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Thesis Summary 

Music can be seen as a set of pieces of sound, a set of instrument combinations or a set 

of notes. Modeling a song in one of these ways provides the possibility to study what we 

are going to play with respect to the previous times. Because of this discrete splitting 

of a piece of music, we thought of using graphical models. This thesis is dealing with 

the use of Markov Models and family in order to model music. We were interested in 

building a model complex enough to catch the local information of a measure and the 

more global information of a set of measures. 
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Chapter 1 

Introduction 

Music has two facets: its source, musical scores, and its result, sound. Analyzing, 

synthesizing and reproducing Music is not a new interest in the neural networks field. 

‘Two approaches of a piece of music mainly appeared: the first one considers Music 

through its result, a sound signal, and brings to use waveform models [12], the second 

one tends to consider Music through its source, as a succession of discrete events [6][8]. 
In this thesis we use the second approach, working on the source. 

When listening to a piece of music, we hear a sequence of sounds, a sequence 

of different frequencies. Looking at a musical score, all instruments are described 
distinctly, each of them defined by an individual score, showing what and when to 
play. The central question driving this thesis is, can we model the structure in a 

musical score? 

The central aims of this thesis are twofold: 

(1) To model musical structure in order to be able to generate music. That is, we 

want a model which shows “creativity”. 

(2) To make a model with a “help to creation” function. With even the most 
complex and high-performance stand alone model, creating music automatically is 

difficult. Rather than replacing the composer, we can use the computer to help the 

composer: the composer has an idea of the main melody and/or rhythm, and can ask 
the model to find a completion of this idea. 

1.1 Choosing the model 

A musical score represents music in a discrete space. The basic assumption that we 

make in choosing a model, is that a score can be described by a sequence of transitions 

in this discrete space, from one step to the next, describing a trajectory through the 

discrete space. In order to create novel musical sequences, we work within a probabilis- 

tic framework. Defining “what we play” wwpnow and given wwPpefore, these transitions 

can be modelled by the probability of playing wwpnow a certain way: 

P(wwPnow|WWPbefore) 

Our approach is based on the assumption that a music piece is a combination of 

elements from a basis. A stochastic model could then produce a new sequence of 

combinations.
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Figure 1.1: instruments combination representation. Dividing the song in time slices, 

at time ¢, a combination of “instruments” is played. Each “instrument” can be a 

standard instrument sound, or itself a fixed piece of sound played by a set pattern of 

other instruments. The combination of the small pieces played at t will be the state of 

our model at time t. 

In short, our basic assumption is that music can be modelled by an underlying 

stochastic, dynamic Markov process. That is, choosing an appropriate time scale, the 

future is not dependent on the past given the present. 

1.2 Music Representation 

A central issue intimately connected with modelling is the representation of the 

music. Depending on the degree of freedom we want: 

e We can see a piece of music as a set of combinations of instruments, each combi- 

nation representing the instruments at a time slice ¢ (fig 1.1). We will call this 
the instruments combination representation. 

e We can go deeper in the structure and think of the score as a set of values in 

{not played, played way 1, played way 2, ..., played way n} per instrument, per 
time slice, we will call this the instruments representation (fig 1.2). 

Due to the restrictions of our modelling framework, we will primarily focus on music 

pieces which are well structured and repetitive in nature. In this sense, pop music is a 

natural area of interest, and we will therefore concentrate on extracting structure from 
pop songs.
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Figure 1.2: instruments representation, each instrument is considered separately from 

the others, following its own underlying process. Our assumption is then that each 

instrument can be modelled by an underlying stochastic, dynamic process. Music can 

be modelled by an interaction of these processes across time. 

1.3. Rhythm & Melody 

Once we have decided how we were going to model a piece of music, we can divide 
a song in two parts: the rhythm and the melody. 

By “rhythm” we mean the sequence generated by the drum, percussions, clave, 

maracas, timbales, in fact any instrument which has a small number of ways to be 
played. Thus {not played, played} describes the vocabulary of this instrument or group 

of instruments ({hit the drum, do not hit the drum}). 
We consider melody to be generated by all the other instruments and voices. 

Melodic vocabulary is generally much larger. For this reason we will focus mainly 

on rhythm, since we believe that this can be well modelled by a small vocabulary of a 

modest number of instruments. A natural starting point for modelling rhythm is basic 

drum patterns, and extracting structure from a dataset of drumming examples, using 

our stochastic Markov framework. We begin with simple models, gradually increas- 

ing their complexity and exploring the different properties and performances of these 

models. A general framework in which all the models can be described is Graphical 
Models. Since these form the backbone of the project, we describe in the following 
chapter essential details of Graphical Models and means by which they can be used for 
computation.



Chapter 2 

Graphical Models 

Graphical Models are a powerful framework for probabilistic data modelling [4]. 

Such models are a marriage of probability theory and graph theory in which depen- 

dencies between variables are expressed graphically. We will use the notation G(X, L) 
to define a graphical model. X = {X;} is the set of nodes, each of them representing 

a variable x;, L = {X; — X;} is the set of directed link between the nodes. 

2.1 Bayesian Networks 

A Bayesian network, or belief network, is a directed acyclic graph (DAG) in which 
each node 2; represents a random variable with a probability distribution. The central 

idea behind graphical models is that every probability distribution admits a kind of 
factorisation. Given a joint distribution on a set of variables {x;};-1.n, without loss 

of generality, we may write p(1, ..., tn) = p(i| 2, .., 2n)p(x2, .., Gn). We can repeat 
this process, writing p(22, ..., Zn) = p(£2| x3, .., Tn)p(#3, .., Zn) and so on. Each factor 
is a conditional distribution of a single variable, conditional on another. These factors 

define a conditional probability table (CPT). In practice, typically, not all variables will 

directly influence each other. Considering {pa(i)}i-1.n, the parents of the variables 

{x;}, the graphical structure and the set of parameters specify a joint distribution over 

the random variables, 

P(21, +) Zn) = []e@lpe@) 

When z; has no parents, the table is a single vector representing the distribution 

of this variable over its domain. 

Example: let us consider the network G(X, L) in fig 2.1, X = {A,..., G}, 
each variable is binary, L = {a 3 d,bd,c—> f,d— f,d—g, 

e — g}. This directed acyclic graph represents a joint distribution on 

X, p(a, b, c, d, e, f, g). Using the independency structure of the variables 

induced by L, we can rewrite the joint probability distribution (JPD) of 

the network as follows: 

P(x) = p(a)p(b)p(c)p(e)p(d |a, b)p(F |e, €)p(9 |d, e) (2.1) 

10
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Table 2.1: Conditional probability table for the node D from the DAG in fig 2.1 
(a) p(d = ”0”\a,b) (b) p(d = ”1”|a,b). All other nodes similarly require a specific 
conditional probability table for the joint distribution to be fully specified. 

Thus the graphical structure, fig 2.1, defines the independency relation- 

ships between the variables. However, the exact form of the conditional 

probability tables also need to be specified, for example as given by table 

2k, 

2.1.1 Inference 

The task of calculating conditional (marginal) distributions from the full joint dis- 
tribution is called inference. Such tasks typically occur in the case that certain nodes 

are clamped to particular values. These values constitute “evidence”, and inference 

with evidence mathematically corresponds to calculating conditional distributions. To 

give a flavour of inference we consider a simple example. 
One morning, Oliver goes into his garden and realizes that the grass is wet (O). Is 

it due to rain (R) or has he forgotten to turn off the sprinkler (S)? Looking to the 
garden of his neighbour, Claudia, he remarks that it is also wet. He thinks therefore 

that it is more likely it rained. Let us see how this evidence that Claudia’s grass is wet 

can affect the explanation of why Oliver’s grass is wet. 

Gene Ss) 
or ae 

Figure 2.2: Belief network structure for the “wet grass” example, modelling the rela- 

tionships between the variables C (Claudia’s grass is wet), O (Oliver’s g is wet), R 
(it has rained) and S (the sprinkler was left on). 

  

1
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We can model the situation with a DAG as in fig 2.2. Having defined the structure, 

we still need to define the specific values associated with each of the CPTs. The prior 
probabilities for R and S are given by: 

p(R = yes) = 0.2 and p(R = no) = 0.8, written as p(R) = (0.2, 0.8). p(S) = (0.1, 0.9). 
Let us define the other CPTs as p(C = y|[R=y) = 1. p(C = y|R Jie n102; 
as sometimes Claudia also leaves her own sprinkler on. p(O = y|R = y,S) = 1. 

p(O = y|R =n,S = y) = 0.9, as there is a small chance that the grass is not 
noticeably wet even if the sprinkler were left on. p(O = y|R=n,S =n) = 0. 
The joint probability is given by 

  

PR, S,0,C) = p(O|R, S)p(C|R)p(R)p(S) (2.2) 

The prior belief that the sprinkler is responsible is p(S = y) = 0.1. Let us calculate 
the marginal p(S = y|O = y) using Bayes rule: 

  

v(S=y0=y = Ween) (2.3) 
_ LerrlO =4,0,R, 5 =y) (24) 

Ye,r,5 P(O = y, C, R, S) 

_ Lc,xP(ClR)p(O = ylR, 5 = y)p(R)p(S = y) (28) 
Yer,sP(C|R)p(O = y|R, S)p(R)p(S) ; 

— Lnp(O=ylR,S =y)p(R)p(S = y) (2.6) 
Vrs P(O = ylR, S)p(R)p(S) 

qu 0.9 + 0.8 *0.1+4+1%0.2*0.1 en 
0.9 * 0.8 * 0.1 +1*0.2*0.14+0%*0.8*0.9+1%*0.2 «0.9 

= ion = 0.3382 (2.8) 

This shows that the fact that the grass is wet increases the belief, beyond the prior 
belief that the sprinkler is on. 

Now, let us calculate p(S = y|O = y,C = y) using Bayes rule again: 

p(S=y,0=y,C=y) 

   

  

P(S=ylO=y,C=y) = AO=RCHT) (2.9) 

Url =y,C =y, R,S =y)) 
~ “YnsPO =n. = 9.8.5) a 
= Exr(C=UR(O = MRS =v)(R(S =) oo 1) 

Yas P(C = ylR)p(O = y|R, S)p(R)p(S) ) 

— LrpO =k, S =y)p(R)p(S = y) (2.12) 
Yas P(O = y\R, 8)p(R)p(S) i 

Substituting in the numbers, we get 

p(S=ylO=y,C=y) = ee = 0.1604 (2.13) 

12
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(a) (b) 

Figure 2.3: (a) moralized graph associated to the DAG in fig 2.1 (b) Junction Tree 
associated with (a). The square nodes are “separators”, indicating variables shared 
between neighbouring cluster nodes. 

So the probability that the sprinkler is on, given Claudia’s grass and Oliver’s grass 

are wet, is lower than given that only Oliver’s grass is wet. 
Although straightforward on a small network like the example above, when the 

number of variables (nodes) is large, inference is often computationally non-trivial. In 

a directed acyclic graph, however, we can use the independency structure of the prob- 

abilistic model to attempt to find efficient inference algorithms. A general algorithm 
that achieves this is called the Junction Tree algorithm. This will be described in brief 
in subsection 2.1.1, more details of the algorithm can be found in [4]. 

Junction Tree Algorithm 

The main goal in building a Junction Tree is to modify the form of a DAG G(X, L) 
to an equivalent structure in order to make the inference calculations easier. The 

Junction Tree represents the same joint probability distribution as the original graph 

and the structural dependencies of G are preserved. We will not go into any details of 
how calculations are performed on the Junction Tree, and refer the interested reader 

to a standard textbook such as [4]. However, of importance here is the computational 
effort required to perform calculations with a model. This is determined by the clique! 
sizes in the Junction Tree, and we therefore explain briefly how these are determined. 

The construction of a Junction Tree is performed in several steps: 

e moralizing: remove the direction of the links in order to obtain an undirected 

graph (the direction information will remain in the CPDs). 

e triangulation: every loop of length four or more contains at least one chord. 

An example is displayed in fig 2.4. 

The computation time on the Junction Tree scales exponentially with the clique size, so 

that graphs with even modest clique sizes rapidly become intractable. A crucial issue 

‘A subset of nodes S of a graph G is said to be complete if there are links between every pair of 

nodes in S. S is called a clique if S$ is not a subset of another complete set. In fig 2.3 (a), the cliques 
are {C, D, F}, {A, B, D} and {D, E, G}. 

13
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Figure 2.4: Triangulation process applied on a loop of length 6. From left to right, we 

see the recursive application of the definition. 
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Table 2.2: Data for the sprinkler example. Each row represents an observation made 

on Oliver’s grass, the rain and the sprinkler at a time t 

in designing a graphical model, therefore, is the clique sizes of the resulting Junction 

‘Tree, 

2.1.2 Learning in Graphical Models 

The goal of learning graphical models [7] is to find the values of the parameters 

of each CPT in order to maximize the likelihood of the training data. Considering N 
cases in the training set D = {X',..,X"} and a model G(X,L) with M nodes, the 
normalized log-likelihood of D is a sum of terms, one for each node: 

1 N M ‘, : 

L = > logn(o;lpa(n;), X*) (2.14) 
#=1 j=1 

The log likelihood function contains a term for each node in the graph. Hence, the 

maximization can be carried out on each node independently. 

If all the nodes are observable, for example with Markov models (section 3.1), 
and follow a multinomial distribution, the learning process amounts to counting the 
number of occurrences of a value for a node x; with respect to the values of the parents 

pa(a;). Let us give a simple example. Considering fig 2.2, suppose we have the training 
observation data presented in table 2.2, representing 7 independent observations of the 

variables O, R and S. This information is sufficient to determine the CPT p(O|R, S). 
We can find the maximum likelihood estimate of the CPT of node O by counting the 

number of times Oliver’s grass is wet when it has rained and the sprinkler was on, 

N(O = y,R = y,S = y), the number of times Oliver’s grass was wet when it has 

rained and the sprinkler was off, N(O = y,R = y,S =n), and so on. Then we can 

14
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Figure 2.5: Dynamic Bayesian Network associated with DAG in fig 2.1, the three first 

time slices are shown, assuming the inter-slice dependencies a + a and e > ¢ 

write 

N(Q=oR =n —s) 
DOS = 7.5\—s))— NR=7,5=5) » 97,8 € [y,n] (2.15) 

where N(R = 7,S'='s) = N(O = 4, R = 7,5) = To = = tho) = 8 

We obtain the probabilities p(O = y|R = y,S) = 1, p(O = y|R = n,S = n) = 0, 
pO =y|R=n,S =y) =0.5, p(O =n|R=y,S) =0, pO =n|R=n,S =0) =1 and 
pO =n|R=n,S=y)=0.5. 

In this example all the nodes were observable. This is not always the case, for 

example with hidden Markov models in section 3.4. When some of the nodes are 

hidden, we can use the Expectation Maximization algorithm where we compute the 
expected values of all the nodes using an inference algorithm, then consider them as 

observed values in order to maximize the likelihood in the example [4]. 

2.2 Dynamic Bayesian Network 

A dynamic model may be defined as a sequence of submodels each representing the 
state of a dynamic system at a particular point or interval in time. Such a time instance 

is referred to as a time slice. A Dynamic Bayesian Network (DBN) consists of a series 

of subnetworks, in our case structurally identical Bayesian networks, interconnected by 

temporal relations (links). It models the stochastic evolution of a set of variables over 
time. This set, at a certain point ¢ in time, is called the ¢ slice of the DBN. We will 

consider the belief network in fig 2.1. A DBN is therefore defined by the intra slice 
connections, and inter slice connections, specifying how to connect two temporally 

adjacent slices [13]. As we are translating G(X, LZ) over time, the structure of each 
slice is the same and can be defined as G;(X;, L), as depicted in fig 2.5. Let us explain 

briefly what the relation between the slices is and how the Junction Tree for this graph 

is formed. 

In our example here, we will work with only two time slices. The first one represents 

the initial states of our model. The second one contains the structure which is going to 

be unrolled along time. The moralized, triangulated graph in fig 2.3(a) of the unrolled 
graph contains three complete subsets giving rise to three cliques of size 3. In fig 2.6, 

we see now the triangulation across time necessitates adding several inter links. Thus, 
the triangulated graph is modified, and there is now a clique of size 4 and three cliques 

of size 3. Since computation time increases exponentially with clique size [1, 2], this 

increase from the size 3 cliques in the unrolled graph is bad news. Some care needs 

  

   

15
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Figure 2.6: In (a), we see the junction tree composed of a slice at time t and the slice 

at t+ 1. Building a Junction Tree over two time slice, the triangulation process lead 

to the addition of more inter links, and therefore the Junction Tree in one slice (b) is 
modified 

to be taken, therefore, that clique sizes do not get out of hand in designing Dynamic 
Bayesian Networks. 

16



Chapter 3 

Basic Models 

Markov models, a special case of Dynamic Bayesian Networks, have been used 

for almost 30 years, and their rich mathematical structure and has been applied to 

several important applications including speech recognition [11] and genetic sequence 

analysis [9]. Using Markov models for music is based on the idea that there exists 
an underlying stochastic dynamic process generating the music. The complexity of 

this process corresponds to different levels of complexity and structures of the Markov 

models. In this chapter, we describe initially the simplest of these basic Markov type 

models. This will lead us to consider another interesting type of graphical model, 

tree-structured belief networks. 

3.1 Markov Models 

Studying a set of observable events, ordered in time, an intuitive model would be 

to associate a node per event (states) and work out the probability to have an event 

5; after Spow- 

Let us consider a system where, regularly in time, we can observe a certain state 

S, out of a set of N states. We denote the system being in state S; at time t by S;(t), 

and a probabilistic representation of a Markov process is given by 

P(Si(t) | Sj(t- 1), Se(t — 2), -..) (3.1) 

That is, given that the system is in state S; at time t—1, state S;, at time t—2, etc, we 

associate a probability of the state at the current time being S;. The full specification 

of the distribution for all the states at time t, S(t) = {5,(t)}; = 1..N, dependent on 
previous states is written 

P(S(t) | S(t— 1), S(t— 2), ...) (3.2) 

A simplifying assumption can be made by considering the current state to be de- 

pendent on only the previous n-steps, a so-called n‘”-order Markov chain. We will 

consider the simplest one, the first order process which describes distributions of the 

form 

p(S(t), S(t-— 1), S(t- 2), S(t- 8), .. = 

(S(t) | S(t — 1))p(S(t — 1) | S(t — 2))p(S(¢ — 2) | S(t — 3)... (3.3) 
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Pi A 

E    

t=0 t=J t=2 

Figure 3.1: The graphical model representation of a Markov process is a one node 

chain, the node taking its value in {51, 52, ..., 35} 

Assuming stationarity of the process, the chain transitions are fully described by the 

N by N transition matrix A 

A = {ay} = {p(5;(t) | Si(t - 1))} (3.4) 
with 

N 

ay > 0 and yy =1 (3.5) 
j=l 

We also need to define the probability distribution over the states at time ¢ = 1 

T= {mi} = {p(Si(¢ = 1))} (3.6) 
‘The graphical model description of a Markov model is a straightforward chain structure, 
as depicted in fig 3.1. 

We can use this model to learn the structure of our data. The likelihood of the 

sequence of (musical) states, Sj,,...,.5;,, is given by 

p(data) = p(Si,, Sip, --) Sin) (3.7) 

= P(Siz)- P(Sig|Siz) + --- + P(Sin| Sins) (3.8) 
See tayigo Oey Ts (3.9) 

The parameters II and A can then be adjusted to maximize the likelihood of the 
observed sequence. The optimal setting of the transition parameters under maximum 

likelihood corresponds to the intuitive notion of simply counting the frequency of state 

to state transitions. 

3.2 Learning The Structure of a Simple Song 

In figure 3.2, we show three examples of simple songs. Along the vertical axis 

are represented the “instruments” (actually small segment of sounds), and the hor- 
izontal axis represents time. These examples are given in file mm_examplel.wav, 

mm_erample2.wav and mm_erample3. wav. 

We trained a separate Markov model for each song. A state in the Markov model 

will correspond to a unique “instrument” combination, of which there are 8 in example 

1. The Markov model then captures the transitions between these 8 states. 

18



CHAPTER 3. BASIC MODELS 

time 
  

(a) example 1 Notates 

  

(b) example 2 (©) example 3 

  

Figure 3.2: Matrix representation of three songs we used to train our Markov models, 

the vertical axis represents an “instrument” and the horizontal axis, time. A separate 

Markov model was trained on each song. 

3.2.1 First order Markov Models 

Finding the transition matrix A and prior distribution matrix I is readily achieved 

by counting the number of transitions from state i to state j, and normalizing such 

that 

Yay = 1, vi (3.10) 
d 

The initial state sets the prior probability 7;, = 1 and 7;, = 0, k = 2..n. We can then 

sample from this Markov model to produce novel sequences. In sampling, we select 

an initial state according to the prior distribution II, say $;. The next state is then 

sampled from the distribution defined by the j“" column of the transition matrix. 
Training a separate Markov model on each of the songs in fig 3.2, we then sampled 

from the trained model sequences of same length. We show such samples in fig 3.3. 
Comparing the sequence of states in the original song and the corresponding sample, we 

see that the sequences are reproduced with local similarity to the training data, however 

with a lack of global structure. These examples are given in files mm_1_sample1.wav, 

mm._1_sample2.wav, mm_1_sample31.wav and mm_1_sample32.wav. For example 3, we 

have presented two samples from the trained Markov model. Note that the samples, 

whilst similar to the local transition structure of the training, are both different. Addi- 

tionally, sample (d) highlights an inherent weakness in the first order approach. There 

is a transition from one state to two equally likely states, such that the model can be 

“stuck” in one of these states for too long. 
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(a) sample associated with example 1 (©) sample I associated with example 3 
c o Oo oO ] fe]     

  

(d) sample 2 associated with example 3 

   
Figure 3.3: Using a first order Markov model, we train it on song shown in fig 3.2(a), 
then we sample from the distribution represented by the trained model, a simple sample 
from which is given in (a). (b) is sampled from a model trained on example fig 3.2(b). 
(c) and (d) are two samples from a model trained on example fig 3.2(c). 

  

t=0 t=1 t=2 

Figure 3.4: 2" order Markov process. 

3.2.2 Higher order Markov models 

Although the first order Markov model displays some “creativity”, the assumption 

that the present state depends only on the previous one is too strong to allow the 

model to catch more global structure. One approach to improve this is increase the 

order of model. Choosing a second order Markov model, fig 3.4, we trained it on the 

same songs as in fig 3.2 and obtained the samples in fig 3.5, given in mm_2_sample.wav. 

We see that, in addition to reproducing the local sequence structure, the samples 

are closer to the original songs in terms of global structure. This confirms that by 

increasing the complexity of our model, we increase the flexibility of the structure and 

its ability to capture the temporal dimension in the sequence of outputs. However the 

models are too complex or the data representation not appropriate, since the creativity 

is almost nonexistent. 

Table 3.1 shows the log likelihood of the first and second order models on the three 

examples, and clearly shows that the second order fits more closely to the data, even 
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Time 

Figure 3.5: This sequence is sampled from a 2"4 order model trained on example fig 

3.2(a), for the two others the model overfitted the data as shown in table 3.1 with a 
zero log likelihood. 

  

1 order | 2"4 order 
example 1 | -21.3579 | -11.0904 

example 2 | -3.2958 0 

example 3 | -8.3178 0           

Table 3.1: Log likelihoods on the three examples in fig 3.2 with a first and second order 

Markov model. 

perfectly for some of the data (example 3). This arises from the representation of the 

music in which most of the transitions appear only once, making our stochastic process 

essentially deterministic. 

Conclusion 

Using a first order Markov model captures the local structure of the music. However, 

the music generated by this approach does not sound structured enough. Using a higher 

order Markov Model improves this situation. By increasing the order of the Markov 

process, we more faithfully reproduce the original song. However, this is at the expense 

of limiting the creative possibilities of the model. 

How can we achieve both aims of improving the global structure of the model, 

without simply reproducing the training sequence exactly? One way to do this is to 

use higher order models with a limited complexity - hidden Markov models (HMMs). 
These will be described in some detail in section 3.4. 

3.3 Textbook Drum Sequences 

A limitation associated with the training data used in the Markov models of section 

3.1 is that different songs use a different set of instruments, so that we used a separate 

model for each song. This limits rather severely the amount of training data available 
for the model. For much of the rest of the thesis, we use instead a set of textbook rock 
music drum sequences'. This consist of a set of 63 sequences, each being 64 beats in 

length, with a vocabulary of instruments being bass drum, snare drum, hihat open and 

hihat closed. 

1 «Rudimentary patterns for the modern drummer”, Cusatis - , “Rhythmic patterns for the modern 
drummer”, Cusatis 
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Drum partition 

bass drum @ e\e e e e\e @ 

snare drum e ® @ e 

hihat closed |@|@|@|/@|@/@|@| |@|\@/e/e\e/e\e 

hihat open e e 

1 bar 1 bar 

Figure 3.6: matrix representation of a drum partition. Each column represents one 

input for our model, using equation 3.11 in order to give a unique value to this combi- 

nation of instruments. 

A short, 16 beat segment of one sequence is presented in fig 3.6 where, at each beat, 

or time, an instrument is either played, or not played. 

The number of states is then 2*, each state representing a binary vector 

(Toass drum; Isnaredrum Inihat closed, Ihihat open). For example, the state representing playing 
only snare drum and hihat opened at time t is 

t t 
Uy? i Tee fuente ; bass drum? “snare drum? 

(3.11) 

In fig 3.7, we present a subset of the 63 drum partitions we used to train our hidden 

Markov model. A suitable bar length is based on 16 time steps. Some of the examples 

have an original tempo half that of the others. We use then an empty state for those 

sequences to ensure that all the examples are on the same time scale. For the moment, 
each instrument is played on beat, which means in one of the eight parts of the bar. 

We will see in chapter 4 how to deal with off beat notes by extending the vocabulary 
of an instrument. To hear a selection of these elemental drum sequences, play the files 
elem_example1.wav and elem_erample2.wav. Note that we divided the data set in two 

sets, a training set composed of 50 drum examples and a test set with the remaining 
13. 

3.4 Hidden Markov Models 

For a state space of dimension N, there are N? parameters to learn in the transition 

matrix A of a first order Markov process. Many of the transitions will occur infrequently 

in the training data, making the estimation of the parameters of the transition matrix 

difficult. Hidden Markov models are an extension of Markov models, in which a hidden, 

unobserved process generates the observed sequence of data, see fig 3.8. 

A hidden Markov model is defined by 

e A set of hidden states S={5j,...,5iv} generally all reachable from any S; 

e The state transition probability distribution A = {a;;} such that 

ag = p(Si*) 6), VG, 7) € [LWP (3.12) 

e The initial state distribution II = {7;} such that 

m = p(S&), Vi € [LN] (3.13) 
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32 beats 

bassdrum | @ e e@| |e @| |e e e 

snare drum e e e e 

tinat closed [@] [@| |e] je] lel je] lel! je! jel je! je] je! je! je| je] le 
hihat open 

hase drum 7 @) e e e e e e e 
snare drum e e e e 

hihatclosed [@| Je! le] [e| le e e| le! je! le] |e e 
hihat open e e@ e e 

bassdrum [@ e| le e e e| |e e 
‘Share| drura ® e e| |e e e e| |e 
  

iuhatclosed T@| l@| je] je] je; je] je; je| je] je| je| je] je; je| je| le 
hihat open   
  

  basdum fe] lele e| je| le @| |e jee @ |e |e @ 
snare drum ele e ele e 

Biaecloed e e@| |e e| je} |je| |e |e |e |e @| |e |e e| |e 
hihat open 

  

  

  

  

  bass dram [@ 
  

  

                        e e e e e e e 
snare drum e e e e 

hihat closed [@ e| le; [e| je| le e eo! le] [el jel le 
hihat open e e e e                                               

Figure 3.7: Matrix representation of a selection of the drum partitions used as data 

set, the notation is the one used in fig 3.6. The vertical axes of each matrix represents 

the instruments, bass drum in the first row, snare drum in the second one, hihat closed 

in the third and hihat opened in the last one. The horizontal axis represents time, 

from left to right. The black ball stands for an instrument to be played. 
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Pi 

    

Hidden process 

Observable process 

Figure 3.8: Dynamic representation of a first order hidden Markov model 

The observation symbol probability distribution is modeled by 

e An observation space with vocabulary, V={v}x=1..0 

e A probability distribution over these symbols from each state i, B;={b;(k)}, such 
that 

W(k) € [LM], bi(B) = p(of? | $19) (3.14) 

This defines a joint distribution on the hidden and visible (observable) variables as 

p(SY, VO, s@, ve), 5M, yo) = 

P(S(1))P(V|S)p(SO |S )p(VO|S)...p(S™|S° )p(VO|S) (3.15) 

Once both stochastic processes have been defined, the task of learning an obser- 
vation sequence V = {v"),...,v™} lies in maximizing the likelihood of the observed 
sequence p(V | A, B,II). To do so, we used the standard Expectation-Maximization 
algorithm (EM) [11]. 

3.4.1 Higher Order Hidden Markov Models 

In our experiments concerning standard Markov models, we found that basing the 

transition on only the previous time step is too restrictive, and that higher order 

Markov models are more able to capture accurately the dynamics. In a similar way, 

we can define higher order hidden Markov models. As shown in fig 3.9, a higher order 

model can be considered as a dynamic bayesian network. Looking at slice 2 in fig 3.9, 

we see that we need to define two transition matrices Ay and As, and an inter slice 

transition matrix A3. A standard, stationary HMM would constrain all these matrices 

to be equal, although here we will allow them to take different values. These matrices 

are, however, fixed across slices, so that Ag = Az, A7 = Ay and Ag = As, etc. 

3.4.2 Results and Interpretation 

The hidden structure (states and transitions matrices) models the output by a lower 
dimension underlying structure. Using a lower number of states than the number 
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slice 1 slice 2 

Figure 3.9: A third order hidden Markov model can be expressed as a Dynamic 

Bayesian Network using slices of width 3, and defining appropriate inter and intra 
slice connections. 

of vocabulary elements, the training algorithm will tend to use all hidden states in 

producing the observed sequences. However, this lower dimensional representation 

encourages creativity, since the confusion matrix B tends to be less certain in mapping 

the hidden state to an observed state. That is, for a hidden Markov model with a small 

number of hidden states, the hidden state does not identify a particular observation 
state with any certainty but identifies a distribution on the observation vocabulary. We 

trained several HMMs on our data, with different order and number of hidden states 
in order to find a suitable model complexity. 

Up to the 2" order, the results coincide with our expectations: the higher the 
order, the better the model fits the data, training and test set, see figures 3.10 and 

3.11. Also, when we increase the number of hidden states, this tends to increase the 
log likelihood without overfitting. That is, it extracts from the training set enough 
information to model the unseen data. However, the 4“ order results are an exception, 

with a tendency to reduce the likelihood on the training data as the number of hidden 
states is increased beyond 6. This is likely to indicate that the EM algorithm struggles 
to avoid local minima in the complex error surface. 

The choice of the order is important because it relates to the depth of the infor- 

mation retrieval process. We have chosen order 4 because most of our examples are 

based on a tempo multiple of 4, in addition to good performance in our experiments. 

Moreover we used a time scale equal to a 16” of a bar, i.e to create our matrix repre- 

sentation of a piece of music, we cut each bar in 16 time slices. Examining figures 3.10 

and 3.11, we additionally chose 4 hidden states for the fourth order model. In fig 3.12 

we show a sequence generated from a 4’ order HMM within a model of slice width 4, 

the whole sequence is given in hmm_{_4_sample1.wav. 

At this point, the model we are using provides a good approximation of the local 

structure, but fails to capture more global structure. One approach would be to use a 

small number of long range connections, see fig 3.13. As an alternative, we consider in 

the following section tree-structured networks. 
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HMM: Variation in the average log likelihood of a training data 
with respect to the number of hidden states 
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Figure 3.10: We compare here the average log likelihood of the training set of some 

hidden Markov models of different order with the number of hidden states. 
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4th order hidden Markov model 1rst order hidden Markov model 
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2nd order hidden Markov model Comparison 
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Figure 3.11: Comparison of the average log likelihoods of the test set data for higher 

order hidden Markov model depending on the number of hidden states on the horizontal 

axis. We represent also the lowest and highest log likelihood of the 13 test examples. 
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1 
Bass drum e e e ‘ e e e 

Hihat e © e e i e e eoe e e e e 

Snare drum e ' e ee e e 

Time : 

Figure 3.12: Sequence generated from a 4" order, 4 hidden states Markov model 

  

slice 1 slice 2 
(a) (b) 

Figure 3.13: Representation of a long range connections structure. A state at time 
t may be more dependent on a state many time steps before. For example, the first 
note of each bar may well depend directly on the first note of the previous bar. Figure 

(a) shows the structure while figure (b) presents the associated Dynamic Bayesian 
Network. 

3.5 Tree-structured Markov Models 

The general model of a tree-structured belief network is illustrated in fig 3.14 [14]. 
The observed data O are assumed to be the output of an underlying and unobserved 

process S. S is a multi-level tree, S° is the top node. S” represents the lowest level, 

composed of the variables {$/} directly connected with the observed data. Each node 
5® has its children in S*+!. This structure is a graphical model in which each node is 
associated with a CPT 

p(S?|Pa(Sf)), Pa(St) € S** 

The topology of a tree-structured model is dependent on the size of the data. Even 

Sam Ss 

Figure 3.14: a L +1 tree-structured model 
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slice | slice 2 slice 3 

Figure 3.15: dynamic bayesian network based on a tree-structured belief network 

if our data set contains examples of the same length, we want to keep the possibility 

of working with sequences of different lengths. We are going to use a dynamic tree- 

structured graph, fig 3.15, so that the temporal information will be local in each slice, 

represented by the probability table of the top node $°. We impose a Markov process 

built on that set of nodes 

PS? | St1,--57) = w(S? | S21) (3.16) 

ensuring continuity over the time slices. 

We show in fig 3.17 the log likelihood, sum of log(p(D;|model)) on all the drum 
partitions, of some tree-structured models, for both training and test data. Each model 

has its structure described in fig 3.16. The results show that a simpler structure like 

tree-structured belief networks can model our data with a reasonable success, providing 

a log likelihood of both data set and test set higher than the HMM of order less than 

4. It appears that a multi-level structure can extract information from the set of 
observations contained in a slice. A single first order Markov process based on the top 

level node is enough to recreate the local information of the set of observations. Two 
examples sampled from the structure in fig 3.16(a) are given in file ts_*.wav?. 

However, over the test set, the results are even worse than with a 24 order HMM 

with 8 hidden states. Tree-structured belief networks seem to be a good model to 

carry global information but do not capture well the local information. An advantage 

of such a model using Dynamic Bayesian Networks is that its associated Junction Tree 

is composed of cliques of size 2 and 3, therefore the learning process is performed 

faster than for more complex models. Initially designed to be applied on the whole 

sequence of observations, the dynamic higher level structure does not seem to carry 

local information across time. We will see in section 4.1 how to use an adaptation of 

tree-structured models in order to add to our model a higher level structure to capture 

global information from our data. 

? Although generated from the same model, the two examples have been recorded with two different 
set of instruments. In the second example, ts_{_12_sample.wav, a bongo replaces the snare drum, 

electronic drum sounds replace the other classic drum sounds. 
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(a) 
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(b) 

Figure 3.16: This figure shows 3 different tree-structured models we trained on the 
data set. The nodes at the bottom of the structures are the observation nodes. 
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Figure 3.17: This figure shows log likelihood of three tree-structured models, their 

structures are described in fig 3.16. For the model tsm(a) we used 12 hidden states. 

Tsm(b) and tsm(c) have been trained with respectively 8 and 6 hidden states due to 

computation limitation, the clique sizes should remain reasonable. 
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3.6 Conclusion 

Using hidden Markov models and an adaptation of tree-structured belief networks, 

we can capture quite well local rhythmical structure. All the samples generated from 

our higher order hidden Markov models, fig 3.12 and files hmm_*.wav, reproduced 

parts of the training examples, generating also novel sequences. One important feature 

that they respect is the tempo, giving consistency to the rhythm. Nevertheless, we 

are concerned about two points. Firstly, there is still a lack in the global structure: 

the samples do not maintain stability in the rhythm during several bars. Increasing 
the order of the model could improve the results but at the expense of the creativity. 

Secondly the instruments combination representation for music is too still constraining. 

It does not allow us to exploit the inter dependencies between instruments and the fact 

that we should perhaps weight differently the influence of an instrument on itself and 

on the others. 

The next chapter describes the use of a supervising structure in order to catch the 

global information and create a backbone for the model, in addition to allowing a more 

flexible representation of the data. 
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Chapter 4 

Coupled Models 

Until now, we used the instruments combination music representation to create 

our data set. Perhaps, a more natural conception of music is to see each instrument 

with its own structure, e.g. we know how to play the bass drum alone as much as the 

bass drum and the snare drum together. A piece of music then results from the time 

interaction between several instruments. Thus, we use in this chapter the instruments 

representation in fig 1.2, where each instrument is associated with a Markov process 

(fig 4.1). This has the interesting advantage of allowing us to clamp certain instruments 
in particular states and calculate the inference on the others. 

To create piece of music the instruments have to play in harmony. We are now 

interested in coupling these processes in order that they interact to create a suitable 

output. 

This representation has the advantage to reduce the number of hidden states of our 

model. If there are P processes with N, states each, an HMM will require NE states 

as a coupled model will use PN, states. Therefore, we will attribute one process to 

each “physical” instrument. In fig 4.3, we show how we extended the vocabulary of 
hihat in order to group hihat closed and open as one instrument. 

One way to extend the hidden Markov model framework in order to couple processes 

evolving in parallel is to couple them at the output, see fig 4.2(a), and is generally 

known as a factorial hidden Markov model (FHMM). The signal of each process is 
overlaid with the others in a single output signal. In the FHMM structure we consider, 

each triplet of nodes AN bass aren \onarearurny «hike is linked to shared output nodes. 

The second way is to couple the process themselves, each of them having its own 

output signal, fig 4.2(b). This represents a division of the system, music, in different 

components with complementary information. 

t=1 t=2 t=3 t=4 

Figure 4.1: Each instrument is modelled by its own Markov process 
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Figure 4.2: We want to couple the instrument processes such that they interact to 

produce the output signal. Figure (a) shows the three Markov chains coupled at the 

output, forming a factorial hidden Markov model. Figure (b) shows the three Markov 
chains coupled across time, forming a coupled hidden Markov model . 

  

  

  

                                    

  

Drum partition 

bass drum e ee e @ e\e e 

snare drum e@ e e @ @ hihat closed 

hihat @| @ | 0/0/00 | 0|0| 0/0 |0|0|0|0/e/e\0 © hihat opened 

1 bar 1 bar 

Figure 4.3: Matrix representation of a drum partition when extending the vocabulary of 

the hihat. Contrary to fig 3.6, each instrument is associated with its own input, giving 

three input per column. We extended the vocabulary of the hihat closed instrument in 

order to play the hihat opened as different way to play the same instrument. Therefore 

the size of the vocabulary of the hihat is 3, 2 for the other instruments and the number 

of states is 2? * 3. 
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O-0-O-0= O.O0. ©» 

O-0-O-O CRON: 
Been | COOT Gra 
Oo. OGSO- ago 
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Figure 4.4: This figure shows in (a) the graphical representation of a coupled Markov 
model. To simplify the notation, the links between the nodes of the top row of (a) 
and those of the bottom row are not drawn. The figures (b) and (d) show the links 
considered to remain to the time dimension for, respectively, 1°‘ and 2"¢ time dimension 

order coupled Markoy model. The figures (c) and (e) show the links considered to 
remain to the instrument dimension for, respectively, 1° and 2" instrument dimension 

order coupled Markov model 

Interaction between the instruments can, however, be assumed to be possibly both 

causal, temporal influence, and also asymmetric: at time ¢ the snare drum sd might 

be more influenced by the bass drum at t — 1, bd‘), and at time t + 1 it might be 
more influenced by the hihat at ¢ than bd). Thus we consider that the interprocess 
influences are across time, the links between two processes will have to bridge time 

slices. Therefore, we choose the graphical representation in fig 4.2(b), the so-called 
coupled Markov model (CMM) [3]. 

In our data set, the hihat is played in a very simple way and it will not necessitate a 

hidden process as complex as the one for bass drum. For the moment, the vocabulary 
of each instrument is small (<5), therefore we consider each sub-process as a Markov 
model rather than a hidden Markov model. Note that the size of the state space has 
been reduced from 2* = 16 for the HMM to 2+2+3=7 for the CMM. 

Considering fig 4.4, we define two different dimensions for the model: the time 
dimension dim, along a single instrument across the time slices, and the instrument 

dimension dim,, the inter links between different instruments. We wish to study the 

usefulness of a higher order connection between nodes in both dimensions. In figure 

4.4(b), the order of the CMM in both dimension is one: along dim; an instrument at 

t+1, ieee depends only on I{”, along dim, Tey it depends only on {1} sa8- A 
coupled Markov model of n‘ order in dim and m** will be referred as a n +m” order 
CMM. We constrain our model to respect the Markov property, a node from a slice t 

can not have any children in slice t+ 2 and beyond. Therefore, the width of the time 

slice of our model is an upper bound of the CMM which is encapsulated in the slice. 

We trained the CMM on the same 50 drum sequences as used in chapter 3, exper- 

imenting with adjusting the order in both the dim and dim, dimensions. Looking 

at the figure 4.5 confirms that the higher the order in both dimensions, the better the 

model. However, the improvement induced by a higher dimr order is greater than a 

higher dim, order. This shows that an instrument is more influenced by itself than by 

the others even if we must take in account that the data set is not complex and varied 

enough to really underline a noteworthy comparison of this two dimensions. Although 
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Figure 4.5: Comparison of the average negative log likelihood of a test data for cou- 

pled Markov models of different width and different order in dimy and dimy. (a) is 

associated with models of slice width 1, (b) with slice width 2, slice width 3 and 4 

respectively for the figures (c) and (d). In the (Z, 7, Z), the x axis represents the inter 
order, the y axis the intra order and the z axis represents the average negative log 

likelihood of a training data associated with the corresponding model. 

increasing both orders increases the log likelihood of the model, it also increases the 

complexity of the model and, therefore, the computation complexity. Hence, all the 

models we use in further parts will have a 2"4dim, order and will only be referred by 

their dimy dimension. Samples from 2 * 2 and 4 * 4 order CMMs are given in files 

cmm_*.wav. 
We use figures 4.6 and 4.7 in order to raise two points. First of all, they confirm 

our belief that a higher model can be used to model the data better without reaching 

a complexity such that the model overfits the training set, fig 4.7(d). Secondly, we 

are interested in comparing models of the same order n but encapsulated in a slice 

structure wider than n. The reason for this is that the wider the slice, the more 

flexible the model is, since the transition matrices within a slice are not constrained to 

be equal. Figures 4.7(a) and 4.7(c), we see that, given a Coupled Markov Model with a 

fixed order, widening the time slice of the model is positively affecting the likelihood of 

the test data. However, a model with a slice width too large with respect to the order 

of the CMM is overfitting the data, the flexibility of the structure is too important. 

For high order models, being in a wider slice does not improve the results, fig 4.7(b), 

the high order CMM is by itself flexible enough. Therefore, we will work with n“” order 

models within a slice of width n. The results presented in fig 4.7(d) confirm that the 

higher the order, the better the model is. 
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Figure 4.6: This figure concerns the average log likelihood of the training data. The 
horizontal axis of the three first represents the slice width of the model which encapsu- 

late the CMM. Figure (d) represents the results for a model with time slices of width 
8, the horizontal axis show the order of model. 

CMM and HMM 

In fig 4.8, taking the example of a 4’" order structure, we see a modest improve- 

ment in modelling using a coupled Markov model rather than a hidden Markov model. 
Despite capturing the local structure better, to catch global information we need to 
increase the order of the model, which leads to very large computation times. We pre- 

fer to introduce a supervising structure, nodes at a higher level, like in tree-structured 

models, which will capture the information from a whole slice. Therefore, we introduce 

some supervised structures in the next section. Samples from a 4 * 2" order coupled 

Markov model, 4“ order in time dimension and 2"¢ in instrument dimension, is partly 

presented in fig 4.9 and is given in emm_{_2_sample8.wav. 

4.1 Supervised structures 

The main assumption behind the supervised structure is that music is a multi-level 

natural stochastic process. At the lowest level the notes follow an underlying process, 

as modelled by our hidden Markov models or coupled Markov models . However, there 

also exists some higher-level processes which carry global information, constraining the 

lower level process. We model these higher processes by including some supervising 

nodes, nodes from an upper level (level 0) which influence several nodes in the lowest 
one (level 1). 

We consider level 1 as a 4" order coupled Markov model since this gave good 

performance in our previous experiments. Then we have several different types of 

supervising structures to work with, as presented in fig 4.10. 
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Figure 4.7: This figure shows the evolution of the log likelihoods of the test set data 
(mean, minimum and maximum). We grouped the model results with respect to the 

order of the associated model. Then we plot them with respect to the width of their 
associated models. 

One node supervised CMM 

The first model in fig 4.10(a) is the simplest and basically attributes a hidden state 

to one or several combinations of 

  

bal bdl4D pat) balt43) 
sd) gd(+1)— gq(t+2) gq lt+3) 

hh® pnt) pnt?) pAptt+s) 

We then assume that the sequence of such combinations is a stochastic process mod- 

elled by a first order Markov chain. The number of hidden states we will associate to 

the top node will strongly influence the results. A large number of hidden states will 

give a better likelihood for the training set. The model will overfit the data and reduce 

the creativity. A small size hidden node will not improve the results compared to a 
Coupled Markov Model without supervising structure. Therefore, the size of the top 

node is set to a value between a third and a half of the number of different combina- 

tions of instruments, here 2 *2+3 = 12. In fig 4.12 we see how the addition of this top 

node with 4 hidden states influences the log likelihood of the training data, capturing 

with more accuracy the underlying structure as the variance of the log likelihoods of 

the test data is reduced and their mean is increased. 

      

Time dimension supervised CMM 

Fig 4.10(b) shows of another type of supervising structure, each {bd, sd), hh} 
is supervised by a shared node sv“). We then assume that the evolution of this top 

node can be modelled by a Markov chain which can be of first or higher order. In 

fig 4.13 we show a comparison between a 2”¢ order CMM and its equivalent first and 
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Figure 4.8: Comparison of a 4" order hidden Markov model with a 4‘” order coupled 
Markov model. Figure (a) shows the average log likelihood over the 50 elements of the 

training set. (b) shows the mean of the log likelihoods of the 13 data we kept as test 
data, together with the worst and best of the 13 test likelihoods for both models 
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Figure 4.9: Sequence generated from a 4 * 2 order coupled Markov model 

second order time dimension supervised models. The size of the supervising nodes is 

set_ to 4 for the same reason explained above. 
This structure is equivalent to the hidden process in hidden Markov models, except 

that the observations are interacting. The supervising node ensures a sort of lockstep 

evolution of the combination of the three instruments across time. Although the mean 
log likelihood of the test data is reasonable, the variance of these log likelihoods is too 

large, suggesting overfitting. 

Instrument dimension and 2 dimension supervised structures 

The results obtained for the two last structures are displayed in fig 4.14. We com- 

pare a 2™ order coupled Markov model with different forms of instrument dimension 

and 2 dimensions supervised models. We use the two structures presented in fig 4.10(c) 

and 4.10(d). Then, using the changes of supervising structure presented in fig 4.11, we 
obtain four new models which are described in fig 4.14. The results show only mod- 
est improvement composed with on a low order coupled Markov model. This mainly 

comes from the poor trade-off between the complexity of these models and the amount 

of information carried by such added nodes. Let us take the example of the bass drum 
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slice 1 slive 2 

       
Figure 4.10: (a) One node supervised coupled Markov model. (b) Time dimension su- 
pervised coupled Markoy model. (c) Instrument dimension supervised coupled Markov 
model. (d) 2 dimensions supervised coupled Markov model. In order to simplify the 
notation, the inter connections of the CMM are not represented 

  

time slice t time slice t+1 

Figure 4.11: This figure presents an extension of the supervising structures presented 

in fig 4.10. For some simplification in the notation, we just drew the supervising 

structure. (a) second time dimension model, the top nodes are following a higher order 

Markov process, 2” in this figure. (b) second instrument dimension model where the 

supervising nodes are fully connected across time. The model presented in fig 4.10(d) 
will use one of these structural extensions, both or none 
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Figure 4.12: Comparison of a coupled Markov model (CMM) of slice width 1 and a 

one node supervised coupled Markov model (SCMM) of slice width 1. Because of the 
slice width, the order of the CMM is then 1. The number of hidden states modelled 

by the top node is set to 4. 

in a 2"¢ order CMM. The Instrument dimension supervising structure, fig 4.10(c), is 

redundant since a higher order Markov chain per instrument is enough to capture the 

local information of each couple {bd, bd+)}. The small gain in the approximation 
of the underlying process is largely counterbalanced by the complexity of the structure 

in a slice, leading to high computation time because of the large size of the cliques. 

The 2 dimension supervised structure, partly based on the structure discussed above 

and displayed in fig 4.10(d), shows the same poor results. 
In fig 4.14, we see that our supervised structures present a better fitting of the 

training set than the normal CMM. However, the two last ones provide an average 

log likelihood for a training data lower than sv1, the training test shows that the 
gain is not significant. Regarding the difference in time computation, ten times the 

time spent to train the 4" order CMM, we should not consider using this kind of model. 

Considering a Coupled Markov Model and its associated supervised model, it ap- 

pears that not all supervising structures improve the capture of both local and global 

information. The time dimension supervised models show better results than the oth- 

ers. Due to its ability to model a stochastic process on the combination of instruments 

played at the same time and the possibility to increase the order of this process, or- 

der of the top nodes Markov chain in figures 4.10(b) and 4.11(a) for example, we will 

use it as our model in the next part. In fig 3.10, we saw the results of different hid- 

den Markov models with respect to their number of hidden nodes. The comparison 

we made between the structure of HMMs and time dimension supervised models en- 

courages us to consider the choice of the number of hidden nodes, finding a trade-off 
between the complexity of the model and its capability to capture slobal structure. 

We set the size of the top nodes to 6. A sample from a one node supervised model 
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Figure 4.13: Comparison of a 2” order coupled Markov model and two time dimension 
supervised coupled Markov model, first and second order for the supervising structure. 
The first order one is presented in fig 4.10(b), by second order we mean 2™ order on 
the Markov chain formed by the supervising nodes. 

extended with the architecture shown in fig 4.11(a) with 6 hidden states is given in 
sml_2_2_6_sample2.wav. A part of the sequence is displayed in fig 4.15. 

4.2 Marginalizing and Clamping 

An advantage of attributing a stochastic process to each instrument is that we 
can work on its distribution inside the joint distribution of all the instruments rep- 

resented by the whole model. We discuss here two main interesting uses of such a 
structure: firstly, marginalizing the coupled Markov model with respect to one instru- 

ment, we extract the information about how to play fewer instruments, following the 

same underlying, global process. Secondly, clamping the nodes of the subprocess of 

the instrument J;,, the model represents a new distribution of sequences over the rest 

of the instruments given what is played for J,. In figure 4.16, we show a graphical 

representation of both tasks as applied to the coupled Markov models. 

Marginalizing 

Let us consider the instrument whose process is the first row of our coupled Markov 

model, the bass drum. We want to marginalize the drum sequences distribution rep- 

resented by the model in fig 4.4 with respect to this instrument. This means summing 

over all states of the bass drum in order to produce a joint distribution on the remain- 

ing instruments. In this first order CMM, the CPT A associated with the second node 

of the second row defines how to play snare drum, sd, at time t = 2, depending on how 
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Figure 4.14: Comparison of a 4‘" order coupled Markov model with 2 instrument 

dimension supervised coupled Markov models and a 2 dimension one. The first super- 

vised structure, labeled s31, is shown in fig 4.10(c). The one labeled s32 is basically 

the same except that all the supervising nodes interact with each other across time, 

fig 4.11(b). The third one, s41 is presented in fig 4.10(d). The three last models are 
a combination of s41, using the supervising structures presented in fig 4.11. s42, s43 

and s44 are using the extensions in fig 4.11, respectively (a), (b) and (a)+(b) 
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Figure 4.15: Part of a sequence generated from a supervised model, its type is shown 

in fig 4.10(b) and its structural extension in fig 4.11. We set the number of hidden 

nodes to 6 for the reasons explained above. 
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Figure 4.16: using coupled Markov models, we can perform two tasks: (a) marginal- 
izing the model with respect to one instrument, therefore the coupled Markov model 

represents the underlying process of the reduced set of instruments, no matter what 

is played with the deleted one. (b) clamping an instrument nodes then propagate this 
extra evidences through the network to update the other CPTs 

we played the three instruments at time t = 1 

A = p(sd |bd™, sd, ha) (4.1) 

Now, imagine we want to play snare drum and hihat (hh) without bass drum. This 
can be performed by summing this CPT over all the possible value of bassdrum\) 

At = S>p(sd ba, sd, hh) (4.2) 
ba) 

x p(sd?\sd, ha) (4.3) 

Therefore, to obtain a model representing the distribution of {sd,hh} sequences from 

our initial coupled Markoy model, we sum over the bass drum values every CPT having 

a node from the bass drum process as a parent. When a node has a child in the first 

row of the model, we remove the link as if there was no process to influence. 

Clamping 

In clamping, we are interested in generating a drum sequence given the score for 

one or more of the instruments. As in section 2.2, clamping corresponds to dealing 

with evidence. The effect of clamping can be carried out automatically by a simple 

modification of the Junction Tree algorithm [10], using the Junction Tree form of its 

slice structure. For example 

e Considering a full observation of the bass drum values, we clamp all the nodes 

associated with this instrument, the first row in the coupled Markov model. Each 

node has now a fixed value, see fig 4.16(b). 
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Time 

Figure 4.17: We show here the sequence sampled from a time dimension supervising 

structure. We set the order of the top node Markov process to 2 and the number of 

hidden nodes to 6. Then we clamped the nodes associated with the bass drum and 

recompute the CPTs of the other nodes of the model. The new model represents now 
the distribution of drum sequences given the bass drum sequence, sampling from it will 

complete the drum observations with a suitable sequence for the snare drum and the 

hihat. 

e We propagate the new evidence using the Junction Tree algorithm. 

The CMM that results from these two steps is now a graphical representation of the 

drum sequences distribution where the bass drum is played in a fixed way. Sampling 
from this distribution will produce sequences with the required bass drum rhythm and 

an appropriate completion for the two other instruments. An example is displayed in fig 

4.17. We clamped the bass drum to the sequence presented in the upper line of the fig- 

ure. The generated sequence of the {hihat, snare drum} instruments, conditional on the 

given bass drum sequence is plotted in the lower lines. The corresponding wav files are 

given in clamp_sequence1.wav, the bass drum sequence alone, and clamp_sample1.wav. 
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Chapter 5 

Conclusion 

Music is a very complex process. Through musical scores, the composers present, 

their interpretation of music in a discrete way. This representation allows us to see 

a piece of music as a succession of discrete states. A deterministic approach is inap- 

propriate for creating novel musical sequences, and we were therefore interested in a 

probabilistic approach. We make the assumption that the sequence of notes from a 

musical score is generated from a stochastic, dynamic underlying process. 

This thesis attempted to determine in which way graphical models can be used in 

order to capture the structure of some pieces of music. We focused on the rhythm part 

as the simplest subprocess of music. We trained models to capture the structure of 

a sequence of instruments extracted from a drum textbook. Rhythm is a multi-level 
process, a note is part of a bar which is part of a song, all the notes have a role to play, 

even the silence. In order to model rhythm, we need to adopt the same structure and 

think of a multi-level model. The supervised structure introduced in the last chapter 

is, therefore, a first step to build a higher level process. The results obtained are 

encouraging but we were limited by two things: the data set and the computational 

complexity. 

Since our data set is composed of basic drum sequences, we were limited in the 

complexity of our representation of rhythm. Moreover, we worked with sequences of 
basic drum exercises, meaning that there was no information about how to start a piece 

of rhythm or how to end it. However, the clamping procedure allows us to constrain the 

global information of the sequence. If we have training examples and sequences from 

the beginning, middle and end of pop songs, we could additionally label these sequences 

using an additional variable. Clamping this variable in certain states throughout the 

sequence, we should be able to constrain the global structure of a song adequately. 

However, the clamping procedure can lead to burdensome computational problems, 

and rapidly becomes infeasible. An approach to resolve this would be to consider 

approximate algorithms for computation with graphical models. Similarly, considering 

modelling more complex musical sequences with more instruments necessitates the use 

of more complex models. This should almost certainly require the use of approximation 

techniques. 
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