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Thesis Summary 

Clouds have always been a source of scientific research as they play an important role 

in regulating the Earth’s weather. Much of the information we get about clouds is 

obtained by satellite images, which need to be processed in order to obtain interesting 

information. Indeed, due to the existence of different cloud types, there is a need of 

building a reliable cloud classification method. The aim of this thesis will be to create 

a spatial retrieval of cloud types, combining visible and infrared satellite images. This 

includes a preprocessing of the data to separate cloudy pixels from the underlying 

surface, a model of cloudiness using a radial basis functions neural network and a 

probabilistic method to classify clouds. 
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cloud classification
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Chapter 1 

Introduction 

1.1 The importance of clouds 

Clouds consist of condensed water vapour suspended in the air, which result from 

the aggregation of minute particles of water or ice. They are visible signs of atmospheric 

processes at work. Indeed, they are essential to the Earth-atmosphere system as they 

fulfil different important functions. 

1.1.1 Solar radiation regulation 

The Sun and the Earth both emit and absorb energy, which scientists refer to 

as radiation. Our planet absorbs incoming sunlight and also emits its own energy. 

For this reason, the Earth’s outgoing energy has two sources: thermal radiation that 

the Earth’s surface and atmosphere emit and solar radiation that the land, oceans 

and clouds reflect back to space. The balance between incoming and outgoing energy 

determines the planet's temperature and, ultimately, the climate [16]. 

Clouds help to regulate the Earth’s temperature by playing two complementary 

roles. By reflecting the sunlight into space, they cool the atmosphere and by absorbing 

sunlight and heat, they keep warming the planet. This regulation is essential to keep 

a ‘pleasant’ temperature on our planet.
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Figure 1.1: The Earth’s incoming and outgoing energy. 

1.1.2 The hydrologic cycle 

Clouds are the essential link in the hydrologic cycle. They are responsible for the 

rain and contribute to life on Earth. Water is necessary for vegetation growth and 

clouds bring it everywhere. Moreover, as the vast majority of water evaporation occurs 

from the oceans, clouds are very useful as they are involved in the conversion of salt 

water to usable drinking water. 

CONDENSATION se 
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Figure 1.2: The hydrologic cycle. 
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CHAPTER 1. INTRODUCTION 

1.2 International cloud classification 

A classification of cloud forms was first made in 1801 by French naturalist Jean 

Lamarck. In 1803, Luke Howard, an English scientist, devised a classification which 

was adopted by the International Meteorological Commission in 1929, designating three 

primary cloud types, cirrus, cumulus, and stratus, and their compound forms which 

are still used nowadays. We distinguish ten different basic types: 

  

  

  

  

  

  

Cloud type Description 

Cirrus Fibrous like or silky sheen 

Cirrocumulus Thin white patch 

Cirrostratus Transparent clouds that make halo of sun or moon 

Altocumulus Bumpy rounded masses, like wool 

Altostratus Transparent blue/gray clouds with no halo 
  

Nimbo-stratus Storm cloud, dark, covers sun 
  

Strato-cumulus Gray or whitish layer with dark parts 
  

Stratus Low clouds with drizzle or snow, no halo 
  

Cumulus Rising mounds of cauliflower white 
    Cumulo-nimbus   Huge towers, storm clouds, hail, lightning 
  

Table 1.1: Description of the ten basic cloud types. 

These clouds have different shapes, motion and height in the atmosphere as shown 

on the figure below [7]. 
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Figure 1.3: Shape and height of the ten basic cloud types. 
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CHAPTER 1. INTRODUCTION 

1.3 Different approaches to cloud classification 

Numerous approaches have already been taken to classify clouds, using different 

techniques of image processing or cloud modelling to retrieve the different classes of 

clouds. 

1.3.1 Conventional statistical classifiers 

With the development of weather satellites, several studies have investigated cloud 

detection and cloud classification since 1970 [1]. Considerable research has looked 

at different features for discriminating between clouds and other surfaces and differ- 

ent methods for detecting and classifying clouds have been applied. Generally, two 

categories of features are examined: spectral features and textural features. The first 

category uses the information in the cloud radiance from different spectral bands, while 

the second uses the spatial distribution characteristics of intensity measurements in a 

single spectral channel. 

Multispectral threshold classifiers 

Reynolds and Haar (1977) introduced a bispectral method using visible and infrared 

channels to focus on clouds. Visible images were used to localise clouds whereas infrared 

images were used to determine cloud top temperature and thus cloud height [12]. This 

method is an efficient way of classifying clouds into different cloud level classes and 

will be detailed in this thesis in Chapter 5. 

Saunders and Kriebel (1988) developed a method for detecting clear sky and cloudy 

radiances [13]. The scheme consists of five tests applied to each individual pixel to 

determine whether that pixel is cloud-free, partly cloudy or cloud-filled. The tests 

vary depending on whether it is night or day and on the underlying surface type, 

sea, land or coast (mixed). They use all the channels of the ‘Advanced Very High 

Resolution Radiometer’ (AVHRR), where channels 1 and 2 measure the bi-directional 

reflectances and channels 3, 4 and 5 measure the infrared brightness temperatures. The 

first test considers the infrared brightness temperature of the pixel to discuss about 

cloud contamination. The pixel’s brightness temperature is compared to a threshold 

and is then labelled as cloud-free or cloud-contamined. The second test check the 

local uniformity or the spatial coherence of a 3x3 pixel array using the brightness 

temperature. The third test verifies the dynamic reflectance, setting a threshold to 

detect cloudiness as clouds have a greater reflectance than the underlying surface. The 

fourth test makes use of the ratio of near-infrared bi-directional reflectances (channel 

2) to visible bi-directional reflectances (channel 1) and the bi-directional reflectance Ry, 

12



CHAPTER 1. INTRODUCTION 

is defined by: one 
nc +¥, 

7 ~c0s(0) 

where R,, is in units of percentage, G’, is the gain, Y,, is the intercept, C is the raw 

count value received from the satellite for the channel n and 6p is the appropriate solar 

zenith angle. The ratio used in the test is defined as: 

The ratio Q is close to unity over clouds, as the reflectance of clouds only decreases 

slightly at near-infrared wavelengths and anisotropy effects are similar in both channels 

and hence cancel. The last test examine the difference between the 11 zm (channel 4) 

and 12jm (channel 5) brightness temperatures. This brightness temperature difference 

can be used to detect most types of clouds, the only exception being uniform low clouds. 

A threshold is set to separate clear sky and cloudy pixels. 

A multispectral threshold algorithm has also been developed by Karlsson and Liljas 

to obtain an operational automated cloud classification model [8]. The final classifica- 

tion model, named SCANDIA (the SMHI Cloud ANalysis model using DIgital AVHRR. 

data) was implemented and is a supervised thresholding model. AVHRR scenes are 

classified by using seven image features. One feature is a land/sea mask based on a 

geographical map, whereas the other six are the following pure spectral features, based 

on all five AVHRR channels: 

e CH1: Bi-directional visible reflectance, 

e CH1-CH2 VIS-NIR: Reflectance difference, 

e CH3-CH4: Brightness temperature difference, 

e CH4: Brightness temperature, 

e CH5-CH4: Brightness temperature difference, 

TEX4: Local brightness temperature variance in AVHRR channel 4. 

The pixels in each AVHRR scene are separated into a maximum of 57 classes (cloud 

types and surfaces) depending on the sun elevation. However, the final image never 

comprises more than 23 classes. 

Classifiers based on thresholds are popular as they have the advantage of being 

simple in implementation and maintenance. But, the main drawback with threshold 

classifiers is that they are very sensitive to changes in the operational environment, i.e. 

13



CHAPTER 1. INTRODUCTION 

variations in the illumination conditions, climate and season. In sunglint and snow or 

ice regions, the reflection of the solar radiation can exceed the reflectivity of clouds 

which makes thresholds difficult to define. 

Existing approaches to cloud detection and cloud classification 

Work has also been done concerning cloud screening and cloud classification using 

different methods rather than spectral thresholds. Lakshmanan et al. have investigated 

a hierarchical texture segmentation method using A-means clustering [9]. This work 

was motivated by the difficulties that traditional segmentation algorithms have with 

satellite weather images because of the textural nature of clouds. The model proposed 

is a hierarchical technique combined with a texture segmentation algorithm. 

A hierarchical clustering method is an agglomerative technique where the clustering 

algorithm at each stage merges two or more trivial clusters, thus nesting the earlier 

partition into a smaller number of clusters. Images are segmented using an iterative 

texture segmentation method that yields a hierarchical representation of the regions at 

different scales. This method makes use of K-means clustering to requantise the image 

in K levels. 

A vector of statistical measurements taken in the neighbourhood of a pixel is as- 

sociated with that pixel. Each pixel is then assigned to one of the K equal intervals 

defined in the measurement space (the gray level of the images), according to its initial 

gray level value. In each iteration, the best label for each pixel in the image is chosen 

based on a cost factor that incorporates two measures. The first one is the Euclidean 

distance, d,,(k), between the texture vector at that pixel and the cluster mean of the 

candidate k, given by: 

dry (k) = lla — Teyll 
where jj! is the cluster mean of the k’" cluster at the n“” iteration and T,,, is the texture 

vector at the pixel (x,y). The second measure is a contiguity measure, d,(k), which 

measures the number of neighbours whose labels differed from the candidate label k. 

We can formally express the distance d,(k) as: 

d(k) = D> (1-4(S3—A)) , 
ijeNey 

where S# is the label of the pixel (i, j) at the nih 

of the pixel (x,y) and d is the usual Kronecker symbol. Then the choice of the label 

for the pixel (x,y) in the (n + 1)" iteration, S71, is given by the label k € Sk, for 

iteration, N,, is the set of 8-neighbours 

which the energy, E(k) given by 

E(k) = Adm(k) + (1 = A)de(k) 

14



CHAPTER 1. INTRODUCTION 

is minimum. The value of \ used for all the images is \ = 0.6, which is the optimal 

value found experimentally. At the end of each iteration, the cluster attributes (j;,) 

are updated based on all the pixels that were labelled as belonging to the cluster at 

that time. This process is repeated until the regions are such that all cluster means 

have reliable statistics. This method is efficient to identify small features of about 10 

km? in satellite images but more study is required to ascertain the significance of these 

small features. 

Other investigations such as the one of Peura et al. developed a combination of 

satellite images and land-based observations [11]. The method suggested is based on 

a source image captured by a whole-sky image and transformed to a digital array. 

Then, several feature images are extracted from the source image. Each feature image 

emphasises some distinguishing property of clouds. The features considered in the 

study are: 

e Edge sharpness. Edges of a cloud can be detected by the gradient operation 

Vi(z,y), which is obtained from finite difference approximations in digital im- 

ages. Pronounced edges are characteristic of cumulus clouds whereas stratus, 

nimbostratus, altostratus and cirrostratus have indefinite contours. 

e Speck size. This measure is quite problematic as there exists no proper definition 

for an edge of a cloud. A simple approach is to apply spatial band-pass masks 

with different radii. Specks can also be analysed by slicing them to connected 

gray-level segments areas of which can be calculated recursively. 

e Fibrousness. This property, suggesting detection of lines, is typical to cirrus and 

sometimes cirrostratus, nimbostratus and cumulonimbus. Line segments can be 

detected by calculating approximations of second derivatives and dividing the 

result by the differences of the gray levels neighbouring the current locus. This 

operator is rather insensitive to edges of clouds. In addition, fibrousness can be 

measured by summing adjacent gray-level transitions and also by vector products 

of the two unequally spanned gradients. 

e Association of edge information. The whole-sky images should be seen as a 

composition of objects, ie. specks of clouds, rather than a pure texture. Local 

information of edges of clouds is propagated inside the corresponding specks. 

As clouds consist of areas with varying appearance, some of the ten cloud genera 

are partitioned to subclasses (edge, speck, bulk, gap). The preclassified samples needed 

in the classification consist of single feature vectors. The collection of samples, called a 

codebook, is created by investigating a comprehensive set of cloud images and extract- 

ing feature vectors at positions containing representative details of cloud genera. A 

15



CHAPTER 1. INTRODUCTION 

straightforward method of applying a codebook is to find the most resembling vector 

and return its label as the result. This is called the Nearest-Neighbour algorithm. A 

generalisation of this is the K-Nearest-Neighbours algorithm: the codebook is searched 

for K samples having smallest distance to the given example. The sample is assigned 

the class having the largest number of instances among these K vectors. 

The results obtained with this method are comparable to some extent to those ob- 

tained with the other classifiers. However, the number of preclassified samples required 

to form a codebook can be large and the distance calculation performed to each code- 

book vector is a time-consuming operation. Moreover, some improvements have to be 

done to distinguish cloud layers. 

Cloud-screening problems have also been tackled by Cadez and Smyth [5]. They 

chose to apply inhomogeneous statistical spatial models in the form of Markov random 

field (MRF) models to the cloud detection and developed an efficient algorithm for the 

estimation of model parameters. The standard MRF model assumes that the coupling 

between pixel labels is globally constant throughout the image. An inhomogeneous 

MRF model allows this coupling parameter to vary spatially. This model takes advan- 

tage of spatial information whereas existing cloud-screening algorithms make decisions 

on a pixel-by-pixel basis. 

If we define S to be a set of lattice points, s a lattice point belonging to S (s € S), 

X, the value of X at s and Os the neighbouring points of s, a random object X on the 

lattice S with neighbourhood system Qs is said to be a Markov random field if for all 

260: 

Plaslarr for r # 8) = plarshtor) « 
The main object of interest of this study is a rectangular n x m image S consisting 

of sites s;; ordered in a matrix manner. The neighbourhood of the site sij is any 

subset 0;; C S such that s;; ¢ 0,;. The neighbourhood system N is the set of all 

the neighbourhoods: N = {0j|1 < i < n,1 < j < m}. At each site, we define 

an intensity random variable X,; (typically taking 256 gray-levels) and a hidden label 

random variable Y;; (discrete-valued, k labels). The specific values the random variables 

take are denoted xj; and y,; respectively. This gives two sets of variables defined on the 

image S: X = {Xj1,...,Xnm}, and Y = {Yi1,-.., Yam}. From the Hammersley-Clifford 

theorem, a MRF for P(Y) is of the form 

PY) = 1ebV0) = Lead. veosviusd | 
z z 

where z is known as the partition function or normalising constant (yielding >, P(Y) = 

1), 8 is the temperature parameter (frequently called the smoothness parameter in im- 

16



CHAPTER 1. INTRODUCTION 

age segmentation) and V is the so-called potential function; its extrema are tightly 

connected to the optimal segmentation within the MRF framework. 

To simplify the notation, n,;(y;;) will stand for the number of pixels labelled y;; in 

the neighbourhood of the site s;;. Thus, the potential function reduces to: 6Vi;(0i; U 

{yij}) = Bniz(yiz). The study also assumes that observed intensities X;; only depend 

on the local Y;; labels and are conditionally Gaussian given the local model, setting 

Hij = My,;, aNd O47 = oy,,. Then Bayes’ theorem yields a complete model coupling 

intensities and labels: 

P(Y|X) « P(X|Y)P(Y) = 165.4 Bunu(vs) Il 1209, 2i5— Has? 

o ij 4/2795, 

The goal of segmentation is then to maximise P(Y|X) with respect to labels Y. 

The results obtained show that spatial models perform better than non-spatial models 

for cloud-screening problems. 

1.3.2 Neural network classifiers 

Since the 1980's, it has been popular to use neural network based classifiers in 

remote sensing. Visa et al. have presented the different current phases of the classifi- 

cation of satellite images and have also discussed about the advantages of using neural 

network classifiers [15]. The scheme is the same as the one used for the previous clas- 

sifiers described. The classification of a satellite image is done in two phases, known 

as cloud screening and cloud classification. The clouds are separated from the surface 

using a selection of features compared to a cloud screening codebook and are then 

classified following a classification codebook. 

With the results obtained, they discussed the advantages and the drawbacks of 

neural network classifiers compared to traditional methods of classification. It appears 

that the neural network classifiers are more effective than traditional classifiers. They 

have the ability to generalise and make simple models of processes or phenomena. 

They are efficient in generating and updating the codebook using training samples 

but they are weak in extrapolating far away outside the set of the training samples. 

A suitable preprocessing of the samples and a feature selection are still necessary to 

improve the performance of a neural network classifier. It can also be stated that an 

analytic, physical model is still superior to a neural network, but a neural network 

offers a rapid way to get good results and to study the process. The computational 

complexity is also an important point, depending on the implementation of the neural 

network and the size of the dataset. Neural network classifiers are fully automatic and 

can be adapted to changing situations with new examples. The comparisons with other 
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published results show that the performance of the classifier is relatively good. Hence 

its flexibility rather than the results obtained tends to make it popular. 

1.4 Space-time models for clouds 

The initial aim of the thesis was to build a dynamic model to classify clouds. 

Unfortunately, due to a lack of time, only the spatial part has been investigated. The 

research is based on a neural network architecture. The first objective of the work is to 

preprocess the images by removing the surface pixels. Then, a modelling of the clouds 

by a radial basis functions neural network is envisaged. This choice is motivated by the 

fact that we wanted to study the dynamics of the clouds and it is easier to focus on the 

motion of the basis functions rather than the motion of each pixel during time. The 

use of the MLP in cloud classification is popular and provides very good results but 

it does not fit the model we wanted to build. This spatial and temporal approach to 

cloud classification using an RBF neural network for modelling and dynamic retrieval 

is the main originality of this thesis. 

In this topic, Bailey et al. have proposed a model for studying cloud cover, using 

its spatial and temporal distribution [2]. Their model introduces a parameterisation 

of cloud cover, representing the cloud’s contour by a radius vector function. A small 

number of Fourier coefficients of the radius vector function are used to describe the 

contour function and corresponding area of a cloud. The radius vector function (0 < 

0 < 2r) is defined by 

Pp 

r(0) =ag+ Sy a, cos nd +b, sinné . 

n=l 

The centre of gravity of each cloud is used as the centre of the contour of the cloud. 

For the analysis, the Fourier series is truncated after six coefficients as experimentally, 

this number seems to reasonably represent the cloud and total cloud cover. 

To incorporate the spatial distribution of clouds, the spatial pattern of the location 

of the centres of the clouds is investigated. It is possible to model the centres as a 

marked Markov process, where the locations of the centres of the clouds are marked 

by the first Fourier coefficient which is the mean radius of the cloud. 

A first-order time-lagged spatial nearest-neighbour model is used to model cloud 

cover over time. Consider the gridded region with r rows and ¢ columns (L = rc). 

Let (Xi,.-.,Xz2)’ be an L-vector of values at time t. The first-order lagged nearest- 

neighbour model for each grid site / is 
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Xyist) = f(Xnwe) + ee » (1.1) 

where e; is a normal distribution (0,07) independently and identically distributed. 

The n(I) is a nearest-neighbourhood of each site, which has a row-column index (i, j): 

n(l) = (i, 9), (+1), 9), (@- 1), 9), G+ 1), G- 1) - 

The map f is estimated by a feed-forward neural network with a single layer of 

hidden units. The form of the model is 

k 

F(X) = Bo + D> Bib( XT 44 + se) 5 
i=1 

where ¢(u) = ie The parameters 6, y and yj are estimated by nonlinear least 

squares. The complexity of the model, i.e. the number of hidden units k, is chosen based 

on generalised cross validation which is a standard approach for selecting smoothing 

parameters in nonparametric regression. The computation of Equation 1.1 gives the 

temporal behaviour of the model. The results obtained give a good approximation of 

cloud cover. 

1.5 Thesis overview 

The thesis will be built around a classical approach of cloud classification using 

neural networks, following Figure 1.4. The main phases of the work will focus on image 

processing to separate clouds from the surface, cloud modelling to convert data to a 

neural network output and finally cloud classification to determine the types of clouds. 

The image processing and the cloud classification will use traditional methods such as 

a radiance threshold to distinguish clouds from the surface and a combination of visible 

and infrared images to retrieve cloud temperature and hence cloud height. The cloud 

modelling will envisage an original approach by using an RBF neural network to model 

cloudiness. This model should fit the framework developed to take in consideration the 

spatial and temporal behaviour of the clouds for cloud classes retrieval. 

  

  

Image processing |——~| Cloud modelling 
        Cloud classification 

  

Figure 1.4: Steps for the thesis work. 

Chapter 2 will present the data used for the thesis and explain their choice. Chap- 

ter 3 will deal with the removal of surface pixels using a probabilistic method to retain 
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only cloudy pixels. Then, Chapter 4 will go through the modelling of the clouds by a 

radial basis function network. It will introduce the definition of a new basis function 

to fit clouds better than the usual basis functions defined. Finally, Chapter 5 will pro- 

pose a method for cloud classification combining visible and infrared images. Further 

possible developments will be treated in Chapter 6. 
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Chapter 2 

Description of the dataset 

For building our model, the use of a large number of satellite images is necessary. 

Indeed, these images are essential as their provide exhaustive information about clouds. 

All these images are taken from the METEOSAT satellite. METEOSAT is a spin 

stabilised satellite located in a geostationary orbit at 36 000 kilometres above the 

Earth at the crossing of the equator and the 0-meridian. The images were provided by 

the Dundee Satellite Receiving Station of Dundee University (United Kingdom) and 

were available on the web site http://www.sat.dundee.ac.uk. 

2.1 Visible images 

Visible images measure the radiance of the reflected sunlight on the Earth. As a 

consequence, the most exploitable data are pictures taken during the daytime. These 

images provide essential pieces of information about clouds, such as the shape and using 

their brightness, we are able to distinguish them from the surface which is generally 

darker. 

  

Figure 2.1: Visible satellite image of Europe taken on July, 14th 2003 at 12:00 am. 
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To obtain the most exploitable data, it is relevant to focus on visible images taken 

at midday. Indeed, by that time, the illumination of the Sun is at its maximum 

for the regions observed and as the Sun is at its zenith, there are no problems of 

biased floodlighting which means that there is less need to correct radiance to produce 

reflectances. 

2.2 Infrared images 

Infrared images measure the radiation emitted by the Earth atmosphere and there- 

fore the temperature. The warmer a particle is, the more radiation it emits, following 

Planck’s law. To match the appearance of the visible images, the infrared image scale 

has been inverted so that clouds appear as bright pixels and the surface as dark pixels. 

On infrared images, the brighter a pixel, the colder it is. This information will be useful 

to determine the height of the clouds as height and temperature are linked. Actually, 

the higher we are in the atmosphere, the colder the temperature. 

  

Figure 2.2: Infrared satellite image of Europe taken on July, 14th 2003 at 12:00 am. 

As we will need to combine visible and infrared images for the cloud classification, 

we want to observe the visible image in the infrared domain. For that reason, all 

infrared images are coupled with the visible images. 

2.3. Working area 

The visible and infrared images do not have the same size. The visible image is two 

times larger than the infrared one so we need to resize these images to match the size of 

the infrared ones. It is more relevant to shrink the size of the visible data rather than 

increase the size of the infrared one since this does not introduce spurious accuracy. 
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The full final satellite image is a rectangle of 1250x625 pixels which makes 781 250 

pixels to consider. This is a computational issue as the modelling requires significant 

memory and CPU resources. For this main reason, we will only focus on a small region 

of Europe, and more precisely Spain. 

  

Figure 2.3: Visible and infrared satellite image of the working area taken on July, 14th 

2003 at 12:00 am. 

The choice of this working area is motivated by geographical reasons as we want to 

minimise the deformation of the image due to the curvature of the Earth. Furthermore, 

this region has also interesting land/sea and topographic features. 

23



Chapter 3 

Image processing 

Before modelling the clouds, we need first to isolate them from the surface on 

the satellite images. At this stage, there is a need to build a binary classification to 

distinguish clouds from the underlying surface, land and ocean. The preprocessing is 

used to remove the surface pixels. 

3.1 Mathematical background 

As we want an automatic image processing method, we need to introduce a proba- 

bilistic algorithm to account for errors in the cloud screening phase. The probabilistic 

method is used to add some tolerance in the separation of the clouds and the surface. 

3.1.1 The Gaussian mixture model 

We consider the probability of a pixel being cloudy given its brightness. This will 

also take in consideration the basic surface type of each pixel when being non-cloudy, 

that is land or ocean. This probability will be represented by a Gaussian mixture 

model which is a combination of Gaussian densities [10]. The density has the following 

form for a model with M components: 

M 

p(®) = >> P(s)p(ali) , (3.1) 
Et 

where p(a|j) is the component density of the j" basis function and P(j) are the mixing 

coefficients which satisfy the constraints:
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Moreover, by choosing normalised density functions, we guarantee that the model 

does represent a density function, that is: 

[ v(cli) ae =1. 

In the Gaussian mixture model, the basis functions follow a Gaussian distribution. 

The usual choice is to consider a spherical covariance 4; = oil so that: 

le ay 
p(x|j) = Groza oP (- Qo? 

J a 

3.1.2 The EM algorithm 

To determine the parameters of a Gaussian mixture model from a data set, we 

need to maximise the data likelihood which is equivalent to minimising the negative 

log-likelihood: 
N 

B=-L=-) logp(an) . 
n=1 

The expectation-maximisation (EM) algorithm iteratively modifies the Gaussian 

mixture model parameters, the mean j1;, the variance 0} and the mixing coefficients 

P(j) for each component j to decrease the error and find a local minimum value. 

The choice of the EM algorithm is appropriate because it is simple to implement and 

to understand and it is usually faster to converge than general purpose algorithms [10]. 

In the Gaussian mixture model, we consider the data to be incomplete because we 

do not know which component j generated a given data point n. We thus introduce 

a variable z,, which takes on integer values in the range [1...!], and denotes the 

unknown generating component [14]. 

Then using the product rule, the complete-data log-likelihood is given by: 

N N 

£78) = ¥> log p(n, Zn) = > log{p(an|zn, 8) P(2n/8)} 
nel n=l 

where 0 = {p;,0;, P(j)}- 

The Expectation step 

Now, we need to take the expectation of the log-likelihood with respect to the 

distribution P(z) = eS, P(Zn|an, 0"). Since z is a discrete variable, the expectation 

over all z, is simply a combination of N sums: 
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M
e
 N M M n= 

n=l 

N 

TI PGEml2m, 0%) log{p(tnlzn, arceio)| 
zy 1 Zy=lm=1 I 1Z2 

N M M M 
gong) = Sy ay ie e Il P(Zm|2m, 04) (32) 

n=1 | Z1=1 Zp-1=1Zn41=1 Zy=lmsn 

M 

SS Pen lan, 0") log{p(an|2n, 0) P (2n|8) ] : (3.3) 
Zn=1 

  

Since the first square-bracketed term (3.2) evaluates to unity as each of the in- 

dividual sums Sr P(Zm|am, 0°) = 1 according to the constraints, we have the 

following expectation: 

N M 

€27™(8) = S> S> Plznlatn, 0%) log{p(aen|2n, 0)P(2n|8)} - 
n=1 Zn=1 

Considering our previous notation for a mixture model, the expectation is equivalent 

to: 
N 

gcomp (grew) — SSS Pile 68) )log{plan|j, On") P™"(j)} , (3.4) 

n=l j=1 

noting that P(z,,|0"°) is simply the prior P"*”(j). 

The Maximisation step 

In the M-step, we maximise €°?(@"*”) with respect to the parameters 0"°”. So if 

we differentiate Equation 3.4 and set the derivatives to zero in the univariate Gaussian 

case, we get: 

new — Domai PUiltny OF) 2p 

: nat P(il@n, 6") 
(o2)"e" = a Pilea, fn — BE)? 

i le Pj lon 07") ; 

ne ] P =F a> P(jlatn, 09 

where 64 = = {u2l4, ( crime dep) 

> 

Each iteration of the Expectation and Maximisation steps is guaranteed to increase 

the likelihood, unless it is already at a maximum, so we simply repeat the E and M 

steps until our algorithm converges. 
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3.2 Finding the reference brightness 

The goal of the preprocessing stage is to separate cloudy pixels from non-cloudy 

ones. For this purpose, we need a reference image of the working area without any 

clouds to make our binary comparison. 

We know that clouds appear as the brightest pixels on visible satellite images. 

Moreover, they are moving so if for each pixel, we keep the lowest brightness over 

numerous images taken during a relevant period of time, we will be able to obtain an 

image cleared of clouds. 

At that stage, we only need to consider the visible domain. Indeed, once the clouds 

are detected on the visible image, we will only have to keep the corresponding pixels 

on the infrared image. Moreover, for physical reasons, it is easier to distinguish clouds 

from the surface in the visible domain than in the infrared one. Actually, as the infrared 

channel measures the temperature, it can be confusing sometimes to distinguish clouds 

from the surface, especially for low clouds which have quite the same temperature as 

the sea surface for example. The only confusing distinctions on visible images concern 

snow regions and very reflective regions such as the Sahara desert, which can have 

the same radiance of the reflected sunlight as clouds. The first problem is handled by 

keeping the baseline brightness of the pixels using satellite images taken during summer 

as we remove the effect of snow regions as shown on Figure 3.1. The second problem 

has already been solved by the choice of the working area as Spain does not have 

very reflective land regions. The winter baseline brightness image is obtained with 28 

images taken in January and February whereas the summer baseline brightness image 

is obtained with 27 images taken in June and July. 

For the image processing, the most relevant baseline brightness to consider is the one 

obtained using summer images as we do not have to worry about confusions between 

clouds and snow radiances. 
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Visible baseline brightness of the working area in winter Visible baseline brightness of the working area in summer 

     
Figure 3.1: Baseline brightness of the working area in winter and summer. 

3.3. Computing the probability of cloudiness 

For each pixel, we want to classify it as cloudy or non-cloudy. But, as we are using 

an automatic model, we want some tolerance to account for errors. For this reason, 

we need to build a threshold based on the probability of a pixel being cloudy given its 

brightness and its basic surface type. 

3.3.1 Fitting Gaussian mixture models to the data 

As we plan to compute the probability of cloudiness given the basic category surface, 

we have to focus on labelled pixels to determine the influence of land or ocean surfaces. 

Actually, when plotting the histograms of the data, it appears that the global shape 

looks like a mixture distribution. 
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Figure 3.2: Brightness histograms of ocean and land pixels in the visible domain. 

Considering the shapes of these histograms, we decided to fit a three component 

mixture model to the data, which should model the brightness of the basic background, 

the one of the low clouds and the one of the high clouds. 

Moreover, we know that clouds appear brighter on the visible satellite images so 

we can assume that the first component of the Gaussian mixture represent the surface 

brightness. Then, retrieving the parameters of that Gaussian distribution, we want to 

define a probabilistic threshold to differentiate cloudy pixels from non-cloudy ones. 

The computation of the Gaussian mixture model is made using the functions in- 

cluded in Netlab and the parameters are fitted using the EM algorithm also imple- 

mented in the Netlab package [10]. 

3.3.2 Defining a threshold for cloudiness 

Given the parameters of the Gaussian mixture model, we are able to estimate the 

probability of each pixel being cloudy. We consider the Gaussian mixture having the 

smallest mean as the most probable representation of the basic brightness of that la- 

belled pixel as land/sea pixels are darker than cloudy pixels on the visible satellite 

images. For that mixture j7, we compute the posterior distribution using Bayes’ theo- 

rem: ae 
P(j|x) = RPO) 

p(x) 
where p(a) is given by Equation 3.1. This posterior probability satisfies the constraints 

M
E
 

P(j|z) =1, 
j=l 

0< Pile) <1. 
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The following graphics represent the posterior probability of the principal Gaussian 

mixture for each labelled pixel: 

Pose tater ot tm rin Gaesan rice ot oo at Powter dato o he in Gavel mist o ld pel 

  

Figure 3.3: Posterior distribution of the main Gaussian mixture for ocean and land 

pixels. 

Considering the posterior distribution of the main Gaussian mixture which denotes 

the probability of a pixel being non-cloudy, we can define a threshold for cloudiness 

which satisfy the rules below: 

e If the brightness of the pixel is less than the centre of the Gaussian mixture, we 

consider that its probability of being cloudy is nil: 

p(cloudiness) = 0 . 

e If the brightness of the pixel is greater than the centre of the Gaussian mixture, 

we set its probability of being cloudy to be equal to: 

p(cloudiness) = 1 — p(cloudiness) = 1— P(j|a) . 

These rules have to be set as the posterior distribution only gives a Gaussian prob- 

ability of a pixel being a land or a sea pixel and not a threshold for distinguishing 

cloudy pixels from non-cloudy pixels. If we only consider the probability of cloudiness 

to be 1 — P(j|a), we will not get a threshold but the probability of a pixel not being a 

land or a sea pixel. This problem is obvious for the land pixel probability as 1— P(j|x) 

stands for the probability of a pixel being a sea or a cloud pixel. 

For each type of surface, we have a corresponding threshold which has the following 

form: 

30



CHAPTER 3. IMAGE PROCESSING 
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Figure 3.4: Threshold for cloudiness for each surface type. 

3.4 Removal of the surface pixels 

Once the threshold is defined, we are able to remove non cloudy pixels using the 

probability computed before. For that purpose, we need to compute the posterior 

brightness of the considered pixel obtained by multiplying the prior brightness with 

the probability of that pixel being cloudy given its brightness and the basic surface: 

I” = p(cloudiness) * I" . 

To preprocess the infrared image, we use the preprocessed visible image as a cloud 

mask. We only focus on the pixels referenced as cloudy in the visible domain and we 

keep the corresponding pixels in the infrared domain. More examples of the prepro- 

cessing can be seen in Appendix B. 
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Visible satellite image after preprocessing Visible satelite Image belore preprocessing 

wr 

       

   

  

    Figure /isible image preproce 

Infrared satelite image belore preprocessing Infrared satelite image after preprocessing 

     

    

Figure 3.6: Infrared image preprocessed. 

We can observe on Figures 3.5 and 3.6 that the coastlines pose some problems for the 

removal process. This phenomenon is due to the lack of accuracy of the registration 

of the satellite images taken. Indeed, when finding the baseline brightness of each 

pixel, if a small displacement of one pixel has occurred when taking the image, it can 

affect the algorithm. As we only keep the lowest brightness for each pixel, some land 

  

pixels can be assimilated to sea pixels near the coastlines which affects the probabilistic 

threshold. One way of solving these minor errors would be to use the cloud motion 
  and their temporal behaviour. This model will be broached in Chapter 6. 
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Chapter 4 

Cloud modelling 

This chapter will deal with the modelling of the preprocessed image. To build our 

classification, we need to handle the clouds and the best way to do so is to model them 

by a radial basis functions neural network. Indeed, once it is done, we will only have 

to consider the hidden units of the network and no longer each pixel. 

4.1 Theoretic support: The RBF network 

Considering the nature and the shape of the clouds, a network that might fit the 

data well is a radial basis functions (RBF) network. This choice is motivated by its 

efficiency relating to density approximation, noisy interpolation and optimal classifi- 

cation theory [4]. Moreover, the RBF model is applicable to the dynamic model we 

wanted to create. As we need to study cloud motion, it is very convenient to focus on 

the motion of each basis function during time, assigning each basis function to a cloud. 

The purpose of an RBF network is to approximate a given function h by using a 

linear combination of H non-linear basis functions ®: 

H 

h(z) = YS wF(\Iz — 2,||)+ wo, 
i=l 

where w; is the weight associated to the i’" basis function, wo is the bias and ||z — z;|| 

is the Euclidean distance between z and z;. 
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Output 

brightness 

Basis functions 

  

Inputs 

Figure 4.1: Radial basis functions network used for the cloud modelling. The two 

inputs are the coordinates of the pixel and the output is its brightness. 

The architecture of the radial basis functions network is illustrated in Figure 4.1. 

Each ba 

connecting the basis functions to the output unit and the bias is shown as the weight 

sis function plays the role of a hidden unit. The weights are shown as lines    

from an extra ‘basis function’ ®) whose output is fixed to 1. 

Then, we shall write the radial basis functions network mapping of cloudiness in 

the following form: 

(ej 

  

H 
DS So wi®;(z) + Wo. 

i=l 

The most common basis functions used to train the RBF are the Gaussian and the 

thin plate spline. Their characteristic shapes are shown in Figure 4.2. 

oven dort Tin peste con 

  

Figure 4.2: Gaussian and thin plate spline basis functions. 
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The Gaussian basis function can be expressed by: 

ce 2 o(e) =m (HSH) 
20? 

and the thin plate spline basis function by: 

®;(z) = ||z — w)||?log(||2 — yl) 5 

where z is the input vector, 4; is the vector determining the centre of the i” basis 

function and 9; is the associated width. 

The Gaussian function is a localised basis function with the property that: 

lim @(z)=0. 
2-00 

This property is interesting for creating our model as clouds are compact and have 

clear edges. The thin plate spline function is derived from the theory of function 

interpolation and is an unbounded function that takes negative values for 

0<|lz-mill <1. 

The properties of the thin plate spline function do not seem to match with the 

modelling we envisage for clouds. This assumption will be verified by modelling tests 

done with different basis functions (see Table 4.1). 

Hence, one of the advantages of the RBF network is the possibility to choose the 

basis function and actually, it is the main reason why we want to model clouds by an 

RBF network. This property makes the RBF network very versatile and makes it fit 

within the dynamic model framework we intended to build. 

4.2 Modelling 

The network chosen for the modelling of the clouds has two inputs which correspond 

to the coordinates of the pixel and one output which is its estimated brightness. Then, 

the next step for the build of the RBF network is the choice of basis function. 

4.2.1 Choice of the basis function 

Considering the nature and the shape of the clouds as shown in Figure 4.3, we want. 

to create a basis function that matches them.
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Figure 4.3: Clouds are usually optically thick and have clear edges. 

Clouds have clear edges so we need a compact function to represent them. This 

function should increase and decrease rapidly as clouds are usually optically thick. 

And as we want to fit the shape and the orientation of the clouds, we want an elliptic 

function which can be parameterised. The following ‘tanh’ basis function fulfils these 

requirements: 

1 
(2,0, 8,7, 4,0) = 5[1—tanh(a|22—p2l[?+B]|2y— Hyll? +712 — Hellll2y—Hyll-20)] « 

  

Figure 4.4: Basis function created for the cloud modelling. 

To ensure the efficiency of the ‘tanh’ basis function, we have compared the network 

results obtained with that function with two usual basis functions already implemented 

in Netlab, the Gaussian distribution and the thin plate spline function. 
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Time (in minutes) Error 

Nb of hidden units | Gaussian | tps | ‘tanh’ | Gaussian | tps ‘tanh’ 
40 1.75 1.89 | 2.78 84 421 138 980 | 91 262 

60 1.90 2.60 | 3.89 98 294 140 356 | 74 548 

80 2.01 3.33 | 4.85 116 655 | 138 548 | 71 363 

100 2.43 3.87 | 6.25 123 588 | 139 594 | 62 251                   

Table 4.1: Comparative table of the computational time and the network error of the 

RBF using three different basis functions, the Gaussian distribution, the thin plate 

spline (tps) function and the ‘tanh’ basis function defined in this thesis. 

Table 4.1 gives a comparative report for the three basis functions considered. These 

tests were made on the same computer, using the same number of training iterations, 

the same initialisation method and are averaged over the same five images. We have 

featured the training time of the network for each function and the final error, which is 

the sum over all the pixels of the difference of brightness between the output network 

and the preprocessed satellite image brightness. 

The results obtained tend to show that the basis function created is the one that 

fits the data the better. Indeed, if we focus on the final error, it appears that when 

the number of hidden units increases, the error for the new basis function decreases 

whereas the one for the Gaussian distribution increases and the one for the thin plate 

spline function stagnates. Moreover, focusing on a significant number of hidden units, 

the results show that the final error obtained with the basis function defined is smaller 

than the ones obtained with the other basis functions. 

However, it appears that it takes more time to train the network with this new 

function, nearly two times longer than for the other basis functions. Nevertheless, the 

most important parameter for us is the final error as the smaller it is, the better will 

be the modelling. 

4.2.2 Error and error gradient calculation 

As we need a smooth representation of the satellite image, we want to optimise the 

network to obtain an output that fits the dataset the closest. For this purpose, we 

have to consider the error function, which denotes the difference between the output 

of the network and the real dataset, and minimise it. The error function is the usual 

sum-of-squares: 

n= 

mi
le
 N 

Yi{Cle;w) - Ey, 
n=1 
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where N is the number of patterns in the dataset, C is the activation of the output 

obtained by performing a forward propagation for the complete dataset and J" is the 

real dataset obtained from the image processing. 

We have considered this sum-of-squares error function as we assume the error to 

be Gaussian. Indeed, as we have lots of different errors due to the image caption and 

the image processing, the central limit theorem concludes that the sum of these errors 

can be assumed to be Gaussian. 

As we want to optimise this function using an algorithm which utilises the gradient, 

we need to compute its derivatives with respect to the parameters. Indeed, when 

defining our RBF network, we have to consider the following parameters : 

  

  

  

Parameter Definition 

be Centre of the basis function 
a Width of the basis function 
  

Output layer weight corresponding to the height of the basis function 

Output-unit bias 

Coefficient of the squared term along the abscissa axis 

Coefficient of the squared term along the ordinate axis 

Coefficient of the convolution product 

  

  

  

      2 
f
w
]
 O
Q]
 
o
l
e
 

  

Table 4.2: Definition of the different parameters of our RBF network. 

In this case, we have the following connection between the parameters and the 

*tanh’ basis function ® resulting from the RBF mapping: 

A 

C=) wGi(en,0, 8,740) +5, 
i=1 

where H is the number of hidden units of the RBF network and z is the vector of 

coordinates (x,y) of the pixel n. The bias is used to deal with calibration issues and 

the cloud segmentation part. 

When using the chain rule, the partial derivatives of C with respect to the param- 

38 

 



CHAPTER 4. CLOUD MODELLING 

eters goes: 

aC _ 0C 0%, 8, 

    

    

Ou; 08; Ou, Oui’ 
OC _ C08; _ 0% 
Go; 08; 00, do,” 
ac 
Ge ce 

ac 
a 
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0a; 00;0a; ‘da;’ 

oO 7 OC 0m; Tees 
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aC _ 8C 0%; _ 0%; 
Oy OBO OH” 
      

Moreover, the partial derivative of the error with respect to C' is the same for all 

hidden unit activation functions: 

OE, 

0c 

Let us label these values as 6, = C — I?” so that: 

Gl) oye 
a6 = 2 3G = Da 

Then according to the chain rule, the partial derivatives with respect to the output 

  =C-— new Weer 

layer weights are: 
N OB _ 9B OC _ ys a 
=o] 

Bu; ~ BC Bu ~ 2 
while the derivatives for the output-unit biases are given by: 

N 
OE dEOC 

= Ca = Lh 
Now considering the basis function ® defined before, the derivatives of that function 
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with respect to the other parameters are: 

09; 

Opie 
08; 

Opty 
00; 

00; 

Oe; 

da; 
Oe; 

OB, 
00; 

  

  

  

On 

Then, the chain rule gives the derivatives of the error function with respect to 

the parameters. For the centres, we have the following equations for each of the two 

components of the i” 

While replacing the derivatives of & with respect to the coordinates of the centre, 

we get: 

  

7: 

  

aa 

In the same way, using the chain rule, we obtain the following derivatives for the 

[ai(zen — Pai) + F (on = iyi)| [i = @] , 

= [Pile — ys) + (zen — H)] [1 - #2] , 
2 

=1-8, 
= Hen — al? [L- @ , 
a 5ll2umn — Myil? [1 = OF] 

= 5 ll2en ~ Hellen — ayill (1 — 82] 

      

  

centre: 

OE SOE OC une a6; 
Ope i OC Opti - aie : 

BE nOroCe ae 
Big. | BC Bind Ds OO Big 

N 

bn 75s [a Zan — Hei) + (zn — dy)] [1-2] 

N o 

= ohn [ai( Zyn — Myi) + 2 5 (Zen — pi)| [1-7] . 
n=1 

other parameters, the width o, and the coefficients a, 6 and ¥: 

a 

OB 

0a; 

ob _ 
i 

OE 
By 

=F sil =o] , 
n=1 

ee pill? [1 - 92], 

=) 5. flee ~ pall? [1— OF], 
n=1 

1 
5 do alleen — Hzill||Zyn — Myill| [1 =r 9}] - 

n=l 
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4.3 Computation 

The modelling of the clouds is done using Matlab programming based on the Netlab 

architecture for neural networks. 

4.3.1 Computational issues 

The image size of the working area is a square of 200x200 pixels. Experimentally, 

to obtain a smooth representation of the cloud field, we need at least 100 hidden units 

and 100 iterations to train the network. The straight-forward computation of such a 

network is nearly impossible with the machines at our disposal. Indeed, without any 

modifications of the data, the time between each iteration can approach five minutes 

and unfortunately, the program always crashes before the end of the training. The 

computer freezes because of lack of resources. If we analyse the memory problems, it 

appears that the main problem comes from the storage of the distances between each 

pixel and each basis function. To reduce the size of the matrices involved, we should 

decrease the number of pixels and hidden units to consider. The resizing of the satellite 

images will help reducing the number of pixels and the split of the images will reduce 

both the number of pixels and hidden units involved. 

Resize of the satellite images 

The first instinctive method to deal with computational problems is to reduce the 

resolution of the satellite images to train. The resizing of the images should not really 

affect our model as we are working with the basis functions and not with the pixels. 

The target image has to be smooth but not necessarily perfect because we are only 

interested in the global shape of the clouds. Anyway, the output of the network will 

never model the data perfectly so we can accept some loss of accuracy on the original 

image. 

For training our network, we decide to reduce the resolution by four, leaving us 

with a square satellite image of 50x50 pixels. The resize consists in an average of the 

pixels brightness done every 4 pixels. We compute the average value for every square 

of 2x2 pixels. The following images show the results obtained while resizing the image. 

41



  

CHAPTER 4. CLOUD MODELLING   

Normal-sized satelite image Resized satelite image 

  

Figure 4.5: Satellite images taken before and after the resize process. 

Split of the resized satellite images 

Although the resize of the data is efficient to avoid early computational crashes, the 

time between each iteration is still long, about a minute. To reduce the training time, 

we split the images in four equal areas of 25x25 pixels for intensive trainings and then 

join them and train the whole image for a few iterations. This method helps to divide 

the computational expense by four. 

These methods save a lot of resources and finally, we are able to have a smooth 

  

representation of the cloud fields rapidly, less than ten minutes of training with a large 

number of hidden units and iterations. This training time is acceptable as the dynamic 

framework involves the modelling of satellite images taken every ten minutes. 

4.3.2 Initialisation 

The initialisation of the network is a very important step in the modelling as it 

saves time and computational resources when training. Starting from the preprocessed 

images, the initialisation consists in setting relevant values to the parameters of the 

RBF network. 

K-means initialisation 

The K-means algorithm is a method for finding K’ vectors y; (for j = 1,..., A’) that 

represent an entire dataset. The data is considered to be partitioned into K clusters,
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with each represented by its mean vector and each data point assigned to the cluster 

with closest vector [10]. 

  

The algorithm works iteratively. At each stage, the N data points x, are parti- 

tioned into K disjoint clusters S;, each containing Nj; data points. The error function 

minimised is the total within-cluster-sum-of-squares: 

K 

B= 3-> |len— all? 
j=1 nS; 

j‘" cluster, given by the mean of the data points belonging 

1 
Hy =F tn 

“7 n€S; 

where 4; is the centre of the j 

to the cluster: 

     d to initial      traditionally us > the RBF network. The following 

picture show the initialisation of the basis function on a preprocessed satellite image, 

This algorithm is 

where each cross represent the centre of each basis function. 

  

Centres of the basis functions placed using the K-means initialisation 

  

Figure 4.6: Initialisation of the basis functions using K-means algorithm. 

The main drawback we can see to this initialisation is that it is not efficient for 

our cloud modelling. Indeed, with this algorithm, some basis functions are placed in 

non-cloudy areas whereas we only need basis functions to model clouds. This leads to 

consider more basis functions than necessary and is computationally expensive. 

Adaptive initialisation 

As the K-means algorithm is not efficient with our model, we need to create an 

  

algorithm that matches more our aims. First, we need an initialisation which only 
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places basis functions on cloudy regions. Then, we also have to optimise the number 

of hidden units used and not putting more basis functions than needed. 

The adaptive initialisation algorithm consists in assigning the first basis function 

centre to the brightest pixel, as clouds are brighter than the surface. Then we define 

a box of 9x9 pixels around that pixel and we train an RBF network of one hidden 

unit to that area to have a rough estimate of the parameters. The size of this box is 

the optimal size found experimentally as it is big enough to deal with located clouds 

and it is small enough to take into account the effect of small cloud features. Then 

we remove the effect of the basis function fitted and we choose the next remaining 

es until 

  

brightest pixel to be the second basis function centre and we iterate the process 

the number of hidden units chosen has been reached or until the sum of the brightness 

of the remaining pixels are less than a defined threshold. This limit helps to avoid 

putting too many basis functions when they are useless. 

  

Figure 4.7: Initialisation steps of the cloud modelling for 4 hidden units. The crosses 

represent the centres of the basis functions. 

The top left image of Figure 4.7 represents the initial region we want to model and 

the setting of the first basis function centre. The top right image shows the cloudiness 
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after the removal of the effect of the first basis function as well as the setting of 

the second basis function centre. The left bottom image shows the cloudiness after 

the removal of the effect of the second basis function and the setting of the third 

basis function centre and the last image shows the cloudiness after the removal of the 

effect of the third basis function and the setting of the fourth basis function centre. 

sation for the basis functions as shown on 

  

This algorithm leads to the following initia 

Figure 4.8. 

Centres ofthe basis functions placed using the adaptative initialisation 

  

Figure 4.8: Initialisation of the basis functions using the adaptive algorithm. 

As we can see, all the basis functions are assigned to a cloudy pixel on the contrary 

of the results obtained using K-means initialisation (see Figure 4.6). Moreover, less 

  

basis functions are set to model cloudiness, only 75 instead of 100 for the AK-means 

initialisation. Our adaptive initialisation will clearly speed up the training of the 

network as the basis functions are already well placed and are only set when needed. 

Table 4.3 shows the comparison between the K-means initialisation and the adaptive 

initialisation in terms of training time and final error. 

  

  

  

  

  

  

Time (in minutes) Error 
Nb of iterations | k-means | Adaptive | k-means | Adaptive 

25 3.25 3.21 142 900 104 949 
50 4.10 3.63 94 677 84 088 
75 4.35 3.83 84 311 76 559 
100 5.07 4.15 77 151 70 194             
  

Table 4.3: Comparative table of the computational time and the network error of the 

RBF using the K-means initialisation and the adaptive initialisation. 

These results confirm the efficiency of the adaptive initialisation as for the same
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number of iterations, the training time and the final error obtained are smaller. 

We can also notice that for some regions, close basis functions are set to model 

cloudiness. This can be explained by the split of the image which can lead to very 

close basis function centres when we join the four regions. The threshold defined for 

stopping the setting of the basis functions plays an important role. This threshold is 

based on the sum of the brightness of the remaining pixels and is arbitrary chosen. The 

optimal value has to be found experimentally as it can vary between different images. 

The lower the value of the threshold, the more basis functions are to be set. 

4.3.3 Optimisation 

The optimisation of our RBF network is made using the scaled conjugate gradient 

algorithm, which is used to minimise the error between the output of the network and 

the data. This choice was made after comparing the performance of this algorithm 

with the other common optimisation algorithms, such as gradient descent, conjugate 

gradient and quasi-Newton algorithms. 

While training the network using gradient descent and quasi-Newton methods, we 

get very poor results and the models do not fit the satellite image. Finally, the only 

efficient algorithms we could use to create our model are the conjugate gradient and 

the scaled conjugate gradient algorithms. Table 4.4 shows a comparison between these 

two methods. The computational time and the final error defined before are taken into 

account. For more relevant results, these tests were applied for different numbers of 

training iterations and each result is averaged over the same five images with the same 

training conditions. 

  

  

  

  

  

  

Time (in minutes) Error 

Nb of iterations | CONJGRAD | SCG | CONJGRAD | SCG 
25 14,32 3.21 92 161 104 949 

50. 15.51 3.63 90 902 84 088 

75 16.26 3.83 85 765 76 559 

100 TTT 4.15 84 449 70 194               
Table 4.4: Comparative table of the computational time and the network error of the 

RBF using the conjugate gradient and the scaled conjugate gradient algorithms. 

These results show clearly that the scaled conjugate gradient algorithm is better 

for training our network. The training is four times faster with this method than with 

the conjugate gradient method. Moreover, the final error obtained is smaller for a 

significant number of iterations and it decreases faster at each iteration. 
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4.3.4 Network results 

Having implemented the theory defined before, we are now able to model the clouds 

using an RBF network with the ‘tanh’ basis function defined in Section 4.2.1. All 

the computational issues described before are used to enhance the training of the 

network. The results obtained are shown on Figure 4.9 where the image on the left 

is the preprocessed satellite image and the one on the right is the modelling obtained 

when training the RBF. 

Satelite image ‘Network output 

  

Figure 4.9: Modelling of clouds by an RBF neural network. 

These results were obtained with a Pentium HI computer running at 933 MHz with 

256 Mb of memory. The image was modelled with 100 hidden units. Using the split 

process defined before, for each of the four areas, we have trained the network with 

200 iterations. Then, when joining these areas, the full image has been trained for 

another 50 iterations to remove any graphical inaccuracies due to the previous split 

of the image. The training process has taken 6.54 minutes to run. The final error 

obtained is equal to 32 148, which gives an average error of 12.8 for the brightness of 

every pixel as we are working over 2,500 pixels. As the brightness takes values between 

0 and 255 gray-levels, the modelling leads to an error of 5% between the brightness 

output of the pixel and its real satellite image brightness. More examples of the cloud 

modelling can be seen in Appendix C. 

The cloud modelling is one of the original pieces of work done for this thesis. 

The use of an RBF neural network is motivated by the dynamic classification we 

wanted to build, To study the cloud motion, we decided to use the RBF network 

in order to be able to focus on the motion of each basis function during time. Our 
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modelling introduced the implementation of a new basis function to fit the shapes and 

the orientation of the clouds. This function has the property of being anisotropic and 

this is shown on Figure 4.10, where a few basis functions are highlighted on the network 

output image. 

Few basis functions extracted from the network output     

  

Network output 

  

    Me    
Figure 4.10: Highlight of a few number of basis functions used for the cloud modelling. 

The results obtained confirm the efficiency of this basis function compared to the 

other common basis functions existing (see Table 4.1). Lots of computational prob- 

lems have been encountered for the modelling and have been handled as described in 

this chapter. Hence, we manage to model the cloudiness using a reliable and rapid 

algorithm. 
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Cloud segmentation 

The initial aim of the research done for this thesis was to classify clouds into labelled 

classes. To achieve this retrieval, we planned to build a space-time model for clouds, 

dealing with the dynamics of each cloud modelled by a radial basis function. The first 

step to this dynamic retrieval is to set assumptions about cloud height so that we can 

apply the specific motion model defined for each class of clouds. This chapter will deal 

with a classic cloud segmentation using visible images as cloud masks and infrared 

images to distinguish cloud height. 

5.1 Setting thresholds for cloud height 

The classification method used to retrieve clouds is a spectral threshold method. 

As the infrared images give information about the temperature of the clouds, and as 

we know that the higher they are in the atmosphere, the colder they are, we are able 

to classify them according to their heights. This method combines visible and infrared 

images. 

Having the preprocessed infrared satellite image, the first step in the construction of 

this segmentation is to find the boundaries separating each class of clouds. To achieve 

this objective, we decided to plot the histograms of the brightness of each cloudy pixel 

in the infrared domain. The results are obtained using the data of ten images. 
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Figure 5.1: Brightness histograms of cloudiness in the infrared domain. 

The results obtained on Figure 5.1 show the emergence of three distinct classes in 

the brightness. As the shape of the histograms looks like a mixture distribution, we 

decide to fit a three-component Gaussian mixture model to the data. 

As we are interested in the influence of each component to set our thresholds, 

we need to compute the posterior distribution for each component, as described in 

Chapter 3. This gives the following graphics: 

Posterior datebuton of the Gaussian mixtures 

ae y 
ee 
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Figure 5.2: Posterior distribution of the Gaussian mixtures used to fit the cloud classes. 

The analysis of these distributions leads to the definition of three classes for dis- 

tinguishing clouds, low level clouds, medium level clouds and high level clouds. The
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thresholds needed to separate these classes can be set to the intersection of each poste- 

rior probability of Figure 5.2. Indeed, if the brightness of a pixel is lower than the first 

threshold, it is most probable that this pixel belongs to the first class. If the brightness 

is between the two thresholds, it is most probable that the pixel belongs to the second 

class and if the brightness is greater than the second threshold, it is most probable 

that the pixel belongs to the third class. 

Practically, the thresholds are computed by finding the first integer in the brightness 

range of 256 gray-level values for which the first posterior probability becomes less than 

the second posterior probability, We end up with two boundaries which define three 

different classes. 

The method used will yield to the definition of generalised thresholds for the seg- 

mentation. We could have also defined these thresholds by plotting the histograms for 

each image. The advantage would have been the definition of more accurate thresholds. 

But the drawback would have been the lack of data for some images and the shapes 

of the histograms would not have lead to three separated classes. This problem can 

appear for images which are not very cloudy or for images which do not have an equal 

sample of the different types of clouds. 

5.2 Cloud height segmentation 

Continuing on the original idea of our thesis, we are going to classify, not each pixel 

but each basis function modelling cloudiness. The classification is made referring to 

the brightness intensity of the centre of the basis function. Indeed, the centre has the 

highest intensity of the cloud cover modelled by that basis function, according to the 

spatial properties of the basis function defined in Section 4.2.1. We know that the 

distribution of the basis function is maximum at the centre and so is the brightness 

defined by the forward propagation in the RBF network: 

y(n) = w0(u) +b, 

where ju is the centre, w is the output layer weight and b is the bias. 

Applying the thresholds to the brightness intensity of each centre of each basis func- 

tion gives us a classification of cloudiness. Nevertheless, we can observe experimentally 

that low clouds cannot be retrieved. This can be explained by the fact that we are only 

focusing on the brightness intensity of the centres whereas the low brightness obtained 

on the histograms should be the ones of the pixels representing the edges of the clouds 

or some land/sea pixels which come from errors occurred after the image processing. 

As a consequence, we will only segment the clouds into two different height levels. 
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Before being able to classify the clouds, we need to model the infrared preprocessed 

image using an RBF network as described in Chapter 4. This modelling gives the 

following results. 

Satelite image Network output 

ae     

  

Figure 5.3: Cloud modelling by an RBF network in the infrared domain prior to a 

cloud segmentation. 

Figure 5.4 gives the results obtained when applying the classification developed 

  

before. Each basis function modelled by the radial basis functions network is assigned 

to one of the class defined by the thresholds set in Section 5.1. The centre of each 

basis function is also plotted on the figures to make them more understandable. More 

examples of the cloud classification can be seen in Appendix D. 

he
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TATION 

     
Satelite image 

© 

Basis functions modeling high clouds 

  

Figure 5.4: Segmentation of the basis functions into two classes representing the height 

of the clouds modelled in the atmosphere. 

The segmentation built in this thesis in relatively basic and is not really reliable to 

distinguish three cla 

  

of cloud height. However, if we only define two classes, low 

  

and high, the classification gives good results. Nonetheless, this method has the same 

main drawback as most of the other cloud classification methods as it does not take into 

  

sue was one of the main motivation 

  

account the different layers of clouds. Solving this i 

to consider the dynamic model which will be approached in the next chapter. 

33)



Chapter 6 

Conclusions 

This chapter will deal with an overview of the research achieved for the thesis as 

well as a further possible development introducing a temporal approach to the spatial 

model defined. 

6.1 Achievements 

The initial aim of this thesis was to build a space-time model to classify clouds. 

However, the final objective has not been attained due to a lack of time. All the 

research made in this thesis was focused on creating an appropriate framework to 

introduce dynamics. 

The preprocessing of the satellite images was an important step in our modelling as 

we managed to remove the underlying surface pixels and only keep cloudy pixels. This 

was done by using a probabilistic method involving the definition of brightness intensity 

thresholds. Using a probabilistic method helps to limit errors in the preprocessing as 

it allows some tolerance in the separation of the pixels. 

Once the image processing had been achieved, we managed to model cloudiness 

using a radial basis functions network. The choice of this network was motivated by 

the fact that we wanted to be able to focus on the motion of the basis functions in 

the temporal framework. The cloud modelling needs the introduction of a new basis 

function which fits the physical properties of the clouds better than the usual basis 

functions. The RBF network takes the coordinates of the pixels as inputs and returns 

the estimated brightness intensity in output. The modelling also takes into account 

computational issues by resizing the data and by developing an adaptive initialisation. 

The model defined in this way should be able to fit the dynamic model defined 

in the next section. However, a standard cloud segmentation using infrared data has 
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been implemented to improve the dynamic cloud classification. The method used is 

a spectral threshold classifier which retrieves clouds according to their height in the 

atmosphere. This classifier gives good results for distinguishing two classes of clouds, 

but not three as envisaged. 

A further development to this thesis would be to introduce the temporal behaviour 

of clouds. This method would help distinguish the three main classes of clouds as each 

type of clouds has its own motion property. Moreover, this method would solve the 

cloud layers issues. 

6.2 Improvements 

The initial aim of the project was to build a space-time model. This model has not 

been implemented but the theory has been elaborated. This model was proposed by 

Dan Cornford for precipitation forecasting [6] and developed by Emmanuel Batail last 

year [3]. A theoretical approach can be seen in Appendix A. This framework should 

be useful to classify cloud types. Combining the cloud height segmentation defined 

in Chapter 5 with the dynamic model involving cloud motion, we should be able to 

retrieve the three main cloud types, cirrus, stratus and cumulus. 

The research done in this thesis has lead to interesting results but some points can 

still be improved. The image processing has been made using visible images taken 

during the day. As a consequence, the definition of cloud masks will not be possible 

for visible images taken at night. This problem can be solved by using another channel 

of the METEOSAT satellite for setting cloud masks. The use of water vapour images 

can help as they are not affected by the illumination of the Sun although this mask 

will not be really accurate as there can be humidity without clouds. Another method 

would be to consider only the infrared images but this can also lead to poor results 

in defining the cloud masks as some regions can have nearly the same temperature as 

clouds such as sea or mountain regions. Some problems also occurred with thin clouds 

as they are transparent and very difficult to distinguish from the underlying surface 

on the visible images. Some research has to be done in this area to improve the image 

processing. 

The cloud modelling has introduced the definition of a new basis function which 

has been created to match very closely the shapes and the physical properties of the 

clouds. During the research period, other basis functions such as quadratic functions 

have been tested but did not give the same good results. This basis function fulfils the 

constraints expected for the modelling of clouds. The definition of this function is the 

on
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key point of this thesis as it conditions the cloud modelling and ultimately the cloud 

retrieval. The ‘tanh’ function presented in this thesis is the best function tested during 

the research period. 

The computational methods used for the modelling are simple and consist in resizing 

or dividing the data. Some new algorithms could be tested to improve the training 

time, by splitting the images according to the cloud cover of an area for example. This 

could make use of the entropy to define areas of the images to train. The adaptive 

initialisation used in this thesis only initialises the centres but not the other parameters. 

Improvements have to be done in order to speed up the training. 

The cloud segmentation used is traditional but gives good results for distinguishing 

cloud height. This segmentation does not need to be very accurate as it will only be used 

to assume the different classes of the basis functions prior to the dynamic classification. 

Unfortunately, this segmentation does not take into account the different cloud layers 

and more research has to be conducted. Hopefully, the introduction of the spatial 

model could solve this problem. 

Finally, another direction to consider in our research is to define an integrated model 

where the reflectance of the reflected sunlight for each pixel is obtained by integrating 

the cloudiness distribution over that pixel: 

Lag , / C(x, y)dady . 
ody 

This model should improve and smooth the results obtained and actually it is the 

model used by METEOSAT to convert the data given by the radiometers into images.



Appendix A 

The dynamic model 

A.1 The advection equation 

Following the work made before for the cloud modelling using an RBF network in 

Chapter 4, we can represent cloudiness by a weighted sum of H basis functions: 

H 
Clz)= YS wihi(z w,0) : (A.1) 

i=0 

Then, the dynamic model combining space and time follows the advection equation 

which gives the evolution of C: 

oc 
— x0 BE +vVC 3 

where v represents the advection vector of the clouds. The cloud classification will be 

made according to the advection vector as each different type of clouds has its own 

motion.
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Figure A.1: The advection vector measures the movement of the clouds during time. 

A.2 The time model framework 
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Figure A.2: Graphical model of the framework. 

The framework defined by Figure A.2 shows the links between the different parame- 

ters, v, the advection vector, C, the cloudiness and J, the brightness of the clouds. This 

framework develops four general steps including forecast and update of the parameters.
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Initial step 

The initial step is to estimate v, so that we can compute the first step. To obtain this 

value, we need to know C;_; and C,. Actually, this initialisation phase correspond to 

the fourth step of the graphical framework. C,-; and C; are easily found by using the 

RBF modelling for two different images very close in time. Then, v is the movement 

of the cloud during the period of time separating each image. 

First step 

The first step of the model is to forecast the cloudiness at the state +1. Following 

the equation A.1, C4; can be obtained by computing the parameters of the equation 

at the state t+ 1. Working in a fixed area and having fixed parameters for the neural 

network that do not depend on time, we have: 

Witt = Wit » 

Fito = Fit - 

Then, if we assume that v is locally constant because of the slow motion of the 

clouds, we have the following relationship between the centres: 

Miter = Mig + Vidt + ey , 

where €, is the error on the forecast due to the simplifications of the model and that 

not all apparent cell motion is due to advection. Finally, the cloudiness at the state 

Cir is: 
H 

Cri (2) = So wines Bins (Zs Hitpir Figs1) « 
i=0 

Second step 

The second step of the model is to forecast the advection vector at the state t + 1 

knowing v;, using the equation: 

Vi41 = Ut t & , 

where €, reflect the fact that v changes slowly. 

Third step 

The third step of the model consists in updating the cloudiness C;4; by fitting the 

modelling made to the real observation which is the cloud brightness of the satellite 
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images. This update is done in a probabilistic way using Bayes’ rule to find the updated 

parameters: 

pL \w, 1, 0)p(w, Ho) p(w, p,o|L) = 5 (w, HoT) mh) 

which gives, using probability properties: 

p(wlD)p(ul)p(olr) = Pcie) 

Fourth step 

The fourth step of the model is the update of the advection vector v;,; using C; 

and the updated C;,,. Then, we come back to the first step and continue the algorithm 

as long as we have images. 
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More examples of the preprocessing 

Visible satelite image betore preprocessing Visible satelite image after preprocessing 

  

Infrared satelite image betore preprocessing Infrared satelite image alter preprocessing 

  

Figure B.1: Preprocessing of the visible and the infrared satellite images taken on 

February, 3rd 2003. 
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Visible satelite image before preprocessing Visible satelite image after preprocessing 

  

Figure B.2: Preprocessing of the visible and the infrared satellite images taken on July, 

12th 2003.



Appendix C 

More examples of the modelling 

Satelite image Network output 

  
Figure C.1: Modelling of the visible and the infrared satellite images taken on February, 

3rd 2003. 
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MORE EXAMPLES OF THE MODELLING 

Satelite image Network output 

  

Satelite image Network output 

     
Figure C.2: Modelling of the visible and the infrared satellite images taken on July, 

12th 2003. 
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Appendix D 

More examples of the segmentation 

Satelite image 

  

Basis functions modeling low clouds     ‘Basis functions modelling high clouds 

  

Figure D.1: Segmentation of the basis functions based on the infrared satellite image 

taken on February, 3rd 2003.
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Satelite image     
Basis functions modeling high clouds 

     
Figure D.2: Segmentation of the basis functions based on the infrared satellite image 

taken on July, 12th 2003. 
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