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This research studies three computer based approaches - optimisation, heuristic, and simulation, to 

numerical optimisation problem in managerial decision making. 

In Chapter 2 we first discuss computer based mathematical programming with the focus on linear 

programming (LP) and its software in the application of the simplex and interior-point methods. We study 
non-linear programming (NLP) and its software through unconstrained optimisation methods and 

constrained optimisation methods. Instead of discussing dynamic programming (DP) directly, we discuss an 
important large-scale optimisation technique - decomposition. A number of definitions for heuristics are 
discussed and clarified in Chapter 3. Substitution is proposed as a principle which can be used to classify 
heuristics. Since many well-known heuristics can be categorised as problem substitution heuristics, model 
substitution heuristics, or algorithm substitution heuristics. The heuristic approach is then studied according 
to these classifications. The concept of computer simulation is discussed in Chapter 4. The method to 
categorise computer simulation according to the major objectives: problem-finding, problem-understanding, 
and problem-solving. In order to demonstrate these approaches, a case study using different approaches is 
proposed in Chapter 5. 

On the basis of the discussion on managerial decision making and an interview with the OR professionals, 

we carried out an extensive discussion on these three approaches through methodology consideration, 
modelling consideration, feasibility consideration, and applicability consideration. 

This research indicates that heuristics are more suitable for managerial decision making in many situations 
because optimisation approach still needs to be improved for managerial decision making. It is concluded 
that onerations management should consider integrating these heuristic methods into a decision support 
system. Simple, understandable and usable heuristic approaches for solving managerial decision making 
problems are needed. Heuristics will be more attractive to managers in the future with the development of 
IT. Such approaches will undoubtedly be built around computer-based decision support systems. Computer 
simulation may then be regarded as the last resort. Despite this, it is surprising how often such an approach 
is needed. There are certain advantages in employing a simulation approach in management science and it 

may be the only way of tackling some managerial decision making problems. Diversified heuristics will be 

widely applied in managerial decision making. 
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1. Introduction 

1.1. Numerical optimisation problems in managerial decision making 

The task of managers is to plan, organise, and control the activities of a business. To 

accomplish this, management is usually in a constant state of decision making. Generally, 

management makes such decisions in two ways: First, the manager’s understanding and 

perception of the problems involved and their resolutions serve as the basis for choice. 

Second, mathematics, numerical methods, and simulation systems expressed in computer 

programs can assist in the decision process. 

We do not wish to make an instant judgement of a particular problem, various modes of 

approach are possible. Firstly, it may be possible to conduct experiments directly on the 

real system or physical system. Second, he may be able to construct and use a 

mathematical model of the system of interest. A third possibility is to simulate the system 

through a PC or mainframe environment. 

Referring to a managerial decision making problem, it can be mathematically classified 

into three groups: 

1) Well-structured problem such as a mathematical programming based problem or 

other standard OR problems, where it has been proved that there exists an optimal 

solution. 

2) — Ill-structured problem such as some dynamic or stochastic problems, where it has 

been proved that there is not an optimal solution. 

3) Unknown structured problem such as some complex system, where it has not been 

proved whether there is or not an optimal solution. 

A managerial decision making problem may be modelled as any one of the above. An 

optimal algorithm for a well-structured problem is a procedure which is guaranteed to 

converge to an optimal solution at any given accuracy.



Numerical optimisation problems occur in all areas of managerial decision making, 

arising whenever there is a need to minimise (or maximise) an objective function that 

depends on a set of variables while satisfying some constraints if necessary. 

1.2.‘ Popular approaches 

It is well-known that an optimisation algorithm will determine an optimum of a well- 

formulated numerical optimisation problem. By definition, there does not exist any other 

solution which gives a better value of the objective than that of the optimum. Attempting 

to improve the quality of managerial decisions, many OR/MS people continue to explore 

the opportunity to develop optimisation algorithms and their mathematical theory. 

Basically, five ways exist for finding an optimum once a model has been developed: 

1. The most commonly used method is the intuitive procedure. 

2. The first most commonly used method for finding an optimum is differential 

calculus, a branch of classic mathematics. 

3. A form of optimisation is known as mathematical programming or extremum- 

finding, e.g., linear programming, and non-linear programming etc. 

4. A currently used method is the heuristic method, which is capable of formal 

presentation, but does not guarantee optimality. 

5. A direct search in conjunction with computer simulation for the optimum becomes 

necessary when a model does not fulfil the requirements for either calculus or 

extremum-finding. 

The first method is not capable of formal presentation and, therefore, will not be 

discussed further. 

Assumptions on the second method must be made about the continuity or even 

differentiability of the process, that is, the process cannot have discrete changes of value.



These assumptions do not hold in many business situations. The techniques of calculus, 

apparently so powerful for studying the physical world, fail in many elementary business 

situations because of the difficulty in defining an adequate mathematical expression of the 

problem. So they will also not be discussed further. 

Mathematical programming algorithms require that the model be formulated according to 

specific assumptions. As an example, the linear programming procedure is the prototype 

extremum-finding algorithm. Linear programming, which became significant with the 

discovery of the simplex algorithm, assures that the optimum will be found efficiently in 

linear allocation problems. Other extremum-finding procedures are available for 

inventories, equipment replacement, and some simple queuing situations. 

Mathematicians discovered that the golden principle of optimisation: to check every 

feasible solution and to find the best, was wrong. This approach is far from being practical 

since the feasible solutions of a selection and arrangement problem would increase 

sharply with the size of the problem. In this situation, heuristics are the only way to solve 

a combinatorial optimisation problem. Therefore, it is not surprising that people choose 

heuristics when optimisation becomes impossible. The heuristic depends upon a concrete 

modelling situation. Simplification is the major principle whenever it is applied to an 

optimisation problem. 

In the final method, the word ‘search’ should not be confused with search theory, which is 

a particular type of model dealing with situations in which one object searching tor 

another. 

Some managerial decision making problems fall into combinatorial optimisation where 

objects are discrete, such as sequencing, scheduling, routing, layout and design problems. 

Apart from the above five optimisation methods, a relatively new area of mathematics is 

termed combinatorial optimisation. It is often described as the selection and arrangement



of discrete objects. There is usually a finite number of feasible solutions to each instance 

of these problems. Therefore it seems intuitive that the fundamental theorem of 

combinatorial optimisation could be employed: examine every feasible solution and 

choose the best. Unfortunately, there are usually far too many solutions for this approach 

to be practical. In order to search for optimum decisions, sometimes solution procedure is 

purely intuitive; sometimes it is made under a set of guidelines or rules of thumb or 

heuristics; sometimes it is made by using more formal techniques such as hill climbing or 

random search. 

Managers expect powerful tools for comparing alternative scenarios quantitatively, for 

making the effects of decisions visible and hence open to discussion, and for reducing 

uncertainty in complex situations. None of us should take the decision out of the 

manager's hands; we should help him to improve the quality of his decisions and to 

shorten the time to reach them. When it is necessary for managers to make decisions, 

Operational Research (OR) and Management Science (MS) can do more for them than 

many of the managers think. This is achieved by revealing the consequences of possible 

decisions in as quantitative a way as possible. 

1.3. The nature of managerial decision making 

After a decade of belt-tightening recession, intense cost pressure and fierce competition 

are driving companies to extract even more efficiency and productivity from managerial 

decision making, which becomes one of the decisive drivers of success or failure for 

companies of all sizes. In this section we briefly discuss the nature of managerial decision 

making. 

Managers are often regarded as rational, purposeful, and decisive. However, we see them 

as going through a series of stages of analysis before deciding what to do.



The doing comes from the planning, planning comes from the thinking. Isenburg (1984) 

explored how senior managers think, he suggests two findings: First, it is hard to pinpoint 

if or when they actually make decisions about major business or organisational issues on 

their own. And second, they seldom think in ways that one might simply view as 

"rational," i.e., they rarely systematically formulate goals, assess their worth, evaluate the 

probabilities of alternative ways of reaching them, and choose the path that maximise 

expected return. Rather, managers frequently bypass rigorous, and analytical planning 

altogether, particularly when they face difficult, novel, or extremely entangled problems. 

When they do use analysis for a prolonged time, it is always in conjunction with intuition. 

On what basis does the manager make his decision? Economists assumed complete 

rationality: The model was that of an economic man who deals with the real world in all 

its complexity, and who selects the rationally determined best course from all those 

available to him in order to maximise his return. It can be seen that classical theory tends 

to view a firm as an entrepreneur rather than as an organisation, assuming perfect 

knowledge of all market conditions, stress profit maximisation as the goal. It takes a firm 

to be an omnisciently rational system of business. 

In place of an economic man Herbert Simon proposed a model of administrative man. 

While economic man selects the best course from those available to him, administrative 

man looks for a course of action that is satisfactory or good enough(Pugh, Hickson, 

Hingings, 1979). 

In the place of an omnisciently rational system Richard Cyert and James March view a 

firm as an adaptively rational system, adapting and responding to a variety of internal and 

external constraints in arriving at decisions. Their behavioural theory of the firm is a 

notable effort to link classical economics theory to contemporary organisation theory. It is 

an attempt to describe and to explain how business decisions come to be made. Cyert and 

March take business firms as their starting point, and specifically have in mind the large 
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multi-product organisation operating under imperfect competition. The theory is about 

decisions such as what price to aim at, what volume to produce, and how resources are to 

be allocated within a firm. Decisions of these kinds are seen as choices, made in terms of 

objectives, from among a set of alternatives on the basis of whatever information is 

available(Pugh, Hickson, Hingings, 1979). 

The three approaches to the numerical optimisation problem in managerial decision 

making can be regarded as method of selecting decision. Rivett (1994) proposed three 

basic elements in any decision: 

1) The range of choice. 

2) The consequences of each of these choices. 

3) The objective(s) involved. 

According to these elements, we will examine whether numerical optimisation plays an 

important role in managerial decision making. 

In this research we suppose that a managerial decision making problem can be modelled 

well as a numerical optimisation problem in the cases where the range of choice is so 

limited, the consequence of each of them is so well determined and measured, and the 

objective is a single statement. 

Referring to the range of choice, the modeller should have the knowledge that all the 

choices will be compared within the permitted time and available resources. 

Referring to the consequences of each of these choices, all measurement involves a 

viewpoint of the modeller's in managerial decision making, for the units express what is 

thought to be important. Measures can be different, e.g., the cost consideration in the 

replenishment problem is expressed in cost per unit item, or cost per unit time, which deal 

with different objectives and are of interest to different people. 
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Referring to the objective(s) involved, there might be a number of conflicting objectives 

in a company. We often find many managers would like to accomplish more in less time. 

One of the implications is that when a manager addresses any particular problem, he calls 

a number of related problems to mind at the same time. For example, a sales manager may 

prefer better quality and their product line to be as full as possible with a large number of 

options but ignore the limited capacity and additional cost; a production manager may 

insist on the importance of synchronous manufacturing but ignore high inventory cost; a 

purchasing manager may emphasise the availability of raw materials and components but 

ignore financial difficulty and limited warehouse space; an inventory manager may 

attempt to reduce his inventory level but ignore current production capacity or favourable 

purchase prices. However, the managerial decision making here is much more concerned 

with single objective problem. 

Any numerical optimisation problem should be represented by a mathematical model. In 

other words, model-building plays an important part in managerial decision making. 

Models offer insight and the possibility to compare decision scenarios with each other. 

Almost always the computer is an indispensable tool in today's management practice. A 

large part of the OR techniques can be used on the personal computers, software is 

becoming more and more user-friendly and cheaper. In recent years, there has been an 

enormous growth in the ease with which a problem area can be represented by a 

numerical model that the managers consider sufficiently realistic. Large quantities of data 

can easily be stored in databases that are simple to access. Operational research has 

developed powerful tools for comparing alternative scenarios quantitatively and for 

reducing uncertainty in complex situations. 

When it is necessary for managers to make quantitative decisions, a numerical 

optimisation problem can help them more than many of them think. OR workers do not 

take decisions out of the manager's hands; but help him to improve the quality of the 

decisions and shorten the time to reach them. We also fully understand intuition, 
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experience and common-sense of the manager remain indispensable for the final two 

steps: the selection of a chosen solution and its implementation. 

1.4 Astory learnt from British Airways 

In the previous section we discussed the nature of managerial decision making. Basically, 

most decisions are concerned not with searching for the sharpest needle in the haystack 

but with searching for a needle sharp enough to sew with. The development in 

management has been due to the application of such techniques as optimisation, 

heuristics, and computer simulation. Bearing this thought in mind, it is necessary to find 

out their characteristic, implications, and influence on managerial decision making. 

At the initial stage of this research, I interviewed some key OR staff at Heathrow. The OR 

group at British Airways is a very active and successful team. They first admitted that they 

did do work for the engineering group but very little optimisation. During the interview, 

they kindly provided me with a set of papers, and plotted the history of one of their 

problems, which was most amenable to optimisation techniques. 

The interesting managerial decision making problem is the so-called Ground Staff 

Rostering Schedule in British Airways: Basically the twenty four hours of the day are split 

into 15 minute periods, so each line up is 15 minutes. The assignment is the number of 

ground staff you need in that 15 minute period in order to complete the work. This is, 

ground staff checking people in for flights at terminal one at Heathrow. So you can see it 

peaks in the morning, right, ..., and peaks in the evening. The task is then to minimise the 

number of ground staff that you need in the day to actually work this roster. But you have 

got a different work load for different days of the week (i.e., the constraints vary with 

time). Furthermore, you also have got different ways of doing the rostering (i.e., the 

objective function varies with different service patterns). 
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So it is an integer program in that you need polynomials as input. You can formulate it as 

a linear program or you can solve it by using heuristics. | am very much more interested in 

which approach is most suitable. 

It is said that four aspects of change in British Airways combined to influence the use of 

one of the popular optimisation ‘techniques for this problem - Linear Programming. 

1) Changes in the business environment 

The increasing intensity of competition has put pressure on costs and efficiency, and 

produced an increase in the frequency and degree of schedule changes. An increasing 

realisation that manpower planning and rostering are both necessary and desirable 

has developed. This has been matched by a decrease in staff/union resistance to 

flexible rostering. 

2) Changes in the nature and ability of users 

" Many of the changes were enabled and encouraged by OR's contribution. The story 

tells of users who were initially resistant to change and to computers becoming 

skilled roster analysts and model users; then partners in the development of methods 

and techniques, and finally highly skilled, computer literate, demanding users. 

3) Changes in information technology 

The introduction of a mainframe DEC 10 prefaced a successful approach to OR 

epitomised by heuristic modelling within a user-friendly, computerised decision 

support system. PCs raised user expectations even further making the DEC 10 user 

interface look primitive. LP packages have improved dramatically over the period of 

its introduction. 

14



4) Changes in the practice of OR in British Airways 

OR was changed by the growth and success of the DSS approach to OR, with its 

mistrust of black box solutions, and its reliance on user friendly DSS. In recent 

years, OR has been further changed by the loss of uniqueness and the leverage that 

DSS development has offered, as the I.T. professionals began to realise the power 

and need for a good DSS. Both of these points had some impact on the applicability 

of an optimisation approach such as LP. 

It is also said that the OR group at British Airways has moved from a position of 

intellectual leadership to one of intellectual partnership (Graeme Davison, 1989). As a 

consequence, British Airways has achieved cost savings that run into many millions of 

pounds, while many other British industries have struggled and failed to reach first base in 

the quest to introduce flexible rosters. 

On the basis of OR practice in British Airways, Graeme Davison (1989) described when 

they used linear programming and when they used heuristics and why. He described the 

on/off story of ground staff rostering in British Airways and the perhaps over-ambitious 

attempt to use the optimisation approach of LP or solve the workload cover and rostering 

problems in one step, How its black box image of LP was its downfall, leading to two 

separate heuristic models being used and how LP has recently re-emerged to solve a cut 

down version of the total requirement (i.e., covering problem), and how, alongside, some 

simple heuristics have been used. 

Referring to the ground staff rostering problem, the expectation from the managers and 

limitation of the linear programming are summarised as follows: 

1) Management and unions had quickly realised that the model was not always realistic, 

in that it could not model soft constraints (‘nice to haves’). Also, it could not deal 

with the social aspects of rostering. 
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2) As users began to understand what was possible the constraints had become ever more 

complex. e.g. The model could not recommend shift start and finish times; it did not 

handle meal breaks well. 

3) The LP could produce only one solution. Negotiations are obviously not very 

worthwhile if only one option is available. The unions were particularly unhappy 

about this aspect. This unhappiness was unnecessary, since there are usually many 

feasible roster patterns, for a given set of workload cover requirements. 

4) Increasingly, the management wanted to apply the model more widely to more work 

areas. New applications required re-modelling of LP formulation that only OR 

analysts could do. It was also necessary for OR analysts to run the model to manage 

the integer heuristic when it did not work. 

5) The users wanted to evaluate more options. They started saying "what if?", "yes 

but!". By necessity, the model became surrounded with simple heuristic and even 

deterministic models. These often included graphs to help explain what was going on 

in the model. 

Tt goes without saying that these facts enforced some viewpoints shared by a number of 

OR professionals as well. 

OR practitioners may take one final lesson from this story in British Airways. We believe 

that the disadvantages of LPs are also those of optimisation algorithms. What I leant from 

the interview definitely convinced me that my research direction was basically right. It is 

then necessary to study major computer based approaches (optimisation algorithms, 

heuristics, and simulation) to numerical optimisation problems, and their suitability in 

managerial decision making. 

1.5 The objective of this research 

A number of OR specialists are proud of their ability in problem-solving, especially for 

well-known standard problems. Some of them restrict themselves to standard problems so 
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as to gain recognition from colleagues within their academic circle. The crisis in OR has 

been forecast by several leading OR/MS professionals. Most of the work in Operational 

Research has been on the existence and finding of an optimal solution theoretically, while 

there should have been increasing emphasis on finding the best solution practically. 

Precisely the problem is partly caused by too much effort being wrongly put on pure 

optimisation. 

Optimisation methods are not the only approach in managerial decision making. Two 

other closely-related approaches, central to numerical optimisation problems, are the 

heuristic and computer simulation methods. 

Heuristic methods often determine good solutions to numerical optimisation problems. 

These methods play an important role in many managerial decision making problems. 

Simulation is defined as a solution procedure that determines the best solution of a 

simulated problem. It may not be regarded as an efficient tool for optimisation problems, 

but becomes more important in managerial decision making with the development of 

information technology (IT). 

Criteria commonly used to choose algorithms include accuracy, effectiveness, simplicity, 

and how economical they are. Referring to any algorithm, however, managers more often 

take into account efficiency, competency, and handiness. It can be seen that rules of 

thumb are used to select these three approaches. With conventional optimisation 

techniques, controversial heuristics, and formidable computer simulation, the question 

that has been raised during the last decade is: 

"Which technique is more suitable for managerial decision making?" 

Optimisation algorithms, heuristics, and computer simulation are considered as the 

available mathematical and computational tools. We will concentrate on why and how 

one should use them in certain circumstances. 
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In this research, we intend to identify feasible directions of promising areas for future 

research and application, and especially to question the position of optimisation 

algorithms in managerial decision making. 

16 The layout of this research 

A fairly general managerial problem can be formulated as a linear programming or non- 

linear programming model. Without the assistance of a computer, these optimisation 

algorithms can hardly be applied to a practical problem. Currently, there is a leree amount 

of mathematical programming based software available. In Chapter 2 we intend to 

investigate the algorithms and their software associated with mathematical programming. 

In order to compare blossoming heuristics, we will focus on investigating different 

heuristic thoughts in Chapter 3. A fully parallel study on heuristics is not possible since 

there are few commercial packages available although a large number of packages are 

coming forth at company or research level. 

Simulations are even more difficult to analyse. Therefore, we will study the three 

procedures in computer simulation in Chapter 4. 

In order to clarify major principles in the three approaches, we will undertake further 

examination through a case study. A number of heuristic methods are presented in order 

to illustrate some of the ideas discussed in Chapter 5. 

Referring to methodology, modelling, feasibility, and applicability, we extensively discuss 

their roles in the three approaches to managerial decision making in Chapter 6. 
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2, Optimisation approach 

21 Introduction 

According to mathematical structure, we will discuss mathematical programming, which 

has been widely used in managerial decision making. Mathematical programming means 

different things to different people. To those interested in convex analysis, it is a branch 

of pure mathematics. To those interested in algorithms, it is a branch of numerical 

analysis. To those interested in the implementation of algorithms, it is a branch of 

computer science. To those interested in advising management, it is a branch of 

operational research. 

Although mathematical programming does not solve all the world's problems, it does 

provide a convenient way to derive the quantitative conclusions that follow from a set of 

assumptions. So its application will continue to expand with the increasing availability of 

powerful computing facilities. 

Many management applications are established linear programming (LP) models that are 

run regularly every quarter, month, week or even day as an established routine of 

management control. We noticed that LP codes can not handle many decision ating 

problems because some constraints may not be so rigid as linear, the objective itself may 

be non-linear, and some variables may be uncertain. Many managers may regard non- 

linear programming (NLP) as a technical matter of no direct relevance to them. There is 

still lack of evidence that major progress has been made in non-linear optimisation. We 

notice that the progress over the last 30 years owes as much to better mathematics as to 

better computers. 

We do not intend to discuss here dynamic programming in breadth, but note it often 

becomes a large-scale optimisation problem or can be handled by heuristics. Such a 

formulation containing an unusually large number of nonzero coefficients may cause 
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unexpected difficulties. We are interested in the main features underlying recent progress. 

These are triangular factorisation of the basis and the use of element pools. Thus we will 

discuss an important large-scale optimisation technique - decomposition, which can be 

applied to dynamic programming. 

2.2 Mathematical programming approach 

2.2.1 Linear programming and its software 

a) Introduction 

There are many applications of linear programming in managerial decision making. The 

basic problem of linear programming is to minimise a linear objective function of 

continuous real variables, subject to linear constraints. 

For purposes of describing and analysing algorithms, the problem is often stated in the 

standard form 

min{c'x : Ax =b, x20}, 

where x € 9" is the unknown vector, c € KR" is the cost vector, and A € RMN js the 

constraint matrix. 

The feasible region described by the constraints {x : Ax = b, x 2 0} is a polytope, or 

simplex. It can be proved that at least one member of the optimal solution set lies at a 

vertex (extreme point) of this poiytope. 

After its discovery by Dantzig in the 1940s, the simplex method was unrivalled until the 

late 1980s for its utility in solving practical linear programming problems (Moore and 

Wright, 1993). Although never observed in practical problems, the worst-case behaviour 

of the algorithm is that the number of iterations or operations may be exponential in the 
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number of unknown variables. This poor performance led to an ongoing search for 

algorithms with better computational complexity. 

This search continued until the late 1970s, when the first polynomial-time algorithm - 

Khachiyan's ellipsoid method appeared (Moore and Wright, 1993). Most interior-point 

methods, which we describe later, also have polynomial complexity. 

b) The simplex method 

This method generates a sequence of feasible iterates by repeatedly moving from one 

vertex of the feasible set to an adjacent vertex with a lower value of the objective 

function. The optimum can then be finally obtained at a vertex. 

Beale (1984) noticed that "In nearly all practical mathematical programming problems, a 

typical variable occurs in not more than about 6 constraints. This is true whether the 

constraints are linear or non-linear, and whether the variables are continuous or discrete. 

So large problems are nearly always very sparse." 

Computer programs for solving linear programming problems by the simplex method 

have existed since the early 1950s. They retain their central place in mathematical 

programming systems because successive implementations have exploited sparseness 

more and more efficiently. The steady progress that continues to be made in this process is 

remarkable. 

The CPLEX, C-WHIZ, FortLP, LAMPS, LINDO, MINOS, OSL, and PC-PROG packages 

can be used to solve large-scale problems. Each of these packages accepts input in the 

industry-standard MPS format. Additionally, some have their own customised input 

format(for example, CPLEX LP format for CPLEX, direct screen input for PC-PROG). 

Others can be operated in conjunction with modelling languages (CPLEX, LAMPS, 

MINOS, and OSL interface with GAMS; LINDO and OSL interface with AMPL). 
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Recently, interfaces between spreadsheet programs and linear programming packages 

have become available. The What's Best! package links a wide range of standard 

spreadsheets (including Lotus 1-2-3 and Quattro-pro) to LINDO. 

The IMSL and NAG libraries contain simplex-based subroutines. The BQPD package is 

aimed primarily at quadratic programming problems, but it does solve linear 

programming problems as a special case. It can take advantage of sparsity; as with the 

libraries above, but it is the user's responsibility to supply the problem data through 

subroutine arguments. 

The packages LSSOL and QPOPT are aimed at linear least squares or quadratic 

programming problems but, as part of their capability, they can solve small to medium 

scale linear programming problems. 

c) Interior-point methods 

The announcement by Karmarkar (1984) that he had developed a fast algorithm that 

generated iterates that lie in the interior of the feasible set (rather than on the boundary, 

such as simplex methods). Since then, there has been intense research into a variety of 

methods that maintain strict feasibility of all iterates, at least with respect to the inequality 

constraints. 

Interior-point products such as OB1, OSL, and KORBX have emerged and have proven to 

be competitive with, and often superior to, the best simplex packages, especially on large 

problems. 

Some general patterns emerge in glancing at the survey of LP software. The most 

noticeable change is in the size of LP problems that can be solved on a PC. Compared to 

the earliest LP packages available for microcomputers, there has been an enormous 
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increase in the size of LP problems that can be tackled by a PC program. This has come 

about due to the extended memory addressing capabilities of software. 

Most programs do not specify any internal limits on problem size any more. By adding 

memory, one can solve fairly large problems. According to one test mentioned by Sharda 

(1992), operational researchers were able to solve LP problems with as many as 367,000 

non-zeroes; 16,000 rows or 69,000 columns on a desktop machine in about two hours. 

The practical time limit may be a more significant restriction than the advertised size limit 

in considering any of these programs. Software optimised for workstations solved the 

problem in even less time. This suggests that serious optimisation is rapidly becoming 

practical on a desktop computer. 

One other limitation is in the ability to move large problems from one computer to 

another using secondary storage media. This proved to be a bigger bottleneck than the 

capacity of the software. Of course, one can use the super high capacity disk drives or 

portable hard disks to move problems from one computer to another. Until these 

technologies become affordable and widely available, networks are obviously the only 

way to move problems from one environment to another. Thus the problem size capacity 

does not appear to be a significant issue any more. 

Sharda (1992) surveyed linear programming software for personal computers. The 

availability and capability of linear programming (LP) software has kept pace with the 

growth in computer hardware technology. In order to keep OR/MS protessionais abreasi 

of recent development in this area, OR/MS Today initiated a new service in October 1990 

by publishing a survey of LP software for desktop computers. This is an update of the 

earlier survey. It indicates that several exciting trends in LP software are emerging. 

Referring to hardware requirements, if a program can run on any of the IBM-PC 

compatible computers (XT/AT and higher), then it is able to run on PC/MS-DOS 
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machines. If a program requires a computer based on an Intel 80386 or higher processor, 

it is regarded as another class. Obviously, all programs capable of running on “IBM 

compatible machines” can run on 80386/80486 machines. Several programs such as Best 

Answer!M, GINO, LINDO, LINGO, Microsoft Excel 4.0, What's Best! and XA, are 

available for the Macintosh environment and workstations. 
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2.2.2 Non-linear programming and its software 

a) Introduction 

Considerable progress has been made recently on hill-climbing methods for finding 

possibly local optima for non-linear functions, subject to linear or non-linear constraints. 

Either Quasi-Newton or conjugate gradient methods can be used to solve unconstrained 

optimisation problems, assuming that function values and first derivatives, but not second 

derivatives,can conveniently be computed. 

A consensus seems to be emerging about the general strategy for adapting these methods 

to constrained optimisation. The trial solutions should satisfy linear constraints. They 

should also satisfy linear approximations to non-linear constraints, with the non-linearities 

thrown into the objective function through the Lagrangean multipliers. 

We need not be concerned with these methods if our non-linear optimisation problems are 

all small, on the grounds that a primitive algorithm should be able to solve a small 

problem on a powerful computer. But this is a dangerous conclusion, since inefficient 

algorithms usually produce very inaccurate answers because of round-off errors. 

b) Unconstrained optimisation methods 

The unconstrained optimisation problem is central to the development of optimisation 

software since constrained optimisation algorithms are often ‘extensions of unconstrained 

algorithms. In the unconstrained optimisation problem 

min{ f(x): xe R2 } 

we seek a local minimum of a real-valued function f defined on 94, that is, a vector x € 

SR" such that f(x*) < f(x) for all x € KR" near x*. We do not discuss global minimisation 

algorithms because at present there is no widely available code for global minimisation. 
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The well-known algorithm is probably the Newton method based upon the computation of 

the gradient vector and/or the Hessian matrix. According to Moore and Wright (1993), 

versions of Newton's method are implemented in BTN, GAUSS, IMSL, LANCELOT, 

NAG, OPTIMA, PORT 3, PROC NLP, TENMIN, TN, TNPACK, UNCMIN, and VE08. 

These codes enforce convergence when the initial point is not close to a minimise by 

using either a line-search or a trust-region approach, These two approaches differ mainly 

in the way they treat indefiniteness in the Hessian matrix. 

Nevertheless, Quasi-Newton methods can be used when the Hessian matrix is difficult or 

time-consuming to evaluate. Instead of obtaining an estimate of the Hessian matrix at a 

single point , these methods gradually build up an approximate Hessian matrix by using 

gradient information from some or all of the previous iterates visited by the algorithm. 

GAUSS, IMSL, MATLAB, NAG, OPTIMA, and PROC NLP implement Quasi-Newton 

methods. 

c) Constrained optimisation methods 

The general constrained optimisation problem is to minimise a non-linear function subject 

to non-linear constraints. 

min{ f(x) : gj(x) $0, iel, gj(x) = 0, i €B}, 

where each gj(x) is a mapping from KR" to K, and I and E are index sets for inequality and 

equality constraints respectively. 

The main techniques that have been proposed for soiving consirained opiimisation 

problems are reduced-gradient methods, sequential linear and quadratic programming 

methods, and methods based on augmented Lagrangeans and exact penalty functions. 

In order to express first-order and second-order conditions for a local minimum, the 

Lagrangean function is defined as 
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L(x,A) = f+ Ajgi(x). 
ielVE 

The well-known first-order necessary conditions for the existence of a local minimum x* 

of the constrained optimisation problem require the existence of Lagrangean multipliers 1 

j* such that 

VxL(x*,A*) = VE(x*)+ >, Aj*Vgi(x*) = 0, 
icA 

where 

A= {i: iel, gi(x*) = 0}UE, 

Ay* 20, ie ATL 

The second-order sufficiency condition requires that (x*,A*) satisfy the first-order 

condition VxL(x*,A*) = 0 and that the Hessian of the Lagrangean 

V2L(x*,A*) = V2EK*)+ >) Ay*V2gi(x*) , 
icA 

satisfy w'V2L(x*,A*)w>0 for all non-zero w in the set 

{w: Vgi(x*)'w =0, i € IFUE; Vgj(x*)'w <0, i€ 19}, 

where 

It= {ie ANI: Aj >0}, 

={ie ANI: A; =0}. 

Optimisation packages are based on different optimisation algorithms. Here we can only 

name some of them. The sequential quadratic programming algorithm is a generalisation 

of Newton's method for unconstrained optimisation in that it finds a step away from the 

current point by minimising a quadratic model of the problem. A number of packages, 

including NPSOL, NLPQL, OPSYC, OPTIMA, MATLAB, and SQP, are found with this 

approach. The OPTIMA and OPTPACK libraries also contain augmented Lagrangean 

codes. Reduced-gradient algorithms avoid the use of penalty parameters by searching 

along curves that stay near the feasible set. The standard reduced-gradient algorithm, 

implemented in CONOPT, searches along the steepest-descent direction in the super basic 
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variables. The generalised reduced-gradient codes GRG2 and LSGRG2 use more 

sophisticated approaches. 

Optimisation software is progressing at a rapid rate. Growing availability of linear and 

non-linear programming techniques in spreadsheets is an encouraging indicator of 

acceptance of OR/MS approaches. Other developments in modelling languages, user 

interfaces and parallel processing suggest that some modelling efforts are being facilitated 

through optimisation software. 

As Beale (1984) said, a typical variable occurs in not more than about 6 constraints in 

nearly all practical mathematical programming problems. Thus large problems are nearly 

always very sparse. General mathematical programming systems must be applicable to 

large problems, so they must use algorithms that exploit sparseness efficiently, even if this 

makes them slower than special-purpose programs on small dense problems. 

2.2.3 Decomposition techniques for large-scale optimisation problems 

a) Background 

Decomposition was recognised as a natural tool for handling large-scale linear 

programming problems. If a special structure can be identified, decomposition can often 

be used to reduce a large-scale problem to components of a more manageable size, or to 

admit enhancement of solution procedures. This review provides a historical perspective 

as well as recent LP decomposition approaches, including its ciassificaiion and some 

implementations. 

The idea of decomposition was first proposed by Dantzig in 1959, and subsequently 

many research results have been published. The decomposition principles of Dantzig- 

Wolfe (1960) lead to algorithms that transform the original problem into a sequence of 

subproblems corresponding to the uncoupled subsystems. The primal or Benders 
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decomposition method (1962) was also introduced shortly after the Dantzig-Wolfe 

decomposition method was developed. 

Some computer-based algorithms/programs for decomposition are reported, research into 

decomposition of linear programs using parallel computation has also been reported by 

Ho, Lee and Sundarraj (1988). 

In contrast to the linear case, the application of nested primal or dual decomposition to 

non-linear programs and stochastic problems has received comparatively little attention. 

Many LP based decomposition techniques have been proposed for different purposes. 

Basically, we classify decomposition into Dantzig-Wolfe (dual) and Benders (primal) 

decomposition, cross decomposition, LU decomposition, and  Bartels-Golub 

decomposition. 

b) Dantzig-Wolfe (dual) and Benders (primal) Decomposition 

Dantzig and Wolfe (1960) developed a decomposition principle that imposes on each 

subproblem additional constraints so that the optimal solution of one subproblem is 

independent of the solutions of the other subproblems. The additional constraints are 

selected so that the union of the solutions of the subproblems will be optimal for large- 

scale problems. 

It is well known that Dantzig-Wolfe decomposition and Benders decomposition are dual 

pairs, i.e., the Benders algorithm (1962) that is applied to pure linear programming, 

coincides with Dantzig-Wolfe decomposition algorithm applied to the dual of this 

problem. The decomposition principle in its primal or dual form has provided very 

efficient algorithms for many MIP problems. The technique allows advantage to be taken 

of the special structure of the problem by solving a sequence of subproblems. Hence, one 

exploits either the primal or the dual substructure of the problem. 
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The subproblems are co-ordinated by a master problem corresponding to the global 

constraints through primal (proposal) and dual (prices) information. While the 

application of primal decomposition on the dual problem is equivalent, in terms of final 

results, to the use of dual decomposition on the primal, the two methods can differ 

significantly from a computational point of view. In particular, models with a large 

number of columns and a comparatively small number of rows will require a smaller 

basis when handled through the primal method. In contrast, column generation is more 

compatible with the matrix representation adopted in commercial codes, than the addition 

of cuts. This would favour the use of the dual problem. 

Another dual decomposition is known as the Lagrangean relaxation method. Geoffrion 

(1974) showed that the method can be generalised via Lagrangean relaxation to deal with 

mixed integer programming. The dual subproblem is obtained by taking the Lagrangean 

relaxation of the original problem relative to some constraints. Each iteration consists of 

1) selecting a new set of Lagrangean multipliers by the dual master problem and 2) 

solving the dual subproblem for given values of the multipliers. The dual decomposition 

algorithm solves successively a "dual subproblem" and a "master problem" until the 

optimum is achieved and verified. This algorithm may become computationally attractive 

if the "complicating" constraints are relaxed so as to obtain a relatively easy-to-solve sub- 

problem. The dual decomposition algorithm effectively solves the formal Lagrangean 

dual relative to the given subset of constraints. Hence , when applied to MIP, a duality 

gap may arise and customarily is closed by an enumeration scheme of the branch-and- 

bound type. Lower bounds on the value of the (minimisation) problem are obtained at 

every iteration of the dual decomposition algorithm instead of solving the formal 

Lagrangean dual optimally. 

) Cross Decomposition 

The complete cross decomposition algorithm is developed for solving mixed integer 

linear programming problems. Van Roy (1983) proposed the basic idea underlying cross 
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decomposition to use both subproblems in one single decomposition procedure as 

follows: (PS) and (DS) are the primal and dual subproblems respectively. 

(1) Initialise. Select initial values for the Lagrangean multipliers and set up the 

corresponding (DS). 

(2) Solve the (DS). Perform convergence test CTp: either stop, or go to 4), or set up the 

(PS) corresponding to the optimal solution of the current (DS) and go to (3). 

(3) Solve the (PS). Perform convergence test CTp: either stop, or go to (4), or set up 

the (DS) corresponding to the optimal dual solution of current (PS) and go to (2). 

(4) Master problem. Find new values for either the Lagrangean multipliers, or the 

primal variables that are held fixed in (DS) or (PS). Set up the corresponding 

subproblem and go to (2) or (3) respectively. 

Actually, the convergence tests CTp and CTp control the sequence of primal and dual 

subproblems as well as the master problem. 

Not every algorithm that employs primal and dual subproblems relates to cross 

decomposition, e.g., the branch and bound procedure, primal-dual ascent algorithm by 

Fisher, Northup, and Shapiro (1975). 

Holmberg (1992) developed a modification of cross decomposition, called mean value 

cross decomposition for linear programming problems. The method is a generalisation of 

the Kornai-Liptak (1965) method and eliminates the need for using master problems. The 

base for the method is the subproblem phase in cross decomposition, where performance 

between the duai subproblem and the primal subproblem is iterated. However, instead of 

using the last solution of one subproblem as input to the other and vice versa, the average 

(mean value) of all previously obtained solutions is used. It is shown that this is 

equivalent to the Brown (1949) and Robinson (1951) method for a matrix game, and this 

fact is used to prove convergence of the procedure. 
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d) LU Decomposition 

LP models may represent large, complex systems consisting of independent subsystems 

coupled by global constraints. Such LP problems are said to have a block-angular 

structure. We first consider solving a large set of simultaneous linear equations 

Ax=b 

where A is a sparse matrix of order n. If the matrix A can be factored as a product of 

lower and upper triangular matrices, that is 

A=LU, 

then a solution for x can be obtained by forward and backward substitution of the two 

triangular systems: 

Ly=b, 

Ux=y. 

This is the so called LU decomposition. 

In large-scale linear programming the computation time is greatly influenced by the 

method of finding an accurate and compact form of the inverse of a sparse matrix B. It 

has been recognised that if the product form of B is used, and in particular the LU form, 

then, by pivoting first on the diagonal elements of U in reverse order, a product form 

representation can be obtained that does not reduce the degree of sparseness. 

A more extensive decomposition to solve the above linear equations is accomplished by 

decomposing the matrix A into a product 

A=PLUQ 

where P and Q are permutation matrices, L is a lower-triangular matrix with units on its 

main diagonal, and U is an upper triangular matrix. According to this decomposition, the 

system may be written in equivalent form: 

Px(1) =b, 

Lx(2) = x(1), 

Ux(3) = x(2), 
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Qk = x(3), 

Each subsystem can be easy solved by eliminating the subsidiary vectors x(1), x(2), and 

x(3). 

LU decomposition is effective compared to various types of preliminary transformations 

to eventually obtain serial relationships among the original equations in terms of the x's 

only. 

e) Bartels-Golub Decomposition 

Bartels (1971) first considered a stabilisation of the simplex method for handling linear 

programming bases in the sparse case, i.e., many zeros in those bases. Probably the best- 

known research is that of Forrest and Tomlin (1977) on updating triangular factors of the 

basis to maintain sparsity in the product form simplex method. Goldfarb (1977) studied 

some properties on the Bartels-Golub decomposition for linear programming bases. 

Reid (1982) describes a sparsity-exploiting variant of the Bartels-Golub decomposition 

for linear programming bases. It includes interchanges that, whenever this is possible, 

avoid the use of any elimination (with consequent fill-ins) when revising the factorisation 

at an iteration. Test results on some medium scale problems are presented and 

comparisons made with the algorithm of Forrest and Tomlin. Reid's algorithm has "better 

stability and fill-in properties than the closely related algorithm of Forrest and Tomlin" 

although numerical experiments indicate that these advantages are usually quite slight in 

practice. 

f) Some implementations based on decomposition 

The decomposition technique was proposed for travelling salesman problems, 

scheduling, multi-commodity networks, facility location, lot sizing, set partitioning, and 

matching etc. 

33



Ho and Loute (1983) described their computational experience with codes DECOMPSX 

and LIFT which are built on IBM's MPSX/370LP software for large-scale structured 

programs. DECOMPSX is an implementation of the Dantzig-Wolfe decomposition 

algorithm for block-angular LP's. LIFT is an implementation of a nested decomposition 

algorithm for staircase and block-triangular LP's. A diverse collection of test problems 

drawn from real applications is used to test these codes, including multinational energy 

models and global economic models. 

Ho, Lee and Sundarrj (1988) reported their DECOMPAR code: an implementation of the 

Dantzig-Wolfe decomposition algorithm for block-angular linear programs using parallel 

processing of the subproblems. The software is based on a robust experimental code for 

LP decomposition and runs on the CRYSTAL multicomputer at University of Wisconsin- 

Madison. Their initial computational experience is also reported. 

Cross decomposition was first implemented by Van Roy (1982) for solving capacitated 

facility location problems. The algorithm performed well on a common set of standard 

test problems, compared with alternative algorithms. 

Kaliski and Ye (1993) developed a short-cut potential reduction algorithm for linear 

programming. They examined decomposition techniques which greatly reduce the 

amount of work required by such interior point methods as the dual affine scaling and the 

dual potential reduction algorithms. In an effort to judge the practical viability of the 

decompositioning, the performance of the dual potential reduction algorithm with and 

without decompositioning is compared over a set of randomly generated transportation 

problems. Accompanying a theoretical justification of these techniques, the 

implementation details and computational results of one such technique are presented. 

By using decomposition, the subproblems in a large-scale LP problem have the property 

that any key matrix can be triangularized. This allows network-like techniques to be 
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implemented on nodes of existing multicomputers to handle the subproblems. Using a 

multicomputer with multiple nodes, the decomposition approach is expected to be viable. 

23 Summary 

To operational research analyst interested in the implementation of algorithms, it is a 

combination of operational research, numerical analysis, and computer science. We 

discussed computer based mathematical programming in this Chapter. We focus on linear 

programming and its software arround the simplex method and interior-point methods. 

We study non-linear programming and its software through unconstrained optimisation 

methods and constrained optimisation methods. Instead of discuss dynamic programming 

directly, we discussed an important large-scale optimisation technique - decomposition, 

Dantzig-Wolfe (dual) and Benders (primal) Decomposition, Cross Decomposition, LU 

Decomposition, Batels-Golub decomposition, and some computer implementations based 

on decomposition, which are applied to large-scale optimisation problem. In the 

appendix, we attatched some further details of the software mentioned here. 
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os Heuristic Methods 

3.1 Introduction 

3.1.1 Background 

Recently, attention in the literature has been increasingly focused on so-called heuristic 

methods as an aid to decision-making. As the following passage demonstrates, the 

literature contains sharply diverging views about heuristic methods in theory. and in 

practice. It should be pointed out that there is no clear, objective way of establishing 

whether or not a particular definition is correct. 

It is said as early as 300 A.D. Pappas wrote to Euclid, and suggested an approach of 

approximate methods - which are easy to use but which do not guarantee optimality. The 

subject - heuristics has gradually been accepted through the work of well-known 

mathematicians Descartes and Leibniz. 

3.1.2 Clarification of the concept 

There are many definitions of a heuristic method of problem solution. Researchers in 

different fields often define heuristics in different ways. The following selection of 

definitions should illustrate how inconsistently the term “heuristic methods” is used in the 

literature. 

Nicholson (1971) defines a heuristic method as a procedure "... for solving problems by 

an intuitive approach in which the structure of the problem can be interpreted and 

exploited intelligently to obtain a reasonable solution." 

Tonge (1961) uses a definition: "by heuristics we mean principles or devices that 

contribute, on the average, to reduction of search in program-solving activity. Heuristic 
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programming is the construction of problem-solving programs organised around such 

principles or devices." 

Wiest (1966) formulates his definition as follows: "in simplest terms a heuristic program 

is a collection or combination of heuristics used for solving a particular problem", 

whereby "we may describe a heuristic as any device or procedure used to reduce problem- 

solving effort - in short, a rule of thumb used to solve a particular problem" 

Minsky (1967) proposes that: "A program which independently decides what should be 

done next is referred to as ‘heuristic’. 

Newell (1969) defines heuristic methods as "programs that performed tasks requiring 

intelligence when performed by human beings." 

Wheeling (1969) ascribes the attribute "heuristic to any procedure (which) may sometimes 

fail." 

According to McMillan (1970), a heuristic method is "a computational procedure which, 

when applied to any one of the class of problems for which it is applicable, will yield a 

good solution in a finite number of steps." 

Hinkle and Kuehn (1970) describe a method as heuristic "which searches for a satisfactory 

rather than an optimal solution." 

With reference to Klein (1971), Kirsch formulates his definition as follows: "A heuristic 

program is a usefully defined problem-solving method with great heuristic power and 

without any guarantee of finding a solution" (Kirsch,1971, pp.157). 
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Miiller-Merbach (1971, 1973a, 1973b) describes heuristic methods simply as methods of 

approximation. However, if the two terms refer to the same methods and can be extended 

to refer to the same methods, and are thus identical, it would be better to use the old, well- 

known term “methods of approximation”. If they are, however, not identical, it is not clear 

whether heuristic methods are merely a subset of the methods of approximation, or 

whether the methods of approximation represent only some of the possible heuristic 

methods. 

Herroelen (1972) uses the following definition: "since then the terms ‘heuristic’ and 

‘heuristic method’ are used to describe each rule of thumb, strategy, trick, simplification or 

any other means, that may reduce the effort in the search for solutions of complex 

problems by the elimination of possible but less interesting solution alternatives and thus 

may lead to useful solutions that are usually non-optimal." 

Beier (1973) explains the heuristic method thus: "Heuristic decision-making methods are 

systematic, - i.e. non-mathematical problem-solving procedures which attempt to solve a 

particular class (domain) of problems or very specific problems with the help of general 

or specific heuristic rules (principles, strategies or procedural instructions), but which are 

unable to guarantee an acceptable solution in individual cases and which can never 

guarantee an optimal solution. A heuristic rule is a systematic procedural instruction 

which tries, among other things, to reduce the complexity of the problem being solved and 

to structure the procedure. Its objective is to arrive at an acceptable solution to the 

problem within a pre-set time period, taking into account known methods of decision- 

making and existing processing capacity." 

Silver, Vidal, and Werra (1980) once defined a heuristic method as "a procedure for 

solving a well-defined mathematical problem by an intuitive approach in which the 

structure of the problem can be interpreted and exploited intelligently to obtain a 

reasonable solution." 
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Foulds (1983) proposed "......heuristics means a method which, on the basis of experience 

or judgement, seems likely to yield a good solution to a problem but which cannot be 

guaranteed to produce an optimum." 

Foulds (1983) suggested 5 possible ways to the strategy of developing and using 

approximate methods to solve a complicated NP problem: 

(1) find an efficient algorithm for the problem; 

(2) show that only special cases of the problem are of interest and find an efficient 

algorithm for them; 

(3) relax some of the constraints of the problem and develop an algorithm for the relaxed 

(easier) problem; 

(4) construct an algorithm that runs quickly on most of the problems likely to be 

encountered; 

(5) give up the quest for optimality and provide a method which runs quickly and 

produces useful but not necessarily optimal solutions. 

It is extremely unlikely that aim (1) can then be achieved. Aims (2) and (3) are usually 

more appropriate. However, Churchman (1970) has quite rightly warned of the dangers of 

discarding the problem at hand for a surrogate which is not equivalent but which can be 

solved by known methods. This practice has raised the criticism that sometimes O.R. 

practitioners "bend a client's problem" so that it can be solved by a standard method, 

thereby producing solutions of little interest to the client. Aim (4) is often attempted by 

O.R. consultants and often achieves customer satisfaction. The simplex algorithm of 

linear programming is a good illustration. Unfortunately, sometimes such an algorithm 

cannot be found. He then discussed the condition of using a heuristic approach - what can 

be done when we are reduced to aim (5). 

Ballou (1989) also found that heuristics are not difficult to specify because researchers are 

in the habit of using them constantly in daily activities. 
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This list of definitions is sufficient to illustrate that there is disagreement in the literature 

about which characteristics of a heuristic method uniquely define it as “heuristic”. It is 

therefore also unclear how the term can be extended to cover other methods which claim 

to be “heuristic”. 

According to Newell, Tonge, and Minsky, the calculations involved in differential 

calculus or in the simplex method would be heuristic methods, because they without 

doubt reduce in an “intelligent way” the search effort required to find a solution. 

Wheeling's view is also problematic, because it does not explain whether methods should 

also still be described as heuristic if they produce no solution as a result of being 

prematurely interrupted, e.g. because of lack of time or money. 

Hinkle/Kuehn and McMillan emphasise the search for good or satisfactory solutions. A 

solution is satisfactory when it meets the requirements of the individual decision-maker. 

However, because different decision-makers usually have requirements which differ in 

their stringency, these attempts to produce a definition cannot differentiate between 

“heuristic” and “non-heuristic” methods with any inter-subjective clarity. 

Heuristic methods are, according to Wiest and Herroelen, those methods which contain 

“rules of thumb”; Klein uses instead the phrase “heuristic principles”. Kirsch maintains 

that heuristic methods are characterised by a “great heuristic power’, by which he means, 

that these methods can, in a particular length of time, solve a great number of the 

problems belonging to the class of problems for which they were developed. Since, 

however, this formulation offers no quantitative information about the number of 

problems to be solved or about the length of time to be specified, it also lacks inter- 

subjective clarity. These comments are also valid for Beier's very detailed definition. 

Furthermore, his remarks about the essential characteristics of heuristic rules are not very 
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instructive, because most of the methods that are universally regarded as “non-heuristic” 

share the sort of rules that Beier claims are particularly characteristic of heuristic methods. 

It is thus clear from these examples that a definition of the concept is urgently required. 

One reason for the lack of precision in the definitions is that concepts are often used in the 

definition which themselves need to be defined. Another reason is that every one of these 

attempts at a definition lacks the necessary refinement to unambiguously distinguish 

heuristic from “non-heuristic” methods. 

Note that the some of above definitions are out of our discussion. It is not an easy task to 

examine what the vaguely used term “heuristic methods” means in concrete terms within 

a theoretical framework. We do not intend to ally heuristic with logic, philosophy, or 

psychology, where it aims at investigating invention and discovery. A heuristic is 

therefore defined as an algorithm which it cannot be mathematically proved to find an 

optimal solution for a problem. 

3.1.3. Classification of heuristics 

People use similarity, precision, fruitfulness and simplicity as criteria for the heuristic 

approach. However, what is the essence of heuristics? In this research we propose that 

substitution is the essence of any heuristics. Heuristics must be often simpler than any 

known optimisation algorithms (if exist). This simplification is carried out on 

qd) prototype - problem substitution, or 

(2) mathematical model - model substitution, or 

(3) known or unknown algorithm - algorithm substitution. 

Based on this idea, we attempt to classify major heuristics and clarify some implications 

of these heuristics in this chapter. 
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3.2. Heuristic approach 

3.2.1 Problem substitution heuristics 

On the basis of experience or judgement, if a numerical optimisation problem is difficult 

to solve, we can substitute the original problem with a solvable problem. So-called 

knowledge-based heuristics and common sense heuristics may fall within this type of 

heuristics, which constitutes the most interesting area in managerial problems. 

Generally, knowledge representation methods may be practised as three tasks: 

1) declarative knowledge, for rule based reasoning, 

2) heuristic methodologies, for the deterministic and context-dependent decision 

making, and 

3) strictly algorithmic procedures, for the tasks inclined to data abstraction and 

mathematical manipulations. 

Knowledge-based heuristics are based upon the understanding of the background of the 

optimisation problem. 

Distribution and scheduling problems with dynamic or combinatorial structure often fall 

in NP-hard. In order to solve these problems, expertise or common-sense is often a source 

of inspiration. 

Good heuristics are frequently the result of common sense procedures that work 

effectively. They may be based on concepts, principles, and theories that relate to a 

specific problem, or they may result from observing the form of optimised solutions and 

mimicking them. It is not easy to recognise when good heuristics have been found, since 

testing them against other methods is difficult when practical size problems are involved. 
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3.2.2 Model substitution heuristics 

We consider so-called model relaxation with bounding method, as one of model 

substitution heuristics, which relaxes the mathematical model of the optimisation problem 

when the optimum solution can not be found. Hence, it has to provide a bound on the 

value of the optimal solution, i.e., the value of the optimum solution can not be better than 

the bound. 

We also put model relaxation without bounding method into this category, which relaxes 

the original model out of some simple rules. For example, Silver, Vidal, and Werra (1972) 

presented two illustrations: 1) In an integer linear programming problem, a bound can be 

obtained by ignoring the-integer constraints and solving the much simpler, continuous 

variable problem. 2) In a travelling salesman problem the difficulty of solution is caused 

by the constraint that every city must be visited precisely once in a single tour. Removing 

the single tour constraint leads directly to a bound on the original problem. 

Whenever the original problem is substituted its model will be naturally different. Model 

relaxation with bound implies a restricted relaxation, i.e., even if a relaxed solution itself 

may not be found, its objective value, or a bound must be determined. The value of an 

optimal solution must lie between the value of the heuristic solution and the Bound: 

However, it is wrong to suppose that if the value of the heuristic solution is very close to 

the bound, it must be very close to an optimal solution. Actually, a heuristic solution itself 

constitutes an opposite bound for optimal solution. 

Another type of heuristic is to relax the mathematical properties of the original model 

without bounding. Here, In Table 3.2.2a, we summarised the possible ways to substitute 

the original characteristics of the mathematical model. 
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Original characteristics Substituted characteristics 

NP P 

Discontinuous Continuous 

Non-smooth Smooth 

Integer Mixed 

Discrete Non-discrete 

Random Determinative 

Infinite Finite 

Capacitated Incapacitated 

Multiple Single 

Derivable Differentiable 
    

Table 3.2.2a Substitution Pattern 

3.2.3 Algorithm substitution heuristics 

This kind of heuristics could be the extreme value method case, which generates many 

solutions and chooses the best. The so-called improvement method can also be included in 

this heuristic, which searches repeatedly for a better solution on the basis of a feasible 

solution. Also, it could be the modified mathematical programming method, which 

simplifies the whole optimisation procedure so as to save computational effort 

Substitution is not merely approximation. The question now arises as to the precise 

nature of a heuristic problem-solving method. Some of the definitions cited in the 

previous section regard the reduction of the search effort required to find a solution as an 

essential characteristic of a heuristic method. 

What is clearly meant by this is that a heuristic method does not generate every possible 

node on the problem-solving tree. In an extreme case, its application may result in an



straight, unbranched solution path. If one describes the terminal nodes of the general 

problem-solving tree as candidate solutions, the following statement is also valid: 

heuristic methods are structured in such a way, that some of the candidate solutions are 

not generated. It is thus established that the enumeration of all possible solutions is not a 

heuristic method. The only criterion that has so far been established - that of neglecting 

candidate solutions in the search process - is not sufficiently precise to allow any further 

statements to be made about heuristic methods. However, since there are many other 

methods apart from that of exhaustive enumeration which are not classified in the 

literature as heuristic, the definition of a heuristic method must contain further defining 

characteristics. One such characteristic referred to in the literature is the lack of a 

guaranteed optimal solution. In other words, a feature which distinguishes heuristic 

methods from other methods is that applying them does not guarantee that an optimal 

solution will be arrived at. Therefore, of all the known methods, all those can be 

eliminated as non-heuristic which converge on an optimal solution in a finite number of 

transformations. 

Among these are the classical analytical methods and the numerical-iterative linear 

optimisation methods, to name but a few examples. In addition to these, there are a 

number of methods for solving particular types of problem which usually only converge 

after an infinite number of steps (e.g. methods for solving uni-dimensional problems: 

Fibonacci method, Golden Section method, and most gradient methods). Since in 

practice every search must be interrupted after a finite number of transformations, one 

cannot guarantee that this group of methods will produce a solution either. Nevertheless, 

the author's view is that these methods should not be described as “heuristic”, because 

they allow an approximation to the required optimal solution to be calculated to any 

degree of accuracy. In other words: after the procedure has been interrupted, a 

correspondingly small neighbourhood can be identified, within which the solution must 

lie. According to the view represented here, these methods are therefore not heuristic 

methods, but rather approximation methods. Equally, one must conclude from this that 
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heuristic methods are not approximation methods, because they offer no proof of 

convergence, 

Some heuristic methods are designed for solving a special class of decision-making 

problems, namely, problems which involve extreme values and upon which 

supplementary conditions are imposed. These are characterised by a further property, and 

this will become clear by comparing them with the corresponding convergent methods. 

A distinction is normally made in relation to such problems between feasible and optimal 

solutions. A result of the problem-solving process is described as feasible when it 

complies with the constraints; any permissible result where the objective function has an 

extreme value is optimal. If one compares the heuristic methods designed to solve this 

type of problem with the corresponding non-heuristic methods which guarantee a 

solution, the following difference emerges: many convergent methods, e.g., the dual 

simplex and Gomory's sectional plane methods, only produce a feasible solution in the 

last transformation, a solution which is however also optimal. Therefore, if the search 

procedure is interrupted prematurely one cannot even get a feasible solution. 

In contrast, most of the special heuristic methods for this type of problem-solving place 

particular emphasis on achieving and retaining feasibility. Because this property is not 

essential for our definition of heuristic methods, although numerous such methods possess 

it, it should also only be seen as peripheral. 

We can see that problem-solving methods should only be described as heuristic when 

they 

(1) work with the help of non-arbitrary decision variables; 

(2) exclude potential solutions from the search process (leave some nodes unexplored); 

(3) cannot give proof of convergence. 
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Thus, methods which actually do converge are also heuristic, as long as convergence 

cannot be proved. Methods which were originally heuristic, but which prove to be 

convergent, can therefore become finite methods with a guaranteed solution or 

approximation methods. 

The use of such heuristic methods is motivated by the emergence of the theory of NP- 

completeness, i.e. the study of the complexity of algorithms. There is usually a finite 

number of feasible solutions for a combinatorial problem. For example, a logistics 

manager must, among other things, plan the structure of the logistics network, set 

inventory policies, select transportation modes, set plans for contingencies to assure that 

plans are being met. 

33 Summary 

In this Chapter we listed a number of definitions for heuristic, discussed the difference 

among them, and clarified of the concept. A principle - substitution is proposed so as to 

classify heuristics. Many well-known heuristics are therefore categorised as Problem 

substitution heuristics, Model substitution heuristics, and Algorithm substitution 

heuristics. Heuristic approach is then studied according to this classification. 
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4. Computer simulation 

4.1 Introduction 

4.1.1 Background 

Computer simulation methods have been developed since the early 1960s and may well be 

the most commonly used of all the analytical tools of operational research. Computer 

simulation is a technique used to model the operation of a system and employs a computer 

program to model the operation and perform simulation computations. 

Then why simulate when it will be time consuming and there may be alternative 

approaches? In many problems the mathematical manipulations required to derive 

consequences from a symbolic model can be carried only to a point where the optimising 

values of the variables are stated in terms of a complex functional relationship. As with 

other models that do not utilise an explicit mathematical calculus, optimal combinations 

of controllable variables must be found by a search process or some other form of 

enumeration. This is a consequence of the structure of the problem, for if there were a 

mathematical theory for finding the optimum, simulation would not be needed. 

Though simulation can be time consuming and therefore expensive in terms of skilled 

manpower, real experiments may also turn out to be expensive, particularly if something 

goes wrong! Admittedly it takes a significant amount of time to produce working 

computer programs for simulation models. However, once these are written then an 

attractive opportunity presents itself. Namely, it is possible to simulate weeks, months or 

even years in seconds of computer time. Hence a whole range of policies may be properly 

compared. 

Anderson et al (1991) gave some of the reasons why computer simulation is so widely 

used: 
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(1) It can be used for a large number of practical problems. 

(2) It can obtain good solutions to problems that are too complex to be solved with 

procedures such as linear programming, waiting line models, or inventory models. 

(3) The simulation approach is straightforward and hence is relatively easy to explain and 

understand. As a result management confidence is increased, and consequently, 

acceptance of the model is more easily obtained. 

(4) Computer manufacturers have developed extensive software packages consisting of 

specialised simulation programming languages, thus facilitating use of simulation in 

practice. 

Today management scientists are not easily separated from their computers and with good 

reason. Computers have become smaller, cheaper, more powerful and easier to use by 

non-specialists. In particular, the development of powerful and cheap portable machines 

has opened up wide areas of work for the management scientist. With other advantages, 

computer simulation may become an inevitable approach to numerical optimisation 

problems. 

Computer simulation is applicable in complex cases where analytical procedures cannot 

be employed. The simulation model and simulator provide a convenient experimental 

laboratory. Simulations are often used to compare the performance of different potential 

solutions to a problem. We think that computer simulation, even without absolute 

optimisation, is important because it results in a forward-looking point of view; it tries to 

provide the tools that will permit the decision maker to arrive at better decisions in the 

future. 

4.1.2 Clarification of the concept of computer simulation 

Computer simulation is a trial-and-error procedure; a variety of values is generated for the 

decision variables, and the best of the feasible solutions is chosen. The principles of 
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computer simulation are simple enough. Management scientists build a model of the 

system of interest, write computer programs which embody the model and use a computer 

to imitate the system's behaviour when subject to a variety of operating policies. Thus the 

most desirable policy may be selected. 

Computer simulation provides a tool for evaluation and comparison of alternative basis of 

action during decision making. It can be used as an approach to a numerical optimisation 

problem. 

However, there are some different opinions on this issue. Anderson et al. (1991) 

concluded that "The computer simulation is one of the most frequently used management 

science tools but computer simulation should not be viewed as an optimisation 

technique." 

Pidd (1988) pointed out that "Management scientists tend to employ mathematical and 

logical models rather than scale models. These represent the important factors of a system 

by a series of equations which may sometimes be solved to produce an optimal solution." 

In fact, such a series of equations may sometimes to be solved to produce an optimal 

solution. This is true when, for example, the model fits the structure required for linear 

programming or non-linear programming. 

Although computer simulation requires an additional expenditure for computing, the 

results can be shown to produce the optimum which mathematical theory predicts. If 

formulae for specific values cannot be derived, it is possible to obtain the optimum values 

of the variables by means of a numerical approximation. Computer simulation provides a 

tool for evaluation and comparison of alternative courses of action during decision 

making, i.e., which can be applied to a numerical optimisation problem. 
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The word optimal solution or optimum in computer simulation may be somewhat 

misleading. It does not mean the optimal solution in any absolute sense, but refers instead 

to the best solution that the decision maker can attain with the resources and time 

available. His method of optimising is often intuitive and therefore not explicit. 

4.1.3 Categorising computer simulation 

The real world is rarely kind enough to allow precise replication of an experiment. One of 

the skills employed by physical scientists is the design of experiments which are 

repeatable by other scientists. This is rarely possible in management science. It seems 

unlikely that an organisation's competitors will sit idly by as a whole variety of pricing 

policies are attempted in a bid to find the best. It is even less likely that a military 

adversary will allow a replay of a battle. 

Simulations are precisely repeatable. Furthermore, one of the objectives of a simulation 

study may be to estimate the effect of extreme conditions and to do this in real life may be 

dangerous or even illegal. An airport authority may take some persuading to allow a 

doubling of the flights per day even if they do wish to know the capacity of the airport. 

Simulated aircraft cause little damage when they run out of fuel in a simulated sky. 

First of all, we categorise computer simulation according to the major objectives: 

1) Problem-solving; 

2)  Problem-finding; 

3) Problem-understanding. 

Models that are useful to decision makers must predict the consequences of specific 

actions or inputs. The ability to predict accurately a system's behaviour is not sufficient to 

satisfy the decision maker's needs. They always desire the ideal action - that combination 

of inputs which will most nearly obtain the goals. Throughout this research, we will focus 

on computer simulation for problem-solving although it is difficult to distinguish these 

purposes. 
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In problem-solving, the simulation work of such a project can be viewed as having three 

phases: modelling, programming, and experimentation. Precisely, logical models are 

usually required though in the case of system dynamics these are expressed in 

mathematical form, which behave like or simulate the real system; at this stage, great care 

ig taken to ensure that the computer simulation model is descriptive of the real system. 

Accordingly, they have to make a simulation program that can be executed in a computer 

environment. Then, through a series of computer runs, or experiments, they learn about 

the behaviour of the simulation model. The characteristics that are observed in the model 

are then used to make references about the real system. Because simulation is an 

experimental approach, modelling and programming can be regarded as preliminaries to 

the real business of simulation. 

4.2 Computer simulation approach 

4.2.1 Simulation modelling 

A simulation model is a model of some situation in which the elements of the situation are 

represented by arithmetic and logical processes that can be executed on a computer to 

predict the dynamic properties of the situation. A simulation model construction, even 

without absolute optimisation, is important because it results in a forward-looking point 

of view; it tries to provide the tools that will permit the decision maker to arrive at a better 

decision in the future. 

In modelling even when we understand some aspects of our system better than other 

aspects, we should try to avoid developing a disproportionately detailed model of the 

familiar aspects. The accuracy of the resulting performance measured data will usually be 

no better than the accuracy of the performance measured in the less detailed part of our 

model. 
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A management scientist must be satisfied that he knows the system well enough to be sure 

that the model is valid. Without this knowledge, no amount of sophisticated programming 

and statistical wizardry will prevent the inevitable disaster. 

4.2.2 Simulation programming 

A simulation program or simulator is a computer program written to perform the 

simulation computations. Any sequence of clear instructions can form the basis of a 

computer program. Hence programs can be written which embody the logical processes 

which make up the system. 

The creators and vendors of special purpose simulation languages will argue, quite 

correctly, that there is no point whatsoever in redesigning the wheel. Thousands of 

simulations have been programmed since the early 1960s and general principles have 

emerged from these experiences. We noticed that many programming languages are not 

designed to ease the task of logical expression. A situation for numerical optimisation is 

often unique in that it can not be effectively modelled using a template package or 

simulation language, therefore, general-purpose programming languages must be used. 

The main issue of language choice is whether to program in a specially designed 

simulation language or whether to use a more general purpose language like FORTRAN, 

C, C++, or Pascal. According to Thesen and Travis (1992), three types of computer 

implementation of discrete event simulation are summarised in Table 4.2.3a. 
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Model type Interface User input Flexibility & Typical tool 

Difficulty 

Template Menus, Parameters Very low XCELL+, 

mouse TBS 

Simulation language | Text editor Structure, High GPSS, 

parameters, SIMAN, 

performance SIMSCRIPT, 

measures SLAM. 

Programming Text editor Structure, parameters, | Very high C, FORTRAN, 

language performance Pascal     measures, time- 

keeping       

Table 4.2.3a Three types of computer implementation 

There is a growing tendency for a highly disciplined and structured approach to be taken 

to the programming. This is particularly important in large or complex programs. If large 

sums of money hang on the outcome of a computer simulation, then a professional 

approach is clearly necessary. 

It is clear that certain specific features must be provided in any simulation, e.g., a time 

flow mechanism and sophisticated error messages. The latter are important because 

simulation programs are notoriously difficult to debug. In addition, the tasks of debugging 

and verification can be greatly eased if the syntax of the language employs simulation 

terminology and also allows the entities of the system to have meaningful names. For 

many reasons it may seem correct to argue that the sensible course is always to write 

simulation programs in a special purpose simulation language. 
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However, there is another point of view. It can often be more convenient to write in a 

general purpose language. One commonly cited reason is that the analyst may be a 

member of a group which already has a significant investment of time and expertise in the 

general purpose language. Thus there will be someone around to sort out the programs 

later if the analyst has moved on to another job, possibly, in another organisation. A 

second reason is that some of the special purpose simulation languages are suited for only 

some types of system and it may be easier to write better programs in the general purpose 

language. Often there is no need to write these programs as sets of simulation subroutines 

are available on a commercial basis. These carry out many of the commonly occurring 

tasks of a simulation. 

Programming with well-defined subroutines or procedures of a manageable size is to be 

encouraged for two reasons: 

(1) All programs need to be verified; that is, the programmer should make certain that the 

program accurately reflects the model; the model itself having been validated. This is 

easier if the program consists of modules which can be individually tested. 

(2) Many simulation models grow in an evolutionary manner rather than following a 

precise design. This is rather easier to do in a well-structured program. 

Both program design and the choice of appropriate programming languages should te 

considered. 

4.2.3 Simulation experimentation 

Computer simulation involves experimentation on a computer-based model of some 

system. The model is used as a vehicle for experimentation. Simulation is an experimental 

approach; modelling, and programming can be regarded as preliminaries to 

experimentation. 
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When a simulation model has been constructed, debugged, and validated, the analyst must 

design an efficient method for using it to solve the problems he had first formulated. The 

experiment can not be carried out without realistic data. 

Some applications of computer simulation involve probabilistic components. For 

example, when the computer simulation involves generating values from probability 

distributions, it is called Monte Carlo simulation. Computer simulation may also be used 

when there are no probabilistic components in the model. It is natural to think in terms of 

adjusting the parameters of the model in order to improve the performance of the system. 

When good parameter settings have been found for the model, these settings can be used 

to improve the performance of the real system. In some applications where a simulator has 

been developed, we can use the simulator to find the set of controllable variables that 

yields the best performance of the system. This approach is suitable for the situation 

where many adjustable parameters are involved. 

4.3 Verification and validation 

Throughout the discussion, we have made four important but unstated assumptions on 

simulation: 

1) The model is appropriate for the decision it is intended to support. 

2) The model is a correct representation of the situation being studied. 

3) The model is correctly implemented. 

4) The data set collected during a run is correctly manipulated and displayed. 

Unfortunately, it is not possible to guarantee that these assumptions hold for any specific 

situation. 

56



In order to reduce the chance of serious mistakes, verification and validation are used to 

make sure that the model is correctly implemented (verification) and that it is a correct 

representation of reality (validation). 

Verification includes structured walk-through, diagnostic simulation runs, comparison of 

a well-understood problem, and trace analysis etc. 

When a simulation model has been constructed, debugged, and validated, the analyst must 

design an efficient method for using it to solve the problems he had first formulated. 

Usually it means the two following things that are closely linked in validation. 

We may first ask: would the manager of the system accept that the results of the 

simulation are effectively the same as those produced by his system? Firstly there is black 

box validity; that is, ignoring the detailed internal workings of the model, does its output 

accurately reflect that of the real system? In this sense, black box validity is concerned 

with the predictive power of the model. Does it adequately predict how the system would 

behave under given conditions? This is obviously a tricky question, but it must be faced. 

The issue of black box validity is complicated by the common fact that the simulation 

may be carried out because something is going wrong with the real system. Even worse, it 

may be a simulation of a system that does not yet exist and there is nothing with which the 

model may be directly compared. 

We may also ask: do the components of the model represent known behaviour and/or any 

valid theory which exists? The second consideration is that of white box validity. One 

example of this is the process used to describe the arrival of customers at a queue. If the 

queuing system actually exists, then data may be collected which describe the arrival 

times of successive customers. At this point known theory can be useful. For arrival 

processes, certain probability distributions are known to provide a good description of the 

range of possible values which the inter-arrival time may take. For instance, if there is no 
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pattern to the arrival times then a negative exponential distribution may be appropriate - 

particularly if the number of potential customers is very large. Should there be no 

explanation of why the arrival pattern should be so random, then the suspicion is 

heightened. If analysis reveals that the mean and standard deviation of the inter-arrival 

times have very similar values then the case for accepting a negative exponential 

distribution is very strong indeed. This is likely to be a valid representation of the arrival 

process. In this case then, the arrival component of the model was verified by reference to 

the appropriate theory. This implies that the analyst needs to be fully conversant with the 

relevant theory. The same applies in the forms of simulation used in economic 

forecasting. Here, the aim is to develop models which show the effect of the various 

competing theories. 

Some type of model is essential in computer simulation, the real system being mimicked 

by unfolding the model through time. Most managerial decision making is carried out 

under severe time pressure, verification and validation are something easily pushed to the 

back of the mind when time is short. Whatever the type of model employed, it must be 

valid if it is to be useful at all. This may seem obvious and so it should. 

4.4 Summary 

We discusseed clarification of the concept of computer simulation in this section. The 

method to categorise computer simulation according to major objective: problem-finding, 

problem-understanding; or problem-solving. Simulation approach is then studied by the 

stage of simulation, ie., modelling, programming, and experimentation. We also 

discussed verification and validation, which are indispensible in simulation. 
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5; A case study through different approaches 

5.1 The problem for case study 

In order to illustrate optimisation, heuristic, and simulation approaches, we will present a 

managerial decision making problem as a concrete example. As we know, the classical 

steady demand no-shortage inventory control policy using the square root formula was 

established by 1915 and it is surprising that the analytical method has not been extended 

to cover cases of irregular demand. This omission has been apparent during lengthy 

periods of calculation (and recalculation) required by the solution of quite simple 

problems using dynamic programming methods. In this Chapter we will study a case - the 

replenishment decision making when demand increases in a linear trend. The notations 

used in this case are as follows: 

D(t) the demand rate at time t ( D(t) =a + bt, b > 0); 

A set-up cost, i.e., the fixed cost of a replenishment; 

I stock holding cost per item per unit time; 

M AJL, normalised cost; 

H the time horizon; 

ti the time point of the ith replenishment; 

Tj the ith time interval found by the analytic algorithm; 

RC; _ the cost of the ith replenishment; 

RQ; __ the quantity of the ith replenishment; 

TC _ the total cost. 

The following analysis might have been carried out many years ago if the time variable T; 

(replenishment cycle) rather than the variable RQ; (replenishment quantity) usually 

chosen as the means of expression. The cycle-time is also preferable because it facilities 

classification of items into groups when the inventory situation involves a large number 

of items. It has the technical disadvantage in extending the analysis to the case of 

stochastic demand (which will not be discussed here). 
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The instantaneous demand rate at time t is assumed as a continuous function D(t). The 

demand for an inventory item in the time interval (t, t+dt) is represented by D(t)dt. The 
4 

replenishment quantity to be ordered at time t; is therefore J D(t)dt. 
fa 

It is assumed that no shortages are allowed and that a replenishment can be made at any 

time point. A number of methods have been proposed for the determination of the 

replenishment policy for a product where demand is increasing linearly. Without loss of 

generality, we assume that the planning horizon H is finite. The initial and final inventory 

levels are zero. In practice, demand will not usually cease at the horizon, the solution will 

be sub-optimal, and the procedure would be to review the situation and calculate new tjs 

at some point before the horizon is reached. 

Referring to a replenishment policy, 0 = tg <t] <... <tj ... <tp-] < tn =H, the objective 

of this managerial decision making problem is to minimise the total replenishment cost TC, 

ie., 

min TC = }° RCj_1 
i=l 

where 

RCj= Ad f (t-t;_1)D(t)dt =A + I (1/2)D(tj-1)T;? + (b/3)T; 3) 

is the replenishment cost for replenishment at time t; for time period Tj = t;-t}_]. 

We will study this case through various methods. As an example of this algorithm, let the 

demand D(t) = 900t, and H= 1, A=9,1=2. 
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5.2 An optimisation approach 

Donaldson (1977) developed an analytical optimal algorithm for the replenishment policy 

when there is a linear trend in demand within a time horizon. Using methods of calculus a 

computationally simple procedure for determining the optimal times for replenishment of 

inventory is established. 

The procedure can be described as the following two cases: 

Case A ( D(t) = atht with a= 0) 

Step 1. Determination of the optimal number of replenishment intervals - n. 

a) Evaluate K = M((H3b); 

b) The optimal value of n is that for which 

g(n) > K 2 g(n+1), 

where 

g(n) = G(n) - G(n-1), n> 2, 
where 

nl 

1/g, >-g, (1-1/Z, n>2 Gn =| & 28, ( ) 

0 n=1 

where 

Wz i22 
8 =) j=2 

1 i=1 

and 

Z |=, 

Zi+1 = G-2/Z;)'/2, i=. 

Step 2. Determination of the optimal replenishment times. 

a) The initial value is set as 

to = 0; and ty = H/gp. 
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b) The analytic procedure is given as follows: 

tj = (gj/gn)H, i=2,....n-1. 

Case B ( D(t) =a+bt witha #0) 

Step 1. Solve the associated problem with demand rate D(t) = bt and time horizon H+a/b. 

By using the above procedure in Case A and find the optimal number of replenishments 

ne: 

Step 2. Determine a non-zero replenishment point r such that t, Sa/b < tp). 

It follows that the optimal number of n for the original problem is either n*-r or n*-r-1. 

Step 3. Determine optimal replenishment points for each possible values of n. 

a) With given equations 

Zin = 3-2/2; )'/2, i=2,...0 

and 

Il Zj = 1+ (b/a)H, 
isl 

determine Zj and then Z;j for i = 2,..,n. 

b) According to the above {Zj;}, the replenishment points are then given by 

t= (#b)(T] Zj- 0. 
jal 

Step 4. Evaluate the two values of the TC to choose the optimal policy. 

Since the optimisation algorithm is not only lengthy but also complex in nature, it is not 

surprising a number of researchers have proposed a variety of different heuristics. 

53 Heuristic approaches 

5.3.1 Examples of problem substitution heuristics 

a) Knowledge-based heuristics 

In the above case, one of well-known heuristic algorithm is the continuous time part 

period algorithm (CTPP). It is based on the principle of choosing lot sizes so as to 

equalise set-up and inventory cost: 
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Ne if (t-t).,)D(t)dt 
ha 

This heuristic method ignores the original optimisation problem, and simply relaxes the 

optimisation model to an equation. The numerical optimisation problem is replaced by an 

iteration problem. 

It is easy to show that the necessary condition for the CTPP can be derived as 

T;2[D(tj-1)/2+(1/3)bT;] = M, 

and we then have the following result (Table 5.3. 1a): 

  

  

  

  

  

  

  

  

No. Replenishment Point Replenishment Cost Replenishment Quantity 

ti RC. RQi-] 

ik 0.0000 18.0013 27,3725 

2 0.2466 18.0000 49.6639 

3 0.4138 18.0000 _ 61.1491 

4 0.5541 18.0000 69.5144 

S} 0.6794 18.0000 76.2720 

6 0.7944 18.0000. 82.0223 

7 0.9018 17.3876 84.0058             

Table 5.3.1a Computational results obtained by CTPP 

The total replenishment cost is 125.3889, and the number of replenishments is 7. 

b) Common sense heuristic 

It is common sense to reduce unit cost so as to reduce the total cost. In the above case, 

another well-known heuristic algorithm is the Continuous Least Unit Cost method 

(CLUC). It selects the duration of the replenishment interval at each replenishment, which 
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minimises the relevant cost per item over this interval. Consequently, the optimisation 

model can also be replaced by 

min (cast (t+.1)D(aty f D(t)dt} 

fi fet 

This heuristic method is straightforward: to minimise the unit cost per period so as to 

reduce the total cost. 

Similarly, the necessary condition for CLUC can be then derived as follows: 

T;2[D(tj.1)/2+(1/6)bT;] = M 

and we have (Table 5.3. 1b): 

  

  

  

  

  

  

  

    

No. Replenishment Point Replenishment Cost Replenishment Quantity 

fel RC RQj-1 

1 0.0000 27.0026 43.4512 

2 0.3107 19.3557 58.5369 

3. 0.4761 18.7950. 67.9093 

4 0.6145, 18.5651 75.1611 

5 0.7380, 18.4390 81.2049 

6 0.8515 18.3592 86.4483 

a 0.9577 10.5897 37.2884           

Table 5.3.1b The computational results obtained by CLUC 

The total cost is 131.1063, and the number of replenishments is 7. 

5.3.2 Examples of model substitution heuristics 

a) Relaxation on the objective 

An adaptation of the Silver-Meal heuristic selects the next replenishment interval by 

minimising the relevant cost per unit time over the duration of the replenishment interval. 

64



For any given replenishment point t;_], the next replenishment point tj can be determined 

by the following optimisation model 

min (A+ J (t,.1)D()dt)/(t;-t)-1) 
ten 

That is, the heuristic method iterates the optimal solution of the relevant cost per unit 

time. 

The necessary condition for Silver's model can be derived as 

T;2[D(t)-1)/2+(2/3)bTj] = M, 

and we have (Table 5.3.2a): 

  

  

  

  

  

  

  

  

    

No. Replenishment Point Replenishment Cost Replenishment Quantity 

tel RC, RQ j-] 

1 0.0000 13.5006 17.2436 

2 0.1958 15.6739 38.7817 

rat 0.3528 16.4672 51.8208 

4 0.4895 16.8665 61.3428 

5 0.6132 17.1043 68.9497 

6 0.7275 17.2611 75.3476 

us 0.8346 17.3720 80.9091 

8 0.9362 12.5877 55.6047         
  

Table 5.3.2a The computational results obtained by Silver's 

The total replenishment cost is 126.8333, and the number of replenishments is 8. 

b) Relaxation on horizon 

Back to our example, Ritchie (1984) modified Donaldson's optimisation method, for a 

linear increasing demand function with zero initial demand, by noting that a ratio, used by 
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Donaldson for calculating the first replenishment interval, approached a constant, 0.43, as 

the number of replenishment intervals approached infinity. 

Tsado (1985) extended Ritchie's result for demand functions with a non-zero initial 

demand, and proposed a cubic equation to give the duration of the replenishment. 

With that constant, Ritchie's cubic equation is given as follows 

T;2[D(t;-1)/2+0.43bT;] = M, 

  

  

  

  

  

  

  

  

  

and we have (Table 5.3.2b): 

No. Replenishment Point Replenishment Cost Replenishment Quantity 

fey RC j-1 RQj-1 

1 0.0000 15.9757 23.0942 

2 0.2265 17.2214 45.8176 

3 0.3913 17.5245 58.0381 

4 0.5311 17.6592 66.8570 

3. 0.6563 17.7349 73.9231 

6 0.7713 17.7833 79.8992 

7 0.8789 17.8168 85.1228 

8 0.9806 9.3349 17.2480             

Table 5.3.2b The computational results obtained by Ritchie's 

The total replenishment cost is 131.0506, and the number of replenishments is 8. 
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5.3.3. Examples of algorithm substitution heuristics 

a) An eclectic heuristic 

An interesting result is that the necessary conditions of the above 4 heuristics have the 

same mathematical structure, and differ only by a single parameter in an equation 

although these cubic equations are derived from different considerations. That is, 

Tj2[D(t;-1)/2+AbT;] = M. 

The parameter A is then considered as adjustable and its original economic explanation is 

clear only if A € { 0.43, 2/3, 1/6, 1/3 }. 

Amrani and Rand (1990) used an iterative method to solve the cubic equation, and then 

chose the best replenishment policy which minimises the total replenishment cost. The 

existence of a real positive solution of the cubic equation can be proved strictly, the 

convergence rate of an iteration method is not satisfactory and even fails in some cases. 

When compared with the results in Yang and Rand (1993), computational results show 

that rounding errors were present when using the iterative method. 

b) An approximation heuristic 

Amrani and Rand (1990) proposed an algorithm to solve the cubic equation. An iterative 

method was proposed to find the right solution out of three roots of a cubic equation. Let 

T(k) be the value of Tj obtained on the kth iteration, then the cubic equation can be 

rewritten as 

T(k+1) = [ 2M D(t-1) + 2AT(K) ) ]!/2 

Initially, set T(0) = 0 when D(t;-1) > 0, normally T(k) is approaching to a positive root of 

the cubic equation. 

The disadvantages of an iterative algorithm are that the convergence rate and indeed 

convergence itself can not be guaranteed, and moreover, the computation error 

accumulates as the number of replenishments increases. 

—<$<$<$—$—_— 
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c) An analytic heuristic 

Yang and Rand (1993) proposed an analytic algorithm for the cubic equation. Therefore, 

the above iteration heuristic can be regarded as an approximation. As indicated before, the 

key requirement is to choose the particular root of a cubic equation. There is not a general 

algebraic analytic formula for the roots of a polynomial equation up to power 5 or more, 

implied by the Abel Theorem. ; 

For the cubic equation, if the adjustable parameter > 0 and b > 0, the existence of a 

unique positive root can be proved based on the mathematical properties of this common 

form, especially the distribution of the three roots of the cubic equation. 

Step 0. Initially, set the starting time tj and a parameter A > 0. 

Step 1. Computer the following values 

U = D(tj-1)/(2Ab), V =-M/(Ab); 

Q=-U2/9, R= -(27V+2U3)/54; 

and then the discriminate 

A=Q34R2. 

Step 2. If the discriminate A > 0, then go to Step 3; otherwise, go to Step 4. 

Step 3. Since it can be shown that if A > 0, the other two roots are conjugate imaginary; 

set 

S1 =Sign(R+A!/2) Abs( R+A1/2 1/3, 

So = Sign(R-A!/2) Abs( R-A!/2 1/3; 

where Sign (. ) is sign function and Abs(.) is the absolute value function. So the 

solution required is 

Tj =$1+S2-U/3, 

and then stop. 

Step 4. Since it can be shown that if A = 0, the other two roots are negative and equal; 

and if A <0, the other two roots are negative, set 

@ = arccos(R(-Q)?/2), 

and 
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TA = 2(-Q)!/2cos(6/3)-U/3, 

Tb = 2(-Q)!/2cos(6/3+2n/3)-U/3, 

Te = 2(-Q)!/2cos(6/3+41/3)-U/3; 

hence, the solution required 

Tj = Max { Ta, Tb, Te }, 

and then stop. 

Needless to say, this analytic algorithm can solve the cubic equation with greater accuracy 

and less computation time than the previously proposed iterative method. - 

d) An improvement heuristic 

It is believed that much of the cost penalty arises from the fact that the replenishment 

intervals do not coincide exactly with the time horizon H. The time of final replenishment 

usually has to be adjusted to ensure coincidence with the time horizon H. 

An alternative way to deal with the final replenishment, when the interval (kp-1, H) is too 

narrow, is to reduce the total cost by cancelling the (n-1)th replenishment. Then the final 

replenishment cost is, 

RCp.2 = A+I((1/2)D(tp-2)(H-tp-2)? +(1/3)b(H-tp-2)1, 

instead of (RCp-2 + RCp-1). 

Obviously, if 

(RCy-2 + RCp-1) > RC'p-2, 

then final replenishment point tp-2 is meant by the new total cost 

TC= s 2X RCj +RCp.2. 
Jal 

This is also a kind of algorithm substitution heuristic. 
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5.4 A computer simulation approach 

a) The simulation model 

The recognition of this common structure allows not only an eclectic heuristic approach, 

which simply calculates the results for all four heuristic methods, but also a search 

procedure. According to an analytic procedure, some other replenishment plans can be 

obtained by adjusting this parameter with less computation time. 

Based on this consideration, Yang and Rand (1993) present a generalised eclectic model: 

Minimise { TC(A): A >0 }. 

Where TC( . ) is a mapping determined by the analytic procedure in Yang and Rand 

(1993). Since we can find the right root of the equation quickly and accurately by the 

analytic procedure, it is more practical to minimise the total cost TC by simulation with a 

large number of values of the parameter A. 

b) The simulation program 

A program written in Turbo-Pascal is attached in the Appendix. 

c) The experimentation 

Referring to the well-known problem a = 0, b = 900, H = 1, A=9, and I = 2, Yang and 

Rand (1990) simulate this replenishment policy with A € S2 ={i/100 : i = 1,...,99}, each 

parameter determines a set of replenishments, as well as the total cost. 

Figure 5.4a illustrates the total cost TC, and Figure 5.4b illustrates the number of 

replenishments. 
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Figure 5.4b The number of replenishments v. parameter 

Compared to the optimization approach and heuristics, the simulation approach can 

provide more information about the problem. According to above figures, we can see that 
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(1) if the number of replenishments is fixed, the total cost TC is more likely to be a 

decreasing convex function; 

(2) it is not always a continuous one, because the final replenishment is determined; 

(3) the larger A is, the greater will be the number of replenishments. 

Better performance of such a decision making pattern can be found by more complicated 

computer simulation. For example, for A = i/1000 where i = 1,...,1000, the more 

satisfactory result is found when A = 0.3460. That is (Table 5.4b). 

a2



  

  

  

  

  

  

  

  

No. Replenishment Point Replenishment Cost Replenishment Quantity 

tit RC i} RQ i] 

1 0.0000, 17.6718 26.7005 

oy 0.2436 17.8940 49.1177 

B 0.4105 17.9370. 60.7170 

4 0.5508 17.9552 69.1485 

5 0.6761 17.9653 75.9501 

6 0.7911 17.9717 81.7321 

7 0.8986 17.9412 86.6341             

Table 5.4b The computational results obtained by computer simulation 

The total cost is 125.3362, and the number of replenishments is 7. 

Compared with the previous eclectic algorithm, the percentage increase in total cost above 

the optimal is reduced from 0.1029% to 0.06%. By using this simulation approach, a 

balance can be easily struck between the number of replenishments and the cost penalty. 

For example, we can compare the above result when A = 0.3460 with that obtained when 

A = 0.0970: the number of replenishments can be reduced from 7 to 6 at a cost penalty of 

9.0377 ( = 134.3739-125.3362 ). 

The simulation can generate many alternative replenishment plans: some of which may be 

more practical. For instance, if a certain period is not suitable for replenishment, we can 

choose a replenishment plan by adjusting the parameter, to minimise the total cost with 

the constraint. 

5.5 A comparison on 12 problems 

For an inventory problem with a finite planning horizon and zero initial and final 

inventory level, different methods can be compared on a range of problems. The result 
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depends on the demand rate, set-up cost, stock holding cost per item per unit time, as well 

as the time horizon. One may argue that one specific problem can not be representative. 

Different heuristics can be tested in a specified problem so as to check the efficiency. The 

results of simulation on a group of problems can indicate which heuristics’ perform the 

best. In order to compare the above algorithms, the following 12 sample problems have 

been tested(Table 5.5). 

  

  

  

  

  

  

  

  

  

  

  

  

    

No. a b H A I 

1 0 900, 1 9 2 

2 0 900, 2 9 2 

3 0 100 4 100 2 

4 0 1600 3 42 0.56 

5 6 1 io 30 1 

6 6 1 ub 50. 1 

ud 6 2 uu 60 1 

8 6 1 iy 70. 1 

9 6 1 ub 90 1 

10 100 150 1 30 2 

i 100 150 LS. 30 2 

12 100 150 2 30 2               

Table 5.5a. The parameters of the sample problems 

We suggest a less time-consuming simultion approach by searching 

Ae $1 ={i/10:i=1,...,9}, 

instead of 

Xe $2 ={i/100 : i= 1,...,99}. 

The computational results are different from Yang and Rand (1993) by column S1(Table 

5.5b.). 
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Problem || The optimal %_above the optimal 

No. Donaldson's _| Ritchie's _| Silver's CLUC PPA Ecl. S1 S2 

1 125.26 4.6229 1.2555 4.6673 _| 0.1029 0.1029 0.3319 0.0608 

2 345.78 0.5959 2.1104 1.3381 1.6275 0.5959 0.0469 0.0463 

3 1122.60 0.2016 | 5.3479 10.0957_| 1.3820 0.2016 0.0158, 0.0155 

4 977.17 0.0357 1.5876 5.4091 0.6230__| 0.0356 0.1319 0.0029 

5 291.21 0.0258 7.6566 1.0968 __| 0.2085 0.0258 0.0619 0.0019 

6 378.05 0.1748 11.7907_| 2.0514 __| 0.5622 0.1748 | 0.0414 0.0043 

7 418.05, 2.2302 __| 0.5930 6.6906 3.4220 | 0.5930__| 0.0586 0.0307, 

8 450.84 7.3633__| 4.2506 14.3612_| 9.3362__| 4.2506 __| 0.2269 0.0907, 

9 510.84 0.0690 14.4429 | 2.0304__| 0.3953 0.0690 __| 0.0017 0.0010 

10 150.42 2.7269 | 0.8682 __| 7.8399 | 4.0666 0.8682 __| 0.1534 0.0176 

1 242.46 9.1443 5.4716 __| 0.4576 11.3779 _| 0.4576 __| 0.2626 __| 0.0100 

12 347.64 0.0529 6.0923 1.7656 __| 0.3529 __| 0.0529 _| 0.0018 0.0005, 

Overall 1.2601 4.8847 __| 5.6409 _| 2.0181 0.5418 0.1111 0.0171               

Table 5.5b The computational results obtained by various algorithms 

The analytic eclectic algorithm, just using the four heuristics, reduced the average 

percentage above the optimum down to 0.5418%. However, the improved eclectic $1 

reduces it again to 0.1111%, and S2 finally reduces the average result to only 0.0171%. 

A particular heuristic may have a very poor behaviour caused by rare values of some 

parameters, yet perform excellently under most other conditions. For example, Silver's 

heuristic gives a good result in problem 7, while giving a poor result in problem 9. One 

may even suggest that the simulation might find an optimal solution if all feasible values 

for parameter A had been tested. However, we have pointed out that this approach is still a 

heuristic algorithm unless it can be proved mathematically. 
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6. Extensive discussion on the three approaches 

6.1 Methodology consideration 

Structured approaches to numerical optimisation problems have generally evolved along 

three approaches: optimisation, heuristics, and simulation. All have been used as an 

integral part of decision support tools. Each offers valuable characteristics and 

uniqueness. 

a) Optimisation methodology 

Optimisation is potentially the ideal way to solve a decision problem. The problem is 

represented by means of mathematical expressions, and then the best alternative is found 

through the application of mathematical logic. 

This mathematical logic is embodied in such well-known procedures as differential 

calculus and mathematical programming. However, this ideal approach exacts its price. 

Because guaranteeing that the best solution will be found can require significant computer 

running time and memory, real-world problem descriptions frequently must be 

approximated and abbreviated. That is, problem descriptions can rarely be as extensive 

and in as much detail using an optimisation approach as they can be for a simulation 

approach. 

Problem description detail must often be sacrificed for the capability to find the optimal 

solution. The danger, of course, is finding an optimal solution to a problem description 

that is not sufficiently close to reality to be convincing, or of experiencing computer 

running times so long as to make this approach impractical. Some attempts have been 

made to develop special approaches that take advantage of specific problem structures in 

order to overcome some of these disadvantages. 
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b) Heuristic methodology 

Well-known heuristic decision rules may not only have a sound basis in economic or 

mathematical theory, but are evidently the best way to incorporate economic logic into a 

stream of fast-moving decisions. 

It is easy to examine an optimisation algorithm since there is only one short cut to Rome. 

However, it is difficult to examine heuristics systematically since "all roads lead to 

Rome". These rules that guide the solution-finding process abound in problem solving. 

They are not difficult to specify because researchers are in the habit of using them 

constantly in daily activities. 

Good heuristics are frequently the result of common sense procedures that work 

effectively. They may be based on concepts, principles, and theories that relate to a 

specific problem, or they may result from observing the form of optimised solutions and 

mimicking them. It is not easy to recognise when good heuristics have been found, since 

testing them against other methods is difficult when practical-size problems are involved. 

The use of heuristics in solving problems attempts to maintain the level of problem 

description detail of simulations while offering the best solution search capability of 

optimisation approaches. Simply put, heuristics are rules of thumb that direct the solution 

approach toward the best solution, but do not guarantee that it will be found more 

specifically. 

A heuristic is a short cut process of reasoning that searches for a satisfactory, rather than 

an optimal solution. The heuristic, which reduces the time spent in the searches for a 

satisfactory, rather than an optimal solution, comprises a rule or a computational 

procedure which restricts the number of alternative solutions to a problem, based upon the 
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analogous human trial-and-error process of reaching acceptable solutions to problems for 

which optimising algorithms are not available. 

The performance of this approach depends a great deal on the quality of the heuristics 

used. Quality heuristics would allow optimal or near optimal solutions to be found in a 

fraction of the computational time required for optimising approaches. The resulting 

savings in computational time, and corresponding memory, can be used to provide more 

realism in the problem description. Finding such good heuristics can be elusive and it is 

often difficult to show that they work well in realistically-sized problems. 

e) Computer simulation methodology 

Computer simulation is a mathematical description of a decision problem, usually in 

significant detail. The mathematical description is typically manipulated with the aid of a 

computer due to the burdensome computations required. However, it is the extent of this 

problem description detail that distinguishes simulation from other decision approaches. 

Problems are solved by “costing out” various alternatives as replicated by the simulation. 

Repeating the simulation numerous times produces a cost profile for the various 

alternatives from which the most desirable one may be selected. Although simulations 

may be written in general programming languages (FORTRAN, C, C++, BASIC, and 

PASCAL), special-purpose languages exist to facilitate simulation development (SLAM, 

SIMSCRIPT, and GPSS). Some simulation programs are prewritten to solve specific 

problem types (SIMFACTORY and LREPS). 

A characteristic of detailed simulations is that they require substantial computer running 

time, especially if the problem is replicated in great detail. They also place the burden on 

the user to seek out the best alternative to test. 
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We do not discuss which methodology is better for numerical optimisation problems in 

managerial decision making. Throughout the rest of this Chapter we use notation "o" for 

“is not better than". 

6.2 Modelling consideration 

Algorithms are applied to concrete model structures. Modelling effort is an important 

factor in the choice of a suitable approach. We attempt to conclude some modelling 

criteria for evaluating the different approaches. 

a) Model modification 

It is often necessary to modify a specific problem or model so as to apply known 

algorithms to them. Optimisation algorithms require modification. Heuristics normally 

need no modification. However, simulation requires a lot of modification. 

Our judgement: Simulation e< Optimisation e Heuristics. 

b) Program development 

In managerial decision making it is almost impracticable to apply an algorithm without 

computer or program in this IT revolution time. One such class of procedures is 

computerisation. To be considered an effective alternative to model based decision 

making effort, a good model must possess the following features: substantial simplicity, 

reasonable computer storage requirements, reasonable computing time and cost, 

acceptable accuracy and validity of solutions, robustness, generation of multiple solutions, 

and user friendliness. 

One is reluctant to develop a program when optimisation software is available. A standard 

optimisation algorithm normally does not require program development. A non-standard 
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optimisation algorithm requires program development, which is often more complicated 

and often requires much more effort than heuristics. 

Heuristics normally need program development, but, it is usually not difficult to develop a 

program for a heuristic algorithm. Compared to simulation, heuristics require less effort in 

developing a program. 

For a simulation algorithm, however, program development is usually a substantial 

undertaking. Realistic simulations often require long computer programs of some 

complexity. There are special purpose simulation languages and packaged systems 

available to ease this task,-but it is still rarely simple. For a particular problem, one should 

certainly not attempt to develop a simulation language. 

Our judgement: Simulation « Optimisation « Heuristics. 

c) Data processing 

Some industrial problems are so complex that the standard models of operational research 

are inappropriate. This sometimes occurs because: 1) the number of pieces of information 

needed to describe the problem is enormous; 2) the problem has features which are 

difficult to quantify or involve a conflict of objectives; 3) it may be difficult to collect 

accurate data (Foulds, 1983). 

If an optimisation algorithm is supported by commercial optimisation software then data 

processing is not an easy task. However, data processing may be easier if the optimisation 

algorithm is programmed for a specific problem. 

Heuristics are often more flexible in data processing whether supported by a program or 

not. A heuristic program is normally developed for a particular problem, which does not 
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have to transform crude data into specified parameters, but uses crude data directly. 

Therefore, a heuristic algorithm reduces the chance of information distortion. 

Similarly, the design of a simulation program often takes data processing into account. 

which means that computer simulation normally requires simpler data processing. 

Our judgement: Optimisation « Simulation « Heuristics. 

6.3 Feasibility consideration 

We provide no comfort whatsoever when telling a manager that there does not exist an 

efficient method for finding a solution. However, Privately we think hard about the 

technical feasibility of all the possible approaches. We attempt here to conclude some 

feasibility criteria for evaluating the different approaches. 

a) Optimality 

The word optimality here means the difference between the optimal solution and the 

solution found by one of these approaches. However, it may be indicated by the difference 

between the values of the objective. With the support from optimisation software, the 

optimisation approach is still a powerful tool for standard OR/MS problems where 

optimality has a high priority. 

An optimisation algorithm can guarantee to find an optimal solution for any instance of 

the problem. 

A heuristic method cannot guarantee to find an optimal solution at least in one instance of 

the problem. Different heuristics may be suitable for different situations of a problem. 

Optimality of a heuristic can be checked by the least upper bound according to the 

conditions in a specified problem. In model relaxation with bound, we have briefly 

discussed the implication of bound. A least upper bound can be used as a criterion when 
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comparing a group of heuristics. Certainly, heuristics are no panacea. A heuristic solution 

would appear doubtful to managers when it is impossible to estimate its closeness to the 

optimal (even if it exists). 

A computer simulation cannot guarantee to find or converge on an optimal solution. 

However, a trial-and-error approach can find the best solution. The word best in 

simulation may be somewhat misleading. It does not mean the optimal solution in any 

absolute sense, but refers instead to the best solution that the decision maker can attain 

with the resources and time available. One usually selects those values of the parameters 

to test in the model that have a good chance of being near the optimal solution. 

Our judgement: Heuristics « Simulation « Optimisation. 

b) Complexity of algorithm 

Computer experts often use the term polynomially-bound time, as it is assumed that 

computational time is linearly proportional to the number of elementary computational 

steps. The size of a specified instance of a problem is defined to be the number of the 

symbols required to describe it. So-called P or NP become very important in evaluating an 

algorithm, especially for a combinatorial problem. An algorithm is considered to be 

effective if it can guarantee to solve any instance of the problem for which it was designed 

by performing a number of elementary computational steps where this number can be 

expressed as a polynomial function of the size of the problem. 

An optimisation algorithm is often of higher complexity than other algorithms. Many 

numerical optimisation problems in managerial decision making fall into NP-hard 

problems such as capacitated lot-sizing, and machine-scheduling, etc. This implies that no 

polynomial optimisation algorithm can be possibly found. 
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A heuristic algorithm is simple and effective, therefore non-NP is being considered in the 

first place. 

A computer simulation is often very time-consuming and therefore is no longer judged by 

the complexity of its algorithm. 

Our judgement: Simulation « Optimisation « Heuristics 

e) Sensitivity analysis 

When using forecasts to assist in decision making, we often try to protect our solution 

from forecasting errors by obtaining a measure of the sensitivity of the solution. 

It is much easier to undertake sensitivity analysis using an optimisation algorithm. 

Sensitivity analysis can also measure the effects on the heuristic solution, however, it is 

not straightforward. 

In computer simulation it is difficult to undertake sensitivity analysis because it is a trial 

and error approach. 

Our judgement: Simulation e Heuristicse: Optimisation 

6.4 Applicability consideration 

In practical OR, the hard task is to discover precisely what the real problem is. Then, 

either an adequate solution can be found without detailed calculations, or alternatively 

some new option must be envisaged, and this requires inspiration rather than calculation. 

Different models can also help decision-makers in new situations. The decision problem 

may well change significantly before a satisfactory solution is produced by a suitable 
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approach. An approach that survives and is widely used will have to be user friendly and 

have other good qualities for solving numerical decision making problems. The only 

accepted measure is whether it has a strong applicability. We attempt to conclude some 

applicability criteria for evaluating the different approaches. 

a) Computational time 

The computational time of an algorithm can be tested on a specified sample or a group of 

samples. It owes as much to better mathematics as to better computers. 

An optimisation algorithm normally requires reasonable time whenever a low 

convergence rate occurs in some optimisation algorithms. 

Heuristics often require little time since the design of a heuristic algorithm takes 

convergence rate into account. 

Searching for an optimal solution from a computer simulation can turn out to be a 

surprisingly time-consuming process. 

Our judgement: Simulation « Optimisation « Heuristics 

b) Managerial preference 

The intuition, experience and common-sense of the manager remain indispensable for the 

selection of an alternative solution and its implementation. Nevertheless, there is 

something strange about that intuition: sometimes the optimal solution may appear not to 

be the "best", when compared with the heuristic or simulated solution. Managers require 

different alternatives for one reason or another, the more alternatives, the better. 

An optimisation algorithm normally determines merely one optimal solution, e.g., some 

convexity condition is satisfied. 
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A heuristic method also often determines one solution. However, since heuristics are 

simpler it is possible to produce more alternatives according to different considerations. 

It can be seen that simulation allows managers to explore the whole range of feasible 

options in a decision problem. These options could not be explored without a powerful 

computer, even though the selection process would be very slow. 

Our judgement: Optimisation e Heuristics « Simulation 

c) Maintenance effort 

The effectiveness of maintenance directly affects the quality of managerial decision 

making, which is a relatively neglected part of OR. For example, when a series of similar 

products are being produced to order using the same technology, the requirement for 

maintenance is minimal. However, when the technology is changing rapidly, constant 

maintenance becomes necessary. 

Without expert help from OR professionals, the maintenance of optimisation software is 

difficult whenever there is a change in the managerial problem. 

Heuristic packages normally suit actual data well so that the maintenance of such a 

package would be much easier. 

Maintenance of a simulation system is far more difficult or even impossible. 

Our judgement: Simulation « Optimisation « Heuristics 
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Ts Major conclusions and summary 

7.1 Major conclusions 

The current tendency in decision making shows that companies today have to take an in- 

depth look at these approaches which propel them toward a higher level. Any OR/MS 

professionals may note that it is difficult to examine these approaches systematically. 

We attempt to conclude the following eight points on the basis of this research: 

1) No evidence can proved breakthrough in the use of optimisation algorithms and 

theory 

It can be seen that apart from a certain class of traditional management problems which is 

solvable using standard optimisation algorithms, there is a strong possibility pure 

optimisation will not be undertaken extensively for managerial decision making. But 

there is no evidence that optimisation has made a breakthrough in the major areas of 

optimisation such as linear programming (LP), non-linear programming (NLP), and 

large-scale programming (LSP). In Chapter 2 and appendix 1, it can be shown by the fact 

that most available optimisation software was still designed by classical optimisation 

theory and methods, e.g., varied simplex algorithms for LP, and modified Lagrangean or 

Newton algorithms for non-linear programming etc. We can conclude that it is unlikely 

that some breakthrough had been made for optimisation on the basis of traditional linear 

programming and non-linear (convex) programming, otherwise, we should have very 

powerful optimisation-software designed by new algorithm. 

2) The simplicity consideration is most important in managerial decision making 

On the basis of the survey at British Airway, we found heuristics are proposed for 

simplification through a kind of substitution in problem, model, or algorithm. This helps 

us to classify heuristics and study them in depth. Relaxation of optimality requirements is 

the central idea of heuristics. Decision making is always an on-going process so that 
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managers may not describe their problem well in the first place. Over-enthusiastic effort 

becomes unnecessary or does not match a roughly defined managerial decision making 

problem. In many situations, a heuristic algorithm is more suitable to be used than an 

optimal algorithm. We can conclude that the simplicity of the heuristic approach makes it 

an attractive decision support tool for managers because they are more interested in 

decision analysis, rather than decision making. 

3) Decomposition and heuristics together may solve large-scale problem 

According to the study on decomposition, we found early experiences may have left a 

generally negative and misleading imprint on the entire approach due to lack of extensive 

and systematic studies of the behaviour of decomposition algorithms. For well-behaved 

LP models, the convergence as measured by the number of times the master problems 

must be resolved, is actually surprisingly fast. Slow convergence may be caused, at least 

in part, by the propagation of numerical errors. There are indeed meaningful, large-scale 

optimisation applications that eventually may have to rely on decomposition. Theoretical 

results including principles are leading to mathematical representation, and then more 

robust algorithms. New computer architecture allowing parallel computation will provide 

further opportunities to realise the potential of the decomposition approach. The prospect 

of decomposition using heuristics may also have significant impact on many real-world 

applications. 

4) Time restriction prevents managers from using optimisation approach 

It goes without saying that simulation is the most unpopular approach according to time 

restriction. However, it can be seen optimisation approach often fails as well. As we 

know, managers would like to examine a managerial problem in breadth rather than in 

depth because of time restriction. Many known managerial problems are so-called NP 

problems, i.e., there does not exist a P algorithm for such a problem. Once an algorithm 

falls in NP-hard or NP-complete, the implication is that the number of operations or 

computation time will increase sharply with number of variables. In this situation, 
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computation time becomes non-practical for large-scale or even medium size problems. It 

is therefore not surprising that a variety of heuristics has been suggested for solving 

optimisation problems. 

5) Data formality prevents managers from using commercial optimisation software 

As indicated before, there are large number of commercial optimisation software 

available. But there are few reports on their applications in decision making. In this 

research we found commercial optimisation software requires rigid data formality, which 

implies considerable modelling effort to transfer crude data to standard data or specified 

parameters. Such a transformation may lose or distort some characteristics of the original 

information. Therefore, optimisation software is restricted to standard decision making 

problems. However, heuristics do not require much data formality because they are 

proposed for specific problems. 

6) Correct recognition of the position of OR/MS professionals is required badly 

An optimisation technique is used to analyse a managerial problem, not actually to make a 

decision. OR analysts are actually decision making assistants for a managerial problem, 

not decision makers. Optimisation algorithm often provide managers with a unique 

solution. Managers have to raise many questions about this solution, which may not be 

answered by an optimisation model. If there are two or more objectives then the costly 

optimisation algorithm will not guarantee a more satisfactory solution for managers. 

Flexible heuristics can often serve for decision analysis purposes, while optimisation 

algorithms and computer simulation imply formidable tasks that are not always worth 

undertaking. This point of view also came from the interview with the key people in the 

OR group in British Airways. 

7) Problem-finding possibilities exist in heuristic and simulation approaches 

On the basis of the research on heuristics, we found heuristics are much more flexible in 

dealing with decision making problem. In a case study we studied a number of heuristics, 
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and found each of them has some special characteristics. Some problem substitution 

heuristics have a clear economic background and can be understood easily. Compared to 

heuristics and simulation, in reality an optimisation algorithm has no more importance for 

such a managerial problem. Managers have a potentiality to try these heuristics or even 

make some heuristics themselves. Furthermore, managerial decision making problems are 

often multiple criteria by nature although they are modelled as single objective numerical 

optimisation problems. Optimisation algorithm is basically a problem-solving approach, 

while the heuristic approach is in nature both problem-finding and problem-solving. If a 

managerial decision making problem is different from those classical or standard OR 

problems, it often requires problem-finding which is more likely to be met by a heuristic 

approach. 

8) The influence of IT development will make all the approaches more powerful 

The spread of personal computers is favourable for heuristics, which will become more 

and more important in decision making with the development of information technology. 

Most managers have some knowledge about spreadsheet and database because new 

generation of managers are well prepared. However, they will benefit more from new LT. 

such as data processing rather than optimisation software, which still needs OR/MS 

expertise. The development of information technology increases the applicability of the 

these approaches, especially simulation. These approaches will undoubtedly be built 

around computer-based decision support systems. The growing number of well-designed 

DSS systems in the industry may promote the use of quantitative heuristic decision 

techniques. 

We compared the three approaches through methodology, modelling, feasibility, and 

applicability. Heuristic provides a way of quickly finding satisfactory solutions to 

problems when such methods as simulation and optimisation prove undesirable or 

impracticable. Simple, understandable and usable heuristic approaches for solving 

managerial decision making problems are needed. It will be more attractive to managers 
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in the future with the development of IT. Traditional optimisation is sometimes 

inadequate, but decomposition techniques may be promising in dealing with practical 

problem, especially combined with heuristics. Simulation also has its potential with the 

development of information technology. Computer simulation then may well be regarded 

as the last resort. Despite this, it is surprising how often such an approach is needed. 

There are certain advantages in employing a simulation approach in management science 

and it may be the only way of tackling some managerial decision making problems. 

7.2. Summary 

This research indicates that heuristics are more suitable for managerial decision making. It 

provides a way of quickly finding satisfactory solutions to problems when such methods 

as simulation and optimisation prove undesirable or impracticable. It is concluded that 

operations management should consider integrating these heuristic methods into a 

decision support system. Diversified heuristics will be widely applied in managerial 

decision making. 

We hope that more OR professionals will switch their attention to heuristics. Simple, 

understandable and usable heuristic approaches for solving managerial decision making 

problems are needed. Such approaches will undoubtedly be built around computer-based 

decision support systems. The growing number of well-designed DSS systems in industry 

may promote the use of quantitative heuristic decision techniques. Heuristics will be more 

attractive to managers, in the future, with the development of IT. Computer simulation 

may then be regarded as the last resort. Despite this, it is surprising how often such an 

approach is needed. 

There are certain advantages in employing a simulation approach in management science 

and it may be the only way of tackling some managerial decision making problems. 
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Appendix 1. Optimisation Software 

1, CPLEX 

Areas covered by the software 

Ready - to run applications: 

CPLEX Linear Optimise 

CPLEX Mixed-integer Optimise 

Optimisation libraries callable from C, Fortran, and Pascal programs: 

CPLEX Callable Library 

CPLEX Mixed-Integer Library 

The CPLEX Linear Optimise and Callable Library solve linear programming problems. 

The CPLEX Mixed-Integer Optimise and Mixed-Integer Library solve integer 

programming problems as well as linear programming problems. Both linear and integer 

packages also solve network-structured problems with unlimited side constraints. 

CPLEX products are designed to solve large, difficult problems where other linear 

programming solves fail or are unacceptably slow. CPLEX algorithms are exceptionally 

fast and robust, providing exceptional reliability, even for poorly scaled or numerically 

difficult problems. 

Typical areas of application include large models in refining, manufacturing, 

banking, finance, transportation, timber, defence, energy, and logistics. CPLEX is also 

used heavily in academic research in universities throughout the world. 

Additional comments 

The CPLEX linear programming packages use a "modified primal and dual simplex" 

algorithm with multiple algorithm options for pricing and factorisation. 

CPLEX solves are available in two forms: 

The CPLEX Linear Optimise and Mixed-Integer Optimise are complete applications 

designed for ease of use. Because a complete on-line help system exists, most users never 

fully opening the package. 
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The CPLEX Callable Library and Mixed-Integer Library are in the form of callable 

routines that can be used to embed optimisation functionality within user-written 

applications. The callable products were designed to simplify development while 

providing the flexibility developers require. CPLEX reads linear and integer problems in 

several formats, including MPS format and CPLEX LP format. CPLEX also interfaces 

with several modelling languages, including GAMS, AMPL, and MPL. 

To support academic research, CPLEX is offered at significant discounts to academic 

institutions. 

2. C-WHIZ 

Areas covered by the software 

Linear programming models 

Additional comments 

C-WHIZ is an in-core implementation of the simplex algorithm. C-WHIZ accepts matrix 

input in standard MPS format or from the MPSIII database. C-WHIZ is undergoing 

continual enhancement. A version that removes the 32,000 row limit is being prepared. 

EE LAMPS 

Areas covered by the software 

Linear programming and mixed-integer programming 

Additional comments 

LAMPS (Linear and Mathematical Programming System) offers a primal and a dual 

simplex algorithm for the solution of linear programs, and a branch-and-bound algorithm 

for mixed-integer programs. LAMPS is designed for the solution of large problems, 

although it will operate efficiently on small-sized and medium-sized problems. Most 

standard input formats are acceptable, and output (solution) reporting is very flexible. 

Mixed-integer problems may define data in terms of S1 or S2 sets, general integer, 

binary, and semicontinuous variables. 
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Algorithms of LAMPS are also avaible for direct use with MAGIC (a matrix generation 

and reporting system) and GAMS. 

4. LINDO 

Areas covered by the software 

Linear programming, mixed-integer linear programming, quadratic programming. 

Additional comments 

LINDO uses simplex and active set algorithms for linear and quadratic programming, and 

a branch-and-bound approach for mixed-integer programming. 

5. MINOS 

Areas covered by the software 

Linear programming, unconstrained and constrained non-linear optimisation. 

Additional comments 

Input to MINOS 5.4 is via MPS files (which contain information for the linear parts of 

the objective function and constraints), SPECS files (which specify the problem types 

and set various parameters), and Fortran codes (which calculate objective and constraint 

functions, if non-linear). The GAMS system can be used as an alternative user interface. 

See the entry on GAMS for details. 

6. OSL 

Areas covered by the software 

Linear programming, convex quadratic programming, and mixed-integer programming 

problems. 

Additional comments 

For linear programming, primal and dual versions of the simplex method are 

implemented. a branch-and-bound technique is used for mixed-integer programming. 

Volume 31 (1992) of the IBM Systems Journal contains eight articles related to OSL. An 

overview of the product may be found in the article cited below. 
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Te BQPD 

Areas covered by the software 

BQPD solves quadratic programming problems. A general form of the problem is solved 

that allows upper and lower bounds on all variables and constraints. If the Hessian matrix 

Qis positive definite, then a global solution is found. The method can also be used when 

Q is indefinite, in which case a Kuhn-Tucker point that is usually a local solution is 

found. 

Additional comments 

The code implements a null-space active set method with a technique for resolving 

degeneracy that guarantees that cycling does not occur even when roundoff errors are 

present. Special features include a constraint prescaling routine and full documentation 

through comments in the code. Special arrangements can be made for use in a 

commercial environment. 

8. LSSOL 

Areas covered by the software 

LSSOL is a Fortran package for linearly constrained linear least squares problems and 

convex quadratic programming. LSSOL is designed to solve a class of linear and 

quadratic programming problems of the following general form: 

minimise {f(x): xe RK" } 

subject to1< { ™ }<u, 
Xx 

where C is an m (L x N) matrix (m L may be zero) and f(x) is one of the following: 

FP: None (find a feasible point for the constraints) 

EP: “ex (a linear program) 

QPl: %x' Ax A symmetric and positive semidefinite, 

QP2: c'x+%x' Ax A symmetric and positive semidefinite, 

QP3: %x'A' Ax Am Xn upper trapezoidal, 

QP4: c'x+%x'A' Ax Am Xn upper trapezoidal, 
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LSI: %|b-Ax|? Amxn, 

LS2: c'x+¥%|b-Ax |? AmxXn, 

LS3: %|b-Ax |? Am Xn upper trapezoidal, 

LS4: c'x+%|b-Ax |? Am Xn upper trapezoidal, 

with c an n-vector and b an m-vector. 

Additional comments 

LSSOL is essentially identical to the routine EO4NCF of the NAG Fortran Library. 

EO4NCF was introduced at Mark 13. LSSOI was first distributed by the Office of 

Technology Licensing at Stanford in 1986. Since that time, the routine has been 

continually revised. Users with older versions of LSSOL should consider obtaining a 

copy of the most recent version. 

9. QPOPT 

Areas covered by the software 

QPOPT is a FORTRAN package designed to solve linear and quadratic programming 

problems of the following general form: 

minimise {f(x):xe KR} 
x 

subject to 1< Su, subj 1 isu 

where A is an m (Lx N) matrix (mL may be zero) and f(x) is one of the following: 

FP: None (find a feasible point for the constraints) 

Lee tex (a linear program) 

QPl: %x'Hx H symmetric, 

QP2: c'x+%x'Hx H symmetric, 

QP3: %x'H'Hx Hm Xn upper trapezoidal, 

QP4: c'x+%x'H' Hx Hm Xn upper trapezoidal, 

with c an n-vector. In QP1 and QP2, there is no restriction on H apart from symmetry. If 

the quadratic function is convex, a global minimum is found; 
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otherwise, a local minimum is found. The method used is most efficient when many 

constraints or bounds are active at the solution. If H is positive semidefinite, it is usually 

more efficient to use the package LSSOL. 

Additional comments 

QPOPT is essentially identical to the routine EO4NCF of the NAG FORTRAN Library. 

EO4NCF was introduced at Mark 16. 

The method of QPOPT is similar to the method of QPSOL, which was distributed by 

Stanford University between 1983 and 1991. However, QPOPT is a substantial 

improvement over QPSOL in both functionality and reliability. 

10. OB1 (Optimisation with Barriers-1) 

Areas covered by the software 

Linear programming 

Additional comments 

The software has been in development since 1987. Linear programs with up to 40,000 

constraints and 180,000 variables have been solved. The main algorithm is the primal- 

dual interior-point method, with Mehrotra's predictor-corrector strategy. 

11. BIN 

Areas covered by the software 

Unconstrained minimisation in a parallel computing environment. The software is 

especially suited to problems with a large number of variables. 

Additional Comments 

BTN uses a block, truncated Newton method based on a line search. 
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12. GAUSS 

Areas covered by the software 

The software consists of nine packages that are designed for use with the GAUSS matrix 

programming language. Four of these packages relate to optimisation; the other five 

relate to statistical analysis. The four relevant packages are 

OPTIMUM  Unconstrained optimisation 

MAXLIK Maximum likelihood estimation 

NLSYS Solving non-linear equations 

SIMPLEX Linear programming 

Additional comments 

These packages are being revised and expanded. Four methods can be chosen: Newton's 

method, quasi Newton Methods, steepest-decent, and Polak-ribiere conjugate gradient 

method. 

13. IMSL 

Areas covered by the software 

Figures | and 2 provide a quick reference to the optimisation routines of the FORTRAN 

Library. Only part of this coverage is available for the C Library. There are also routines 

for solving systems of non-linear equations . 

Additional comments 

Users can include the software in their derivative works with a licensing agreement. 

Contact IMSL, Inc., Sales, for more details. 
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14. LANCELOT 

Areas covered by the software 

Unconstrained optimisation problems, systems of non-linear equations, non-linear least 

squares, bound-constrained optimisation problems, and general non linearly constrained 

optimisation problems. Special emphasis is placed on large-scale problems. 

Additional comments . 

The LANCELOT package uses an augmented Lagrangian approach to handle all 

constraints other than simple bounds. 

15a. NAG (C Library) 

Areas covered by the software 

It covers linear programming, quadratic programming, minimisation of a non-linear 

function(unconstrained or bound constrained), minimisation of a sum of squares. 

15b. NAG ( Fortran Library ) 

Areas covered by the software 

It covers linear programming; mixed-integer linear programming; quadratic 

programming; minimisation of a non-linear function (unconstrained, bound constrained, 

linearly constrained, and non linearly constrained); and minimisation of a sum of squares 

(unconstrained, bound constrained, linearly constrained, and non linearly constrained). 

Additional comments 

For problem with non-linear constraints, a sequential QP algorithm is used. 

The NAG Fortran Library is updated to a new Mark from time to time. Mark 16, which 

contains improved routines for linear and quadratic programming was released in the first 

half of 1993. Further developments in optimisation routines are planned for future Mark 

versions. 
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16. OPTIMA 

Areas covered by the software 

Unconstrained optimisation, constrained optimisation, sensitivity analysis. Software is 

written in Fortran 77. 

17. PORT3 

Areas covered by the software 

General minimisation, non-linear least squares, separable non-linear least squares, linear 

inequalities, linear programming, and quadratic programming. The non-linear optimises 

have unconstrained and bound-constrained variants. 

Additional comments 

The non-linear optimises use trust-region algorithms. Software is written in ANSI Fortran 

77. The general minimisation routines use either a quasi-Newton approximation to the 

Hessian matrix or a Hessian provided by the caller. 

18. PROCNLP 

Areas covered by the software 

Non-linear minimisation or maximisation with linear constraints. 

Additional comments 

PROC NLP is part of the SAS/OR (Operations Research) package. The current version of 

PROC NLP is experimental. When PROC NLP goes into production, various extensions 

will be implemented. In particular, a special algorithm for optimising a quadratic function 

with linear constraints will be offered, non-linear constraints will be implemented by an 

augmented Lagrangian approach, and a reduced-gradient version with sparse LU 

decomposition will be provided for large and sparse systems of linear constraints. 
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19. TENMIN 

Areas covered by the software 

Unconstrained optimisation. 

Additional Comments 

The package allows the user to choose between a tensor method for unconstrained 

optimisation and a standard method based on quadratic model. 

20. TN 

Areas covered by the software 

Unconstrained minimisation and minimisation subject to bound constraints. The software 

is especially well suited to problems with large numbers of variables. 

21. TNPACK 

Areas covered by the software 

Non-linear unconstrained minimisation of large-scale separable problems. A truncated 

Newton method for unconstrained minimisation has been specifically developed for 

large-scale separable problems. 

22. UNCMIN 

Areas covered by the software 

Unconstrained optimisation. 

Additional comments 

UNCMIN is a modular package based on a Newton or quasi-Newton approach. It allows 

the user to select from various options for calculating or approximating derivatives and 

for the step-selection strategy. 
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23. VEO08 

Areas covered by the software 

Bound-constrained non-linear optimisation with an emphasis on large-scale problems. 

Additional Comments 

VEO8 is a line-search method with a search direction obtained by a truncated conjugate 

gradient technique. 
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2. Programs for Testing Twelve Problems in the Case Study 

a. PROGRAM Donaldson(input,output); 

CONST 

AssumedZero = 0.00000001; 

TYPE 
Vector = array[1..500] of real; 

VAR 
ZG,T,Y,X,Z1,Z2,TT: Vector ; 

ij,k,l,n,n1,n2,kk : integer ; 

a,b,H,cl,c2 : real ; {The problem parameters} 

Test,Cost,m,prod,cost1,cost2,zmin,zmax,ztest:real; 

FUNCTION Calcul(r:real;nn:integer):real ; 

VAR 
P:real; 

begin 

X[1):=1; 

For |:=2 to nn do 
X[I]:=sqrt(3-2/X[I-1]); 

P:=X[I]; 
for 1:=2 to nn do 

P:=P*X([I]; 
Calcul :=1+H*b/a-P; 

end; 

PROCEDURE Resolve(a,b,H,c1,c2:real); 

begin 

Test := cl/(H*H*H*b*c2); 
Z[2]:=sqrt(3); Y(1]:=1; G[1]:=0; 

Y([2]:=Z[2]; G[2]:=1/(3*sqrt(3)); 
=o: 

repeat 

  

sqrt(3-(2/Z[i-1])); 
Y(i):=Y[i-1]*Z[i); 

Gfi):=C(YE)* YG) YE); 
for k:=2 to i-1 do 

Gfi}:=GLi}+C1/(Y Gi) * YE)" YG) * Yok] * Y[k]* Yk] *(1-(/z[k])); 
until G[i]-G[i-1] <= Test ; 

for j:=1 to i-1 do 

TU):=YGVYLi-1]*H; 
end; 

PROCEDURE Timing(nn:integer); {Procedure determining the optimal 

replenishmnt points for a number 
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nn of replenishments } 

begin 

for k:=1 to nn do 

begin 

Prod:=1; 

for kk:=1 to k do 
Prod:=Prod*x[kk]; 

TT[k]:=a/b*(Prod-1); 

end; 

end; 

PROCEDURE Find(nn:INTEGER); {Procedure finding the optimal 

number of replenishments nn} 

begin 

  

if calcul(Ztést,nn)>0 then 

begin 

ZMIN :=ZTEST; 
ZTEST:=(ZMAX+ZTEST)/2; 

end 

else 

begin 

ZMAX:=ZTEST; 

ZTEST:=(ZMIN+ZTEST)/2; 
end; 

until abs(calcul(ZTEST,nn))< AssumedZero; 

end; 

PROCEDURE Display(ii:integer;zz:vector;cc:real); 

{Procedure displaying results} 

begin 

writeln(‘a= ',a); 

writeln(‘b= ',b); 

writeln('H= ',H); 

writeln(‘cl=',c1); 

writeln('c2=',c2); 

writeln;writeln; 

writeln(’ OPTIMAL POLICY’); 
writeln; 

writeln('  ',ii,' Replenishments'); 

writeln; 
writeln(' —_—t(0)= 0'); 
for k :=1 to ii do 

writeln(' t(',k,')=',zz[k]); 

writeln(' COST IS ',CC); 

  

end; 
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begin {Main program starts here} 

writeln(‘ENTER a,b,H,cl,c2 '); 

readIn(a); readIn (b); readin (H); readIn (c1); readin (c2); 

end. 

m:=cl1/c2; 

IF a=0 THEN 

begin 

Resolve(a,b,H,cl,c2); 

n:=i-1; 

Cost:=n*m+a*H*H/2+b*H*H*H/3; 
FOR k:=1 TO n-1 DO 
Cost:=Cost-T[k]*(T[k+1]-T[k])*(a+b/2*(T[k+1]+T[k])); 
Display(n,T,Cost); 

end 

else 

begin 

end; 

Resolve(0,b,H+a/b,c1,c2); 

k:=0; 

repeat k:=k+1 
until T[k]>a/b; 

nl:=i-k-1; 

n2:=i-k; 

Find(n1);Timing(n1); 

for j:=1 to nl-1 do 

Z1(j):=TTG]; 
ZA(ai) =H; 

Cost1:=n1*m+a*H*H/2+b*H*H*H/3; 

for k:=1 to nl-1 do 

Cost1:=Cost1-Z1 [k]*(Z1 [k+1]-Z1[k])*(a+b/2*(Z1[k+1]+Z1[k])); 
Find(n2);Timing(n2); 

for j:=1 to n2-1 do 
Z2{j):=tth]; 

Z2[n2]:=h; 

Cost2:=n2*m+a*H*H/2+b*H*H*H/3; 

for k:=1 to n2-1 do 

Cost2:=Cost2-Z2[k]*(Z2[k+1]-Z2[k])*(at+b/2*(Z2[k+1]+Z2[k])); 
if Cost1<Cost2 then Display(n1,Z1,Cost1) 

else Display(n2,Z2,Cost2); 
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b. 
USES 

Program AnalyticEclectic (input, output); 

CRT; 

CONST 

TYPE 

VAR 

LargeValue = 10000000; 

rmatl = array[1..365,1..4] of real; 

rvecl = array[1..365] of real; 

tO, tn, c0, cl, dO, di: real; 

H,lemda,t: real; 

a,b,c,d,Intv: real; 

j,k,l,choice1 ,choice2: integer; 

RN,optRN: integer; 

RTime,RIntv,RQ,RC: rvecl; 

optTC,optLemda: real; 

optRTime,optRQ,optRC: rvec1; 
TC,TQ: real; 

outfile: text; 

Procedure Initialisation; { Input: data} 

begin 

end; 

ClrScr; 

assign(outfile,'a:re-ling.dat'); 

rewrite(outfile); 

begin ESN Brae to Oe a Te 

do: 
do 
do 
do: 

do 

do 
dO := 

do 
do 
     = 0; t= = 90; 

G0c=400-7 dl = 150s t0s= 0, m= 0: = 30; cli yt 

dO :=100; d1:=150; t0:=0; tn:=1.5; c0:=30; cl :=2;} 

dO): 100-dl= 150) 0 10:5 ice 2° C0150; cleo: 

writeln(outfile,d0,d1,tn-t0,c0,c1); 

    

end; 

H:= tn-t0; 

Procedure Unification(t,lemda: real); 

begin 

end; 

a:=lemda*dl; 

= (d0+d1*t)/2; 
CeO; 

d:=-cO/cl; 

112



Procedure Confirmation; 

begin 

end; 

ClrScr; 

writeln(‘May I discribe your replenishment problem as follows:'); 

writeln(‘Initial time: ',t0:10:4); 

writeln(‘Ending time: ',tn: 10:4); 

writeln(‘Constant demand: ',dO: 10:4); 

writeln(‘First demand rate: ',d1: 10:4); 

writeln(‘Fixed replenishmnet cost: ',c0: 10:4); 
writeln Unit inventory cost: ',c1: 10:4); 

  

procedure PatternChoice; 

begin 

end; 

writeln(‘Which heuristic would you like to choose?'); 

writeln; 

writeln('1 Silver’); 

writeln('2 CLUC’); 

writeln('3 CPPA'); 

writeln('4 Ritchie’); 

writeln('5 Eclectic: Amrani-Rand’'); 

writeln('6 Generalized Eclectic: Yang-Rand’); 

writeln('7 Simulation: Lemda > 0’); 

writeln; 

readIn(choice1); 

if choice1 = 1 then lemda := 2/3 

else if choicel = 2 then lemda := 1/6 
else if choicel = 3 then lemda := 1/3 

else if choicel = 4 then lemda := 0.43 

else if choice] =7 then 

begin 

writeln(‘Please enter your Lemda ='); 

readIn(lemda); 

end; 

Procedure OptPatternChoice; 

begin 

if choice] = 6 then 

begin 
k := 1; optTC := Largevalue; 

repeat 
begin 

lemda := k/100; 

ReplenishmentPlan(lemda); 

MultiIndex(RIntv,RTime,RN); 

if (TC < optTC) then 
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begin 

optTC := TC; 

optLemda := lemda; 

optRN := RN; 

end; 

k :=k+1; 

end; 

until k = 100; 

lemda := optlemda; 

end; 

end; 

Function POWER(X,Y : real) : real; 

begin 
if Abs(X) < 0.000000000001 then Power := 0; 

if X > 0 then Power := EXP(Y*LN(X)); 

if X <0 then Power := -EXP(Y*LN(Abs(X))); 
end; 

Function MAX(X1,X2: real) : real; 

begin 

if (X1 >X2) then Max := X1 

else Max := X2; 

end; 

Procedure CubicRootFinding(a,b,c,d: real); 
var 

pqs: real; 
temp,delta,tempt,temp 1 ,temp2,temp3: real; 

Begin 

begin 

Intv :=0; 

  

P 
q := 2*b*b*b/27-c*b/3+d; 
delta := q*q/4+p*p*p/27; 

end; 

{output: intv - the largest real root of a cubic equation} 

begin 
if (delta = 0) and (p = q) then Intv := -b/3; {This is unique root} 

if delta < 0 then {Calculate the three roots} 

begin 

r= Sqrt(-p*p*p/27), 
temp := -q/(2*r); 

temp := temp/Sqrt(1-temp*temp); 

temp := Pi/2 - ArcTan(temp); 

temp! := 2*SQRT(-p/3)*COS(temp/3); 

temp2 := 2*SQRT(-p/3)*COS(temp/3+2*PI/3); 
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end; 

temp3 := 2*SQRT(-p/3)*COS(temp/3+4*PI/3); 
Inty := Max(temp1,temp2); 

Intv := Max(Intv,temp3); 

we” — Intv := Intv-b/3; 

end; 

{To choose the right root} 

if delta > 0 then { <=> discrimant > 0 } 

begin 

temp! := -q/2+Sqrt(delta); 

temp2 := -q/2-Sqrt(delta); 
temp! := Power(temp1,1/3); 

temp2 := Power(temp2, 1/3); 

Intv := temp1+temp2-b/3; 

end; 

end; 

if intv < 0 then writeln(‘Funny! Please check your lemda and data!!"); 

Procedure ReplenishmentPlan(lemda:real); 

var 

begin 

end; 

t: real; 

t:= 0; 

j=; 
RTime[1] := t0; 

repeat 
Unification(t,lemda); 

CubicRootFinding(a,b,c,d); 

Rintv[j] := Intv; 

t:=t+Intv; 

j=j+l; 
RTimef{j] := t; 

until t >= tn; 

RN :=j-1; 

RTime[RN+1] := tn; 

RIntv[RN] := tn-RTime[RN]; 

Procedure Multilndex(RIntv,RTime: rvec1; RN: integer); 

var 

begin 

i: integer; 

TQ :=0; TC :=0; 
Pits 

repeat 
RQ[i] := dO*RInty[i]+(d1/2)*(Sqr(RTime[i+1])-Sqr(RTimefi])); 
RC[i] := ((1/2)*(d0+d1*RTime[i])+(d1/3)*RIntv[i})*Sqr(RIntv[i}); 
RC[i] := c0+c1*RC[i); 

TQ := TQ+RQ[il; 

TC := TC+RC[i]; 
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end; 

i:=i+l; 

until i= RN+1; 

  

Procedure BeautfulFinishing; 

var 

begin 

end; 

temp: real; 

temp := tn-RTime[RN-2]; 

temp := ((1/2)*(d0+d1*RTime[RN-2])+(d1/3)*temp)*Sqr(temp); 
temp := c0+cl*temp; 

if temp < RC[RN-2]+RC[RN-1] then 
begin 

  

writeln(‘beautful finishing next time, Sir.') 

end; 

Procedure Display(RC,RQ: rvec1); 

begin 

end; 

if choicel = 1 then writeln(outfile,'Silver:' ); 

if choice1 = 2 then writeln(outfile,'Continuous Least Unit Cost:'); 

if choice1 = 3 then writeln(outfile,'Continuous Part Period Agorithm:’); 

if choice1 = 4 then writeln(outfile,'Ritchie Infinity:'); 

if choicel = 5 then writeln(outfile,'Amrani-Rand Eclectic:'); 

if choice1 = 6 then writeln(outfile,"Yang-Rand Algorithm:'); 
if choicel = 7 then writeln(outfile,"Mr./Ms. X Heuristics:'); 

writeln(outfile,'lemda = ',lemda); 

writeln(outfile,"No. Rep. Time Rep. Quantity Rep. Cost’); 
j=l 

repeat 
writeln(outfile,j,' ';RTime[j]: 6:4," ',RC[j]: 6:4," ',RQ[j]: 6:4); 
jet 

until j = RN+1; 

writeln(outfile,'Total cost = ',TC); 

BEGIN 
Initialisation; 

Confirmation; 

PatternChoice; 

if choice] = 6 then 

begin 
k := 1; optTC := Largevalue; 

repeat 
begin 

lemda := 0.01*k; 

ReplenishmentPlan(lemda); 

MultiIndex(RIntv,RTime,RN); 

writeln(k,' % '); 
writeln(outfile,' ',lemda: 6:4,' ',TC: 6:4,' 'JRN); 
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if (TC < optTC) then 

begin 

optTC := TC; 
optLemda := lemda; 

optRN := RN; 
end; 

k:=k+1; 

end; 

until k = 100; 

lemda := optlemda; 
writeln(outfile,'opt: ',lemda: 6:4,’ ',optTC: 6:4,’ ',optRN); 

end; 

ReplenishmentPlan(lemda); 

Multiindex(RIntv,RTime,RN); 
{BeautfulFinishing; this is for ending} 

Display(RC,RQ); 

writeln(‘TC = ',TC); 

Close(outfile); 

End. 
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