
Representation of Some Class of 

Time Frequency Distributions 

Towards Their Determination Through 

Remote Sensing Techniques 

GEORGIOS KLADIS 

MSc by Research in Pattern Analysis and Neural Networks 

yY 
ASTON UNIVERSITY 

September 2006 

This copy of the thesis has been supplied on condition that anyone who 

consults it is understood to recognise that its copyright rests with its 

author and that no quotation from the thesis and no information derived 

from it may be published without proper acknowledgement.



ASTON UNIVERSITY 

Representation of Some Class of 

Time Frequency Distributions 

Towards Their Determination 

Through Remote Sensing Techniques 

GEORGIOS KLADIS 

MSc by Research in Pattern Analysis and Neural Networks, 2006 

Thesis Summary 

This project is concerned with reconstruction problems arising in the context of radar 
signalling. The problem arising in remote sensing is a classical inverse problem. The aim 

is to reconstruct the density of the target tracked from the echo, which bears two 
features distance and velocity, with respect to the source (radar). Also adaptive and 
recursive procedures are described for signal representation. The representation is build 

up non-linearly through functions selected from a redundant family of waveforms in a 

forward "greedy" kind of manner or backward. 
Inspired by the work of H.Narparst [5] and L.Rebollo-Neira [14], the project will include 
experiments concerning the robustness of such methods in the case of prior knowledge 

of both the target environment and optimal support of the redundant family of 
waveforms (dictionary) used so as to represent the density of targets bearing these 

common features. 

Keywords: Radar, remote sensing, echo, frames, wavelets, matching pursuit strategies, 
best orthogonal base, method of frames, prior knowledge, dictionary, optimal support.
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Epimenides (6" c.BC) Hymn to Zeus 8-9 
Quoted by Paul of Tarsus 

at Acts 17:28 and Titus 1:12 

They fashioned a tomb for thee [O Zeus], O holy and high one- 
The Cretans, always liars, evil beasts, idle bellies! 

But thou art not dead: thou livest and abidest forever, 
For in thee we live and move and have our being.
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Chapter 1 

Radars 

1.1 Introduction 

It is widely known if a pulse or continuous wave is propagated through a device to the 

atmosphere then, if a receiver is used to ‘listen’, the echo of the signal that is sent will be 

collected. This occurs since materials have a special property to reflect and absorb portion of 

the frequency wave that is propagated to them. These special devices that perform such a task 

are called RADARS and are used for remote sensing of objects. Remote sensing is the science 

and art of obtaining information about an object, area, or phenomenon through the analysis of 

data acquired by a device that is not in contact with the object, area, or phenomenon under 

investigation. 

1.2. Radar modelling 

In general terms a radar comprises of a transmitter, a receiver, a multiplexer (in order to 

switch between the two different functions send a signal-receive its echo) and an imaging 

device. So a problem one should address is what could be the input of such a device, how long 

should we ‘listen’ in order to acquire the echo of the signal propagated, what is the object of 

radar interest and how can one recognize or reconstruct the target from the echo that is 

received? In essence, the echo that is received is a modulated signal which is the process of 

varying a carrier signal in order to use that signal to convey information. On the other hand the 

inverse process is called demodulation. In essence when a signal is sent, which is reflected by 

an unknown object, then due to the properties of atmospheric air, the signal received is 
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corrupted with noise or generally modulated [1][2]. Consequently by demodulating it, certain 

features and properties, such as the delay can be calculated. So by measuring these properties 

the position and the speed of the target observed can be maintained. In this thesis we will 

concentrate in ideal circumstances where the signal that is propagated is reflected by the target 

in total and that the echo received is not corrupted with noise. Moreover we will concentrate on 

a density of many reflecting objects or a dense-target environment, inspired by the work of 

Naparst [3], rather than just a point target. A dense-target environment is a group of targets 

that might be closely spaced with its own range and velocity from the source. 

In recent years, wavelet analysis has been very successfully applied to many problems 

in signal and image processing [4]. In the case of observing a point target one can send just one 

signal and investigate the properties of the reflected signal (echo) in order to pinpoint the 

location and velocity of the target. However in the case that a point target is considered, which 

is not rigid, the question that immediately arises is whether one could determine the reflectivity 

density by transmitting not just one signal but a family of signals. The previous was answered 

positively since the pioneering work of H.Naparst [3][5].Assuming that the reflectivity density 

remains completely invariant during observation time and the same density produces all echoes 

received, Narpast has shown that it can be obtained by transmitting a set of signals and 

measuring the corresponding echoes. In other words by transmitting a set of signals and 

receiving the corresponding echoes one can form a set of equations, one for each transmitted 

signal, that will allow inversion of the problem, such as the reconstruction of the density. So he 

suggested a method to determine the spreading function from the echoes produced by a set of 

orthogonal waveforms. 

Traditional methods for signal representation involve the use of orthogonal bases in 

order to perform a M-term approximation. That approximation where one fixes a basis and 

searches for a combination of M-terms of the basis of N-terms (MCN) is a nonlinear problem. 

The nonlinearity is due to the fact that this subset of M-terms depends on the algorithm that is 

used to select it. Consequently the problem of finding the best combination for such an 

approximation has been subject of much mathematical work, even nowadays. The 

approximation has a basic ingredient which is a basis called a dictionary and is formed by a set 

of functions referred as atoms. Some methods of approximations that fall in the above category 

are adaptive pursuit [4][6],[7],[8],[9],[10] and adaptive basis selection[11]. 

Moreover, through a particular experiment of representation of a target environment of 

two parameters, Naparst showed how deviations in those might cause the method to fail when 

the set of signals is chosen priori to what the target was likely to be and left some room for 

further analysis.



The aim of that project will be, through these nonlinear methods, to use prior 

knowledge both of the density of objects being tracked and the orthogonal basis used in order 

to examine robustness of their representation phase. Based on these, a series of experiments 

was designed hoping to draw some theoretical conclusions. 

Most of the methods used in order to obtain an approximation of the density of targets 

fall in the category of adaptive pursuit. Some numerical examples of these approaches are 
going to be presented, without comparing them with regards to convergence rate, since we are 

in lead for a different motivation. Our goals would be to use prior knowledge of both the 

density of targets being tracked or the combination of waveforms being sent in order to 

approximate that input target. 

This thesis is organized as follows: In chapter 2 the radar problem is firstly addressed 
and we will analyze how to obtain the reconstruction of the spreading function. Chapter 3 
refers to some preliminaries concerning dictionaries and atoms. In addition, in chapter 4 
adaptive methods are explained, such as the methods used in order to send a finite number of 
elementary signals (chosen from a dictionary) that will approximate the target, which will be 
used extensively in the experiments. In chapter 5 the analysis with some simple examples on 
Orthogonal Matching Pursuit for the representation of functions of two variables is described. 
Thereafter prior knowledge is considered for the target being tracked and the subset of 
waveforms sent, chapter 6 and chapter 7, respectively. Moreover a subset of waveforms is 
proposed in order to approximate the density of targets bearing assumptions considered. 
Thereafter, in chapter 8 it is shown with simple numerical experiments the capabilities of such 
subsets to approximate a target environment based on prior knowledge. Lastly Chapter 9 
illustrates through some simple examples the advantage of combining different dictionaries 
(mixed dictionaries) for the representation phase. Partial conclusions and remarks are given in 
each chapter and some general ones are drawn in the last one.



Chapter 2 

Radar setting 

2.1 Basic Radar Setting 

To explain the basic radar setting, suppose that the object under consideration can be 

described as a point moving with a constant velocity u towards or away the source. The 

distance between the object observed and the source is R . So the task of a radar technique is to 

image or locate an object by analyzing electro-magnetic waves that are reflected from these 

objects. In general, the range and the velocity of the target observed is determined by 

transmitting an electro-magnetic pulse y(t) and receiving and analyzing the echo f(t) produced 

by the object. Adapting the notation and terminology in [12][13], for objects moving at 

constant velocity then the wide-band model for the received echo f(t) is a delayed and scaled 

signal of y (signal transmitted) given below: 

f@=aylse¢—7)] (2.1) 

where, s is obtained from the speed of propagation of the transmitted pulse c (speed of light) 

and the object velocity u as 

C=u 
s=   (2.2) 

ctu 

and the delay 7 is determined by the distance R between the object and the source as 

T= 2k (2.3) 
c-u 
  

Hence from s and t the range R between the target and the source and the velocity u of the 

Ts 5 target can be computed as u =: and R a - Moreover the factor a (OS a<1)isa 
+s +s 

constant representing the reflectivity of the object where in the case of an energy preserving 

model it should be considered as |s| . Since a perfectly reflecting object is assumed, in the 

experiments following the reflectivity factor will be considered equal to one (energy is 
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conserved). The reader may refer to the particular work ([12][13]) for a thorough discussion of 

the derivation of the wide-band model, the time-scaling factor s and the time delay t. Due to 

the fact that all objects travel with a speed which is much smaller than the speed of light the 

above equations reduces to s=1and 7 ~2R/c. 

In addition to that, if the outgoing signal bandwidth is narrow and centred around a high 

frequency f, there is the narrow-band model. This is of the following form 

f(t) = aexp(—-2m1gr)g(t—7) (2.4) 

where, ¢= of (Doppler frequency shift) ,7 = 2k (delay), (c >> uso c-u~c) and g(t) is 
c c 

the transmitted waveforms. The above is widely used in classical radar. More details on how to 

reduce from the wide-band model to the narrow-band one, can be obtained in references 

[12][13]. Consequently the echo f(t) is a delayed and modulated version of the transmitted 

signal for the narrow-band approximation. 

The Doppler coordinates (¢,7 ) can uniquely determine the distance and the velocity of 

the target due to their one to one correspondence. However, assuming a target that can be 

represented by a point scatter which is determined by a single velocity and range is not always 

realistic. For instance the object may not be rigid and its different components might have 

different velocities, such as a cloud. Moreover though the object is rigid, it may be changing 

orientation with respect to the radar or there may be many reflecting objects densely situated 

with its own ranges and velocities. So, a more realistic assumption is in the presence of a 

density function describing the scatter spreading effects upon the transmitted signal and the 

total echo is modelled as the superposition of the single echoes. In general, the total echo of a 

reflecting continuum with varying reflectivity as described in Doppler coordinates can be 

obtained by formula (2.5) as described in [3][12] [13] [14]. 

fO= [7 p@eexp-2me)ge-nazig 25) 
The function p(z,@) is called the spreading function, @ is the Doppler frequency shift 

which is equal to Def T= 2h delay and g(t) the transmitted waveform. Note that the 
c c 

total echo f(z) is a delayed and modulated version of the transmitted signal and that the factor a 

is equal to one due to the fact that there is a perfectly reflecting target environment. So the task 

is to reconstruct the density p(z,@) from the received echo. The problem can be dealt in an 

inverse manner provided the echo and the waveform that is transmitted are known initially. 

However this problem has an infinite number of functions P(t, ¢) , which are able to reproduce 

the particular echo f(t). This derives from the fact that the reconstruction of p(z,d) is 
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analogous to the reconstruction of a signal from its Window Fourier Transform. It was clearly 

stated in [15] that the most general solution of the above (equation (2.5)) is of the form 

w, £9) 
2 

Isl 
where w, f(t,¢) is the Windowed Fourier Transform, p’(t,@) is any function in the 

P(t, 9) = +p*(t,) (2.6) 

orthogonal complement to the range of the Windowed Fourier Transform with respect to g 

and al = C |g|'dx. The Windowed Fourier Transform can be defined as: 

w, £0) = [" fexp2merg—adt (2.7) 

where a) is the complex conjugate of g(t). The signal f(r)can be reconstructed by the 

values of w, f (7,9) through the following equation 

fo=Te (flv, FG. exp-ame)g(— aur (2.8) 
g 

Due to the Window Fourier Transform failure of invertibility the most general solution to 

equation (2.5) is of the form of equation (2.6). Consequently for a fixed signal g this solution 

yields to be an optimal. However, when the signal transmitted is an arbitrary one, then there is 

no unique solution for the representation by sending only one of these signals. In this case, this 
leads to whether one can determine the reflectivity density by propagating a family of signals 

instead of just one. The previous was answered by Naparst, where he stated that the spreading 

function can be determined uniquely by sending a particular set of orthogonal functions based 
on the echoes. Hence by a family of signals transmitted, one will have a set of equations for the 
corresponding echoes to obtain the representation of the reflectivity density. In other words, a 
variety of outgoing signals is needed to be used that constitute a ‘frame’ and yield an 

orthogonal projection to the signal, which is going to be analyzed in a next section. So the aim 
is to reconstruct a function of two variables by means of signals of one variable that are 
reflected from the dense-target environment being observed. However let us first examine what 
could be a density of targets in practice. 

2.2 Distributed targets (target environment) 

To be more realistic to the whole problem let us first consider, what a dense-target 
environment might be? Some examples for possible distributed targets in an environment are 
given below. 

© The blood in the heart or arteries and echo cardiology. 
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¢ Fluid flow in a pipe or a wind tunnel where the length of the experiment will determine 

whether a turbulent environment exists or not. 

e Arain cloud. 

¢ The dust debris in the air around airports maybe imaged to determine the presence of 

dangerous wind currents. 

e The surface of a large moving object such as the hull of ship underwater, using sonar. 

¢ Imaging ground clutter, when a missile flies over ground it may realize the ground as a 

distributed moving target (Synthetic Aperture Radar-SAR) 

2.3 Reconstruction of the spreading function 

In this section a brief description of the reconstruction of the spreading 

function p(t, @) , as stated in equation (2.5), is given. Let us assume that for each 7 the Fourier 

transformation of p(z,@) as a function of ¢ exists and that g,, are the waveforms transmitted. 

g,, are well-localised, linearly dependent functions that constitute a frame under certain 

criteria (refer to Appendix-frame definition). These, will be used in order to produce the echoes 

Jf, of the distribution. The index m is meant to show the echoes received to the corresponding 

waveforms transmitted. So according to the narrow band-model (2.5) the following holds, as 

detailed in reference [14]: 

fn(t)= J [7 Ce, @exp(-2nidr)g,,(¢-T)dzlg,meN — (2.3.1) 

The Fourier transformation of p(z,¢) is: 

P(z.t) = [" p(t, g)exp(—2xigr) do (2.3.2) 
Consequently the echoes will be 

f,.0O= [Paos, (t-t)dt, me N (2.3.3) 

or 

Su = [PC ~H.8 (Md =(PO=HDi8q(W)),.+ mEN (2.3.4) Bp? 

(The inner product in L*(R) for f,ge L’(R) is (g, f) 2 = [s@fwat ). By multiplying both 

  

sides of the above equation with g”(t—T) and adding up the equations, where the set of g” 

used, constitute the corresponding reciprocal frame{g” € L>(R);me N}, and are computed 

as g" = Gag, me NandG" is a bounded inverse of a frame condition G . The construction 

of the reciprocal frame is defined in appendix A. Consequently it is obtained as: 
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Ls" t-DF.O= De"t-2) [PC Ng, (t-7 dt 
meN meN 

= LeU 0FO= nse), = 039 
= Den @—2(PC-w., 8"), = PCC.) 

meN 

Equation (2.3.5) holds providing equality (a.7 in Appendix) exists. Multiplying both sides by 

the exponential term exp(2i¢r) and integrating over t, the spreading function can be obtained 

by 

eo g"(t-Of, (t)exp(2aigr)dt = ‘Jc, t)exp(2migr)dt = p(z, 9) (2.3.6) 
come N 

which does not depend on any chosen frame although the dependency of p(z,@) on the 

transmitted waveforms. Consequently by transmitting any frame of waveforms one can reach a 

unique solution of the problem. However in practice it may not be possible to transmit a set of 

signals, ample enough to approximate the spreading function, but just a few signals that yield 

an orthogonal projection to it. So by having a finite set of signals, that are orthogonal to the 

spreading function, a good approximation of the left side of (2.3.6) is yield, This was clearly 

stated in [14](section 4). Hence, if P(z,t) (which is the Fourier transform of p(t,@)) can be 

obtained as a product of a vector of transform coefficients times the finite set of signals that is 

transmitted then a unique approximation of the spreading function is obtained. The previous is 

of the following form 

K 

PZ, 1)= Yc, (18, (t—7) (2.3.7) 
m=1 

where, c,,(t) are the transform coefficients that depict the dependency of them on the values of 

t. The transform coefficients in equation (2.3.7) are calculated with the help of certain non- 

linear adaptive strategies apart from the traditional ones used in the Fourier kingdom. The 
subset of waveforms transmitted, is a combination of M-terms selected from a redundant 

family of functions N (M C N) that constitutes an orthogonal bases. This subset is selected 

through strategies, which are going to be analyzed briefly in a next chapter, with respect to the 
projection of the signal to the basis. In order to obtain the approximation of the target 
environment one should minimize the distance between the approximation and the actual target 

by computing the coefficients c,(t). These are calculated by the inner product 

c,, (t) =< g,,(t—7), P(t,t) >. This family of waveforms is chosen priori to characteristics 

of the environment and each function of g,,, selected, is well-localized which comes from a 

family of orthonormal basis B = {g,,} ney « Consequently this approximation clearly depends 
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on the properties of the target environment relative to that basis. However what could happen if 

the target environment wished to be represented is not known for certain? Would this subset of 

waveforms chosen to be transmitted prove adequate to approximate it? But Let us first 

introduce a vocabulary notation, over dictionaries and splines, before the description of these 

strategies and their application when using prior knowledge over the target environment. 
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Chapter 3 

Spline Dictionaries 

3.1 Dictionaries and atoms 

There are several methods proposed for obtaining signal representations apart from the 

traditional ones [2] [16]. These range from general approaches, like the Method Of 

Frames[14][17] and the Matching Pursuit [4] [7], more efficient schemes like the method of 

Best Orthogonal Basis [18] which will be described briefly thereafter. Most of these methods 

mentioned above are used in, generally, signal and image processing such as speech 

recognition, range-Doppler radars, compression, face recognition and identification, image 

compression, signal restoration and recovery etc. 

Like mentioned earlier the task in the radar problem is to represent a function of one or 

two variables by using elementary functions out of a redundant family of functions of one 

variable. Their selection is performed through the above iterative approaches to best “match” 

this function observed. However before the analysis of the above existing methods let us 

establish a vocabulary notation. Adopting the terminology earlier introduced [4], emphasis on 

terms such as overcomplete representations, dictionaries and atoms is going to be made. By 

the former let ‘us assume that f is a discrete signal of length n, with ( f,:0<t<n), which can 

also be viewed as a vector, or matrix in the 2D case, in R". We are interested in the 

reconstruction of this signal using superpositions of elementary waveforms as discussed 

earlier. Traditional methods [4][7][14][19] of analysis and reconstruction involve the use of 

orthogonal bases(Fourier basis), various discrete cosine transform bases and orthogonal 

wavelet ones. So given a list of n waveforms one wishes to represent f as a combination of 

these waveforms. All this list of waveforms, which are viewed as vectors, are linearly 

independent and consequently the representation of f is unique. 
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Concerning the latter, adapting the terminology introduced by Mallat and Zhang [7], let 

H be a Hilbert space, Ja set of indices (T CH) and D=( a,:n€T) a family of functions in 

H, where each of them are normalized to unity ({a,||=1). Since in practice we deal with a 

finite number of these functions it is assumed that I" is a finite set of N indices where 

n=1,2,...,N. The set of D is a collection of parameterized waveforms called a dictionary. Each   

of the functions {a,,}., constituting D are discrete-time, linear independent fixed elements that 

are normalized to unity, which are called atoms. These are created by simple translations of a 

basis function with respect to a sequence of knots and are defined by equation (3.2.2). 

Concerning a dictionary, n parameter is interpreted as of indexing frequency (Fourier 

dictionary), time/scale jointly, (time-scale dictionary-Haar), or time/frequency jointly (time- 

frequency dictionary-Gabor) [Coifman et al.[18]]. We denote S a linear span of the dictionary 

functions a,. Dictionaries are complete or overcomplete. In the first case S=H for limy.,... 

However, a dictionary is in general redundant which implies that in the finite case the 

dimension of S is less than N and that in the case of lim y_,.. a complete dictionary is actually 

overcomplete. A complete dictionary is not necessarily a basis because its elements need not be 

linearly independent. Also one could have continuum dictionaries containing infinite atoms, 

and undercomplete dictionaries for special purposes, containing fewer than n atoms. 

According to the atoms that D consists of, the dictionary can be described as 

orthogonal or non-orthogonal. By the former an orthonormal set of atoms forms an orthogonal 

dictionary, whereas non-orthogonal dictionaries can be constructed from all sorts of 

waveforms. 

Numerous interesting dictionaries have been proposed over the last few years. However 

this thesis is focused on Cardinal B-spline dictionaries as already analyzed in [20]. These are 

going to be used thoroughly in order to obtain the representation phase with the help of 

adaptive pursuit approaches. Before we proceed with Cardinal B-splines let us first introduce 

some relevant definitions on splines. 

3.2 Splines 

A spline is a piecewise polynomial satisfying continuity conditions between the pieces. 

Since polynornials are continuous in all derivatives, it must be the joints between the pieces in 

a spline where continuity is a question. These points are called knots. The support of a spline 

function f denotes that it is zero outside a compact _ interval 

(sup port(f) =closure{x: f(x) #0}). In the particular section some basic definitions are 

stated concerning splines on a compact interval as detailed in [20][21]. 
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Given a compact interval [c,d], a partition [c,d] is a finite set of points 

A={x,}9,NEN such thate =x) <x, <..< xy, =d 

We also define N  subintervals/,, i=0,..,N as T,=[%,.%4),  1=0,...,N—-1 

and/y =[Xy,Xy.1)- 

  

If IT,, the space of the polynomials of order (or degree) <meENo=NU{0}. For ma 

positive integer then 

S,(A)={feC™ ed]; f], € p14 = 0,4 

where fl, denotes the restriction of function f on the interval I,. S,,(A) is the space of 

polynomial splines of order m with simple, non decreasing sequence of control points 

X;,-.Xy, known as knots. If the knots are equidistantly distributed in the interval [c,d] then 

this is referred as a uniform spline, otherwise it is non-uniform. 

It has been shown in [21] (theorem4.4) that S,,(A) is a linear space of dimension m+N. 

Furthermore if A and A’ are two partitions of the interval [c,d] such that ACA'then 

S,,(A) ¢S,,(A’),meN. In order to construct a basis for S,,(A) one should introduce the 

extended partition. 

Definition 3: 

For A being a partition of [c,d] let us consider 

VY, So S++ S Yom4ey Such that 

m my 
—“_ So 

YS V2 SoS Vy SCs FSV penss SoS Yomeny AND Vga S-S Vang =A seee Myre dy « 

We define A= {y; jee an extended partition with simple inner knots that are associated with 

5,,(A) .These points in the extended partition are uniquely determined, however the first and 

the last one can be chosen arbitrarily subject to y, < y, SS), SC, 4S ys) SiS Vann 

Thus with each fixed extended partition there is a unique B-spline basis denoted as 
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{B,}"{" (details on the construction of a basis can be found in [21] (theorem-4.9)). The basis isl 

functions B, are equal to zero if X€[Y,,Yi4n] Otherwise B,(x)>0 for any xe [c,d]. 

meN 
Moreover DB; (x)=Ifor all x¢ [c,d]. If the knots are equally spaced then the splines are 

called cardinal, which is going to be explained further. 

3.3. Cardinal B-splines 

Like already mentioned in the previous section we are going to concentrate on 

dictionaries of Cardinal B-splines [20]. It is widely known that splines have been used with 

success in wavelet theory and applications of signal processing. Cardinal spline spaces on a 

bounded interval are finite dimensional linear spaces. All B-splines with equally spaced knots 

are called Cardinal B-Splines. The set of knots +) Vis Viste 18 equally spaced provided that 

Yin — ¥; =6 for all i. All Cardinal B-Splines of order m can be obtained from one basic B- 

Spline B(x) (3.2.1) ,by translation and scaling, with respect to a simple knot sequence 

0,1,2,..,m.as detailed in [21] 

Bel ei Tey es BO ed o(™ i), (3.2.1) 

where (x—i),”"' is equal to (x—i)"" if x-i>0 and 0 otherwise. 

Consequently for the equally spaced sequence of points Vis» Yiem We will have the 

following relation 

We yy 
B,(x) =— BC+ 32.2 ; (x) b ( b ) (3.2.2) 

where b is the distance between two adjacent knots. A dictionary is formed by single 

translations of the prototype function (3.2.1) introduced earlier. For example in [fig.1] we 

observe a Cardinal B-splines dictionary. It comprises of 47 translated atoms based on a 

prototype function. The order of splines is four, the number of discrete point in the interval is 

2049 and the length of support equal to two. Notice the atoms that are partially contained in the 

interval. These are called boundary functions. 
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Figure 1: Dictionary of Cardinal B-Splines of length of support of two and order four. 

What is essential in signal representations and reconstructions is fixing the space that 

one is going to work with. In the experiments performed later the above was managed through 

increasing the compact support, which is going to be analyzed thoroughly in another chapter. 

Generally there are two different ways to increase the subspace’s dimension by maintaining a 

fixed order of the splines. The first one is by increasing the number of knots, say decreasing the 

distance b between two adjustment knots. And the other way is by increasing the length of the 

support of each basis function of the cardinal spline space, in other ways the width mb . In this 

thesis the latter is considered in order to fix the basis function that is going to be used in the 

later experiments. 
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Chapter 4 

Adaptive techniques for signal representation 

4.1 Introduction 

It was stated in chapter two, that in practice it may not be possible to transmit a number 

of signals, ample enough to approximate the spreading function (2.3.6). It was stated in 

reference [14] that one can obtain a good approximation by sending just a finite number of 

signals that yield an orthogonal projection to the target environment. So if P(z,t)can be 

obtained from (2.3.7), one can have a unique approximation for just a finite number of signals. 

In this section the problem of signal representation, often referred as atomic 

decomposition, is discussed. Moreover, some techniques for adaptive signal representation that 

are going to be used for the experiments and a numerical example on these algorithms are 

presented. 

4.2 The real problem 

Let us assume that a function f in a Hilbert space is given. Also a basis of N-terms 

(dictionary) is also available. So, if the inner product <.,.> and its norm || f |< f, f >"? 

exists, then the task is to approximate it by a M-term (MCN) linear superposition of the 

following form 

yp ot 

f= ica, ido 
n=l 

M ~ : ue . 
= are fixed elements of a basis (dictionary) and are called atoms, which are well- 

  

where {a,, 

localised. In order to obtain the approximation f” of f one should minimize the distance 
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|| f-£” || by computing the coefficients C,,. These are calculated depending on features of 

these atoms. In essence, if V, = span{a,,d),...,a,,} and the spanning set is an orthonormal 

basis for V, then c, =<4,,f >. On the other hand, if the spanning set is a basis for the 

subspace but not necessarily orthogonal then the coefficients are calculated by the inner 

productc, =<d,,, f >. where the dual sequence {@,"}", is biorthogonal to{a,}",. The 

biorthogonal atoms are computed through a recursive procedure illustrated in [22]. The 

superscript means that span{a,}", = span{a@"}“,. Hence, in order to include one term in 

(4.2.1) the elements of the dual sequence need to be modified for the coefficients of the new 

approximation to minimize the above distance. 

The selection of the adequate atoms to be used for the approximation is obtained by 

using non-linear greedy algorithms for sparse approximation, such as the ones that are going to 

be analyzed further in this chapter. In addition the computational complexity depends on the 

dictionaries used which impose drastically different computational burdens-not to mention the 

nominal cost of storing and applying. The previous is needed to be considered in future work 

by means of fast adaptive processing. However we are going to focus, generally, on the 

effectiveness and robustness of these methods in the representation phase. 

4.3 Existing Decomposition Methods 

Like already mentioned above there are several approaches to obtaining an optimum 

selection of atoms that will yield the minimum error between the approximation and the signal 

f wished to be represented. These will be briefly discussed in this section and are going to be 

used extensively in the experiments following in another chapter. 

4.3.1 Matching pursuit methods 

The literature review for these methods is vast and these are implied in a forward or a 

backward manner. 

In general terms each of the methods requires two inputs to be initialized and produce 

one output. Their inputs are a family of functions and the signal that is going to be 

approximated. The dictionary includes translations of a single function, like Cardinal B-splines 

or a combination of different forms of atoms. Then these two inputs activate the algorithm of 

reconstruction by making successive approximations to the initial signal. In other words, the 

arbitrary signal is decomposed to an expansion of elementary waveforms chosen from a 
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dictionary. In order to approximate the initial signal, atoms are chosen from the dictionary, 

which minimize the approximation error. The algorithms stop as soon a criterion is reached, 

which is going to be described thoroughly in another section. Its block diagram is depicted 

below. 

AVAVAYA' 
NNN 

  

Figure 2: Block diagram of Best Matching methods. 

A general approach to approximate the decomposition was introduced by Mallat and 

Zhang[7] and addresses the sparsity issue directly. 

Let H be a Hilbert space, I a set of indices and D ={a,;né I} a family of functions in 

H each of them normalized to unity. Since in practice one deals with a finite number of such 

functions lets assume that I is a finite set of N indices (n=1,2..,N) .Let us also assume that 

there exists a linear span of the dictionary D denoted as S . Now given a signal f € H the aim 

is to represent it as a linear combination of atoms selected from D. 

The Matching pursuit approach (MP) proposes to make selection by successive 

approximations of f. Vectors are selected through a dictionary D one by one, while the 

signal approximation is optimized at each step. So if the dictionary comprises from functions 

a,, the approach begins by projecting f on each vector and computes the residue R. If R, is 

the kth order residue and /, the index n for which the corresponding dictionary atom a,, yields 

a maximal value of \(a,,R,) |, where <.,.> indicates the inner product in H, then the algorithm 

will evolve as follows. Starting with an initial approximation of f, =0 and residue R, = f the 

kth order residue will be: 

R, =(4,,R,)a, + Ry (4.3.2.1) 

where the term R,,, is the residue vector after approximating f in the direction of a, . Clearly 

the residue vector is orthogonal to a, (meaning that Res .a,) =0 for n=1,2,...,k+1), so 
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i IR =e Rf [Real 43.2.2) 
  

‘ Pe 2 F A Hence in order to minimize |R, ,.| > @, must be chosen such that (R..4,)] is maximum. So   

from the equation of the kth order residue it follows that at iteration k the MP approach results 

in the representation of the form: 

F=f + Ruy (4.3.2.3) 

with 

k 

A, = dy, oR: )a,, - An intrinsic feature of this algorithm -and the following ones- is that when 
n=l 

stopped after a few steps k it yields an approximation J, of the signal fusing only a few atoms 

(elementary signals from a dictionary) with an error equal to R, ,,.Consequently if k tends to 

infinity then the error converges to zero. 

However this technique does not yield at each iteration the linear span of the selected 

atoms that approximates the signal in its minimum sense. In other words, while the MP 

approach chooses an atom in order to minimize the residue error then by subtracting the 

projection of the residual over that atom the algorithm produces new components. These 

components are not in general orthogonal since atoms chosen from the dictionary may not 

necessarily be orthogonal to the subspace created by these atoms. The previous is avoided by 

projecting the residues on an orthogonal family Py derived from V, subspace consisting of 

atoms {a, ;n=1...., k}» Py, is assumed to be an orthogonal projector on V,. This refinement 

of the algorithm that improves the convergence rates since it can converge in only a finite 
number of steps is called Orthogonal Matching Pursuit (OMP) [6]. Let g be an arbitrary 

function in V,, P, is self-adjoin and idempotent, which means that (e fis)=(f,8,8), 

fork 21 and all fge H and By PB, = Ps » fespectively. The closest function to f that can be 

written as a linear expansion of k-atoms from the dictionary is BS J . If the distance is 

calculated and we write g=g—- P,, ft 2 f where (f- PD f)eV," (the orthogonal 

complement of V, in H) then: 

A, fel | Woah =[f-2-8,5+4 sf =[r- 8 of +|   
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So the distance is minimized for g = P, Ff . On the other hand, if the subset of atoms chosen 

(a, ;n =1,..., k} is orthogonal then f, given in (4.3.2.3) is not the orthogonal projection of f on 

V, and the approximation obtained is not the closest obtained in the particular subspace. 

However at each iteration OMP keeps selecting the dictionary atoms as prescribed by 

the MP approach which is not an optimal one concerning the residue. Following the above 

Rebollo et al. provided a new method called Optimized Orthogonal Matching Pursuit 

(OOMP) that guaranties minimization of the residue. Adapting the notation in [8] at iteration 

k+1 the OOMP approach prescribes an approximation that is both the orthogonal projection of 

f onto the subspace generated by these atoms and minimizes the residue. 

If f, is the orthogonal projection of f in subspace V, which yields the best possible 

approximation then through the iteration of the algorithm the signal will decompose in 

k ~ 

f= Vea, +R, (4.3.2.4) 
n=l 

ke a 

In order to minimize the residue, we should have Pca, =F, f . Coefficients c are modified 
n=l 

through iterations by means of an adaptive biorthogonalisation technique [8] [22]. Lets say that 

=V, ®a,. out of dictionary (D), OOMP chooses an atom a,, where V,=a, and V,,, 

(® denoting the projection of a, to subspace, ). If W,.,, the orthogonal compliment of V, in 

V,., then the orthogonal projection onto V,,, is Be = PB + Poa and the orthogonal projection 

of a, onto W,,, is ‘¥,,, such that 

Poa = Py a= B,,., 4,5 -F, Si Ah Ry a. (4.3.2.5) lest 

W,.. is spanned by a single function ,.,, of zero norm and the normalized to unity function is 

  ye (4.3.2.6) 

The orthogonal projection onto W,,, is Py f= tea Poh): In order to obtain the 

coefficients c, an adaptive biorthogonalisation technique is used. Like mentioned earlier those 

have the following properties: 

  
  

. ¥, ¥, . = = = Bs 1) = i(k) A+ a, pe and Ro = A+L 

Bp eB) and Pi = aD 
e also they are biorthogonal to the functions (a, ;n=1,..,k+1} with 

( ce) =6,,, where n=1,....k+1 and m=l,...,k +1 
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k+l 

* the representation will be B, | f = Dak ela, (the proof is detailed in [8]) 

k 
The coefficients 8 are used, seen above, in order to recalculate f= cea +R, and we will 

have the following recursive equations 

(k+1) seit =. Mk) i (k+1) io Cass ‘4, B99 ci, cr, (A (Reps and c,. Peal’? GB:2:7) 

with ¢(? =(a,,f). 

  

The selection is made by choosing the atom q,,, that at (k+1)th iteration minimizes the 

norm of the residue and is the one that yields a maximal value for the functional below (proof 
in [8]): 

__Ken yf foe ee) 
2) “1-(a Rial I’, 

the algorithm is stopped when lf, |’ <6, where 6 is the desired precision. 

  _ | AP (4.3.2.8) 
    

Last but not least there is a backward approach of the matching pursuit called 
Backward-Optimised Orthogonal Pursuit (Boomp) [10] which provides a criterion to 
choose the atom to be deleted in order to leave an approximation minimizing the norm of the 
residual error. In its implication one should assume that the atomic decomposition is given, 
from a forward method (OMP or OOMP), and wishes to eliminate some coefficients. So let us 

assume that after the selection of k atoms the forward approach (OOMP) provides a 
representation of 

k 

f' = Bf =YcMa, (4.3.2.9) 
n=l 

where V, denotes the subspace {a,;n=1..., k} chosen from D and P,, is the 

orthogonal projector of fon V, (signal f € H ). The coefficients c\ are the inner product of 

( OF), where { 8 (n=l,...,k)} are the biorthogonal functions and are computed 

recursively as detailed in [10]. 

In addition let us assume that one wishes to eliminate an atom indexed with j out of the 

previous spanning set V, obtained. The new subspace will be of the form 

Vita) = span{a, sere, Ay, gree Ay, } and the resulting approximation the following 
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fiiak, f eS, (8%, =e a, (4.3.2.10) 
n=l 

The coefficients c\*’” to be eliminated are not selected randomly. However, there is a certain 

criterion to be fulfilled for their exclusion. In other words the one to be removed is the one that 

minimizes the norm of the residual error A= f* — f*’. It has been detailed in [10] that the 

2 
(k) leh norm of the residual error is minimized for a minimum value of the quantity ———— me 

a"! 
Consequently the remaining subspace will beV,,, and the new approximation of the form 

#4 

(4.3.2.10). Lastly the new coefficients are recursively modified by a backward adaptive 

biorthogonalisation technique, described in the same work. These are of the following form for 

N=12Qyeaj-Lytly..k: 

epi eaoe peer) ee ef? and By) = By? ee r ) (4.3.2.1) 
By ;   

So by fixing the above equations and the criterion in order to omit an atom the algorithm is 

iterated as soon as the tolerance error initially put is reached. 

Finally there is the Swapping-based refinement of orthogonal matching pursuit 

strategies [9] which implies a backward step to eliminate one atom from the atomic 

decomposition, according the Boomp criterion, and a forward step to replace such an atom by 

another one according the OMP or OOMP criterion. 

4.4 Stopping criteria 

Since all the algorithms used for the reconstruction are iterative procedures, there a two 

criteria for deciding when an algorithm should be halted iterating. 

e After a fixed number of cycles 

e Reach a desired precision 

By the first one the method can be instructed, from the beginning, to stop after a fixed 

number of iterations. In other words, fix the size of the subset of atoms that is going to be 

selected in order to obtain the approximation of the signal. Concerning the later there is also 

the possibility, while initialization of the method, to order the representation phase to stop as 

soon as the residue error returned declines to a particular level €. The residue error is an L,- 

norm or Euclidean norm and is the following: 
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Boor SU, fi? (44.1) 
N i=0 

where f (f, are elements of vector f) is the target environment wished to be represented and 

cE “( fare elements of vector f’) is the approximation obtained by the decomposition. Both of 

them are vectors of N rows. 

4.5 Numerical example on BOOMP algorithm 

In order to understand further how the above algorithms perform let us illustrate it in a 
simple example of approximation. For the purpose of the experiment the Backward Optimized 
Orthogonal Matching Pursuit is going to be used. 

Let us suppose that we wish to reconstruct a particular signal f, depicted in [fig.4]. Like 
discussed earlier, in order to apply the backward approach it needs to be considered that a 
reconstruction is already obtained by using a forward method, such as OMP or OOMP. Let us 
assume that in the decomposition the Optimized Orthogonal Matching Pursuit is used and only 
thirteen atoms of the dictionary D are chosen to approximate the initial target. The dictionary 
was created by the translation of Cardinal B-Splines with support functions of length two and 
order of four. This comprises of 47 functions depicted in [fig.3]. So let us assume that three 
particular coefficients are eliminated out of the decomposition in order to obtain the 
approximation of f with BOOMP. The reconstruction method (BOOMP) is initialized by 
applying both the signal f and the thirteen atoms that the forward approach used to reconstruct 
the signal with error 0.207149 (Table 1). 

Like stated previously these three atoms are not eliminated at random, however the 
backward approach eliminates them with respect to a particular prescription mentioned earlier. 
[fig.6] depicts the decomposition obtained by using firstly the forward method and below 
[fig.8] the approximation from BOOMP with error 0.295606, The thirteen atoms that OOMP 
selects to reconstruct the signal and the ten ones that BOOMP selects are depicted in [fig.5-7]. 

Now, continuing further and trying to use these ten atoms to reconstruct the signal f 
with OOMP an approximation is obtained with an error of 0.324695.From the above it is worth 
saying that not only is there shrinking of coefficients or further compression of the 
approximation, but also the residue error is minimized, like stated previously. [fig.9] shows the 
block diagram of the whole procedure. Table 1 coincides with results of the particular 
experiment. The first column from the left depicts the method used for the decomposition. The 
middle one the size of the subset of atoms chosen for the approximation of the initial signal and 
the third one corresponds to the residue error returned, 
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Figure 3: Dictionary of Cardinal B-Splines Figure 4:Signal f that we wish to 
present.      

     

  

of support two and order four. 

  

Figure 5:The subset of atoms that OOMP 
selected after the decomposition. 

  

Figure 6:Signal f and approximation 
obtained by OOMP. 

    

Figure 7:The subset ee atoms that BOOMP Fi igure 8:Signal f and approximation 
selected after the decomposition. obtained by BOOMP. 

  

Strategies | Number of Atoms Chosen | Norm of the Error 
  

  

          
OOMP 13 0.207149 
BOOMP_| 10 0.295606 
OOMP” 10 0.324695 
  

Table 1: Concentrated table of the size of the subset (number of atoms) that the method selects 
and the norm of the error returned, respectively. 
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Figure 9: Block diagram of the whole reconstruction phase. 
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ANALYSIS 

Chapter 5 

Simulations of the representation 

using Orthogonal Matching Pursuit method. 

5.1 Introduction 

The literature for the above methods of reconstruction is certainly vast. One could carry 

on analyzing further interesting methods which apply with great success to the representation 
of signals. However the aim of that project is not to compare each of them, which is already 

performed in previous interesting works. In that chapter some typical features concerning the 
performance of OMP introduced in the section (4.3.2) is going to be illustrated. The 

calculations are going to be carried out for functions of two variables. The aim is to stress out 
the ways one can obtain an approximation of a function of two variables using OMP and 
remarks concerning the computational time required. Moreover it is shown that when the target 
environment is known in total and the basis functions, used, are chosen priori to features of the 
target environment, then it is possible to represent it by just using a subset of these functions of 
one variable (selected by a dictionary). This has shown to yield a sparse approximation with a 

compromise of error. 

5.2 Implementation in a target environment of two variables 

From the previous chapter, it is an easy task to represent a function of one variable with 
the above methods. However the aim is to represent a function of two variables with a linear 
combination of elementary functions of one variable (these are selected from a dictionary by 
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means of the previous approaches already described), In order to perform such a task it was 

essential to manipulate each method’s routings used. There are two ways of performing the 

approximation by using OMP for two dimensional target environments, which can be easily 

applied to all the methods described earlier. The later is analyzed in this section. 

The first one is by performing slices in the environment and iterating, for these, the 

representation phase and the second one is done by introducing the target environment as an 

input in total. Numerical calculations are performed with OMP. Let us assume that the target 

environment is known initially and consists of seven peaks that are fairly separated, these have 

the form below and are depicted in [fig.11]. 

(x-mean’  +(y—mean | 

. H (0, F f(x y)= >) aye (5.2.1) 
isl 

where x,y are matrices (N by M), K=7, mean’ and mean, denote the location, b,o, is the 

width and a, the amplitude of each peak, respectively. 

In all, the norm of the error between the approximation obtained and the function wished to be 

represented is the following: 

MN 1 i 
Error =— Lah =) me O22) 

where f is the input target environment and f' is the approximation obtained. These are 

matrices with N rows and M columns. In general terms fis a product of a matrix D(:,1:k) 

(subset of the dictionary D), k the indexes of atoms that each method chooses throughout the 

whole dictionary D to approximate f, and a matrix of transform coefficients c that are 

calculated, like stated in an earlier chapter. The value of the error is subjective since what we 

are interested in, is to have a sparse representation that is bearable in proportion to the input 

target. For example producing the number of peaks in total or their localization individually is 

a good approximation. 

5.2.1 Slicing the environment 

Let us assume that the target environment f is a matrix S = [fil Gj are elements of f 

matrix where i=1,...,N and j=1,....M) with N, M number of rows and columns, respectively. 

The elements of each column represent a different signal represented in a 2D space. Each 

column of matrix f, that is a vector of a set of values, will be referred as a slice of the target 

environment. Consequently if the number of slices is M then from the representation of each of 
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these, for instance through OMP, one can form the approximation f ’ of the whole matrix f. 

The block diagram of the representation phase of f is depicted below. 

Selection of atoms 

  

Figure 10: Block diagram of the reconstruction phase with slices. 

So at the M" iteration every vector of the input matrix f is reconstructed with the 

selection of a subset of, let us say, thirteen functions out of the dictionary. Hence [fig.12] 

shows an approximation of the whole matrix obtained with the total mean error of 1.1258e- 

006. It can be also mentioned that the slices for the particular environment are done in parallel 

with X-axis and M=41 for the particular case. Moreover the dictionary used for the 

approximation of each of the slices, is one of 47 functions with order of B-Spline functions=4 

and length of the support of two. 

      
Figure 11; Initial target environment Figure 12: Approximation obtained 

we wish to approximate. 

Obviously this target environment is more complex than that used in the previous 

example with BOOMP and the results are clearly more impressive. The approximation is really 

close to the initial input target environment. This can be seen in [fig.13]. In the particular figure 

the actual mean error for each slice and its approximation, respectively is observed. Like 

mentioned earlier in each iteration, OMP is using a different subset of thirteen atoms in order 

to approximate each vector of the matrix f, however its size is the same. 
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Figure 13: Plot of the actual mean error of. the slice used and approximation obtained. 

Furthermore the large deviation in the error plot above is due to the large complexity of 

the particular slice, such as that it consists of three peaks that are fairly separated. Concerning 

the computational time, in order to produce such an approximation, this is extremely huge, 

especially when a large M (number of columns in f) is considered in the target environment f. 

Moreover, in a classical radar problem it is known, that the subset of elementary signals 

propagated must be fixed, which is not happening for the particular method of representation. 

In other words although there is a fixed number of atoms (thirteen) the same subset is not used 

to approximate the whole environment but only every vector of f. 

Consequently one could consider using a random or optimal slice in order to reproduce 

the whole environment. In essence by using OMP for the particular slice one could select the 

thirteen atoms and still use this particular subset to approximate the environment in total, 

which is going to be analyzed further below. 

5.2.2 Using the Best Slice (BS) 

From the previous simulation it was considered that although the approximation is 

extremely good it would certainly take a huge number of computational steps, depending on 

the dimensions of f. Consequently it would take a long time to be obtained. Moreover it 

wouldn’t provide us with a solution due to the fact that the selected atoms of each subset used 

in order to approximate every vector of f vary. In other words the algorithm selects a different 

subset of atoms to approximate each corresponding slice. There was also reference to a way for 

further minimization of computational costs by just using a certain slice from the environment. 

In other words, using the selected subset of functions, that OMP chooses from the dictionary, 
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for a particular slice in order to approximate the rest of the environment. In this section 

simulations of the approximation phase are illustrated by using different slices from the 

environment and select the one in terms of optimality. 

Let us assume that the same target environment as the one in the previous section is 

used in the reconstruction phase. Firstly the same dictionary, as previously, and each of the 

vectors fj of the matrix f is introduced to OMP. Then OMP is iterated in order to approximate 

every slice by using only a subset of thirteen atoms out of the dictionary. As soon as the subset 

of atoms for every different slice is acquired, respectively, the atoms are stored and OMP is 

initialized for a second time. This time we are going to consider only as a dictionary the 

particular subset obtained, thirteen atoms for every slice, respectively, and we are iterating 

OMP for the rest of the environment. Lastly, in order to obtain the total approximation a new 

matrix is formed that each column will be created from the formula below. 

k 

FP => (BP UF? la, 22 
n=l 

where a, the subset of the thirteen atoms selected for slice j of the initial target environment 

and £ the biorthogonal functions calculated as prescribed in section (4.3.2).Further below 

[fig.14] coincides with the mean error obtained by using the subset of atoms, deriving from the 

reconstruction of each of the slices, respectively, to approximate the rest of the environment. 
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Figure 14; Plot of the mean error of the target environment and approximation obtained. 

The approximation obtained is still good and of an order of 10° (as depicted above) if 

the algorithm is halted after a finite number of steps. Obviously the computational steps can 

still be reduced further for the particular environment, if we consider in the representation the 

slice that produces the minimum error, which is the one with index 26, and an error of 7.348e-7 

or just a random slice. The slice and the dictionary in order to produce the approximation of the 

=a5 5



whole target environment are depicted below in [fig.15] and [fig.16]. Lastly the approximation 

obtained is depicted in [fig.17].However in real life it is not possible to know from the start 

which is the optimal slice to use especially if the target environment in not known initially. In 

essence, one could have another environment of greater complexity and chose a slice, 

randomly, in order to represent it that would provide a poor approximation. 

Figure 15: Optimal slice used to reconstruct 
the whole environment..     

Fi igure 17: Plot and contour plot of approximation obtained by using the optimal slice. 

5.2.3 Simultaneous Orthogonal matching pursuit 

In the previous section it was discussed earlier how one can iterate OMP for a matrix 

and obtain a reconstruction of the target environment. However good the approximation might 

be, the computational steps required are extremely great in number. In this section it is going to 

be described how one can introduce the whole matrix in OMP and perform the representation 

phase simultaneously, an action that will minimize the computational steps, as well. 

In a previous chapter the prescription used by OMP to select the most adequate subset 

of atoms from the dictionary in order to represent a vector (signal) was described. Like already 

stated in its first steps it calculates the inner product of Ka, Ry | and selects the atom 4, that 
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yield a maximum value to that inner product. Adapting the notation in [23], Tropp et al 

proposed a method to represent a 2D signal simultaneously. This involved mostly the way it 

selects the atom maximizing the above inner product. So instead of calculating the previous 

N. 

inner product 4), = Max » K fe a;)| is calculated, where f, is each column in the signal 
i=l 

matrix and a, the atom of the dictionary involved in the decomposition. The intuition behind 

maximizing that sum is that we wish to find an atom that can contribute a lot of energy to every 

column of the signal matrix. Thereafter the greedy selection is performed as prescribed in 

OMP. By that means the whole input matrix is introduced to the method and this save a lot of 

computational steps. Obviously one would expect the approximation to be worse in 

comparison to the previous two ways of representation; however both the results are extremely 

close. 

Below [fig.18] the simulation of the reconstruction of the same target environment used 

previously is observed. This was obtained by using, exactly, the same dictionary (D13) as used 

in the previous simulation. The point wise error of the approximation(Y) and the initial signal 

(z) is depicted in [fig.19].In [fig.21] the error of the approximation obtained with respect to the 

number of atoms selected for the representation for SOMP and BS is depicted. Notice that the 

more the atoms the better the approximation. The previous can only imply-a greedy algorithm. 

Lastly [fig.20] depicts the thirteen atoms used in both cases for the approximations, the values 

on the bottom coincide with the actual index of each atom in the dictionary. 

(nth signal = Aeprovemenion() of s 

  

  
Figure 18: Plots and contour plots of the target environment we wish to reconstruct and 

approximation obtained by using SOMP. 
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Figure 19: Point wise error of the target environment we wish to reconstruct and 
approximation obtained by using SOMP. 
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Figure 20: Subset of atoms and their indexes used for the reconstruction. 

  

      

  
Figure 21: Error plot of the convergence of SOMP and Optimal Slice. 
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5.3. Remarks 

In this chapter ways OMP can be implemented for adaptive approximation of a target 

environment of two variables were illustrated. Moreover it is shown that when the target 

environment is known in total and the basis functions, used, are chosen priori to features of the 

target environment, then it is possible to represent it by just using a subset of these functions. 

This has shown to yield a sparse approximation with a compromise of error. 

The means of representing the target environment was performed with a random or an 

optimal slice. The difference of each approach is with respect to the computational time and 

the subset of atoms that it chooses to solve the approximation problem. Consequently the first 

method was proved inadequate due to the fact that it chooses a different subset for every slice 

to approximate the target environment. The second approach with the best using slice and 

SOMP, although it used a certain subset of atoms to approximate the whole environment bear 

differences with respect to the convergence and computational time. Hence, in all relevant 

experiments SOMP approach is going to be used. 
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Chapter 6 

Prior Knowledge 

Prior knowledge is defined as the knowledge that stems from previous experience. It is 

sometimes referred to as a schema. Schema comes from the Greek word “oyjua’, which means 

shape or more generally plan. While a scheme refers to a loosely described plan, a schema 

usually refers to specific, well documented, and consistent plans or preconception. In the 

particular problem addressed there are two different cases of attributes that might be assumed a 

priori. The first one is assuming partial or total information about the target and the other 

assume features of the dictionary used to represent a target environment. In this chapter some 

calculations with OMP are to be shown, a target environment is considered priori and is known 

in total. On the other hand there will be little information about the dictionary used for the 

decomposition. 

In a previous chapter it was mentioned how important it is for signal processing and 

reconstruction, to work in a specific space. The non-linear methods described earlier bear 

robustness to the dictionary used for the representation. In essence, apart from the number of 

atoms used, the more these atoms of the dictionary resemble the signal being represented the 

better the representation. The previous is of obvious character since there could be a possibility 

that the input signal might belong to the space that is being used. So the possibility of spanning 

a fixed space by B-Spline dictionaries, each of which consists of functions of different support, 

arise the question as to how to choose in an effective manner the dictionary of B-Splines of 

optimal support for representing a given signal. 

Like stated earlier there are two different ways to increase the subspace’s dimension by 

having a fixed order of the splines. The first one is by increasing the number of knots, say 

decreasing the distance b between two adjustment knots. And the other way is by increasing 

the length of the support of each basis function of the cardinal spline space, in other ways the 

width mb .The later motivated us to search a dictionary of B-Splines of optimal support with 
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respect to the signal wished to be represented. Let us illustrate the above through a simple 

example of approximation. 

6.1 Increase compact support 

Let us assume that the input signal to be approximated is f which is depicted in 

[fig.22]. The target environment consists of two peaks that are fairly separated of the form 

Les) 

where the localization factor of each peak is controlled by mean,,b,o, controls the width of 

N 

f(x)=Yae' swith N=2 (6.1.1) 
isl 

each function, N is the complexity of the environment (number of peaks) and a, the amplitude 

of each peak. 

The particular environment is to be reconstructed with the help of one of the above 

forward or backward methods described. By means of simplicity let us suppose that the 

forward approach OMP is used and an approximation is to be obtained with tolerance level of 

0,01. In essence, the method is instructed to stop iterating as soon as it reaches a norm of the 

error equal to the above desired precision. Such a signal has an acceptable approximation in a 

subspace (D33). D33 is a dictionary created with support of functions of length 0.5, spanned by 

a B-Spline basis of order four (the length of the support of the dictionary is the order of B- 

Splines times the distance between knots). Changing the length of the support of the B-spline 

functions introduces redundancy to a dictionary if it consists of only the basis functions. It has 

been shown in [20] that changing the support of the functions might result to an identical 

approximation with less elementary functions used. It should also be noted that the functions 

used to approximate the target environment are chosen priori to features of it. The graph 

indicating the approximation of the environment coincides with the one of [fig.27] and the 

atoms selected to be used for the representation are depicted in [fig.24].Out of all the 35 

functions [fig.23] the forward approach has selected only twenty elementary signals (M=20) 

with a norm of the error of 0.0058. 

Now let us suppose that we are trying to find the coarsest possible approximation 

following the same experiment as above. Let us try and increase the compact support of the 

dictionary. In the new space the new dictionary (D13) [fig.25] would have length of the 

support of two for the same order of B-Splines and the same distance between knots. In this 

case the approximation [fig.27] is obtained by means of only M=13 [fig.26] atoms chosen 

through the same forward method with error of 0.0066. In that case too, OMP is initialized to 

halt iterations with a desired precision of 0,01. If an approximation is to be obtained in the 
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former space (D33) with a subset of thirteen atoms this will be a worse one (norm of 

error=0.050) in comparison to the latter one. So a better approximation is obtained with the 

space of length of the support two. 

Figure 22: Signal f we wish to reconstruct. 

Figure 23: Dictionary D33 with support of Figure 24: Subset of atoms(M=20) selected by 
functions of length 0.5. OMP in order to reconstruct f with 

  

tolerance value of 0.01.     
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Figure 25: Dictionary D33 with support of Figure 26: Subset of ator Aieied elected by 
functions of length 2. OMP in order to reconstruct f with 

  

tolerance value of 0.01. 

-42-



ial input environment f 

approximation with support 

——— approximation with support=0.5 

   
Figure 27: Approximations of f obtained by OMP for dictionaries of length of support 2 and 

0.5 by selecting a subset of 13 atoms, respectively. 

From the previous it is concluded that by choosing to work with a different space, 

consequently a different dictionary, the approximation obtained will be either a better or worse 

one. Still the previous does not provide any solution to the question posed about optimal 

support of the B-Spline basis. Yet, there is little to say about the support when there is no 

information about the target environment either. However if the form of the target environment 

is known initially and we look for certain subspaces , that are included in a particular space, for 

the one that provides the best approximation with the least selected atoms a hypothesis over the 

above can be introduced. 

In essence, an experiment was performed where, for each iteration of each different 

subspace that is used for the representation of the input, we chose the dictionary that, both, 

produced the best approximation and used the least selected atoms from that. The previous is 

going to be described below. 

6.2 Experiment for finding the Optimal Support 

Aim 

Find the optimal length of the support of B-Spline functions to be used to represent the 

input environment or find the optimal dictionary for the approximation. 
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Input environment 

The input environment being considered for the problem consists of seven peaks fairly 

separated, is depicted in [fig.11] and has the form of (5.2.1). 

Method 

Due to computational complexity and speed SOMP is used. 

Procedure and results 

A basis of B-spline functions of distance between knots of 0 (see table 3) is selected 

and we increase their distance to 2"' at each stage. Then for each nested subspace of the basis 

functions we increase the length of the support of each B-spline function used in the particular 

subspace by maintaining the same distance between knots. It has been mentioned in [20] that 

by increasing the length of the support of the B-spline basis functions we obtain a new 

subspace that is of larger dimension than the one created of basis functions. In other words the 

number of functions included in the new space will be increased. The number of functions in 

each space is calculated by the following manner 

Number of functions =m . +N2 and N2= sel 

where b the distance between two adjacent knots, b’ the new translation parameter of 

the B-Spline basis functions such that b’/b is an integer, m the order of the B-spline functions 

and int the distance of the interval considered. 

The intuition behind this is to create the approximation of signal (5.2.1) by using 

dictionary functions of much larger compact support and chose the length of the functions that 

will produce the smallest error (4.4.1) and the sparsest representation. In other words we are 

introducing values for the distance between knots (b) for values between 27 to 2. For each of 

the values of (b) the length of the support of B-Splines is increased from order_of_Splines*(2” 

1) to order_of_Splines*(2"'). Moreover the tolerance parameter (desired precision) of the 

approximation is fixed to 0.01 and the method is initialized. Lastly the norm of the error of the 

approximation obtained and the number of atoms that are responsible for to such an 

approximation, respectively is observed. For reasons of computational costs we are using order 

of B-Splines up to 10. 

In the first step of the algorithm, the order of splines that is going to be used is chosen 

by initializing the method with only the basis functions, that is for b=b’. Let us assume that 

b=b’=2" and that the decomposition involves 20 atoms out of the dictionary. From the table [2] 
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the order of B-Splines that obtain the best possible solution to the problem of approximation 

with respect to the norm of the error are B-Splines of order ten. However the ones of order four 

are chosen due to computational complexity. The reconstruction of the target environment is 

depicted in [fig.28]. As soon as the order of splines is fixed, the method is applied again by 

creating each time a new dictionary with functions of greater dimension in the particular 

subspace. Notice that by increasing the length of the support of the functions the dictionary 

obtained consists of more functions to select from. Then the results are sorted with respect to 

the least selected atoms. The dictionaries that produce a decomposition with a large number of 

atoms are eliminated, let us say more than twenty. Lastly out of these, the one that is producing 

the approximation with the smallest error is selected. It is seen from table [3] that the optimal 

support of functions, if such a target environment is assumed, is a dictionary of length of the 

support of two which consists of 47 functions out of which the forward approach selects only 

thirteen atoms to approximate the input environment with an error equal to 0.0065954.The 

dictionary and the atoms that the method selects are depicted respectively in [fig.29].The 

approximation is seen in [fig.31]. The point wise error of the approximation obtained and the 

initial target environment can be seen in [fig30]. Notice that although a more complex 

environment is considered the results of the method are remarkable. Since this is a positive 

answer to the question of optimal support, the particular dictionary obtained is to be used in 

the experiments following. For simplicity we are going to refer to the particular dictionary as 

D13. 

  

Figure 28: Approximation obtained by SOMP, for the order of B-splines=4, b=b’=2° and 
interval of four. The dictionary consists of 67 functions and SOMP chooses 20 atoms 
to represent the target environment with a norm of error 0,6385. 
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Order of Interval b’ b Functions in a Norm of 
Splines Dictionary a the error 

1 4 0,0625 | 0,0625 | 64 20 1,1045 

2 4 0,0625 | 0,0625 | 65 20 1,0199 

3 4 0,0625 | 0,0625 | 66 20 0,82455 
4 4 0,0625 | 0,0625 | 67 20 0,63846 

10 4 0,0625 | 0,0625 | 73 20 0,46836       

Table 2: Table with results, obtained by SOMP, for the purpose of fixing the order of B-splines. 
The order of splines that we select with respect to the norm of the error is depicted in 

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

    

blue. 

Order Functions 
of Interval b? b in Tolerance proms Norms of 

. aes chosen | the error 
Splines Dictionary 

4 4 0,0078125 | 0,0078125 | 515 0,01 507 0,0095939 

4 4 0,015625 | 0,0078125 | 519 0,01 321 0,0085132 

4 4 0,03125 0,0078125 | 527 0,01 167 0,0095143 

4 4 0,0625 0,0078125 | 543 0,01 69 0,0096121 

4 4 0,125 0,0078125 | 575 0,01 36 0,0099177 
4 4 0,25 0,0078125 | 639 0,01 21 0,0073105 

4 4 0,5 0,0078125 | 767 0,01 13 0,0066071 

4 4 0,015625_| 0,015625__| 259 0,01 253 0,0088182 
4 4 0,03125 0,015625__| 263 0,01 149 0,0094907 

4 4 0,0625 0,015625_| 271 0,01 74 0,0043036 

4 4 0,125 0,015625__| 287 0,01 39 0,0093278 
4 4 0,25 0,015625_| 319 0,01 22 0,0077819 

4 4 0,5 0,015625 | 383 0,01 13 0,0067339 

4 4 0,03125 0,03125 131 0,01 128 0,005243 1 
4 4 0,0625 0,03125 135 0,01 it 0,0093189 

4 4 0,125 0,03125 143 0,01 39 0,0096773 

4 4 0,25 0,03125 159 0,01 21 0,00917 
4 4 0,5 0,03125 191 0,01 13 0,0067069 

4 4 0,0625 0,0625 67 0,01 64 0,0096727 

4 4 0,125 0,0625 a 0,01 32 0,0089694 

= 4 0,25 0,0625 79 0,01 23 0,0089734 

4 4 0,5 0,0625 95 0,01 13 0,0066075 
4 4 0,125 0,125 35 0,01 32 0,0090451 

4 4 0,25 0,125 39 0,01 25 0,0086736 

4 4 0,5 0,125 47 0,01 13 0,0065954 
4 4 0,25 0,25 19 0,01 17 0,0029402 

4 4 0,5 0,25 23 0,01 10 0,0094998 

4 = 0,5 0,5 ll 0,01 ul 0,016987                 

Table 3: Table with results, obtained by SOMP, for the purpose of deciding the dictionary of 
Optimal Support with respect to the norm of the error of the approximation obtained. 
The dictionary of Optimal Support with a desired precision of 0.01 consists of 47 
functions, with length of two and SOMP chooses 13 atoms to represent the target 
environment with a norm of error 0,0065954. 
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Figure 29: Dictionary of Optimal Support (left) and subset of atoms selected to represent the 

target environment (right). 

|      

Figure 30-31: Point wise error of the target environment and its approximation returned by 
using SOMP.(Bottom) 

Contour plots of approximation (right) obtained by SOMP and initial 
target environment (left) we wish to represent with the dictionary of Optimal 
Support. 
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6.3. Remarks 

In this chapter examples were illustrated on increasing the compact support of the 

dictionary used in the approximation phase. Prior knowledge of the target environment was 

considered and a particular dictionary of optimal support was selected through experiments. 

Firstly the order of B-Spline functions was fixed with respect to the norm of the error of the 

approximation. Thereafter, an adequate dictionary that produced an approximation with the 

smallest norm of the error and the least selected atoms was chosen. It was witnessed that 

increase on the length of the support of the functions in the space considered, resulted to a 

dictionary with more functions. Consequently the basis functions were fixed and the particular 

dictionary is going to be used in the following experiments. However, there is still need for a 

particular subset out of the dictionary of 47 functions when the target environment is not 

known initially. Since the above environment can be well approximated with a subset of only 

thirteen atoms we are going to perform experiments when we consider prior knowledge of the 

target environment. These will involve its approximation with a combination of only thirteen 

elementary signals that are going to be used for the rest of the experiments. For simplicity this 

dictionary chosen is going to be denoted as D13. 
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CHAPTER 7 

Fixing a particular subset of atoms for 

the representation of a target environment 

7.1 Introduction 

In the previous chapters SOMP was used for the representation phase of a target 

environment of two variables. Moreover prior knowledge was considered over the target 

environment and the space that we are going to work with was fixed. In other words attributes 

of the basis functions of the dictionary were fixed, such as the order of B-Spline functions, 

their support and the number of atoms that are adequate enough to provide us with a good 

approximation. A good one means a compromise between the norm of the error of the 

approximation and a sparse one. However what is still needed is a particular subset for the 

representation when the target environment is partially known. The previous was managed 

through some simple experiments that are going to be illustrated in this chapter. 

In all experiments prior knowledge is considered, of the basis functions (dictionary) 

used for the decomposition and certain features of the target environment, wished to be 

represented. So an environment of seven peaks fairly separated is taken into account, however 

the location of the peaks is not known, in the first one, or the width of each peak, or both of 

them in the latter one. Moreover in others there is no information about both the amplitude and 

the width or the location, or all of the three attributes together. Consequently by iterating 

SOMP one atom is fixed, at a time, of the subset that will determine the initial subspace to 

influence the decomposition, until we obtain the whole subset. However let us illustrate the 

above through the particular experiments. 
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Input environment 

An environment of the form (5.2.1) is assumed. It is an environment with a complexity 

of seven peaks (K=7) that are fairly separated. In each of the experiments following it is 

considered, that there is partial information about the target environment. In other words, in 

each case, random values are chosen for each parameter, individually, or the combination of 

them. In all calculations the same dictionary D13 (comprising of 47 atoms, as chosen in the 

previous chapter) is used and we obtain approximations with a subset of 13 atoms. Moreover 

SOMP is used to obtain the approximation. Lastly in order to measure the error of the 

approximation the Euclidean distance (5.2.2) is used. 

The value of the error is subjective since what we are interested in is to have an 

approximation that is bearable in proportion to the input target. For example producing the 

number of peaks in total or their localization individually is a good approximation. In other 

words we are searching for a compromise between the norm of the error of approximation and 

the number of elementary signals that participate in the linear combination (a sparse 

approximation). 

7.2 Selecting a subset of atoms for a target environment where the 

location of each peak is unknown. 

Let us assume that an input environment (5.2.1) consisting of seven peaks (K=7) is 

considered. For the particular experiment all parameters are known apart from the location 

(mean'.,mean') of each of the seven peaks. The aim of the experiment is to try to fix the 

atoms selected for the representation phase based on the frequency they appear. Since thirteen 

atoms are considered for the decomposition we are going to have twelve iterations. In essence, 

in each iteration we are going to fix one atom each time until we have the whole most probable 

subset of thirteen. 

In each iteration, of the twelve ones, the procedure is going to be the following. All the 

peaks are shifted randomly by just choosing values between the interval [0.5 , 3.5]. Such an 

interval is chosen in order to have the whole environment totally contained in the space being 

considered. Moreover there is a case of overlapping of the peaks with each other. In essence 

two different vectors of seven values are created, each, in the interval considered. These values 

represent the location of each peak in xx’ and yy’ respectively. For each different set of values 

for the location of the peaks throughout the space SOMP is initialized. In order to represent 

each target environment a dictionary with support of B-Spline functions of two, distance 

between knots 2° and order of splines of four is used. The dictionary consists of 47 functions. 
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Furthermore SOMP is instructed to use only a subset of thirteen atoms out of the dictionary in 

order to represent the input environment. 10000 iterations were performed, or 10000 different 

target environments were produced for SOMP to approximate. 

In essence as soon as the first 10000 iterations finish we observe a vector returned (Di) 

that depicts the indices of atoms, such as their position in the initial dictionary before the 

decomposition, and has a length of 1x47.Out of that vector, the first thirteen elements (Dii) are 

the ones that contribute a lot of energy in the decomposition. Then in the next iterations the 

above are repeated and we calculate the times that each index of the initial form of the 

dictionary participates in the decomposition, for example, number 20 appeared as the first 

element of that vector (Dii) etc. Thereafter as soon as the 10000" iteration is reached, the 

probability of each of the 47 atoms that appeared in each index of the particular new vector 

(Dii) is computed. From the new vector Prob (with dimension 47x13) that is produced, from 

every 10000 iterations, the frequency that the indices appear is observed. There are two 

possible occasions that might occur in order to select an atom. The first one is that it appears 

with the highest frequency and the other one that of the highest probability (if all indices in the 

vector Prob are different). Consequently we choose the particular atom of highest frequency or 

probability as an input in the next 10000 iterations in order to determine the initial subspace 

that will influence SOMP. 

Finally in the twelfth iteration of the 10000 ones the most probable subset of atoms for 

the particular experiment is constructed. In [fig.32] we depict the actual norm of the error 

returned for the subset of thirteen atoms that we chose to influence SOMP. Although the 

deterministic nature of the algorithm, we notice the approximation is bearable with the 

particular subset selected under the assumptions taken. The norm of the error, for the particular 

subset, has values that are concentrated around an error of order 107. The atoms that determine 

the subset selected out of the dictionary [fig.33] are depicted in [fig.34]. The subset of atoms 

selected through the above procedure is denoted as S,. 
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Figure 33-34: Dictionary (left) and atoms chosen to determine the initial subspace (right) 
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7.3 Selecting a subset of atoms for a target environment where the width 

of each peak is unknown. 

For the particular experiment the same procedure as above is followed. However for 

that case it is assumed that only the localization and amplitude of each peak is known but the 

width is not known priori. Let us assume an input environment of seven peaks is given that 

each has a particular location of (mean',mean',) and amplitude a, and are of the form of 

62.1). 

In other words the parameter (b,c, that controls the width of each of the seven peaks 

is unknown. Moreover the interval used to pick random values for each peak respectively is 

[0.2 0.4].Consequently the width of each peak is from one to two (the width of each peak can 
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be calculated if we solve 5.2.1 with respect to x or y when all parameters are known, f is 

approaching zero and x or y equals to zero).The aim of that experiment is to try to fix the atoms 

selected for the representation phase based on the frequency they appear. In that experiment 

too a subset of thirteen atoms is considered to influence SOMP. 

After the whole procedure the most probable subset of atoms for the particular 

experiment is depicted in [fig.37].In [fig.35] the actual norm of the error returned for the subset 

of thirteen atoms that we chose to influence SOMP is depicted. We notice that for the 

particular subset selected, the approximation is bearable. Moreover we observe in the error plot 

that the norm of the error, for the particular subset, has values that are bounded in an interval of 

an error of order 10°. The subset of atoms selected through the above procedure is denoted as 

Sy. 

Figure 35: Error plot of the norm of the error for the particular subset when we are changing 
the width of the peaks randomly. 
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7.4 Selecting a subset of atoms for a target environment where the 

location and width of each peak are unknown. 

In the previous experiments a particular subset of atoms was chosen for each different 

case of prior knowledge. However which subset can one choose that is adequate enough when 

one combines the above? For the particular experiment the same procedure as above is going to 

be followed, however for that case it is assumed that we do not know the localization and the 

width of each peak respectively. Let us assume that an input environment of seven peaks 

(5.2.1) is considered, that each has a particular amplitude a, . In other words, it is assumed that 

there is no information about both the location (mean, ,mean', ) and the parameter b,c, Y of 

each of the seven peaks. Moreover the interval used to pick random values for the parameter 

that controls the width of each peak respectively is [0.2 0.4] and for the location [0,5 3,5].The 

aim of that experiment is to try to fix the atoms selected for the representation phase based on 

the frequency they appear. In that experiment a subset of thirteen atoms to influence SOMP is 

also considered. 

After the whole training phase the most probable subset of atoms obtained are depicted 

in [fig.40].In [fig.38] we have the actual norm of the error returned for the subset of thirteen 

atoms that was chosen to determine the initial subspace in SOMP. For that case too the norm of 

the error of the approximation is deviated around the value of 10, which is a bearable error for 

the approximation. The subset of atoms selected through the above procedure is denoted as 

Siiv- 

    Figure 38: Error plot of the norm of the error for the particular subset when we are both 
shifting and changing the width of the peaks randomly. 
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    Figure 39-40: Dictionary (left) atoms chosen to determine the initial subspace (right) 

7.5 Selecting a subset of atoms for a target environment where the 

amplitude and width of each peak are unknown. 

In the particular experiment it is assumed that there is knowledge about the location 

(mean’,,mean’,) of each peak, but no information about its amplitude a, and the 

parameter (+, ¥ .In other words it is considered that each peak is “sharpened” randomly. By 

sharpening peaks we mean that for large values of the amplitude factor we are going to have 

small values of the width. In essence these two parameters are not proportional. For the 

particular experiment the same procedure as previously is followed. Furthermore the same 

dictionary of support of B-spline functions of two is used. Let us assume that an input 

environment of seven peaks of the form (5.2.1) is considered, which we only know where the 

peaks are localized. In other words the location (mean'. »mean,, ) of each of the seven peaks are 

known priori. Moreover the interval considered to peak random values for sharpening the 

peaks will produce peaks that will vary between interval [0,07 0,4] for the (6,0, ? , of each 

peak, and [0,4 1,6] for the amplitude, respectively. The aim of that experiment is to try to fix 

the atoms selected for the representation phase based on the frequency they appear. In that 

experiment too a subset of thirteen atoms to influence SOMP is used. 

After the whole procedure the most probable subset of atoms for the particular 

experiment is depicted in [fig.43].In [fig.41] we have the actual norm of the error returned for 

the subset of the thirteen atoms that was chosen to influence SOMP. We observe from the error 

plot that the norm of the error of the approximation is concentrated around the value of 0.04. 

The subset of atoms selected through the above procedure is denoted as Sy. 
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Figure 42-43: Dictionary (left) atoms chosen to determine the initial subspace (right) 
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7.6 Selecting a subset of atoms for a target environment where the 

amplitude, width and the location of each peak are unknown. 

In the previous experiments we observed the subset obtained if different combinations 

of prior knowledge of the target are considered. In this experiment it is assumed that the only 

information known about the environment is the number of peaks. The procedure for that 

experiment is the same as above. In other words, the atoms selected for the representation 

phase are fixed based on the frequency they appear. Furthermore the same dictionary of 

support of B-spline functions of two is used. Let us assume that an input environment of seven 

peaks of the form (5.2.1) is used. 

Random values are picked for every parameter, such as location, width and amplitude. 

Consequently the input environment that is going to be produced will have parameters that 

vary between intervals [0,07 0,4] for bic, F, [0,5 3,5] for the location, and [0,4 1,6] the 
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amplitude for each peak, respectively. In that experiment too we are going to have a subset of 

thirteen atoms to influence SOMP. 

After the whole procedure the most probable subset of atoms for the particular 

experiment is depicted in [fig.46].In [fig.44] we have the actual norm of the error returned for 

the subset of thirteen atoms that we chose to influence SOMP. For that case too, the norm of 

the error of the approximation is bounded on an interval that is bearable for the representation 

phase. The subset of atoms selected through the above procedure is denoted as Sys1+a- 

Figure 44; Error plot of the norm of the error for the particular subset when we do not know 
any features of the target environment apart from the number of peaks.(changing 
randomly the width, the location and the amplitude of the peaks) 
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Figure 45-46: Dictionary (left) atoms chosen to determine the initial subspace (right) 

i     
7.7. Conclusions and remarks 

In this chapter it was assumed that the space we are going to work with is known, such 

as features of the dictionary and the size of the subspace of atoms involved in the 

decomposition. Moreover partial information was considered about the parameters that control 

the target environment that we wish to represent. Based on this prior knowledge we used a 
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dataset of 10000 different values, that is 10000 different target environments for every 

experiment separately, and a particular subspace was obtained that will influence SOMP. This 

subset of atoms was chosen according to the frequency or probability that each index appeared 

in the decomposition phase. Consequently five different sets of atoms were obtained, for each 

case of prior knowledge, respectively, that produced an approximation of the input 

environment with a norm of the error that is of order 107. The previous means, that the error is 

bearable for the representation phase. For instance, if we have information for the width and 

amplitude of each peak then the localization of the total environment is preserved correctly. 

Furthermore one should notice that in the subset of atoms chosen there are certain cases where 

some atoms are the same. Something which is very logical since the algorithm is initialized to 

choose the atoms to represent the target environment with the same attributes. In essence notice 

the first three different cases where we do not have information about the location or width or 

both of them for each peak respectively. In these three cases we observe that there are five 

common indexes 30,32,25,27 and 22. 

Apart from the above it is worth noting that there in no repetition of the appearance of 

the indices in the subset that were obtained. The previous is due to the means the algorithm 

chooses the atoms to take part in the decomposition phase. In other words each column of the 

residual is orthogonal to the atoms indexed in the subset obtained, therefore no atom is chosen 

twice. 

Concerning the value of the norm of the error for the particular subsets that was 

obtained we seek for a compromise between the approximation error, measured with Euclidean 

distance, and the number of elementary signals that participate in the linear combination. 

Consequently for that error we can identify a good approximation involving only few 

elementary signals out of the dictionary, in other words a sparse approximation. Hence we 

assumed from the previous chapter that with a subset of thirteen atoms out of a dictionary of a 

certain support of B-Spline function one could obtain a good approximation for such an 

environment wished to be represented. On the other hand due to the greediness of SOMP one 

could increase the atoms participating in the decomposition phase which would lead to a 

smaller order of error. In other words a better approximation. There is also a case that the 

function of two variables, we wish to represent, could be outside the space that we work with. 

This implies that even if the whole dictionary was used as a subset of atoms to participate in 

the decomposition phase then the approximation obtained would still be bad. However this 

does not happen in the above experiments due to the intervals chosen for each of the random 

values. 

Concluding there is still need to produce evidence for the effectiveness of the 

approximation phase. The above is illustrated in the next chapter by iterating SOMP for a 
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different dataset that is a random test set, for the same experiments and the subset of atoms 

obtained in this chapter. 
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CHAPTER 8 

Prior knowledge of target 

8.1 Introduction 

In the previous chapters it was shown how one can obtain a good approximation of the 

target environment with SOMP by seeking for a compromise between the approximation error, 

measured with Euclidean distance, and the number of elementary signals that participate in the 

linear combination. Moreover through certain procedures a subset was obtained, for particular 

assumptions of prior knowledge of the target environment. That compromise between the 

approximation error and the combination of each particular set involved implied a sparse 

approximation. 

The aim of this chapter is to visualize the robustness of the particular subsets, obtained 

for different cases of prior knowledge for a function of two variables. In other words we are 

going to perform experiments for the representation of the target environment that we might 

have no information about the location, width, amplitude and their combinations, respectively, 

of each of the peaks. Moreover we are going to test the subset of atoms in the decomposition, 

obtained by the training phase (previous chapter) with a random test set of values that is 

different from the training set that was already used. Last but not least the approximations 

obtained with the subset that influenced SOMP are compared with one obtained when one does 

not use such a subset to influence SOMP. It should also be noted that the approximations 

obtained without influencing SOMP are obtained by the selection of a subset of thirteen atoms 

out of the dictionary used. Moreover some examples of the representation are illustrated. These 

are included for the purpose of not only comparing the case when one influences each 

reconstruction algorithm or not, but also both the approximations obtained and the initial target 

wished to be represented. Lastly we are hoping to draw some general conclusions and remarks. 

For simplicity subsets are going to be denoted as Sy, (fig.34) for the one obtained from not 

knowing where the peaks are localized, Sy (fig.37) for having no information about the width 
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of peaks, Sys1 (fig.40) for both unknown attributes (location and width of peaks), Sya (fig.43) 

for sharpening the peaks (unknown width and amplitude of each peak), Syst4a (fig.46) 

knowing only the number of the peaks and D13 (fig.29) the dictionary that these subsets were 

drawn. 

Assumptions: 

In the following experiments it is assumed that there exists an environment of the same 

form (5.2.1) as previously. Moreover, based on chapter six, the optimal dictionary that can 

approximate such a target environment is one of B-Spline functions of length of two. 

Furthermore for each different case of prior knowledge about the environment a subset of 

thirteen atoms is going to be used for the decomposition with SOMP, which was obtained from 

the training phase (chapter six). In all experiments we are going to compare the approximation 

obtained with the particular subset and the one obtained with not having an initial subset 

determining the subspace by recourse of the norm of the error (5.2.2). Finally, where 

applicable, we are going to illustrate through numerical examples the approximation obtained 

by SOMP, of the target environment we wish to represent. 

Like stated previously the value of the error is subjective since what we are interested 

in is to have an approximation that is bearable in proportion to the input target. For example 

producing the number of peaks in total or their localization individually is a good 

approximation. Considering the test data, random values are drawn from intervals. These will 

be different from the ones used in the training phase. 

8.2 Experiments 

The experiments that are following are aiming on testing the subsets obtained from the 

training previously and have to do with: 

¢ Shifting peaks randomly (unknown parameters mean‘ and mean’ ) 

° Ghaneine the width of the peaks randomly (unknown parameter b,c; ) 

¢ Changing the variance and shifting peaks randomly (unknown parameters mean’, 

mean’, and b,o;) 

¢ Sharpening peaks (unknown parameters a, and bo; ) 

e Changing the location, width and amplitude of the peaks randomly (unknown 

parameters mean,,mean\,, a, and b,o,) 
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8.2.1 Shifting peaks randomly 

Aim: 

In that experiment there is only preconception about the rest of the environment apart 

from its localization, mean‘ andmean'. The aim is to try to obtain an approximation with x y ry PP 

SOMP by using the subset (S,) that we obtained from the training phase when there is no 

information about the location of the peaks. 

Procedure: 

It is assumed the parameters that control the width (b,o,) and the amplitude (a,) for 

each of the seven peaks, respectively in 5.2.1 are known initially. However the location of 

these peaks into the space (mean and mean’) is unknown. All the peaks are shifted by just 

choosing random values between the interval [0.5 , 3.5]. In essence, two different vectors of 

seven values are created, each, in the interval considered. These values represent respectively 

the location of each peak in xx’ and yy’ respectively. For this experiment subset (S,) is used to 

determine the initial subspace in SOMP in order to represent the target environment at each 

iteration. Moreover SOMP is iterated for the same environment as input and we try to 

approximate it without initializing a subset to influence SOMP, but the whole dictionary 

(D13).For both, 200 vectors of seven values for the location of each peak are initialized, as 

prescribed above and we continue, at each iteration, with the approximation of the target 

function by using SOMP. Lastly after each iteration we observe the norm of the error (5.2.2) of 

the input target and the representation in both cases is observed. Below it is depicted a simple 

example where there are seven random pairs of values for the location of each peak chosen. 

Lastly there is also possibility of overlapping of the peaks with each other, due to the 

localization of them respectively. 
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   Peaks 1 2 3. 4 5 6 7 
Meanx = 1.0189 3.4392 1.3143 1.2570 3.1272 2.7119 0.9096 
Meany = 0.5353 3.1817 1.0974 1.3962 2.4843 1.3532 1.9077 

Parameters in Target environment: 

  

  

Known parameters (i=1,...,7) Unknown parameters (i=1,...,7) 

bo; i 
mean 

a; 4 

K mean % 
a         

  

Block diagram 1: Procedure of approximation for unknown location of peaks 

Results: 

[fig.48] illustrates the norm of the error of the two different approximations with subset S, to 

influence SOMP and without an initial subset to determine the initial sunspace in the 

decomposition. The mean error of the approximation by using the subset S, is 0.0097 were as 

with D13 it is 0.011. In the following plots [fig.47] an example of representations is depicted, 

for an error value of 0.0089 and 0.013 respectively in both cases. 

E 6a.



   
   
Figure 47: Contour plots of initial environment we wish to approximate (left) and 

approximation obtained for subset S, (centre) and thirteen atoms of D13(right) with 
norm of error 0.009 and 0.013, respectively. 

  

_ Approximation with subset S, 
Approximation without initial subspace 

Figure 48: Error plot of the norm of the error with respect to each iteration for the subset 
obtained from the training phase (blue) and without an initial subset to influence 
SOMP(red). 

Conclusion 

From the plots above it results that although both experiments have error of 

approximation very close to each other, the approximation of the target environment is good. 

However the representation obtained with the subset S, is better than the one obtained with no 

initial subset in SOMP to determine its subspace. The mean error for the former is 0.0097 and 

for the latter 0.011.Consequently by using such a linear combination of atoms, obtained by the 

training phase, one can approximate the target well, instead of letting SOMP to decide which 

-64-



subset to use in the decomposition for each iteration, respectively. Concerning the prior 

knowledge, there is a good compromise of error using the thirteen elementary signals, which is 

a good approximation for the location of each of the peaks. Furthermore one should notice that 

the deviation in the error plot is smaller for the subset S.. 

The effectiveness of the reconstruction formula is of high order, that’s due to the 

dictionary used which has atoms of compact support (4*0.5=2) very close to each peak in total. 

However one could have a poorer reconstruction if another dictionary or a target environment 

with narrower peaks was used. The previous is analyzed further in the next experiments. 

We understand in that simple experiment we could have certain values for the 

localization of the peaks where there could be overlapping with other ones or even the 

phenomenon of vanishing from the environment. In the later case this means that the peak is 

totally overlapped by another. So, under that circumstances an environment will exist that 

comprises of six rather than seven peaks, in other words the complexity of it will diminish and, 

consequently, the approximation would be with a smaller error, instead. The number depicted 

in the contour plots above is the actual norm of the error for the particular representation. 

8.2.2 Change the parameter that controls the width of the peaks 

Aim: 

The aim of that experiment is to change the parameter that controls the width (b,0, , 

i=1,...,7) of each peak, arbitrarily, of the target environment (5.2.1) and observe how well it   

will be reconstructed from the method that we are using (SOMP) with the subset Sy that was 

obtained from the training phase previously. In other words it is considered that everything is 

known about the input environment we wish to represent apart from the width of each peak. 

Procedure: 

It is assumed that the width of all peaks is changed randomly (the dilation factor is 

unknown). The environment consists of seven peaks fairly separated. The location (mean', and 

mean, ) of all the peaks and their amplitude (a,), respectively are known, apart from bo, of 

™ 

each one. In other words the unknown factor is the dilation for each peak of the environment. 

A random set of seven values between the interval [0.2, 0.4] is picked for (b,0,)” of each peak, 

respectively, and an input target environment (5.2.1) is constructed at each case. That means 

that we are going to have peaks in the target environment with width from one to two. For 
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every new set of values ((b,0,)” ), SOMP is initialized to reconstruct the target. The algorithm 

is iterated for 100 different sets of values. For this experiment a subset Sy is used that was 

obtained from the training phase previously. Lastly, after each iteration, the error (5.1.2) of the 

input target and the approximation obtained is observed. There is also a chance of overlapping 

between the peaks. In that case too we also approximate the same input environment with 

SOMP when we do not determine any initial subspace. 

Parameters in Target environment: 

  

  

  

Known parameters (i=1,...,7) Unknown parameters (i=1,...,7) 

mean, bo, 

mean’, 

Gq, 

K       
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   Selection of 13 
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Block diagram 2: Procedure of approximation for unknown width of peaks 

Results 

In [fig.49] below we observe an example of the initial target environment (left) and the 

approximation (centre) obtained with subset Sy and the one without an initial subspace 

(right). The norm of the error is respectively 0.006 and 0.01. The norm of the error for the two 

different cases is depicted in [fig.50].The mean value of the error is 0.005 for the subset and 

0.006 without a subset to influence SOMP. 
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Figure 49: Contour plots of initial environment we wish to approximate (left) and 
approximation obtained for subset Sy (centre) and thirteen atoms of D13(right) with 
norm of error 0.006 and 0.01, respectively. 

__ Approximation with subset S\,_ 
Approximation without initial subspa     Figure 50: Error plot of the norm of the error with respect to each iteration for the subset 

obtained from the training phase (blue) and without an initial subset to influence 
SOMP(red). 

Conclusion 

In that case too the approximation obtained for both of them is still very good. On the 

other hand the one obtained by the subset Sy is by far better in proportion to the case where 

SOMP is not influenced with an initial subspace. In essence the mean norm of the error is 

0.006 and 0.01, respectively. Consequently for the particular experiment one could have a 

particular combination of elementary signals to send in order to represent such a target 

environment that was assumed. 

Apart from the above, one could think that the interval considered to pick these random 

values for the input environment is too small. We could also try a different interval with peaks 
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of much narrower base. However by doing so the error might be even greater (worse 

approximation) due to the fact that we are outside space. The previous means that even if the 

whole dictionary is used in the decomposition phase, that is 47 atoms, the approximation 

obtained would still be worse. Hence, in order to approximate such functions one could choose 

a dictionary of smaller support of B-Spline functions. However that’s not the case in the 

particular experiment and that’s the main reason that a target environment that has peaks with 

width from one to two was used. Even if for an extreme case of having the smallest width for 

all the peaks the dictionary used can still obtain a good approximation with a small subset of 

atoms participating in the decomposition. 

Like said previously the deviation of the norm of the error for Sy is still smaller than 

the other one. However let us change the experiment and consider even less prior knowledge 

for the representation phase. 

8.3 Less prior knowledge for the target environment 

It was illustrated in the previous experiments how one can obtain a good 

approximation, by using the particular combination of elementary signals, of the environment 

by changing only one parameter in the formula of the target environment (5.2.1). However 

what could happen if there is even fewer information about the target? Such as both the 

translation and dilation factor or the amplitude and width factors are totally unknown. 

Aim: 

In the experiments following it is considered even less prior knowledge of the target 

environment (5.2.1). In the first one, there is known information only about the amplitude of 

each peak, individually. For the second one, the location and for the last one that we only know 

the number of peaks. Like stated previously for each of the different experiments we are going 

to test the subsets of atoms acquired during the training phase. The aim is to illustrate how well 

the target is going to be approximated, if some partial information over it is assumed. 

8.3.1 Randomly change the width and the localization of all peaks 

Procedure: 

For this experiment it is assumed that there is prior information of the target 

environment about the amplitude a, of each of the peaks. Values for the parameter that 

controls the width between interval [0.2 0.4] and for the location between [0.5 3.5] are going to 
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be randomly picked. That’s due to the same reasons already stated previously. So at each 

iteration of different values for the location and the width of each peak a target environment 

(5.2.1) is formed and SOMP is initialized to represent the target. Moreover for the 

decomposition phase the subset (Sys) we acquired previously is used. Furthermore SOMP is 

iterated separately without a subset to determine its initial subspace. There is also a possibility 

of overlapping while shifting the environment. Lastly after each iteration the error (5.2.2) of 

the input target and the approximation is observed. 

Parameters in Target environment: 

  

  

  

Known parameters (i=1,...,7) Unknown parameters (i=1,...,7) 

a, bo, 

K mean’, 

mean,     

Unknown, 
parameters 

Known 
parameters:    

LA
N 
a
s
s
i
g
n
 

bac
on 
sy
st
e 

ea
lp

e 
a 
a
e
 
L
E
 

Selection of 13 
atoms 

    

Block diagram 3: Procedure of approximation for unknown location and width of peaks 

Results: 

In [fig.51] below we observe an example of the initial target environment (left) and the 

approximation when SOMP is influenced with Sys. (centre) and the one obtained when SOMP 

uses whichever subset of thirteen atoms from D13. Thereafter [fig.52] depicts the error 

returned from SOMP with respect to each iteration for both cases. The mean error for the 

former is nearly equal to the latter 0.0096 and 0.0095, respectively. 
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Figure 51; Contour and plots of initial environment we wish to approximate (left) and 
approximation obtained for subset Sy.1 (centre) and thirteen atoms of D13(right) 

with norm of error 0.007 and 0.005, respectively. 

ion ith subset Svat 
ation without initial sul 

  Figure 52: Error plot of the norm of the error with respect to each iteration for the subset 
obtained from the training phase (blue) and without an initial subset to influence 

SOMP(red). 

Conclusions 
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Even if the experiment became more complicated and less prior knowledge for the 

target environment that we wish to approximate was considered there is a good compromise of 

error and spare approximation for the two different approximations. The mean norm of the 

error for the subset Sys, and one without an initial subspace are nearly the same. Apparently 

one could use for such an environment assumed the subset obtained in chapter six for the 

decomposition. 

Concerning the order of error that is of order 10° it is big due to the fact that, if we 

consider the previous cases of prior knowledge, the unknown factor of the location of the peaks 

overwhelms the one of the width in the approximation phase. 

Furthermore the same stated previously stands for that experiment too as far as the 

width of the peaks is concerned. The energy of the whole target environment is going to be 

preserved to a certain loss, in proportion to an error, and the peaks of the environment are well 

localized with good approximations of their width, respectively. 

8.3.2 Sharpening peaks 

Procedure: 

Like stated earlier for this experiment it is assumed that the only information that we 

have about the environment (5.2.1) are its complexity (number of peaks) and localization. By 

sharpening a peak we mean that we are going to increase the amplitude factor (a,) and 

decrease the width of the each peak. In the particular experiment there is prior information over 

the location of all of the peaks. However there is no information for (b,0,)’ and amplitude 

(a,).So we are going to increase a, from 0.4 to 1.6 and simultaneously decrease (4, , )° from 

0.4 to 0.07, for each peak. For these values obtained the input environment that we wish to 

approximate with SOMP is constructed at each time. For each case we observe the error 

returned from the approximation obtained and the input environment. Moreover subset (Sys) 

of thirteen atoms is used to determine the initial subspace for SOMP to approximate the input 

target. Lastly SOMP is iterated without an initial subset in order to compare both procedures. 

Parameters in Target environment: 

  

  

  

Known parameters (i=1,...,7) Unknown parameters (i=1,...,7) 
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Block diagram 4: Procedure of approximation for unknown amplitude and width of peaks 

Results: 

[fig.53] depicts an example of the approximation obtained with both cases, an initial 

subset to determine SOMP (centre) and with thirteen atoms of D13 (right).Also the error plot 

for both cases is shown in [fig.54].The mean error for the former case is 0.038 and for the latter 

0.042. 

  

Figure 53: Contour plots of initial environment we wish to approximate (left) and 
approximation obtained for subset Sy.4 (centre) and thirteen atoms of D13(right) 

with norm of error 0.08 and 0.11, respectively. 
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Approximation with subset Sy. 
Appro> i ithout initial subspace 

   Figure 54: Error plot of the norm of the error with respect to each iteration for the subset 
obtained from the training phase (blue) and without an initial subset to influence 
SOMP(red). 

  

Conclusions 

In the particular experiment a good representation of error of order 107 to 10! was 

obtained for both cases. However it is obvious from the error plot that although the 

representations are extremely close to one another, the one obtained by influencing SOMP with 

the subset Sy, is better. Again the compromise of error with a sparse approximation is of that 

order due to the fact that the unknown factor of amplitude overwhelms the one of the width of 

the peaks. Furthermore the energy and the width of the peaks are preserved correctly with 

respect to an error. 

In that case too, a possible solution for an even better approximation would be to use 

another dictionary or a combination of them with a narrower support of B-Spline functions 

(width of each function). However let us change the experiment and consider the worst 

scenario of prior knowledge. In essence let us assume that the only information known about 

the target environment that we wish to approximate is the number of peaks. 

8.4 Knowing only information about the number of peaks. 

Aim: 

In the previous experiments we witnessed how well SOMP can approximate a target 

environment when the subsets of atoms obtained as stated in the previous chapter are used. We 

realize that one can use a particular combination of atoms to approximate a certain target 

environment that was assumed. 
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error plot for both cases is shown in [fig.56].The mean error for the former case is 0.06 and for 

the latter 0.053. 

  

Figure 55: Contour plots of initial environment we wish to approximate (left) and 
approximation obtained for subset Syi+a (centre) and thirteen atoms of D13(right) 
with norm of error 0.04 and 0.034, respectively. 

    

    

Approximation with subset S, 

| __ Approximation without initial Vibes pace 

Figure 56: Error plot of the norm of the error with respect to each iteration for the subset 
obtained from the training phase (blue) and without an initial subset to influence 
SOMP(red). 

Conclusion 

Again the approximation obtained for the target environment is still bearable with a 

compromise of the norm of the error for both cases. The factor that controls the amplitude of 

the peaks determined the outcome of the order of the error and due to this the representation 

without an initial subspace had better results which was only 0.07 in comparison to the subset 

Svat+a- 

The most important fact is that although we have an overwhelmingly complicated 

environment with such less prior information, the representation obtained with the particular 
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subset was still very good, for instance this can be depicted in [fig.55].Which means that one 

could use a particular combination of atoms in SOMP instead of iterating SOMP without 

determining an initial subspace. 

Apparently for this experiment too we could obtain a smaller error in the approximation by just 

involving another dictionary (with narrower support) or a combination of them. 

8.5 General conclusions and remarks 

In this chapter the effectiveness of SOMP was investigated when using a particular 

subset of atoms obtained by the latter chapter from considering prior knowledge of attributes of 

the target environment we wish to represent and different combinations of them. The most 

significant conclusion that one can draw from the experiments above is one of a greedy nature. 

In other words the more prior knowledge considered about attributes of the target environment 

we wish to approximate, the better the approximation obtained. In addition all the subsets used 

from the training phase proved to yield a good approximation in comparison to the target 

wished to be approximated. Moreover the norm of error obtained from the representation when 

an initial subspace of SOMP is determined with a particular subset, was very close to the one 

that the technique is not influenced by a particular subset. 

Furthermore in all experiments the location and width of peaks was preserved correctly 

with the particular subsets obtained by the training in the previous chapter. In addition the 

energy of the signal is preserved nearly in total by recourse of an error. Even in the most 

extreme case that we only have knowledge of the complexity of the environment (number of 

peaks) and its shape the approximation was obtained with a rather small error. 

Concerning the approximation when unknown parameters such as the amplitude and 

width of peaks is concerned, we discussed that one could obtain an even better approximation 

with three different ways. The one first was to increase the number of atoms involved in the 

decomposition. Last but not least, a possible solution would be to apply a different dictionary 

with a narrower support of B-Spline functions when cases of peaks with smaller widths are 

involved. Also there is the case of even considering combining dictionaries of different support 

of B-Spline functions. This is illustrated by a simple example in the next chapter. 

In gerieral terms the most important conclusion of all is that the subset of atoms used 

for the decomposition, obtain an approximation that is very close to the one without involving 

an initial subspace to influence SOMP with cases that is even better than that one. Lastly the 

approximation obtained in both cases is good based on the assumptions made for the target 

environment. Consequently one can use a particular combination of elementary signals, based 

on prior knowledge of the target environment, which can be propagated in order to visualize a 
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target environment with a compromise between the norm of the error of the representation and 

a sparse approximation. 
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CHAPTER 9 

Using a mixed set of elementary functions of different 

length of the support. 

9.1 Introduction 

In the previous chapter the subsets, acquired from the training phase previously, were 

tested in the method of reconstruction for the case of prior knowledge in the input target 

environment. Moreover there were stated reasons for the failure of SOMP and possible 

solutions. In this chapter a possible solution is provided through simulations to the case where 

SOMP might fail. 

Particularly in the case of prior knowledge we faced problems with the representation 

phase at the point where a target environment had too narrow functions in comparison with the 

dictionary used. In essence the method would fail due to the fact that the functions wished to 

be reconstructed were not included in the space used for that purpose. So, as a possible solution 

to the above it was suggested that the approximation can become far better if a dictionary was 

used in the decomposition that included functions of B-Splines with narrower support. On the 

other hand due to the morphology of the input target environment, that would increase the 

number of atoms that SOMP might select in order to approximate it in total and, consequently, 

increase of computational burdens. Moreover if the same subsets of atoms are to be used as 

previously, that might produce an approximation that is far worse than the ones previously 

obtained. This is due to the fact that we chose the particular dictionary of Optimal Support to 

approximate the input environment in total and not to approximate individually every peak 

within. 

Consequently one could consider combining dictionaries of different support. This will 

not only produce a better approximation, but also select a small subset in size of atoms for that 

purpose. The previous is going to be investigated in this chapter. Despite the above, a 

combination of dictionaries of completely different form, like mixing a Mexican wavelet 
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dictionary with one of Cardinal B-Splines can be used. Their choice totally depends in the 

complexity of the target environment wished to be represented. 

On the other hand this is beyond the scope of this chapter. The new dictionary that is 

going to be used will be built of functions that are coming from the same B-Spline basis 

function. These have different compact support. We realize that the combinations one could 

use are infinite ones. Unfortunately due to time limitation we have not been able to implement 

a thorough investigation as to which could be the most probable subset one can use when 

combining dictionaries. We leave this line of research as one of our proposals of future work. 

Finally the aim of this chapter is just to illustrate with some numerical calculations the 

advantage of using a combination of dictionaries of different support at the representation 

phase. 

9.2 Multimodal case 

Let us consider a more complicated case of the reconstruction of a peak that gradually 

becomes separated in twenty five identical others, a multimodal case, of the same attributes. 

Obviously it’s a far more complicated environment than the one previously used and it is 

almost certain that SOMP will fail. It is assumed that the target environment is known and that 

comprises of one peak that is localized in x=2 and y=2. This peak is going to be gradually 

separated in 25 identical peaks with particular localization and the same width. A value is 

randomly picked between the interval [0.01, 0.4] for the width of the peak. Further on, random 

values between the interval [0.5, 3.5] are chosen for the location of each peak which are 

shifted, respectively, in certain directions of the space. The form of the target environment is 

the (5.2.1). The way we create the environment can be seen in [fig.57] from left to right. 

  

  

        
  

  

Figure 57: Gradual separation (from left to right) of a single peak to 25 same ones 
(multimodal). 

Then SOMP is initialized for each new environment and the number of atoms to be 

selected is fixed to 13. In essence SOMP is going to use a subset of thirteen atoms out of the 

dictionary in order to reconstruct each input environment. Lastly, the norm of the error 

returned is observed, as described earlier in formula (5.2.2), from the approximation and the 
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input signal. As in the previous experiments, a dictionary with length of support of B-Splines 

functions of two is used. 

In the [fig.58] below we observe two of the approximations obtained. On the left we observe 

the input target and its approximation before it becomes separated. On the right side we have 

the input target and its approximation when all the peaks are totally separated. The error plot of 

the error returned from SOMP with respect to each iteration is depicted in [fig.59]. 

As stated earlier although the localization of each peak is preserved correctly the 

approximation of the width of each function is not so good. Notice in the figures below the 

“noise” that is created that creates a problem in distinguishing all the peaks that are totally 

separated at that point. It is obvious that the method failed due to the reasons already stated, 

however what might happen if we try to combine different dictionaries in order to approximate 

the same target environment? 

   
    

Figure 58: Initial input environment ( right) we wish to reconstruct with SOMP and 

approximation obtained| le) }) for two aif ffere i 

Figure 59: Norm of the error of the approximation obtained with respect to each iteration. 
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9.3. Combined dictionaries 

Aim: 

It was stated in the previous experiment how SOMP might fail reconstructing the whole 

target environment. Moreover in previous experiments we discussed about a possible solution 

of obtaining a better approximation of the input target instead of increasing the number of 

atoms used. In essence a better approximation might be obtained by combining dictionaries 

together. 

For the purpose of this experiment three different dictionaries and their combinations 

are going to be used. The functions in these dictionaries will have the same distance between 

knots and the same order of B-Splines but they will have different support. In other words we 

are going to have B-Splines of order four, distance between knots of 2° and width of 0.5 

(D33), one (D23) and two (D13), respectively. Dictionary D33 consists of 35 functions, D23 of 

39 and D13 of 47.We should also mention that it is, in fact, a case of increasing the compact 

support of the basis functions. Moreover for the case of simplicity, their combinations are 

denoted as D3323 for the mixing of D33 and D23 dictionary, D3313, D2313, and D332313 etc. 

The attributes of each dictionary can be observed in table [4]. For each different dictionary the 

previous experiment is repeated and we are going to decide out of which of the dictionaries and 

their combinations which produces the optimum approximation. For the decomposition a 

subset of only thirteen atoms is used. 
  

  

  

  

  

  

  

    

Order of Width of Distance Size of subset | Mean norm of 
Dictionary | B-Spline ‘ between | Atoms used for the error of 

: functions se aes 
functions knots decomposition | approximation 

D33 4 0.5 0.125 35 13 0.4176 

D23 4 1 0.125 39 13 0.0670 

D13 4 2 0.125 47 13 0.5761 

D3323 4 0.5 and 1 71 13 0.0668 
D3313 4 0.5 and 2 82 13 0.2943 

D2313 4 1and 2 86 13 0.1981 

D332313 4 0.5, 1 and 2 121 13 0.2063               

Table 4: Concentrated table of attributes and results obtained with each dictionary. 

From the error plot [fig.60] it is obvious that if the dictionary D2313 or D332313 is 

chosen the approximation will be a far better one than using D13.Thats occurring due to the 

fact that the method is choosing a mixed subset of atoms out of the dictionary. This is depicted 

in [fig.66-67]. 

However one might say that there is a better support of functions in order to represent that 

particular target environment which is D23 with support of B-Splines functions of one. 
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Without doubt the particular dictionary can approximate the target environment better than the 

other three dictionaries that we have already considered. Nevertheless if a combination of D23 

with D33 is considered there are certain intervals that SOMP will select a subset that includes 

not only functions of support of one but also of 0.5.This is depicted in [fig.65]. Under these 

circumstances the approximation is still better than just selecting a subset of functions only 

from D23 dictionary. 

It follows that with the combination of dictionaries a better approximation might be 

obtained. [fig.61-67] depicts analytically examples of the approximation obtained with SOMP 

(left) and the signal we wish to approximate (centre). Moreover on the (right) it is shown the 

subset used each time for the representation. 

  

      

  

Figure 60: Norm of the error of the approximation obtained with respect to each iteration for 
every dictionary respectively. The different combinations of each of the three 
dictionaries are depicted with the dashed line. 

    
Figure 61: Subset of atoms selected by SOMP from D33 dictionary(left). Approximation 

(right) obtained and initial environment (centre). 
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Figure 62: Subset of atoms selected by SOMP from D23 dictionary(left). Approximation 
(right) obtained and initial environment (centre). 

Figure 63: Subset of atoms selected by SOMP from D13 dictionary(left). Approximation 
right) obtained and initial environment (centre). 

  Figure 64: Subset of atoms selected by SOMP from D3313 dictionary(left). Approximation 
(right) obtained and initial environment (centre). 
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Figure 65: Subset of atoms selected by SOMP from D3323 dictionary(left). Approximation 
right) obtained and initial environment (centre). 

Figure 66: Subset of atoms selected by SOMP from D2313 dictionary(left). Approximation 
right) obtained initial environment (centre). 

  Figure 67: Subset of atoms selected by SOMP from D332. 3 dictionary(left). Approximation 
(right) obtained and initial environment (centre). 

9.4 Remarks and conclusions 

In this chapter it was illustrated a particular case of combining B-Spline functions of 

different support in order to approximate better a target environment. We considered an 

environment of one narrow peak that is gradually separated and we tried to approximate every 

single step of its separation until every peak was totally separated. Firstly we tried the 
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dictionary that was assumed, previously, to be the one of optimum support for the 

representation phase and then others of narrower support and their combinations, respectively 

were considered. 

The aim of that chapter was just to illustrate potential proof that one could obtain a 

sparse approximation with a mixed dictionary. However due to time limitations we weren’t 

capable to perform a thorough investigation in order to find a particular subset of atoms to 

send. It is clear that there is still much work to be done on this subject. In essence finding an 

adequate way of selecting atoms from mixed dictionaries would certainly be one of significant 

importance for the particular purpose. 
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Chapter 10 

Conclusions 

10.1 General remarks 

The aim of this thesis was divided in two main goals. The first one was to illustrate by 

some simple examples of how to reconstruct a function of one or two variables by means of 

elementary functions of one variable selected from a dictionary. The methods used for the 

above purpose fall into the group of adaptive matching pursuit. Such techniques operate by 

iteratively selecting a combination of elementary signals chosen from a dictionary of functions, 

which is created by the translation of a mother basis function in order to participate in a 

decomposition problem. This selection is performed nonlinearly due to the nature of these 

algorithms. In most of the experiments performed the Orthogonal Matching Pursuit was used 

extensively due to purposes of calculation speed and nominal cost of storage. Then it was 

illustrated ways one can represent a target environment when it is considered as a form of a 

matrix (function of two variables). The previous was shown in three different ways. By the 

former we had successive slices of the environment and approximated each of these until the 

whole environment was represented. By the second one, the best slice was used with respect to 

the norm of the error of the approximation for the particular one, in order to approximate the 

rest of the environment. Lastly by the latter the whole matrix was introduced as an input to the 

algorithm and we obtained the combination of elementary signals (subset of atoms) to take part 

in the decomposition simultaneously. The last technique is called Simultaneously Orthogonal 

Matching Pursuit and was used finally for the second goal of the thesis. In addition a simple 

numerical example was performed to illustrate the advantages one can get from combining 

recursively a backward technique (BOOMP) with a forward one (OMP or OOMP), which 

might result in a more sparse approximation with respect to a smaller error. Due to time 
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limitation we have not been able to illustrate this through a thorough investigation of their 

combination, a thing that is considered as one of our proposals of future work. 

The latter objective of the thesis was twofold. In the first part an adequate dictionary 

was to be found for representing a completely known target environment. The latter objective 

was to assume partial information, priori, of the target environment and try to represent it with 

an optimal dictionary (previously obtained). Our experiments were particularly focused on 

using elementary functions of Cardinal B-Splines. In a few words, firstly the space that we are 

going to work with in the representation phase was fixed, by assuming a perfectly known target 

environment. Those were attributes of the dictionary obtained such as the order of B-Splines, 

the distance between knots, the length of the B-Spline functions and the size of the subset that 

is capable to represent such an environment of the complexity, that was assumed, with respect 

to a compromise between the norm of the error of the approximation and a sparse 

representation (least selected atoms). The latter was managed by increasing the support of the 

B-Spline functions which resulted in dictionaries consisting of even more atoms. In addition, as 

soon as the space was obtained, we assumed for the same target environment different 

combinations of prior knowledge, that is knowing certain attributes of the target wished to be 

approximated priori, and through a certain procedure of training we obtained particular 

combinations of atoms to solve each approximation problem respectively. Thereafter the 

particular subsets obtained were tested through a particular random test set of values for the 

unknown parameters of the target environment in order to show whether or not one can have a 

good compromise of error and a sparse. We found the results obtained most interesting and it 

was concluded that the more prior knowledge one assumed about the signal’s properties the 

better the approximation. Furthermore solutions were provided for a better approximation. 

These were, increasing the atoms involved in the decomposition phase or choosing a 

combination of dictionaries of B-Spline functions to work with. Unfortunately due to time 

limitations evidence was not produced of using a particular subset of such a combination, 

however we illustrated the advantages of a possible solution to the above through a simple 

example of approximation. The previous task should be left as one of our main proposals of 

future work. 

Concluding what was illustrated through the course of the particular experiments was a 

rather obvious remark. In essence the first one is obtaining a better approximation when one 

assumed, a priori, more features of the signal wished to be represented. The other one would be 

to increase the size of the subset used for the decomposition in order to have a better 

compromise between the norm of the error of the approximation and a sparse representation. 

That’s due to the means the adaptive techniques select the combination of elementary signals 

for the decomposition which is of greedy nature. Lastly, to use a more complicated form of a 
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dictionary involving mixed functions in order to have an even better approximation. On the 

other hand evidence was produced of a good compromise between error and a sparse 

representation if one assumed prior knowledge both for the signals sent to approximate a dense 

group of targets and attributes of the target environment known beforehand. In essence, the 

subsets obtained from the training phase proved to obtain a good approximation if such a shape 

of a target is assumed. Consequently one can determine an initial subset to influence SOMP in 

order to approximate these target environments, without letting the approach, used in the 

decomposition, to choose another one. 

10.2 Future work proposals 

Based on the example illustrated with BOOMP it came up by combining strategies a 

remarkable attribute of these techniques. That is we can obtain further compression and better 

approximation of the target environment. So what is considered as a future work proposal is to 

try to combine forward and backward strategies in order to design new techniques for adaptive 

signal representation. 

Moreover looking for further criteria in choosing atoms from the dictionary or the combination 

of them would be another one. It is even considered applying an architecture of artificial neural 

networks that are used extensively for signal processing. These nonlinear procedures are said 

to yield good representations and reconstructions with even fewer computational steps, than the 

traditional ones, when applied. Some of the most popular ones are MLP and RBF Networks. 

Furthermore another it would worth investigating in obtaining a particular combination of 

elementary signals from mixing dictionaries, in order to approximate a signal. For instance, 

consider using a mixed dictionary of Mexican wavelets with Cardinal B-Splines. 

However, in the above analysis a rather deterministic model was considered. In other 

words it is known that in a classical radar problem the signal is corrupted with noise. 

Something due to time limitations wasn’t considered in our experiments. Moreover there is 

also the parameter, in the radar equation, that represents the reflectivity of the density of the 

targets which was considered as one (a perfectly reflecting object). If one considers that partial 

energy of the signals emitted from the source is absorbed by the target environment, instead of 

being reflected in total, can we still yield a good approximation? 

Lastly from the literature review it was noticed that these adaptive methods can also be 

used for image representation, restoration and reconstruction. It might be interesting and there 

is great potential to use the particular approaches in order to detect edges of an image, 

compression or even obtaining, in that case too, a possible subset out of the dictionary that will 

come up with bearable approximations of an image. 
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Appendix A 

A.1 Frames 

Let {e,,;me N}be the standard orthonormal basis in/*(N), ((e,,€,),> =O,m)+ Where m?> 

(..) » denotes the inner product in/?(N). Every vector ce /?(N) can be expressed as 

c= Dealencn (a.1) 
meN 

Frame definition: 

A family of functions {g,,€ L(R);me N} is called a frame if for every 

f ¢ L’(R) there exists a pair of constants 0 < A < B<ce such that 

Affe S$ DKemf)e| SBFf)e (02) 
meN 

A, B are called frame bounds and the above is the frame condition. 

Derivation of the reciprocal functions: 

Adapting the notation in [14], if we built up a vector b such that b= Den (Smrf) 
meN 

a 

then \ol;: = (b,b),» = Dilenf):|° where the frame condition implies that be /?(N) 
meN 

whenever f € L’(R). Thus we can define for a mapping of L’(R) to /’(N) an operator 7 

called the frame operator which can be written in the following form 

T= eeane 2 C3) 
meN 

- 89 -



Consequently for f we will have 7f = dXen(8n>f) 2 and the adjoin operator of 1?(N) to L’(R) 
meN 

will be T*f = Deealen hye -So expressing the frame condition in terms of an operator 
meN 

G=T'T= 28a 8mr)p 2L(R) > L(R) we will have Al, <G<Bi,,, where 7, is the 

unity operator in’(R). From the previous, one can obtain the bounded G"tinverse in the 

following manner 

Bi.sG sAl, (a4) 

g”€L*(R);meEN is the reciprocal frame which is computed by g" =G"'g,, and provides a Pp m 

decomposition of the unity operator in the following manner 

6°6=66" = Ie where l= et age = Deals an (a.5) 

For the case where A=B=1 and|g,,|=1, G is the identity that isg” = g,,and the 

functions g,, are orthonormal. Following the above, the identity f = i pf expands to 

fata f= Ds" (omf)e= Dene S)» 6) 
meN meN 

and its complex conjugate is of the form below 

faigf= zs" fi8a)y = L8m gale"), (a7) 

The above implies that f can be recovered either by (8m>f) ay OF, (ean If there 2 

exists many different set of the reciprocal functions which give rise to the decomposition of the 

unity operator in terms of the same frame. These are going to be used in order to reconstruct 

the spreading function p(7,¢), by building a decomposition of the unity operator from the 

echoes produced. 
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