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Thesis Summary 

Low density parity check error-correcting codes can be applied as an efficient public 

key cryptosystem. The scheme, based on the computational difficulty in factorising 

dense matrices, has been studied so far in the limit of infinite system size. In this 

work we study numerically the finite-size effects in such a system, such that may 

have a significant impact on the reliability of the cryptosystem, and we derive the 

corresponding practical limitations in using these algorithms. We also describe the 

difficulties we encountered in using a similar approach to devise an electronic signature 

cryptosystem.
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Chapter 1 

Introduction 

1.1 Secure data transmission 

The increase in digital communication over the last thirty years was followed by the 

development of sophisticated methods of monitoring communication, falsifying iden- 

tities and corrupting messages. Therefore, integrity, authenticity and confidentiality 

became dominant in modern data transmission and give rise to rapid development in 

various aspects of cryptography. 

Nowadays, it is common to use secure media, or supposedly secure media, for many 

daily activities such as credit card information transfer, mobile communication, on- 

line banking or e-commerce to name but a few. Data encryption and digital signatures 

provide an efficient solution to the security problem, since the development of public 

key cryptosystems. 

Many different algorithms have been developed for public key cryptography, apply- 

ing specific mathematical theories ranging from Galois fields to prime numbers factori- 

sation, and information theory approaches. After the recent rediscovery of Gallager 

error-correcting codes [13, 14], they have been applied as a public key cryptosystem 

with encouraging results [7]. These codes, based on the difficulty of factorising a 

product of Boolean matrices can also be analysed by using the methods of statistical 

mechanics; the analysis supports conjectures about their expected performance. 

10



CHAPTER 1. INTRODUCTION 

1.2 Outline 

In the following chapter, low-density parity-check codes will be described, especially 

the construction used in this work based on random sparse matrices. Furthermore, 

some information theory background will be discussed as it is required for the forth- 

coming chapters. The belief propagation algorithm will also be presented within the 

Bayesian framework and linked to optimal estimators and decoding/decrypting error 

robabilities. 

In chapter 3, we introduce the use of low-density parity-check codes as a public 

key cryptosystem. Emphasis will be given to secure data transfer, describing the main 

encryption/decryption scheme in the specific system examined here. A discussion about 

the limitation of the cryptosystem will naturally lead to the study of finite-size effects. 

In chapter 4, we will study the role of finite-size effects and their relevance to 

secure data transmission. The study will be based on a numerical approach and will 

concentrate on the practical limits of the system as it emerges from the analysis. Then, 

the agreement between theory and the numerical results will be pointed out. 

Chapter 5 introduces the problem of digital signature, explaining the main possible 

attacks, followed by a discussion of the different possible solutions. We will explain the 

different approaches suggested, and their weaknesses or drawbacks. 

Finally, the main insight gained from the thesis will be summarised in chapter 6, 

and future research directions will be indicated. 

11



Chapter 2 

Low-density parity-check codes 

In this chapter, I will present the basic definitions, coming from information theory, 

which are relevant to the area of error-correcting codes, as well as a description of 

the probability propagation algorithm. Specific code structures coming from a statistical 

mechanics analysis will then be discussed and motivated, forming the basis of the public 

key cryptosystem as introduced in the following chapter. 

2.1 Information theory 

First defined for communication purposes, information theory provides the main 

mathematical tool and formulation of error-correcting codes [12]. As the suggested 

cryptosystem is derived from error-correcting codes, I will provide some useful defini- 

tions and the main framework to be used in the following chapters. For convenience, 

all descriptions will use Boolean algebra {0, 1,+}, as we can transform any message to 

a binary version {1, —1,.}. 

2.1.1 Entropy 

A message is a sequence of symbols (a;);¢{1ym) from an alphabet A. A probability is 

associated with each symbol of the alphabet such that )),,<4p(a) = 1. The entropy, 

which measures the effective amount of information in a message is defined as follows: 

12



CHAPTER 2. LOW-DENSITY PARITY-CHECK CODES 

Definition 1 (Entropy) Let a message be of length m 

A= 

ee play) - 
The entropy of the message is defined as: 

H(A) = — > p(ai) loge (p(ai)).- (2.1) 
i=1 

In a binary representation, the alphabet is reduced to A = {0,1} and the binary 

entropy to H2(A) = H2(p) = —plog,(p) — (1 — p) log)(1 — p) where p is the probability 

of the symbol being 1. 

2.1.2 Transmission through a channel 

In error-correcting codes, our main interest is transmission through a noisy channel 

such that we will be able to retrieve the original message after corruption. The noisy 

channel can be interpreted as a conditional probability P(J|J' °) where J is the received 

message and J° the transmitted one. One can define the conditional entropy for T 

and R, the two alphabets of the transmitted and received vectors respectively: 

H(J|J) = — > > PU) P( IP Ji) log(P(J8| 4) (2.2) 
KER Ter 

The mutual information represents the information on the original signal J° con- 

veyed by the received signal J, and is defined by: 

I(J°, J) = He(J°) — H2(J°|J) (2.3) 

Therefore, the channel capacity is introduced as the maximal information that a 

channel can retain. 

13



CHAPTER 2. LOW-DENSITY PARITY-CHECK CODES 

Definition 2 (Channel capacity) 

8 0 
Cehannet = mee T(J", J) 

where I(J°, J) is defined as a functional of the probability of transmitted bits P(J}) 

and the corruption process. 

In this thesis, we only consider binary symmetric channels (BSC). Both alphabets 

are binary, the conditional probability corresponds to a flipping rate: -P(J; = 0 | J} = 

1S por By — 1] J} = 0) =p. For the BSC, the channel capacity is equal to 

Cosc = 1 — Ha(p). 
A 

Pde? | §) P| J°) P(s|J) 

Figure 2.1: Main scheme of message transmission. The message € is encoded into 

a codeword J°. The transmission through a noisy channel gives rise to the received 

corrupted message J. Finally, the decoding process extracts from J the most likely 
original message é. s represents the dynamic variable used in the previous process. 

2.1.3 Encoding and redundancy 

Successful decoding after corruption is achievable due to the addition of some redun- 

dancy to the original message €, creating the codeword J° to be transmitted. Defining 

the lengths of the vectors € and J° as N and M respectively, the definition of the code 

rate is thus R = N/M in the case of unbiased messages. Therefore, a code represents 

the mapping of 2" words of N bit sequences onto M bit codewords, denoted (2%, M). 

Encoding consists of applying a function e such that e(€) = J°, decoding results from 

the inverse process with a function d such that d(J) = J°. One may consider the 

probability of block error, pg, defined as the probability for any symbol to be decoded 

incorrectly, 

Pp = P(d(J) ¢ J) (2.4) 

14



CHAPTER 2. LOW-DENSITY PARITY-CHECK CODES 

Shannon’s channel coding theorem can be expressed in the following way: 

Theorem 1 (Channel coding) For every rate R below the channel capacity C channels 

there exists a mapping (2%, M) with pp + 0 when M - co. Conversely, for any set 

of code words mapping (2%, M) with pp + 0 when M — oo, R is below the channel 

capacity. 

From this fundamental theorem, a theoretical limit is defined for all data transmis- 

sion. For a given rate, codes can only be applied up to a determined level of corruption. 

Shannon’s limit has been obtained in the infinite system size, practical systems are more 

restricted due to finite-size effects. 

2.2 Low-density parity-check codes 

2.2.1 Linear codes 

The encoding process uses an M x N binary matrix G, called generator matrix, 

such that J° = Gé. Hence all J? are a linear binary combinations of the €;, considering 

(mod 2) operations: 

mee (2.5) 
JEK(i) 

where K(i) represents the set of non-zero elements in i-th row of G. 

After corruption by a vector ¢, we receive the vector J = J°+¢. For Gallager 

algorithm decoding process, we first generate the syndrome vector z such that z = HJ, 

H is usually called the parity-check matrix and has the property HG = 0. Then we 

get HJ = H¢ = z. Various low-density parity-check codes have been studied starting 

from Gallager original code [4]. The variation of low-density parity-check codes that 

we focus on here is the MN code in which we use two binary random sparse matrices 

A and B such that:



CHAPTER 2. LOW-DENSITY PARITY-CHECK CODES 

G=B"'A (2.6) 

Thus we choose H = [A|B] to find back the same scheme as Gallager codes: the 

syndrome vector is given by z = BJ = A€ + BC = Ha, where a2? = [€|¢]". The 

decoding results thus are obtained by solving a linear system [13], looking for the most 

probable signal s and noise tT vectors which obey z = As + Br. 

The two matrices A and B are defined by their structures and their sparseness: 

A has K non-zero unit elements per row and C(= K/R) per column while B has L 

non-zero unit elements per row and per column. 

2.2.2 Decoding efficiency 

The decoding process is efficient due to the sparseness of the matrices A and B. As 

we choose the matrices to be regular, i.e. with a fixed number of non-zero elements per 

row and per column, we can categorise the performance of the various constructions 

with respect to these parameters. These codes have been analysed using methods 

adapted from spin glasses and mean field theory [8, 10, 15], which results in three 

distinct classes in the case of unbiased messages: 

e For K > 3, one could ideally decode successfully up to Shannon’s limit. However, 

practically one cannot use these constructions as the basin of attraction around 

the perfect solution is very narrow, resulting in a decoding failure when a practical 

decoding algorithm is used. 

e The case K = 2 is marked by the appearance of a point below which only 

the perfect solution exists and above which other solutions emerge, determining 

the practical limitation. Decoding to the perfect solution is feasible up to this 

point, above it the convergence is possible only if exhaustive search algorithms 

are used. Typically, practical decoding methods will converge to sub-optimal 

solutions which may obey the parity checks but will differ from the initial vector. 

16



CHAPTER 2. LOW-DENSITY PARITY-CHECK CODES 

e Finally, for K = 1, the picture is similar to that of K = 2 but the codes’ 

performance is generally lower. In some cases these codes perform better than 

K = 2 codes, mainly in high code rates. For more details, see [15]. 

Using irregular codes, i.e. defining the sparse matrices as block matrices with 

different distributions of non-zero bits per row and per column, the codes efficiency can 

be improved [21]. Advantages from each of the previous regular cases can be exploited 

to improve the performance. Ideal constructions could be obtained by extremizing the 

noise value below which only the optimal solution exists, pushing it as close as possible 

to Shannon’s limit. 

2.3. Statistical decoding 

2.3.1 The Bayesian approach 

After encoding the data by adding redundancy into the vector J°, the latter is then 

corrupted by a noise. The received vector, J, is therefore given by J = J° + ¢ where 

¢ represents the noise added to the encoded data. 

The decoding scheme relies on finding the most likely estimate € assuming a model 

for the corruption P(J|J°) and a prior for the original data P(€). This estimator should 

minimise on average a loss function related to the posterior distribution P(€|J). 

1. One commonly used measure is the percentage of perfectly retrieved messages 

which correspond to the minimisation of the block error probability. The loss 

function rewards any single bit failure as an error in retrieval: 

N 

L(é,é) =1-]] 5G, &) (2.7) 
i=1 

where 6 refers to the Kronecker tensor. 

The posterior probability is obtained by applying Bayes theorem and noticing 

that P(J|€) = P(J|J°)5(J°, e(€)): 

17



CHAPTER 2. LOW-DENSITY PARITY-CHECK CODES 

P(é|J) = 
P(S|J°)5(I", e(€) PE) Bs 

e 

De 

De P(I|I")5(I", e(€)) P(S) 

where 5(x,¥) = [141 (2,4). 
Therefore, the optimal estimator is defined by the maximal a posteriori estima- 

tor (MAP): € = argmaxgP(€|J). This estimator chooses the global maximum of 

the posterior over a space of 2% solutions. This is in general a hard computa- 

tional problem, but it can be solved in some cases by using the belief propaga- 

tion/revision algorithms. 

2. Another measure is given by the overlap between the original message and the de- 

coded vector, defining the bit error probability as the percentage of well-retrieved 

bits in the message. This gives rise to a different loss function, using a binary 

alphabet € € {—1, 1}: 

N 

L¢,é)=-)0&& (2.9) 
i=1 

The optimal estimator for this loss function is the marginal posterior maximiser 

(MPM), defined by & = argmax,e, P(Ej|J), with P(&|J) = Diy¢, 125; P(élJ) [6]. 

2.3.2 Belief propagation/revision algorithm 

To evaluate the a posteriori estimator or the marginal posterior, one should obtain 

the probabilistic dependencies between variables. This can be carried out by mapping 

the system onto a bipartite graph, one layer corresponding to the M received bits 

%,, and the other to the N estimated message bits s;. The connections between the 

two layers are specified by the matrices A and B. The computational improvement 

using this algorithm is significant, as the process is based on passing probabilities 

forward from the source layer to the receiving layer and then backward iteratively until 

convergence, which takes O(N) operations in comparison to the O(2%) operations 

generally required for obtaining the exact solution. 

18



CHAPTER 2. LOW-DENSITY PARITY-CHECK CODES 

} 5 layer 

} A, B connectivity 
matrix    

z, layer t) } 4 

Figure 2.2: Bayesian network with a rate R = 1/2. Each z, represents a syndrome 

bit and each s; stands for a bit of the original message. A and B are defined as the 
adjacency matrices or connectivity matrices between the nodes of the network. 

These algorithms can be proven to give an exact solution only in case of a tree-like 

graph (graph without any loops). However, they should converge to a good approxi- 

mation in general graphs even in the presence of small loops [22]. 

Now, we will explain how the algorithm works, for the example of figure 2.2. The 

joint probability is given by: 

P(81, ++) 83) 215 +++) 26) = P(6|83, 82) P(25|S2, $1) P(z4|$3) P(z3|82) P(z2|83, 81) P(21|82, 81) 

and the connectivity matrix is defined as follows: 

o
o
r
 

rt 
Oo 

o
r
 

me BR
 

o 

Oy ask 

Given the received information z,, one has to recover all the P(s;) in order to 

estimate the initial message. In this algorithm, we do not have to compute all terms as 

we exploit the explicit dependencies between nodes. To compute the pseudo posterior 

marginal we arrange the system as a bipartite graph, iterating conditional probability 

of single variables with respect to others back and forth until a consistent solution is 

obtained. The main scheme is described as follows: 

e First, we call s; and z, layers the estimate and syndrome layers respectively. 
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Figure 2.3: Left part: forward message Q, from the estimate layer to the syndrome 

layer. Right part: backward message R, from the syndrome layer to the estimate layer. 

e At each step, each estimate node s; sends forward the message Q;,, to the syn- 

drome z, to approximate the node’s belief given the messages received. 

e In the same way, each syndrome node z, sends backward the message R,,, to each 

estimate s;. 

e The process is iterated until convergence. 

Initially, each Qj, is set to the corruption probability p;. The update rules are 

given by: 

Fu= > Paly=asteN(\3) [] Of (2.10) 
siliEN(u)\9 tEN(u)\9 

where N(2) \ j refers to the set of indices of the nodes in the estimate layer that are 

linked to the node z, with exception of the j — th node, and a € {0, 1}. 

II P(8; = al{zv}vemiy\u) 

_ P(sj =a) P({a}vemy\ulsi = @) 

a P({2v}veme)\n) vet 

05, P(8; = a) Il Ruy 
veM(j)\u 

Qn 

where M(j) \ jz stands for the set of indices of the nodes in the syndrome layer that are 

linked to the node s; with exception of the node j: and a, is a normalising pre-factor 

[1]. Iterating equations (2.11) and (2.10) until convergence, we reach an approximation 

for the marginal posterior P(s; = a|z). 

20



CHAPTER 2. LOW-DENSITY PARITY-CHECK CODES 

The belief propagation algorithm reduces considerably the computational time re- 

quired for calculating marginal posteriors. Usually, the belief propagation algorithm 

is used for directed graphs to compute the MPM estimator while the belief revision 

procedure is used in undirected graphs to compute the MAP estimator (Markov net- 

works) [22]. Although we are mainly interested in the MAP estimator, we decided to 

use belief propagation algorithm to employ the MPM estimator as it is easier to use 

and has better convergence rates. In addition, using MPM, we have a measure for the 

distance between sub-optimal solutions and the original one. 

21



Chapter 3 

Application to cryptography 

After describing the low-density parity-check matrices and their use in error-correcting 

codes, we show how they can be used as a public key cryptosystem. Advantages and 

drawbacks of the cryptosystem presented, are discussed, as well as practical considera- 

tions to improve the reliability of the process. 

3.1 Conversion to cryptography 

In the previous chapter, an algorithm based on low-density parity-check codes was 

presented to recover data after corruption due to a transmission through a noisy chan- 

nel. We will now present a method for using a similar algorithm as a public key 

cryptosystem. This cryptosystem is described in relation to the scheme of figure 2.1 

where €, representing the original message (plain-text), is encoded into a cipher-text t 

by generating a codeword using the parity-check matrix G (part of the public key), and 

corrupting the codeword vector by adding a corruption vector with flipping probability 

p. Both the probability p and the matrix G define the public key. 

The analogy with the previously described error-correcting codes is obvious. On the 

one hand, the encryption process is similar to the encoding process and the corruption 

of the initial data. On the other hand, the decryption process is similar to the decoding 

process when full knowledge of the process is available. The secret key is accessible 

only to the authorised user and contains the decomposition of the matrix G as well 
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CHAPTER 3. APPLICATION TO CRYPTOGRAPHY 

as the flipping probability. In equation (2.6), which represents the encoding /decoding 

process, the matrix G is defined by two random sparse matrices A and B. However, 

such a matrix can be decomposed in feasible time scales, due to the sparseness of A and 

B. Therefore, a dense matrix D is added in the definition of G, as will be explained 

later on. 

ENCRYPTION TRANSMISSION DECRYPTION 

Retrieved message    
    

    Initial message fe Encrypted message 
ENCODING DECODING 

  

Figure 3.1: In cryptography, the public key is used for encryption. The private key 

includes extra information, enabling its owner to decrypt the cipher text in practical 

time scales. The performance of the algorithms relies on the encoding and decoding 

methods used. 

It is worth mentioning that in error-correcting codes, we are typically interested in 

optimising the overlap between the initial vector and the decoded vector, while in a 

cryptosystem we would typically be interested in the probability of block error as any 

single error becomes critical. Computationally, the belief propagation algorithm should 

be converted to a belief revision procedure as the former corresponds to the marginal 

probability maximiser (MPM) and the latter to the maximum a posteriori estimator 

(MAP). These two algorithms are based on similar principles and the adaptation from 

one to the other is straightforward [22]. Practically, we will be using belief propagation 

in view of its higher convergence rate and ease of use. 

3.2 The public key framework 

Ina public key cryptosystem, the encryption process as well as the extra information 

used to encrypt the message, are accessible to all users. Decryption in practical time 

scales should be impossible for those who do not possess the private key. In some of 
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CHAPTER 3. APPLICATION TO CRYPTOGRAPHY 

the commonly used methods, the public key is composed of the elements used in the 

private key: prime number factorisation in RSA schemes [18], product of matrices for 

low-density parity-check codes [7, 14]. 

3.2.1 Encryption 

The encryption scheme is based on generating a codeword from the original message 

using a low-density parity-check matrix G and adding a corruption vector ¢. The 

corruption vector is defined with a flip rate p, that must stay below p,, the threshold 

above which the cryptosystem will not be guaranteed to retrieve the exact solution. 

Considering the initial message €, the encrypted message J is obtained using equation 

(3.1). 

G=B'A (3.1) 

Gé+¢ (3.2) 

Both the matrix G and the corruption level p define the public key. A and B are two 

random sparse matrices. 

  

Original message Vector with redundancy Encrypted message 

Parity check Encryption 

g GE ; 

g 

Linear system Noise corruption 

Figure 3.2: In a first step, the initial message is related to a codeword of length M by 

multiplying € by the low-density parity-check matrix G. A corruption vector ¢ is then 
added to make the decryption difficult for non authorised users. The corruption vector 

has a flip probability p < p, and represents a part of the public key. 
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3.2.2 Decryption 

The decryption process uses the belief propagation algorithm to recover the most 

probable original vector. The process is feasible only due to the sparseness of the 

matrices. The first step consists in creating a syndrome vector z by multiplying the 

received vector J by the sparse matrix B. 

2 Bd As+ Br 

Il A€ + BC (3.3) 

We then try to estimate the most likely dynamic variables s and 7 by employing the 

belief propagation iterative technique which will converge to the optimal solution in 

the infinite system case, which at p <p, is the only existing solution. 

3.2.3 Security 

If one defines the public key as G = B™!A, the decomposition of the matrix G 

is computationally achievable in practical time scales. The attacker will be able to 

find two matrices A’ and B’ in computational effort which scales as O(M?) satisfying 

G = (B’)“!A’. Therefore, our opponent will be able to use his home-made key in the 

same way as the original private key to decrypt the encrypted message, generating the 

new syndrome vector: 

z= BS 

AE+BC (3.4) 

To remove this weakness, the use of a dense matrix D is necessary to avoid the 

easy decomposition of the private key. Hence, the definition of the matrix G becomes 

G = B-'AD. Then, the decomposition of G into acceptable components is unfeasible 

in practical time scales. 

As the algorithm we used is based on sparse matrices, we need to point out that 

this dense matrix D does not affect our decryption process. The public key remains the 

25



CHAPTER 3. APPLICATION TO CRYPTOGRAPHY 

ENCRYPTION TRANSMISSION DECRYPTION 

Retrieved message      Initial message (sae aa) Encrypted message 

ENCODING      DECODING 

J 

  

G,p) (A, B, D, p) 

Figure 3.3: This figure describes the suggested cryptosystem. The encryption of the 

original vector € in a vector J is carried out using the public key (composed of the 

parity-check matrix G and the corruption probability p). The decryption procedure by 

an authorised user makes use of the secret key (A,B, D,p) where A and B are random 

sparse matrices and where D is a dense matrix such that G = BAD, The result of 

the decryption is the estimated vector € guaranteed to have a perfect overlap with the 

initial message in the long system limit. 

same, (G,p) where G = B-'AD. The length of this key is not affected as B~! is already 

a dense matrix (the inverse of a sparse matrix is dense) and the encryption algorithm 

is unchanged. The private key becomes (A, B, D,p). Therefore, the decryption process 

is applied in the similar way. We receive a message J = G€ + ¢, our syndrome vector 

is defined as z = BJ = A(D&) + BG. Thus, it is clear that the decryption algorithm 

is performed exactly as previously to retrieve a pseudo-decrypted message €’ = D€, to 

achieve the message retreival, we conclude multiplying €’ by D~'. 

3.3 Characteristics of the cryptosystem 

3.3.1 Decoding complexity 

Considering the decryption, the complexity of the belief propagation algorithm is 

O(N) times the number of iterations. Practically, this number was usually less than 

100 except close to the critical point. However, one should also multiply the decrypted 

value by the inverse of D, what should be done by O(N?) operations in general and 

O(N log(N)) in special cases. One should compare it to RSA, which takes O(N%) 
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operations for the decryption procedure. For encryption, a matrix multiplication is 

necessary and will require O(N?) operations. The use of particular matrices as bi- 

diagonal matrices can reduce the inversion to O(N), but such simple matrices may 

slightly compromise the security of the codes. Note that the algorithm may be improved 

using parallelisation that will lead to a decryption process of complexity O(1). 

3.3.2 Advantages and drawbacks 

In order to evaluate the performance of the cryptosystem, we will compare it to 

the most commonly used cryptosystem, RSA. We notice as an advantage that the 

decryption is time O(N log N) for our cryptosystem, while for RSA it is O(N*). Fur- 

thermore, our cryptosystem contains an error-correcting mechanism that is implicitly 

embedded, while RSA needs an additional error-correcting algorithm to compensate 

for transmission errors. 

One of the obvious drawbacks is the low information transmission rate; the code 

rate R is less than 1 as we introduce redundancy, while this rate is 1 for RSA which is 

based on a one-to-one mapping. Hence, the length of the cipher text is longer than that 

of the plain text, increasing the transmission time. On the other hand, RSA is sensitive 

to any alteration of the transmitted message, while our system embeds error-correction 

due to the presence of redundancy [7]. Another drawback is the length of the public 

key that is much more longer than in RSA, but this fact is not of great importance as 

it is sent only once. Finally, the decryption process relies on a statistical decryption 

mechanism; this raises the question of reliability, especially when the system size is 

finite and decryption errors may be higher. The estimation of the reliability of the 

system is of great significance for its practical implementation. This leads us directly 

to the next chapter in which we study the finite-size effects in our cryptosystem. 
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Chapter 4 

Finite-size effects 

Theoretically, the cryptosystem leads to the correct solution in a large range of 

noise values when the system is infinite. However, in finite systems, the algorithm still 

converges but not always to the optimal solution, especially close to the critical point, 

where sub-optimal solutions emerge. The convergence to sub-optimal solutions is due 

to finite-size effects and may put the reliability of the cryptosystem in question. The 

main goal of this chapter is to provide a numerical analysis of finite-size effects. We 

will describe the methods applied and the results obtained. 

4.1 Theoretical and ideal behaviour 

4.1.1 Critical points 

Below a critical corruption level p,, it is theoretically possible to find the optimal 

solution which corresponds to the state with lowest the free energy of the system. As 

described in [17], Gallager-type code is similar to a diluted many-body Mattis model in 

an external field, known in statistical mechanics. The decryption process is represented 

by equation (3.3): 

2=BI As+ Br I 
I Ag + BC (4.1) 
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This equation defines an Ising spin representation from a statistical physics point 

of view, corresponding to the formula: 

ieee; — Walia: (4.2) 
i€L(m) jEM(n) tEL(u) jEM(n) 

where £(j) stands for a set of indices of non-zero elements in the j-th row of A and 

L£() stands for a set of indices of non-zero elements in the i-th row of B. In equation 

(4.2), s, 7, € and ¢ are Ising variables, i.e. they are vectors of {—1, +1} components. 

The Hamiltonian reflects this constraint as well as the bias due to the corruption with 

probability p. 

w= eee 
(ir yess 01 y-9L) 

XI] Tir nnitcthiyndt) * 88x 1* Six Th THe) (4.3) 

    

B f=1 

In equation (4.3), the term F, is the bias of the original message which is zero as 

it is the product of a vector with a dense matrix ; F, = }(log(1 — p) — logp) comes 

from the corruption rate p. The tensor Avj,,...,i:j1,...ir) 18 equivalent to A€+B¢. The 6 

function identifies the product of sites s;,---5;,7),-++7), that is in disagreement with 

Kis sixsiiyir): AS this first term is not frustrated, it will vanish at low temperature 

(8 —» +00). Therefore, Decoding is carried out at Nishimori’s temperature, F, = 

3(In(1—p) — np) and F, = 0 for unbiased messages which is the same as giving 

the correct prior within the Bayesian framework. From the Hamiltonian, we get the 

partition function, Z = Trpsrye™). Looking for the minima of the free energy 

F = —(\n Z)¢¢,p, we first need to consider the configurational average in order to 

obtain an expression independant of noise and the randomness of the matrices [17], 

then we carry out the saddle point equations with the replica method. The latter is 

based on the following identity: 
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(iene er (4.4) 

Thus we can define the thermodynamically dominant state evaluating the free energy 

of the different solutions. 

Figure 4.1 provides a schematic view of the free energy of the system [7, 15]. In- 

creasing the value of p changes the free energy landscape: the perfect retrieval of the 

original message can theoretically be obtained up to a corruption level p3; < pe (p¢ is 

Shannon’s limit), below which the perfect solution is dominant over other solutions, but 

practical decoding can be achieved only below the spinodal point p,, that corresponds 

to the noise level below which only the perfect overlap solution exists. Table 4.1 gives 

a comparison between p, and the theoretical value of p, for different code rates [15]. 

    

  

Figure 4.1: On the left : the free energy plotted as a function of the noise level p for a 
system with K = 2 and L = 2. The symbol F refers to the perfect overlap state, F’ to 
the sub-optimal decoding solution, and P to the non-informative solution. Below p,, 

the spinodal point, the only stable solution is the optimal one (or the mirror solution), 

so the algorithm is guaranteed to converge to the right solution. Up to ps, the perfect 

overlap solution is still dominant but sub-optimal solutions appear. Above p3, the sub- 

optimal solutions become dominant even if the right solution is still existing and other 
solutions emerge later on. On the right: the overlap m between the original message 

and the optimally decoded message. The thick line denotes the dominant solution. 

4.1.2 The system’s performance 

In the limit of infinite message length, MZ —> co, practical decryption should result 

in an optimal estimate up to p,, as no other solution exists, and should typically fail 
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RateR 2/3. 1/2 2/5 1/3 
Ps 0.0528 0.0930 0.1206 0.1439 
pe 0.0615 0.1099 0.1461 0.1739 

Table 4.1: Noise values at the spinodal point and at Shannon’s limit as they vary with 

the rate of the code. These results are given for the code construction K = 2 and 

ie, 

above this point. 

m 

  

    

  

  

eo Ps Po Pp 

Figure 4.2: The performance of the suggested cryptosystem where m measures the 

overlap between the estimated and original messages. The dashed line corresponds 
to an ideal cryptosystem which decrypts the message successfully up to the transition 
point where the perfect overlap solution ceases to be dominant. The thick line repre- 

sents the practical limitation for the infinite system size; as the perfect overlap state is 

the only one existing below the spinodal point, the algorithm will always converge to 

it. Above this point, convergence to sub-optimal solutions is likely to occur. Finally, 

the thin line represents the finite-size effects that appear in practical cases for finite M 

values. 

In practice, finite-size effects are quite important since sub-optimal solution are ob- 

tained even below the spinodal point. Figure 4.2 demonstrates the expected behaviour 

of the average overlap between the decoded/decrypted message and the original mes- 

sage as a function of the noise level p, both practically and theoretically. Therefore, 

the dependence of the block error probability P. (equation (2.4)) with respect to the 

length of the message M and the corruption level p is of great interest. From theoretical 

31



CHAPTER 4. FINITE-SIZE EFFECTS 

results obtained in the field of information theory, we expect an exponential behaviour 

for the block error probability: 

P, = A(M, p)eM#) (4.5) 

where E(p) is the so-called reliability function and A(M,p) a pre-factor. The pre- 

factor is expected to be almost constant and it will be considered to be so for all the 

exponential regressions we will apply on the data. 

This theoretical result can be obtained by considering upper and lower bounds 

for the block error probability using Tchebychev and Chernov inequalities (see [5] for 

details). On the one hand, the random coding upper bound, which corresponds to a 

random mapping of messages to codewords, provides: 

1— R—log,(1+ ./4p(1 — for R € [0, Re BR) = 8 ( ip(1 — p)) [0, Re] (46) 

T,(D) — H2(D) for R € [Re, 1 — Ha(p)] 

where T,(D) = —Dlog,(p) — (1 — D) loga(1— p), Re = 1— Ha(p - /p(1 =p) and D 
is here defined as R = 1 — H2(D), i.e. D = p-. 

On the other hand, the sphere packing lower bound defined as the optimal packing 

of noise spheres around codeword vectors in the M dimensional space provides: 

E,)(R) = T,(D) — H2(D) for R € [0, Re] (4.7) 

Therefore, we have the relation: 

eee eee 
(1—p) V8(M + 1) 

With these bounds [14], we can consider the finite-size effects by assuming that 

eM) SP (M, R) < eM) (4.8) 

they are of an exponential nature, and analyse the practical decryption results. Notice 

that the upper and lower bounds represent an optimal encoding/decoding scheme and 

we expect any practical algorithm to give worse results. We will also mainly focus on 

corruption values below p, where the sub-optimality of our decoding algorithm is likely 

to have a smaller effect on the decay pattern. 
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4.2 Experiments and results 

4.2.1 Modus operandi 

We have decided to apply the belief propagation algorithm as it is easier to use, has 

better convergence properties, and because the bit error probability gives additional 

information on the distance between the retrieved and the original message (Cf. page 

18). We focus on random matrices with K = L = 2 and a code rate of 1/2. 

The halting criterion for the algorithm is the convergence of both message and 

corruption variables, i.e. both vectors remain stable, for 15 steps. When convergence 

is reached, the retrieved message is compared with the original one to determine the 

overlap between them. If the overlap m is different from 1, then sub-optimal conver- 

gence is recorded as well as an error. If no convergence is reached after 500 iterations, 

the algorithm is stopped and the case is consider as an error. 

We consider messages of length M from 50 to 5000, and a flip bit probability p 

ranging from 0.05 to 0.12 (the spinodal point is around p, = 0.09, and Shannon’s limit 

is for pe = 0.11). For each couple (M,p), we monitor 10,000 runs of the algorithm 

where the matrices A and B, the message and the corruption vector were generated 

randomly, for each run. All messages are taken to be unbiased. 

For all the numerical tables, we have applied an exponential regression with the 

assumption that the block error probability follows the law A(p) exp(—ME(p)). 

4.2.2 Error probability measures 

Two measures for the block error probability are introduced. The first one is referred 

to P., and considers only those runs where the iterative decoding process has converged, 

the second one is referred to P. and also includes runs where the decoding process has 

not converged (which are counted as errors). If we note N,,,, the number of runs which 

converged to a sub-optimal solution, Nota, the total number of converging runs and 

Nruns the total number of runs of our experiment, we get: 
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  Noub pa 
ES Neotat 
eee Neotat — Neub 

Nruns 

The block error probability denotes any single bit error. In runs where the decoding 

process has not converged within the time limits, we cannot determine whether an error 

occurred. Therefore, we measure the probability P.. omitting ambiguous cases. On the 

other hand, considering that the decryption/decoding is generally fast, we also decided 

to count the non-converging cases as an error as they can therefore be considered as case 

where the algorithm enters a cycle. This second approach leads to the P. probability. 

The two error measures are quite similar, except for codes where a large fraction of 

runs do not achieve convergence in the time limits. 

Finally, one should notice that as M increases, the total number of converging 

cases increases, approaching N,uns, leading to the equivalence of the two measures 

when M -— oo. Moreover, we have the relation: 

1- Pe _ Neotat 
1— Pee  Nruns 

  

4.2.3 Results 

From the results, we notice that the block error probability was following the ex- 

pected behaviour and is approaching a step function with increasing values of M. This 

behaviour is shown in on figure 4.3, where we measure the equivalence between vectors 

with respect to both signal and noise as described further on. 

It is desirable to compare the results with the theoretical bounds. In the specific 

range of code rates studied, both lower and upper bounds are identical, so we expect 

the results to be close to the theoretical limits. One should point out that we actually 

expect the performance to be worse that these bounds which correspond to optimal 

decoding. One notices from figure 4.4 that numerical results have the same shape as 

the theoretical limit but do not lie on top of each other. As the theoretical limits 
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Figure 4.3: Practical behaviour around the spinodal point. P.. and P. represent the 

block error probability. As expected, with increasing values of the message length M, 

the block error probability looks more and more like a step function. The left graph 

refers to P.-. These graphs were obtained recovering both signal and noise. 

are defined for ideal encoding/decoding mechanisms, the corresponding block error 

probability is lower than the practical values obtained. Hence, the numerical results 

obtained in our experiments are slightly different than the theoretical limit due to the 

sub-optimal encoding/decoding techniques. 

Signal and noise retrieval 

From a theoretical point of view, we need to consider the retrieval of the noise as 

well as the signal. In the following experiments, we use a corruption level from 0.06 

to 0.12 to concentrate on the behaviour around the spinodal point p, and the message 

lengths spread from 500 to 3000 in steps of 500. The results are summarised in figure 

4.5. 

We first notice an almost flat behaviour of log(P.) and log(P.,) in the logarithmic 

scale with respect to M. This indicates a vanishingly small reliability function. As 

a consequence, to reach a given threshold of confidence, we will need a much longer 

message length, revealing that the finite-size effects are more important than previously 

expected. This behaviour could come from the algorithm itself, either due to the 

inherent approximation in the decoding process, or from the fact that the practical 

code we use, is not optimal as expected to achieve the theoretical limit. 

Another important characteristic of these graphs is the appearance of an error floor 
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Figure 4.4: Block error probability and bounds. The slope of the graphs, both theo- 

retical and practical, is steeper close to the transition point with increasing M values. 

The practical results follow the behaviour of the theoretical limits with some difference. 

This comes from the fact that the theoretical limits are defined for ideal cases; it is 
also natural that for practical codes of finite size the block error probability may be 

above the limit. For instance, for M = 500, some cases of perfect retrieval exist even 

beyond Shannon’s limit due to the finite-size effects. This phenomenon disappears as 
M increases. 
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Figure 4.5: Left column: the error probability increases with the corruption level. Right 
column: In a logarithmic scale on the Y-axis, the block error probability decreases with 
the length M of the cipher-text below the spinodal point; for corruption levels above 
the spinodal point, the behaviour is inverted. Below p,, the behaviour of log(P.) and 

log(Pec) is almost flat. 
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at low corruption levels. This seems to be related to the existence of small loops in 

the matrices. These loops force the algorithm to oscillate asymptotically mainly in the 

noise part of the estimate, due to the high bias, increasing the block error probability 

value. 

  

p intercept slope (x1 Ee 

0.06 0.044795 1.8116 0.026971 

0.07 0.058708 4.6399 0.016003 
0.08 0.071936 6.9803 0.008485 
0.09 0.13057 24.121 0.003640 

Table 4.2: Intercepts and slopes of the probabilities in a logarithmic scale to point 

out the linear behaviour, for different corruption levels. The slope is almost zero in 

comparison to the theoretical bound, leading to small value of the reliability function. 

this is obtained for a code rate R = 1/2, with K = L = 2. 

Log(A) vs. p 
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Figure 4.6: Behaviour of the pre-factor log(A) with the corruption level p. This be- 
haviour appears to be quite linear. 

If we consider the pre-factor A, we can see that it decreases exponentially with p, as 

shown on figure 4.6, as the logarithm seems to decrease linearly with p. The significant 

difference between the theoretical limits and the numerical results raises doubts about 

the numerical results we obtained. We currently try to verify the accuracy of the 

results. However, if the results are accurate, they reveal strong finite-size effects, and 
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an important pre-factor A. The results of table 4.3 cannot be fully trusted as the flat 

behaviour of H(p) is very sensitive to fluctuations, a minor alteration of E(p) would give 

rise to a drastic modification in the numerical results. Finally, as this flat behaviour is 

not expected, it may result from computational errors, or even from the fact that the 

code used here is not an optimal encoding/decoding process. 

  

pale Se nee 10ee 
0.06 | 100,330 137,080 173,830 
0.07 | 25,880 34,420 42,960 
0.08 | 14,715 18,915 23,115 
0.09 | 39,105 49,445 59,790   

Table 4.3: Extrapolation of message length M to achieve a level of reliability P. for 

a given corruption level p. On the assumption of accurate encoding/decoding, these 

results indicate strong finite-size effects for a code rate R = 1/2. 

Some experiments have been carried out for different code rates to check the de- 

pendency of the results with the code rate. The behaviour is generally similar, as one 

can see in figure 4.7. 

Signal retrieval 

In this part, we focus on the signal retrieval alone, as it is the aim of the cryptosys- 

tem. We therefore, measure the decryption success with respect to the signal alone. 

The results are summarised in figure 4.8. These graphs point to the exponential be- 

haviour of P, and P., for large M values. Some irregularities appear, that may be due 

to the low M values or to an error in the decoding process. Note that these results are 

relevant only in a practical sense as the theoretical bound considers retrieval of both 

the noise and the signal. 

In these experiments, we focus on the range for p below the spinodal point to stay 

in the satisfiable range of the cryptosystem. The corruption level runs from 0.05 to 

0.09 and the message lengths M are { 50, 100, 200, 500, 1000, 2000, 5000 }. 
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Figure 4.7: Behaviour of P, and P,, for a rate of R = 1/3. The behaviour of the block 

error probability is similar to the one for a rate of 1/2. 
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Figure 4.8: Signal retrieval. Left column: the error probability increases with the 

corruption level. Right column: In a logarithmic scale on the Y-axis, the block error 

probability decreases with the length M of the cipher-text. For sufficiently large values 
of M the behaviour becomes linear. 
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Correction about the results 

As shown previously, it appears that the obtained results follow the expected be- 

haviour but with some bias to the theoretical solution. This is a result of a non-optimal 

algorithm, and the existence of small loops in the sparse ramdom matrices. 

These small loops can be interpreted as cycles the algorithm cannot deal with, the 

decoding process is non-optimal and may lead to sub-optimal solutions. The clear 

appearence of these loops can be seen on the threshold we reach when p + 0. The- 

oretically, when p is approaching 0, the block error probability should be 0. In figure 

4.3, we can clearly see this unexpected threshold. 

To get more consistent results, the small loops that appear in the sparse matrices 

generation must be avoided. Some works should be done in that way. 
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Chapter 5 

Digital signatures 

In this chapter, the role of the cryptosystem is reversed; it is used to define a 

signature using the private key in conjunction with the message, to generate a signature. 

The public key, combined with a comparison function, will serve as authentication. The 

main attack consists in the falsification of the signature with the full knowledge of the 

public key. Using the public knowledge and the message, it seems that many schemes 

remain insecure. Even though we made many attempts to devise a reliable electronic 

signature, these schemes remain insecure. We now describe the general scheme before 

developing the different solutions studied. 

5.1 Digital signature scheme 

In this chapter, the cryptosystem is reversed to define a signature using the private 

key in conjunction with the message to generate a signature. The public key combined 

with a comparison function will serve as authentication. In order to test the reliability of 

such an electronic signature, we define some attacks that can corrupt the authentication 

data. The main attack consists in the falsification of the signature with the knowledge 

of the public key. Here is the description of the main ideas of digital signature before 

turning to the different specific solutions studied. 
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5.1.1 Generating the signature 

For this approach, the notations need to be redefined. The message is not encrypted 

and refers to J. It is important to underline that the message remains open all the 

time and one concentrates on the authentication of the sender. From the message and 

the private key, the signature is generated using the decryption process. It can be 

interpreted as the most likely sequence of bits that could have produced the vector J. 

Clearly, this signature depends both on the text and on the personal key. Therefore, 

the signature is added to the original message and they are sent as one unique message. 

As the signature depends on the private key, it may be necessary to make some changes 

to the keys or to the belief propagation algorithm, for security problems, even if the 

main structure of the procedure remains similar. 

    

  

Unsigned Signed 
message message 

J 9 

              Signature . 

generation Signature 

Private key 
  

Figure 5.1: From the initial message and the private key, the signature is created using 

the belief propagation algorithm. Therefore, the recipient should be able to identify 

the sender with this extra information. As the private key allows the construction of 

the public key, the signature contains information that should be regenerated from the 

message by the public key. 

5.1.2 Authentication 

In order to identify the sender, the recipient has to compare the message with the 

signature with a constraint depending on the public key. In this scheme, the receiver 
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will generate a cipher text from the signature and verify its dependence on the message 

itself corresponding to the corruption level defined in the public key. 

    

    

  

  

                

Signed Authentication 
message 

a) Comparison 

Private Signature function 

key generation 

; . - Validation 
Signature Signature ao 

decoding - Rejection 

Public key 

Figure 5.2: Identification process. The receiver should validate the signature by some 
predefined operations using the public key (e.g., matrix multiplication) and the mes- 

sage. If the predefined relation is obeyed, the authentication is defined successful and 
fails otherwise. 

5.2 Attempts to generate a secure scheme 

5.2.1 Main scheme 

Starting from a message J and our private key (A, B, D,p), we try to generate a 

secure digital signature. Naturally, we try to reverse the process of the cryptosystem, 

applying the decrypting procedure as described in equation (3.3): 

zZ=BJ =As + Br 

This leads to the most probable vector s that could have generated J given the 

element of the private key. Thus s depends on both the message J and the private 

key. The authentication process will consist in generating the vector J° = Gs using 

information of public key and comparing it to the original message J. The identification 

is then certified if J° — J is a (noise) vector with a flip probability p.
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The previous scheme is the theoretical basis for a secure digital signature process but 

is not yet unbreakable. The actual weakness of this scheme is the identity substitution 

in which we manage to substitute the original signature by a faked one. Even some 

more evoluted version of this scheme seem to fail. 

Initial scheme 

The most obvious attack appears when one considers the way we check the authen- 

tication. As one is able to generate ones own corruption vector ¢' with probability p, 

one can generate ones own signature s’ solving J — ¢’ = Gs’. The attacker has only 

to substitute the real signature with his own to fake the identity of the sender (note 

that it is not yet clear from this that the above equation can be solved, as we will see 

below). 

Signal and noise combined scheme 

We considered sending both the most probable signal and noise, s and T as the 

signature, but the previous attack remains, due to the ability of an attacker to generate 

his own corruption vector, independently of the generation of the signature. 

Signal and noise dependence scheme 

An attempt to link the corruption vector and the signal vector during the generation 

of the signature was then considered. Any scheme s = Hr is subject to the obvious 

attack, consisting of solving a linear system with a constraint that remains solvable. In 

this scheme, H do not have any property, it can be any binary matrix that introduces 

some dependences between s and T, as the weakness is based on linear system solving 

and that we are still able to generate our random noise T. 

We considered a dependence between the corruption vector and the signal vector 

following the scheme tr = Hs. In such a model, the previous attack is not that 

obvious to apply. Generating the corruption vector does not implicate anymore that 

the signature is reachable through the resolution of a linear system, as we need to satisfy 
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a much more specific constraint. The main problem is the ability to generate these 

vectors for the sender. The complexity to generate the signature is to be considered 

for specific choices of the dependence matrix H. 

Although, if the signature generation is much more difficult, it may be necessary to 

change the algorithm that generates it and/or the key data. Note that the difficulty 

to generate the signature for the sender and the attacker differs only in the knowledge 

and the structure of the matrix H. 

5.2.2 Space covering 

It seems that the main problem in this digital signature scheme is the space covering 

problem. If we consider a signal vector s of length N, we have 2 possible vectors. 

Thus, we can map 2" vectors onto the 2” possible messages using the redundancy 

generation J° = Gs, M > N. Introducing the corruption vector 7, we define a sphere 

in which the algorithm tends to converge to J°. This is represented in figure 5.3. 

This problem of mapping relies on the corruption level used. Below Shannon’s limit, 

the space is not fully covered and messages can be out of all spheres; i.e., there is no 

guarantee that a solution (signature) exists for a given message. The situation is even 

worse, such a solution exists only for an exponentially small fraction of all possible 

messages. 

To counter this point, two attempts were made. The first was to generate the 

signature above Shannon’s limit. The second one was to consider any vector of the 

message space as the combination of two most probable signal messages, J = J° + J! 

where J° and J! correspond to two different mapped vectors s° and s'. Both of 

these attempts failed due to the breakdown of the belief propagation algorithm. We 

therefore, did not manage to devise a secure electronic signature, leaving this field open 

for further research. 
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Figure 5.3: Mapping of 2% vectors into a 2” space, N < M. The vectors from the 
2™ space that are in a sphere of radius 7 will converge to mapped element using the 
decryption process. On the other hand, for a corruption below Shannon’s limit, some 

vectors J do not lead to a mapped element. For our signature process that means 

some messages among all the possible could not give rise to a valid signature, given a 
corruption probability. 
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5.3 Conclusion 

Using the public knowledge and the message, it seems that many schemes remain 

insecure. Linear dependencies and space covering that are the main approaches seem to 

be unefficient. Although, some attempts have been made [9], none leads to a completely 

secure scheme. Works is still in progress in order to achieve a fully secure process. 
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Chapter 6 

Conclusion 

In this thesis, we consider low-density parity-check codes, derived from error-correcting 

codes, as a secure transmission solution, using belief propagation as a statistical de- 

coder. After describing the specificities of the algorithm and the main scheme of the 

encryption/decryption process, we have studied finite-size effects. 

It was shown that, although the practical decoding roughly follows the theoretical 

behaviour, the finite-size effects appear to be stronger than expected, assuming that 

there is no error in our scheme. The main weakness of the analysis seems to be in 

the presence of small loops in the sparse matrices generation, creating cycles in the 

decoding/decrypting algorithm. As a consequence, the reliability function is found to 

be much lower in practice than its theoretical value. As the reliability function flattens, 

it appears that the pre-factor is more important than expected. The validation of these 

results are still in process during the conclusion of this thesis. There is still some work 

to be done to remoye small loops to verify that their occurence is not negligible and to 

put the results much closer to theoretical ones. 

Finally, we have described a scheme to implement digital signature. Some security 

holes are pointed out, and different attempts to encounter them are specified. Some 

ideas are still to be tested, but for the moment none of them achieves a secure electronic 

signature scheme. 

As future research directions, the big gap between practical results and theoretical 

values for the cryptosystem needs to be investigated, to determine whether this dif- 
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ference is inherent to the algorithm or due to some other factors. The problem of the 

digital signature is still an open one, although the main idea is to devise the signature 

as a link between both signal and corruption vectors after solving the problem of space 

covering. 
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