implication is that the number of operations or

computation time will increase sharply with number of variables. In this situation,

87

computation time becomes non-practical for large-scale or even medium size problems. It

is therefore not surprising that a variety of heuristics has been suggested for solving

optimisation problems.

5) Data formality prevents managers from using commercial optimisation software

As indicated before, there are large number of commercial optimisation software

available. But there are few reports on their applications in decision making. In this

research we found commercial optimisation software requires rigid data formality, which

implies considerable modelling effort to transfer crude data to standard data or specified

parameters. Such a transformation may lose or distort some characteristics of the original

information. Therefore, optimisation software is restricted to standard decision making

problems. However, heuristics do not require much data formality because they are

proposed for specific problems.

6) Correct recognition of the position of OR/MS professionals is required badly

An optimisation technique is used to analyse a managerial problem, not actually to make a

decision. OR analysts are actually decision making assistants for a managerial problem,

not decision makers. Optimisation algorithm often provide managers with a unique

solution. Managers have to raise many questions about this solution, which may not be

answered by an optimisation model. If there are two or more objectives then the costly

optimisation algorithm will not guarantee a more satisfactory solution for managers.

Flexible heuristics can often serve for decision analysis purposes, while optimisation

algorithms and computer simulation imply formidable tasks that are not always worth

undertaking. This point of view also came from the interview with the key people in the

OR group in British Airways.

7) Problem-finding possibilities exist in heuristic and simulation approaches

On the basis of the research on heuristics, we found heuristics are much more flexible in

dealing with decision making problem. In a case study we studied a number of heuristics,

88

and found each of them has some special characteristics. Some problem substitution

heuristics have a clear economic background and can be understood easily. Compared to

heuristics and simulation, in reality an optimisation algorithm has no more importance for

such a managerial problem. Managers have a potentiality to try these heuristics or even

make some heuristics themselves. Furthermore, managerial decision making problems are

often multiple criteria by nature although they are modelled as single objective numerical

optimisation problems. Optimisation algorithm is basically a problem-solving approach,

while the heuristic approach is in nature both problem-finding and problem-solving. If a

managerial decision making problem is different from those classical or standard OR

problems, it often requires problem-finding which is more likely to be met by a heuristic

approach.

8) The influence of IT development will make all the approaches more powerful

The spread of personal computers is favourable for heuristics, which will become more

and more important in decision making with the development of information technology.

Most managers have some knowledge about spreadsheet and database because new

generation of managers are well prepared. However, they will benefit more from new LT.

such as data processing rather than optimisation software, which still needs OR/MS

expertise. The development of information technology increases the applicability of the

these approaches, especially simulation. These approaches will undoubtedly be built

around computer-based decision support systems. The growing number of well-designed

DSS systems in the industry may promote the use of quantitative heuristic decision

techniques.

We compared the three approaches through methodology, modelling, feasibility, and

applicability. Heuristic provides a way of quickly finding satisfactory solutions to

problems when such methods as simulation and optimisation prove undesirable or

impracticable. Simple, understandable and usable heuristic approaches for solving

managerial decision making problems are needed. It will be more attractive to managers

89

in the future with the development of IT. Traditional optimisation is sometimes

inadequate, but decomposition techniques may be promising in dealing with practical

problem, especially combined with heuristics. Simulation also has its potential with the

development of information technology. Computer simulation then may well be regarded

as the last resort. Despite this, it is surprising how often such an approach is needed.

There are certain advantages in employing a simulation approach in management science

and it may be the only way of tackling some managerial decision making problems.

7.2. Summary

This research indicates that heuristics are more suitable for managerial decision making. It

provides a way of quickly finding satisfactory solutions to problems when such methods

as simulation and optimisation prove undesirable or impracticable. It is concluded that

operations management should consider integrating these heuristic methods into a

decision support system. Diversified heuristics will be widely applied in managerial

decision making.

We hope that more OR professionals will switch their attention to heuristics. Simple,

understandable and usable heuristic approaches for solving managerial decision making

problems are needed. Such approaches will undoubtedly be built around computer-based

decision support systems. The growing number of well-designed DSS systems in industry

may promote the use of quantitative heuristic decision techniques. Heuristics will be more

attractive to managers, in the future, with the development of IT. Computer simulation

may then be regarded as the last resort. Despite this, it is surprising how often such an

approach is needed.

There are certain advantages in employing a simulation approach in management science

and it may be the only way of tackling some managerial decision making problems.

90

List of References

Amrani, M. and Rand, G.,(1990). An eclectic algorithm for inventory replenishment for

items with increasing linear trend in demand. Engineering Cost and Production
Economics. 19: 261-266.

Anderson, D.R., D.J.Sweeney, and T.A. Williams (1991) An Introduction to Management

Science, West Publishing Company.

Bartels, R.H. (1971) A stabilization of the simplex method, Numerische Mathematik 16,

pp.414-434.

Beale, E.M.L. (1984) Mathematical programming, Developments in operational research,
edited by R.W. Eglese and G.K. Rand, Pergarmon Press.

Beier, U. (1973) Zur Anwendung heuristischer Entscheidungsmethoden -bei der

Bestimmung eines Konsumprogramms. Zeitschrift fiir Betriebswirtschaft 43, 199-244.

Benders, J.F. (1962) Partitioning for solving mixed variables programming problems,

Numerische Mathematik 4, pp.238-252.

Churchman, C.W. (1970) Operations research as a profession, Management Science, 17,

B37-B53.

Dantzig, G.B. and P. Wolfe (1960) The decomposition principle for linear programs,
Operations Research 8, pp.101-111.

Donaldson, W. A., (1977). Inventory replenishment policy for a linear trend in demand-an

analytical solution. Op. Res. Quarterly 28: 663-670.

Fisher, M. L. (1981) The Lagrangean relaxation method for solving integer programming

problems, Management Science 27, pp. 1-18.

Forrest, J.J.H. and J.A. Tomlin (1977) Updating triangular factors of the basis to maintain

sparsity in the product form simplex method, Mathematical Programming 13, pp.272-

219.

Foulds, L. R. (1983) The Heuristic Problem-Solving Approach, J. Opl Res. Soc. Vol. 34,
No. 10,pp.927-934.

Geoffrion, A.M. (1974) Lagrangian relaxation for integer programming, Mathematical

Programming Study 2 pp.82-113.

Goldfarb, D. (1977) On the Bartels-Golub decomposition for linear programming bases,

Mathematical programming 13, pp.272-279.

Goyal, S.K. and Gommes, L.F., (1982). Determination of replenishment intervals for a

linear trend in demand. Working paper, Department of Quantitative Methods, Concordia

University, Canada.

91

Herroelen, W. S. (1972) Heuristic Programming in Operations Mangement. Die
Unternehmung 26, 213-231.

Himmelblau, D.M. (1979) Decomposition methods, Operations Research Support
Methodology, edited by Albert G. Holzman, pp.483-514.

Hinkle, C.L., and A. A. Kuehn. (1970)Heuriste Modells: Mapping the Maze for
Management. In: Information for Decision Making. Quantitative and Behavioral
Dimensions. Hrsg. Rappaport, A.,Englewood Cliffs, S. 78-89.

Ho, J.K. (1987) Recent advances in the decomposition approach to linear programming,
Mathematical Programming Study 31, pp.119-128.

Ho, J.K. and E. Loute (1981) An advanced implementation of the Dantzig-Wolfe

decomposition algorithm for linear programming, Mathematical Programming 20,
pp.303-326.

Ho, J.K., T.C. Lee and R.P. Sundarraj (1988) Decomposition of Linear Programs Using

Parallel Computation, Mathematical Programming 42, pp.391-405.

Holmberg, K. (1992) Linear mean value cross decomposition: a generalization of the

Kornai-Liptak Method. European Journal of Operational Research (EJO), 62(1) pp. 55-
73.

Isenberg, D.J. (1984) How senior managers think. Harvard Business Review, Nov-Dec,

pp. 81-90.

Janczyk, W.K., and J.E. Beasly (1988) "Multiple-Model OR Packages, " Journal of

Operational Research Society, Vol. 39, No. 5, pp.487-509.

Kaliski, J.A. and Y. Ye (1993) A short-cut potential reduction algorithm for linear

programming. Management Science (MCI) 39(6) pp. 757-776.

Kirsch, W. (1971) Entscheidungsprozesse. 2. Band: Informationsverarbeitungstheorie des

Entscheidungsverhaltens. Wiesbaden pp.157.

Klein, H. K. (1971) Heuristische Entscheidungsmodelle. Neue Techniken des

Programmierens und Entscheidens fiir das Management. Wiesbaden.

Lee, C.Y. (1991) An optimal algorithm for the multiproduct capacitated facility location
problem with a choice of facility type, Computers Ops. Res. 18, pp.167-182.

Liewellyn, J., and R. Sharda (1990) "Linear Programming Software: 1990 Survey,"

OR/MS Today, Vol. 17, No.5,pp. 35-47.

Markowitz, H.M. (1957) The elimination form of the inverse and its applications to linear
programming, Management Science 3, pp.255-269.

McMillan, C. (1970) Mathematical Programming: An Introduction to the Design and

Application of Optimal Decision Machines. New York u. a.

92

Minsky, M. L. (1967) Kiinstliche Intelligenz. In: Information. Computer und kiinstliche
Intelligenz. S. 191-208. Frankfurt-Main.

Moore, J.J. and S.J. Wright (1993), Optimization software guide.The Society for

Industrial and Applied Mathematics.

Miiller-Merbach, H. (1971)Operations Research. Methoden und Modelle der

Optimalplanung. 2. Aufl., Miinchen 1971.

- (1973a) Heuristische Verfahren. In: Management-Enzyklopadie. Erga
nzungsband.S.346-355.
- (1973b) OR-Ansatze zur optimalen Abteilungsgliederung in Institution. In:

Unternehmensfiihrungund Organisation.Hrsg. Kirsch, S. 93-124.

Newell, A. (1969) Heuristic Programming: Ill-Structured Problems. In: Progress in

Operations Research. Vol.III: Relationship between Operations Research and the
Computer. Hrsg. Aronofsky,J.S.:New York U.a. S. 361-414.

Noel, M-C. and Y. Smeers (1987) Nested decomposition of multistage non-linear

programs with recourse, Mathematical Programming 37, pp.131-152.

Perold, A.F. (1980) A degeneracy exploiting LU factorization for the simplex method,

Mathematical Programming 19,

Pidd, M. (1988) Computer Simulation in Management Science, 2nd edition. John Wiley

& Sons Ltd.

Pugh, D.S.; D.J. Hickson and C.R. Hinings (1979) Writers on Organizations, Penguin

Books Ltd.

Reid, J.K. (1982) A sparsity-exploiting variant of the Bartels-Golub decomposition for
linear programming bases, Mathematical Programming 24, pp.55-69.

Ritchie, E., (1984). The EOQ for linear increasing demand: A simple optimal solution.
J.Oper.Res.Soc.,35:949-952.

Roy, T.J.V. (1983) Cross decomposition for mixed integer programming, Mathematical

Programming 25, pp.46-63.

Roy, T. J. V. (1986) A cross decomposition algorithm for capacitated facility location,

Operations Research 34, pp.145-163.

Silver, E. A. and Meal, H. C., (1973). A heuristic for selecting lot size quantities for the

case of a deterministic time-varying demand rate and discrete opportunities for
replenishment. Prod. Inv. Manage., 14(2): 64-74.

Silver, E. A., (1979). A simple inventory replenishment rule for a linear trend in demand.

J.Oper.Res.Soc.,30:71-75.

93

Silver, E. A., R. Victor V. Vidal, and Dominique de Werra (1980) Atutorial on heuristic

methods, Eur. J. Operational Research 5:153-162.

Streim, H. (1975) Heuristiche Losungsverfahren Versuch einer Begriffsklarung,

Zeitschrift fiir Operations Research, Band 19, Seite 143-162. Physics-Verlag, Wiirzburg.

Thesen, A. and Travis, L.E. (1992) Simulation for Decision Making, ISBN 0-314-83549-

0; West Publishing Company.

Tonge, F. M. (1961) The Use of Heuristic Programming in Management Science.
Management science 7, 231-237.

Tsado, A. (1985). Evaluation of the performance of lot-sizing techniques on deterministic

and stochastic demand. Unpublished Ph.D. Thesis, University of Lancaster, UK.

Wheeling, R. F. (1969)Heuristic Search: Structured Problems. In: Progress in Operations
Research, Vol. III: Relationship between Operations Research and the computer. Hrsg.

Aronofsky,J. S, New York u.a. $.317-359.

Wiest, J. D. (1966) Heuristic Programs for Decision Making. Harvard Business Review

44, Heft 5, 129-143.

Yang, J., and G. K. Rand. (1993) An analytic eclectic heuristic for replenishment with

linear increasing demand, International Journal of Production Economics, 32 (1993) 261-

266.

Yurkiewicz,J., (1988) "Educational Operational Research Software: A Review,"

Interfaces, Vol. 18, No. 4, pp.59-71.

94

Appendices

L Available Commercial Optimisation Software

2. A Program for Testing Twelve Problems in the Case Study

eb)

Appendix 1. Optimisation Software

1, CPLEX

Areas covered by the software

Ready - to run applications:

CPLEX Linear Optimise

CPLEX Mixed-integer Optimise

Optimisation libraries callable from C, Fortran, and Pascal programs:

CPLEX Callable Library

CPLEX Mixed-Integer Library

The CPLEX Linear Optimise and Callable Library solve linear programming problems.

The CPLEX Mixed-Integer Optimise and Mixed-Integer Library solve integer

programming problems as well as linear programming problems. Both linear and integer

packages also solve network-structured problems with unlimited side constraints.

CPLEX products are designed to solve large, difficult problems where other linear

programming solves fail or are unacceptably slow. CPLEX algorithms are exceptionally

fast and robust, providing exceptional reliability, even for poorly scaled or numerically

difficult problems.

Typical areas of application include large models in refining, manufacturing,

banking, finance, transportation, timber, defence, energy, and logistics. CPLEX is also

used heavily in academic research in universities throughout the world.

Additional comments

The CPLEX linear programming packages use a "modified primal and dual simplex"

algorithm with multiple algorithm options for pricing and factorisation.

CPLEX solves are available in two forms:

The CPLEX Linear Optimise and Mixed-Integer Optimise are complete applications

designed for ease of use. Because a complete on-line help system exists, most users never

fully opening the package.

96

The CPLEX Callable Library and Mixed-Integer Library are in the form of callable

routines that can be used to embed optimisation functionality within user-written

applications. The callable products were designed to simplify development while

providing the flexibility developers require. CPLEX reads linear and integer problems in

several formats, including MPS format and CPLEX LP format. CPLEX also interfaces

with several modelling languages, including GAMS, AMPL, and MPL.

To support academic research, CPLEX is offered at significant discounts to academic

institutions.

2. C-WHIZ

Areas covered by the software

Linear programming models

Additional comments

C-WHIZ is an in-core implementation of the simplex algorithm. C-WHIZ accepts matrix

input in standard MPS format or from the MPSIII database. C-WHIZ is undergoing

continual enhancement. A version that removes the 32,000 row limit is being prepared.

EE LAMPS

Areas covered by the software

Linear programming and mixed-integer programming

Additional comments

LAMPS (Linear and Mathematical Programming System) offers a primal and a dual

simplex algorithm for the solution of linear programs, and a branch-and-bound algorithm

for mixed-integer programs. LAMPS is designed for the solution of large problems,

although it will operate efficiently on small-sized and medium-sized problems. Most

standard input formats are acceptable, and output (solution) reporting is very flexible.

Mixed-integer problems may define data in terms of S1 or S2 sets, general integer,

binary, and semicontinuous variables.

97

Algorithms of LAMPS are also avaible for direct use with MAGIC (a matrix generation

and reporting system) and GAMS.

4. LINDO

Areas covered by the software

Linear programming, mixed-integer linear programming, quadratic programming.

Additional comments

LINDO uses simplex and active set algorithms for linear and quadratic programming, and

a branch-and-bound approach for mixed-integer programming.

5. MINOS

Areas covered by the software

Linear programming, unconstrained and constrained non-linear optimisation.

Additional comments

Input to MINOS 5.4 is via MPS files (which contain information for the linear parts of

the objective function and constraints), SPECS files (which specify the problem types

and set various parameters), and Fortran codes (which calculate objective and constraint

functions, if non-linear). The GAMS system can be used as an alternative user interface.

See the entry on GAMS for details.

6. OSL

Areas covered by the software

Linear programming, convex quadratic programming, and mixed-integer programming

problems.

Additional comments

For linear programming, primal and dual versions of the simplex method are

implemented. a branch-and-bound technique is used for mixed-integer programming.

Volume 31 (1992) of the IBM Systems Journal contains eight articles related to OSL. An

overview of the product may be found in the article cited below.

98

Te BQPD

Areas covered by the software

BQPD solves quadratic programming problems. A general form of the problem is solved

that allows upper and lower bounds on all variables and constraints. If the Hessian matrix

Qis positive definite, then a global solution is found. The method can also be used when

Q is indefinite, in which case a Kuhn-Tucker point that is usually a local solution is

found.

Additional comments

The code implements a null-space active set method with a technique for resolving

degeneracy that guarantees that cycling does not occur even when roundoff errors are

present. Special features include a constraint prescaling routine and full documentation

through comments in the code. Special arrangements can be made for use in a

commercial environment.

8. LSSOL

Areas covered by the software

LSSOL is a Fortran package for linearly constrained linear least squares problems and

convex quadratic programming. LSSOL is designed to solve a class of linear and

quadratic programming problems of the following general form:

minimise {f(x): xe RK" }

subject to1< { ™ }<u,
Xx

where C is an m (L x N) matrix (m L may be zero) and f(x) is one of the following:

FP: None (find a feasible point for the constraints)

EP: “ex (a linear program)

QPl: %x' Ax A symmetric and positive semidefinite,

QP2: c'x+%x' Ax A symmetric and positive semidefinite,

QP3: %x'A' Ax Am Xn upper trapezoidal,

QP4: c'x+%x'A' Ax Am Xn upper trapezoidal,

99

LSI: %|b-Ax|? Amxn,

LS2: c'x+¥%|b-Ax |? AmxXn,

LS3: %|b-Ax |? Am Xn upper trapezoidal,

LS4: c'x+%|b-Ax |? Am Xn upper trapezoidal,

with c an n-vector and b an m-vector.

Additional comments

LSSOL is essentially identical to the routine EO4NCF of the NAG Fortran Library.

EO4NCF was introduced at Mark 13. LSSOI was first distributed by the Office of

Technology Licensing at Stanford in 1986. Since that time, the routine has been

continually revised. Users with older versions of LSSOL should consider obtaining a

copy of the most recent version.

9. QPOPT

Areas covered by the software

QPOPT is a FORTRAN package designed to solve linear and quadratic programming

problems of the following general form:

minimise {f(x):xe KR}
x

subject to 1< Su, subj 1 isu

where A is an m (Lx N) matrix (mL may be zero) and f(x) is one of the following:

FP: None (find a feasible point for the constraints)

Lee tex (a linear program)

QPl: %x'Hx H symmetric,

QP2: c'x+%x'Hx H symmetric,

QP3: %x'H'Hx Hm Xn upper trapezoidal,

QP4: c'x+%x'H' Hx Hm Xn upper trapezoidal,

with c an n-vector. In QP1 and QP2, there is no restriction on H apart from symmetry. If

the quadratic function is convex, a global minimum is found;

100

otherwise, a local minimum is found. The method used is most efficient when many

constraints or bounds are active at the solution. If H is positive semidefinite, it is usually

more efficient to use the package LSSOL.

Additional comments

QPOPT is essentially identical to the routine EO4NCF of the NAG FORTRAN Library.

EO4NCF was introduced at Mark 16.

The method of QPOPT is similar to the method of QPSOL, which was distributed by

Stanford University between 1983 and 1991. However, QPOPT is a substantial

improvement over QPSOL in both functionality and reliability.

10. OB1 (Optimisation with Barriers-1)

Areas covered by the software

Linear programming

Additional comments

The software has been in development since 1987. Linear programs with up to 40,000

constraints and 180,000 variables have been solved. The main algorithm is the primal-

dual interior-point method, with Mehrotra's predictor-corrector strategy.

11. BIN

Areas covered by the software

Unconstrained minimisation in a parallel computing environment. The software is

especially suited to problems with a large number of variables.

Additional Comments

BTN uses a block, truncated Newton method based on a line search.

101

12. GAUSS

Areas covered by the software

The software consists of nine packages that are designed for use with the GAUSS matrix

programming language. Four of these packages relate to optimisation; the other five

relate to statistical analysis. The four relevant packages are

OPTIMUM Unconstrained optimisation

MAXLIK Maximum likelihood estimation

NLSYS Solving non-linear equations

SIMPLEX Linear programming

Additional comments

These packages are being revised and expanded. Four methods can be chosen: Newton's

method, quasi Newton Methods, steepest-decent, and Polak-ribiere conjugate gradient

method.

13. IMSL

Areas covered by the software

Figures | and 2 provide a quick reference to the optimisation routines of the FORTRAN

Library. Only part of this coverage is available for the C Library. There are also routines

for solving systems of non-linear equations .

Additional comments

Users can include the software in their derivative works with a licensing agreement.

Contact IMSL, Inc., Sales, for more details.

102

UNCONSTRALNED
MINIMIZATION

anvanite muiuvanate

j no denvative laree-size

prooiers

vuces

7 [_poJacooran least squares

+

uwEsz

a

onsmaoth
UMPOL “4

noaervae | cveey

tear nore
Tenvauve

ours no secona
UMIDE Genvauve

Fic. 1. Unconstre:nec minimization suéroutines in tne [MSL library.

103

CONSTRAINED

Nontinear constraints

MINIMIZATION

Linear constraints

genera constraints linear oprective
DLERS

Simpie bounas
only

quadratic cprective
QPROG

nonlinear objective

no gragient
: LCONF:

LCONG

‘east squares no Jacooran
T BCLSF

———

BCLST

nonsmootn Bcror

no fisst
SCCNF

denvaave

NCCN

no second BCONG

denvanve BCCDH

BCOAH

no eradient

NCONG

 Ls

Fic. 2. Constrainea minimization subroutines in the IMSL ¢xbrary.

104

14. LANCELOT

Areas covered by the software

Unconstrained optimisation problems, systems of non-linear equations, non-linear least

squares, bound-constrained optimisation problems, and general non linearly constrained

optimisation problems. Special emphasis is placed on large-scale problems.

Additional comments .

The LANCELOT package uses an augmented Lagrangian approach to handle all

constraints other than simple bounds.

15a. NAG (C Library)

Areas covered by the software

It covers linear programming, quadratic programming, minimisation of a non-linear

function(unconstrained or bound constrained), minimisation of a sum of squares.

15b. NAG (Fortran Library)

Areas covered by the software

It covers linear programming; mixed-integer linear programming; quadratic

programming; minimisation of a non-linear function (unconstrained, bound constrained,

linearly constrained, and non linearly constrained); and minimisation of a sum of squares

(unconstrained, bound constrained, linearly constrained, and non linearly constrained).

Additional comments

For problem with non-linear constraints, a sequential QP algorithm is used.

The NAG Fortran Library is updated to a new Mark from time to time. Mark 16, which

contains improved routines for linear and quadratic programming was released in the first

half of 1993. Further developments in optimisation routines are planned for future Mark

versions.

105

16. OPTIMA

Areas covered by the software

Unconstrained optimisation, constrained optimisation, sensitivity analysis. Software is

written in Fortran 77.

17. PORT3

Areas covered by the software

General minimisation, non-linear least squares, separable non-linear least squares, linear

inequalities, linear programming, and quadratic programming. The non-linear optimises

have unconstrained and bound-constrained variants.

Additional comments

The non-linear optimises use trust-region algorithms. Software is written in ANSI Fortran

77. The general minimisation routines use either a quasi-Newton approximation to the

Hessian matrix or a Hessian provided by the caller.

18. PROCNLP

Areas covered by the software

Non-linear minimisation or maximisation with linear constraints.

Additional comments

PROC NLP is part of the SAS/OR (Operations Research) package. The current version of

PROC NLP is experimental. When PROC NLP goes into production, various extensions

will be implemented. In particular, a special algorithm for optimising a quadratic function

with linear constraints will be offered, non-linear constraints will be implemented by an

augmented Lagrangian approach, and a reduced-gradient version with sparse LU

decomposition will be provided for large and sparse systems of linear constraints.

106

19. TENMIN

Areas covered by the software

Unconstrained optimisation.

Additional Comments

The package allows the user to choose between a tensor method for unconstrained

optimisation and a standard method based on quadratic model.

20. TN

Areas covered by the software

Unconstrained minimisation and minimisation subject to bound constraints. The software

is especially well suited to problems with large numbers of variables.

21. TNPACK

Areas covered by the software

Non-linear unconstrained minimisation of large-scale separable problems. A truncated

Newton method for unconstrained minimisation has been specifically developed for

large-scale separable problems.

22. UNCMIN

Areas covered by the software

Unconstrained optimisation.

Additional comments

UNCMIN is a modular package based on a Newton or quasi-Newton approach. It allows

the user to select from various options for calculating or approximating derivatives and

for the step-selection strategy.

107

23. VEO08

Areas covered by the software

Bound-constrained non-linear optimisation with an emphasis on large-scale problems.

Additional Comments

VEO8 is a line-search method with a search direction obtained by a truncated conjugate

gradient technique.

108

2. Programs for Testing Twelve Problems in the Case Study

a. PROGRAM Donaldson(input,output);

CONST

AssumedZero = 0.00000001;

TYPE
Vector = array[1..500] of real;

VAR
ZG,T,Y,X,Z1,Z2,TT: Vector ;

ij,k,l,n,n1,n2,kk : integer ;

a,b,H,cl,c2 : real ; {The problem parameters}

Test,Cost,m,prod,cost1,cost2,zmin,zmax,ztest:real;

FUNCTION Calcul(r:real;nn:integer):real ;

VAR
P:real;

begin

X[1):=1;

For |:=2 to nn do
X[I]:=sqrt(3-2/X[I-1]);

P:=X[I];
for 1:=2 to nn do

P:=P*X([I];
Calcul :=1+H*b/a-P;

end;

PROCEDURE Resolve(a,b,H,c1,c2:real);

begin

Test := cl/(H*H*H*b*c2);
Z[2]:=sqrt(3); Y(1]:=1; G[1]:=0;

Y([2]:=Z[2]; G[2]:=1/(3*sqrt(3));
=o:

repeat

sqrt(3-(2/Z[i-1]));
Y(i):=Y[i-1]*Z[i);

Gfi):=C(YE)* YG) YE);
for k:=2 to i-1 do

Gfi}:=GLi}+C1/(Y Gi) * YE)" YG) * Yok] * Y[k]* Yk] *(1-(/z[k]));
until G[i]-G[i-1] <= Test ;

for j:=1 to i-1 do

TU):=YGVYLi-1]*H;
end;

PROCEDURE Timing(nn:integer); {Procedure determining the optimal

replenishmnt points for a number

109

nn of replenishments }

begin

for k:=1 to nn do

begin

Prod:=1;

for kk:=1 to k do
Prod:=Prod*x[kk];

TT[k]:=a/b*(Prod-1);

end;

end;

PROCEDURE Find(nn:INTEGER); {Procedure finding the optimal

number of replenishments nn}

begin

if calcul(Ztést,nn)>0 then

begin

ZMIN :=ZTEST;
ZTEST:=(ZMAX+ZTEST)/2;

end

else

begin

ZMAX:=ZTEST;

ZTEST:=(ZMIN+ZTEST)/2;
end;

until abs(calcul(ZTEST,nn))< AssumedZero;

end;

PROCEDURE Display(ii:integer;zz:vector;cc:real);

{Procedure displaying results}

begin

writeln(‘a= ',a);

writeln(‘b= ',b);

writeln('H= ',H);

writeln(‘cl=',c1);

writeln('c2=',c2);

writeln;writeln;

writeln(’ OPTIMAL POLICY’);
writeln;

writeln(' ',ii,' Replenishments');

writeln;
writeln(' —_—t(0)= 0');
for k :=1 to ii do

writeln(' t(',k,')=',zz[k]);

writeln(' COST IS ',CC);

end;

110

begin {Main program starts here}

writeln(‘ENTER a,b,H,cl,c2 ');

readIn(a); readIn (b); readin (H); readIn (c1); readin (c2);

end.

m:=cl1/c2;

IF a=0 THEN

begin

Resolve(a,b,H,cl,c2);

n:=i-1;

Cost:=n*m+a*H*H/2+b*H*H*H/3;
FOR k:=1 TO n-1 DO
Cost:=Cost-T[k]*(T[k+1]-T[k])*(a+b/2*(T[k+1]+T[k]));
Display(n,T,Cost);

end

else

begin

end;

Resolve(0,b,H+a/b,c1,c2);

k:=0;

repeat k:=k+1
until T[k]>a/b;

nl:=i-k-1;

n2:=i-k;

Find(n1);Timing(n1);

for j:=1 to nl-1 do

Z1(j):=TTG];
ZA(ai) =H;

Cost1:=n1*m+a*H*H/2+b*H*H*H/3;

for k:=1 to nl-1 do

Cost1:=Cost1-Z1 [k]*(Z1 [k+1]-Z1[k])*(a+b/2*(Z1[k+1]+Z1[k]));
Find(n2);Timing(n2);

for j:=1 to n2-1 do
Z2{j):=tth];

Z2[n2]:=h;

Cost2:=n2*m+a*H*H/2+b*H*H*H/3;

for k:=1 to n2-1 do

Cost2:=Cost2-Z2[k]*(Z2[k+1]-Z2[k])*(at+b/2*(Z2[k+1]+Z2[k]));
if Cost1<Cost2 then Display(n1,Z1,Cost1)

else Display(n2,Z2,Cost2);

111

b.
USES

Program AnalyticEclectic (input, output);

CRT;

CONST

TYPE

VAR

LargeValue = 10000000;

rmatl = array[1..365,1..4] of real;

rvecl = array[1..365] of real;

tO, tn, c0, cl, dO, di: real;

H,lemda,t: real;

a,b,c,d,Intv: real;

j,k,l,choice1 ,choice2: integer;

RN,optRN: integer;

RTime,RIntv,RQ,RC: rvecl;

optTC,optLemda: real;

optRTime,optRQ,optRC: rvec1;
TC,TQ: real;

outfile: text;

Procedure Initialisation; { Input: data}

begin

end;

ClrScr;

assign(outfile,'a:re-ling.dat');

rewrite(outfile);

begin ESN Brae to Oe a Te

do:
do
do
do:

do

do
dO :=

do
do
 = 0; t= = 90;

G0c=400-7 dl = 150s t0s= 0, m= 0: = 30; cli yt

dO :=100; d1:=150; t0:=0; tn:=1.5; c0:=30; cl :=2;}

dO): 100-dl= 150) 0 10:5 ice 2° C0150; cleo:

writeln(outfile,d0,d1,tn-t0,c0,c1);

end;

H:= tn-t0;

Procedure Unification(t,lemda: real);

begin

end;

a:=lemda*dl;

= (d0+d1*t)/2;
CeO;

d:=-cO/cl;

112

Procedure Confirmation;

begin

end;

ClrScr;

writeln(‘May I discribe your replenishment problem as follows:');

writeln(‘Initial time: ',t0:10:4);

writeln(‘Ending time: ',tn: 10:4);

writeln(‘Constant demand: ',dO: 10:4);

writeln(‘First demand rate: ',d1: 10:4);

writeln(‘Fixed replenishmnet cost: ',c0: 10:4);
writeln Unit inventory cost: ',c1: 10:4);

procedure PatternChoice;

begin

end;

writeln(‘Which heuristic would you like to choose?');

writeln;

writeln('1 Silver’);

writeln('2 CLUC’);

writeln('3 CPPA');

writeln('4 Ritchie’);

writeln('5 Eclectic: Amrani-Rand’');

writeln('6 Generalized Eclectic: Yang-Rand’);

writeln('7 Simulation: Lemda > 0’);

writeln;

readIn(choice1);

if choice1 = 1 then lemda := 2/3

else if choicel = 2 then lemda := 1/6
else if choicel = 3 then lemda := 1/3

else if choicel = 4 then lemda := 0.43

else if choice] =7 then

begin

writeln(‘Please enter your Lemda =');

readIn(lemda);

end;

Procedure OptPatternChoice;

begin

if choice] = 6 then

begin
k := 1; optTC := Largevalue;

repeat
begin

lemda := k/100;

ReplenishmentPlan(lemda);

MultiIndex(RIntv,RTime,RN);

if (TC < optTC) then

113

begin

optTC := TC;

optLemda := lemda;

optRN := RN;

end;

k :=k+1;

end;

until k = 100;

lemda := optlemda;

end;

end;

Function POWER(X,Y : real) : real;

begin
if Abs(X) < 0.000000000001 then Power := 0;

if X > 0 then Power := EXP(Y*LN(X));

if X <0 then Power := -EXP(Y*LN(Abs(X)));
end;

Function MAX(X1,X2: real) : real;

begin

if (X1 >X2) then Max := X1

else Max := X2;

end;

Procedure CubicRootFinding(a,b,c,d: real);
var

pqs: real;
temp,delta,tempt,temp 1 ,temp2,temp3: real;

Begin

begin

Intv :=0;

P
q := 2*b*b*b/27-c*b/3+d;
delta := q*q/4+p*p*p/27;

end;

{output: intv - the largest real root of a cubic equation}

begin
if (delta = 0) and (p = q) then Intv := -b/3; {This is unique root}

if delta < 0 then {Calculate the three roots}

begin

r= Sqrt(-p*p*p/27),
temp := -q/(2*r);

temp := temp/Sqrt(1-temp*temp);

temp := Pi/2 - ArcTan(temp);

temp! := 2*SQRT(-p/3)*COS(temp/3);

temp2 := 2*SQRT(-p/3)*COS(temp/3+2*PI/3);

114

end;

temp3 := 2*SQRT(-p/3)*COS(temp/3+4*PI/3);
Inty := Max(temp1,temp2);

Intv := Max(Intv,temp3);

we” — Intv := Intv-b/3;

end;

{To choose the right root}

if delta > 0 then { <=> discrimant > 0 }

begin

temp! := -q/2+Sqrt(delta);

temp2 := -q/2-Sqrt(delta);
temp! := Power(temp1,1/3);

temp2 := Power(temp2, 1/3);

Intv := temp1+temp2-b/3;

end;

end;

if intv < 0 then writeln(‘Funny! Please check your lemda and data!!");

Procedure ReplenishmentPlan(lemda:real);

var

begin

end;

t: real;

t:= 0;

j=;
RTime[1] := t0;

repeat
Unification(t,lemda);

CubicRootFinding(a,b,c,d);

Rintv[j] := Intv;

t:=t+Intv;

j=j+l;
RTimef{j] := t;

until t >= tn;

RN :=j-1;

RTime[RN+1] := tn;

RIntv[RN] := tn-RTime[RN];

Procedure Multilndex(RIntv,RTime: rvec1; RN: integer);

var

begin

i: integer;

TQ :=0; TC :=0;
Pits

repeat
RQ[i] := dO*RInty[i]+(d1/2)*(Sqr(RTime[i+1])-Sqr(RTimefi]));
RC[i] := ((1/2)*(d0+d1*RTime[i])+(d1/3)*RIntv[i})*Sqr(RIntv[i});
RC[i] := c0+c1*RC[i);

TQ := TQ+RQ[il;

TC := TC+RC[i];

115

end;

i:=i+l;

until i= RN+1;

Procedure BeautfulFinishing;

var

begin

end;

temp: real;

temp := tn-RTime[RN-2];

temp := ((1/2)*(d0+d1*RTime[RN-2])+(d1/3)*temp)*Sqr(temp);
temp := c0+cl*temp;

if temp < RC[RN-2]+RC[RN-1] then
begin

writeln(‘beautful finishing next time, Sir.')

end;

Procedure Display(RC,RQ: rvec1);

begin

end;

if choicel = 1 then writeln(outfile,'Silver:');

if choice1 = 2 then writeln(outfile,'Continuous Least Unit Cost:');

if choice1 = 3 then writeln(outfile,'Continuous Part Period Agorithm:’);

if choice1 = 4 then writeln(outfile,'Ritchie Infinity:');

if choicel = 5 then writeln(outfile,'Amrani-Rand Eclectic:');

if choice1 = 6 then writeln(outfile,"Yang-Rand Algorithm:');
if choicel = 7 then writeln(outfile,"Mr./Ms. X Heuristics:');

writeln(outfile,'lemda = ',lemda);

writeln(outfile,"No. Rep. Time Rep. Quantity Rep. Cost’);
j=l

repeat
writeln(outfile,j,' ';RTime[j]: 6:4," ',RC[j]: 6:4," ',RQ[j]: 6:4);
jet

until j = RN+1;

writeln(outfile,'Total cost = ',TC);

BEGIN
Initialisation;

Confirmation;

PatternChoice;

if choice] = 6 then

begin
k := 1; optTC := Largevalue;

repeat
begin

lemda := 0.01*k;

ReplenishmentPlan(lemda);

MultiIndex(RIntv,RTime,RN);

writeln(k,' % ');
writeln(outfile,' ',lemda: 6:4,' ',TC: 6:4,' 'JRN);

116

if (TC < optTC) then

begin

optTC := TC;
optLemda := lemda;

optRN := RN;
end;

k:=k+1;

end;

until k = 100;

lemda := optlemda;
writeln(outfile,'opt: ',lemda: 6:4,’ ',optTC: 6:4,’ ',optRN);

end;

ReplenishmentPlan(lemda);

Multiindex(RIntv,RTime,RN);
{BeautfulFinishing; this is for ending}

Display(RC,RQ);

writeln(‘TC = ',TC);

Close(outfile);

End.

117

