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Thesis Summary 

Some changes from normality of the ST segment of an electrocardiogram (ECG) are known to be 
indicative of myocardial ischemia, or lack of oxygen in the heart muscles. Ischemia can lead to 
myocardial infarction which could be fatal. However, little has been achieved in developing techniques 
for automatically identifying abnormality in ST segment which is caused by ischemia. This is because 
ECG is sensitive to the subject’s posture and movement, noise in the leads and other factors, and the 
origin of the abnormality is difficult to be determined. This project investigates methods for modeling 
and classifying ST segments in ECG in order to detect ischemia automatically. 
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Chapter 1 

Introduction 

In modern medicine, there is high interest in non-invasive diagnosis and treatment of diseases. This 

includes minimising the need for major surgery by using indirect measurement methods and key-hole 

surgery, which reduces the cost of diagnosis and treatment and minimise the risk of infection, com- 

plication, scarring and mental and physical stress for the patient. Although more invasive, direct. 

measurements of physiological signals give more accurate values, the benefits of non-invasive measure- 

ments are motivating research into this area. This project focuses on one such non-invasive method 

for diagnosing diseases of the heart. 

The activity of the heart muscle is monitored by an electrocardiogram (ECG) which consists of 

electrodes attached to the subject’s skin non-invasively, and some kind of recording device. 

The heart consists of four chambers, the left and right atria and the left and right ventricles. It 

is known by the physicians that ischemia, or the lack of oxygen to a muscle, is observed through 

recordings of the electrical potential in the muscle during recovery from contraction. In the case of 

the heart, the repolarisation from the atria are obscured by the contraction signals from the ventricles. 

Therefore, observation of the repolarisation of the ventricles, the ST segment, gives indication of the 

oxygen saturation in the heart muscles, or the myocardia. 

Figure 1.1 shows a schematic drawing of a heart beat on the ECG. A heart beat trace on the ECG 

consists of P, Q, R, S$ and T waves'. The P wave occurs at the contraction of the atria. The Q,R 

and S$ waves are referred to as the QRS complex and is the contraction of the ventricles. The section 

extending from the S$ wave to T wave is the ST segment. The T wave is the recovery of the ventricles. 

The most flat part in the P-Q interval is the iso-electric level and is the equilibrium level of the electric 

potential in the heart muscle. 

The ECG consists of 9 electrodes, making up 12 leads. The positions of these electrodes are shown 

in Figure 1.2. Electrodes are placed on the patient's left and right arms, left leg and six locations 

along the ribs. The electrodes on the limbs can be placed nearer the torso on the shoulders and thigh 

for ambulatory recordings and leads using these electrodes are labeled as modified. The 12 leads are 

\'The existence of a further U wave is still debated.
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Figure 1.1: Schematic drawing of a heartbeat on ECG. 

the signals recorded on each of these electrodes with respect to a reference level, and 3 signals recorded 

as potential between a pair of electrodes. The leads are numbered from v1 to v6 on the chest, AVR for 

the right arm, AVL for the left arm and AVF for the left leg. The lead consisting of AVR and AVL is the 

standard lead I (SLI), AVR and AVF make up standard lead II (SLII) and AVL and AVF make up 

standard lead III (SLIIZ) [2] [14]. 

Myocardial ischemia often precedes myocardial infarct, or heart attack, which can be fatal. It 

is of high clinical interest to identify abnormality in the ST segment resulting from ischemia as this 

may allow time for clinicians to administer preventative measures for patients who are likely to suffer 

myocardial infarct. 

Analysis of ambulatory ECG is ideal for the purpose of this project. ECG is non-invasive and 

ambulatory recordings have a better chance of observing ischemic signals which can be quite rare 

at early stages of the disease and often missed at short recordings of a few minutes at check-ups at 

hospitals. 

The aim of this project is to automatically distinguish between ischemic and non-ischemic ST 

episodes in ambulatory ECG recordings. First, this chapter describes the background and motivation 

for this project, and gives some descriptions for terminology which are specific to this project. 

Literature survey of the work done in the area so far is given in Chapter 2. Chapter 3 explains in 

detail the Long Term ST Database (LTSTDB) which is used in this project. In Chapter 4 a different 

approach using Neural Networks is described. Finally, Chapter 5 gives the conclusion for this project. 

10
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standard lead | 

+ 

standard 
lead I 

standard lead I 

Figure 1.2: Sketch of positions of the electrodes around the body. 

1.1 Quantifying results 

The quality of the classification is quantified by showing the classification results as confusion matrices 

and by calculating statistical quality measures [9]. 

A confusion matrix is presented in the form: 

Normal as normal false positive 

false negative ST as ST 

An ideal confusion matrix will have values only on the diagonal, i.e. zero false positive and false 

negative. Especially in clinical applications, it is vital to minimise false negatives, sometimes at the 

expense of a high false positive. However, if automated clinical diagnosis systems “ery wolf” too often, 

this could also have adverse effect on the use of automated systems. 

The four most common measures are 

positive classification 
itivity = ooo 11 

seed (positive classification + false negatives)’ nD 

Te. negative classi fication wie SS a ee 
sree fice) (negative classi fication + false positives)’ oe) 

is ry positive classi fication 
sl V)= oO c 

positive predictive value (PPV) (positive classi fication + false positives)’ G3) 

negative predictive value (NPV) = SiC UEE Vel DaER SeaEACTE (1.4) 
(negative classification + false negatives)’ 

Of particular interest are the sensitivity (se) and the specificity (sp) as they are used in many 

papers in Chapter 2 to quantify their results. 

li



CHAPTER 1. INTRODUCTION 

1.2 Terminology 

Here, some terminology specific to the project is explained. 

PhysioNet The name of an internet site providing biomedical signals and processing software, be- 

longing to the Research Resource for Complex Physiologic Signals [4]. 

PhysioBank A bank of digital biomedical recordings which can be accessed free of charge through 

PhysioNet [4]. 

LISTDB Long Term ST Database. Available from PhysioBank. 

ESTDB European ST Database. Predecessor to LTSTDB. 

Aristotle A computer program for beat classification. 

SEMIA A computer program which allows experts to semi-automatically label interesting events in 

ECG recordings. 

PhysioNet/ Computers in Cardiology Challenges Hosted by PhysioNet and Computers in Car- 

diology conferences, participants attempt to solve real clinical problems. 

1.3 The Challenge 

This project is based on the Physionet/ Computers in Cardiology Challenge 2003, “Distinguishing 

Ischemic from non-Ischemic ST Changes”. The Challenge asks a question, “Is it possible to tell the 

difference between transient ST changes in the ECG that are due to myocardial ischemia, and those 

that are not?”. The answer has long been “no”. However, the hosts say, it may be possible to establish 

inferential associations between specific features of the ECG to myocardial ischemia, in particular, the 

ST segment. Since the ST segment measurements can easily be affected by change in heart rate, 

conduction pattern, position of the subject and noise, transient changes in ST segment readings are 

suggestive of ischemia, but insufficient for a diagnosis. Participants are invited to produce a novel 

approach into detecting ischemia from ECG alone. The algorithms developed need not be able to 

detect the ST change events, but need to be able to classify the ST events annotated by experts as 

ischemic, non-ischemic or unknown. 

1.4 Method 

The approach to this project is given in Figure 1.3. First, data will be preprocessed and reformed into 

manageable formats. Then some kind of feature extraction will be used to reduce the dimensionality 

of the data. The classification will be performed using artificial neural network based method. 

12



CHAPTER 1. INTRODUCTION 

In order to classify the abnormal beats as ischemic or non-ischemic, their characteristics need to 

be quantified as a measure of deviation from normality. In order to obtain a model of normality, the 

first step is to attempt to define normality by classifying beats as normal or otherwise. 

Once a model of normality is constructed and beats compared against it, the change in the differ- 

ence measure through time can be analysed to obtain classification of abnormal beats. 

In this project, the tasks involved in determining a model of “normality” were tackled, from pre- 

processing up to classification of beats into normal and episodes. 

Results obtained from experiments will be compared against existing work by other researchers. 

Algorithms will be developed on a small set of data first, then applied on a larger number of data sets 

to determine the quality of the algorithms. 

Algorithms will be developed using MATLAB and NETLAB toolbox {10}. 

13
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Figure 1.3: Flow chart showing the approach to the project. 
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Chapter 2 

Literature Survey 

There have been a variety of approaches to the problem of automatic detection of ischemia. A 

number of researchers have used principal component analysis (PCA) (or KLT!)? as a first step of 

the analysis. After that, some have used time series approach, some have used rule based methods 

and others have used neural networks. A selection of papers are described in brief in the following 

sections in chronological order. 

2.1 Jager et al. 1992 

According to Jager et al. it is possible to distinguish ischemic ST change from non-ischemic ST change 

if observation of axis shift is available. Axis shift is where the electrical axis of the heart changes, for 

example, due to the subject changing posture. A detailed description of axis shift in the heart is given 

in Boutkan (2] and Schamroth [14]. By projecting the ST segments from the European ST databse 

onto the feature space of the first five KLT components of the ST segment, Jager’s team were able to 

detect ischemic episodes. 

Whereas this project is concerned with distinguishing between ischemic and heart-rate related ST 

episodes, Jager’s group’s work dealt with distinguishing between ischemic and axis shift ST episodes. 

They argue that this is possible as ischemic ST episodes are characterised by smooth changes in ST 

segment level, but ST episodes due to axis shift show sudden changes in ST segment level. 

The ECG recordings from the ESTDB are reformatted into manageable data form which then can 

be used for feature extraction using KLT. There are two data sets; one consisting of 16 readings of ST 

segments from FP+40ms to FP+160ms taken at 8ms intervals and another of 16 readings of QRS 

complex from FP—96 ms to FP+24ms taken at the same interval. 

The FP, or fiducial point, is defined as the centre of mass of deflection of the QRS complex. Since 

the R wave is the most dominant feature in the QRS complex, the fiducial point occurs close to the 

R wave peak, and can be used to locate a beat within a length of recording. 
  

1Karhunen-Loeve Transform 

2Since PCA and KLT are mathematically the same, these names are used interchangeably. 

15
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The first 5 KL coefficients are used for the rest of the analysis. 

Noisy beats are excluded from analysis. These beats are automatically found by analysis of the 

residual error after normalisation to unit variance. A beat whose ST or QRS KL coefficients differing 

from 15 beats preceding it by more than 25% are excluded as noise. 

The set of feature vectors, or KL coefficients, are smoothed using 15 point moving average, re- 

sampled to 0.5Hz and further smoothed using 9 point moving average. Axis shifts are detected by 

detecting stepwise change in ST segment KL coefficients. 

To account for slow drift of ST reference level, the mean feature vector is corrected to a new value 

given as a function of a time constant, 7, the current mean feature vector, 3(k), and the current 

feature vector value, s(k). The time constant is chosen by the author. This correction takes place if 

consecutive mean feature vectors differ more than a certain amount, chosen by the author empirically. 

An ST episode is detected by analysis of the distance of a beat from the mean in the feature space. 

A non-ischemic ST episode is identified if an axis shift coincides with the onset or the end of the 

episode, and the amplitude of the ECG reading at the extrema of the episode does not exceed 300 pV. 

All other episodes are identified as ischemic. 

In this method, the group achieved gross ischemic episode sensitivity of 85.2% and gross ischemic 

duration sensitivity of 78.0%. Ischemic episode sensitivity is where all the episodes are weighted 

equally. Ischemic duration sensitivity is where all minutes of the episodes are weighted equally. This 

compares to their earlier work in 1991 of 82.4% and 72.5% for the respective measures which were 

obtained using only the first 2 KL components [5]. 

2.2 Stamkopoulos et al. 1998 

Since PCA can only identify linear correlations between random variables, Stamkopoulos argued that 

for a highly non-linear system such as the ECG and the heart, it is more beneficial to use a non-linear 

method, a non-linear PCA (NLPCA). 

NLPCA is achieved by minimising the mean squared error: 

J = E\\x—g(a(x))|, 

where the function h(x) maps x to the feature space and function g(x) maps x back to the real space. 

There are actually infinitely many solutions to this problem. Further constraints limiting the solutions 

to contours generated by h and surface generated by g makes the problem unique. The solution to 

this problem is achieved by a 4-layer multiple layer perceptron (MLP) autoassociative network. 

This autoassocaitive network is two back-to-back 2 layer multiple layer perceptrons (MLP). The 

input, the first layer and the second layer make up the first MLP representing the function h. The 

dimension of the second layer is necessarily smaller than that of the input. This second layer is the 

data mapped into the feature space. The second layer, the third layer and the forth layer make up 

the second MLP representing the function g which maps the features back onto the data space. The 

16
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Figure 2.1: Sketch of 4 layer autoassociative MLP for implementing NLPCA. 

dimension of the forth layer is necessarily the same as the input layer. The hidden layers, the first 

and the third, are arbitrarily large. 

After correcting the changes in isoelectric level, the input to the neural network is constructed. 

The beginning of the ST segment is defined as 60 ms* after the peak of the R wave and lasts a set 

length of 160 ms. At a sampling frequency of 250 Hz this gives rise to 40 data points. These samples 

are compared against a reference template of the average of the 10 first normal ST segments in the 

record and the difference is used for analysis. The input vector is further reduced in size by taking 

the average values every 2 samples, resulting in 20 dimensional data going into the neural network. 

Classification is achieved by training a Radial Basis Function (RBF) neural network on just normal 

beats. The decision threshold is set so that 80% of the normal beats are classified correctly. The author 

achieved average sensitivity to normal beats of 79.32% and 75.19% to abnormal (ischemic) beats. The 

author notes that if there are more than 80% or fewer than 1% ischemic beats in the data, the 

sensitivity drops. These results were obtained using 2 principal components, but it is noted that, 

although 1 principal component analysis produced noticeably inferior results, increasing the number 

of principal components to 3 or 4 did not improve the results significantly. There is no mention of 

abnormal, non ischemic beats [15]. 

340 ms if there is sign of tachycardia. 

17
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2.3 Laguna et. al 1999 

This group of researchers used KLT to improve the signal to noise ratio of the data. This piece of work 

is not specifically on the detection of ischemic ST episode, but has lead to work by other researchers 

in that area. 

A KL, coefficient time series, kl,(i) is used in the analysis where each value in the time series is 

the KL coefficient for that beat in the KL order of interest. The subscript n refers to the coefficient 

number and i represents time as the position of that beat in a whole series of beats in the data. 

The records to be used for analysis were carefully chosen from a number of databases, and the final 

selection amounted to 105 fifteen minute recordings. The data set, is constructed from ST segments 

and T waves, defined as a 600 ms window from 85 ms after the fiducial point of a beat to 240 ms before 

the next fiducial point. 

This data was preprocessed by cubic spline subtraction method to correct for baseline wander, 

and manual rejection of apparently noisy beats. Six different methods of further preprocessing the 

data were compared. The methods were combinations of filtering and rule-based heart rate correction 

(Bazette’s formula). 

The covariance of the data was calculated using only the ST-T complexes whose length extend to 

that element of the covariance matrix. Elements of the covariance matrix lacking a full data set were 

estimated using only the available data. 

By inspection of the eigenvalues of the covariance matrix, n was chosen to be 2. 

The author found the estimation of kl,(i) obtained from the inner product of the KLT basis with 

the data is too noisy for use in beat-by-beat analysis. Instead, the kl, (i) is estimated by assuming each 

ST-T complex is made up of a recurring deterministic part and some uncorrelated noise. This analysis 

performed on a beat-by-beat basis produces a smoother kln(i). The error minimisation algorithm 

requires a choice of a convergence factor 2 and a time constant Tmse which is chosen empirically by 

the author on the basis of trade off between convergence rate and stability. 

The author comments that, another researcher, Gracia, achieved sensitivity to ischemic episodes 

of 81% using this technique with 4 KLT components in 1998 [7]. 

2.4 Papaloukas et al. 2002 

Papaloukas et al. used PCA as the feature extraction method, then used a Multiple Layer Perceptron 

(MLP) with Bayesian approach as the classifier. The author has produced a 4-stage ischemic episode 

detection method earlier in 2001, where the beat classification was performed using a knowledge-based 

method. This paper presents a novel method to replace that knowledge-based beat classification 

method in hope to minimise the adverse effect of noise which caused the Positive Predictive Value 

(PPV) to be low. 
The 4 stages of the new ischemia detector is as follows: 
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1. QRS detection, filtering, J point detection, 

2. Neural Network beat classification, 

3. Sliding adaptive window, 

4. Merging. 

The following procedures were carried out on each lead separately. In the merging stage, not de- 

scribed in this paper, the information from each lead is combined to aid clinicians to understand the 

information easily. 

The data set consisted of 100 sample points from J-point to 400ms after the J-point. J-point, 

or junction point (JP) is where QRS complex meets the ST segment, i.e. the beginning of the ST 

segment and therefore the end of the QRS complex. 

ST-T complexes whose lengths were shorter than this window were padded out with zeros. This 

data dimension was reduced to 4 using PCA. These features became the input to a two layer MLP 

with 10 hidden units and one output unit. This number of hidden units was chosen empirically by 

comparing different model complexities. Sensitivity and specificity were used to quantify the quality 

of classification for each model complexity. The number of principal components were chosen so that, 

95% of the total variance of the data was represented by the chosen principal components. 

11 hours worth of ECG recordings were used for the training and testing of the neural network. 

Out of this, 2.5% were used in training and the rest in testing. The data were chosen to include a 

similar number of normal and abnormal beats. 

The author achieved aggregate average of 86% sensitivity to episodes. It is, however, noted that 

the lowest sensitivity value over all the records in ESTDB used for testing was 0%, while the highest 

is 100%. There is no mention of non-ischemic episodes nor of the fact that the class priors in the real 

data is different from that of his training and testing sets [12]. 

2.5  Tasoulis et al. 2002 

This piece of work also starts with the use of PCA and performs classification using a neural network. 

100 samples of the ST-T complex corresponding to 400 ms of data at 250 Hz are reduced to 5 

dimensions using PCA. The J-point is taken at 60 ms after the R wave peak, but this is adjusted 

according to heart rate. The number of principal components was chosen so that over 98% of the 

total signal energy were represented by the principal components. A wavelet decomposition method 

was used to reduce the noise in the principal components. 

The k-window clustering algorithm is used to determine the number of clusters in the feature 

space. Then a 4-layer neural network is used as local predictors for each cluster. For testing, each test 
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data point is assigned to a cluster based on a distance measure from each cluster. Then, that data 

point is classified by the neural network responsible for that cluster. 

The k-window clustering algorithm works in two stages. First, a box in n dimension, where n is 

the dimension of the feature space, is moved across the space until the number of data points in the 

box reaches a certain stopping criteria. Then the box is expanded until the number of new data points 

included at each enlargement step is less than a certain limit. Then the expanded box is the boundary 

for a cluster. This expansion takes place in each dimension separately. The process of finding the 

number of clusters present is automated by starting with a sufficiently large number of boxes. Then, 

at the end of the process, overlapping boxes are merged. 

On average, sensitivity of 78.4% was achieved over 6 testing records, over five different training 

schemes for the neural networks. The lowest sensitivity fell just below 60% and the best was over 

90% [18]. 

The work above all used European ST Database as at least one of the sources of their data. 

European ST Database is very similar to the Long Term ST Database used in this project. 

2.6 Zimmerman et al. 2003 

Work by Zimmerman et al. was one of the entries for the Challenge. The data used in this paper is 

the same as for this project. Only the first lead is used for analysis. If the first lead is very noisy, the 

analysis is switched to the next lead. 

The J-points were obtained from the 16 beat average annotation file. The author then extracts 8 

J points before and after an event of interest. The events are marked up by experts as ischemic, heart 

rate related, axis shift or conduction change. 100 samples following the J-points are extracted as the 

data to be analysed. The data is then embedded into a reconstructed phase space according to the 

equation 

  Xn = [2m Bn-r °° Tn—(d-1)r)> 

where n = (1+ (d-1)r)...N. The parameters d and 7 were chosen empirically by the author to be 

6 and 5 respectively. Embedding is done per J-point number (-8 to 7, total of 16) per channel per 

event type. 

Gaussian Mixture Model (GMM) is trained for each embedding. Classification is achieved by 

maximising the log-likelihood of the data in the GMM. 

The training set is constructed in such a way as to balance the number of events across the event 

types. That is to say, ischemic episodes, non-ischemic episodes, axis shift and conduction change 

happened at a roughly the same frequency in this training set. The events were assumed to have been 

detected. 

A maximum average sensitivity of 80.6% was achieved for the validation set. The test set, as 

tested by the Challenge organiser, was found to be 63.8%, but the author attributes this to problems 

in translating the codes from one program language to another [20]. 
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Vasc Feature extraction Classification athe: 

PCA (n) | NLPCA (a) || rule | MEP | RBF 

Jager yes (5) yes 

Stamkopoulos yes (2) yes 

Laguna/ Gracia || yes (4) 

Papaloukas yes (4) yes 

Tasoulis yes (5) yes k-window 

Zimmerman GMM and embedding                         
  

Table 2.1: Summary of literature survey. (n) for the PCA and NLPCA columns are the number of 

principal components chosen by the authors. 

2.7 Summary of the chapter 

Here, various techniques used by the researchers mentioned above are summarised in Table 2.1. 

It can be seen that PCA is a popular and well established method for feature extraction, and 4 or 

5 principal components are often used. 

It is decided that this project will take a similar direction to that of Papaloukas et al. because 

the method is most simple and principled. The number of hidden units for the classifier network is - 

empirically fixed in the paper by Papaloukas, but this project will choose a suitable model complexity 

based on the data to give a more tailored classifier for a given data set. Regularisation will be achieved 

by early stopping as opposed to the Bayesian technique employed by Papaloukas. 

It is important to stress that none of the authors mentioned have taken into account the fact that 

in a piece of ECG recording, there will be far more normal beats than abnormal beats. Using neural 

network based methods and not being careful with class priors can produce misleading results. 
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Database 

The predecessor to the Long Term ST Database (LTSTDB) was the European ST Database (ESTDB) 

which contained ninety 2-hour recordings of ECG with predominantly ischemic ST episodes. Although 

this collection of records contributed greatly to the advancement in automated ischemia detection, 

there were a couple of shortcomings. 

Firstly, the European database did not actively include non-ischemic events as they have no clinical 

importance. The lack of understanding of non-ischemic events lead to a high false-positive rate in the 

automated detectors. Secondly, the 2-hour excerpts were too short to observe more complicated ST 

changes with mixed causes. A longer set of recordings were necessary to observe such patterns with 

ischemic episodes nested within non-ischemic episodes or the “slow drift” ST deviation (6). 

In contrast, LTSTDB contains eighty-six records lasting between 21 and 24 hours with many 

ischemic as well as non-ischemic ST events. The recordings are of eighty people, of which forty-three 

are available from PhysioBank as the training set and the remainder are held by the PhysioNet for 

testing the programs produced by the competitors. 

3.1 Structure of LTSTDB 

There are two types of data in LTSTDB; signal data and annotation data. Each of these are described 

here in turn. Along with the data are two other types of information; the header file, which can be 

read automatically by computer programs, and a file containing the summary of ST events in a patient 

record. 

There are 34 records with 2 lead recordings and 9 records with 3 lead recordings. Of the 2 lead 

records, 11 are omitted from analysis as their leads are unknown. Another 1 is omitted as it has 

neither ischemic nor non-ischemic ST episodes. The project also looks at only the 2 lead recordings 

as a starting point. 

Of the remaining 22 records, another 1 is omitted as the record has inconsistent labeling, where 

one lead is showing ischemic episode and the other is showing non-ischemic episode at the same time. 
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It was not possible to establish whether the labelling was inconsistent and wrong, or inconsistent but 

still valid, therefore this record was omitted from analysis. 

Due to problems with computer hardware breaking down, further 4 records were lost, and another 

2 had slightly different record format to the rest, making reading them slightly difficult. These six 

were again eliminated from analysis to save time. In total, 15 two-lead records were analysed for this 

project. 

All of the 15 records used for analysis in this project have either ischemic episodes or non-ischemic 

episodes, but not both. The non-ischemic ST episodes in this database are all heart-rate related, that 

is, due to a change in heart rate. 

The 2 lead records are recorded in a certain combination of leads: 

  

where M stands for Modified. The positions of the electrodes forming these leads can be seen in 

Figure 1.2. 

Each recording lasts up to 24 hours amounting to around 100000 beats per lead per record. 

Typically, around 95% of these beats are normal and the remaining 5% are labeled as some kind of 

ST episode. See Table B.1 for the actual number of beats and ratio of episodes in each record. 

3.1.1 Signal 

The analogue ECG recordings were digitised at 250 Hz and amplitude scaling of 200 Analogue-to- 

Digital Converter (ADC) units per mV. The resolution of the digitisation is 12 bits over the range 

of + 10 mV. The records were provided by research groups in the US, Slovenia and Italy [13]. The 

signals were meticulously annotated and validated by these three research groups in turn. 

3.1.2 Annotation 

There are two types of annotation used in this project; one for the entire beat, and the other for the 

ST segment. The first type are the automatic classification by ARISTOTLE, (.ari) and a manually 

corrected version of this (.atr). These annotations give the positions of the fiducial points of each 

beat, therefore the “positions” of each beat within the length of the recording. The classification 

provided by these annotations are not used in this project. 

The second type are the ST segment measurements based on 16-second moving average (.16a), 

locations of ST episodes according to different standards, A (.sta), B (.stb) and c (.stc), the 

ST reference functions and deviation (.stf) and KLT projection of QRS complex and ST segments 

(.k1t). The .16a annotations also give the positions of the J-points. 
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The heart rate is the number of heart beats per length of time. It is often given as beats per 

minute. 

J-point is defined as a certain amount of time after the fiducial point (usually 120ms), but this 

interval varies with heart rate. As heart rate increases, the heart beat becomes shorter, therefore 

the interval between the fiducial point and J-point becomes shorter. The threshold heart rate values 

corresponding to different FP-JP intervals are summarised in Table A.3. 

The ST level is the amplitude of the ST segment measured a certain time, determined by the heart 

rate, after the J-point. The amplitude of the ST segment is measured from the isoelectric level. The 

isoelectric level is the most flat part in the P-Q interval of that beat [6]. 

A significant ST shift is where a significant and sudden step-change in ST level is observed with 

simultaneous step-change in QRS morphology. These can be due to axis shift or conduction change (6). 

Detailed account of the contents of the database and its structure are given in Appendix A. 

3.2 Summary of the chapter 

In this chapter, a brief description of the database used in this project, Long Term ST Database 

(LTSTDB) was given. The LTSTDB consists of digitised ECG signals and automatic and manual 

annotations. Of the 43 records available from PhysioBank, 21 will be used for analysis in this project. 

The detailed description of each data and annotation files in LTSTDB is given in Appendix A. 
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Artificial Neural Networks Based 

Method 

4.1 Motivation 

The approach in this chapter is to attempt to classify normal and ST episode beats from the mor- 

phology of the beat only. Once successful classification is achieved, the normal class can be used to 

create a model of a normal beat. Then the record will be compared against this normal model, and 

the deviation will be analysed to give classification of ischemic or non-ischemic ST episode. 

The experiments were conducted on per-patient, per-lead basis, therefore taking into account the 

fact that patient records were recorded on different combination of leads. 

4.2 Data pre-processing 

By inspection of the signals provided by the Challenge, it was decided that baseline removal was 

needed, but the signal was of good enough quality not to require bandpass filtering. 

The baseline removal algorithm was based on that by Cardionetics [11]. Instead of detecting the R 

waves, the fiducial points given by the LTSTDB were used to locate each beat. Looking backwards from 

the fiducial point, the Q wave was chosen as the first minima in a sample window of 30 samples [19]. If 

the signal is noisy and has huge amplitude changes near the Q wave, it is possible that these noise can 

be erroneously picked up as the Q wave. In order to guard against: such scenarios, the Q wave detector 

replaces any detected points which deviate from the mean by more than 4 standard deviations with 

the mean. The amount of deviation to tolerate, 4 standard deviations, was chosen empirically. This 

cannot take into account other problems such as slow drift of the baseline. Other methods that could 

have been employed was to check that each detected Q wave was within sensible range every few beats. 

Once the Q waves were detected a cubic spline was fitted through these Q waves and subtracted from 

the records. 
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Following the baseline correction, the data was separated into normal and ST episode sets using 

the sta annotation standard (see Appendix A.2.8). Then, training sets, validation sets and testing 

sets were randomly selected in the ratios 1/2, 1/3 and 1/6 respectively. In this process, beats were 

selected completely at random thereby breaking any time connection between the beats. 

In practice, this is not the optimum way to separate out the data sets. Since beats in a given st 

episode will share some similarities, a classifier trained on the dataset above will learn some peculiarity 

about a certain episode. In the validation and testing sets, it will find episodes which it has already 

“seen”. In practice, a small section of the patient’s recording will be used to as the training set, 

and the remainder will be testing sets. A practical classifier needs to be able to generalise across all 

episodes. 

The ratio of normal to ST episode beats selected for each sets were consistent with the ratio of 

that patient record. Of course, in order to separate the beats in this way, normal and ST episode 

beats must already be labelled. The aim is, from these pre-labelled data, produce a classifier that can 

successfully distinguish between normal and ST episode beats such that for any new data obtained 

for the particular patient, it will be possible to label it automatically. In reality, the portion of data 

available to build the classifier with will be much smaller. 

For initial examination, 2 records were chosen at random, one with ischemic episodes and one with 

non-ischemic episodes. The records used in the analysis are s20011,which has non-ischemic episodes, 

and 20021, which has ischemic episodes. s20011 has 14 episodes in lead 0 and 6 episodes in lead 1. 

20021 has 20 episodes in lead 0 and 26 in lead 1 (see Table B.2 for a summary of episodes). 

The records were then reconstructed into two multi dimensional data sets; one with 151 dimensions 

including the QRS complex and the ST segment and the other with 91 dimensions including the ST 

segment only. The first data set is chosen as 60 samples before the fiducial point, the fiducial point 

and 90 samples after the fiducial point. The second data set is chosen as the fiducial point and 90 

samples after the fiducial point. Since the ST episodes do not necessarily occur at the same time 

in both leads, only one lead was considered at a time. In cases where both leads were used in the 

analysis, the ST episode beats were selected only from sections of the recording where both leads had 

ST episodes. 

There are around 50000 normal and 6000 episode beats in the training set and around 30000 

normal and 4000 episode beats in the validation set. 

4.3 Feature extraction 

Principal Component Analysis (PCA) was used to perform feature extraction on the data sets. PCA 

has been used in ECG analysis in the past and has shown to be a reliable method as described in 

Chapter 2. It is also very simple to implement, and therefore a good starting block onto which further 

methods can be built on. 

PCA decomposes the data matrix into orthogonal components of the same dimensionality as the 
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Figure 4.1: Eigenvalues of covariance matrices for s20011 lead 0 QRS + ST set. 

data. This allows for the n components corresponding to the n largest eigenvalues of the covariance 

matrix of the data to be selected by inspection. Data can be projected into a space spanned by this 

smaller number of principal components for further analysis or for visualisation ifn = 2or3. 

First, the data is normalised to zero mean and unit. variance. Then the covariance of the data is 

calculated; 

C=x’, 

where C is the covariance matrix of the data matrix x. 

The n most dominant, principal components are chosen by selecting the eigenvectors of C corre- 

sponding to the n largest eigenvalues. 

The approximate dimensionality of the data can be found by choosing n where the value of the 

eigenvalue suddenly drops. 

Figure 4.1 show the eigenvalues of the covariance matrices of s20011 lead 0 QRS + ST set whole 

and close up. The dash-dot line is where the sum of eigenvalues to that point reaches 95% of the 

total information contained in the covariance matrix. For this set, 7 and 15 eigenvalues are chosen, 

as interesting points on either side of the dash-dot line. 

Figure 4.2 shows the eigenvalues for s20011 lead 0 ST set. For this set, 5 eigenvalues are chosen, 

although this is just short of the dash-dot line. This is the same number of eigenvalues chosen by Jager 

et al. as described in Section 2.1 and is also as that chosen in the KLT data included in LTSTDB as 

described in detail in Appendix A. 

An initial inspection of the data is possible by projecting the data using a pair of principal com- 

ponent as shown in Figure 4.3. The normal data points are shown in circles and abnormal points 

in crosses. In all of these principal directions, normal and abnormal beats appear overlapped. This 
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Figure 4.2: Eigenvalues of covariance matrices for s20011 lead 0 ST set. 

means that either they are acutally inseperable or that the boundary between the classes is a complex 

multidimensional manifold which cannot be seen in 2D. 

4.4 Classification 

A Multi-Later Perceptron (MLP) with a logistic output layer was trained as a classifier. The detailed 

mathematical description of MLP can be found in the book by Bishop [1]. The scaled conjugate 

gradient algorithm is used to train the network. A sketch of the schematic of an MLP is shown in 

Figure 4.4. The number of input units is determined by the number of principal components selected 

at feature extraction, nPC. The number of hidden units is determined from the data. There is only 

one output unit, giving 0 to 1 coding. 

Early stopping was used to prevent over fitting of the model. This is a simple method but it is 

easy to implement and the processing can be done in batches requiring little attention until the results 

are produced. It is also a good method when there are abundant data samples as in this case. 

The MLP was trained with various model complexities for a sufficiently long time so that the 

increase in generalisation error can be clearly observed. The total number of iterations were empirically 

chosen to be 3000, and the training and validating errors were evaluated every 100 iterations. 

The minimum validation errors for each model complexity were compared and the one giving the 

least error was chosen as the optimum model complexity. The optimum number of iterations was 

obtained by referring back to the log of generalisation error during the model training. An example 

of the training and validation errors is shown in Figure 4.5. The first figure show the training error 

in stars and validation error in circles. The training error never rises, but the validation error stops 
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decreasing after a while, then starts to increase. This is when overfitting starts to occur. 
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4.4.1 Classification results 

Tables 4.1, 4.2 and 4.3 summarise the classification results for records s20011 and s20021. The tables 

in this project have the form: 

  

record lead Conf mat se sp 
  

sXYYYZ 0/1 | normal as normal false positive | se sp 

false negative ST as ST         
  

or in some cases, 

  

record lead Conf mat = change 

sXYYYZ 0/1 | normal as normal false positive | se change in se w.r.t. other tables 
  

  

        false negative ST as ST | sp change in sp w.r.t. other tables. 
  

Comparing against the average result obtained by Papaloukas et al. of 86% sensitivity, the ST 

segment set (‘Table 4.3) gives considerably worse classification. The QRS + ST data set with 7 princi- 

pal components perform better, but still not good enough. The QRS + ST data set with 15 principal 

components perform better or equally well, except for 20021 lead1. 

Understanding why beats are wrongly classified can help identify methods to improve classification. 

Uncertainty 

A simplistic explanation to why beats are classified wrongly is that beats just before or after an ST 

episode-normal boundary are hard to identify as one or the other. Such beats, then, are expected to 

be classified with high uncertainty. 

To verify this, the positions of the false negatives and the false positives are shown in Figure 4.6 

with respect to the positions of the actual ST episodes for s20011 lead 0. The whole recording is 

represented in the graph, starting at the top left hand corner and finishing in the bottom right hand 

corner. There is a top-hat shape blip in the plot where there is an episode. Everywhere else is flat. 

The stars are where there are false positives and the circles are where there are false negatives. The 

amplitude is chosen arbitrarily with no significance except for to show the three types of information 

clearly. 

The close up plot is of the first ST episode in s20011 lead 0. The false classifications are not 

necessarily at the class boundaries. 

To determine the effect: of the uncertain classifications on the quality measures, data points that 

were uncertainly classified were eliminated from the confusion matrices. The classifier is given labeling 

such that ST episodes are 1 and normal beats are 0. Therefore, uncertain beats are those whose 

network output lay between 0.33 and 0.67. 

Of interest are the bold-font validation sensitivities and the changes corresponding to them. The 

changes are with respect to the original set of results in Table 4.1 to Table 4.3. 

Some of the data sets show rise in sensitivity as the result of eliminating uncertain classifications 

from analysis. For example, 20011 lead 0 training set for QRS + ST set with 15 principal components 

30



CHAPTER 4. ARTIFICIAL NEURAL NETWORKS BASED METHOD 

  

  

  

  

  

  

‘Training set Validation set 

record lead Conf mat se sp Conf mat 8e Sp. 

s20011 0 | 42887 680 | 73.8% 98.4% || 28517 534 | 71.1% 98.2% 

1538 4323 1130 2779 

1 | 47393 161 | 81.6% 99.7% || 31510 149 | 80.6% 99.5% 

350 1550 245 1021 

820021 0 | 43062 56 | 83.9% 99.9% || 28667 61 | 80.8% 99.8% 

134 696 107-449 

1 [49261 103 | 60.9% 99.8% || 28138 118] 54.8% 99.6% 

612 955 470 569 
  

Table 4.1: Classification result for QRS + ST data set with 7 PCs. 

  

  

  

  

  

  

Training set Validation set 

record lead Conf mat se sp Conf mat. se sp 

820011 0 | 43119 448 | 88.2% 99.0% || 28609 442 | 83.2% 98.5% 

693 5168 658 3251 

1 [47433 121 | 88.7% 99.8% || 31546 113 [87.2% 99.6% 

215 1685 162 1104 

820021 0 | 43069 49 | 82.2% 99.9% || 28689 39 | 84.4% 99.9% 

484 682 87 469 

1 | 49245 119 | 66.9% 99.7% || 28102 154] 60.9% 99.5% 

519 1048 406 633 
  

Table 4.2: Classification result for QRS + ST data set with 15 PCs. 

  

  

  

  

  

                
Training set Validation set 

record lead Conf mat se Sp Conf mat $e sp 

820011 0 | 42812 772| 66.4% 98.2% || 28554 511 | 65.0% 98.2% 

1970 3894 1367 2543 

1) 47415 158 | 76.0% 99.7% || 31535 140 | 73.2% 99.6% 

456 1446 340 927 

820021 0 | 43064 79 | 74.0% 99.8% |) 28684 59 | 74.9% 99.8% 

217 (616 140 418 

1 | 42308 75 | 50.6% 99.8% || 28199 71 | 49.5% 99.8% 

776 794 527-516   
  

Table 4.3: Classification result for ST segment data set with 5 PCs. 
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Training set Validation set 

record lead Conf mat se change Conf mat, se change 

sp Sp 
  

s20011 0 | 42122 286 | 76.8% 73.0% | 28018 245 | 74.6% 73.5% 

1144 3788 | 99.3% 70.9% 841 2470 | 99.1% 771.0% 

1 | 47274 88 | 83.7% 72.1% || 31432 91 | 83.3% 72.6% 

277 1425 | 99.8% 70.2% 187 932 | 99.7% 40.2% 

820021 0 | 43009 33 | 85.6% 1.7% || 26437 41 [83.1% 2.3% 

111 658 | 99.9% 70.1% 87 427 | 99.9% 70.1% 

1 | 42135 41 | 60.6% \, 0.3% || 28013 59 | 56.4% 71.6% 

550 847 | 99.9% 70.1% 411 531 | 99.8% 70.2% 

  

  

      
Table 4.4: Classification result for QRS + ST data set with 7 PCs without uncertain classifications. 

Change with respect to Table 4.1. 

  

  

‘Training set Validation set 

record lead | Conf mat se change Conf mat se change 
sp sp. 
  

s20011 0 | 42769 221 | 91.3% 73.2% || 28394 286 | 86.1% 72.9% 

466 4907 | 99.5% 70.5% 502 3108 | 99.0% 70.5% 

1 | 47319 66 | 90.9% 72.2% || 31479 82 | 88.8% 71.6% 

160 1591 | 99.9% 0.1% 131 1037 | 99.7% 0.1% 

820021 0 | 43020 28 | 83.7% 71.6% || 28663 26 | 85.9% 71.6% 

127 654 | 99.9% 0 74 451 | 99.9% 0 

42086 63 | 67.6% 70.8% || 28008 98 | 63.0% 72.1% 

463 968 | 99.9% 70.1% 350 597 | 99.7% 70.2% 

  

  

  

e   
  

Table 4.5: Classification result for QRS + ST data set with 15 PCs without uncertain classifications. 

Change with respect to Table 4.2. 

  

  

Training set Validation set 

record lead Conf mat se change Conf mat: se change 

Sp sp 
  

s20011 0 | 41806 285 | 68.5% 72.1% || 27895 201 | 66.8% 71.8% 

1483 3230 | 99.3% 71.1% || 1057 2127 | 99.3% 771.0% 

1 | 47249 81 77.7% 71.6% || 31417 85 | 75.0% 71.9% 

379 1318 | 99.8% 740.2% 285 857 | 99.7% 70.2% 

820021 0 | 42998 41 | 75.8% 71.9% || 28637 29: | 77.6% 72.6% 

179 562 | 99.9% 70.1% 110 380 | 99.9% 0.1% 

1 | 42228 28 | 47.6% \, 3.0% || 28106 40 | 47.8% \, 1.6% 

729 661 | 99.9% 70.1% 496 454 | 99.8% 0.1% 

  

  

                    
  

Table 4.6: Classification result for ST data set with 5 PCs without uncertain classifications. Change 

with respect to Table 4.3. 
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Validation set 
record lead Conf mat se change 

sp 
820011 0 | 25565 3500 | 94.2% 729.2% 

228 3682 | 88.0% \, 10.2% 

  

  

        
  

Table 4.7: Classification result for ST data set with 5 PCs with decision boundary altered to 0.1. 

Change with respect to relevant values in Table 4.3. 

jn Table 4.5 show rise in sensitivity of 3.2%. However, there are some others that resulted in the 

sensitivity being lowered by this operation such as s20021 lead 1 training set for ST set with 5 

principal components in Table 4.6. 

The ST set in particular (Table 4.6) shows considerably lower sensitivity than results obtained by 

Papaloukas, although this is similar to the data set used by Papaloukas et al. 

Eliminating uncertain classifications from analysis does not contribute significantly in improving 

classification overall. 

ROC curve 

Another way to consider is by inspection of the Receiver Operating Characteristic (ROC) curve [9]. 

The ROC curve plots sensitivity against (1-specificity). 

Figure 4.7 shows the ROC curve for s20011 lead 0 ST set with 5 principal components. An ideal 

ROC curve will approach very close to the top left corner of the graph. It is possible to move the 

decision boundary of the classifier such that better classification is achieved. 

For example, the current decision boundary of 0.5 which is shown as the circle can be moved to 

the star which places the decision boundary at 0.1. 

Table 4.7 shows dramatic increase in sensitivity at a relatively small cost in specificity. The change 

is with respect to the original set of results as shown in Table 4.3. 

However the problem with adjusting the decision boundary using the ROC curve is that there is 

no principled manner in which to decide how much you can move the decision boundary before the 

outcome becomes unjustified. 

4.4.2 Different data set 

When one of the classes in a classification problem has a far larger data set than the other, that is 

to say, when the class priors are very asymmetric, the neural network output is biased in such a way 

that the majority class is classified correctly even if it is at the expense of the minority class. Since 

in the real world, normal beats far outnumbers the episode beats, when the data set is constructed in 

the same ratio as the real world, the classifier cannot classify the minority class, which, unfortunately 

is the more important in this case [17]. 

Another, more principled method to obtain better classification is by changing the selection of the 

data set. Instead of making the ratio of normal beats to ST episode beats the same as that in the real 

33



CHAPTER 4. ARTIFICIAL NEURAL NETWORKS BASED METHOD 

  

  

Training set Validation set 

record lead | Conf mat se change || Conf mat se change 

sp Sp 
  

s20011 0 | 5866 98 | 66.2% \, 0.2% |) 3820 90 | 66.2% 71.2% 

1983 3881 | 98.3% 40.1% || 1323 2587 | 97.7% _\, 0.5% 

1 | 1895 7 | 68.6% \,7.5% || 1260 7| 691% 4.0% 

598 1304 | 99.6% 0 |] 391 876 | 99.4% \,0.1% 

820021 0} 832 1| 77.7% 3.7% || 555 3 77.1% 72.2% 

186 647 | 99.9% 70.1% || 128 430 | 99.5% \, 0.3% 

1 | 1568 2 | 48.8% \, 1.8% |] 1035 8 | 49.2% \, 0.3% 

804 766 | 99.9% 0 || 530 513 | 99.2% \, 0.5% 

  

  

                  
  

Table 4.8: Classification result for ST data set with 5 PCs with 50:50 data set. Change is with respect 

to Table 4.3. 

record, they are forced to 50:50. 

Now, to take into account the fact that this ratio of 50:50 is very different from that of a typical 

real record, the output of the classifier is adjusted [16]. 

The real class priors are 

P(Csr) ~ 0.05, 

P(Cym) ~ 0.95, 

where the subscripts stand for “ST episode” and “normal” respectively. The data set skews this to 

P'(Csr) = 0.5, 

P'(Cym) = 08. 

The true, compensated posterior probability becomes 

Cal) = (4.1) anit) > (AEB)? . 

where 

ae (Network output).P(Csr) 

P'(Csr) 4 

_ (1— (Network output)).(1— P(Csr)) 

be = P'(Csr)) 

Table 4.8 summarises the outcome of the classification using the 50:50 data set. The change is with 

respect to Table 4.3. There is limited improvement in the sensitivity. Some data sets, for example, 

20011 lead 0, show a reduction in both sensitivity and specificity. However, this is the preferred 

method as this is more principled than adjusting the decision boundary using the ROC curve. 

34



CHAPTER 4. ARTIFICIAL NEURAL NETWORKS BASED METHOD 

  

Uncompensated Compensated 

record lead | Conf mat se Conf mat. se change 

sp Sp 

820011 0 | i531 426 | 93.3% || 1793 164 | 65.4% | \, 27.9% 

1311826 | 78.2% 677 1280 | 91.6% | 713.4% 

1| 599 36 | 96.9% 624 TI | 68.6% | \, 28.2% 

20. 615 | 94.3% 193 422 | 98.3% | 73.9% 

820021 0} 254 25 | 94.6% 274 5 | 69.9% | \, 24.7% 

15 264 | 91.0% 84 195 | 98.2% | 77.2% 

1[ 200 324 | 78.1% 446 78 | 52.3% | \, 25.8% 

115 409 | 38.2% 250 274 | 85.1% | 747.9% 

  

  

  

  

                  
  

Table 4.9: Comparison between uncompensated and compensated output of the classifier for ST set 

with 5 PCs in the 50:50 test set. Change is with respect to the uncompensated values. 

L. Tarassenko [16] gives a warning, however, that Equation 4.1 is not a fix-all method. If the 

smaller class prior is of the same order as the error in the network, this method will not work. In such 

cases, novelty detection methods instead of classification methods should be used. 

Table 4.9 shows the effect of compensation using Equation 4.1 using the 50:50 test set. The change 

in the far right hand column is for the compensated sensitivity and specificity with respect to the 

uncompensated values. The specificity values rise a significant amount, but the sensitivity drops a far 

larger amount after the compensation, in general. This means that it is possible to classify between 

normal and episode beats with over 90% sensitivity and specificity provided there are equal number 

of samples in each class. Since the authors in Chapter 2 did not take into account the skew in the 

class priors, the result obtained in this project before adjusting the class priors should be compared 

with the results of the other authors. Clearly, the results obtained in this project are comparable or 

better than the other authors. 

4.5 Improving the classification 

There are a few methods by which the classification achieved above can be improved. One approach 

is to improve the input to the classifier, and the other to improve the classifier itself. 

4.5.1 Additional features 

In addition to the principal components, it is possible to include the information about the maximum 

value of the ST segment and the minimum value of the ST segment for each beat as features. This is 

because, it is expected that the PCA is good at extracting information about the ST segment along 

the time axis, but not in the measurement amplitude [3]. If this is the case, adding the information 

about the amplitude should improve the classification. 

The results are summarised in Table 4.10. There are some data set whose classification improved, 

but in others the classification got worse. Therefore, it is inconclusive whether or not this method is 

useful in improving the classification. It is suspected that by adding the peak and trough information to 
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Training set Validation set 

record lead | Conf mat se change || Conf mat se change 

sp Sp. 
  

s20011 0 | 5654. 210| 73.0% 76.6% || 3776 134] 72.3% 7.3% 

1585 4279 | 96.4% \, 1.8% || 1083 2827 | 96.6% 1.7% 

1 | 1808 94 | 62.2% \, 13.8% |] 1207 65 | 61.0% \, 12.2% 

719 1183 | 95.1%  \,4.6% || 494 773 | 95.3% \ 4.3% 

820021 0} 817 16 | 70.1% \,3.8% || 551 7 | 75.6% 0.7% 

249 584 | 98.1%  \. 1.7% 136 422 | 98.7% \, 1.0% 

1 | 1565 5 | 52.2% 71.7% || 1036 753.9% Ny 44% 

750 820 | 99.7% \,0.1% || 481 562 | 99.3% 0.4% 

  

  

                
  

Table 4.10: Classification result for ST data set with 5 PCs with peaks and troughs. Change is with 

respect to Table 4.3. 

  

  

Training set Validation set 

record | Conf mat se change || Conf mat se change 
Sp sp 
  

s20011 | 1609 6 | 88.2% 717.0% || 1072 7 | 87.7% 720.0% 

191 1426 | 99.6% 740.7% || 118 961 | 99.8% 70.5% 

s20021 | 815 T | 89.3% 728.5% || 543 T | 91.0% 727.1% 

7 741| 99.9% 70.1% 58 486 | 99.8% 0 

  

              
  

Table 4.11: Classification result for ST data set with 5 PCs with data fusion. Change is with respect 

to Table 4.3. 

the records whose sensitivity dropped as a result, for example, s20011 lead 1, the additional information 

provided inter-class similarity rather than intra-class similarity. 

4.5.2 Data fusion 

Data fusion is where information from different sources are concatenated. In this case, principal 

components from both leads are used as inputs to the MLP. The MLP is modified as show in Figure 4.8. 

Of course, this is only possible for records which have episodes in both leads and those that have 

episodes in both leads with portions of, if not all of, the episodes occurring at the same time. 

This is expected to give the MLP more information about the similarity between ST episode beats 

and help it distinguish the difference between ST episode beats and normal beats. 

The result of this experiment is summarised in Table 4.11. The change is with respect to the 

average over the leads in Table 4.3. Although the change in specificity is small, sensitivity rise greatly 

for all cases. This method produces results comparable to those by other researchers. However, the 

problem with this method is that it is inapplicable to records with episodes in only one lead, or 

episodes in the leads not overlapping. 

4.5.3 All records 

Classification using ST segment data set with 5 principal components was repeated on all records. 

Here, the interesting records are shown in Table 4.12. The results for all records are summarised in 
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Training Validating (50:50) 

record lead Conf mat se sp Conf mat. se sp 

820161 0 || 13052 462 | 64.0% | 96.6% |] 8599 371 | 64.0% 95.9% 

4866 8648 3232 5738 

1 1047 2 82.5% | 99.8% 694 5 | 83.5% | 99.3% 

184-865 115584 

820241 0 9404. 159 | 844% | 98.3% || 6263 114] 83.7% 98.2% 

1488 8075 1041 5336 

i 4371 22 | 97.8% | 99.5% || 9214 17 | 97.7% | 99.4% 

96 4297 68 2863 

820321 0 122 0 | 100.0% | 100.0% 82 0 | 100.0% | 100.0% 

Ou 322 0 82 

1 239 0 | 42.3% | 100.0% 159 T | 50.0% | 99.4% 

138-101 80 80 

820521 0 1049 3 | 18.3% | 99.7% 697 3] 15.7% | 99.6% 

859 193 590-110 

1 65 0] 20.0% | 100.0% 4 2) 16.3% | 95.3% 

52 13 36 in                           
  

Table 4.12: 50:50 data set with compensation experiment for selected records. 

Appendix C. This experiment gave an aggregate average sensitivity of 70.5%, which is lower than the 

86% achieved by Papaloukas et al.. 

The outcome is very varied, from as low as 15.7% for s20521 lead 0 to 100.0% for s20321 lead 0 

sensitivity. Specificity is high for all cases, hardly falling far below 99%. Again, the strong influence 

of the asymmetry of the class priors can be seen. 

The results obtained using the test set are summarised in Table C.2. The left half of the table 

shows the results when the test set has the same class priors as the real records. The network is tested 

with real class priors because when the classifier is used on a real data set, it will not be possible to 

construct a 50:50 set. 

The aggregate average sensitivity is 39.4% which is very low compared to the 86% by Papaloukas 

et al.. This is also a reduction in sensitivity of 31.1% from the validation set. This reduction is not 

surprising, as the validation set has the class priors skewed to 50:50, whereas the test set has the same 

class priors as the whole record. Although the overall average sensitivity is low in the test set, there 

are some records and leads showing over 86% sensitivity, such as s20021 lead 0 of 100%, s20101 lead 1 

of 99.2%. The lowest sensitivity of 0% was obtained in s20241 lead 1 and s20521 lead 1. The latter is 

not surprising, as neither the training nor the validation showed very high sensitivity in this record. 

However, the s20241 is unexpected, as the training sensitivity is 97.8% and the validation sensitivity 

is 97.7%, both of which are high. 

For comparison, results obtained using 50:50 prior test set is given in the right: half of Table C.2. 

The aggregate average sensitivity is 69.8%, which is much higher than that for the test set with real 

class priors. 

The data fusion experiment repeated on all records where there are episodes in both leads at the 

same time are summarised in Table E.1. Record s20521 has episodes in both leads but it was found 
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the episodes do not occur at the same time. As it was established using just s20011 and s20021, data 

fusion produces very good results with all validation sensitivities over 89%. The aggregate average 

sensitivity for this method is 97.3%. 

The results obtained using the test set are summarised in Table E.2. As with the per-lead case, 

the left half show the result from the test set with real class prior. The aggregate average sensitivity 

was 75.6%, which is still lower than the single lead results obtained by Papaloukas et al. This is result 

is owing to records s20011 and s20021 whose sensitivities are 3.7% and 1.1% respectively. All other 

records showed 100% sensitivity. 

The right half of Table E.2 is the test results obtained using 50:50 class prior test set. The aggregate 

average sensitivity is 84.5%. 

The 50:50 test set helps to show the generalisation ability of the network. Since the network has 

not “seen” the test set in its training, if the network is over-fitted to the training and validation set, 

the classification results for the test set with 50:50 class priors would be considerably lower than that 

of the training set or the validation set. The average sensitivity for the per-lead experiment using the 

50:50 set is only 0.6% lower than the that of the training set, so the generalisation is good in this 

case. For the data fusion case, the training set shows 12.8% higher sensitivity than the 50:50 test set, 

so the generalisation is slightly worse than the per-lead experiment. 

4.6 Discussion and analysis 

4.6.1 Analysis of results 

Clearly, the data fusion method with 50:50 data set outperforms any other method attempted in this 

project. There are two possible explanations for this. One is that with the introduction of information 

from two leads, the classifier was provided with more detailed information on discriminating between 

normal and ST episode beats. The other is that ST episodes seen in both leads are better characterised 

than those occurring only in one lead. 

The next highest sensitivities were obtained when the 50:50 classification was not compensated. 

This is still a “wrong” set of results, as the decision boundary drawn by the classifier is biassed due to 

the skewing of the class priors. However the fact that the sensitivities are high before compensation is 

a significant finding because it shows that it is actually possible to distinguish between normal and ST 

episode beats solely from beat morphology, but this ability falls considerably when taking into account 

the class priors of the real world. Stamkopoulos, Laguna, Papaloukas and Tasoulis who all used some 

kind of automatic classification method using neural networks, as described in the literature survey in 

Chapter 2, do not take into account the asymmetry of the class priors. Their results may show lower 

sensitivities if they compensated the network decision boundary taking into account the class priors 

in the real-life records. 

Since sensitivity is a function of the positive classification of ST episode beats and false negatives, 

as shown in Equation 1.1, a rise in sensitivity represents a decrease in false negatives. The number 
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of false negatives is important in clinical problems, therefore, the sensitivity gives the quality of the 

classification. 

Similarly, a rise in specificity means a reduction in false positives. Since the number of false 

positives are not as crucial, a rise in specificity is of secondary importance. This is not to say that 

specificity can be neglected. When the sensitivity is raised by changing the decision boundary using 

the ROC curve, for example, the specificity is compromised. Instead, what is required is for both false 

negatives and false positives to be reduced, in other words, to raise both sensitivity and specificity. 

This is required to raise confidence in automated systems such as the detection of ischemia using 

ECG, so that the system only alerts humans when there is a real abnormality, and not “cry wolf” too 

often. 

The first set of experiments in Section 4.4.1 show that QRS + ST set performs better than the 

ST set. Although it is widely known that myocardial ischemia is observed in the ST segment, this 

suggests that there are some observable features in the QRS complex that appear when there is 

ischemia. Since the ST segment is studied because the recovery signal of the atria are obscured by 

the ventricular contraction, it could be that abnormality in atrial recovery due to ischemia affects 

ventricular contraction signal as well. The remainder of the experiments were done using the ST set 

in order to compare the results with existing work by other researchers. 

4.6.2 Specific cases 

There are some interesting results in Table 4.12. For example, there is the extremely good result of 

100% sensitivity and specificity of lead 0 s20321. Notice the relatively small number of data points in 

the training and the validation sets. This occurs when there are only a small number of ST episode 

beats in a record, as, to make the class priors 50:50, the number of normal beats are bound by the 

number of episode beats, even though there are abundant beats available in each record. This size of 

the data set could be responsible for the results. 

On the other hand, there is lead 1 of s20521 which has equally small data sets but perform extremely 

poorly. In fact, both leads in s20521 performs very poorly regardless of the size of the data sets. On 

further inspection of both leads of s20521 using the same method to identify uncertain classifications 

as in Section 4.4.1 and studying the effects of uncertain classifications, it became apparent that most 

of false positives and positive classifications (ST as ST) were uncertain. This makes the sensitivity 

even lower. The expected cause of this is that there is more similarity between classes than within 

classes, so the network cannot capture the class boundary correctly. What can also be noted is that 

this is the only record in the analysis where there are episodes in both leads, but not at the same 

time. There may be something unusual about this record which has not been understood so far. 

For the data fusion experiment, records 820011 and s20021 produced very low sensitivities in the 

test sets of 3.7% and 1.1% respectively. These records show relatively low sensitivity in the training set 

and the validation set compared to the rest of the records. In addition, these records do not show good 

results in the per-lead analysis either, although there are worse records in the whole’experiment. In 
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these records, the ST episodes may not be clearly characterised. The features used in the experiments 

were insufficient to describe the inter-class dissimilarity in s20011 and s20021. 

4.7 Summary of the chapter 

This chapter described the methods used for classifying normal and ST episode beats using MLPs. 

‘A detailed description of pre-processing of the data, feature extraction and training and validating of 

the classifier was given. 

The classification results were quantified using sensitivity and specificity values and by showing 

the results as confusion matrices. The results were compared for different data set and different class 

priors. 

The algorithms were developed first by considering two records only, then expanded to incorporate 

all 21 records chosen to be analysed for this project. 

Attempts were made to improve the classification by taking into account uncertain classifications, 

ROC curves, additional information and data fusion technique. 

The outcomes were analysed and the origins of the results were discussed. 
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Figure 4.4: Sketch of MLP used for classification. 
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Figure 4.5: Errors during training MLP. Error is compare per model complexity, then for all model 

complexity. Crosses for training set and circles for validation set. 
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Figure 4.6: Positions of false classifications in s20011 lead 0. Stars are false positives and circles are 

false negatives. 
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Figure 4.7: ROC curve for s20011 lead 0 ST set with 5 principal components. 

  

Figure 4.8: Sketch of MLP for classification using data fusion.



Chapter 5 

Finale 

5.1 Summary of the project 

This project, based on the PhysioNet-Computers in Cardiology Challenge 2003, has considered the 

problem of distinguishing ischemic ST episodes from non-ischemic ST episodes from the analysis of 

ECG alone. Although the Challenge states that the detection of ST episodes is not necessary, this 

project has considered the problem of detecting ST episodes as the first step of analysis to make a 

generalised, principled approach to the problem. 

The research methodology was constructed on the basis of existing work on the field. The experi- 

mental results were compared against, these work to assess their quality. 

The data was pre-processed using cubic spline subtraction method to remove baseline wander. 

Data sets were created by selecting QRS complexes and ST segments. Two data sets were used and 

compared; QRS + ST set and ST set. 

Feature extraction was performed using PCA. The number of principal components to be used for 

analysis were chosen by inspection of the eigenvalues. 

MLPs with logistic outputs were trained as classifiers. The early stopping method was employed 

to avoid over-fitting. An MLP was trained per model complexity and the errors compared in order to 

choose the optimum model complexity and iteration number. 

Two methods to take into account the asymmetry of the class priors were compared. One was to 

construct the data set such that the class priors are the same as that in the real world. The other is 

to construct the data set such that the class priors are 50:50 but to skew the output of the classifier 

according to the real class priors. The difference between the network training class priors (50:50) 

and the real class priors (~ 95:5) were not taken into account by the work by other researchers as 

described in Chapter 2. 

Then, in order to improve the classification results obtained, additional information was used as 

features going into the classifier. Peaks and troughs of each ST segment were added. 

Finally, features from both leads were concatenated and put into the classifier. 
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5.2 Conclusion 

This project has established that it is possible to separate normal beats from ST episode beats with 

over 80% sensitivity from beat morphology in ECG alone. The sensitivity can be raised to an average 

of 97.3% if two leads are available for analysis using the data fusion technique. However, the sensitivity 

can fall as low as 16.3% if the class prior asymmetry of a real record is taken into account. 

When the asymmetry of the class prior are taken into account by testing the classifier with data 

whose class priors are not 50:50, the sensitivity falls as low as 0%, although some records still show 

sensitivity of 100%. The aggregate average sensitivity is 39.4%, which leads to the conclusion that 

this method is not effective in general. 

When the asymmetry of the class priors are taken int account for the data fusion experiment, 

the aggregate average sensitivity fell to 75.6%, although the majority of the records showed 100% 

sensitivity. 

Tt was also decided that QRS + ST set performs better under the same condition compared to the 

ST segment set. However, since there are much research into classification using just the ST segments, 

detailed experiments were carried out on the ST segment set to compare results. 

The method of skewing the class priors before classification was rejected because the class bound- 

aries will be drawn to maximise classification of the majority class even if that is at the expense of 

the minority class. Outputs of the classifier can be improved by adjusting the decision boundary with 

the aid of an ROC curve, but there is no principled manner in which to perform this. The method 

of skewing the class priors after classification was adopted, as it leads to show that classification was 

possible solely on the basis of beat morphology. 

This project has shown that ST episode detection can be achieved using neural networks solely 

on the beat morphology, but that the sensitivity to episodes is significantly reduced when taking into 

account the skewness of the class priors in the real world. This issue has not been addressed by the 

researchers mentioned in Chapter 2 and can be an interesting issue to consider for future work in 

heart beat classification. 

This project has not taken into account the numerous ST shifts which are also annotated in the 

LTSTDB. An ST shift is an instantaneous event where the ST level shifts for more than 50,V. 

Because ischemia is only recognised in episodes, the shifts were excluded from analysis in this project. 

The positions or the existence of shifts may be incorporated into analysis to attempt to improve 

classification. 

5.3 Ongoing and future work 

For future work, a model of the normal beats can be created on the basis of this classification. All 

beats in the records then can be compared against the model to quantify the deviation. Further 

analysis of the deviation is expected to reveal a satisfactory classification of the types of ST episodes. 
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There are also different approaches that can be investigated. 

5.3.1 Novelty detection 

As mentioned in Section 4.4.2, Equation 4.1 is only effective if the smaller class prior is still larger 

than the error in the network output. There are some records used in this project where the class 

prior of the ST episode beats are of the order 10~$ (see Table B.1). Tarassenko shows that this could 

be too small for Equation 4.1 to work [16]. The detection of ischemia in ambulatory ECG may be 

better approached from the point of view of novelty detection rather than classification. 

5.3.2 PCA revisited 

In Chapter 2 it can be seen that many researchers chose 4 or 5 principal components because over 95% 

of information is contained within these components. A close inspection of eigenvalues of covariance 

matrices of records in LTSTDB reveals that this is not always the case. 

It was found that there are two types of records in LTSTDB, a “flat” one where, as in Chapter 2, 

most of the information is contained in the first 4 or 5 components, and a “upright” one where up to 

20 components contain significant information. 

In Figure 5.1 the top plots for 820011 is a typical “flat” behaviour, and the bottom plots for s20141 

is a typical “upright” behaviour. 

The ST eigenvalues and normal eigenvalues are plotted separately in Figure 5.2. There is some 

similarity between the two types of records. The ST set for s20011 and s20141 have a similar shape, 

except that s20141 lifts off further from the x-axis than s20011. Similarly for the normal set, s20011 

and s20141 both hug the y-axis. The effects of these behaviours are not seen in the classification 

results. 

Future research may benefit from the knowledge that there are two different types of ST segment 

data. 
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Figure 5.1: Different types of behavior in eigenvalues. 
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Appendix A 

Data Description 

A.1 LTSTDB structure 

The signals in the Long Term ST Database (LTSTDB) are given names according to a consistent 

scheme throughout the databases in PhysioBank [4]. These names are referred to as records. The 

records have the format. 

sXYYYZ 

where X is the number of leads, YYY is the patient number and Z is the record number of the patient. 

The records for which data is available on Physiobank is shown in Table A.1. There are 86 records 

in LTSTDB out of which 43 in Table A.1 are used for training. PhysioNet holds the remaining 43 

records for testing purpose. 

  

820011 
$20021 
820031 
820041 
820061 
20081 
820101 
820121 
820141 
s20161 
820181 
820201 
820221 
820241 
820261       

s20281 
820301 
820321 
820341 
820361 
820381 
s20401 
820421 
s20441 
820461 
820481 
820501 
820521 
820541 
820561     

820581 
820601 
820621 

820641 
830661 
830681 
830701 
830721 
830741 
830742 
830761 
830781 
830801   

  

Table A.1: Records used for the project. 

The signals and annotations stored in the Physiobank are separated into several files with various 

extensions indicating the contents as shown in Table A.2. Annotation files are .16a, .ari, .atr, 
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extension format description 
dat binary all the signals 
-16a binary ST segments based on 16-second moving average 
sari binary automatically generated beat annotation 
satr binary manually corrected beat annotation 

-ent text, number of ST episodes in a record 

-hea text header of the .dat 
.klt.zip | zipped text | KLT®? basis of ST and QRS signals 

.sta binary ST episode Vinin = 75uV, Tmin = 308 
«stb binary ST episode Vinin = 100KV, Tnin = 308 

«ste binary ST episode Vinin = 100LV, Tmin = 608 
+stf text ST level, approx. baseline, ST deviation 
  

Table A.2: Physiobank data scheme. 

*Karhunen-Loeve Transform 

+sta, .stb and .stc. Data is stored according to the convention: 

[hh : mm: ss.sss dd/mm/yyyy] time anntype subtype chan num aux 

where time is given in sample numbers, anntype is the annotation, chan is the lead and au is the 

information characteristic of that type of annotation. 

Signal files are .dat, .klt and .stf and in which the data is stored according to the convention: 

time datal data2 data3--- 

and again, time is given in sample numbers. 

A.2 File contents 

This section explains the contents of the files and how they were preprocessed as documented by the 

creators [6]. 

A.2.1 .dat 

The analogue ECG recordings were digitised at 250 Hz and amplitude scaling of 200 ADC units per 

milli-volt. Baseline wander has been corrected for using cubic spline approximation and subtrac- 

tion technique. The signal was low-pass-filtered through a 6th order Butterworth filter with cutoff 

frequency at 55 Hz. 

The beats were located automatically by ARISTOTLES ECG processing software [8]. 

Abnormal beats and noisy beats and their neighbours were rejected. A noisy beat is defined as a 

beat whose KLT coefficients varied from that of preceding 15 beats by more than 1 standard deviation, 

or if the normalised residual error of the reconstructed beat exceeded 25%. The resulting time series 

were smoothed, re-sampled and smoothed again. The ST segment is later replaced by an ST level 

function in .stf 
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code | description 
Positions of the isoelectric level and J-point (linear interpolation) 

DMY | Positions of the isoelectric level and J-point (manual) 
n Lead number 
aa ST amplitude at point J+80(60) msec in pV (ST level) 
bb ST amplitude at point J+0 msec in »V 

ce ST amplitude at point J+20 msec in V 
dd ST amplitude at point J+40 msec in pV 

ee ST amplitude at point J+60 msec in nV 
f ST amplitude at point J+80 msec in pV 
99 ST amplitude at point J+100 msec in pV 
hh ST amplitude at point J+120 msec in pV 
ISO Position of the isoelectric level prior to ARISTOTLE’s fiducial point in msec 
JP. Position of the J-point after ARISTOTLE’s fiducial point in msec 

J80(60) | Position of the point of measurement after ARISTOTLE’s fiducial point in msec 

J+80 msec, if HR < 100 bpm 

J+72 msec, if 100 bpm <= HR < 110 bpm 
J+64 msec, if 110 bpm <= HR < 120 bpm 
J+60 msec, if HR >= 120 bpm 

NL Number of beats left to current beat included into average beat 
NR Number of beats right to current beat included into average beat 

  

      
  

Table A.3: Annotation for .16a file. 

A.2.2 .16a 

This file contains the ST measurements based on a 16-beat moving average. A sample is shown here. 

(09 : 25 : 27.752 07/01/1993] 21938 s 0 0 0+. 

+++ STO + 98, +56, +51, +50, +70, +98, +132, +169, 96, 36, 116, 0, 10 

The final section, the aux field is in the form 

[DMY] ST naa +b tcc tdd tee + ff +99 +hh +1SO +JP +J80(60) +NL +NR. 

The meaning of each of these values are explained in Table A.3'. The “J-point” is the starting point 

of the ST segment which, using ARISTOTLES, is simply 120 ms? after the fiducial point. 

Entries with “DMY” preceding the aux field have had the J-point and or the isoelectric points 

manually corrected. Manual correction took place every 20 minutes or at the beginning, the extrema 

and the end of a significant ST episode. The corrected values were obtained using a 16-second moving 

average window. 

The various ST amplitudes are measured from the isoelectric level. 

A.2.3 cari 

This file contains the QRS complex annotation and the fiducial points as found by ARISTOTLES. The 

annotation scheme is shown in Table A.4. 

1Problems with IATEX for some of the symbols. 
This value depends on the heart rate. 
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Beat annotation 
  

Code | Description 
  

Normal beat (displayed as “?” by the Chart-O-Matic, pschart, and psfd) 
Left bundle branch block beat: 
Right bundle branch block beat 
Bundle branch block beat (unspecified) 
Atrial premature beat 
Aberrated atrial premature beat. 
Nodal (junctional) premature beat 
Supraventricular premature or ectopic beat (atrial or nodal) 
Premature ventricular contraction 
R-on-T premature ventricular contraction 

Fusion of ventricular and normal beat 
Atrial escape beat. 
Nodal (junctional) escape beat 
Supraventricular escape beat (atrial or nodal) 
Ventricular escape beat 

Paced beat 
Fusion of paced and normal beat 
Unclassifiable beat 
Beat not classified during learning 
  

Z|
 

-beat annotation 
  

  eo 
| 

O 
*
W
e
+
 

x
s
 

@
s
 
F
G
 

1
8
 
~
O
n
m
~
 
M
e
o
 

B
s
 
S
O
H
U
S
 
P
O
D
 Z
 

Start of ventricular flutter /fibrillation 
Ventricular flutter wave 
End of ventricular flutter /fibrillation 
Non-conducted P-wave (blocked APC) 
Waveform onset 
‘Waveform end 
Peak of P-wave 
Peak of T-wave 
Peak of U-wave 
PQ junction 
J-point 
(Non-captured) pacemaker artifact: 
Isolated QRS-like artifact 
Change in signal quality 

Rhythm change 
ST segment change 
T-wave change 
Systole 
Diastole 
Measurement annotation 
Comment annotation 
Link to external data     

Table A.4; Annotation scheme. 
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A.2.4 .atr 

This file contains the true QRS complex annotation as found by experts. The records were re-scanned 

by experts using two different systems (Marquette Holter and Zymed Holter scanners) and manually 

corrected for false classification of beats by the scanners. Resulting streams of annotations from both 

scanners were merged using the WFDB utility software (BXB) and any discrepancy between the 

annotations of the two experts were corrected for manually. 

A.2.5  .cnt 

This file contains the summary of number of events in each records. The number of occurance of each 

type of ST shift and ST episode, combined episodes and durations are given per standard per lead. 

A.2.6 .hea 

The header file contains information about how the signals were recorded and digitised along with a 

brief clinical description of the patient. It also includes the ADC gain and bias values. 

A.2.7 KLT 

There are 5 KLT coefficient time series and a Mahalanobis distance measure for ST segment and QRS 

complex, separately. KLT coefficient time series can be obtained by assigning the KLT coefficient of 

a beat to that beat [7]. Deviation of this time series from its baseline show ST changes. 

The Mahalanobis distance, r, is defined as: 

7? = (x—m,)'Cz1(x— my) 

where m, is the mean vector and C, is the covariance matrix of vector x. 

A.2.8  .sta, .stb and .stc 

These three files are essentially the same, but adhere to different annotation standards. The annotation 

codes are given in Table A.5. These files were produced by experts using SEMIA as an editing 

tool. The annotations were further reviewed and corrected independently by three groups of experts 

in Ljubljana, Pisa and Cambridge (US). The global reference is chosen near the beginning of the 

recording where the ST level is stable for at least 5 minutes. The local references are placed at certain 

intervals in the non-ischemic section of the data. 

.«stc is a subset of .stb, and .stb is a subset of .sta. 

A.2.9  .stf 

This file contains the ST level function, linear approximation of ST reference function and ST devia- 

tion. 
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code description 
GRSTn Global reference 

LRSTn+ll | Local reference 
s{cc]stn Significant ST shift 

([rt]stn-tdd | Beginning of significant ST episode 
a[rt]stntdd | Extrema of significant ST episode 
[rt]stn)+dd | End of significant ST episode 
nointdd | Noise 
(urdn Beginning of unreadable interval 

urdn) End of unreadable interval 

  

      
  

[cc] Type of ST shift (none: axis shift, cc: conduction change) 
[rt] Type of ST episode (none: ischemic, rt: heart-rate related) 
n Lead number 
ul ST level in pV 
dd ST deviation in pV 

Table A.5: Annotation for .sta, .stb and .stc files. 

The ST level function is the . 16a aux field re-sampled at 0.5 Hz and smoothed using 7-point moving 

average. The reference function is the linear interpolation between local reference points annotated 

in .sta. The ST deviation is simply the difference between the ST level function and the reference 

function. 
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Appendix B 

Record Description 

Table B.1 summarises the number of ST episode and normal beats there are in each record used for 

analysis in this project. ST refers to ST episodes, and NM refers to normal beats. The RATIO is 

ST 
(ST+NM™)° 

Table B.1: Number of beats in each record. 

  

Number of beats 
record (lead) Ratio 

ST NM 

820011 (ML2) 11737 88316 0.117 

s20011 (MV2) 3789 96263 0.038 

( 

( 
820021 (MLIII) || 1676] 87284 |} 0.019 

( 

( 

  

  

  

820021 (v4) 3149 85811 0.268 

820061 (ML2) 27848 93078 0.211 
  

  

820101 (ML2) 3117 74964 0.040 

820101 (MV2) 2854 75227 0.037 

820121 (ML2) 9356 76170 0.109 
  

  

820141 (ML2) 25134 91540 0.215 

20141 (MV2) 17190 99484 0.147 

s20161 (MLIII) || 24640 59092 0.294 

820161 (v4) 2102 81630 0.025 

820201 (ML2) 3698 87774 0.040 

  

  

  

820221 (ML2) 1629 | 117552 0.014                 
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Table B.1: Number of beats in each record. 

  

  

  

  

  

  

  

            

Number of beats 
record (lead) Ratio 

ST NM 

820241 (ML2) 18999 73440 0.206 

820241 (MV2) 8800 83639 0.095 

820301 (v4) 16012 90751 0.150 

820321 (v4) 247| 91663 || 0.003 

820321 (MLIII) 481 91429 0.005 

820481 (v4) 7672 84105 0.084 

820521 (v4) 2108 73833 0.028 

20521 (MLIII) 130 75811 0.002 

820541 (v4) 10895 | 104331 0.095 

820541 (MLIII) 6562 | 108664 0.057       
The number of episodes and shifts in each record are summarised in Table B.2. The number of 

ischemic episodes are given for each annotation standard as described in Table A.5. 

Table B.2: ST shifts and episodes for all records. 

  

  

  

  

  

    

ST episodes ST shifts 

Ischemic HR related Axis Conduction 

Record Plead] @ <b ¢ | a’ b e*| a b c a b c 

0 OO “0. ) 14-3. 3) 0 0 0 0 0 0 

s20011 1 0 ooe OOO | Bie le ay 7 Ki 0 0 0 

tot |} 0 0 0 |;20 4 4] 7 i i 0 0 0 

Oi 20 Pt 01 70-0 [2 2 2 0 0 0 

820021 LPG 20) e100 OSES Lot Sra 0 0 

tot |46 32 12)}0 0 Oj] 39 39 39] 0 0 0 

0 5 38° SG) 8 + 2510 0 0 0 0 0 

820031 1 2D) Roost eecs to) | 20 0 0 0 0 0 

tot | 10 10 10/13 6 51] 0 0 0 0 0 0 

0 | 26 17 4310: 6 00] 6 5 5 0 0 0 

820041 1 |30 21 16;0 O O| 6 6 6 0 0 0 

fot. [1563892905 0 0! fd SAL Ale) 0 0 0             
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Table B.2: ST shifts and episodes for all records. 

  

  

  

  

  

  

  

  

  

  

  

  

            

ST episodes ST shifts 

Ischemic HR related Axis Conduction 

Record Lead} a b cla b ce a b Cc a b c 

0 Of, JO Os 260 0-4 0 0 0 0 0 0 

s20061 1 OD ORO 20; 207 50 0 0 0 0 0 0 

tot |0 0 0/2 9 4 0 0 0 0 0 0 

0 33°10 2/0 © O te % vs 0 0 0 

820081 1 0 0) 0 ).24 2 © 9 9 9 0 0 0 

tot |33 10 2/24 2 0] 16 16 16 0 0 0 

0 ee et 1808 Oe) 2 2 2 0 0 0 

s20101 1 Pretest a lie ahs 20) 0 0 0 0 0 0 

tot See Pale 2h )|inGn 00). 0 2 0 0 0 

0 Oe! a Ou 2:0 gO a 15s Tbs 15) 0 0 0 

520121 1 ONTO S0at0%" 10). ~ ©: 8 8 8 0 0 0 

tot | 9 2 1/0 0 Of 2 2 23 0 0 0 

0 0 0 0|44 24 5 0 0 0 0 0 0 

820141 il OO) S048) 27° 7 || 10 10) 10 0 0 0 

tot | 0 O 0/92 51 12] 10 10 10 0 0 0 

0 69) 417 327|,0: 0' 0")! 16.2 1616 0 0 0 

820161 1 LO ta 631] 00) 20 2 2 2 0 0 0 

tot |69 44 35;)0 0 OO] 18 18 18 0 0 0 

0 OD OS ORO 2.0! sO ve ere Tt 0 0 0 

820181 1 36/12 © % | 0 0 0] 20>. 20 20 0 0 0 

tot |]/36. 12" 7 1,0. 0 0 |94 94 "94 0 0 0 

0 OR COs ON eit lee S19) / 20 = 2201 an 20 0 0 0 

820201 1. OOO On Ol, 30 2 2 2 0 0 0 

toe 0 Ol. OnIat de 21 122) 22), 22 0 0 0 

0 OFC RON ee St 25 Ose 0 a7 0 Ls 0) 0 0 

20221 1 O° 70 0" 18; 10! 04)' $5" 95" 9s: 0 0 0 

tot |0 0 Of] 4 3 2] 165 165 165] 0 0 0 

0 O60) 208/10" 7 6 0 0 0 0 0 

820241 1 G@ Oe OAS igh. 2 0 0 0 

tot] 0 0) “O') 25 13% 0 0 0 0 

0 T9138 SU OO a0 ae 18) 8: 0 0 0 

820261 1 18) Bi go || ORO On eiSe 1313 0 0 0 
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Table B.2: ST shifts and episodes for all records. 
 
 

ST shifts 

Conduction 

 
 

Axis 

31 31 31 

44 44 44 

52 «52 52 

 
 

ST episodes 

HR related 

0 

0 

0 

0 

 
 

  

Ischemic 

b a 

30 21 

14 

16 

16 

41 27° «21 

27 «21 41 

15 16 

1% AL 20 

20 17 i 

14 

22 8 13 

 
 

  

Record Lead   

tot   

1 820281 

tot   
1 

tot 

520301   
iu 820321 

tot   
1 

tot 

820341   
J 

tot 

820361   
L 820381 

tot   
iL 

tot 

820401   
4. 

tot 

820421   
1 

tot 

820441   

i 

tot 

820461   

1 820481   
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Table B.2: ST shifts and episodes for all records. 
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Table B.2: ST shifts and episodes for all records. 
 
 

 
 

 
 

 
 

   
 

                  

P
e
)
 

° 
S
o
 

O
O
.
 

S
t
o
 

es 
o
e
 

o 
o
l
o
 

° 
o 

3 3B 3 
2
/
2
 

o 
S
\
s
 
o
o
 

o
c
l
o
l
j
o
c
 

o 
> 

o 
c
o
l
o
 

o 
o 

g 3 
2 

a
l
o
 

° 
B
i
o
 
c
o
l
e
)
 

co 
oc 

o
o
 

° 
e
l
o
 

° 
° 

g a A 
velo 

s
l
o
 

s
e
 

o
]
o
 

oc 
oS 

6 
° 

o
}
o
 

nN 
0 

2 Ro
s
l
e
 

~ 
o
|
e
 

a
i
e
 

| 
o
l
e
 
=
o
 
s
o
 

° 
colo 

NK 
°F 

a
l
o
 

a 
o
|
o
 

ci 
ec 

c
l
o
l
o
 

o 
oS 

° 
o
}
o
 

BR 
Cy 

yz 
e
l
e
 

° 
n
j
o
 

o
o
 

colo 
oc 
o
o
 

° 
o
l
 

= 
° 

8 ge 
2
/
0
 

° 
a
l
o
 
S
o
 

Solo 
eo 

o
o
 

° 
o
l
a
 

a 
° 

8 | 
B
|
B
 

s
l
o
 

° 
a
l
o
 

o
o
 

G
l
o
 
o
o
 

& 
° 

o
/
s
 

= 
° 

ee 
ele 

1
8
 

~ 
a
l
a
m
o
 

allele. 
= 

5 
° 

clo 
a 

a 

8|¢ £ 
9
/
8
 

© 
alow 

o
o
 

5
1
S
 

om 
a 

8 
ey 

a
l
o
 

a 
°° 

a 
Fred 

a/S 
& 

a
l
s
 
a
s
 

S
i
t
 
a
a
 

8 
a 

8
/
°
 

x 
Ss 

z/3 
3 

Blo 
wa 

B
f
o
u
a
n
 

Blouan 
Blo 

3 
3 

3| 
4 

3 
£ 

3 
2 

2 
2 

8 

% 
S 

a 
3 

3 
6 

0 
5 

s 
= 

g 
x 

R 
= 

g 
@ 

3 
3 

3 
3 

3 
3 

3 
3 

[a=] 
a 

wo 
a 

8 
a 

a 
a   

 
 

63



Appendix C 

Results with ST set 

Here, results for all records are displayed. 50:50 data set with compensation using Equation 4.1 is 

shown in Table C.1. Those records with only one set of results have episodes in only one of the leads. 

Table C.2 shows the test set results. 

Table C.1: 50:50 data set with compensation experiment for all 

  

  

  

  

  

  

  

  

  

  

            

records. 

Training Validating (50:50) 

record lead Conf mat. se sp Conf mat se sp 

820011 0} 5766 98 | 66.2% | 98.3% 3826 90 | 60.2% | 97.7% 

1983 3881 1323 2587 

1 1895 7| 68.6% | 99.6% 1260 7| 69.1% | 99.4% 

598 = 1304 391 876 

s20021 0 832 1| 77.7% | 99.9% 555 3] 77.1% | 99.5% 

186 647 128 430 

a 1568 2| 48.8% | 99.9% 1035 8 | 49.2% | 99.2% 

804 766 530 5513 

820061 0 |) 15351 214 | 82.4% | 98.6% || 10170 201] 81.7% | 98.1% 

2735 12830 1896 8475 

s20101 0 1555 3 | 85.4% | 99.8% 1028 11} 86.9% | 98.9% 

228 = 1330 136 = 903 

1 1422 4} 92.9% | 99.7% 945 6 | 93.9% | 99.4% 

1011825 58 = 893 

s20121 0} 4630 48 | 83.8% | 99.0% 3068 47 | 84.3% | 98.5% 

760 3918 489 2626 

820141 0 |] 14244 320 | 80.2% | 97.8% 9431 282] 79.6% | 97.1% 

2887 11677 1978 7735           
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APPENDIX C. RESULTS WITH ST SET 

Table C.1: 50:50 data set with compensation experiment for all 

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

                      

records. 

Training Validating (50:50) 

record lead Conf mat se Sp Conf mat se sp 

1 8538 41 | 97.5% | 99.5% 5693 28 | 97.0% | 99.5% 

217 = 8362 171 5550 

820161 0 |) 13052 462 | 64.0% | 96.6% 8599 371 | 64.0% | 95.9% 

4866 8648 3232 5738 

a 1047 2) 82.5% | 99.8% 694 5 | 83.5% | 99.3% 

184 865 115 584 

s20201 0 2214 5 | 61.3% | 99.8% 1464 4] 64.6% | 99.7% 

859 1360 520 948 

820221 0 813 0} 70.1% | 100.0% 542 1| 66.1% | 99.8% 

243 570 184 359 

820241 0 9404 159 | 84.4% | 98.3% 6263 114] 83.7% | 98.2% 

1488 = 8075 1041 5336 

L 4371 22) 97.8% | 99.5% 9214 17| 97.7% | 99.4% 

96 4297 68 2863 

820301 0 8791 207 | 56.0% | 97.7% 5785 210 | 54.7% | 96.5% 

3961 5037 2717 3278 

820321 0 122 0 | 100.0% | 100.0% 82 0 | 100.0% | 100.0% 

0 122 0 82 

1 239 0} 42.3% | 100.0% 159 1| 50.0% | 99.4% 

138 101 80 80 

820481 0 3970 34] 57.3% | 99.2% 2627 33 | 56.9% | 98.8% 

1711-2293 1146 1514 

820521 0 1049 3] 18.3% | 99.7% 697 3] 15.7% | 99.6% 

859 193 590 110 

3) 65 0] 20.0& | 100.0% 41 2] 16.3% | 95.3& 

52 13 36 7 

820541 0 6833 98 | 70.6% | 98.6% || 4535 74) 71.2% | 98.4% 

2040 4891 1326 3283 

1 3261 18 | 82.4% | 99.5% 2161 24] 82.5% | 98.9% 

576 = 2703 382 1803 
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APPENDIX C. RESULTS WITH ST SET 

Table C.2: Test results for 50:50 data set with compensation ex- 

periment for ST set for all records. WARNING: RESULTS HERE 

ARE NOT CORRECT 

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

                      

Testing (real priors) Testing (50:50) 

record lead Conf mat se sp Conf mat se sp 

820011 0 |) 20854 580 | 15.5% | 97.3% || 1793 164 | 65.4% | 91.6% 

1654 303 677 1280 

1] 21222 2119 | 10.2% | 90.9% 624 11 | 69.6% | 98.3% 

570 65 193 442 

820021 0 13 21131 | 100.0% 0.1% 274 5 | 69.9% | 98.2% 

0 279 84 «195 

1 || 16708 4070} 41.0% | 80.4% 446 78 | 52.3% | 85.1% 

309 215 250 «274 

820061 0 || 25618 960 | 36.1% | 96.4% || 5104 95 | 82.1% | 98.2% 

3323-1876 932 4267 

s20101 0 || 11379 6668 | 86.3% | 63.1% 516 4 | 85.4% | 99.2% 

7 449 76 444 

I 5996 12196 | 99.2% | 33.0% 474 2 | 93.3% | 99.6% 

4 472 32 0 (444 

s20121 0 |) 18452 7 4.6% | 100.0% || 1537 22 | 84.9% | 98.6% 

1488 ih 236 ©1323 

820141 0 |] 23576 =1347 | 74.1% | 94.6% || 4702 146 | 80.6% | 97.0% 

1257 3591 939 3909 

1 |] 23797 276 | 81.6% | 98.9% |) 2846 14 | 97.3% | 99.5% 

526-2334 78 2782 

820161 0 |} 15301 624 | 63.5% | 96.1% || 4314 180 | 63.5% | 96.0% 

1642 2852 1642 2852 

1 || 19586 24 0.3% | 99.9% 347 3 | 82.6% | 99.1% 

349 1 61 289 

s20201 0 |] 21747 0} 13.1% | 100.0% 724 0 | 59.5% | 100.0% 

629 95 293 431 

820221 0 |] 28728 ie 8.1% | 100.0% 272 0 | 68.0% | 100.0% 

158 14 87 = 185 

s20241 0 |} 13860 4091 | 50.1% | 77.2% |} 3122 68 | 84.6% | 97.9% 

1593-1597 490 2700 

1 |] 20220 0 0.0% | 100.0% |} 1456 11 | 96.7% | 99.3% 
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APPENDIX C. RESULTS WITH ST SET 

Table C.2: Test results for 50:50 data set with compensation ex- 

periment for ST set for all records. WARNING: RESULTS HERE 

ARE NOT CORRECT 

  

  

  

  

  

  

  

  

  

  

  

Testing (real priors) Testing (50:50) 

record lead Conf mat se Sp Conf mat se sp 

1467 0 48 1419 

820301 0 || 23475 oe 4.5% | 100.0% || 2925 111 | 54.8% | 96.3% 

2899 137 1373 1663 

820321 0 || 19361 2853 | 100.0% | 87.2% 39 2 | 95.1% | 95.1% 

0 41 2 39 

1 || 19353 2750 | 21.0% | 87.6% 81 0 | 51.9% | 100.0% 

64 Ly, 39 42 

820481 0 || 20530 72 | 21.4% | 99.7% || 1312 18 | 56.9% | 98.6% 

1046 284 573-757 

20521 0 |] 17886 12 2.6% | 99.9% || 348 4 | 21.3% | 98.9% 

343 9 277 75 

1 |} 18393 38 0.0% | 99.8% 21 1] 9.1% | 95.5% 

22 0 20 2 

820541 0 || 26646 144 | 27.6% | 99.5% || 2278 37 | 70.7% | 98.4% 

1676 639 678 1637 

1 || 18392 7879 | 85.5% | 70.0% || 1083 10 | 80.1% | 99.1% 

158 935 217 ~=—876                       
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Appendix D 

Results with QRS + ST set 

For comparison, the classification experiment using 50:50 training set and real class prior validation 

set was conducted for QRS + ST set as well. In preliminary investigation in Section 4.4.1 it was 

suspected that this larger set performs better than a set with just the ST segment. Here, in Table D.1 

it is shown that most records perform significantly better in this data set. However, the worst reduction 

in sensitivity is a staggering 76.1% in s20021 lead 0 while the maximum improvement is 65.4%. The 

reduction in sensitivity may be due to the fact that, for this record, the QRS complex does not contain 

any more information than the ST segment on the abnormality of the recovery of the heart muscles. 

Worse still, the addition of the QRS complex can be giving more information on the similarity of the 

normal and abnormal beats, resulting in worse classification. 

Table D.1: QRS + ST 50:50 data set with compensation experi- 

ment for all records. 

  

  

  

  

  

  

  

    

Training Validating 

record Conf mat se sp Conf mat se sp 

s20011 5801 60 | 85.3% | 99.0% 3893 16 | 99.0% | 99.6% 

861 5000 38 3872 

1880 20 | 79.5% | 98.9% || 1254 12] 99.2% | 99.1% 

390 ©1510 10 1256 

s20021 830 0} 86.1% | 100.0% 556 0} 89.6% | 100.0% 

115 715 58 = 498 

1564 3] 64.4% | 99.8% 1015 24| 66.7% | 97.7% 

558 1009 346 © 693 

s20061 || 15369 184] 89.7% | 98.8% || 10175 192] 88.5% | 98.1% 

1604 13949 1196 9171 

s20101 1558 0} 98.3% | 100.0% 1033 6 | 97.6% | 99.4% 

27 ~=—«1531 25 1014                     
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APPENDIX D. RESULTS WITH QRS + ST SET 

Table D.1: QRS + ST 50:50 data set with compensation experi- 

ment for all records. 

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

Training Validating 

record Conf mat. se sp Conf mat se sp 

1424 1| 94.6% | 99.9% 947 4] 95.4% | 99.6% 

77 1348 44 907 

820121 4662 14] 93.1% | 99.7% 3096 18 | 92.2% | 99.4% 

321 4355 243 (2871 

s20141 || 14217 342 | 87.5% | 97.7% 9357 349 | 86.8% | 96.4% 

1820 12739 1280 8426 

8533 34 | 98.0% | 99.6% 5682 30 | 96.9% | 99.5% 

175 8392 179 5533 

820161 |} 13147 358 | 76.7% | 97.3% 8673 292 | 77.4% | 96.7% 

3151 10354 2025 6940 

1047 0} 86.4% | 100.0% 698 1] 97.3% | 99.9% 

142 905 80 2875 

s20201 2210 8] 73.9% | 99.6% 1458 10} 73.1% | 99.3% 

580 1638 395 1073 

820221 811 0} 78.2% | 100.0% 542 1] 71.6% | 99.8% 

177634 154-389 

s20241 9452 106 | 91.6% | 98.9% 6277 100} 90.5% | 98.4% 

807 = 8751 607 5770 

4385 4] 98.8% | 99.9% 2910 17 | 98.2% | 99.4% 

54 4335 52 2875 

820301 8875 114 | 83.6% | 98.7% 5866 124 | 83.0% | 97.9% 

1472-7517 1021 4969 

820321 121 0 | 100.0% | 100.0% 81 0 | 100.0% | 100.0% 

0 121 0 81 

238 0} 42.3% | 100.0% 160 0] 85.6% | 100.0% 

22 216 23°0«:137 

20481 3977 26 | 67.8% | 99.4% 2631 29] 62.7% | 98.9% 

1290 = 2713 991 1669 

820521 1043 8 | 34.3% | 99.2% 695 4] 31.3% | 99.4% 

690 361 480 219 

65 0} 60.0& | 100.0% 41 2] 39.5% | 95.3% 

26 39 26 17 

820541 6873 51 | 81.6% | 99.3% 4552 56 | 79.3% | 98.8%                       

69



APPENDIX D. RESULTS WITH QRS + ST SET 

Table D.1: QRS + ST 50:50 data set with compensation experi- 

ment for all records. 

  

  

  

  

‘Training Validating 
record Conf mat se sp Conf mat se sp 

1276 = 5648 954 3654 

3270 6 | 84.3% | 99.8% 2178 7| 84.3% | 99.7% 

515 = 2761 242 1842                       

Table D.2: Test results for 50:50 data set with compensation ex- 

periment for QRS + ST set for all records. WARNING: RESULTS 

HERE ARE NOT CORRECT 

  

  

  

  

  

  

  

  

  

  

  

  

          

Testing (real priors) Testing (50:50) 

record lead Conf mat se sp || Conf mat se sp 

s20011 0 608 20815 | 100.0% 2.8% || 1947 9 | 99.0% | 99.5% 

0 1956 19 1937 

1 |] 23326 4 0.2% | 100.0% 630 4] 99.5% | 99.4% 

633 1 3 631 

820021 0 }] 21129 9} 22.4% | 100.0% 277 0 | 92.4% | 100.0% 

215 62 21 = 256 

1 || 7480 13294] 90.3% | 36.0% || 394 130 | 67.7% | 75.2% 

51 473 169 = 355 

s20061 0 1924 24643 | 90.6% 7.2% || 5096 98 | 89.1% | 98.1% 

489 4705 568 4626 

820101 0 |) 17990 51] 46.2% | 99.7% 515 5 | 97.7% | 99.0% 

280 240 12 508 

1 || 14727 = 3461 | 73.9% | 81.0% 475 1 | 92.6% | 99.8% 

124 352 35 441 

820121 0 || 18042 411 | 50.2% | 97.8% || 1542 17 | 92.2% | 98.9% 

763 769 122 1437 

520141 0 |] 24527 385 | 63.9% | 98.5% |] 4670 171 | 87.7% | 96.5% 

1750 = 3091 595 4246 

1 || 21287 2781 | 99.8% | 88.4% || 2849 9 | 97.6% | 99.7% 

5 2853 69 2789 

s20161 0 |) 15444 478 | 76.9% | 97.0% |] 4350 141 | 76.9% | 96.9% 

1039 3452 1039 3452               
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APPENDIX D. RESULTS WITH QRS + ST SET 

Table D.2: Test results for 50:50 data set with compensation ex- 

periment for QRS + ST set for all records. WARNING: RESULTS 

HERE ARE NOT CORRECT 

  

  

  

  

  

  

  

  

  

  

  

  

  

                      

Testing (real priors) Testing (50:50) 

record lead Conf mat se sp Conf mat se sp 

1 |} 19546 58 | 65.0% | 99.7% 350 0 | 89.1% | 100.0% 

513 953 38 86312 

820201 0 || 21739 1] 40.2% | 100.0% 719 5 | 71.8% | 99.3% 

433 291 204 520 

820221 0 || 28718 0| 38.6% | 100.0% 272 0 | 74.3% | 100.0% 

167 105 70 202 

820241 0 | 15301 2646 | 55.1% | 85.3% || 3130 60 | 91.3% | 98.1% 

1361 1672 279 2911 

1 8424 13671 | 100.0% | 38.1% |) 1454 12 | 97.5% | 99.2% 

0 79 37 «1429 

820301 0 || 20011 3469) 55.1% | 85.2% |) 2980 53 | 84.0% | 98.3% 

1361 1672 485 2538 

820321 0 || 22045 165 | 97.6% | 99.3% 41 0 | 97.6% | 100.0% 

1 40 1 40 

1 |} 18270 152 4.5% | 99.2% 79 0 | 88.6% | 100.0% 

21 1 9 70 

820481 0 || 20525 65 | 30.8% | 99.7% |} 1315 15 | 64.3% | 98.9% 

921 409 475 855 

820521 0 || 10925 6968] 49.1% | 61.1% 348 4 | 36.9% | 98.9% 

179 173 222 = =130 

1 |] 18393 38 0.0% | 99.8% 22 0 | 40.9% | 100.0% 

22 0 13 9 

820541 0 || 25669 1115] 64.1% | 95.8% |] 2290 22 | 80.4% | 99.0% 

830 1482 454 1858 

1 |} 24529 1732 | 90.1% | 93.4% || 1089 4 | 83.7% | 99.6% 

108 985 178 915 
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Appendix E 

Data Fusion Results 

Table E.1: Data fusion results with 50:50 data sets. 

  

  

  

  

  

  

  

  

  

                

Training Validating (50:50) 

record Conf mat se sp Conf mat se sp 

820011 || 1609 6 | 88.2% | 99.6% || 1072 7| 89.1% | 99.4% 

191 1426 228 «= 961 

s20021 815 1] 90.8% | 99.9% 543 1] 89.3% | 99.8% 

75 741 58 = 486 

s20101 || 1266 2 | 100.0% | 99.8% 844 1 | 100.0% | 99.9% 

0 1268 0 845 

820141 | 7158 1 | 100.0% | 100.0% |) 4772 3 | 100.0% | 99.9% 

3 7162 1 4776 

820161 |} 1400 1] 99.7% | 99.9% 699 1 | 100.0% | 99.9% 

3 1048 0 700 

820241 || 4217 1 | 100.0% | 100.0% |) 2811 1 | 100.0% | 100.0% 

2 4220 1 2813 

820321 122 0 | 100.0% | 100.0% 81 0 | 100.0% | 100.0% 

oO 122 0 81 

820541 || 1906 0} 99.9% | 100.0% |} 1273 0 | 100.0% | 100.0% 

2 1908 0 1273       
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APPENDIX E. DATA FUSION RESULTS 

Table E.2: Data fusion test results with 50:50 data sets. WARN- 

ING: RESULTS HERE ARE NOT CORRECT 

  

  

  

  

  

  

  

  

  

                    

Testing (real priors) Testing (50:50) 

record Conf mat se sp Conf mat se sp 

820011 |} 15607 0} 3.7% | 100.0% |} 540 0} 75.4% | 100.0% 

520 20 133 407 

820021 0 14130 1.1% 0.0% 0 273 0.7% 0.0% 

270 3 271 2 

s20101 771 131 | 100.0% | 98.3% 417 7 | 100.0% | 98.3% 

0 424 0 424 

820141 || 16463 205 | 100.0% | 98.8% || 2361 25 | 100.0% | 99.0% 

0 2386 0 1386 

s20161 8957 47 | 100.0% | 99.5% 347 4 | 100.0% | 98.9% 

0 351 0 351 

820241 || 13667 175 | 100.0% | 98.7% || 1387 19 | 100.0% | 98.6% 

0 1406 0 1406 

820321 || 10084 59 | 100.0% | 99.4% 42 0 | 100.0% | 100.0% 

0 42 0 42 

20541 || 18022 119 | 100.0% | 99.3% || 631 5 | 100.0% | 99.2% 

0 636 0 636 
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