
Distributed Machine Learning

PIERRE LATOUCHE

MSc by Research in Pattern Analysis and Neural Networks

ASTON UNIVERSITY

September 2007

This copy of the thesis has been supplied on condition that anyone who
consults it is understood to recognise that its copyright rests with its
author and that no quotation from the thesis and no information derived
from it may be published without proper acknowledgement.

Acknowledgment

I would like to express my deep sense of gratitude to professor Ian T. Nabney, for

his help and guidance during the course of this project. I am highly indebted to him

for constantly encouraging me by giving his critics on my work. I am grateful to him
for having given me the support and confidence I needed.

Pierre Latouche
September 2007

Aston University, Birmingham (UK)

Contents

1 Introduction 10

2 Problem Statement dnt

2.1 “A Review of Regression Problems = 1... ee ee ee ll

2.1.1 Linear regression models 12

2.1.2 Neural networks ff 16
D703 ole aUBs iat DOCEREEN sasw. Re as @ ia snsusueus ua sis manne en ea aie ry

2.2 Distributed Learning Environment 006400 2s eens 20

2.2.1 Privacy/Security of data 2 21
2:2.2) Limited learning systems. 4.) 5. © ema) eeu ee 22

2 idee Dale: Cote arya Mm etme. OMS oe Waa bey 22

213.1... Toy data set-. 2 + 5.5 23

2.3.2 Scatterometry data . . 24

3 Fusion of Physically Distributed Regression Models 25

Due eHUSION OL Weight, Paramebersc ccs, «5 ise cus eeth we ea nae 26
3.1.1 Distributed cooperative Bayesian learning strategies... 26

3.1.2 Hierarchical Bayesian modelling 27

3.2) Busion of singie’Predictions, $1...) . 4, 8,69 so. 9% 30

Oi2 ise Por averapine = alysis silts tclaies Ws Tee 30
3.2.2 Weighted error averaging.............. 31

3.2.3 Conditional mixture models 31

3.2.4 Product of predictive distributions 32
3.2.0\ Bayesian model averaging... 0... eet ee 32

3.3° The Bayesian Committee Machine...52 005.000. 33

3.3.1 Fusion of Bayesian estimators . . . 33

Sei es Gaussian, PLOCesseON Gr. ns wouasie (as SEs hain Telenor 35

aioe) Linear regression models 3-4. ai. ete. Bee 6 swe 36

Jo-4) 2 Unemeural networkocase ses 5 wes Gg ae io, ees ee wh oy ees 36
oes x Derivients or.n sas cet os ke es evey eC coe eet Pes fae ane yg ry 4 38

3.4.1 Distributed cooperative Bayesian learning strategies... 41

3.4.2 Parametric hierarchical Bayesian modelling. . . . 45

3.4.3 Non-parametric hierarchical Bayesian modelling . 49

3.4.4 Error averaging 53,

SAL) ‘Weighted error averaging. ... daccsihce sie ce wok ws deh ae @ 57
3.46 Bayesian model.averaging 9. <0). 64 ec ee we en 61

347 Product of predictive distributions) <...%60 4 a0 3 2c PRG 65

CONTENTS

3.4.8 The Bayesian committee machine . 69
Sa Ome COnclisiGnic ne tencot sR tc jo nee ie Mey nies eeceeenime st aiens 73

4 Gaussian Process Regression Over Large Data Sets 74
4.1 Gaussian Process Limitations §. ,.... 0: 6. «04 ns wy aw He 75

4.1.1 Training of the hyperparameters . . 76
4. Leo Predictions aos) Vyas) esciy ss Gis, & wages pape, ty alin 76

4.2 The Bayesian Committee Machine for Gaussian Process Predictions .. 76
4.3 Factorization of The Hyperposterior 78

2.8 lye ohared shyperparamecers |. s/h is. fue wad = Ya ner eye 79
4.3.2 Individual hyperparameters 80

44 slaplace Propagation. cs .dt\«trousie Sotbs ans Sen eem 5s ee 81
GO ea OC ORIMON iba < coe mnt AGEr eh eeiden ge a lee, el Aare eer PURE 83

4.5.1 Results 84
4.5.2 Conclusion 85

5 Conclusion 86

List of Figures

2.1
2.2

2.3

3.1
3.2

3.3

3.4

3.5

3.6

3.7

3.8

3.9

A distributed learning environment...005.
Toy data set. Function (dashdot line), Training data points (circles).

Box plot of the scatterometry data. Variables 1, 2, and 3 correspond to

the inputs wr, vr, and inc. Variable 4 represents the target sig.

Distributed learning System, «3. 2292 oie) NE mw cl cee g
Hierarchical Bayesian modelling for multi-agent learning.

Distributed cooperative Bayesian learning strategies experimented on

the toy data set. (a) Fusion of 40 MLP networks. (b) Fusion of 40

RBF networks. Function (dashdot line), prediction (solid black line),
eid error bats) (solid greyiline). Ska conics, Geen Cae eh ee

Distributed cooperative Bayesian learning strategies experimented on

the toy data set. (a) Fusion of 10 MLP networks. (b) Fusion of 10
RBF networks. Function (dashdot line), prediction (solid black line),
end error bars (cokd. grey (nic) qenenee et eme ne oye. sie seem ee
Distributed cooperative Bayesian learning strategies experimented on

the toy data set. (a) Fusion of 8 MLP networks. (b) Fusion of 8 RBF
networks. Function (dashdot line), prediction (solid black line), and
error bars (sold oreyiline)\. 0. ee ee a ee ee os
Parametric hierarchical Bayesian modelling experimented on the toy

data set. (a) Fusion of 40 MLP networks. (b) Fusion of 40 RBF net-
works. Function (dashdot line), prediction (solid black line), and error

bars: (soltdrqney iste). c.c at « Gen muet e eeee em eee tan eee O..

Parametric hierarchical Bayesian modelling experimented on the toy

data set. (a) Fusion of 10 MLP networks. (b) Fusion of 10 RBF net-
works, Function (dashdot line), prediction (solid black line), and error
bare, Goltdigrey (ire) ti, Ueloy,. nae ene ae a, SMC amENe Mee |
Parametric hierarchical Bayesian modelling experimented on the toy
data set. (a) Fusion of 8 MLP networks. (b) Fusion of 8 RBF net-
works. Function (dashdot line), prediction (solid black line), and error
Darsi(soltd.greyi line): ocr, wo lenh ts teen asah elle ee Ps

Non-parametric hierarchical Bayesian modelling experimented on the

toy data set. (a) Fusion of 40 MLP networks. (b) Fusion of 40 RBF
networks. Function (dashdot line), prediction (solid black line), and

mor bars (Gold grey litie), sais: is ic texan eae @ Se ree eats

21

23

24

49

LIST OF FIGURES

3.10

3.11

3.12

3.13

3.14

3.15

3.16

3.17

3.18

3.19

3.20

3.21

3.22

3.23

Non-parametric hierarchical Bayesian modelling experimented on the

toy data set. (a) Fusion of 10 MLP networks. (b) Fusion of 10 RBF
networks. Function (dashdot line), prediction (solid black line), and

Srror Dare (soled. grey Une). ie vecen tony wee © Seals 2 Oe is
Non-parametric hierarchical Bayesian modelling experimented on the
toy data set. (a) Fusion of 8 MLP networks. (b) Fusion of 8 RBF

networks. Function (dashdot line), prediction (solid black line), and
etror:bars (solid grey line) ks faces 2 sae ole eee se ee ee |

Error averaging experimented on the toy data set. (a) Fusion of 40
MLP networks. (b) Fusion of 40 RBF networks. Function (dashdot

line), prediction (solid black line), and error bars (solid grey line). . . .

Error averaging experimented on the toy data set. (a) Fusion of 10
MLP networks. (b) Fusion of 10 RBF networks. Function (dashdot

line), prediction (solid black line), and error bars (solid grey line). . . .

Error averaging experimented on the toy data set. (a) Fusion of 8 MLP

networks. (b) Fusion of 8 RBF networks. Function (dashdot line), pre-
diction (solid black line), and error bars (solid grey line).

Weighted error averaging experimented on the toy data set. Fusion of

40 RBF networks. Function (dashdot line), prediction (solid black line),
andverror-Dars (Solid grey lime) acc mas oa) 5: aly el anes oe ene ets
Weighted error averaging experimented on the toy data set. (a) Fusion

of 10 MLP networks. (b) Fusion of 10 RBF networks. Function (dashdot
line), prediction (solid black line), and error bars (solid grey line). . . .

Weighted error averaging experimented on the toy data set. (a) Fusion

of 8 MLP networks. (b) Fusion of 8 RBF networks. Function (dashdot
line), prediction (solid black line), and error bars (solid grey line). . . .

Bayesian model averaging experimented on the toy data set. (a) Fusion
of 40 MLP networks. (b) Fusion of 40 RBF networks. Function (dashdot
line), prediction (solid black line), and error bars (solid grey line). . . .

Bayesian model averaging experimented on the toy data set. (a) Fusion
of 10 MLP networks. (b) Fusion of 10 RBF networks. Function (dashdot
line), prediction (solid black line), and error bars (solid grey line). . . .

Bayesian model averaging experimented on the toy data set. (a) Fusion
of 8 MLP networks. (b) Fusion of 8 RBF networks. Function (dashdot
line), prediction (solid black line), and error bars (solid grey line). . . .
Product of predictive distributions experimented on the toy data set. (a)
Fusion of 40 MLP networks. (b) Fusion of 40 RBF networks. Function

(dashdot line), prediction (solid black line), and error bars (solid grey

Product of predictive distributions experimented on the toy data set. (a)
Fusion of 10 MLP networks. (b) Fusion of 10 RBF networks. Function

(dashdot line), prediction (solid black line), and error bars (solid grey

Product of predictive distributions experimented on the toy data set.

(a) Fusion of 8 MLP networks. (b) Fusion of 8 RBF networks. Function
(dashdot line), prediction (solid black line), and error bars (solid grey

53

54

55

57

58

59

61

62

63

LIST OF FIGURES

3.24 The Bayesian committee machine experimented on the toy data set. (a)

Fusion of 40 MLP networks. (b) Fusion of 40 RBF networks. Function
(dashdot line), prediction (solid black line), and error bars (solid grey
Ue) tec ies SUL Veta OU rsccy NG ais: ee, Peilbal sity Aeneas GG

3.25 The Bayesian committee machine experimented on the toy data set. (a)
Fusion of 10 MLP networks. (b) Fusion of 10 RBF networks. Function
(dashdot line), prediction (solid black line), and error bars (solid grey
Lathe) rete rtape aerate he RG ms Ce Ns are aa een

3.26 The Bayesian committee machine experimented on the toy data set. (a)

Fusion of 8 MLP networks. (b) Fusion of 8 RBF networks. Function
(dashdot line), prediction (solid black line), and error bars (solid grey
line)

List of Tables

3.1

3.2

3.3

3.4

3.5

3.6

3.7

3.8

3.9

3.10

Toy data set. Distribution of the training data points into the nodes.

Scatterometry data. Distribution of the training data points into the

TOC GR any Ace yO 50) FL nin cote ton eR A oo. eke

Distributed cooperative Bayesian learning strategies experimented on
the toy data set and on the scatterometry data. Training normalized

root mean square error (NRMSE tr). Test normalized root mean square
erron (VA MSE test) oer awn vic eee ea) p os nes, cee ec

Parametric hierarchical Bayesian modelling experimented on the toy

data set and on the scatterometry data. Training normalized root mean
square error (NRMSE tr). Test normalized root mean square error

(CNRS 2 tsb): oie Bs ce 7 soso tae ms peeen ees! ohn) seit, ee ie
Non-parametric hierarchical Bayesian modelling experimented on the

toy data set and on the scatterometry data. Training normalized root

mean square error (NRMSE tr). Test normalized root mean square error

OMAMS 2 test) Laser aire, We nino ee Mad an, Pen Mai ot
Error averaging experimented on the toy data set and on the scatterom-
etry data. Training normalized root mean square error (NRMSE tr).

Test normalized root mean square error (VRMSE test)..........

Weighted error averaging experimented on the toy data set and on

the scatterometry data. Training normalized root mean square error
(NRMSE tr). Test normalized root mean square error (NRMSE test). .
Bayesian model averaging experimented on the toy data set and on

the scatterometry data. Training normalized root mean square error
(NRMSE tr). Test normalized root mean square error (NRMSE test). .
Product of predictive distributions experimented on the toy data set and

on the scatterometry data. Training normalized root mean square error
(NRMSE tr). Test normalized root mean square error (NRMSE test). .
The Bayesian committee machine experimented on the toy data set and
on the scatterometry data. Training normalized root mean square error

(NRMSE tr), Test normalized root mean square error (NRMSE test).
For multilayer perceptrons, two approximations of the prior over func-
tions are experimented : linearization of the model (Linearization) and

Markov chain Monte Carlo (MCMC)........... 00004 e ee

39

60

64

68

LIST OF TABLES

4.1 Results obtained using several regression models (Model) on the scat-
terometry data. Five techniques are applied : radial basis function net-

works (RBF'), multilayer perceptrons (MLP), shared hyperparameters

(SH), local Laplace approximations (LLA), Laplace propagation (LP).
Training root mean square error (RMS train). Test root mean square

error (RMS test). Time to train a model using the training data set as

a whole (Training). Time to obtain predictions for all the inputs in the
test Seti (Prediction) uy iruc ts ons es es ee ee

Chapter 1

Introduction

In the last ten years, there has been an ever increasing use of databases, to store

information, and Machine Learning methods to manipulate, extract, and analyse data.
More and more problems are being tackled in science, health and engineering. As

a consequence, there has been a concurrent increase in the use of highly distributed
computing to store and manipulate data.

In this thesis, we work on regression problems that consist of approximating under-

lying processes that map input variables to target variables. We introduce the concept

of distributed learning environment where local agents use distributed data to train and
we show that two critical applications can be tackled using such architectures. First,

in Chapter 3, we consider a situation where data is originally physically distributed on

nodes. The agents do not agree to share their data for privacy and security reasons but

do agree to share their models. In this environment, the issue is to combine the learned
information in order to build a more accurate preditive model. For our experiments,

we consider multilayer perceptrons and radial basis function networks. We test some

model combination methods using a toy dataset and some scatterometry data.

Then, in Chapter 4, we tackle Gaussian processes that are known to have a poor
scaling with large data sets since they require matrix inversions of which the computa-

tional cost and memory requirement are of order O(N)* and O(N?) respectively where

N is the number of training data points. We investigate techniques that consist of
splitting and then distributing the data on nodes. Thus, we show that the Bayesian

committee machine can be applied to estimate Gaussian process predictions whereas

a factorized hyperposterior can lead to optimization procedures over the whole train-
ing data set even if N is large. We experiment with these approximations using the
scatterometry data.

10

Chapter 2

Problem Statement

In this Chapter, we define some concepts and techniques that are used in Chapter 3 and
4. More precisely, in Section 2.1, we review regression problems and we focus on neural
networks, linear regression models, and Gaussian processes. Then, we describe some
distributed learning environments and two critical applications that can be tackled
using such architectures. Finally, we present the two data sets that we used to carry
out our experiments.

2.1 A Review of Regression Problems

In statistics, data related to a specific problem is usually described by many variables

aija?,...,2?,t1,t7,...,t%. Throughout this thesis, x' will represent a one dimensional

real variable and not to the function « — g(x) = x‘. Moreover, we define 2; =

(},7?,...,2?)! as the ith p-dimensional vector in a given data set.

The aim of regression methods is to approximate the underlying process that maps

input variables to target (output) variables (Bishop, 2006 [1]). It can be modelled by

the general equation

t=f@j+e, = @ 2c, Py eR t= C,8. 07 eR

The unknown function f governs the deterministic part of the mapping whereas ¢

is an additive zero mean random variable with unknown g? variance called noise.

For consistency with the notation used in other statistical domains, the variance can

be defined as ao? = op Moreover, we will assume that the noise is drawn from a

Gaussian distribution. When several input points {x;} are considered, such that t; =

f (ai) + &, Vi, we will assume that the different noise variables are independent. In

other words, we wil have cov(t;,t;) = 0, Vi 4 j.

11

CHAPTER 2. PROBLEM STATEMENT

Given a training data set {(2,t1); (x2, tz);...;(aw,tw)}, the goal is to predict the

value of t for a new value of x. In the literature, this data set is sometimes separated

between, Bs (Gis ea)n 5 sen) and C(t t9 55,8) e

The functional form of f(-) is usually unknown (Pena and Redondas, 2004 [13]). To

approximate the mapping, linear regression models and neural networks use parametric

approaches and define f(.) = f(w,.). Conversely, as in the Gaussian Process (GP)

framework, other types of model make predictions without giving the unknown function

an explicit parameterization (Mackay, 1998 [8]).

2.1.1 Linear regression models

If we consider a single target variable, the general form of linear regression models is

t= f(w,r)+e=w'd(z) +e.

In this equation, the vector ¢(x) = (¢0(2), ¢1(a),...,@a(x))! is defined with a set of

fixed non-linear basis functions. To get a bias term, it is often convenient to consider

¢o(x) = 1. Functions of the form f(w,x) = w'¢(z) are called linear models since they

are linear with respect to the weight vector w = (wo, wi,..., Wa)’

The simplest choice for the basis functions is ¢;(z) = a‘, Vi. Thus, we obtain

f(w,2) = wo+w'x. This regression method is often called Multivariate Linear Regres-

sion in the literature.

If we define the model such that each basis function @(.) depends only on the radial

distance from a centre x;, we obtain a Radial Basis Function (RBF) network f(w,x) =

11 WiP(||a — @;]|). Clustering techniques such as K-means and the Expectation

Maximization algorithm (Dempster et al., 1977 (3]) have been commonly used to fix

the centres (Nabney, 2003 [10]).

After having chosen the model, the aim of training is to build an estimate ¢(z),

called a predictive model, of the underlying process t = f(w,x) + ¢ using a given data

set called the training data set.

12

CHAPTER 2. PROBLEM STATEMENT

Maximum likelihood

The most common training algorithm is based on maximum likelihood theory.

Since we assume that the additive noise ¢ is drawn from a zero mean 3 variance

Gaussian distribution N (0,4) and t = f(w,x) +, the conditional probability

density p(t|x, w, 3) is given by

p(tle, w, 8) = N (s02), 3) :

Moreover, if we assume that the observations of the training data set are i.id!, the

complete log-likelihood is given by

~ 1_N N inp(Thas 6) = Yin (‘5isflw.20), 3) = Zing — X ingen) - 38,

where E(w) is the sum-of-squares error function defined by

iw
E(w) = 5 ttn — f(w,an)}?.

n=l

Maximizing the complete log-likelihood function with respect to w is equivalent to

minimizing E(w). Since the model considered is linear, VE(w) has a simple form

VE(w) =D {tn — w'd(tn)}4(tn)',

and V E(w) = 0 admits a unique solution wy, = (®')~!6’T containing all the hidden

parameters of the model. The matrix ® is usually called the design matrix and is

defined such that ©,; = ¢;(an). If we now differentiate the complete log-likelihood

function with respect to 3, we can create a noise variance estimator

N

FF Llin— whole)? = n— WyLPXn) f°
ME AN <=

Finally, our predictive model is {() ~ p(t|x, wart, 9a, X,T) = N (5 f(wat,2), wz):

In the literature, the distribution of f(z) is often called the predictive distribution.

‘Independently and identically distributed.

13

CHAPTER 2. PROBLEM STATEMENT

Regularized maximum likelihood

We now introduce a prior probability over the weights p(w). If we assume that this

distribution is an isotropic Gaussian distribution governed by an hyperparameter a, we

=n (woz).
a

Using Bayes’ theorem we can compute the posterior distribution over the weights

have

p(w

P(wlx, T, a, 8) x p(T |x, w, 8)p(wla). (2.1)

Since the model considered is linear, this distribution is also Gaussian and thus its

mode corresponds to its mean.

Maximizing (2.1) with respect to w is equivalent to minimizing the regularized sum-

of-squares error function

jie x
Ew) =5 {tn — f(w, tn) P+ guy,

n=1

where 4 = §. As before, we set the gradient of E(w) to zero. The maximum a

posteriori solution is given by wyrp = (AI + ®'®)-!0'T.

The evidence procedure

‘We now consider the usual case where the hyperparameter a which governs the prior

over the weights is not given. Moreover, contrary to the previous methods where we

defined a predictive model by using a single value for w (waz, Warp), we now integrate

over all the hidden parameters in order to take into account our uncertainty as to which

one that is. The predictive distribution of f(z) is then given by

vitje.x,T) = fff v(e,w,A)p(ulx,T.a,8)p(a, Aly.) deo daa.

However, this complete marginalization is analytically intractable. In order to approx-

imate this integral, a technique called the evidence approximation was developed in

the machine learning community (MacKay, 1992 [7]). If we assume that p(a, 8|x, 7’) is

sharply peaked around & and B

(a, B|x,T) = 55,4(a, 8),

14

CHAPTER 2. PROBLEM STATEMENT

then the predictive distribution is simply obtained by marginalizing over the weight

vector w

p(tle,x,T) ~ pltlz, 4, 8,x,7) = / p(tle,w,A)p(wly, 7, 4,3) dw. (2.2)

The posterior distribution p(a, 8|x,T) is given by

(a, Blx,T) « p(T |x, e, 8)p(a, 8).

Thus, if we assume that the hyperprior p(a, 3) is flat, maximizing p(a, 3x, 7) to find

@ and #7 is equivalent to maximizing the marginal likelihood? p(T|x, a, 8).

Since the model is linear, an analytical equation can be obtained (Bishop, 2006 [1])

1
Inp(T|x, a, 8) = + Ina+ xing — E(my) - 3 Indet A — * inn), (2.3)

where M is the dimensionality of w, A = al + 66'6, my = GA~'®’T is the mean of

the posterior distribution over the weights, and

a E(my) = SIP — amy? + Smiymy.
In order to maximize the marginal likelihood, we consider the eigenvalues \; of the

matrix $'®, From its definition, we know that the eigenvalues of A have got the form

v; = a+ r;. Thus, Indet A can be written as

Indet A = nT [Ox +a)= mri +a).
i i

Then, by setting the derivatives of (2.3), with respect to a and (3, to zero, we obtain

the solutions a = =~ and 5 ay N_{tn — m'yo(an)}? where y = eae

It must be noted that both terms depend on a and through ¥ and the eigenvalue

decomposition of A. By first initializing a and (3, we can create an iterative algorithm.

The vector my and the parameter 7 are calculated and then used to optimize a and

B. This procedure is repeated until convergence.

Finally, after a few iterations, we obtain solutions 4 and 3. Since the model is

linear, the integral in (2.2) has got a simple form and the predictive model is given by

i() ~ p(t|x,x,T) = N (t;mlyo(x), 0%,(x)) ,

?The marginal likelihood is also called the model evidence.

15

CHAPTER 2. PROBLEM STATEMENT

where o3,(x) = §-! + 4(x)'A7¢(x) and since my is the mean of the posterior distri-

bution, we have my = wasp.

2.1.2 Neural networks

Contrary to linear models, neural networks are based on non-linear basis functions,

usually called hidden wnits, which depend on parameters that can be adjusted. Through

this thesis, we only consider multilayer perceptrons. In regression, the global network

model can then be written as (Nabney, 2003 [10])

M D
t=f(w,z)+e= SS (=Peidou) +e

j=0 i=0

Optimization of w and 3

Unlike linear regression models, the posterior over the weights of multilayer perceptrons

is not Gaussian and they do not have analytical solutions for the maximum likelihood

estimates {warz, Gut} and the regularized maximum likelihood estimates {warp, Burp}.

Thus, for the training process, these models require to use an optimization algorithm

such as scale conjugate gradient.

Bayesian neural networks

Multilayer perceptrons are commonly called Bayesian neural networks when they use

the evidence procedure. Since the posterior over the weights is not Gaussian, the

integral in (2.2) is analytically intractable. Thus, we use a Laplace approximation that

estimates the posterior with

p(w|x,T, a, B) x N (w; wap, H(wyp)') ,

where H is the hessian matrix of — In p(w|x, T, &, B). Moreover, we linearize the model

using a first order Taylor expansion

te f(wup,£) + Vf(waup,x)'(w — wp) +e.

16

CHAPTER 2. PROBLEM STATEMENT

Thus, ¢ is defined as a linear combination of Gaussian random variables and the corre-

sponding predictive distribution is given by

p(t|x, xj, Tj) © N (t; f(warp, ©), Vf (warp)'H (wap) 'V f(wup) + 8).

This is a good approximation only if the number of training data points considered is

sufficiently large such that p(w|x;, 75, @, 8) is sharply peaked around wyyp.

To optimize the hyperparameters, we use a Laplace approximation and we compute

1 N N
Inp(T|x, a, 8) & —E(wup) — 3 Indet A+ . Ina+ a Inf— ai In(2z),

where W is the total number of parameters in w and

Bet a
E(war) = 3 Y (Fw, tn) — ta}? + 5whrpwa.

n=1

Using an iterative algorithm very similar to the one presented in previous Section, we

can obtain solutions @ and B.

2.1.3 Gaussian processes

Gaussian processes are based on a full probabilistic framework. They are said to be

non-parametric since they characterize a prior over functions p(F’) directly instead of

giving the unknown function f an explicit parameterization (Mackay, 1998 [8]). Here we

have used F = (f(x), f(x2),..., f(ay)) and to be consistent with the wide literature

on Gaussian processes we deliberately ignore the implicit dependency on the inputs

x. The prior is chosen to be a zero mean multivariate Gaussian distribution with

covariance matrix K. Since the model is t = f(x) +, the prior p(T) is also Gaussian

and given by

p(T) = N (T;0,C), (2.4)

where C = K + B-1I.

From parametric models to Gaussian processes

Lets assume that we are given a linear regression model with M basis functions. Using

matrix notation, we can write T = @w+e. As before, we consider an isotropic Gaussian

Ly

CHAPTER 2. PROBLEM STATEMENT

Ristboren p(w|a) = N (w;0,a7'Z) governed by an hyperparameter a. Since F = dw

is based on a linear combination of Gaussian random variables w;, F is also Gaussian

with mean

E[F] = SE[w] = 0,

and covariance matrix

cov(F) = ®Elww']®! = ao’,

Thus, if we define C = a + 4 we obtain a Gaussian process with

p(T) = N (T30,C).

Moreover, in his work, Neal (1996 [11]) showed that for specific choices of priors

p(w), the prior over functions p(F) of a one hidden layer neural network converges to

well known Gaussian process priors as the number of hidden neurons tends to infinity.

Kernel functions

In the Gaussian process framework, the covariance matrix C is generally given directly

without parameterizing the unknown function f. Its elements are given by

C(ai, 25) = k(ai, 25) + B66 — 3),

where k is a function called kernel that depends on variables called hyperparameters.

A list of kernel functions for Gaussian process regression can be found in the book

written by: Rasmussen and Williams (2006 [15]). Two of the most widely used are the

squared exponential

12
k(aj,2;) = v9 exp (-22500 - “) +6,

l=1

and the rational quadratic

rr -v

k(2;,2j) = v9 (: + Yo a(x! = “) +6.
8

The optimization of the parameters a, allows the relative importance of the correspond-

ing inputs to be inferred from the data. Since C is a covariance matrix, all its terms

have to be positive and so must the kernel hyperparameters. We define 6 as the vector

containing all the hyperparameters with dimension d.

18

CHAPTER 2. PROBLEM STATEMENT

Predictions

In the previous Section, we saw that the covariance matrix C’ was governed by some

specific hyperparameters depending on the choice of kernel function. We will describe

how to optimize those parameters in the next Section but for now, we assume that

their values are given. Our goal is to predict the value of ty4; for a new input Inq.

The joint distribution p(T, tv+1) is given by

R(T, tw4i) = N ((T,tw41);0,Cn41),

where Cy+; is a matrix partitioned as follows

Ck

Ke

Here C is the covariance matrix of T (2.4), k has elements k(tn, 241) forn =1,...,N,

and ¢ = k(ay41,2N41) + 5.

Since the joint distribution is Gaussian, the predictive distribution has a simple

form

ie) ~ p(twsilT) = N (tC, c— KC“).

Training of the hyperparameters

Given a training data set {x,T}, the training task consists of maximizing the log-

likelihood function® Inp(T|x, 0). As before, we ignore the implicit dependency on the

inputs y and we can write

Inp(T|0) = -3 IndetC— sree S + In(2n). (2.5)

Since the kernel functions are only defined for positive hyperparameters, we constrain

4 by setting @ = exp(¢). It is then possible to use a non-linear optimization algorithm

such as scaled conjugate gradient to optimize (2.5) with respect to ¢.

It is also possible to introduce a prior probability distribution to constraint the

hyperparameters defined in the log-space (Nabney, 2003 [10]). In the literature, this

_ 3In the Gaussian process framework, this function is sometimes called the log-marginal-likelihood
function.

19

CHAPTER 2. PROBLEM STATEMENT

prior is usually called hyperprior. A common choice consists of using an isotropic

Gaussian distribution P($|O prior) =N ($0, oR ior!) Using Bayes’ rule, the posterior

distribution is given by

P(T|9)P(A|o prion) PGT, Opie) = Ri?
where Z is a normalizing constant. This gives rise to a regularized log-likelihood

oo oN 7 >

2C prior 2

 Inp(4|T, Orion) = -5 Indet o-3re"'r- pr In(2n)—$ In(2n)—$ In(o%.ior) —ln(Z).

2.2 Distributed Learning Environment

So far, we have seen that regression methods can be used to approximate the underlying

process that maps input variables to target variables of a specific data set. First, we

saw that we had to choose a model (linear regression model, neural network, Gaussian

process). Then, using a single training data set and a learning algorithm, we noted

that we could learn a predictive model f(r).

We now consider the case that we are given m training data sets {y,,7;} that are

distributed (stored) on disjoint nodes. Each node is an autonomous program called an

agent. All of them can be run on a single machine or on distinct computers. As we

are going to see throughout this thesis, the nodes may have different properties. In

particular, we are going to study agents that train independently using their own data

set and others that can share some learnt information with one another. Those two

training methods are both local learning strategies (Grossman et al., 1999 [4]) since local

agents work on distributed data. Conversely, we do not consider centralized learning

strategies that move the data to one central location for model building. Indeed, if the

quantity of information sent by each agent is significant, the time or bandwith for the

central node to recieve all the examples can be prohibitive.

Systems that are based on agents that can learn models and potentially share some

information are usually called multi-agent systems in the computer science community

and the architecture of such applications is known as a distributed learning environment

20

CHAPTER 2. PROBLEM STATEMENT

(Figure 2.1). In Statistics, this domain of research is called the Distributed Data Mining

(DDM). Park and Kargupta (2002, [12]) wrote a paper that describes algorithms,

systems, and applications based on DDM. According to them, lots of work has been

done on classifiers. Conversely, except using tree-based models, regression problems

have not really been tackled so far and we did not find in this paper any method that

we could use in our framework.

Our main assumptions are that the data is homogeneous and that one Data Gener-

ative Model exists. In other words, we assume that all the training data sets have been

generated by the same underlying process and that they are described by the same

variables. Thus, predictive models £;(x) built at each node can be seen as estimates of

the same process t = f(x) +.

The fusion of models for data privacy and security preservation, and the speed

up of some regression models are two critical applications that can be described by a

distributed learning environment.

(:D)-—m agentl My agent2 <4 —[%;D,)

A A

v A

(X4;D,) — & a agent 3 ~ (x,;D,)

Figure 2.1: A distributed learning environment.

2.2.1 Privacy/Security of data

First, we assume a situation where data is originally physically distributed on multiple

nodes. For instance, in the biomedical domain, we can consider m research units or

private companies working independently and storing the results of their experiments

in their own databases. Moreover, we assume that they work on the same type of data

21

CHAPTER 2. PROBLEM STATEMENT

describing the same biological phenomenon. All the nodes have got models to predict

the value of t for a new input 2.

Let us assume now that they do not agree to share their data for privacy and

security reasons but do agree to share their models. In other words, receiving an input

x sent by another model MO, they consent to predict the value of t and to send it

back to MO.

In this environment, it could be particularly interesting for each node to use a

predictive model based on the fusion of all the models trained at each node. The issue

of privacy preserving and model fusion methods was adressed by Wright and Yang

(2004, [24]).

2.2.2 Limited learning systems

Tresp (2000, [21]) noted that “for reasons typically associated with their architectures

and their learning algorithms, some learning systems are limited in their capability to

handle large data sets”. For instance, in the Gaussian process framework, both the

training and inference task require matrix inversions of which the computational cost

is O(N*), where N is the number of training data points.

In this situation, we can split the single training data set on m different data sets

that are then stored on nodes. Local agents can use the distributed data and by

exchanging some information with one another they can build an approximation of the

predictive distribution that a model would have obtained by having kept all the data

in one data set.

The issue of this structure is to develop very fast regression models. In particular,

as detailed above, since the nodes work locally, they can be run, in parallel, on different

computers.

2.3 Data Sets

For the experiments presented through this thesis, we use two data sets.

22

CHAPTER 2. PROBLEM STATEMENT

2.3.1 Toy data set

We generate a toy data set A = {(z;,t;)} Vi, where x is drawn from a uniform distri-

bution U(0, 2), € from a zero mean Gaussian distribution with 0.2 standard deviation

and t = sin(27z) +e.

Figure 2.2: Toy data set. Function (dashdot line), Training data points (circles).

23

CHAPTER 2. PROBLEM STATEMENT

2.3.2 Scatterometry data

We also use some scatterometry data, given by Dr. Dan Cornford, to test our models,

More precisely, we are given 180000 data points described by three inputs ur, vr,

inc and one target variable sig. Scatterometers are radars that aim at transmitting

pulses of microwave energy towards the Earth’s surface and measuring the reflected

energy (Stoffelen, 1998 [19]). By changing the angle inc of the signals, measuring the

corresponding reflected energy inc, and using some geophysical model functions, it is

possible to estimate the positions ur and ur of wind vectors over the ocean. In our

case, we are interested in an inverse problem. Given ur, vr, and inc, we want to predict

the reflected energy sig.

=2

Figure 2.3: Box plot of the scatterometry data. Variables 1, 2, and 3 correspond to

the inputs ur, vr, and inc. Variable 4 represents the target sig.

24

Chapter 3

Fusion of Physically Distributed

Regression Models

In this Chapter, we address the issue of fusing models that are trained on originally

physically distributed data. We define a distributed learning environment where all

the agents are identical, for example radial basis function networks or multilayer per-

ceptrons, with exactly the same form of output function f(w,«) and depending on

weight vectors w of the same size. The problem of considering an architecture based

on different types of regression models is not tackled and remains for future work.

As we showed in Section 2.1.1, the parameters of a radial basis function network

are obtained thanks to a two-step learning process. The first step consists of using

a clustering technique to fix the centres 2;. Since we only consider agents with the

same form of output function f(w,«) and depending only on weight parameters w, we

assume that all the radial basis function networks share the same centres which have

already been computed.

Moreover, some of the methods described in this Chapter require the agents to

be trained using Bayesian regression techniques. Thus, for our experiments, we chose

the evidence procedure for the learning algorithm. We recall that it estimates the

hyperparameters 4, B, and wyp. For simplicity and consistency of notation, we define

CHAPTER 3. FUSION OF PHYSICALLY DISTRIBUTED REGRESSION MODELS

the predictive distribution of node j as

i;(x) ~ p(t\x, Mj) = N (t; f(w;,2), 07 (x)) .

where wy; is the maximum of the posterior distribution over the weights p(wlx;, 7}, 4;, B;).

In the first three Sections of this Chapter, we describe the techniques that we used

to fuse models trained on distributed data and how we had to modify or extend some

of them in order to tackle our problem. More precisely, in Section 3.1, we identify

methods that fuse models by working in the space of weight parameters. Then, we

investigate approaches, such as model combination methods and the Bayesian model

averaging algorithm, that deal with single predictions. In Section 3.3, we describe the

Bayesian committe machine and we show how it can be applied to neural networks.

Finally, we present the experiments that we carried out and we draw some conclusions.

3.1 Fusion of Weight Parameters

3.1.1 Distributed cooperative Bayesian learning strategies

We first consider Yamanishi’s distributed cooperative Bayesian learning strategies (1999,

[25]). It was originally developed for density estimation problems. In other words, it

aimed at inferring hidden parameters w of probability distributions p(x|w).

In this model, a distributed learning system consists of a number, m, of agents, called

the agent learners, and an entity, called the population learner (p-learner). Each agent

learner independently observes a sequence of examples XG = {2515 2j23.. 3 2ynq} Here,

nj defines the number of training data points that are used to train the jth agent.

Having a prior p(w), each agent computes independently the posterior probability

distribution

__pw)pxjlw) pw) TT, plat)
Pols) = FaGapp glo) dav ~ Fea) TI, ples) da

Then, estimates tw, of the parameter w, specifying the target distribution p(z|w), are

chosen randomly according to the corresponding distribution p(w|x;)-

26

CHAPTER 3. FUSION OF PHYSICALLY DISTRIBUTED REGRESSION MODELS

In this model, the p-learner does not have access to the different training data sets,

but only to the parameters output by the agent learners. It combines the estimates

using a simple average

(3.1) Wyus =

We now extend these methods to a distributed regression problem. Thus, we con-

sider m data sets {y;,7j} and m regression models. Using its own data, each agent,

learner computes 4; and B; using the evidence procedure. Then, the p-learner calcu-

lates (3.1) by sampling estimates from the different posterior probability distributions

P(wlx;, Tj, &;, B;). In order to get some errors bars on our predictions, we chose to use

tasted similar techniques to (3.1) and we defined aa Sn eta Finally, the predictive

model is given by

Feat) ~ N ('0s002), i)

agent 1 ee wi

Dy) ade

p-learner > NUtef pa) gr)
— wt nent

agent m er,
(%p:Dp)

Figure 3.1: Distributed learning System.

3.1.2 Hierarchical Bayesian modelling

In the previous Section, we considered agents training independently using their own

data. An entity called the p-learner was used to average some estimated parameters

to build a predictive model.

We now consider a situation where agents can potentially learn from one another

during the training process by exchanging some learned knowledge. The Bayesian

approach that we study here is called the hierarchical Bayesian Modelling and was

27

CHAPTER 3. FUSION OF PHYSICALLY DISTRIBUTED REGRESSION MODELS

described as a technique for multi-agent learning by Tresp and Yu (2004, [22]). The

basic idea is that information can be exchanged between models via common hyperpa-

rameters.

Assume that we are given a prior probability distribution over the weight parameters

p(w|h,) governed by an hyperparameter h,. For instance, this distribution can be

Gaussian with h; = {4,2}. Having a training data set {x1,Ti}, the posterior is

computed using Bayes’ rule

P(w|xa, Ti, ha) x p(Tilxa, hi)p(wlhr).

If p(w|h1) and p(w|x1,71,h1) are conjugate then they have got the same functional

form. When additional data becomes available, the posterior becomes the new prior

and we define p(w|h2) = p(w|x1, Ti, hi). This is an iterative process and the more data

is used for the training, the more these distributions become sharply peaked around

wm, the maximum of the likelihood function.

In our distributed learning environment, we want to use similar concepts in order

to approximate the posterior p(w|{x;,7;}7,). Thus, when a new agent with its own

data set {Xm+1,7m+i} is considered, it would use this posterior as a prior to build

its own predictive model. Since this Bayesian approach for multi-agent learning does

not specify how to combine the different noise variance estimates as we did in the
7

previous Section, we chose to define ae = yet 7 is i

agent 1 >
(X,;D,) my

agent m+1 — pe Net:f(Wne-%)-oh0(X))

¢ (Xmer? Ds}

agent m > Yn
{Xmi Drm]

Figure 3.2: Hierarchical Bayesian modelling for multi-agent learning.

28

CHAPTER 3. FUSION OF PHYSICALLY DISTRIBUTED REGRESSION MODELS

Parametric approaches

When a new agent wants to learn a regression model, it receives the learned maximum

a posteriori weight vectors w; of all the other nodes. It then fits a specific distribution

through them to get an approximation of p(w|{x;,T;}71). In our experiments, we

considered the Gaussian distribution and we estimated its mean and covariance matrix

with w= FO, wy and D=+ DLs (w; — 4)(w; — 1)! respectively. The posterior is

then given by

P(wl{x;,T)}j21) © N (wi H,).

Having its own data set, the new agent uses this distribution as a prior and computes

P(w|{ XI; TIFF! Brus) & P(Tins1|Xm+15 Spus)P(w| {x5 T)}F1)- (3.2)

The predictive distribution is given by

wea, Mr) = ff plthe,,Byu)oCwl {xs THE Brae)
Techniques described in Section 2.1.1 can then be used to compute this integral. Unlike

radial basis function networks, multilayer perceptrons, as non-linear regression models,

require some approximations such as Taylor expansions and Gaussian approximations.

Finally, the predictive model is

P(tlz, Minar) = N (t; f(wyues2), OFus()) 5

where wyys is the mode of (3.2).

Non-parametric approaches

Non-parametric approaches can be used when the empirical distribution of the maxi-

mum a posteriori weight vectors does not fall into a well known class of distributions.

The posterior is approximated with a sum of delta functions

p(wl{xa, TH) = Do bu,(w).
j=l

The predictive model is then given by

‘ , i
v(t}, Mnss) = Z f v(t}, a7 Bpue)PCTmeal mess Bp) 3 buy (tw) de

j=l

29

CHAPTER 3. FUSION OF PHYSICALLY DISTRIBUTED REGRESSION MODELS

where C is a normalizing constant. Finally,

p(t|z, Mmii) = oon (t\a, w;, Brus)P(TratilXm+i, Wj, Bfus),

and C= Does P(Tn+a|Xm+-1s Wy; Bj):

3.2 Fusion of Single Predictions

In the previous Section, we described how models trained on distributed data could

be fused by working in the space of weight parameters. In particular, we saw that

different estimates 1; could be combined using a simple average Wsus = Rey We

now investigate techniques that were originally developed to fuse models all trained

using the same data. One characteristic of such methods is that they combine directly

the different model predictions f(x) for a single given input x. We will see in Section

3.3 how Bayesian techniques can be used when several inputs are considered at the

same time.

In this part, our work consisted of investigating if and how these approaches could

be extended to the multiple data set case.

3.2.1 Error averaging

The simplest method consists of averaging the different model predictions

- ye
Epus(@) = oe m

The model obtained is called a committee. It can directly be applied to our problem

by simply considering that the nodes are now trained using different data sets.

The mean of the predictive distribution is then given by

Bie) = Se
However, it is more complex to compute the variance since we need to estimate the

covariances cov(é,(z),é;(x)) between the models

var(tfus(x)) = {Soom (x)) +2 > cov(t;(z), t;(x)) \.

Ugt<j

30

CHAPTER 3. FUSION OF PHYSICALLY DISTRIBUTED REGRESSION MODELS

One technique to approximate those terms is to use the maximum likelihood estimator

n

cov(Z) = qe —2)(Z,- 2y, (3.3)
i=1

where Z; = (f;(2;), fo(a;),...,fm(a;))! and Z = #2, Zi. For our distributed en-

vironment, that means that we need to consider a new N point training data set

X = (#1, @2,...,2y)!. The nodes produce a prediction t;(a;) for each input x; and by

applying (3.3) we estimate the covariances between the regression models.

3.2.2 Weighted error averaging

We still use a simple linear averaging but in the form

: aes OO ace
tyus(t) = doit) = Se Ce

where C~! is the inverse covariance matrix between the different predictive models.

Thus, we need to use methods described for the simple averaging case and we compute

C™ = cov(Z)". As before, a new training data set has to be considered to evaluate

the terms in cov(Z)7!.

According to Lowe (2001, [6]), since the weighted committee networks exploit co-

variance knowledge, they generally give better results than the simple averaging of

committee members.

3.2.3 Conditional mixture models

In a mixture of regression models, the fused predictive distribution is given by

Pyus(t|x) = Dante M;))= Lan (t; f(wj,2),07()) .

We cannot see this method as a solution to our problem since they are based on

training procedures, such as the EM algorithm, for which the extension to the multiple

data set case is not obvious. More important, to compute the 7;, they need to have

all the training data points at first hand, to fuse the models. Thus, in our case, even

if we assume that the conditional mixture models could be extended to the multiple

31

CHAPTER 3. FUSION OF PHYSICALLY DISTRIBUTED REGRESSION MODELS

training data set case, after having learnt independently, the agents would have to send

all their data to one central node. If the quantity of information sent by each agent is

significant, the time or bandwith for the central node to receive all the examples can

be prohibitive.

3.2.4 Product of predictive distributions

These techniques are based on properties of the Gaussian distribution. Thus, we build

m predictive models i;(x) that can be fused by computing the product of their corre-

sponding distributions

m

june) ~ TN (ts Fs, 2), 05(@)) o N (ty apua(), Ojus(2))
j=l

where (b},5(2))"' = jaa (o7()) 7 and ajus(x) = jus) Dje1(07(@))* f (wy, 2).

Similar techniques were used in the work of Sudderth et al. (2003, [20]) to compute

message products for the Nonparametric Belief Propagation.

The extension to the multiple data set case is straightforward.

3.2.5 Bayesian model averaging

The Bayesian Model Averaging (BMA) algorithm was studied in detail by Hoeting et

al. (1999, [5]). Practical applications of BMA can be seen in the work of A. E. Raftery

et al., (2003, [14]) to calibrate forecast ensembles.

Minka (2000, {9]) noted that, unlike techniques, such as conditional mixture models,

BMA is not a model combination method. Indeed, it assumes that the whole training

data set that is given has been generated by only one model and it uses the distribution

p(M;\x, 7) to reflect our uncertainty as to which one that is. Conversely, in model

combination methods, the points of the data set can have been generated by different

models. Thus, even if these techniques look very similar, the algorithms that they use

are different.

Given m predictive models é;(x) trained using the data set {x,T}, the fused pre-

32

CHAPTER 3. FUSION OF PHYSICALLY DISTRIBUTED REGRESSION MODELS.

dictive distribution is given by

m m

Pfus(tlx) = >) r(Mjlx,T)p(tle, Mj) = Sr(Mylx,T)N (t; f(w;,2),05(2)?)
j=l j=

We now consider different data sets {x;,7;} distributed on nodes. If we assume that

the models have got the same prior, such that p(M;) = p(M), using Bayes’ rule we

find
m m

Pyus(tle) = Yaypltle, My) = Ya (t: fe, 2), 04(2))
j=l j=l

P(Ti|x3,T5)
where oj = soe pcre)"

3.3 The Bayesian Committee Machine

In the previous Section, we described methods that could be used to combine m model

predictions f;(x) corresponding to a given input 2. We now introduce the Bayesian

Committee Machine (BCM) that was developed by Tresp (2000, {21]) and that fuses

models by considering several input points at the same time.

3.3.1 Fusion of Bayesian estimators

The BCM originally aimed at decreasing the computational cost of some learning

systems, such as Gaussian processes. We will use this aspect of the algorithm in

Chapter 4, but for now, we see the BCM as a general technique that can be applied to

the combination of any Bayesian regression estimator.

As before, we consider m training data sets {y;,7;} and, following Tresp, we use

the notation X; = (#1, £2,...,%,)' and F, = (f (21), f(x2),...,f(&q))’ for the query

set. It is important to distinguish between x,;, T;, Xq, and F,. For the first two data

sets that correspond to training data, j specifies the index of the training data set.

Conversely, for the query set, q defines the number of points for which we want to

obtain a prediction.

The Bayesian committee machine formulae are defined in the space of functions

and are obtained using Bayes’ rule. For simplicity, as we did in Section 2.1.3 when we

33

CHAPTER 3. FUSION OF PHYSICALLY DISTRIBUTED REGRESSION MODELS

described the Gaussian process framework, we deliberately ignore the implicit depen-

dency on the inputs X,.

P(Fal{xs, Ti }j21) & p(Fa)P({x5. Te} ealFa)-

If we assume that the likelihood function can be factorized, the posterior predictive

distribution is given by

m 1 m

PCFal Xs, T 4) « PCF) [] os BMF) & Sores [Loeb T)-
j=l 2 j=l

Although Tresp considered the distributions over F,, we found that it was also possible

to consider the underlying additive Gaussian noise «. Indeed, T, = F, + € where

enN G 0, a) and we have

p(T (x5, T)}fe1) Sees Toth.) (3.4)

In our framework, the distributions p(T,|x;,7;) are computed by the agents and (3.4)

is used to calculate the fused model.

If those distributions are Gaussian, (3.4) takes a very simple form and its mean is

given by ‘ a

E[Ty] = cov(Ty) $7 (cov(Ty)s)-' B[Tals, (3.5)
j=l

with

cov(Ty)~? = —(m — 1)D +O cov(T,

where E[T,]; and cov(T;); are the mean and covariance matrix of p(Ty|x;,7}). © is the

covariance matrix of the prior p(Ty).

Tresp showed that if the data sets {y,;,7;} are unconditionally independent, then

the factorization of the likelihood function is exact. A good approximation can be

achieved by first using some clustering techniques and assigning the data of each cluster

to a separate node. We will use this approach in Chapter 4 but, for now, since we

assume that the data is originally physically distributed on nodes, we can not apply

such preprocessing methods. It is also possible to obtain good approximations when

34

CHAPTER 3. FUSION OF PHYSICALLY DISTRIBUTED REGRESSION MODELS

the number of query points is sufficiently large. Thus, T,, determines T everywhere and

the data sets become independent conditioned on Tj.

We are now going to see how the posterior predictive distributions p(T,|x;,T;)

and the prior p(T) can be determined when considering different types of regression

models. In his work, Tresp showed that analytical solutions could be obtained for

Gaussian processes and linear regression models.

3.3.2 Gaussian processes

In the Gaussian process framework, the posterior distribution at node j is Gaussian

and it is straightforward to compute its mean and covariance matrix. Indeed, we recall

that when a unique input point 24, is considered, the predictive distribution is given

by

N (t; KOU, c- ROuik) ‘

where k has elements k(a,,@y+1) forn =1,...,N, and c= k(ay41,0N41) + 3 If we

are now given several input points, this distribution becomes

N (1; 4'C'T;,B- A'C"A), (3.6)

where A and B are now matrices such that

Aiy = k(2is (Xa) 3),

and

6-3) aia

Moreover, the prior p(T,) is also Gaussian and is given by

Bij = k((Xq)is (Xq)3) +

P(Ty) = N (Ty30,5) ,

where Dj; = k((Xq)i, (Xq)j) + (i — 9).

Although it is worth describing, as an introduction to the two next Sections, how

the prior and the posterior distributions can be determined in the Gaussian process

framework, we recall that in this Chapter, we only consider distributed learning envi-

ronments based on radial basis function networks and multilayer perceptrons. Gaussian

processes will be studied in Chapter 4.

35

CHAPTER 3. FUSION OF PHYSICALLY DISTRIBUTED REGRESSION MODELS

3.3.3 Linear regression models

In Section! 2.1.3, we showed, by working in the space of functions rather than the space

of weight parameters, that linear regression models could be seen as specific instances

of Gaussian processes. Indeed, we demonstrated that the prior p(T’) was given by

p(T) = N(T;0,C),

o' where C = 22 + z Using the results presented in Section 2.1.3 and in 3.3.2, we

compute

N ae Bb, A6'T;, &,A1! + 3) ‘ (3.7)

where ©; = $;(2n), (®g)ni = $i ((Xq)n), and A = al + BO’.

For our experiments, since radial basis function networks are generalized linear

regression models, we used (3.7) to obtain the predictive distribution at node j. The

prior p(Z;) is given by

P(Tq) = N (Ty;0,) ,

= yh) I where 2) = ——* + .

3.3.4 The neural network case

So far, we have seen that the Bayesian committe machine was applicable to Gaussian

processes and linear regression models, such that radial basis function networks. We

showed that the posteriors at each node and the prior p(T) were all Gaussians and

could be determined analytically. In his work, Tresp derived equations (3.6) and (3.7)

but to our knowledge there is no paper defining how the BCM can be applied to neural

networks, such as multilayer perceptrons. Indeed, since such models are non-linear

with respect to the weight parameters w, their priors and posteriors over the functions

are non-Gaussian (Williams and Rasmussen, 1996 [23]).

In this part, our work consisted in deriving approximations to the relevant quantities

in order to use the BCM to combine multilayer perceptrons.

36

CHAPTER 3. FUSION OF PHYSICALLY DISTRIBUTED REGRESSION MODELS

Posterior over functions

First, we tackle the problem of approximating the posterior distribution P(Ty|x3,T3)-

We first recall that when an input point 2 is considered, a first order Taylor expansion

can be used to linearize the model

ts f(wap,t) + Vf(wap)'(w — wap) +¢,

where wyp is the maximum a posteriori of p(w|x;,T), 4, 3). Then, Laplace’s method

can be applied to approximate this distribution with a Gaussian centred around wyp

such that

p(w|x;,T;, 4,3) & N (w; wap, H(wap)'),
Z a

where Hj; = — garda; np wlx;,T;, 4 6).

Thus, t is defined as a linear combination of Gaussian random variables and the

corresponding predictive distribution is given by

P(t|x, xj,T;) © N (t; f(wamp,2), Vf (warp)'H(waup)1V f(wup) + 87).

This is a good approximation only if the number of training data points considered is

sufficiently large such that p(w|x;,7;,@, 8) is sharply peaked around wap.

We now consider a query set X,. We found that the model could still be linearized

by using the Jacobian of F, = (f(w,ai), f(w,22),..., f(w,2q))!

Of (wri) Of (wyr1)
Ow, wa

J=

Of(w,xq) Of (wr)
Ow, a Owa

Thus, we have

Ty = Fy(wup) + J(wmp)(w — wap) +€,

and the corresponding posterior distribution is given by

p(Tq|xj,T;) = N (Ty; wap, J(wap)H (wap) J (wap)! + atl): (3.8)

We ignore the implicit dependency on X, to be consistent with the Bayesian committe

machine notation.

37

CHAPTER 3. FUSION OF PHYSICALLY DISTRIBUTED REGRESSION MODELS

Prior over functions

Through our experiments, we investigated two approximations for the prior over func-

tions.

The first one is based on similar techniques as in the previous section. Indeed, we use

(3.8) to linearize the model. Then, since the prior over the weights p(w|c«) = N (w;0, 4)

is Gaussian, we obtain directly

(Tq) = N 3

Our second approach is inspired by Neal’s work on bayesian neural networks (1996

(nx. teueh vue a 3) ;

{11]). Since the prior can be written as p(T,) = f p(Ty,w)p(w) dw, it can be approxi-

mated by a Gaussian using Markov chain Monte Carlo techniques.

3.4 Experiments

Through the experiments presented in this Section, our goal is twofold. Indeed, we want

to compare the results obtained when using model fusion techniques on multilayer

perceptrons and on radial basis function networks. Moreover, we aim at analysing

what happens when we vary the number of training data points at each node. Thus,

we consider three situations. In the first two series of experiments, we assume that all

the nodes have got the same number N of points where N is small or large. Then,

we simulate a distributed learning environment where the nodes have got data sets of

different size.

For the toy data, we consider a training set and a test set both having 1000 data

points. We use multilayer perceptrons with three hidden units and networks having 10

radial basis functions since these models give rise to similar predictions when trained

on the same data set. In the first situation, we fix N = 25 and the number of models

is given by m = 40. Then, we experiment N = 100 and m = 10. Finally, we distribute

randomly the data into data sets of different size.

For the scatterometry data, we are given 180000 data points. We split the data into

two data sets of the same size. The first one is used for the training whereas the second

38

CHAPTER 3. FUSION OF PHYSICALLY DISTRIBUTED REGRESSION MODELS

node | number of data points

1

O
N

MA.
 8
S
R
O
W

86

369
249

126
72

45

32
21

Table 3.1: Toy data set. Distribution of the training data points into the nodes.

aims at testing the model fusion techniques. We use multilayer perceptrons with 10

hidden units and networks having 50 radial basis functions. In the first situation, we

fix N = 100 and m = 900. Then, we experiment N = 1000 and m = 90. Finally, we

distribute randomly the data into data sets of different size.

In order to draw the following plots, error bars were computed. Each of those terms

corresponds to one standard deviation around the corresponding prediction. Indeed,

we recall that all the predictive distributions we consider are Gaussian and so 68.2

percent of the targets are expected to be in these intervals.

39

CHAPTER 3. FUSION OF PHYSICALLY DISTRIBUTED REGRESSION MODELS

node | number of data points

1 12126
2 16210

3 37482

4 15269

5 3365
6 3233

o 1046

8 149
9 126

10 363

11 106
12 242

13 188

14 95

Table 3.2: Scatterometry data. Distribution of the training data points into the nodes.

40

CHAPTER 3. FUSION OF PHYSICALLY DISTRIBUTED REGRESSION MODELS

3.4.1 Distributed cooperative Bayesian learning strategies

Few data at each node

(b)
Figure 3.3: Distributed cooperative Bayesian learning strategies experimented on the

toy data set. (a) Fusion of 40 MLP networks. (b) Fusion of 40 RBF networks. Function

(dashdot line), prediction (solid black line), and error bars (solid grey line).

41

CHAPTER 3. FUSION OF PHYSICALLY DISTRIBUTED REGRESSION MODELS

Lots of data at each node

(b)
Figure 3.4: Distributed cooperative Bayesian learning strategies experimented on the

toy data set. (a) Fusion of 10 MLP networks. (b) Fusion of 10 RBF networks. Function

(dashdot line), prediction (solid black line), and error bars (solid grey line).

42

CHAPTER 3. FUSION OF PHYSICALLY DISTRIBUTED REGRESSION MODELS

Data sets of different size at each node

(b)
Figure 3.5: Distributed cooperative Bayesian learning strategies experimented on the

toy data set. (a) Fusion of 8 MLP networks. (b) Fusion of 8 RBF networks. Function

(dashdot line), prediction (solid black line), and error bars (solid grey line).

43

CHAPTER 3. FUSION OF PHYSICALLY DISTRIBUTED REGRESSION MODELS

quantity | regression | data set | NRMSE tr | NRMSE test

Few MLP toy 0.8902 0.9124

- - scatterometry 1,2442 1.2764

- RBF toy 0.0859 0.1033

E - scatterometry 0.1189 0.1435
Lot MLP toy 4.0660 4.0929

- - scatterometry 5.6587 5.7225

- RBF toy 0.0806 0.0806

- - scatterometry 0.1129 0.1135
Different MLP toy 7.9856 8.4628

- - scatterometry | 11.1789 11.7854

- RBF toy 0.0762 0.0863
- - scatterometry 0.1065 0.1232

Table 3.3: Distributed cooperative Bayesian learning strategies experimented on the
toy data set and on the scatterometry data. Training normalized root mean square
error (NRMSE tr). Test normalized root mean square error (NRMSE test).

Partial conclusion

First of all, we can observe that the distributed Bayesian learning strategies give poor

results when applied to multilayer perceptrons. According to Bishop (2006, [1]), one

property of such models is that different weight vectors #; can all give rise to the same

mapping function from inputs to outpouts. If those weights vectors are far from one

another, there is no reason to believe that a simple average ais will create a better

predictive model.

Conversely, we obtained very stable and accurate results using the distributed

Bayesian learning strategies on radial basis function networks. In particular, we ob-

served that the more data points there are at each node, the better the predictions of

the fused model are.

44

CHAPTER 3. FUSION OF PHYSICALLY DISTRIBUTED REGRESSION MODELS

3.4.2 Parametric hierarchical Bayesian modelling

Few data at each node

0 02 «4 o8 08 1 12 14 16 18 @

(b)
Figure 3.6: Parametric hierarchical Bayesian modelling experimented on the toy data

set. (a) Fusion of 40 MLP networks. (b) Fusion of 40 RBF networks. Function (dashdot

line), prediction (solid black line), and error bars (solid grey line).

45

CHAPTER 3. FUSION OF PHYSICALLY DISTRIBUTED REGRESSION MODELS

Lots of data at each node

i a a es aa en

(b)
Figure 3.7: Parametric hierarchical Bayesian modelling experimented on the toy data

set. (a) Fusion of 10 MLP networks. (b) Fusion of 10 RBF networks. Function (dashdot

line), prediction (solid black line), and error bars (solid grey line).

46

CHAPTER 3. FUSION OF PHYSICALLY DISTRIBUTED REGRESSION MODELS

Data sets of different size at each node

(b)
Figure 3.8: Parametric hierarchical Bayesian modelling experimented on the toy data

set. (a) Fusion of 8 MLP networks. (b) Fusion of 8 RBF networks. Function (dashdot

line), prediction (solid black line), and error bars (solid grey line).

47

CHAPTER 3. FUSION OF PHYSICALLY DISTRIBUTED REGRESSION MODELS

quantity | regression | data set | NRMSE tr | NRMSE test

Few MLP toy 0.3254 0.3389

- - scatterometry 0.4554 0.4737

- RBF toy 0.2815 0.3012
- - scatterometry 0.3949 0.4209

Lot MLP toy 1.5121 1.5356

= - scatterometry 2.1156 2.1463

- RBF toy 6.8136 6.8243
- - scatterometry 9.5229 9.5393

Different MLP toy 3.0158 3.0192

- - scatterometry 4.2159 4.2209

- RBF toy 23.4616 23.4900
- - scatterometry | 32.7990 32.8353

Table 3.4: Parametric hierarchical Bayesian modelling experimented on the toy data set
and on the scatterometry data. Training normalized root mean square error (VRMSE
tr). Test normalized root mean square error (NRMSE test).

Partial conclusion

When there are only few training data points at each node, we found that parametric

hierarchical Bayesian modelling gives quite accurate predictions for both multilayer

perceptrons and radial basis function networks. When the models are given some more

data, we observed that the empirical distribution of the maximum a posteriori weight

vectors cannot be fitted with a Gaussian and so the fused predictive model is far from

the underlying process studied. In the neural network case, since very different weight

vectors can give rise to similar output functions (symmetry), the more data is given to

the agents, the more they specialize during the training process, and the more different

the estimated weight vectors potentially are. In this situation, there is no reason to

believe that those parameters can be fitted with a Gaussian distribution. However,

radial basis function networks do not have such a property and we expected to obtain

better results.

48

CHAPTER 3. FUSION OF PHYSICALLY DISTRIBUTED REGRESSION MODELS

3.4.3 Non-parametric hierarchical Bayesian modelling

Few data at each node

(b)
Figure 3.9: Non-parametric hierarchical Bayesian modelling experimented on the toy

data set. (a) Fusion of 40 MLP networks. (b) Fusion of 40 RBF networks. Function

(dashdot line), prediction (solid black line), and error bars (solid grey line).

49

CHAPTER 3. FUSION OF PHYSICALLY DISTRIBUTED REGRESSION MODELS

Lots of data at each node

(b)
Figure 3.10: Non-parametric hierarchical Bayesian modelling experimented on the toy

data set. (a) Fusion of 10 MLP networks. (b) Fusion of 10 RBF networks. Function

(dashdot line), prediction (solid black line), and error bars (solid grey line).

50

CHAPTER 3. FUSION OF PHYSICALLY DISTRIBUTED REGRESSION MODELS

Data sets of different size at each node

a
* oz 04 08 O8 1 12 (4 46 18 2

(b)
Figure 3.11: Non-parametric hierarchical Bayesian modelling experimented on the toy

data set. (a) Fusion of 8 MLP networks. (b) Fusion of 8 RBF networks. Function

(dashdot line), prediction (solid black line), and error bars (solid grey line).

51

CHAPTER 3, FUSION OF PHYSICALLY DISTRIBUTED REGRESSION MODELS

quantity | regression | data set | NRMSE tr | NRMSE test

Few MLP toy 0.3407 0.3413
- - scatterometry 0.4762 0.4782
= RBF toy 0.2981 0.3021

> = scatterometry 0.4165 0.4227
Lot MLP toy 0.3217 0.3335

- - scatterometry 0.4497 0.4664
- RBF toy 0.2557 0.2622
- : scatterometry 0.3572 0.3679

Different MLP toy 0.2458 0.2775
- - scatterometry 0.3437 0.3869
- RBF toy 0.2967 0.2983

- - scatterometry 0.4149 0.4173

Table 3.5: Non-parametric hierarchical Bayesian modelling experimented on the toy
data set and on the scatterometry data. Training normalized root mean square error
(NRMSE tr). Test normalized root mean square error (NRMSE test).

Partial conclusion

Non-parametric hierarchical Bayesian modelling is one of the most stable technique

that we used. It gives similar results for both multilayer perceptrons and radial basis

function networks. Moreover, it is very robust regarding the number of points stored on

each node. Contrary to the method we saw in the previous Section, this technique can

be used when the empirical distribution of the maximum a posteriori weight vectors

cannot be fitted with a Gaussian.

CHAPTER 3. FUSION OF PHYSICALLY DISTRIBUTED REGRESSION MODELS

3.4.4 Error averaging

Few data at each node

(b)
Figure 3.12: Error averaging experimented on the toy data set. (a) Fusion of 40 MLP

networks. (b) Fusion of 40 RBF networks. Function (dashdot line), prediction (solid

black line), and error bars (solid grey line).

53

CHAPTER 3. FUSION OF PHYSICALLY DISTRIBUTED REGRESSION MODELS

Lots of data at each node

(b)
Figure 3.13: Error averaging experimented on the toy data set. (a) Fusion of 10 MLP

networks. (b) Fusion of 10 RBF networks. Function (dashdot line), prediction (solid

black line), and error bars (solid grey line).

54

CHAPTER 3. FUSION OF PHYSICALLY DISTRIBUTED REGRESSION MODELS

Data sets of different size at each node

(b)
Figure 3.14: Error averaging experimented on the toy data set. (a) Fusion of 8 MLP

networks. (b) Fusion of 8 RBF networks. Function (dashdot line), prediction (solid

black line), and error bars (solid grey line).

55

CHAPTER 3. FUSION OF PHYSICALLY DISTRIBUTED REGRESSION MODELS

quantity | regression | _dataset__| NRMSE tr | NRMSE test

Few MLP toy 0.3214 0.3479

. - scatterometry 0.4209 0.4876

- RBF toy 0.2631 0.2939
Ed - scatterometry 0.3634 0.4120

Lot MLP toy 0.2349 0.2790

- - scatterometry 0.3284 0.3900
- RBF toy 0.2442 0.2843

i - scatterometry 0.3487 0.4012
Different MLP toy 0.3175 0.3315

- - scatterometry 0.4399 0.4621

- RBF toy 0.2909 0.2917
- - scatterometry 0.4066 0.4078

Table 3.6: Error averaging experimented on the toy data set and on the scatterometry
data. Training normalized root mean square error (NRMSE tr). Test normalized root
mean square error (NRMSE test).

Partial conclusion

Error averaging gives similar results for both multilayer perceptrons and radial basis

function networks. It is a simple, widely used, and accurate technique. However, one of

its weakness is that if there is a node that outputs a prediction far from all the others,

since the mean is an estimator very sensitive to outliers, then the fused predictive

model risks to be far from the underlying process.

56

CHAPTER 3. FUSION OF PHYSICALLY DISTRIBUTED REGRESSION MODELS

3.4.5 Weighted error averaging

Few data at each node

Figure 3.15: Weighted error averaging experimented on the toy data set. Fusion of 40

RBF networks. Function (dashdot line), prediction (solid black line), and error bars

(solid grey line).

57

CHAPTER 3. FUSION OF PHYSICALLY DISTRIBUTED REGRESSION MODELS

Lots of data at each node

-05

(b)
Figure 3.16: Weighted error averaging experimented on the toy data set. (a) Fusion of

10 MLP networks. (b) Fusion of 10 RBF networks. Function (dashdot line), prediction

(solid black line), and error bars (solid grey line).

58

CHAPTER 3. FUSION OF PHYSICALLY DISTRIBUTED REGRESSION MODELS

Data sets of different size at each node

(b)
Figure 3.17: Weighted error averaging experimented on the toy data set. (a) Fusion of

8 MLP networks. (b) Fusion of 8 RBF networks. Function (dashdot line), prediction

(solid black line), and error bars (solid grey line).

59

CHAPTER 3. FUSION OF PHYSICALLY DISTRIBUTED REGRESSION MODELS.

quantity | regression | data set | NRMSE tr | NRMSE test

Few MLP toy 9.9525e+04 | 1.1283e+05
= - scatterometry | 1.3926e+05 | 1.5732e+-05
Et eRBE) toy 2.2535 2.5550
- - scatterometry 3.1501 3.5715

Lot MLP toy 0.2340 0.2700
- - scatterometry 0.3409 0.3807
- RBF toy 0.2374 0.2719
~ : scatterometry 0.3610 0.3812

Different MLP toy 0.2848 0.2862

- - scatterometry 0.3982 0.4000

- RBF toy 0.2832 0.2850
= - scatterometry 0.3960 0.3984

Table 3.7: Weighted error averaging experimented on the toy data set and on the
scatterometry data. Training normalized root mean square error (NRMSE tr). Test
normalized root mean square error (NRMSE test).

Partial conclusion

We found that weighted error averaging does not work when there are few points

at each node. Indeed, if we examine the results obtained in detail, we can observe

that the values of the predictions have become very high (we could not even plot the

results obtained with multilayer perceptrons). This is mainly due to the fact that the

algorithm is based on the inversion of the covariance matrix C’ between the noises of

the models. Thus if the correlations are small, the values of C-! become significant.

Otherwise, weighted error averaging gives more accurate predictions and is more

stable than simple error averaging. It also gives similar results for both multilayer

perceptrons and radial basis function networks.

60

CHAPTER 3. FUSION OF PHYSICALLY DISTRIBUTED REGRESSION MODELS

3.4.6 Bayesian model averaging

Few data at each node

So @ Gh) (06 08) Vi ntf es Wel 14 tem 2

(b)
Figure 3.18: Bayesian model averaging experimented on the toy data set. (a) Fusion of

40 MLP networks. (b) Fusion of 40 RBF networks. Function (dashdot line), prediction

(solid black line), and error bars (solid grey line).

61

CHAPTER 3. FUSION OF PHYSICALLY DISTRIBUTED REGRESSION MODELS

Lots of data at each node

(b)
Figure 3.19: Bayesian model averaging experimented on the toy data set. (a) Fusion of

10 MLP networks. (b) Fusion of 10 RBF networks. Function (dashdot line), prediction

(solid black line), and error bars (solid grey line).

62

CHAPTER 3. FUSION OF PHYSICALLY DISTRIBUTED REGRESSION MODELS

Data sets of different size at each node

(b)
Figure 3.20: Bayesian model averaging experimented on the toy data set. (a) Fusion of

8 MLP networks. (b) Fusion of 8 RBF networks. Function (dashdot line), prediction

(solid black line), and error bars (solid grey line).

63

CHAPTER 3. FUSION OF PHYSICALLY DISTRIBUTED REGRESSION MODELS

quantity | regression | _data set__ | NRMSE tr | NRMSE test
Few MLP toy 0.4046 0.4672

= - scatterometry 0.5690 0.6529

- RBF toy 0.3971 0.4659
= - scatterometry 0.5562 0.6513

Lot MLP toy 0.2262 0.2897
- - scatterometry 0.3134 0.4051

- RBF toy 0.2392 0.2834
= : scatterometry 0.3353 0.3962

Different MLP toy 0.2810 0.2861

- - scatterometry 0.3940, 0.4213

- RBF toy 0.2868 0.2869
- - scatterometry 0.4010 0.4023

Table 3.8: Bayesian model averaging experimented on the toy data set and on the
scatterometry data. Training normalized root mean square error (VRMSE tr). Test
normalized root mean square error (NRMSE test).

Partial conclusion

We can observe that Bayesian model averaging gives poor results when there are only

few data points at each node. This is due to the fact that the different marginal like-

lihoods are not well estimated. Otherwise, this method outputs equivalent predictions

as weighted error averaging. It gives similar results for both multilayer perceptrons

and radial basis function networks.

64

CHAPTER 3. FUSION OF PHYSICALLY DISTRIBUTED REGRESSION MODELS

3.4.7 Product of predictive distributions

Few data at each node

(b)
Figure 3.21: Product of predictive distributions experimented on the toy data set. (a)

Fusion of 40 MLP networks, (b) Fusion of 40 RBF networks. Function (dashdot line),

prediction (solid black line), and error bars (solid grey line).

65

CHAPTER 3. FUSION OF PHYSICALLY DISTRIBUTED REGRESSION MODELS

Lots of data at each node

15

(b)
Figure 3.22: Product of predictive distributions experimented on the toy data set. (a)

Fusion of 10 MLP networks. (b) Fusion of 10 RBF networks. Function (dashdot line),

prediction (solid black line), and error bars (solid grey line).

66

CHAPTER 3. FUSION OF PHYSICALLY DISTRIBUTED REGRESSION MODELS

Data sets of different size at each node

(b)
Figure 3.23: Product of predictive distributions experimented on the toy data set. (a)

Fusion of 8 MLP networks. (b) Fusion of 8 RBF networks. Function (dashdot line),

prediction (solid black line), and error bars (solid grey line).

67

ASTON UNIVERSITY

LIBRARY & INFORMATION SERVICES

CHAPTER 3. FUSION OF PHYSICALLY DISTRIBUTED REGRESSION MODELS

quantity | regression | _data set | NRMSE tr | NRMSE test

Few MLP toy 0.3090 0.3356
- - scatterometry 0.4312 0.4491
- RBF toy 0.2600 0.2867
- - scatterometry 0.3623 0.4011

Lot MLP toy 0.2341 0.2787
- - scatterometry 0.3472 0.3923,
- RBF toy 0.2432 0.2839
- - scatterometry 0.3454 0.3970

Different MLP toy 0.2958 0.2993

- = scatterometry 0.4126 0.4185
4 RBF toy 0.2881 0.2881
- - scatterometry 0.4028 0.4042

Table 3.9: Product of predictive distributions experimented on the toy data set and
on the scatterometry data. Training normalized root mean square error (NRMSE tr).
Test normalized root mean square error (NRMSE test).

Partial conclusion

As non-parametric hierarchical Bayesian modelling, the product of predictive distri-

butions is an interesting technique that is very stable regarding the number of points

stored on each node. Indeed, in the three series of experiments that we carried out,

we obtained very accurate predictions. However, this method underestimates the er-

ror bars. More precisely, we found that the more we added nodes to our distributed

learning environment, the more the estimated variances decreased to zero. In Section

2.1, we showed that an underlying process can always be decomposed into two terms.

The first one represents the deterministic part of the mapping, whereas the second

corresponds to a random variable, called noise, with unknown g? variance. Thus, we

expect a fused model to ouput both accurate predictions and good estimates of the

positive underlying noise variance.

68

CHAPTER 3. FUSION OF PHYSICALLY DISTRIBUTED REGRESSION MODELS

3.4.8 The Bayesian committee machine

Few data at each node

(b)
Figure 3.24: The Bayesian committee machine experimented on the toy data set. (a)

Fusion of 40 MLP networks. (b) Fusion of 40 RBF networks. Function (dashdot line),

prediction (solid black line), and error bars (solid grey line).

69

CHAPTER 3. FUSION OF PHYSICALLY DISTRIBUTED REGRESSION MODELS

Lots of data at each node

(b)
Figure 3.25: The Bayesian committee machine experimented on the toy data set. (a)

Fusion of 10 MLP networks. (b) Fusion of 10 RBF networks. Function (dashdot line),

prediction (solid black line), and error bars (solid grey line).

70

CHAPTER 3. FUSION OF PHYSICALLY DISTRIBUTED REGRESSION MODELS

Data sets of different size at each node

-05|

(b)
Figure 3.26: The Bayesian committee machine experimented on the toy data set. (a)

Fusion of 8 MLP networks. (b) Fusion of 8 RBF networks. Function (dashdot line),

prediction (solid black line), and error bars (solid grey line).

i

CHAPTER 3. FUSION OF PHYSICALLY DISTRIBUTED REGRESSION MODELS

quantity | regression |__dataset | NRMSE tr | NRMSE test
Few MLP + MCMC toy 0.4305 0.4467

- - scatterometry 0.6021 0.6244
- MLP + Linearization toy 0.9962 1.0176
> = scatterometry 1.3925 1.4245
- RBF toy 0.2823 0.2912
- - scatterometry 0.3945 0.4072

Lot MLP + MCMC toy 0.2585 0.2654
- - scatterometry 0.3723 0.3710
- MLP + Linearization toy 0.9950 1.0375
- - scatterometry 1.3400 1.4503
- RBF toy 0.2684 0.2790
- - scatterometry 0.3721 0.3902

Different MLP + MCMC toy 0.2509 0.2721
- - scatterometry 0.3607 0.3842
- MLP + Linearization toy 0.9965 1.1500
- - scatterometry 1.3933 1.6075
- RBF toy 0.2732 0.2812
e - scatterometry 0.3823 0.3938

Table 3.10: The Bayesian committee machine experimented on the toy data set and
on the scatterometry data. Training normalized root mean square error (VRMSE tr).
Test normalized root mean square error (NRMSE test). For multilayer perceptrons,
two approximations of the prior over functions are experimented : linearization of the
model (Linearization) and Markov chain Monte Carlo (MCMC).

Partial conclusion

We recall that analytical expressions exist when applying the Bayesian committee

machine to combine radial basis function networks. Thus, we obtained very accurate

predictions when using such models. Here, we aim a testing some approximations that

we proposed in order to apply the BCM to fuse multilayer perceptrons.

First of all, we can observe that the linearization of multilayer perceptron output

functions, to estimate the prior over functions, always leads to poor results. This is

due to the fact that the prior over the weights is broad and so a first order Taylor

expansion is not accurate. We obtained better predictions using Markov chain Monte

Carlo to approximate the prior over the functions with a Gaussian distribution.

Moreover, we obtained poor results when there were few training data points at

72

CHAPTER 3. FUSION OF PHYSICALLY DISTRIBUTED REGRESSION MODELS

each node. Indeed, in this situation, since the posterior over the weights is not sharply

peaked around the maximum a posteriori, Laplace techniques give rise to poor approx-

imations of the posterior over functions. Otherwise, we obtained accurate predictions

and our experiments suggest that Laplace approximations and Markov chain Monte

Carlo can be used in the BCM framework to combine multilayer perceptrons.

3.4.9 Conclusion

In this Chapter, we described some techniques that can be used to combine models

trained using initially physically distributed data. We showed that most of these meth-

ods had to be extended in order to tackle our problem. The biggest part of our work

consisted in applying the Bayesian committee machine to fuse neural network predic-

tions. Thus, we demonstrated that the posterior distribution over the functions can be

approximated using the Jacobian of F, = (f(w, #1), f(w,22),..., f(w,%q))! to linearize

the model and Laplace techniques to estimate the posterior over the weights. More-

over, through some experiments, we found that Markov chain Monte Carlo methods

give rise to very good approximations of the prior over the functions.

We observed that some algorithms to combine models, such as parametric hier-

archical Bayesian modelling, weighted error averaging, and Bayesian model averaging

were not stable with respect to the number of points stored on each node. Except

when there was few training data, we obtained the best predictions using the Bayesian

committee machine.

We chose not to specify the computational costs of the different methods we used

in this Chapter since they were all negligible.

In the next Chapter, we will assume that we are given a single training data set. We

will show that it is possible to create a distributed learning environment by distributing

data on nodes. Then, some approximation methods can be used to work in the Gaussian

process framework when the number N of training data points is large.

73

Chapter 4

Gaussian Process Regression Over

Large Data Sets

In the last two decades, linear models and neural networks have been widely used for

regression. They are said to be parametric methods since they use well defined output

functions to approximate underlying processes. Thus, in Section 2.1, we showed that

linear models are based on a set of basis functions {¢o(x), ¢:(x),..., @a(a)} with fixed

centres whereas neural networks use hidden units which depend on parameters that

can be adjusted.

In section 2.1.3 we demonstrated that, when defined in the space of functions rather

than the space of parameters, linear models are instances of Gaussian processes. Mor-

ever, as mentioned previously, Neal (1996 [11]) showed in his work that for specific

choices of priors p(w), the prior over functions p(’) of a one hidden layer neural net-

work converges to well known Gaussian process priors as the number of hidden neurons

tends to infinity. Those two observations motivate the idea of using Gaussian processes

directly instead of parametric approaches.

Unfortunately, Gaussian processes have got a poor scaling with large data sets

(Choudhury et al., 2002 [2]) since they require matrix inversions of which the compu-

tational cost and the memory requirement are of order O(N*) and O(N?) respectively,

where N is the number of training data points considered. To overcome such lim-

74

CHAPTER 4. GAUSSIAN PROCESS REGRESSION OVER LARGE DATA SETS

itations, some sparse approximation methods have been developed. Rasmussen and

Quinonero-Candela noted (2005 [16]) that all these approximation schemes treat ex-

actly only a subset of variables called latent variables whereas the remaining variables

are given some approximate, but computationally cheaper treatments.

In this Chapter our approach is different. Indeed, we investigate techniques that

can be described in a distributed learning environment and that aim at speeding up

Gaussian process regression. Through the Sections of this Chapter we demonstrate

that the training and the prediction tasks can be treated separatly. Thus, after hav-

ing reviewed the Gaussian process limitations, we show in Section 4.2 how the BCM

can obtain forecasts when the number of training data points is large and the model

hyperparameters given. Then, in Section 4.3, we investigate the factorization of the

hyperposterior and we demonstrate how it can be used during the learning process.

In section 4.3.2, we describe a very recent method called Laplace propagation that we

applied as an optimization algorithm. Finally, we present the experiments that we

carried out and we draw some conclusions.

4.1 Gaussian Process Limitations

As other regression models, Gaussian processes are based on two different steps. First,

given a data set {x, 7}, an algorithm is used to optimize either the likelihood function

or the hyperposterior. This operation is commonly known as the training process.

Then, given the solution 6, the prediction task consists of computing forecasts for any

new input point. We recall that the hyperparameter @ that defines the Gaussian process

covariance function has to be positive and so we constrain 6 = exp(¢).

In the Gaussian process framework, as we show in the two next Sections, both steps

require the inversion of the covariance matrix C given by

C(ai, xj) = k(ai, 23) + 86 — J) Vai, 2; € x

If we assume that we are given N training data points, then C has got N? elements.

Thus, the computational cost and the amount of memory required for the matrix

75

CHAPTER 4. GAUSSIAN PROCESS REGRESSION OVER LARGE DATA SETS

inversion are of order O(N%) and O(N?) respectively.

4.1.1 Training of the hyperparameters

As described in Section 2.1.3, the log-likelihood function is given by

In p(T|@) = -5 Indet C — Cor -— > In((27). (4.1)

In order to use an optimization algorithm, such as scale conjugate gradient, the gradient

of (4.1) has to be computed. Since 0 = exp(¢), we have

oC _0Cdo_ dC

a ~ ob de op PP):

Using standard formulae for matrix differentiation, we obtain

a _ _ exp(9) 0C ¥-1 OC crn Bae) = 3 {ue (o =) re 200 at

If we now consider the hyperposterior, we have

ov
2)

20 prior

al d
Inp(AIT, O rior) = —5 Indet o-3r'o'T- - 2 in(2n)—$ non) ~$ In(0> io) —In(Z).

and its corresponding gradient is given by

a Ee SeRbte) f (010C\ ae Pe 3g M PCT: Sprior) = 3 {ue (co =) TC 30 r} ae

4.1.2 Predictions

Given a new input xy41, we recall that the predictive distribution is given by

E(x) ~ p(twsilT) = N (t;k'CT, c— k'O-'k) .

4.2 The Bayesian Committee Machine for Gaussian

Process Predictions

In Chapter 3, we saw that the Bayesian committee machine can be used to combine

any kind of Bayesian regression models. For our experiments, we applied it to fuse

76

CHAPTER 4. GAUSSIAN PROCESS REGRESSION OVER LARGE DATA SETS

radial basis function networks and multilayer perceptrons trained using the evidence

procedure. We now see the BCM as a technique to obtain approximations of Gaussian

process predictions when the number of training data points is large.

Assume that we are given a single training data set {y,T} of size N. In order to

use the BCM, we split the data into several data sets that are then stored on nodes.

Following Tresp, better approximations can be achieved by first using some clustering

techniques and assigning the data of each cluster to a separate node. The predictive

distribution is then estimated using

m ee P(Lyl {xs THY) & ams [Tals Ts): (4.2)
(Ty) nee

where, following Section 3.3.2, the prior and the different posteriors are given by

P(Ty) = N (Ty; 0,2) ,

and

P(T |x, Tj) = N (Tg; B[Tq];, cov(Ty);) -

Here, we used E[Tj]; = A'C;*T; and cov(T,); = B — A’C;"A, where C; defines the

Gaussian process covariance matrix of node j. Moreover, to simplify the notations

we ignored the dependency of A on the training data set {x;,T7j}. Since all these

distributions are Gaussians, following (3.5), the mean and the covariance matrix of the

predictive distribution have got a simple form

ET] = cov(T, 7,) 5 (cov (cov(T,);)~*E[Ty];, (4.3)
jai

with

cov(Ty)-? = =(m = 1)E-! + }\(cov(T);)7*. (4.4)
ret

Thus, we observe that instead of having to invert a N-dimensional matrix as in

the Gaussian process framework, the BCM approximation requires inversions of a-

dimensional and q-dimensional matrices, where a is the number of points stored on

each node and g the number of query points. The computational cost to calculate each

term in the sums (4.3) and (4.4) is of order O(a) if a >> gq. Conversely, if g > a, the

ue

CHAPTER 4. GAUSSIAN PROCESS REGRESSION OVER LARGE DATA SETS

computational cost becomes O(q?). Tresp suggests to use a = q since then all matrices

that have to be inverted have the same size. Thus, the BCM overall computational

cost is linear with respect to NV

3 N 3 2 O(ma*) = Ora ') = O(Na’) = O(N),

ifa<N.

We found that (4.3) and (4.4) can be computed with an iterative algorithm, such

that the memory which is used at one iteration is reused at the next iterations, Indeed,

agent j calculates cov(T,);)~', cov(Ty);)~!B[Zy];, and repectively adds those terms to

j-l

—(m = 1)E7! + S\(cov(T,):)-1,
i=1

and
g-l

SY (cov(Ty):)EITali-
i=1

This process is repeated until 7 = m. As before, if we fix a = q, the overall memory

required is of order O(a’).

To conclude, for a fixed a, if we assume that the number m of agents is not bounded,

then the Bayesian committee machine can be used to obtain approximations of Gaus-

sian process predictions when the number N of training data points is large.

4.3 Factorization of The Hyperposterior

In the previous Section, we showed that the Bayesian committee machine can be used

to give to Gaussian process predictions some approximate but computationally cheaper

treatments. However, we did not specify how to train the hyperparameter 9. In his

work, Tresp suggests to choose randomly some points of the original training data set

{x, 7}. Then, the corresponding Gaussian process likelihood function or hyperposterior

can be optimized. However, because of the problems we saw previously, if N is large,

then only a very small portion of {y,7'} can be used for training.

We found that it was possible to approximate the learning process by keeping the

original data set as a whole. Indeed, using equations inspired by the BCM (4.2), the

78

CHAPTER 4. GAUSSIAN PROCESS REGRESSION OVER LARGE DATA SETS

hyperposterior can be factorized

POMLX) TL Frio) & — P(# Orion) T1321 P(Tilxs, 4), (4.5)

od Hoe js PUXI: Tis prion)» (4.6)

where P($|o prior) is a chosen distribution that reflects our prior belief and to go from

(4.5) to (4.6), we used Bayes’ rule on each term in the product.

As before, this expression is exact if the different data sets {x;, Tj} are uncondi-

tionally independent. A good approximation might be achieved by clustering the data

and then assigning the data of each cluster to a separate node.

In this part, our work consisted of experimenting two methods to optimize the

factorized hyperposterior.

4.3.1 Shared hyperparameters

This approach is inpired by Schwaighofer’s work (2005, [17]) and aims at using directly

an algorithm, such as scale conjugate gradient, to optimize the factorized hyperposte-

rior. It requires evaluations of the logarithm of (4.6)

m

In p(Sl{x3; TH} FE1» Oprion) = —(™ = 1) Inp(lo rion) + _Inp(4|x5,T}, Fron) (4.7)
j=l

and of the corresponding gradient

V In (BLL X4, TH Fas Sprion) = —(™ — 1)¥ In p(Pozrion) + Vn P(LN3; Ty Prion)
fa (4.8)

After some iterations, we obtain the solution § = exp(¢).

If @ represents the number of points stored on each node, then we know that

the terms in the sums (4.7) and (4.8) have got a computational cost and a memory

requirement of order O(a*) and O(a?) respectively. Thus, if we apply an iterative

process, such that the memory used at one step is reused at the next step, the overall

computational cost and memory requirement to evaluate either the logarithm of the

factorized hyperposterior or its gradient are given by

O(ma*) = O(a) = O(Na?) = O(N),

"2.

CHAPTER 4. GAUSSIAN PROCESS REGRESSION OVER LARGE DATA SETS

and O(a”).

To conclude, as for the Bayesian committee machine and given a fix a, if the number

m of nodes is not bounded, then the whole data set {x, 7} can be used for the training

even if the number N of data points is large. An important aspect of this approach is

that the exact expression of the factorized hyperposterior is used.

4.3.2 Individual hyperparameters

In the previous Section, we described a single optimization procedure where the log-

hyperposterior and its gradient are decomposed into sums of simpler terms thanks to

the factorization (4.6). In particular, we showed that this method gives rise to a single

hyperparameter 6. We now present a different approach. Indeed, we assume that local

agents use the distributed data sets {x;,7;} to train. In other words, they optimize

independently the different distributions p(¢|x;, Ts ortor) to give rise to m solutions

Local Laplace approximations

In order to obtain a single estimate 6, we experimented local Laplace approximations.

Indeed, each agent j estimates its own hyperposterior with a Gaussian distribution

N (6; 93; He), where H; is the hessian matrix of — In p(4|x5, Tj, Cprion)- Then, using

(4.6) and basic properties of the Gaussian distribution (see Section 3.2.4), we calculate

ma [] x31), rion) © N (65 byuss Hp) » TD eS

where ¢yus = Hyus Det Hj; and Hyys = fel H;. Thus, we use the hyperparameter

6= exp(@jus) for the prediction task.

In Section 4.3.2, we show that the calculation of the hessian matrix at node j

requires the inversion of the Gaussian process covariance matrix C;. Moreover, we

know that the computational cost and the memory requirement for each agent to

optimize its own hyperposterior are of order O(a) and O(a?) respectively. Thus, if

we apply an iterative process, such that the memory used at one step is reused at the

80

CHAPTER 4. GAUSSIAN PROCESS REGRESSION OVER LARGE DATA SETS

next step, the overall computational cost and memory requirement for the optimization

procedures and the local Laplace approximations are given by

3 N 3 2 O(ma®) = O(a) = O(Na*) = O(N),

and O(a’).

We recall that we obtained the same characteristics in the method described in

the previous Section. However, we now use local approximations and not the exact

factorized hyperposterior. Thus, we expect to get less accurate results.

The negative log-hyperposterior hessian matrix

The expression of the negative log-likelihood hessian matrix was first derived in 2005

(Zhang and Leithead, [26]). It is given by

il = Oe) dl 06 1) Pa Oe. ae 1 Wig oN ig ee 4: Las gt G 36.00, +5 Cc BoC Obs C do (4.9)

aC 1 aC a mip 4 laa-i =1 XONEE OT + TO EEO, Va,bE {12.4}, (4.10)

where d is the dimensionality of 6 = exp(¢).

Thus, since p(¢|T, Oo ior) « P(T|¢)P(Olo3-ior)s the negative log-hyperposterior hes-

sian matrix is defined as

Ay = Lay t+ , Va,b € {1,2,...,d},
Oprior

if we use an isotropic Gaussian distribution P(Ploprior) =N (¢ Oe Pa)’

4.4 Laplace Propagation

In the previous Section with demonstrated that after having split the data set {x,T}

into multiple data sets {x;,7;} stored on nodes, an equation inspired by the Bayesian

committee machine (4.2) can be used to factorize the hyperposterior p(4|{x;, Tj Vea Geno):

Then, we showed that two methods are applicable for the optimization procedure even

if the number N of training data points is large.

81

CHAPTER 4. GAUSSIAN PROCESS REGRESSION OVER LARGE DATA SETS

We now present an algorithm, called Laplace Propagation (LP), that was introduced

very recently in the machine learning community (Smola et al., 2004 [18]). Assume

that we are given the factorized distribution

P(Ol{x;, Tye Caan) x PbO prion [[eGhu.¢)
j=l

It is important to note that this expression is similar to our previous factorized hy-

perposterior. We simply do not use Bayes’ rule to invert each term P(T;|x;,@) in the

product (4.6). According to Smola, the LP strategy relies on the assumption that if

we succeed in finding good approximations of those terms by (T}|x;,), then we will

obtain an approximate maximizer of p(4|{xj,7)}%%1, Crrior) by maximizing

POC rior) I p(Tjlxj. 9)

This requires good approximations of each of the P(T;\x;,¢) at the maximum of

P(Ol{x;, Tj ye cb) Coren): This can be insured by maximizing

P($1oprion P(Ti1x33) | [(Tlx:, 4). (4-11)
ify

Laplace methods are then used to approximate p(T;|x;,) using

Inp(Tj|x;, 4) © Inp(Tj|xj, $3) + 9)(¢ — o;) + (6 — 6) Hy(6 — 45),

where @, is the maximum of (4.11), g; = V np(Z}|x;,¢,), and H; = VV Inp(Tj|x;, 9).

The algorithm starts by fixing p(T;|y;,¢) = cst, Vj € {1,2,...,m}. Then, we have

to establish methods for updating the estimates. One approach consists of performing

such updates sequentially. In other words, at iteration k, we approximate p(Tk|x«,¢)

by p(Ti|xx,¢). This new estimate is then directly used for the optimization of (4.11)

at iteration k + 1. It is also possible to update our approximations in parallel. Thus,

at iteration k, each node j optimizes (4.11) and we obtain m solutions 6; = exp(¢,).

Then, all the nodes update their corresponding approximations P(T;|x;,¢)- In this

approach, the algorithm stops when all the hyperparameters agree

6; = 6, Vj €{1,2,...,m}.

82

CHAPTER 4. GAUSSIAN PROCESS REGRESSION OVER LARGE DATA SETS

We chose this method to update the different estimates. Thus, the LP has got

a very interesting property in our framework. Indeed, at the first iteration, since we

are given p(Tj|x;,¢) = est, Vj € {1,2,...,m}, each node j optimizes (4.11) which is

equivalent to optimize

P(T31x5, 9) & P(b|O prior) P(T;|X3, 4).

In other words, all the nodes optimize indendently their own hyperposterior and we

have g; = VInp(Tj|x;,4;) = 0 and

Inp(T;|x;,.9) © Inp(Tjlx3, 4) + (¢ — 6;)'Hy(¢ — 4). (4.12)

Thus, after the first iteration, all the solutions 0; = exp(¢@,) are exactly the ones that we

obtained using the method presented in Section 4.3.2. Whereas the algorithm stopped

at this point, we are now free to continue the approximation.

Since each node optimizes (4.11) and evaluates its own negative log-likelihood hes-

sian matrix, then the overall computational cost and memory requirement are the same

as with local Laplace approximations, that is O(N) and O(a”).

4.5 Experiments

In the previous Sections, we showed that the Bayesian committee machine can approxi-

mate Gaussian process predictions when the number N of training data points is large.

Moreover, we demonstrated through three different algorithms that using factorized

distributions, all the data can be used for the training procedure. We recall that we

showed that all these methods have got the same order O(N) of computational cost

if the number m of models is not bounded. However, some of those techniques use

optimization algorithms, such as scale conjugate gradient, and we have not discussed

yet how fast they converge to solutions 6 = exp(¢).

In this Section, through the experiments on the scatterometry data, our goal is

twofold. First, we want to analyse how fast and accurate the methods that we have

seen in this Chapter are. Then, we want to compare those results with multilayer

perceptrons and radial basis function networks trained using the evidence procedure.

83

CHAPTER 4. GAUSSIAN PROCESS REGRESSION OVER LARGE DATA SETS

We are given a data set with 180000 data points. We split the data into two

data sets of the same size. The first one is used for the training whereas the second

aims at testing the models. Because the number N of training data points is very

large, Gaussian processes are not applicable. Indeed, we found that programs based

on those regression methods stop a few seconds after they started because of out-

of-memory problems. Thus, to estimate Gaussian process predictions, we use the

Bayesian committee machine and to approximate the training procedure, we apply

methods presented in Sections (4.3.1), (4.3.2), and (4.4). We also want to experiment

if, as noted by Tresp, better approximations can be obtained by clustering the training

data and then assigning the data of each cluster to a separate node.

4.5.1 Results

Model RMS train | RMS test | Training | Prediction

RBF (2 hidden units) 0.8160 0.8327 27s 258
RBF (10 hidden units) 0.5724 0.5867 2.29min 36s
RBF (50 hidden units) 0.3489 0.3454 9.28min 1.53min
MLP (2 hidden units) 0.4428 0.4534 2s 15s
MLP (10 hidden units) 0.3453 0.3479 25s 17s
MLP (50 hidden units) 0.3444 0.3482 | 13.04min 19s

SH + BCM + non clustered data 0.3635 0.3642 4.31h 5.26h
SH + BCM + clustered data 0.3489 0.3517 4.29h 5.10h

LLA + BCM + non clustered data 0.4032 0.4057 3.57h 5.10h
LLA + BCM + clustered data 0.3960 0.3975 3.41h 5.20h

LP + BCM + non clustered data 0.3721 0.3739 4.20h 5.32h
LP + BCM + clustered data 0.3491 0.3530 4.20h 5.20h

Table 4.1: Results obtained using several regression models (Model) on the scatterom-
etry data. Five techniques are applied : radial basis function networks (RBF), multi-
layer perceptrons (MIP), shared hyperparameters (SH), local Laplace approximations
(LLA), Laplace propagation (LP). Training root mean square error (RMS train). Test
root mean square error (RMS test). Time to train a model using the training data
set as a whole (Training). Time to obtain predictions for all the inputs in the test set
(Prediction)

84

CHAPTER 4. GAUSSIAN PROCESS REGRESSION OVER LARGE DATA SETS

4.5.2 Conclusion

To analyse our results, we use the multilayer perceptrons and radial basis function

networks as references. First of all, we can point out that using approximation meth-

ods, both for the training and prediction task, we managed to work in the Gaussian

process framework using a very large training data set. Thus, on average, we obtained

predictions for all the inputs in the test set in five hours using the Bayesian committee

machine. Moreover, it took us between three and four hours and a half to find solu-

tions 6 = exp(d) depending on the methods considered. Regarding the accuracy of our

approximations, we always obtained better results when the data was clustered before

being distributed and stored on different nodes. More precisely, we got the best results

using shared hyperparameters. This training method is also the slowest one. Tech-

niques based on local Laplace approximations are faster but give rise to less accurate

predictions. The best compromise was found using Laplace propagation. Indeed, we

obtained almost the same forecasts as the method based on shared hyperparameters,

in a bit more reasonable time.

To work in the Gaussian process framework, when the number of training data

points is large, our experiments suggest to use Laplace propagation for the optimization

of the hyperparameters and the Bayesian committee machine to approximate Gaussian

process predictions. However, we found that a 10 hidden unit multilayer perceptron

and a 50 radial basis function network can obtain similar predictions much faster.

Nevertheless, it is important to note that the underlying process of the data set that

we are given is known to be quite simple to characterize. Indeed, it maps only three

inputs to one target and it is monotome. It would be particularly interesting to consider

a more complex data set and to observe if our approximations give rise to a better model

than multilayer perceptrons or radial basis function networks.

85

Chapter 5

Conclusion

Through this thesis we tackled two critical applications that can be described in a

distributed learning environment. First, in Chapter 3, we defined some techniques that

can be applied to combine multilayer perceptrons and radial basis function networks

trained using physically distributed data. In particular, we showed that is is possible

to work in the space of parameters or to fuse directly the different model predictions,

for a given input 2, in order to obtain a more accurate predictive model. We also

derived some approximations of priors and posteriors over the functions so that the

Bayesian committee machine can be used to combine multilayer perceptrons. Thus, we

demonstrated that the posterior distribution over the functions can be approximated

using the Jacobian of F, = (f(w,21), f(w,22),...,f(w,2))! to linearize the model

and Laplace techniques to estimate the posterior over the weights. Moreover, we found

that Markov chain Monte Carlo methods give rise to very good approximations of the

prior over the functions.

Then, in Chapter 4, using approximation methods, both for the training and pre-

diction task, we managed to work in the Gaussian process framework using a very large

training data set. We used the Bayesian committee machine to approximate Gaussian

process predictions. Moreover, through three different algorithms, we demonstrated

that using factorized hyperposteriors, all the data can be used for the training proce-

dure.

86

Bibliography

[1] C. M. Bishop. Pattern Recognition and Machine Learning. Springer Sci-

ence+Business Media, LLC, first edition, 2006.

(2] A. Choudhury, P. B. Nair, and A. J. Keane. A data parallel approach for large-

scale gaussian process modelling. In the Second SIAM International Conference

on Data Mining, 2002.

[3] A. P. Dempster, N. M. Laird, and D. B. Rubin. Maximum likelihood from incom-

plete data via the em algorithm. Journal of the Royal Statistics Society, 39:1-38,

1977.

[4] R. L. Grossman, S. Bailey, S. Kasif, D. Mon, A. Ramu, B. Malhi, and A. Turinsky.

The preliminary design of papyrus : A system for high performance, distributed

data mining over clusters, meta-clusters and super-clusters. Advances in Dis-

tributed and Parallel Knowledge Discovery, pages 259-275, 1999.

[5] J. A. Hoeting, D. Madigan, A. E. Raftery, and C. T. Volinsky. Bayesian model

averaging : A tutorial. Statistical Science, 14:382-417, 1999.

[6] D. Lowe. The relevance and application of information fusion to financial analysis.

Technical report, NCRG group, Aston University, 2001.

{7] D. J. C. MacKay. Bayesian interpolation. Neural Computation, 4:415-447, 1992.

. Neural Networks and Machine

(8 D. J. C. Mackay. Introduction to gaussian process:

Learning, 1998.

87

BIBLIOGRAPHY

[9] T. P. Minka. Bayesian model averaging is not model combination. July 2000.

URL http://www.stat.cmu.edu/minka/papers/bma. html.

{10] I. T. Nabney. Netlab, Algorithm for Pattern Recognition. Springer, second edition,

2003.

[11] R. M. Neal. Bayesian Learning for Neural Networks. Springer, 1996.

[12] B-H. Park and H. Kargupta. Distributed data mining: Algorithms, systems, and

applications. Technical report, Department of Computer Science and Electrical

Engineering, University of Maryland Baltimore County, 2002.

[13] D. Pena and D. Redondas. Bayesian curve estimation by model averaging. Science

Direct, Computational Statistics & Data Analysis 50 (2006):688-709, September

2004.

[14] A. E. Raftery, F. Balabdaoui, T. Gneiting, and M. Polakowski. Using bayesian

model averaging to calibrate forecast ensembles. Technical report, Deparment of

Statistics, University of Washington, 2003.

[15] C. E. Rasmussen and C. K. I. Williams. Gaussian Process for Machine Learning.

The MIT Press, 2006.

[16] R. C. E. Rasmussen and J. Quinonero-Candela. A unifying view of sparse ap-

proximate gaussian process rgression. Journal of Machine Learning Research, 6:

1939-1959, 2005.

[17] A. Schwaighofer. Gaussian process regression with bayesian committe machine.

2005. URL http://ida. first .fraunhofer.de/~anton/software.html.

[18] A. Smola, S. V. N. Vishwanathan, and E. Eskin. Laplace propagation. Advances

in neural information processing systems. MIT Press, 16, 2004.

[19] A. Stoffelen. Scatterometry. PhD Thesis, Utrecht University, 1998.

88

BIBLIOGRAPHY

[20]

[23]

(24]

[25]

[26]

E. B. Sudderth, A. T. Ihler, W. T. Freeman, and A. S. Willsky. Nonparametric

belief propagation. In IEEE Conference on Computer Vision and Pattern Recog-

nition, 2003.

V. Tresp. A bayesian committee machine. Neural Computation, 12:2719-2741,

2000.

V. Tresp and K. Yu. An introduction to nonparametric hierarchical bayesian

modelling with a focus on multi-agent learning. In Proceedings of the Hamilton

Summer School on Switching and Learning in Feedback Systems. Lecture notes in

computer science, 2004.

C. K. I. Williams and C. E. Rasmussen. Gaussian processes for regression. In

Advances in Neural Information Processing Systems. The MIT Press, 1996.

R. Wright and Z. Yang. Privacy-preserving bayesian network structure compu-

tation on distributed heterogeneous data. In Conference on Knowledge discovery

and data mining, 2004.

K. Yamanishi. Distributed cooperative bayesian learning strategies. Information

and Computation, 250:22-56, 1999.

Y. Zhang and W. E. Leithead. Exploiting hessian matrix and trust-region algo-

rithm in hyperparameters estimation of gaussian process. Applied Mathematics

and Computation, 171:1264-1281, 2005.

89

