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Chapter 1 

Introduction 

In the last ten years, there has been an ever increasing use of databases, to store 

information, and Machine Learning methods to manipulate, extract, and analyse data. 
More and more problems are being tackled in science, health and engineering. As 

a consequence, there has been a concurrent increase in the use of highly distributed 
computing to store and manipulate data. 

In this thesis, we work on regression problems that consist of approximating under- 

lying processes that map input variables to target variables. We introduce the concept 

of distributed learning environment where local agents use distributed data to train and 
we show that two critical applications can be tackled using such architectures. First, 

in Chapter 3, we consider a situation where data is originally physically distributed on 

nodes. The agents do not agree to share their data for privacy and security reasons but 

do agree to share their models. In this environment, the issue is to combine the learned 
information in order to build a more accurate preditive model. For our experiments, 

we consider multilayer perceptrons and radial basis function networks. We test some 

model combination methods using a toy dataset and some scatterometry data. 

Then, in Chapter 4, we tackle Gaussian processes that are known to have a poor 
scaling with large data sets since they require matrix inversions of which the computa- 

tional cost and memory requirement are of order O(N)* and O(N?) respectively where 

N is the number of training data points. We investigate techniques that consist of 
splitting and then distributing the data on nodes. Thus, we show that the Bayesian 

committee machine can be applied to estimate Gaussian process predictions whereas 

a factorized hyperposterior can lead to optimization procedures over the whole train- 
ing data set even if N is large. We experiment with these approximations using the 
scatterometry data. 
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Chapter 2 

Problem Statement 

In this Chapter, we define some concepts and techniques that are used in Chapter 3 and 
4. More precisely, in Section 2.1, we review regression problems and we focus on neural 
networks, linear regression models, and Gaussian processes. Then, we describe some 
distributed learning environments and two critical applications that can be tackled 
using such architectures. Finally, we present the two data sets that we used to carry 
out our experiments. 

2.1 A Review of Regression Problems 

In statistics, data related to a specific problem is usually described by many variables 

aija?,...,2?,t1,t7,...,t%. Throughout this thesis, x' will represent a one dimensional 

real variable and not to the function « — g(x) = x‘. Moreover, we define 2; = 

(},7?,...,2?)! as the ith p-dimensional vector in a given data set. 

The aim of regression methods is to approximate the underlying process that maps 

input variables to target (output) variables (Bishop, 2006 [1]). It can be modelled by 

the general equation 

t=f@j+e, = @ 2c, Py eR t= C,8. 07 eR 

The unknown function f governs the deterministic part of the mapping whereas ¢ 

is an additive zero mean random variable with unknown g? variance called noise. 

For consistency with the notation used in other statistical domains, the variance can 

be defined as ao? = op Moreover, we will assume that the noise is drawn from a 

Gaussian distribution. When several input points {x;} are considered, such that t; = 

f (ai) + &, Vi, we will assume that the different noise variables are independent. In 

other words, we wil have cov(t;,t;) = 0, Vi 4 j. 

11



CHAPTER 2. PROBLEM STATEMENT 

Given a training data set {(2,t1); (x2, tz);...;(aw,tw)}, the goal is to predict the 

value of t for a new value of x. In the literature, this data set is sometimes separated 

between, Bs (Gis ea)n 5 sen) and C(t t9 55,8) e 

The functional form of f(-) is usually unknown (Pena and Redondas, 2004 [13]). To 

approximate the mapping, linear regression models and neural networks use parametric 

approaches and define f(.) = f(w,.). Conversely, as in the Gaussian Process (GP) 

framework, other types of model make predictions without giving the unknown function 

an explicit parameterization (Mackay, 1998 [8]). 

2.1.1 Linear regression models 

If we consider a single target variable, the general form of linear regression models is 

t= f(w,r)+e=w'd(z) +e. 

In this equation, the vector ¢(x) = (¢0(2), ¢1(a),...,@a(x))! is defined with a set of 

fixed non-linear basis functions. To get a bias term, it is often convenient to consider 

¢o(x) = 1. Functions of the form f(w,x) = w'¢(z) are called linear models since they 

are linear with respect to the weight vector w = (wo, wi,..., Wa)’ 

The simplest choice for the basis functions is ¢;(z) = a‘, Vi. Thus, we obtain 

f(w,2) = wo+w'x. This regression method is often called Multivariate Linear Regres- 

sion in the literature. 

If we define the model such that each basis function @(.) depends only on the radial 

distance from a centre x;, we obtain a Radial Basis Function (RBF) network f(w,x) = 

11 WiP(||a — @;]|). Clustering techniques such as K-means and the Expectation 

Maximization algorithm (Dempster et al., 1977 (3]) have been commonly used to fix 

the centres (Nabney, 2003 [10]). 

After having chosen the model, the aim of training is to build an estimate ¢(z), 

called a predictive model, of the underlying process t = f(w,x) + ¢ using a given data 

set called the training data set. 

12



CHAPTER 2. PROBLEM STATEMENT 

Maximum likelihood 

The most common training algorithm is based on maximum likelihood theory. 

Since we assume that the additive noise ¢ is drawn from a zero mean 3 variance 

Gaussian distribution N (0,4) and t = f(w,x) +, the conditional probability 

density p(t|x, w, 3) is given by 

p(tle, w, 8) = N (s02), 3) : 

Moreover, if we assume that the observations of the training data set are i.id!, the 

complete log-likelihood is given by 

~ 1\_N N inp(Thas 6) = Yin (‘5isflw.20), 3) = Zing — X ingen) - 38, 

where E(w) is the sum-of-squares error function defined by 

iw 
E(w) = 5 ttn — f(w,an)}?. 

n=l 

Maximizing the complete log-likelihood function with respect to w is equivalent to 

minimizing E(w). Since the model considered is linear, VE(w) has a simple form 

VE(w) =D {tn — w'd(tn)}4(tn)', 

and V E(w) = 0 admits a unique solution wy, = (®')~!6’T containing all the hidden 

parameters of the model. The matrix ® is usually called the design matrix and is 

defined such that ©,; = ¢;(an). If we now differentiate the complete log-likelihood 

function with respect to 3, we can create a noise variance estimator 

N 

FF Llin— whole)? = n— WyLPXn) f° 
ME AN <= 

Finally, our predictive model is {() ~ p(t|x, wart, 9a, X,T) = N (5 f(wat,2), wz): 

In the literature, the distribution of f(z) is often called the predictive distribution. 

‘Independently and identically distributed. 

13



CHAPTER 2. PROBLEM STATEMENT 

Regularized maximum likelihood 

We now introduce a prior probability over the weights p(w). If we assume that this 

distribution is an isotropic Gaussian distribution governed by an hyperparameter a, we 

=n (woz). 
a 

Using Bayes’ theorem we can compute the posterior distribution over the weights 

have 

  

p(w 

P(wlx, T, a, 8) x p(T |x, w, 8)p(wla). (2.1) 

Since the model considered is linear, this distribution is also Gaussian and thus its 

mode corresponds to its mean. 

Maximizing (2.1) with respect to w is equivalent to minimizing the regularized sum- 

of-squares error function 

jie x 
Ew) =5 {tn — f(w, tn) P+ guy, 

n=1 

where 4 = §. As before, we set the gradient of E(w) to zero. The maximum a 

posteriori solution is given by wyrp = (AI + ®'®)-!0'T. 

The evidence procedure 

‘We now consider the usual case where the hyperparameter a which governs the prior 

over the weights is not given. Moreover, contrary to the previous methods where we 

defined a predictive model by using a single value for w (waz, Warp), we now integrate 

over all the hidden parameters in order to take into account our uncertainty as to which 

one that is. The predictive distribution of f(z) is then given by 

vitje.x,T) = fff v(e,w,A)p(ulx,T.a,8)p(a, Aly.) deo daa. 

However, this complete marginalization is analytically intractable. In order to approx- 

imate this integral, a technique called the evidence approximation was developed in 

the machine learning community (MacKay, 1992 [7]). If we assume that p(a, 8|x, 7’) is 

sharply peaked around & and B 

(a, B|x,T) = 55,4(a, 8), 

14



CHAPTER 2. PROBLEM STATEMENT 

then the predictive distribution is simply obtained by marginalizing over the weight 

vector w 

p(tle,x,T) ~ pltlz, 4, 8,x,7) = / p(tle,w,A)p(wly, 7, 4,3) dw. (2.2) 

The posterior distribution p(a, 8|x,T) is given by 

(a, Blx,T) « p(T |x, e, 8)p(a, 8). 

Thus, if we assume that the hyperprior p(a, 3) is flat, maximizing p(a, 3x, 7) to find 

@ and #7 is equivalent to maximizing the marginal likelihood? p(T|x, a, 8). 

Since the model is linear, an analytical equation can be obtained (Bishop, 2006 [1]) 

1 
Inp(T|x, a, 8) = + Ina+ xing — E(my) - 3 Indet A — * inn), (2.3) 

where M is the dimensionality of w, A = al + 66'6, my = GA~'®’T is the mean of 

the posterior distribution over the weights, and 

a E(my) = SIP — amy? + Smiymy. 
In order to maximize the marginal likelihood, we consider the eigenvalues \; of the 

matrix $'®, From its definition, we know that the eigenvalues of A have got the form 

v; = a+ r;. Thus, Indet A can be written as 

Indet A = nT [Ox +a)= mri +a). 
i i 

Then, by setting the derivatives of (2.3), with respect to a and (3, to zero, we obtain 

the solutions a = =~ and 5 ay N_{tn — m'yo(an)}? where y = eae 

It must be noted that both terms depend on a and through ¥ and the eigenvalue 

decomposition of A. By first initializing a and (3, we can create an iterative algorithm. 

The vector my and the parameter 7 are calculated and then used to optimize a and 

B. This procedure is repeated until convergence. 

Finally, after a few iterations, we obtain solutions 4 and 3. Since the model is 

linear, the integral in (2.2) has got a simple form and the predictive model is given by 

i() ~ p(t|x,x,T) = N (t;mlyo(x), 0%,(x)) , 

?The marginal likelihood is also called the model evidence. 

15



CHAPTER 2. PROBLEM STATEMENT 

where o3,(x) = §-! + 4(x)'A7¢(x) and since my is the mean of the posterior distri- 

bution, we have my = wasp. 

2.1.2 Neural networks 

Contrary to linear models, neural networks are based on non-linear basis functions, 

usually called hidden wnits, which depend on parameters that can be adjusted. Through 

this thesis, we only consider multilayer perceptrons. In regression, the global network 

model can then be written as (Nabney, 2003 [10]) 

M D 
t=f(w,z)+e= SS (=Peidou) +e 

j=0 i=0 

Optimization of w and 3 

Unlike linear regression models, the posterior over the weights of multilayer perceptrons 

is not Gaussian and they do not have analytical solutions for the maximum likelihood 

estimates {warz, Gut} and the regularized maximum likelihood estimates {warp, Burp}. 

Thus, for the training process, these models require to use an optimization algorithm 

such as scale conjugate gradient. 

Bayesian neural networks 

Multilayer perceptrons are commonly called Bayesian neural networks when they use 

the evidence procedure. Since the posterior over the weights is not Gaussian, the 

integral in (2.2) is analytically intractable. Thus, we use a Laplace approximation that 

estimates the posterior with 

p(w|x,T, a, B) x N (w; wap, H(wyp)') , 

where H is the hessian matrix of — In p(w|x, T, &, B). Moreover, we linearize the model 

using a first order Taylor expansion 

te f(wup,£) + Vf(waup,x)'(w — wp) +e. 

16



CHAPTER 2. PROBLEM STATEMENT 

Thus, ¢ is defined as a linear combination of Gaussian random variables and the corre- 

sponding predictive distribution is given by 

p(t|x, xj, Tj) © N (t; f(warp, ©), Vf (warp)'H (wap) 'V f(wup) + 8). 

This is a good approximation only if the number of training data points considered is 

sufficiently large such that p(w|x;, 75, @, 8) is sharply peaked around wyyp. 

To optimize the hyperparameters, we use a Laplace approximation and we compute 

1 N N 
Inp(T|x, a, 8) & —E(wup) — 3 Indet A+ . Ina+ a Inf— ai In(2z), 

where W is the total number of parameters in w and 

Bet a 
E(war) = 3 Y (Fw, tn) — ta}? + 5whrpwa. 

n=1 

Using an iterative algorithm very similar to the one presented in previous Section, we 

can obtain solutions @ and B. 

2.1.3 Gaussian processes 

Gaussian processes are based on a full probabilistic framework. They are said to be 

non-parametric since they characterize a prior over functions p(F’) directly instead of 

giving the unknown function f an explicit parameterization (Mackay, 1998 [8]). Here we 

have used F = (f(x), f(x2),..., f(ay)) and to be consistent with the wide literature 

on Gaussian processes we deliberately ignore the implicit dependency on the inputs 

x. The prior is chosen to be a zero mean multivariate Gaussian distribution with 

covariance matrix K. Since the model is t = f(x) +, the prior p(T) is also Gaussian 

and given by 

p(T) = N (T;0,C), (2.4) 

where C = K + B-1I. 

From parametric models to Gaussian processes 

Lets assume that we are given a linear regression model with M basis functions. Using 

matrix notation, we can write T = @w+e. As before, we consider an isotropic Gaussian 

Ly



CHAPTER 2. PROBLEM STATEMENT 

Ristboren p(w|a) = N (w;0,a7'Z) governed by an hyperparameter a. Since F = dw 

is based on a linear combination of Gaussian random variables w;, F is also Gaussian 

with mean 

E[F] = SE[w] = 0, 

and covariance matrix 

cov(F) = ®Elww']®! = ao’, 

Thus, if we define C = a + 4 we obtain a Gaussian process with 

p(T) = N (T30,C). 

Moreover, in his work, Neal (1996 [11]) showed that for specific choices of priors 

p(w), the prior over functions p(F) of a one hidden layer neural network converges to 

well known Gaussian process priors as the number of hidden neurons tends to infinity. 

Kernel functions 

In the Gaussian process framework, the covariance matrix C is generally given directly 

without parameterizing the unknown function f. Its elements are given by 

C(ai, 25) = k(ai, 25) + B66 — 3), 

where k is a function called kernel that depends on variables called hyperparameters. 

A list of kernel functions for Gaussian process regression can be found in the book 

written by: Rasmussen and Williams (2006 [15]). Two of the most widely used are the 

squared exponential 

12 
k(aj,2;) = v9 exp (-22500 - “) +6, 

l=1 

and the rational quadratic 

rr -v 

k(2;,2j) = v9 (: + Yo a(x! = “) +6. 
8 

The optimization of the parameters a, allows the relative importance of the correspond- 

ing inputs to be inferred from the data. Since C is a covariance matrix, all its terms 

have to be positive and so must the kernel hyperparameters. We define 6 as the vector 

containing all the hyperparameters with dimension d. 

18



CHAPTER 2. PROBLEM STATEMENT 

Predictions 

In the previous Section, we saw that the covariance matrix C’ was governed by some 

specific hyperparameters depending on the choice of kernel function. We will describe 

how to optimize those parameters in the next Section but for now, we assume that 

their values are given. Our goal is to predict the value of ty4; for a new input Inq. 

The joint distribution p(T, tv+1) is given by 

R(T, tw4i) = N ((T,tw41);0,Cn41), 

where Cy+; is a matrix partitioned as follows 

Ck 

Ke 

Here C is the covariance matrix of T (2.4), k has elements k(tn, 241) forn =1,...,N, 

and ¢ = k(ay41,2N41) + 5. 

Since the joint distribution is Gaussian, the predictive distribution has a simple 

form 

ie) ~ p(twsilT) = N (tC, c— KC“). 

Training of the hyperparameters 

Given a training data set {x,T}, the training task consists of maximizing the log- 

likelihood function® Inp(T|x, 0). As before, we ignore the implicit dependency on the 

inputs y and we can write 

Inp(T|0) = -3 IndetC— sree S + In(2n). (2.5) 

Since the kernel functions are only defined for positive hyperparameters, we constrain 

4 by setting @ = exp(¢). It is then possible to use a non-linear optimization algorithm 

such as scaled conjugate gradient to optimize (2.5) with respect to ¢. 

It is also possible to introduce a prior probability distribution to constraint the 

hyperparameters defined in the log-space (Nabney, 2003 [10]). In the literature, this 

_ 3In the Gaussian process framework, this function is sometimes called the log-marginal-likelihood 
function. 
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prior is usually called hyperprior. A common choice consists of using an isotropic 

Gaussian distribution P($|O prior) =N ($0, oR ior!) Using Bayes’ rule, the posterior 

distribution is given by 

P(T|9)P(A|o prion) PGT, Opie) = Ri? 
where Z is a normalizing constant. This gives rise to a regularized log-likelihood 

oo oN 7 > 

2C prior 2 

  Inp(4|T, Orion) = -5 Indet o-3re"'r- pr In(2n)—$ In(2n)—$ In(o%.ior) —ln(Z). 

2.2 Distributed Learning Environment 

So far, we have seen that regression methods can be used to approximate the underlying 

process that maps input variables to target variables of a specific data set. First, we 

saw that we had to choose a model (linear regression model, neural network, Gaussian 

process). Then, using a single training data set and a learning algorithm, we noted 

that we could learn a predictive model f(r). 

We now consider the case that we are given m training data sets {y,,7;} that are 

distributed (stored) on disjoint nodes. Each node is an autonomous program called an 

agent. All of them can be run on a single machine or on distinct computers. As we 

are going to see throughout this thesis, the nodes may have different properties. In 

particular, we are going to study agents that train independently using their own data 

set and others that can share some learnt information with one another. Those two 

training methods are both local learning strategies (Grossman et al., 1999 [4]) since local 

agents work on distributed data. Conversely, we do not consider centralized learning 

strategies that move the data to one central location for model building. Indeed, if the 

quantity of information sent by each agent is significant, the time or bandwith for the 

central node to recieve all the examples can be prohibitive. 

Systems that are based on agents that can learn models and potentially share some 

information are usually called multi-agent systems in the computer science community 

and the architecture of such applications is known as a distributed learning environment 
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(Figure 2.1). In Statistics, this domain of research is called the Distributed Data Mining 

(DDM). Park and Kargupta (2002, [12]) wrote a paper that describes algorithms, 

systems, and applications based on DDM. According to them, lots of work has been 

done on classifiers. Conversely, except using tree-based models, regression problems 

have not really been tackled so far and we did not find in this paper any method that 

we could use in our framework. 

Our main assumptions are that the data is homogeneous and that one Data Gener- 

ative Model exists. In other words, we assume that all the training data sets have been 

generated by the same underlying process and that they are described by the same 

variables. Thus, predictive models £;(x) built at each node can be seen as estimates of 

the same process t = f(x) +. 

The fusion of models for data privacy and security preservation, and the speed 

up of some regression models are two critical applications that can be described by a 

distributed learning environment. 

(:D)-—m agentl My agent2 <4 —[%;D,) 

A A 

v A 

(X4;D,) — & a agent 3 ~ (x,;D,) 

Figure 2.1: A distributed learning environment. 

2.2.1 Privacy/Security of data 

First, we assume a situation where data is originally physically distributed on multiple 

nodes. For instance, in the biomedical domain, we can consider m research units or 

private companies working independently and storing the results of their experiments 

in their own databases. Moreover, we assume that they work on the same type of data 
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describing the same biological phenomenon. All the nodes have got models to predict 

the value of t for a new input 2. 

Let us assume now that they do not agree to share their data for privacy and 

security reasons but do agree to share their models. In other words, receiving an input 

x sent by another model MO, they consent to predict the value of t and to send it 

back to MO. 

In this environment, it could be particularly interesting for each node to use a 

predictive model based on the fusion of all the models trained at each node. The issue 

of privacy preserving and model fusion methods was adressed by Wright and Yang 

(2004, [24]). 

2.2.2 Limited learning systems 

Tresp (2000, [21]) noted that “for reasons typically associated with their architectures 

and their learning algorithms, some learning systems are limited in their capability to 

handle large data sets”. For instance, in the Gaussian process framework, both the 

training and inference task require matrix inversions of which the computational cost 

is O(N*), where N is the number of training data points. 

In this situation, we can split the single training data set on m different data sets 

that are then stored on nodes. Local agents can use the distributed data and by 

exchanging some information with one another they can build an approximation of the 

predictive distribution that a model would have obtained by having kept all the data 

in one data set. 

The issue of this structure is to develop very fast regression models. In particular, 

as detailed above, since the nodes work locally, they can be run, in parallel, on different 

computers. 

2.3 Data Sets 

For the experiments presented through this thesis, we use two data sets. 
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2.3.1 Toy data set 

We generate a toy data set A = {(z;,t;)} Vi, where x is drawn from a uniform distri- 

bution U(0, 2), € from a zero mean Gaussian distribution with 0.2 standard deviation 

and t = sin(27z) +e. 

  

Figure 2.2: Toy data set. Function (dashdot line), Training data points (circles). 
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2.3.2 Scatterometry data 

We also use some scatterometry data, given by Dr. Dan Cornford, to test our models, 

More precisely, we are given 180000 data points described by three inputs ur, vr, 

inc and one target variable sig. Scatterometers are radars that aim at transmitting 

pulses of microwave energy towards the Earth’s surface and measuring the reflected 

energy (Stoffelen, 1998 [19]). By changing the angle inc of the signals, measuring the 

corresponding reflected energy inc, and using some geophysical model functions, it is 

possible to estimate the positions ur and ur of wind vectors over the ocean. In our 

case, we are interested in an inverse problem. Given ur, vr, and inc, we want to predict 

the reflected energy sig. 

  

  
  

              

=2 

      

Figure 2.3: Box plot of the scatterometry data. Variables 1, 2, and 3 correspond to 

the inputs ur, vr, and inc. Variable 4 represents the target sig. 
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Chapter 3 

Fusion of Physically Distributed 

Regression Models 

In this Chapter, we address the issue of fusing models that are trained on originally 

physically distributed data. We define a distributed learning environment where all 

the agents are identical, for example radial basis function networks or multilayer per- 

ceptrons, with exactly the same form of output function f(w,«) and depending on 

weight vectors w of the same size. The problem of considering an architecture based 

on different types of regression models is not tackled and remains for future work. 

As we showed in Section 2.1.1, the parameters of a radial basis function network 

are obtained thanks to a two-step learning process. The first step consists of using 

a clustering technique to fix the centres 2;. Since we only consider agents with the 

same form of output function f(w,«) and depending only on weight parameters w, we 

assume that all the radial basis function networks share the same centres which have 

already been computed. 

Moreover, some of the methods described in this Chapter require the agents to 

be trained using Bayesian regression techniques. Thus, for our experiments, we chose 

the evidence procedure for the learning algorithm. We recall that it estimates the 

hyperparameters 4, B, and wyp. For simplicity and consistency of notation, we define
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the predictive distribution of node j as 

i;(x) ~ p(t\x, Mj) = N (t; f(w;,2), 07 (x)) . 

where wy; is the maximum of the posterior distribution over the weights p(wlx;, 7}, 4;, B;). 

In the first three Sections of this Chapter, we describe the techniques that we used 

to fuse models trained on distributed data and how we had to modify or extend some 

of them in order to tackle our problem. More precisely, in Section 3.1, we identify 

methods that fuse models by working in the space of weight parameters. Then, we 

investigate approaches, such as model combination methods and the Bayesian model 

averaging algorithm, that deal with single predictions. In Section 3.3, we describe the 

Bayesian committe machine and we show how it can be applied to neural networks. 

Finally, we present the experiments that we carried out and we draw some conclusions. 

3.1 Fusion of Weight Parameters 

3.1.1 Distributed cooperative Bayesian learning strategies 

We first consider Yamanishi’s distributed cooperative Bayesian learning strategies (1999, 

[25]). It was originally developed for density estimation problems. In other words, it 

aimed at inferring hidden parameters w of probability distributions p(x|w). 

In this model, a distributed learning system consists of a number, m, of agents, called 

the agent learners, and an entity, called the population learner (p-learner). Each agent 

learner independently observes a sequence of examples XG = {2515 2j23.. 3 2ynq} Here, 

nj defines the number of training data points that are used to train the jth agent. 

Having a prior p(w), each agent computes independently the posterior probability 

distribution 

__pw)pxjlw) pw) TT, plat) 
Pols) = FaGapp glo) dav ~ Fea) TI, ples) da 

Then, estimates tw, of the parameter w, specifying the target distribution p(z|w), are 

chosen randomly according to the corresponding distribution p(w|x;)- 
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In this model, the p-learner does not have access to the different training data sets, 

but only to the parameters output by the agent learners. It combines the estimates 

using a simple average 

(3.1) Wyus = 

  

We now extend these methods to a distributed regression problem. Thus, we con- 

sider m data sets {y;,7j} and m regression models. Using its own data, each agent, 

learner computes 4; and B; using the evidence procedure. Then, the p-learner calcu- 

lates (3.1) by sampling estimates from the different posterior probability distributions 

P(wlx;, Tj, &;, B;). In order to get some errors bars on our predictions, we chose to use 

tasted similar techniques to (3.1) and we defined aa Sn eta Finally, the predictive 

model is given by 

Feat) ~ N ('0s002), i) 

agent 1 ee wi 

Dy) ade 

p-learner > NUtef pa) gr) 
— wt nent 

agent m er, 
(%p:Dp) 

Figure 3.1: Distributed learning System. 

3.1.2 Hierarchical Bayesian modelling 

In the previous Section, we considered agents training independently using their own 

data. An entity called the p-learner was used to average some estimated parameters 

to build a predictive model. 

We now consider a situation where agents can potentially learn from one another 

during the training process by exchanging some learned knowledge. The Bayesian 

approach that we study here is called the hierarchical Bayesian Modelling and was 
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described as a technique for multi-agent learning by Tresp and Yu (2004, [22]). The 

basic idea is that information can be exchanged between models via common hyperpa- 

rameters. 

Assume that we are given a prior probability distribution over the weight parameters 

p(w|h,) governed by an hyperparameter h,. For instance, this distribution can be 

Gaussian with h; = {4,2}. Having a training data set {x1,Ti}, the posterior is 

computed using Bayes’ rule 

P(w|xa, Ti, ha) x p(Tilxa, hi )p(wlhr). 

If p(w|h1) and p(w|x1,71,h1) are conjugate then they have got the same functional 

form. When additional data becomes available, the posterior becomes the new prior 

and we define p(w|h2) = p(w|x1, Ti, hi). This is an iterative process and the more data 

is used for the training, the more these distributions become sharply peaked around 

wm, the maximum of the likelihood function. 

In our distributed learning environment, we want to use similar concepts in order 

to approximate the posterior p(w|{x;,7;}7,). Thus, when a new agent with its own 

data set {Xm+1,7m+i} is considered, it would use this posterior as a prior to build 

its own predictive model. Since this Bayesian approach for multi-agent learning does 

not specify how to combine the different noise variance estimates as we did in the 
7 

previous Section, we chose to define ae = yet 7 is i 

agent 1 > 
(X,;D,) my 

agent m+1 — pe Net:f(Wne-%)-oh0(X)) 

¢ (Xmer? Ds} 

agent m > Yn 
{Xmi Drm] 

Figure 3.2: Hierarchical Bayesian modelling for multi-agent learning. 
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Parametric approaches 

When a new agent wants to learn a regression model, it receives the learned maximum 

a posteriori weight vectors w; of all the other nodes. It then fits a specific distribution 

through them to get an approximation of p(w|{x;,T;}71). In our experiments, we 

considered the Gaussian distribution and we estimated its mean and covariance matrix 

with w= FO, wy and D=+ DLs (w; — 4)(w; — 1)! respectively. The posterior is 

then given by 

P(wl{x;,T)}j21) © N (wi H,). 

Having its own data set, the new agent uses this distribution as a prior and computes 

P(w|{ XI; TIFF! Brus) & P(Tins1|Xm+15 Spus)P(w| {x5 T)}F1)- (3.2) 

The predictive distribution is given by 

wea, Mr) = ff plthe,,Byu)oCwl {xs THE Brae) 
Techniques described in Section 2.1.1 can then be used to compute this integral. Unlike 

radial basis function networks, multilayer perceptrons, as non-linear regression models, 

require some approximations such as Taylor expansions and Gaussian approximations. 

Finally, the predictive model is 

P(tlz, Minar) = N (t; f(wyues2), OFus()) 5 

where wyys is the mode of (3.2). 

Non-parametric approaches 

Non-parametric approaches can be used when the empirical distribution of the maxi- 

mum a posteriori weight vectors does not fall into a well known class of distributions. 

The posterior is approximated with a sum of delta functions 

p(wl{xa, TH) = Do bu,(w). 
j=l 

The predictive model is then given by 

‘ , i 
v(t}, Mnss) = Z f v(t}, a7 Bpue)PCTmeal mess Bp) 3 buy (tw) de 

j=l 
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where C is a normalizing constant. Finally, 

p(t|z, Mmii) = oon (t\a, w;, Brus)P( TratilXm+i, Wj, Bfus), 

and C= Does P(Tn+a|Xm+-1s Wy; Bj): 

3.2 Fusion of Single Predictions 

In the previous Section, we described how models trained on distributed data could 

be fused by working in the space of weight parameters. In particular, we saw that 

different estimates 1; could be combined using a simple average Wsus = Rey We 

now investigate techniques that were originally developed to fuse models all trained 

using the same data. One characteristic of such methods is that they combine directly 

the different model predictions f(x) for a single given input x. We will see in Section 

3.3 how Bayesian techniques can be used when several inputs are considered at the 

same time. 

In this part, our work consisted of investigating if and how these approaches could 

be extended to the multiple data set case. 

3.2.1 Error averaging 

The simplest method consists of averaging the different model predictions 

- ye 
Epus(@) = oe m 

The model obtained is called a committee. It can directly be applied to our problem 

by simply considering that the nodes are now trained using different data sets. 

The mean of the predictive distribution is then given by 

Bie) = Se 
However, it is more complex to compute the variance since we need to estimate the 

covariances cov(é,(z),é;(x)) between the models 

var(tfus(x)) = {Soom (x)) +2 > cov(t;(z), t;(x)) \. 

Ugt<j 
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One technique to approximate those terms is to use the maximum likelihood estimator 

n 

cov(Z) = qe —2)(Z,- 2y, (3.3) 
i=1 

where Z; = (f;(2;), fo(a;),...,fm(a;))! and Z = #2, Zi. For our distributed en- 

vironment, that means that we need to consider a new N point training data set 

X = (#1, @2,...,2y)!. The nodes produce a prediction t;(a;) for each input x; and by 

applying (3.3) we estimate the covariances between the regression models. 

3.2.2 Weighted error averaging 

We still use a simple linear averaging but in the form 

: aes OO ace 
tyus(t) = doit) = Se Ce 

where C~! is the inverse covariance matrix between the different predictive models. 

Thus, we need to use methods described for the simple averaging case and we compute 

C™ = cov(Z)". As before, a new training data set has to be considered to evaluate 

the terms in cov(Z)7!. 

According to Lowe (2001, [6]), since the weighted committee networks exploit co- 

variance knowledge, they generally give better results than the simple averaging of 

committee members. 

3.2.3 Conditional mixture models 

In a mixture of regression models, the fused predictive distribution is given by 

Pyus(t|x) = Dante M;) )= Lan (t; f(wj,2),07()) . 

We cannot see this method as a solution to our problem since they are based on 

training procedures, such as the EM algorithm, for which the extension to the multiple 

data set case is not obvious. More important, to compute the 7;, they need to have 

all the training data points at first hand, to fuse the models. Thus, in our case, even 

if we assume that the conditional mixture models could be extended to the multiple 
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training data set case, after having learnt independently, the agents would have to send 

all their data to one central node. If the quantity of information sent by each agent is 

significant, the time or bandwith for the central node to receive all the examples can 

be prohibitive. 

3.2.4 Product of predictive distributions 

These techniques are based on properties of the Gaussian distribution. Thus, we build 

m predictive models i;(x) that can be fused by computing the product of their corre- 

sponding distributions 

m 

june) ~ TN (ts Fs, 2), 05(@)) o N (ty apua(), Ojus(2)) 
j=l 

where (b},5(2))"' = jaa (o7()) 7 and ajus(x) = jus) Dje1(07(@))* f (wy, 2). 

Similar techniques were used in the work of Sudderth et al. (2003, [20]) to compute 

message products for the Nonparametric Belief Propagation. 

The extension to the multiple data set case is straightforward. 

3.2.5 Bayesian model averaging 

The Bayesian Model Averaging (BMA) algorithm was studied in detail by Hoeting et 

al. (1999, [5]). Practical applications of BMA can be seen in the work of A. E. Raftery 

et al., (2003, [14]) to calibrate forecast ensembles. 

Minka (2000, {9]) noted that, unlike techniques, such as conditional mixture models, 

BMA is not a model combination method. Indeed, it assumes that the whole training 

data set that is given has been generated by only one model and it uses the distribution 

p(M;\x, 7) to reflect our uncertainty as to which one that is. Conversely, in model 

combination methods, the points of the data set can have been generated by different 

models. Thus, even if these techniques look very similar, the algorithms that they use 

are different. 

Given m predictive models é;(x) trained using the data set {x,T}, the fused pre- 
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dictive distribution is given by 

m m 

Pfus(tlx) = >) r(Mjlx,T)p(tle, Mj) = Sr(Mylx,T)N (t; f(w;,2),05(2)?) 
j=l j= 

We now consider different data sets {x;,7;} distributed on nodes. If we assume that 

the models have got the same prior, such that p(M;) = p(M), using Bayes’ rule we 

find 
m m 

Pyus(tle) = Yaypltle, My) = Ya (t: fe, 2), 04(2)) 
j=l j=l 

P(Ti|x3,T5) 
where oj = soe pcre)" 

3.3 The Bayesian Committee Machine 

In the previous Section, we described methods that could be used to combine m model 

predictions f;(x) corresponding to a given input 2. We now introduce the Bayesian 

Committee Machine (BCM) that was developed by Tresp (2000, {21]) and that fuses 

models by considering several input points at the same time. 

3.3.1 Fusion of Bayesian estimators 

The BCM originally aimed at decreasing the computational cost of some learning 

systems, such as Gaussian processes. We will use this aspect of the algorithm in 

Chapter 4, but for now, we see the BCM as a general technique that can be applied to 

the combination of any Bayesian regression estimator. 

As before, we consider m training data sets {y;,7;} and, following Tresp, we use 

the notation X; = (#1, £2,...,%,)' and F, = (f (21), f(x2),...,f(&q))’ for the query 

set. It is important to distinguish between x,;, T;, Xq, and F,. For the first two data 

sets that correspond to training data, j specifies the index of the training data set. 

Conversely, for the query set, q defines the number of points for which we want to 

obtain a prediction. 

The Bayesian committee machine formulae are defined in the space of functions 

and are obtained using Bayes’ rule. For simplicity, as we did in Section 2.1.3 when we 
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described the Gaussian process framework, we deliberately ignore the implicit depen- 

dency on the inputs X,. 

P(Fal{xs, Ti }j21) & p(Fa)P({x5. Te} ealFa)- 

If we assume that the likelihood function can be factorized, the posterior predictive 

distribution is given by 

m 1 m 

PCFal Xs, T 4) « PCF) [] os BMF) & Sores [Loeb T)- 
j=l 2 j=l 

Although Tresp considered the distributions over F,, we found that it was also possible 

to consider the underlying additive Gaussian noise «. Indeed, T, = F, + € where 

enN G 0, a) and we have 

p(T (x5, T)}fe1) Sees Toth.) (3.4) 

In our framework, the distributions p(T,|x;,7;) are computed by the agents and (3.4) 

is used to calculate the fused model. 

If those distributions are Gaussian, (3.4) takes a very simple form and its mean is 

given by ‘ a 

E[Ty] = cov(Ty) $7 (cov(Ty)s)-' B[Tals, (3.5) 
j=l 

with 

cov(Ty)~? = —(m — 1)D +O cov(T, 

where E[T,]; and cov(T;); are the mean and covariance matrix of p(Ty|x;,7}). © is the 

covariance matrix of the prior p(Ty). 

Tresp showed that if the data sets {y,;,7;} are unconditionally independent, then 

the factorization of the likelihood function is exact. A good approximation can be 

achieved by first using some clustering techniques and assigning the data of each cluster 

to a separate node. We will use this approach in Chapter 4 but, for now, since we 

assume that the data is originally physically distributed on nodes, we can not apply 

such preprocessing methods. It is also possible to obtain good approximations when 
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the number of query points is sufficiently large. Thus, T,, determines T everywhere and 

the data sets become independent conditioned on Tj. 

We are now going to see how the posterior predictive distributions p(T,|x;,T;) 

and the prior p(T) can be determined when considering different types of regression 

models. In his work, Tresp showed that analytical solutions could be obtained for 

Gaussian processes and linear regression models. 

3.3.2 Gaussian processes 

In the Gaussian process framework, the posterior distribution at node j is Gaussian 

and it is straightforward to compute its mean and covariance matrix. Indeed, we recall 

that when a unique input point 24, is considered, the predictive distribution is given 

by 

N (t; KOU, c- ROuik) ‘ 

where k has elements k(a,,@y+1) forn =1,...,N, and c= k(ay41,0N41) + 3 If we 

are now given several input points, this distribution becomes 

N (1; 4'C'T;,B- A'C"A), (3.6) 

where A and B are now matrices such that 

Aiy = k(2is (Xa) 3), 

and 

6-3) aia 

Moreover, the prior p(T,) is also Gaussian and is given by 

Bij = k((Xq)is (Xq)3) +   

P(Ty) = N (Ty30,5) , 

where Dj; = k((Xq)i, (Xq)j) + (i — 9). 

Although it is worth describing, as an introduction to the two next Sections, how 

the prior and the posterior distributions can be determined in the Gaussian process 

framework, we recall that in this Chapter, we only consider distributed learning envi- 

ronments based on radial basis function networks and multilayer perceptrons. Gaussian 

processes will be studied in Chapter 4. 
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3.3.3 Linear regression models 

In Section! 2.1.3, we showed, by working in the space of functions rather than the space 

of weight parameters, that linear regression models could be seen as specific instances 

of Gaussian processes. Indeed, we demonstrated that the prior p(T’) was given by 

p(T) = N(T;0,C), 

o' where C = 22 + z Using the results presented in Section 2.1.3 and in 3.3.2, we 

compute 

N ae Bb, A6'T;, &,A1! + 3) ‘ (3.7) 

where ©; = $;(2n), (®g)ni = $i ((Xq)n), and A = al + BO’. 

For our experiments, since radial basis function networks are generalized linear 

regression models, we used (3.7) to obtain the predictive distribution at node j. The 

prior p(Z;) is given by 

P(Tq) = N (Ty;0,) , 

= yh) I where 2) = ——* + . 

3.3.4 The neural network case 

So far, we have seen that the Bayesian committe machine was applicable to Gaussian 

processes and linear regression models, such that radial basis function networks. We 

showed that the posteriors at each node and the prior p(T) were all Gaussians and 

could be determined analytically. In his work, Tresp derived equations (3.6) and (3.7) 

but to our knowledge there is no paper defining how the BCM can be applied to neural 

networks, such as multilayer perceptrons. Indeed, since such models are non-linear 

with respect to the weight parameters w, their priors and posteriors over the functions 

are non-Gaussian (Williams and Rasmussen, 1996 [23]). 

In this part, our work consisted in deriving approximations to the relevant quantities 

in order to use the BCM to combine multilayer perceptrons. 
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Posterior over functions 

First, we tackle the problem of approximating the posterior distribution P(Ty|x3,T3)- 

We first recall that when an input point 2 is considered, a first order Taylor expansion 

can be used to linearize the model 

ts f(wap,t) + Vf(wap)'(w — wap) +¢, 

where wyp is the maximum a posteriori of p(w|x;,T), 4, 3). Then, Laplace’s method 

can be applied to approximate this distribution with a Gaussian centred around wyp 

such that 

p(w|x;,T;, 4,3) & N (w; wap, H(wap)'), 
Z a 

where Hj; = — garda; np wlx;,T;, 4 6). 

Thus, t is defined as a linear combination of Gaussian random variables and the 

corresponding predictive distribution is given by 

P(t|x, xj,T;) © N (t; f(wamp,2), Vf (warp)'H(waup)1V f(wup) + 87). 

This is a good approximation only if the number of training data points considered is 

sufficiently large such that p(w|x;,7;,@, 8) is sharply peaked around wap. 

We now consider a query set X,. We found that the model could still be linearized 

by using the Jacobian of F, = (f(w,ai), f(w,22),..., f(w,2q))! 

Of (wri) Of (wyr1) 
Ow, wa 

J= 

Of(w,xq) Of (wr) 
Ow, a Owa 

Thus, we have 

Ty = Fy(wup) + J(wmp)(w — wap) +€, 

and the corresponding posterior distribution is given by 

p(Tq|xj,T;) = N (Ty; wap, J(wap)H (wap) J (wap)! + atl): (3.8) 

We ignore the implicit dependency on X, to be consistent with the Bayesian committe 

machine notation. 
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Prior over functions 

Through our experiments, we investigated two approximations for the prior over func- 

tions. 

The first one is based on similar techniques as in the previous section. Indeed, we use 

(3.8) to linearize the model. Then, since the prior over the weights p(w|c«) = N (w;0, 4) 

is Gaussian, we obtain directly 

(Tq) = N 3 

Our second approach is inspired by Neal’s work on bayesian neural networks (1996 

(nx. teueh vue a 3) ; 

{11]). Since the prior can be written as p(T,) = f p(Ty,w)p(w) dw, it can be approxi- 

mated by a Gaussian using Markov chain Monte Carlo techniques. 

3.4 Experiments 

Through the experiments presented in this Section, our goal is twofold. Indeed, we want 

to compare the results obtained when using model fusion techniques on multilayer 

perceptrons and on radial basis function networks. Moreover, we aim at analysing 

what happens when we vary the number of training data points at each node. Thus, 

we consider three situations. In the first two series of experiments, we assume that all 

the nodes have got the same number N of points where N is small or large. Then, 

we simulate a distributed learning environment where the nodes have got data sets of 

different size. 

For the toy data, we consider a training set and a test set both having 1000 data 

points. We use multilayer perceptrons with three hidden units and networks having 10 

radial basis functions since these models give rise to similar predictions when trained 

on the same data set. In the first situation, we fix N = 25 and the number of models 

is given by m = 40. Then, we experiment N = 100 and m = 10. Finally, we distribute 

randomly the data into data sets of different size. 

For the scatterometry data, we are given 180000 data points. We split the data into 

two data sets of the same size. The first one is used for the training whereas the second 
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node | number of data points 

1 

O
N
 

MA.
 8
S 
R
O
W
 

    

86 

369 
249 

126 
72 

45 

32 
21 

Table 3.1: Toy data set. Distribution of the training data points into the nodes. 

aims at testing the model fusion techniques. We use multilayer perceptrons with 10 

hidden units and networks having 50 radial basis functions. In the first situation, we 

fix N = 100 and m = 900. Then, we experiment N = 1000 and m = 90. Finally, we 

distribute randomly the data into data sets of different size. 

In order to draw the following plots, error bars were computed. Each of those terms 

corresponds to one standard deviation around the corresponding prediction. Indeed, 

we recall that all the predictive distributions we consider are Gaussian and so 68.2 

percent of the targets are expected to be in these intervals. 
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node | number of data points 

1 12126 
2 16210 

3 37482 

4 15269 

5 3365 
6 3233 

o 1046 

8 149 
9 126 

10 363 

11 106 
12 242 

13 188 

14 95     

Table 3.2: Scatterometry data. Distribution of the training data points into the nodes. 
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3.4.1 Distributed cooperative Bayesian learning strategies 

Few data at each node 

  

(b) 
Figure 3.3: Distributed cooperative Bayesian learning strategies experimented on the 

toy data set. (a) Fusion of 40 MLP networks. (b) Fusion of 40 RBF networks. Function 

(dashdot line), prediction (solid black line), and error bars (solid grey line). 
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Lots of data at each node 

  

(b) 
Figure 3.4: Distributed cooperative Bayesian learning strategies experimented on the 

toy data set. (a) Fusion of 10 MLP networks. (b) Fusion of 10 RBF networks. Function 

(dashdot line), prediction (solid black line), and error bars (solid grey line). 
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Data sets of different size at each node 

  

(b) 
Figure 3.5: Distributed cooperative Bayesian learning strategies experimented on the 

toy data set. (a) Fusion of 8 MLP networks. (b) Fusion of 8 RBF networks. Function 

(dashdot line), prediction (solid black line), and error bars (solid grey line). 
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quantity | regression | data set | NRMSE tr | NRMSE test 

Few MLP toy 0.8902 0.9124 

- - scatterometry 1,2442 1.2764 

- RBF toy 0.0859 0.1033 

E - scatterometry 0.1189 0.1435 
Lot MLP toy 4.0660 4.0929 

- - scatterometry 5.6587 5.7225 

- RBF toy 0.0806 0.0806 

- - scatterometry 0.1129 0.1135 
Different MLP toy 7.9856 8.4628 

- - scatterometry | 11.1789 11.7854 

- RBF toy 0.0762 0.0863 
- - scatterometry 0.1065 0.1232 

            

Table 3.3: Distributed cooperative Bayesian learning strategies experimented on the 
toy data set and on the scatterometry data. Training normalized root mean square 
error (NRMSE tr). Test normalized root mean square error (NRMSE test). 

Partial conclusion 

First of all, we can observe that the distributed Bayesian learning strategies give poor 

results when applied to multilayer perceptrons. According to Bishop (2006, [1]), one 

property of such models is that different weight vectors #; can all give rise to the same 

mapping function from inputs to outpouts. If those weights vectors are far from one 

another, there is no reason to believe that a simple average ais will create a better 

predictive model. 

Conversely, we obtained very stable and accurate results using the distributed 

Bayesian learning strategies on radial basis function networks. In particular, we ob- 

served that the more data points there are at each node, the better the predictions of 

the fused model are. 
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3.4.2 Parametric hierarchical Bayesian modelling 

Few data at each node 

  

0 02 «4 o8 08 1 12 14 16 18  @ 

(b) 
Figure 3.6: Parametric hierarchical Bayesian modelling experimented on the toy data 

set. (a) Fusion of 40 MLP networks. (b) Fusion of 40 RBF networks. Function (dashdot 

line), prediction (solid black line), and error bars (solid grey line). 
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Lots of data at each node 

  

i a a es aa en 

(b) 
Figure 3.7: Parametric hierarchical Bayesian modelling experimented on the toy data 

set. (a) Fusion of 10 MLP networks. (b) Fusion of 10 RBF networks. Function (dashdot 

line), prediction (solid black line), and error bars (solid grey line). 
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Data sets of different size at each node 

  

(b) 
Figure 3.8: Parametric hierarchical Bayesian modelling experimented on the toy data 

set. (a) Fusion of 8 MLP networks. (b) Fusion of 8 RBF networks. Function (dashdot 

line), prediction (solid black line), and error bars (solid grey line). 
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quantity | regression | data set | NRMSE tr | NRMSE test 

Few MLP toy 0.3254 0.3389 

- - scatterometry 0.4554 0.4737 

- RBF toy 0.2815 0.3012 
- - scatterometry 0.3949 0.4209 

Lot MLP toy 1.5121 1.5356 

= - scatterometry 2.1156 2.1463 

- RBF toy 6.8136 6.8243 
- - scatterometry 9.5229 9.5393 

Different MLP toy 3.0158 3.0192 

- - scatterometry 4.2159 4.2209 

- RBF toy 23.4616 23.4900 
- - scatterometry | 32.7990 32.8353 

            

Table 3.4: Parametric hierarchical Bayesian modelling experimented on the toy data set 
and on the scatterometry data. Training normalized root mean square error (VRMSE 
tr). Test normalized root mean square error (NRMSE test). 

Partial conclusion 

When there are only few training data points at each node, we found that parametric 

hierarchical Bayesian modelling gives quite accurate predictions for both multilayer 

perceptrons and radial basis function networks. When the models are given some more 

data, we observed that the empirical distribution of the maximum a posteriori weight 

vectors cannot be fitted with a Gaussian and so the fused predictive model is far from 

the underlying process studied. In the neural network case, since very different weight 

vectors can give rise to similar output functions (symmetry), the more data is given to 

the agents, the more they specialize during the training process, and the more different 

the estimated weight vectors potentially are. In this situation, there is no reason to 

believe that those parameters can be fitted with a Gaussian distribution. However, 

radial basis function networks do not have such a property and we expected to obtain 

better results. 
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3.4.3 Non-parametric hierarchical Bayesian modelling 

Few data at each node 

  

(b) 
Figure 3.9: Non-parametric hierarchical Bayesian modelling experimented on the toy 

data set. (a) Fusion of 40 MLP networks. (b) Fusion of 40 RBF networks. Function 

(dashdot line), prediction (solid black line), and error bars (solid grey line). 
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Lots of data at each node 

  

(b) 
Figure 3.10: Non-parametric hierarchical Bayesian modelling experimented on the toy 

data set. (a) Fusion of 10 MLP networks. (b) Fusion of 10 RBF networks. Function 

(dashdot line), prediction (solid black line), and error bars (solid grey line). 
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Data sets of different size at each node 

  

a 
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(b) 
Figure 3.11: Non-parametric hierarchical Bayesian modelling experimented on the toy 

data set. (a) Fusion of 8 MLP networks. (b) Fusion of 8 RBF networks. Function 

(dashdot line), prediction (solid black line), and error bars (solid grey line). 
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quantity | regression | data set | NRMSE tr | NRMSE test 

Few MLP toy 0.3407 0.3413 
- - scatterometry 0.4762 0.4782 
= RBF toy 0.2981 0.3021 

> = scatterometry 0.4165 0.4227 
Lot MLP toy 0.3217 0.3335 

- - scatterometry 0.4497 0.4664 
- RBF toy 0.2557 0.2622 
- : scatterometry 0.3572 0.3679 

Different MLP toy 0.2458 0.2775 
- - scatterometry 0.3437 0.3869 
- RBF toy 0.2967 0.2983 

- - scatterometry 0.4149 0.4173 

            

Table 3.5: Non-parametric hierarchical Bayesian modelling experimented on the toy 
data set and on the scatterometry data. Training normalized root mean square error 
(NRMSE tr). Test normalized root mean square error (NRMSE test). 

Partial conclusion 

Non-parametric hierarchical Bayesian modelling is one of the most stable technique 

that we used. It gives similar results for both multilayer perceptrons and radial basis 

function networks. Moreover, it is very robust regarding the number of points stored on 

each node. Contrary to the method we saw in the previous Section, this technique can 

be used when the empirical distribution of the maximum a posteriori weight vectors 

cannot be fitted with a Gaussian.
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3.4.4 Error averaging 

Few data at each node 

  

(b) 
Figure 3.12: Error averaging experimented on the toy data set. (a) Fusion of 40 MLP 

networks. (b) Fusion of 40 RBF networks. Function (dashdot line), prediction (solid 

black line), and error bars (solid grey line). 
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Lots of data at each node 

  

(b) 
Figure 3.13: Error averaging experimented on the toy data set. (a) Fusion of 10 MLP 

networks. (b) Fusion of 10 RBF networks. Function (dashdot line), prediction (solid 

black line), and error bars (solid grey line). 
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Data sets of different size at each node 

  

(b) 
Figure 3.14: Error averaging experimented on the toy data set. (a) Fusion of 8 MLP 

networks. (b) Fusion of 8 RBF networks. Function (dashdot line), prediction (solid 

black line), and error bars (solid grey line). 
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quantity | regression | _dataset__| NRMSE tr | NRMSE test 

Few MLP toy 0.3214 0.3479 

. - scatterometry 0.4209 0.4876 

- RBF toy 0.2631 0.2939 
Ed - scatterometry 0.3634 0.4120 

Lot MLP toy 0.2349 0.2790 

- - scatterometry 0.3284 0.3900 
- RBF toy 0.2442 0.2843 

i - scatterometry 0.3487 0.4012 
Different MLP toy 0.3175 0.3315 

- - scatterometry 0.4399 0.4621 

- RBF toy 0.2909 0.2917 
- - scatterometry 0.4066 0.4078 

            

Table 3.6: Error averaging experimented on the toy data set and on the scatterometry 
data. Training normalized root mean square error (NRMSE tr). Test normalized root 
mean square error (NRMSE test). 

Partial conclusion 

Error averaging gives similar results for both multilayer perceptrons and radial basis 

function networks. It is a simple, widely used, and accurate technique. However, one of 

its weakness is that if there is a node that outputs a prediction far from all the others, 

since the mean is an estimator very sensitive to outliers, then the fused predictive 

model risks to be far from the underlying process. 
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3.4.5 Weighted error averaging 

Few data at each node 

  

Figure 3.15: Weighted error averaging experimented on the toy data set. Fusion of 40 

RBF networks. Function (dashdot line), prediction (solid black line), and error bars 

(solid grey line). 
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Lots of data at each node 

-05 

  

(b) 
Figure 3.16: Weighted error averaging experimented on the toy data set. (a) Fusion of 

10 MLP networks. (b) Fusion of 10 RBF networks. Function (dashdot line), prediction 

(solid black line), and error bars (solid grey line). 
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Data sets of different size at each node 

  

(b) 
Figure 3.17: Weighted error averaging experimented on the toy data set. (a) Fusion of 

8 MLP networks. (b) Fusion of 8 RBF networks. Function (dashdot line), prediction 

(solid black line), and error bars (solid grey line). 
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quantity | regression | data set | NRMSE tr | NRMSE test 

Few MLP toy 9.9525e+04 | 1.1283e+05 
= - scatterometry | 1.3926e+05 | 1.5732e+-05 
Et eRBE) toy 2.2535 2.5550 
- - scatterometry 3.1501 3.5715 

Lot MLP toy 0.2340 0.2700 
- - scatterometry 0.3409 0.3807 
- RBF toy 0.2374 0.2719 
~ : scatterometry 0.3610 0.3812 

Different MLP toy 0.2848 0.2862 

- - scatterometry 0.3982 0.4000 

- RBF toy 0.2832 0.2850 
= - scatterometry 0.3960 0.3984 

              
Table 3.7: Weighted error averaging experimented on the toy data set and on the 
scatterometry data. Training normalized root mean square error (NRMSE tr). Test 
normalized root mean square error (NRMSE test). 

Partial conclusion 

We found that weighted error averaging does not work when there are few points 

at each node. Indeed, if we examine the results obtained in detail, we can observe 

that the values of the predictions have become very high (we could not even plot the 

results obtained with multilayer perceptrons). This is mainly due to the fact that the 

algorithm is based on the inversion of the covariance matrix C’ between the noises of 

the models. Thus if the correlations are small, the values of C-! become significant. 

Otherwise, weighted error averaging gives more accurate predictions and is more 

stable than simple error averaging. It also gives similar results for both multilayer 

perceptrons and radial basis function networks. 
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3.4.6 Bayesian model averaging 

Few data at each node 
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(b) 
Figure 3.18: Bayesian model averaging experimented on the toy data set. (a) Fusion of 

40 MLP networks. (b) Fusion of 40 RBF networks. Function (dashdot line), prediction 

(solid black line), and error bars (solid grey line). 
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Lots of data at each node 

  

(b) 
Figure 3.19: Bayesian model averaging experimented on the toy data set. (a) Fusion of 

10 MLP networks. (b) Fusion of 10 RBF networks. Function (dashdot line), prediction 

(solid black line), and error bars (solid grey line). 
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Data sets of different size at each node 

  

(b) 
Figure 3.20: Bayesian model averaging experimented on the toy data set. (a) Fusion of 

8 MLP networks. (b) Fusion of 8 RBF networks. Function (dashdot line), prediction 

(solid black line), and error bars (solid grey line). 

63



CHAPTER 3. FUSION OF PHYSICALLY DISTRIBUTED REGRESSION MODELS 

  

    

  

  

  

  

quantity | regression | _data set__ | NRMSE tr | NRMSE test 
Few MLP toy 0.4046 0.4672 

= - scatterometry 0.5690 0.6529 

- RBF toy 0.3971 0.4659 
= - scatterometry 0.5562 0.6513 

Lot MLP toy 0.2262 0.2897 
- - scatterometry 0.3134 0.4051 

- RBF toy 0.2392 0.2834 
= : scatterometry 0.3353 0.3962 

Different MLP toy 0.2810 0.2861 

- - scatterometry 0.3940, 0.4213 

- RBF toy 0.2868 0.2869 
- - scatterometry 0.4010 0.4023 

            

Table 3.8: Bayesian model averaging experimented on the toy data set and on the 
scatterometry data. Training normalized root mean square error (VRMSE tr). Test 
normalized root mean square error (NRMSE test). 

Partial conclusion 

We can observe that Bayesian model averaging gives poor results when there are only 

few data points at each node. This is due to the fact that the different marginal like- 

lihoods are not well estimated. Otherwise, this method outputs equivalent predictions 

as weighted error averaging. It gives similar results for both multilayer perceptrons 

and radial basis function networks. 
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3.4.7 Product of predictive distributions 

Few data at each node 

  

(b) 
Figure 3.21: Product of predictive distributions experimented on the toy data set. (a) 

Fusion of 40 MLP networks, (b) Fusion of 40 RBF networks. Function (dashdot line), 

prediction (solid black line), and error bars (solid grey line). 
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Lots of data at each node 

15 

  

(b) 
Figure 3.22: Product of predictive distributions experimented on the toy data set. (a) 

Fusion of 10 MLP networks. (b) Fusion of 10 RBF networks. Function (dashdot line), 

prediction (solid black line), and error bars (solid grey line). 
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Data sets of different size at each node 

  

(b) 
Figure 3.23: Product of predictive distributions experimented on the toy data set. (a) 

Fusion of 8 MLP networks. (b) Fusion of 8 RBF networks. Function (dashdot line), 

prediction (solid black line), and error bars (solid grey line). 
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quantity | regression | _data set | NRMSE tr | NRMSE test 

Few MLP toy 0.3090 0.3356 
- - scatterometry 0.4312 0.4491 
- RBF toy 0.2600 0.2867 
- - scatterometry 0.3623 0.4011 

Lot MLP toy 0.2341 0.2787 
- - scatterometry 0.3472 0.3923, 
- RBF toy 0.2432 0.2839 
- - scatterometry 0.3454 0.3970 

Different MLP toy 0.2958 0.2993 

- = scatterometry 0.4126 0.4185 
4 RBF toy 0.2881 0.2881 
- - scatterometry 0.4028 0.4042 

            

Table 3.9: Product of predictive distributions experimented on the toy data set and 
on the scatterometry data. Training normalized root mean square error (NRMSE tr). 
Test normalized root mean square error (NRMSE test). 

Partial conclusion 

As non-parametric hierarchical Bayesian modelling, the product of predictive distri- 

butions is an interesting technique that is very stable regarding the number of points 

stored on each node. Indeed, in the three series of experiments that we carried out, 

we obtained very accurate predictions. However, this method underestimates the er- 

ror bars. More precisely, we found that the more we added nodes to our distributed 

learning environment, the more the estimated variances decreased to zero. In Section 

2.1, we showed that an underlying process can always be decomposed into two terms. 

The first one represents the deterministic part of the mapping, whereas the second 

corresponds to a random variable, called noise, with unknown g? variance. Thus, we 

expect a fused model to ouput both accurate predictions and good estimates of the 

positive underlying noise variance. 
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3.4.8 The Bayesian committee machine 

Few data at each node 

  

(b) 
Figure 3.24: The Bayesian committee machine experimented on the toy data set. (a) 

Fusion of 40 MLP networks. (b) Fusion of 40 RBF networks. Function (dashdot line), 

prediction (solid black line), and error bars (solid grey line). 
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Lots of data at each node 

  

(b) 
Figure 3.25: The Bayesian committee machine experimented on the toy data set. (a) 

Fusion of 10 MLP networks. (b) Fusion of 10 RBF networks. Function (dashdot line), 

prediction (solid black line), and error bars (solid grey line). 
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Data sets of different size at each node 
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(b) 
Figure 3.26: The Bayesian committee machine experimented on the toy data set. (a) 

Fusion of 8 MLP networks. (b) Fusion of 8 RBF networks. Function (dashdot line), 

prediction (solid black line), and error bars (solid grey line). 
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quantity | regression |__dataset | NRMSE tr | NRMSE test 
Few MLP + MCMC toy 0.4305 0.4467 

- - scatterometry 0.6021 0.6244 
- MLP + Linearization toy 0.9962 1.0176 
> = scatterometry 1.3925 1.4245 
- RBF toy 0.2823 0.2912 
- - scatterometry 0.3945 0.4072 

Lot MLP + MCMC toy 0.2585 0.2654 
- - scatterometry 0.3723 0.3710 
- MLP + Linearization toy 0.9950 1.0375 
- - scatterometry 1.3400 1.4503 
- RBF toy 0.2684 0.2790 
- - scatterometry 0.3721 0.3902 

Different MLP + MCMC toy 0.2509 0.2721 
- - scatterometry 0.3607 0.3842 
- MLP + Linearization toy 0.9965 1.1500 
- - scatterometry 1.3933 1.6075 
- RBF toy 0.2732 0.2812 
e - scatterometry 0.3823 0.3938           

Table 3.10: The Bayesian committee machine experimented on the toy data set and 
on the scatterometry data. Training normalized root mean square error (VRMSE tr). 
Test normalized root mean square error (NRMSE test). For multilayer perceptrons, 
two approximations of the prior over functions are experimented : linearization of the 
model (Linearization) and Markov chain Monte Carlo (MCMC). 

Partial conclusion 

We recall that analytical expressions exist when applying the Bayesian committee 

machine to combine radial basis function networks. Thus, we obtained very accurate 

predictions when using such models. Here, we aim a testing some approximations that 

we proposed in order to apply the BCM to fuse multilayer perceptrons. 

First of all, we can observe that the linearization of multilayer perceptron output 

functions, to estimate the prior over functions, always leads to poor results. This is 

due to the fact that the prior over the weights is broad and so a first order Taylor 

expansion is not accurate. We obtained better predictions using Markov chain Monte 

Carlo to approximate the prior over the functions with a Gaussian distribution. 

Moreover, we obtained poor results when there were few training data points at 
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each node. Indeed, in this situation, since the posterior over the weights is not sharply 

peaked around the maximum a posteriori, Laplace techniques give rise to poor approx- 

imations of the posterior over functions. Otherwise, we obtained accurate predictions 

and our experiments suggest that Laplace approximations and Markov chain Monte 

Carlo can be used in the BCM framework to combine multilayer perceptrons. 

3.4.9 Conclusion 

In this Chapter, we described some techniques that can be used to combine models 

trained using initially physically distributed data. We showed that most of these meth- 

ods had to be extended in order to tackle our problem. The biggest part of our work 

consisted in applying the Bayesian committee machine to fuse neural network predic- 

tions. Thus, we demonstrated that the posterior distribution over the functions can be 

approximated using the Jacobian of F, = (f(w, #1), f(w,22),..., f(w,%q))! to linearize 

the model and Laplace techniques to estimate the posterior over the weights. More- 

over, through some experiments, we found that Markov chain Monte Carlo methods 

give rise to very good approximations of the prior over the functions. 

We observed that some algorithms to combine models, such as parametric hier- 

archical Bayesian modelling, weighted error averaging, and Bayesian model averaging 

were not stable with respect to the number of points stored on each node. Except 

when there was few training data, we obtained the best predictions using the Bayesian 

committee machine. 

We chose not to specify the computational costs of the different methods we used 

in this Chapter since they were all negligible. 

In the next Chapter, we will assume that we are given a single training data set. We 

will show that it is possible to create a distributed learning environment by distributing 

data on nodes. Then, some approximation methods can be used to work in the Gaussian 

process framework when the number N of training data points is large. 

73



Chapter 4 

Gaussian Process Regression Over 

Large Data Sets 

In the last two decades, linear models and neural networks have been widely used for 

regression. They are said to be parametric methods since they use well defined output 

functions to approximate underlying processes. Thus, in Section 2.1, we showed that 

linear models are based on a set of basis functions {¢o(x), ¢:(x),..., @a(a)} with fixed 

centres whereas neural networks use hidden units which depend on parameters that 

can be adjusted. 

In section 2.1.3 we demonstrated that, when defined in the space of functions rather 

than the space of parameters, linear models are instances of Gaussian processes. Mor- 

ever, as mentioned previously, Neal (1996 [11]) showed in his work that for specific 

choices of priors p(w), the prior over functions p(’) of a one hidden layer neural net- 

work converges to well known Gaussian process priors as the number of hidden neurons 

tends to infinity. Those two observations motivate the idea of using Gaussian processes 

directly instead of parametric approaches. 

Unfortunately, Gaussian processes have got a poor scaling with large data sets 

(Choudhury et al., 2002 [2]) since they require matrix inversions of which the compu- 

tational cost and the memory requirement are of order O(N*) and O(N?) respectively, 

where N is the number of training data points considered. To overcome such lim- 
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itations, some sparse approximation methods have been developed. Rasmussen and 

Quinonero-Candela noted (2005 [16]) that all these approximation schemes treat ex- 

actly only a subset of variables called latent variables whereas the remaining variables 

are given some approximate, but computationally cheaper treatments. 

In this Chapter our approach is different. Indeed, we investigate techniques that 

can be described in a distributed learning environment and that aim at speeding up 

Gaussian process regression. Through the Sections of this Chapter we demonstrate 

that the training and the prediction tasks can be treated separatly. Thus, after hav- 

ing reviewed the Gaussian process limitations, we show in Section 4.2 how the BCM 

can obtain forecasts when the number of training data points is large and the model 

hyperparameters given. Then, in Section 4.3, we investigate the factorization of the 

hyperposterior and we demonstrate how it can be used during the learning process. 

In section 4.3.2, we describe a very recent method called Laplace propagation that we 

applied as an optimization algorithm. Finally, we present the experiments that we 

carried out and we draw some conclusions. 

4.1 Gaussian Process Limitations 

As other regression models, Gaussian processes are based on two different steps. First, 

given a data set {x, 7}, an algorithm is used to optimize either the likelihood function 

or the hyperposterior. This operation is commonly known as the training process. 

Then, given the solution 6, the prediction task consists of computing forecasts for any 

new input point. We recall that the hyperparameter @ that defines the Gaussian process 

covariance function has to be positive and so we constrain 6 = exp(¢). 

In the Gaussian process framework, as we show in the two next Sections, both steps 

require the inversion of the covariance matrix C given by 

C(ai, xj) = k(ai, 23) + 86 — J) Vai, 2; € x 

If we assume that we are given N training data points, then C has got N? elements. 

Thus, the computational cost and the amount of memory required for the matrix 
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inversion are of order O(N%) and O(N?) respectively. 

4.1.1 Training of the hyperparameters 

As described in Section 2.1.3, the log-likelihood function is given by 

In p(T|@) = -5 Indet C — Cor -— > In( (27). (4.1) 

In order to use an optimization algorithm, such as scale conjugate gradient, the gradient 

of (4.1) has to be computed. Since 0 = exp(¢), we have 

oC _0Cdo_ dC 

a ~ ob de op PP): 

Using standard formulae for matrix differentiation, we obtain 

a _ _ exp(9) 0C ¥-1 OC crn Bae) = 3 {ue (o =) re 200 at 

If we now consider the hyperposterior, we have 

  

ov 
2) 

20 prior 
  

al d 
Inp(AIT, O rior) = —5 Indet o-3r'o'T- - 2 in(2n)—$ non) ~$ In(0> io) —In(Z). 

and its corresponding gradient is given by 

a Ee SeRbte) f (010C\ ae Pe 3g M PCT: Sprior) = 3 {ue (co =) TC 30 r} ae 

4.1.2 Predictions 

Given a new input xy41, we recall that the predictive distribution is given by 

E(x) ~ p(twsilT) = N (t;k'CT, c— k'O-'k) . 

4.2 The Bayesian Committee Machine for Gaussian 

Process Predictions 

In Chapter 3, we saw that the Bayesian committee machine can be used to combine 

any kind of Bayesian regression models. For our experiments, we applied it to fuse 
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radial basis function networks and multilayer perceptrons trained using the evidence 

procedure. We now see the BCM as a technique to obtain approximations of Gaussian 

process predictions when the number of training data points is large. 

Assume that we are given a single training data set {y,T} of size N. In order to 

use the BCM, we split the data into several data sets that are then stored on nodes. 

Following Tresp, better approximations can be achieved by first using some clustering 

techniques and assigning the data of each cluster to a separate node. The predictive 

distribution is then estimated using 

m ee P(Lyl {xs THY) & ams [Tals Ts): (4.2) 
(Ty) nee 

where, following Section 3.3.2, the prior and the different posteriors are given by 

P(Ty) = N (Ty; 0,2) , 

and 

P(T |x, Tj) = N (Tg; B[Tq];, cov(Ty);) - 

Here, we used E[Tj]; = A'C;*T; and cov(T,); = B — A’C;"A, where C; defines the 

Gaussian process covariance matrix of node j. Moreover, to simplify the notations 

we ignored the dependency of A on the training data set {x;,T7j}. Since all these 

distributions are Gaussians, following (3.5), the mean and the covariance matrix of the 

predictive distribution have got a simple form 

ET] = cov(T, 7,) 5 (cov (cov(T,);)~*E[Ty];, (4.3) 
jai 

with 

cov(Ty)-? = =(m = 1)E-! + }\(cov(T);)7*. (4.4) 
ret 

Thus, we observe that instead of having to invert a N-dimensional matrix as in 

the Gaussian process framework, the BCM approximation requires inversions of a- 

dimensional and q-dimensional matrices, where a is the number of points stored on 

each node and g the number of query points. The computational cost to calculate each 

term in the sums (4.3) and (4.4) is of order O(a) if a >> gq. Conversely, if g > a, the 
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computational cost becomes O(q?). Tresp suggests to use a = q since then all matrices 

that have to be inverted have the same size. Thus, the BCM overall computational 

cost is linear with respect to NV 

3 N 3 2 O(ma*) = Ora ') = O(Na’) = O(N), 

ifa<N. 

We found that (4.3) and (4.4) can be computed with an iterative algorithm, such 

that the memory which is used at one iteration is reused at the next iterations, Indeed, 

agent j calculates cov(T,);)~', cov(Ty);)~!B[Zy];, and repectively adds those terms to 

j-l 

—(m = 1)E7! + S\(cov(T,):)-1, 
i=1 

and 
g-l 

SY (cov(Ty):)EITali- 
i=1 

This process is repeated until 7 = m. As before, if we fix a = q, the overall memory 

required is of order O(a’). 

To conclude, for a fixed a, if we assume that the number m of agents is not bounded, 

then the Bayesian committee machine can be used to obtain approximations of Gaus- 

sian process predictions when the number N of training data points is large. 

4.3 Factorization of The Hyperposterior 

In the previous Section, we showed that the Bayesian committee machine can be used 

to give to Gaussian process predictions some approximate but computationally cheaper 

treatments. However, we did not specify how to train the hyperparameter 9. In his 

work, Tresp suggests to choose randomly some points of the original training data set 

{x, 7}. Then, the corresponding Gaussian process likelihood function or hyperposterior 

can be optimized. However, because of the problems we saw previously, if N is large, 

then only a very small portion of {y,7'} can be used for training. 

We found that it was possible to approximate the learning process by keeping the 

original data set as a whole. Indeed, using equations inspired by the BCM (4.2), the 
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hyperposterior can be factorized 

POMLX) TL Frio) & — P(# Orion) T1321 P(Tilxs, 4), (4.5) 

od Hoe js PUXI: Tis prion)» (4.6) 

where P($|o prior) is a chosen distribution that reflects our prior belief and to go from 

(4.5) to (4.6), we used Bayes’ rule on each term in the product. 

As before, this expression is exact if the different data sets {x;, Tj} are uncondi- 

tionally independent. A good approximation might be achieved by clustering the data 

and then assigning the data of each cluster to a separate node. 

In this part, our work consisted of experimenting two methods to optimize the 

factorized hyperposterior. 

4.3.1 Shared hyperparameters 

This approach is inpired by Schwaighofer’s work (2005, [17]) and aims at using directly 

an algorithm, such as scale conjugate gradient, to optimize the factorized hyperposte- 

rior. It requires evaluations of the logarithm of (4.6) 

m 

In p(Sl{x3; TH} FE1» Oprion) = —(™ = 1) Inp(lo rion) + _Inp(4|x5,T}, Fron) (4.7) 
j=l 

and of the corresponding gradient 

V In (BLL X4, TH Fas Sprion) = —(™ — 1)¥ In p(Pozrion) + Vn P(LN3; Ty Prion) 
fa (4.8) 

After some iterations, we obtain the solution § = exp(¢). 

If @ represents the number of points stored on each node, then we know that 

the terms in the sums (4.7) and (4.8) have got a computational cost and a memory 

requirement of order O(a*) and O(a?) respectively. Thus, if we apply an iterative 

process, such that the memory used at one step is reused at the next step, the overall 

computational cost and memory requirement to evaluate either the logarithm of the 

factorized hyperposterior or its gradient are given by 

O(ma*) = O(a) = O(Na?) = O(N), 

"2.
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and O(a”). 

To conclude, as for the Bayesian committee machine and given a fix a, if the number 

m of nodes is not bounded, then the whole data set {x, 7} can be used for the training 

even if the number N of data points is large. An important aspect of this approach is 

that the exact expression of the factorized hyperposterior is used. 

4.3.2 Individual hyperparameters 

In the previous Section, we described a single optimization procedure where the log- 

hyperposterior and its gradient are decomposed into sums of simpler terms thanks to 

the factorization (4.6). In particular, we showed that this method gives rise to a single 

hyperparameter 6. We now present a different approach. Indeed, we assume that local 

agents use the distributed data sets {x;,7;} to train. In other words, they optimize 

independently the different distributions p(¢|x;, Ts ortor) to give rise to m solutions 

Local Laplace approximations 

In order to obtain a single estimate 6, we experimented local Laplace approximations. 

Indeed, each agent j estimates its own hyperposterior with a Gaussian distribution 

N (6; 93; He), where H; is the hessian matrix of — In p(4|x5, Tj, Cprion)- Then, using 

(4.6) and basic properties of the Gaussian distribution (see Section 3.2.4), we calculate 

ma [] x31), rion) © N (65 byuss Hp) » TD eS 

where ¢yus = Hyus Det Hj; and Hyys = fel H;. Thus, we use the hyperparameter 

6= exp(@jus) for the prediction task. 

In Section 4.3.2, we show that the calculation of the hessian matrix at node j 

requires the inversion of the Gaussian process covariance matrix C;. Moreover, we 

know that the computational cost and the memory requirement for each agent to 

optimize its own hyperposterior are of order O(a) and O(a?) respectively. Thus, if 

we apply an iterative process, such that the memory used at one step is reused at the 
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next step, the overall computational cost and memory requirement for the optimization 

procedures and the local Laplace approximations are given by 

3 N 3 2 O(ma®) = O(a ) = O(Na*) = O(N), 

and O(a’). 

We recall that we obtained the same characteristics in the method described in 

the previous Section. However, we now use local approximations and not the exact 

factorized hyperposterior. Thus, we expect to get less accurate results. 

The negative log-hyperposterior hessian matrix 

The expression of the negative log-likelihood hessian matrix was first derived in 2005 

(Zhang and Leithead, [26]). It is given by 

  

  

il = Oe ) dl 06 1) Pa Oe. ae 1 Wig oN ig ee 4: Las gt G 36.00, +5 Cc BoC Obs C do (4.9) 

aC 1 aC a mip 4 laa-i =1 XONEE OT + TO EEO, Va,bE {12.4}, (4.10) 

where d is the dimensionality of 6 = exp(¢). 

Thus, since p(¢|T, Oo ior) « P(T|¢)P(Olo3-ior)s the negative log-hyperposterior hes- 

sian matrix is defined as 

Ay = Lay t+   , Va,b € {1,2,...,d}, 
Oprior 

if we use an isotropic Gaussian distribution P(Ploprior) =N (¢ Oe Pa)’ 

4.4 Laplace Propagation 

In the previous Section with demonstrated that after having split the data set {x,T} 

into multiple data sets {x;,7;} stored on nodes, an equation inspired by the Bayesian 

committee machine (4.2) can be used to factorize the hyperposterior p(4|{x;, Tj Vea Geno): 

Then, we showed that two methods are applicable for the optimization procedure even 

if the number N of training data points is large. 
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We now present an algorithm, called Laplace Propagation (LP), that was introduced 

very recently in the machine learning community (Smola et al., 2004 [18]). Assume 

that we are given the factorized distribution 

  

P(Ol{x;, Tye Caan) x PbO prion [[eGhu.¢) 
j=l 

It is important to note that this expression is similar to our previous factorized hy- 

perposterior. We simply do not use Bayes’ rule to invert each term P(T;|x;,@) in the 

product (4.6). According to Smola, the LP strategy relies on the assumption that if 

we succeed in finding good approximations of those terms by (T}|x;,), then we will 

obtain an approximate maximizer of p(4|{xj,7)}%%1, Crrior) by maximizing 

POC rior) I p(Tjlxj. 9) 

This requires good approximations of each of the P(T;\x;,¢) at the maximum of 

P(Ol{x;, Tj ye cb) Coren): This can be insured by maximizing 

P($1oprion P(Ti1x33 ) | [(Tlx:, 4). (4-11) 
ify 

Laplace methods are then used to approximate p(T;|x;,) using 

Inp(Tj|x;, 4) © Inp(Tj|xj, $3) + 9)(¢ — o;) + (6 — 6) Hy(6 — 45), 

where @, is the maximum of (4.11), g; = V np(Z}|x;,¢,), and H; = VV Inp(Tj|x;, 9). 

The algorithm starts by fixing p(T;|y;,¢) = cst, Vj € {1,2,...,m}. Then, we have 

to establish methods for updating the estimates. One approach consists of performing 

such updates sequentially. In other words, at iteration k, we approximate p(Tk|x«,¢) 

by p(Ti|xx,¢). This new estimate is then directly used for the optimization of (4.11) 

at iteration k + 1. It is also possible to update our approximations in parallel. Thus, 

at iteration k, each node j optimizes (4.11) and we obtain m solutions 6; = exp(¢,). 

Then, all the nodes update their corresponding approximations P(T;|x;,¢)- In this 

approach, the algorithm stops when all the hyperparameters agree 

6; = 6, Vj €{1,2,...,m}. 
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We chose this method to update the different estimates. Thus, the LP has got 

a very interesting property in our framework. Indeed, at the first iteration, since we 

are given p(Tj|x;,¢) = est, Vj € {1,2,...,m}, each node j optimizes (4.11) which is 

equivalent to optimize 

P(T31x5, 9) & P(b|O prior) P(T;|X3, 4). 

In other words, all the nodes optimize indendently their own hyperposterior and we 

have g; = VInp(Tj|x;,4;) = 0 and 

Inp(T;|x;,.9) © Inp(Tjlx3, 4) + (¢ — 6;)'Hy(¢ — 4). (4.12) 

Thus, after the first iteration, all the solutions 0; = exp(¢@,) are exactly the ones that we 

obtained using the method presented in Section 4.3.2. Whereas the algorithm stopped 

at this point, we are now free to continue the approximation. 

Since each node optimizes (4.11) and evaluates its own negative log-likelihood hes- 

sian matrix, then the overall computational cost and memory requirement are the same 

as with local Laplace approximations, that is O(N) and O(a”). 

4.5 Experiments 

In the previous Sections, we showed that the Bayesian committee machine can approxi- 

mate Gaussian process predictions when the number N of training data points is large. 

Moreover, we demonstrated through three different algorithms that using factorized 

distributions, all the data can be used for the training procedure. We recall that we 

showed that all these methods have got the same order O(N) of computational cost 

if the number m of models is not bounded. However, some of those techniques use 

optimization algorithms, such as scale conjugate gradient, and we have not discussed 

yet how fast they converge to solutions 6 = exp(¢). 

In this Section, through the experiments on the scatterometry data, our goal is 

twofold. First, we want to analyse how fast and accurate the methods that we have 

seen in this Chapter are. Then, we want to compare those results with multilayer 

perceptrons and radial basis function networks trained using the evidence procedure. 
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We are given a data set with 180000 data points. We split the data into two 

data sets of the same size. The first one is used for the training whereas the second 

aims at testing the models. Because the number N of training data points is very 

large, Gaussian processes are not applicable. Indeed, we found that programs based 

on those regression methods stop a few seconds after they started because of out- 

of-memory problems. Thus, to estimate Gaussian process predictions, we use the 

Bayesian committee machine and to approximate the training procedure, we apply 

methods presented in Sections (4.3.1), (4.3.2), and (4.4). We also want to experiment 

if, as noted by Tresp, better approximations can be obtained by clustering the training 

data and then assigning the data of each cluster to a separate node. 

4.5.1 Results 

  

        

Model RMS train | RMS test | Training | Prediction 

RBF (2 hidden units) 0.8160 0.8327 27s 258 
RBF (10 hidden units) 0.5724 0.5867 2.29min 36s 
RBF (50 hidden units) 0.3489 0.3454 9.28min 1.53min 
MLP (2 hidden units) 0.4428 0.4534 2s 15s 
MLP (10 hidden units) 0.3453 0.3479 25s 17s 
MLP (50 hidden units) 0.3444 0.3482 | 13.04min 19s 

SH + BCM + non clustered data 0.3635 0.3642 4.31h 5.26h 
SH + BCM + clustered data 0.3489 0.3517 4.29h 5.10h 

LLA + BCM + non clustered data 0.4032 0.4057 3.57h 5.10h 
LLA + BCM + clustered data 0.3960 0.3975 3.41h 5.20h 

LP + BCM + non clustered data 0.3721 0.3739 4.20h 5.32h 
LP + BCM + clustered data 0.3491 0.3530 4.20h 5.20h 
  

Table 4.1: Results obtained using several regression models (Model) on the scatterom- 
etry data. Five techniques are applied : radial basis function networks (RBF), multi- 
layer perceptrons (MIP), shared hyperparameters (SH), local Laplace approximations 
(LLA), Laplace propagation (LP). Training root mean square error (RMS train). Test 
root mean square error (RMS test). Time to train a model using the training data 
set as a whole (Training). Time to obtain predictions for all the inputs in the test set 
(Prediction) 
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4.5.2 Conclusion 

To analyse our results, we use the multilayer perceptrons and radial basis function 

networks as references. First of all, we can point out that using approximation meth- 

ods, both for the training and prediction task, we managed to work in the Gaussian 

process framework using a very large training data set. Thus, on average, we obtained 

predictions for all the inputs in the test set in five hours using the Bayesian committee 

machine. Moreover, it took us between three and four hours and a half to find solu- 

tions 6 = exp(d) depending on the methods considered. Regarding the accuracy of our 

approximations, we always obtained better results when the data was clustered before 

being distributed and stored on different nodes. More precisely, we got the best results 

using shared hyperparameters. This training method is also the slowest one. Tech- 

niques based on local Laplace approximations are faster but give rise to less accurate 

predictions. The best compromise was found using Laplace propagation. Indeed, we 

obtained almost the same forecasts as the method based on shared hyperparameters, 

in a bit more reasonable time. 

To work in the Gaussian process framework, when the number of training data 

points is large, our experiments suggest to use Laplace propagation for the optimization 

of the hyperparameters and the Bayesian committee machine to approximate Gaussian 

process predictions. However, we found that a 10 hidden unit multilayer perceptron 

and a 50 radial basis function network can obtain similar predictions much faster. 

Nevertheless, it is important to note that the underlying process of the data set that 

we are given is known to be quite simple to characterize. Indeed, it maps only three 

inputs to one target and it is monotome. It would be particularly interesting to consider 

a more complex data set and to observe if our approximations give rise to a better model 

than multilayer perceptrons or radial basis function networks. 
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Chapter 5 

Conclusion 

Through this thesis we tackled two critical applications that can be described in a 

distributed learning environment. First, in Chapter 3, we defined some techniques that 

can be applied to combine multilayer perceptrons and radial basis function networks 

trained using physically distributed data. In particular, we showed that is is possible 

to work in the space of parameters or to fuse directly the different model predictions, 

for a given input 2, in order to obtain a more accurate predictive model. We also 

derived some approximations of priors and posteriors over the functions so that the 

Bayesian committee machine can be used to combine multilayer perceptrons. Thus, we 

demonstrated that the posterior distribution over the functions can be approximated 

using the Jacobian of F, = (f(w,21), f(w,22),...,f(w,2))! to linearize the model 

and Laplace techniques to estimate the posterior over the weights. Moreover, we found 

that Markov chain Monte Carlo methods give rise to very good approximations of the 

prior over the functions. 

Then, in Chapter 4, using approximation methods, both for the training and pre- 

diction task, we managed to work in the Gaussian process framework using a very large 

training data set. We used the Bayesian committee machine to approximate Gaussian 

process predictions. Moreover, through three different algorithms, we demonstrated 

that using factorized hyperposteriors, all the data can be used for the training proce- 

dure. 
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