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Thesis Summary 

This thesis is a study of the problem of artefactual structure from topographic mappings, in 

particular Sammon’s Mapping and its close relative Metric Multidimensional Scaling. Such 
structure is termed artefactual because it is not representative of true underlying structure 
in the data and is a side-effect of the mapping algorithm. The problem is investigated from 
both an experimental and a theoretical standpoint, and it is found that the choice of dis- 
tance metric in the mapping algorithm is fundamental to the degree of artefactual structure 
observed. 

The results of this work are then used to gain insight into a recent and controversial use 
of techniques from Multidimensional Scaling in the analysis of the connectivity of regions 
in the macaque monkey visual cortex. In particular it has been debated in the academic 
literature the extent to which the resulting mappings are corrupted by artefactual structure. 
This premise is investigated experimentally and the support of the mappings for the “two 
streams” hypothesis of visual processing is discussed in detail. 

Keywords: Data Visualisation, Artefacts, Dimensionality Mismatch, Sammon’s Mapping, 

Multidimensional Scaling, Primate Visual Cortex
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Chapter 1 

Introduction 

The single biggest problem we face is that of visualisation. 

Richard Feynmann, 1945. 

The volume of information produced throughout the world continues to grow at an ever 

increasing rate. In the finance industry vast quantities of complex time series data are gener- 

ated ona daily basis, and in the area of molecular biology new DNA and protein sequences 

are regularly mapped out. This rapid growth of information, facilitated by the continual 

exponential increase in computer power and storage capacity, has created a need and an 

opportunity for techniques that are capable of discovering meaningful patterns and rela- 

tionships from large amounts of data. Without these techniques, the derivation of useful 

knowledge from such data is often impossible. 

This subject, generically knownas information processing, is of increasing importance to many 

of the world’s leading companies and research labs. Indeed, the past decade has seen an 

explosion of interest in the areas of Data Mining and Knowledge Discovery in Databases 

(KDD), where the aim is to extract useful knowledge from the vast quantities of information 

that are stored in company databases worldwide. An important problem therefore is how 

to extract this knowledge, and furthermore, the reliability with which decisions can then be 

based on such knowledge. 

In this thesis, the type of information or data that will be used for information processing, is 

that in numeric form. Typically the data, often termed multivariate, will be characterised by 

a number of measurements which describe in detail a group of objects. Thus a given dataset 

can be regarded as a table of values, where each row represents a set of measurements for a 

specific object and each column the values of a particular measurement for each one of the 

objects. Importantly, the total number of columns in the table represents the dimensionality
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of the data. This value indicates the dimension of the space the data naturally resides in. 

In practice, most real-world datasets will have a dimensionality greater than three, thus 

precluding the possibility of direct visualisation of the raw data alone. Hence one goal of 

information processing is to provide a mechanism for the visualisation and exploration of such 

high-dimensional multivariate data. One method for achieving this is to find a projection 

of the data from the original (high-dimensional) data space to a two- or three-dimensional 

visualisation space. Such a projection would naturally allow for both a better understanding 

of the underlying structure in the data and an examination of any clustering which might 

be present in the data. 

An important problem then is how to define, and indeed compute, this projection in practice. 

In addition to mapping the data to a lower dimensional space, the projection must also seek 

to retain the “interestingness” in the data. In this context then, the visualisation space should 

exhibit as much of the original structure in the data as possible, with minimum loss of detail. 

Conversely, any structure which is retained under the projection should be representative 

of true underlying structure in the data. The different approaches to producing such pro- 

jections (and hence the various ways in which the term “interestingness” is defined) are 

discussed in Chapter Two. 

This thesis examines two closely related techniques for data visualisation, those of Sam- 

mon’s Mapping and Metric Multidimensional Scaling. In particular the validity of the map- 

pings obtained after the projection of high-dimensional unstructured data is investigated. 

The results of this work are then applied to neuroanatomical connection data to provide new 

evidence in the study of the macaque monkey visual cortex. The remainder of this chapter 

gives an introduction to topographic mappings, an overview of the artefactual structure 

problem, the aims of this thesis and finally a plan of the work contained herein. 

1.1. Whatis a Topographic Mapping? 

Before considering what features characterise a topographic mapping, it is perhaps more 

useful to first consider what is meant by the phrase “a mapping”. In the most general sense, 

a mapping is simply a transformation from one space to another. This transformation may 

come in the form of a projection from the data space to the map space, in which case it 

is referred to as a projection mapping. Alternatively points lying in the data space can be 

considered to have been generated by points lying in the map space, in which case the 

transformation is referred to as a generative mapping. 

It is also useful to group the various mapping techniques according to their linear-nonlinear 

and supervised-unsupervised nature [Mao and Jain 1995]. A linear mapping defines a linear
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Figure 1.1: A two-dimensional representation of a three-dimensional helix through the use 
of a topographic mapping. A Sammon mapping (see Section 2.4.1) of the original helix data 
was performed, resulting in the two-dimensional curve shown above. Clearly the preserva- 
tion of inter-point distances in the map space accurately captures the sinusoidal nature of 
the helix. 

transformation of the data space to produce the map space. Although such mappings have 

the advantage that they can be derived analytically, they are constrained by their global 

linearity and are therefore less flexible than nonlinear mappings. Mappings which rely only 

on the input data itself, and do not make use of any additional class information or target 

data, are considered to be unsupervised. Alternatively, in a supervised technique, the mapping 

utilises additional a priori information about the data (usually in the form of class labels) to 

produce a map space with improved inter-class separation. Recently a third class of models 

has been proposed which can be considered to be relatively supervised [Lowe 1993]. With 

these models, a relative measure of the target separation between pairs of vectors in the 

map space is provided, rather than a set of explicit target map vectors (see Section 2.4.3). 

As previously discussed, for the purposes of visualisation and exploratory data analysis, 

the transformation should map the data from the data space to a two- or three-dimensional 

visualisation space. Furthermore, as much of the original structure in the data as possible 

should be preserved under this transformation. One possible way of implementing this 

constraint is to require that points which lie close together in the data space should lie close 

together in the map space. This then gives rise to a topological ordering in the map space. 

Such transformations, known as neighbourhood preserving mappings, are discussed in more 

detail in Section 2.3. 

An alternative, and perhaps more natural definition, is to require that all distance relation- 

ships between data points be preserved under the transformation. In this way, points which 

lie close together in the data space will lie close together in the map space, and similarly 

points which lie far apart in the data space will lie far apart in the map space. Such a transfor- 

mation is known as a topographic mapping and has the property that the geometric structure 

10
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of the original data is optimally preserved in the lower dimensional space. 

Figure 1.1 shows a topographic mapping of a three-dimensional helix. By attempting to 

preserve all the inter-point distances in the transformation, the resulting map! retains much 

of the structure of the original data. Upon closer inspection however, it is evident that 

although the original data points are uniformly distributed along the length of the helix, 

the same is not true of the distribution of the points in the map space. In particular the map 

points appear more closely grouped around the bends of the map curve. This serves to illus- 

trate an important point, that when data undergoes a dimension reducing transformation, 

some of the original structure is inevitably lost. 

1.2 The Artefactual Structure Problem 

The artefactual structure problem, also referred to as dimensionality mismatch, concerns the 

topographic mapping of unstructured data. In particular it has been observed that a topo- 

graphic mapping of high-dimensional randomly distributed data gives rise to an artefactual 

or illusory structure in the map space [Klock and Buhmann 1997]. In addition, the degree of 

the resulting artefactual structure is known to increase with the dimensionality of the data 

(for randomly distributed input data). This structure is termed artefactual because it is not 

representative of the underlying data generator. 

Such artefactual structure is a serious problem because for most real-world datasets it is not 

known in advance whether any structure actually exists in the data (and what form this 

structure might take). Indeed the aim of performing a topographic mapping is to reveal 

any hidden structure which may be present in the data through a lower dimensional map. 

Conversely if the original data is unstructured then the spatial organisation of the resulting 

map should reflect this. Thus the tendency of topographic mappings to produce maps which 

exhibit artefactual structure poses a serious concern for the data analyst who makes use of 

these techniques. In particular the level of confidence which can be attached to any structure 

derived from a topographic mapping is brought into question. 

A recent example of this problem concerns the study of the connectivity of different regions 

in the visual cortex of the macaque monkey [Young 1992]. A topographic mapping was used 

to produce a two-dimensional map of the various regions in the macaque visual cortex, for 

the purposes of visualisation and analysis. However the resulting structure in the map gen- 

erated significant controversy as to its validity and potentially artefactual nature [Simmen, 

Goodhill, and Willshaw 1994]. This is discussed in more detail in Section 3.5. 

} The word “map” is used in this thesis to refer to the resulting two- or three-dimensional image of the mapping 
process. 

1
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1.3. Thesis Aim 

The aim of this thesis is to investigate the artefactual structure problem, from both an ex- 

perimental and a theoretical standpoint. The types of topographic mappings considered are 

those of Sammon’s Mapping and its close relative Metric Multidimensional Scaling. In par- 

ticular the importance of the choice of distance metric used within the mapping algorithm 

and the dimensionality of the input data are both investigated. Finally the results of this 

work are then used to analyse a real-world problem of artefactual structure from the area of 

neuroanatomy. 

1.4 Plan of This Thesis 

Chapter 1 _ is this introduction. 

Chapter 2. describes the established techniques for multivariate data projection. These 

techniques are grouped according to the way in which they attempt to preserve the un- 

derlying geometric structure in the data, and also by their supervised-unsupervised and 

linear-nonlinear nature. 

Chapter3 presents a detailed study of the problem of artefacts in topographic mappings. 

In particular how the degree of artefactual structure varies with the distance metric used is 

investigated. The results obtained are then used to gain insight into the organisation of the 

primate visual cortex through the mapping of neuroanatomical connection data. 

Chapter4 concludes the thesis with a summary of the key results and suggests directions 

for future research. 

12



Chapter 2 

Established Techniques for 

Multivariate Data Projection 

2.1 Introduction 

This chapter considers a number of different techniques for the projection of multivariate 

data. These techniques are divided into three groups, determined by the manner in which 

they attempt to preseve the underlying geometric structure in the data. At the end of the 

chapter a unifying taxonomy is presented displaying the relationships between the various 

methods. 

2.2 Classical Techniques 

The approaches to multivariate data projection described in this section are related by the 

fact that they place no explicit criterion on the preservation of geometric structure in the 

data under the projection. Instead they seek to maximise alternative criteria in order to 

find a lower dimensional representation of the data that can subsequently be used for data 

analysis or for further modelling. 

2.2.1 Principal Component Analysis 

Principal Component Analysis (PCA), also known as the Karhunen-Loéve Transform, is a 

linear unsupervised feature extraction technique which makes use of the covariance matrix 

of the data to find a transformation to new variables that are uncorrelated. For the purposes 

13
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Figure 2.1: An example of dimensionality reduction with Principal Component Analysis. 

of dimensionality reduction, the data is projected from its original d dimensional space onto 

the q (where q < d) orthogonal axes that retain the maximum variance. 

For a dataset composed of N vectors x, the algorithm proceeds as follows. First the sample 

covariance matrix of the data is computed, given by: 

meee 

B= Dox" — w(x" - a) 
n=1 

where jz is the sample mean, given by: 

1& 

a=zye 
n=1 

The eigenvectors and eigenvalues of 5 are then found, and the eigenvectors corresponding 

2l
 

to the q largest eigenvalues (known as the principal components) are retained. Finally the 

input vectors x are projected onto the principal components to produce the transformed 

dataset. Figure 2.1 above shows an example for a two-dimensional dataset. 

Since PCA only produces a linear subspace, it will be sub-optimal when the underlying 

structure in the data is nonlinear. This has led to the development of a number of techniques 

for improving the ability of PCA to capture any nonlinearity which may be present in the 

data. One technique is to assume that in local regions of the data space, a linear approxima- 

tion will be sufficient. In this way a globally nonlinear dataset can be modelled by a number 

of local PCA models [Tipping and Bishop 1997]. 

Analternative method is to utilise an auto-associate neural network, as shown schematically 

in Figure 2.2 overleaf. The network is constructed with less hidden units than inputs and 

14
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Figure 2.2: A schematic of a four-layer auto-associative neural network. If the shaded u- 

nits implement the sigmoidal activation function, then the trained network will perform 
nonlinear PCA. 

is then trained to map each input vector onto itself. In this way the network is encouraged 

to find an effective lower-dimensional representation of the data. If a single hidden layer 

network is used, the trained network will simply perform Pca, regardless of the choice of 

hidden unit activation function. However if a network with three hidden layers is used 

(and sigmoidal activation functions for the first and third hidden layers), then the trained 

network will effectively perform nonlinear principal component analysis. This is discussed 

in more depth in Bishop [1995]. 

2.2.2 Canonical Variates 

Canonical Variates is the name given to a linear supervised technique which aims to produce 

an optimal linear dimensionality reduction of the original data. This is achieved by ensur- 

ing that the resulting feature space (which is spanned by the canonical variates) optimally 

distinguishes between the classes present in the data. For the purposes of classification it is 

then relatively simple to construct a discriminant function which assigns unlabelled data to 

one of the classes on the basis of its projection. 

Before considering Canonical Variates in general, it is useful to first consider Fisher’s Linear 

Discriminant - which for a dataset containing two unique classes, finds a projection of the 

data onto a one-dimensional space that optimally separates the two classes. In this way an 

input vector x is projected onto a value y given by: 

y=w'x 

15
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>   

wy 

Figure 2.3: An example of a simple classification problem for which dimensionality reduc- 
tion using Fisher’s Linear Discriminant is superior to PCA. 

where w is a vector of adjustable weight parameters. In addition if there are a total of N 

input vectors in the dataset, with N; from class C; and N>2 from class C2, then the mean 

vector and the individual class mean vectors are given by: 

el nm x. ee Te eee nm Bay A= =a 

For optimal separation of the two classes, the criterion is to maximise the separation of the 

projected class means whilst minimising the projected within class variances. The mathe- 

matical embodiment of this is to maximise a function J(w) defined as: 

Tine w'Spw 

Wie w'Sww 

where § g is the between-class sum of squares matrix given by: 

Sp = Ni(Ay — f)(fr — i)" + No(Ay ~ A) (fin — fi)" 

and Syy is the within-class sum of squares matrix given by: 

Sw = Se, (x" — fix)(x" — fy)? + SS (x" — fig) (x" — fig)? 
nec, n€C2 

The function J(w) is then maximised by setting the weight vector w to the dominant eigen- 

vector of Sip. Figure 2.3 above shows an example of a problem where PCA fails to re- 

tain the discriminatory information under the projection but Fisher’s linear discriminant 

16
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successfully retains it. Transforming the data to one-dimension using PCa results in a pro- 

jection onto the vector u; which would merge the data from the two classes and render 

accurate classification impossible. In contrast however, the use of Fisher’s Linear Discrim- 

inant would result in a projection onto the vector up (or the first canonical variate), which 

would retain the discriminatory information and hence allow for subsequent classification. 

Canonical Variates generalises this technique to a dataset with c classes and for a projection 

of the input data onto a space of dimension d’ (where 1 < d’ <c). In addition, let there be 

Nj, input vectors from each class Cx. Then for optimal separation of the c classes in the d’ 

dimensional projection space, a suitable criterion is to maximise J(W) defined as: 

J(W) = Tr [$7385] 

where Sy is now the within-class sum of squares matrix in the projected d’ dimensional space 

and Sz is a mesaure of the between-class sum of squares matrix also in the projected d’ 

dimensional space. These are then defined as: 

Sw = D ye (y" — Ay) (y" — Ay)" 
k=1neC 

c 

85 => Ne (Ax — A)(Ay - A)" 
k=1 

where 

. 1 n aan a 
=a, LY" A= > Nein 

nec, 1 

The projection vectors w; (which are the rows of the projection matrix W), can then be 

obtained as the solutions of the generalised eigenvector equation: 

Saw; =\ Swwi 

The resulting discriminant axes which span the projected feature space are termed the canonical 

variates. Linear Discriminant Analysis (LDA) takes this procedure one step further by deter- 

mining the linear discriminant boundaries which optimally separate the different classes. 

One limitation of this technique is that for a c class problem there is a maximum of c — 1 

indepedent projection vectors available. For the purposes of data visualisation and explo- 

ration this is rarely a problem since a dataset with three or more classes can be projected 

onto a two-dimensional space. However if this feature space is subsequently to be used for 

classification purposes (as with LDA) and the original dataset is of a high dimensionality 

with only a small number of classes, then the dimensionality reduction is likely to result in 

the loss of useful discriminatory information. In this case pre-processing with PCA, which 

a7:
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is able to extract any number of independent projection vectors (up to the dimensionality of 

the original data space), is more appropriate. 

As noted previously, Canonical Variates is a linear technique and is therefore unable to 

capture any nonlinearity which may be present in the data. This problem can be over- 

come by allowing for a nonlinear transformation of the input data in order to maximise 

an appropriate discriminant criterion. In particular it has been shown that the hidden units 

of a multi-layer perceptron (with linear output units) trained with a sum-of-squares error 

function, perform nonlinear discriminant analysis on the input data [Webb and Lowe 1990]. 

18
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2.3 Neighbourhood Preserving Mappings 

The techniques considered in this section all attempt to preserve some notion of the geomet- 

ric structure in the data. This is achieved by requiring that points which lie close together 

in the data space also lie close together in the map space. The resulting map is then said 

to display a topological ordering of the data. Such mappings effectively preserve local neigh- 

bourhoods or clusters of points under the projection. 

2.3.1 Self-Organising Feature Map 

The Self-Organising Feature Map (SOFM), also known as the ‘Kohonen Map’, takes its in- 

spiration from the topologically ordered maps found in the brains of the more developed 

animal species [Kohonen 1990]. As an example, nerve cells and fibres in the auditory path- 

way are arranged anatomically in relation to the frequency which causes the greatest re- 

sponse in each neuron. Thus the neurons transform input signals into a place-coded probability 

distribution of the data by sites of maximum relative activity within the map. Kohonen’s 

SOFM is a model of how such self-organisation can take place inside the brain. 

The architectural layout of the most common form! of SOFM is shown in figure 2.4 overleaf. 

The output units are arranged on a regular lattice, with each unit connected to the input 

layer through a specific weight vector. Learning in the SOFM then consists of adapting the 

weight vectors such that the presentation of an input pattern to the trained network gives 

rise to a localized region of activity in the resulting feature map. 

For a dataset of dimensionality d, and for a SOFM with K output units, the Kohonen Self- 

Organising algorithm is as follows: 

@ At time step f = 0 select an inital set of K weight vectors {w;, Wo, ..., wx} for each of 

the K units in the feature map. The weight vectors are of dimension d and their initial 

values may be chosen randomly. 

® Choose a pattern x from the training dataset and identify the “winning” unit i whose 

weight vector wx is nearest to x. That is, the unit for which: 

Ilx—we I< llx-we || Vk Ak 

© Move w; closer to x by an amount determined by the learning rate 7/(t) 

Wy = We + n(£)(x — Wx) 

1 Hexagonal grid configurations of the units in the output layer are also sometimes used. 

19
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Figure 2.4: A schematic of Kohonen’s Self-Organising Feature Map 

® Inaddition move units which are in the neighbourhood of the winning unit (indicated 

here by the subscript k+p) by an amount proportional to A(t) 

Wiap = Whip + n(t)B(E)(x — Wisp) 

© Increment the time step and repeat from step @ until the map has stabilised. 

For the purposes of visualisation each input pattern x is then projected onto the unit in the 

feature map whose weight vector w is closest to x. The key to the self-organising nature 

of the map is in step @ and in particular the neighbourhood function 3. This function is 

usually chosen to have the shape of a ‘Mexican Hat’ or a Gaussian so that its value de- 

creases with the distance (in the output layer) between the winning unit and any other unit. 

Hence the weights of units close to the winning unit will move closer to the input pattern x, 

and the weights of units further away by smaller amounts. For a neighbourhood function 

of zero width the learning algorithm reverts to the adaptive K-means clustering algorith- 

m [Tarassenko 1998]. The magnitude of the learning rate 7 and the width of the neighbour- 

hood function / are usually decreased with time during the training process. In this way 

the coarse global topology of the map is formed during the early stages of training while the 

local detail is fine-tuned later. 

The SOFM has achieved many successes in practical applications such as speech recognition, 

image processing, robotics, process control and telecommunications. The learning algorithm 

scales well with the size of the dataset involved and it is this tractability that makes it such 

a popular tool for data visualisation. However, the SOFM does suffer from a number of 

significant drawbacks. Firstly there is no explicit error measure defined by the algorithm 

and therefore it is impossible to gauge a measure of the quality of a map once training is 

20
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completed. In addition there in no proof of convergence and the learning rate as well as the 

neighbourhood size reduction rate must be chosen by trial and error. Finally the fixed lattice 

of units in the output layer inevitably leads to some distortion in the representation of the 

true structure in the data. 

2.3.2 Generative Topographic Mapping 

The Generative Topographic Mapping (GTM) is a probabilistic alternative to Kohonen’s 

SOFM [Bishop, Svensén, and Williams 1998]. Although the name of the technique indicates 

the mapping is topographic in nature, it is in fact strictly a neighbourhood-preserving or 

topological mapping when considered with the definitions of Section 1.1 in mind. 

GTM is a latent variable model which seeks to represent the distribution of data in a space 

of several dimensions in terms of a smaller number of latent, or hidden, variables. For the 

purposes of data visualisation the number of such latent variables, L, is usually chosen to be 

two or three. In addition the GTM algorithm is a generative model since it defines a mapping 

from the latent space to the data space. This mapping can then be inverted through the use 

of Bayes’ theorem to produce a mapping from the data space to the latent (or visualisation) 

space. 

The technique begins by first defining a function x(y;W) which maps each point y in the 

(two- or three-dimensional) latent space to a point x(y; W) in the data space. The uncondi- 

tional probability distribution in latent space, p(y), is chosen to be a sum of delta functions 

centred on the nodes of a regular lattice in latent space. The function x(y; W) is usually given 

by a generalised linear regression model of the form: 

x(y; W) = Wy) 

where the elements of ¢(y) consist of fixed basis functions. As a result of the choices for 

x(y; W) and p(y), each node in latent space becomes the centre in a constrained Gaussian 

mixture model in data space - the free parameters of which are determined through use of 

the EM algorithm [Bishop 1995]. In this way each data point x induces a posterior distribu- 

tion in y-space. For visualisation purposes the data points are then projected to the mean or 

mode of their posterior distribution. 

Although the GTM algorithm is a principled technique which can be used to model any 

n-dimensional distribution of data, it is best suited to modelling specific types of distri- 

butions. In particular optimal performance will be achieved when modelling moderately 

curved L-dimensional distributions (embedded in the original data space) of roughly rect- 

angular shape [Svensén 1998]. Prior knowledge concerning the underlying structure in the 

input data is therefore useful in determining the applicability of GTM for the purposes of 

data visualisation. 
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2.4 Topographic Mappings 

This section introduces a class of techniques for multivariate data projection known as topo- 

graphic mappings. The aim of such mappings is the optimal preservation of the underlying 

geometric structure in the data under the transformation. 

2.4.1 Sammon’s Mapping 

Sammon’s Mapping, also known as the Nonlinear Mapping, is an algorithm for finding a 

transformation of a dataset of dimensionality p onto a nonlinear map space of dimension- 

ality q (where q < p), whilst preserving as well as possible the inter-point distances in the 

data [Sammon 1969]. This is achieved through the minimisation of an error or stress func- 

tion, defined as: 

th 1 (dj; = dij)? 

Benin Salty x 7d 
where dj; is the distance ||x; — x; || between points i and j in the input space R?, and dj; is the 

distance || y; — y; || between points i and j in the map space R?. The distance measure ||... || 

may be any valid distance metric, although usually the Euclidean distance is chosen. 

The term (dj; — d,;)’, in the numerator of the error function, is a measure of the deviation 

between the inter-point distances in the input space and those in the map space. Hence 

minimisation of this error function involves adjusting the map points y; in order to im- 

prove the representation of the geometric structure of the input data in the map space. In 

Sammon’s original paper a simple gradient descent technique was proposed for this min- 

imisation. However in practice more advanced nonlinear optimisation techniques such as 

conjugate-gradient descent or quasi-Newton methods are to be preferred [Bishop 1995]. The 

training of aSammon Mapping is illustrated schematically in figure 2.5 overleaf. 

The purpose of the constant term, 1/5); 0; 4; dj; , is simply to reduce the sensitivity of the 

error value to the number of points used and their scaling. However its presence does not 

normalise the error value (ie. restrict it to the range [0,1]) since the values of dj; may be 

much greater than those of dj; (especially at the start of the procedure). 

The purpose of the dj; term in the denominator of the sum is to weight the errors relative to 

the magnitude of the distances involved. In this way a pair of points which are a distance 9 

apart in the map (d;;) but 10 apart in the data space (d},), and another pair of points which are 

a distance 90 apart in the map but 100 apart in the data space, will both contribute equally 

to the overall error value. However since the overall geometric structure of the input data 

is generally unknown at the outset of the mapping procedure, there is no reason why we 

should weight the preservation of local structure over global structure. 
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Compute Sammon STRESS 
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i j>i       

  

Nonlinear Optimisation 
(eg. conjugate gradients) 

se ah me       

q-dimensional map space p-dimensional data space 
(initialised randomly or with PCA) 

Figure 2.5: A process diagram to illustrate the training of a Sammon Mapping. 

Thus an alternative, and simplified definition of Sammon’s Mapping, is given by the Sam- 

mon STRESS: 

Sammon STRESS = Dy SS (a3; - agye 

t j>i 

Although Sammon’s Mapping is traditionally considered to be an unsupervised technique 

(in the sense that only objective distance measurements are used), it can be extended to in- 

corporate additional subjective class information into the mapping process. This is achieved 

by modifying the original STRESS function, to give: 

Generalised Sammon STRESS = Se a (5:3 — dig)? 
i >t 

where now: 

6ij = (1 — a) dj; + 0184; and 0<a<l 

Once again, d;; and dj; are the inter-point distances in the input space and the map space re- 

spectively. The term s;; represents a subjective dissimilarity value between points i and j. In 

a simple case this value could be 0 if the two points are from the same class and 1 otherwise. 

However if more detailed information is available it is possible to construct more advanced 

subjective dissimilarities, which can be thought of as measurements from a subjective metric 

over the input space [Tipping 1996, Chapter 3]. Given this definition then, the purpose of 

the parameter a is to govern the degree to which the subjective metric influences the final 

output configuration. If @ = 1, the map is purely supervised since only the subjective metric 

information is utilised in the training process. Alternatively with a = 0, the map is purely 

unsupervised since only the objective distance information d* is used. Intermediate values 
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Figure 2.6: The result of applying Sammon’s mapping to a three-dimensional helix. 

of a therefore give rise to a semi-supervised mapping in which the objective spatial distances 

and the subjective dissimilarities are linearly combined to give a hybrid map space. In prac- 

tice, for a given application of Sammon’s Mapping to a particular dataset, the optimal value 

of a cannot be computed explicitly and must be determined through trial and error. 

Figure 2.6 shows a Sammon Mapping of a three-dimensional helix. The geometric structure 

of the resulting map clearly indicates the topographic nature of the technique; points close 

together on the helix are close together on the map and points far apart on the helix and are 

similarly far apart on the map. In addition the mapping captures the sinusoidal nature of the 

helix in the reduced two-dimensional map space. However some information is inevitably 

lost in the mapping process. For example, although the individual data points are equally 

spaced along the length of the helix, the map points appear to cluster slightly around the 

regions of the map curve with the greatest curvature. This is a consequence of the fact that 

the mapping is attempting to match inter-point distances derived from a three-dimensional 

space with those from a two-dimensional space. Thus unless the input data lies on a two- 

dimensional manifold in the data space, the resulting mapping will always exhibit some 

distortion of the original data. 

Although Sammon’s Mapping optimally preserves the topographic nature of the input data 

under the transformation, it does suffer from a number of drawbacks. Firstly the time com- 

plexity of the algorithm is O(N’), ie. proportional to the square of the number of data points, 

since each evaluation of the Sammon STRESS function requires a double loop over i and j. 

In practice then Sammon’s Mapping is usually limited to datasets composed of no more 

than 1000 data points. To overcome this restriction, Sammon himself suggested the applica- 

tion of an initial clustering phase to the dataset (using for example the K-means algorithm) 

to generate a set of K prototype vectors in the input space (where K < N). Sammon’s 

Mapping can then be applied to these prototype vectors at a much reduced computational 
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cost. Another drawback with Sammon’s Mapping is that it is generated iteratively through 

the use of a nonlinear optimisation algorithm and is therefore prone to sub-optimal local 

minima. In practice the procedure is usually performed a number of times with different 

initial configurations and the mapping with the smallest final STRESS value is chosen. 

2.4.2 Multidimensional Scaling 

The techniques considered so far in this chapter have all made use of a set of input vectors 

(where each vector corresponds to a number of measurements or features) to produce a 

set of lower dimensional map vectors. Multidimensional Scaling (MDs) however, takes as 

its input a set of proximity values which provide a measure of the similarity or dissimilarity 

between the individual objects. Such proximity data is usually in the form of an (N x N) 

symmetric matrix, where the rows and columns represent the objects under consideration, 

and the values of the matrix represent the relative proximity between pairs of objects. 

Given this data, the purpose of MDs is to find a configuration of N points in a two- or 

three-dimensional space, where each point represents an object and the geometric layout of 

the points reflects the relationships between the objects defined by the proximity matrix. In 

this way the information contained within the proximity matrix can be captured by a more 

succint spatial model which aids visualisation of the data and improves understanding of the 

process that generated it. 

The set of values forming the proximity matrix may have been derived in a number of 

different ways, for example the data might be the results of a psychological experiment, 

or connectivity values from an analysis of different regions of the brain. Regardless of how 

the data has been derived, it can be considered to belong to one of four distinct levels of 

measurement [Schiffman, Reynolds, and Young 1981]. These are defined as: 

¢ Ratio: Objects are placed ona scale such that the position along the scale represents the 

absolute magnitude of the attribute. Both the intervals and the zero point are relevant 

(eg. mass, velocity, etc). 

Interval: Objects are placed on a scale such that the magnitude of the differences be- 

tween objects is shown by the scale. Thus intervals are meaningful, but not the zero 

point (eg. Celsius or Fahrenheit temperature scale). 

© Ordinal: Objects are arranged in rank order of magnitude. The individual values and 

hence the intervals have no meaning (eg. a subject’s rating of taste stimuli in a psy- 

chology experiment). 

© Nominal: Objects are sorted into distinct groups (eg. males and females). This is the 

weakest or lowest level of measurement. 
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Since the input data has no explicit “data space”, it is impossible to formulate a mapping 

from a data space to the desired map space (as with other mapping techniques). Instead 

MDs works by attempting to match the inter-point distances in the configuration space with 

the inter-object dissimilarity values given by the dissimilarity matrix (if a “similarity” matrix 

is given, it can be converted to a “dissimilarity” matrix simply by subtracting the values 

from an appropriate constant). The varying degrees of importance placed on matching these 

values to inter-point distances gives rise to two closely related techniques, known as Metric 

and Nonmetric Multidimensional Scaling. 

The aim of Metric MDs is to match as closely as possible the dissimilarity values between 

pairs of objects to the corresponding spatial distances between pairs of points. In this way 

Metric MDs assumes the data measurements to be at the ratio or interval level. With Non- 

metric MDs only the rank ordering of the data is deemed important and the aim of the 

technique is to match the ordering of the dissimilarities with the ordering of the distances. 

Hence Nonmetric MDs assumes the data to be at the weaker ordinal level of measurement. 

Although Nonmetric MDs is generally considered a more powerful technique than its Met- 

ric counterpart (due mainly to its ability to handle data at the ordinal level), it cannot strictly 

be termed “topographic” since there is no real notion of “geometric structure preservation” 

with ordinal input data. Thus when the dissimilarity data is representative of spatial dis- 

tance measurements between the objects, Metric MDs (which can be viewed as a form of 

Sammon’s Mapping) is a more suitable technique. 

A good example of the effectiveness of Metric MDs is given by the application of the tech- 

nique to proximity data based on the distances between various cities. Table 2.1 overleaf 

shows the road distances between 18 cities located in various regions of mainland UK, and 

the resulting two-dimensional configuration? is shown in figure 2.7. The layout of the con- 

figuration points is clearly intuitive and the model captures the salient information in the 

proximity data in a visual and compact form. Although this example is artificial in the sense 

that the resulting configuration is already known a priori, it serves to illustrate the use of MDS 

as a powerful tool for visualisation when the inherent structure in the data is unknown. 

The optimisation criterion for Metric MDs can be formulated ina very similar fashion to that 

of Sammon’s Mapping. In particular, if the dissimilarity between objects i and j is denoted 

by 6;; and the corresponding inter-point distance in the configuration space by dj;, then we 

wish to minimise a STRESS function given by: 

STRESS =) (545 — dis)? 
a j>i 

2 After a suitable rotation about its centre of mass. 
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Abd! Aby| Brm| Btn| Brs | Cam| Cr1}Gla| Inv} Lds | Man|New| Nor | Oxf | Pez| Sot} Yor} Ldn 

Aberdeen (Abd) 0 | 466] 431] 606 | 514} 463} 232} 147] 106] 331] 353| 234] 488 | 503] 697 | 569| 322] 545 

Aberystwyth (Aby) ||466] 0 | 124] 285] 128] 216] 233] 331| 492] 171] 132] 272] 278 | 156 | 305 | 221] 198] 239 

Birmingham (Brm) 431/124] O | 171] 88 | 98 | 199] 296} 457] 116} 90 | 203] 159] 68 | 272] 134/129) 120 

Brighton (Btn) 606] 285]171] 0 | 169] 120] 375| 472] 633] 263] 265 | 350] 169] 109] 287] 66 | 276] 59 

Bristol (Brs) 514/128) 88 | 169] 0 | 171] 282] 379} 540] 213] 172] 299] 233] 74 | 194) 75 | 226) 120 

Cambridge (Cam) 463] 216] 98 | 120/171] O | 257|354/ 515] 147} 160| 229] 63 | 81 | 361] 131] 156] 60 

Carlisle (Cr1) 232| 233] 199] 375| 282] 257] 0 | 97 | 258] 126]121| 60 | 282] 271} 465} 337] 117] 313 

Glasgow (Gla) 147 | 331 | 296| 472] 379| 354] 97 | 0 |173| 222} 217] 154] 379} 368 | 562| 434] 213] 410 

Inverness (Inv) 106 | 492| 457| 633] 540] 515] 258]173] 0 | 384] 379] 266] 540} 529) 723] 595] 375| 571 

Leeds (Lds) 331] 171] 116] 263} 213] 147| 126] 222] 384] O | 43 | 94 | 172|171| 396} 237] 24 | 199 

Manchester (Man) 353] 132] 90 | 265] 172] 160] 121] 217| 379] 43 | O | 144] 185] 161) 355] 227] 71 | 203 

Newcastle (New) 234| 272| 203] 350] 299| 229] 60 | 154] 266] 94 | 144] 0 | 254] 257/482] 324) 88 | 285 

Norwich (Nor) 488 | 278} 159] 169] 233] 63 | 282} 379] 540] 172} 185/254] 0 | 144/423] 193) 181} 115 

Oxford (Oxf) 503] 156] 68 | 109] 74 | 81 | 271] 368]529] 171} 161] 257}144) 0 | 264) 66 |184| 56 

Penzance (Pez) 697 | 305 | 272| 287 | 194] 361] 465 | 562] 723] 396] 355 | 482] 423] 264) 0 | 221} 409/310 

Southampton (Sot) || 569] 221/134] 66 | 75 | 131|337| 434] 595} 237| 227|324/193| 66 |221| 0 | 250] 80 

York (Yor) 322| 198] 129] 276| 226] 156} 117| 213} 375| 24 | 71 | 88 | 181} 184/409] 250] O | 211 

London (Ldn) 1545 239]120} 59 | 120] 60 | 313] 410} 571} 199] 203] 285] 115] 56 | 310] 80 | 211] 0 
  

Table 2.1: Road distances (in miles) between various mainland UK towns and cities. 
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Figure 2.7: The resulting 2-D configuration after applying Metric MDs to the dissimilarity 

data of Table 2.1 

2, 

 



2.4 Topographic Mappings 
  

This function provides a measure of the deviation of the dissimilarities from the correspond- 

ing distances, and can be minisimed through the use of a nonlinear optimisation algorithm. 

An alternative definition? of Metric MDs is the SSTRESS measure, given by: 

sstress = >> (63, — d3,)” 
i jst 

This function provides a measure of the deviation of the squared dissimilarities from the 

corresponding squared distances. The advantage of SSTRESS is that it can be minimised 

through the use of an alternating least squares procedure, which is based on the technique 

of iterative majorisation [Webb 1995]. Indeed this measure forms the basis of the standard 

implementation of MDs known as ALSCAL, which is included as part of the popular Spss 

software package for statistical data analysis [Young and Harris 1990]. 

In practice, when comparing the results of STRESS and SSTRESS configurations, it should 

be noted that SSTRESS emphasises the fitting of large dissimilarities over small ones. As 

an example consider a particular dissimilarity 4,; and its initial corresponding inter-point 

distance in the configuration space dj;. If 6;; = 10 and dj; = 8, then the resulting contri- 

butions to STRESS and SSTRESS will be 2? and 36? respectively. If however 4;; = 20 and 

dij = 18, the resulting contributions will be 2? and 76” respectively. Furthermore, as will 

be shown in the next chapter, the use of SSTRESS produces very different configurations 

from those of STRESS when the dissimilarity matrix is derived from unstructured data in a 

high-dimensional space. 

2.4.3 NEUROSCALE 

Although the techniques considered so far in this section are grouped under the heading of 

“topographic mappings”, they are not actually mappings in the strict mathematical sense of 

the word. This is because there is no transformation defined from the input space to the map 

space. The result of Sammon’s Mapping for example, is a set of configuration points which 

forms the low-dimensional representation of the high-dimensional input data. However 

there is no mechanism for the projection of new or unseen data without expensively regen- 

erating the entire configuration with the new data points included in the original dataset. 

Thus Sammon’s Mapping is best viewed as a “look-up” table in which only the original 

training data points are mapped to lower-dimensional configuration points. 

The NEUROSCALE technique is a novel neural network implementation of Sammon’s Map- 

ping which provides a transformation from the data space to the map space, and thus the 

ability to project new data. The technique is effected by a feed-forward radial basis function 

$ Traditionally STRESS and SSTRESS are defined with a square root over the double summation. However it is 
dropped here for convenience since minimisation of either form (ie. with or without the square root) leads to 
the same solution. 
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(RBF) network which transforms the p-dimensional input space into a q-dimensional map or 

feauture space (where q < p). In common with Sammon’s Mapping, NEUROSCALE allows 

for the incorporation of additional subjective (or supervisory) information into the training 

process in order to produce an enhanced feature space. The general NEUROSCALE error or 

stress measure is thus defined by: 

Ens = S Sy (513 — di)? 
i ji 

where: 

6ij = (1 — a) dj; + asiy and 0<a<l1 

As before, dj; and dj; are the inter-point distances in the input space and the feature space 

respectively, and ;; is the subjective metric whose influence is controlled by the parameter 

a. For any particular application of NEUROSCALE (eg. data visualisation, feature extraction, 

etc), the optimal value of this parameter must be determined through trial and error. 

Training of a NEUROSCALE model involves adjusting the RBF parameters in order to min- 

imise the error measure E,,;. Once the parameters of the hidden units have been determined 

(for example - as the parameters of the basis functions in a Gaussian Mixture Model trained 

on the data), the output layer weights can be adjusted using a relative supervision training 

algorithm [Lowe 1993]. To train the network, pairs of input points are presented, and while 

there is no corresponding pair of explicit target vectors, there is a measure of relative error 

available and this can be used to minimise the error E),5. 

One particularly efficient implementation of this form of training algorithm is known as 

Shadow Targets. The algorithm works by first computing a set of estimated or shadow targets 

based on the current map points y; and the error derivatives Ope These targets are used as 

the desired network outputs, as with a supervised problem, and the network weights are 

then found. This procedure is repeated iteratively, each time a new set of shadow targets is 

computed and the corresponding network weights are found; until a minimum of E,, has 

been reached. The algorithm effectively decomposes the training process into two steps, one 

of which is linear and can be computed efficiently. Indeed it has been shown that Shadow 

Targets is an order of magnitude more efficient at reaching a minimum of E,,, than other 

non-linear optimisation algorithms [Tipping 1996, Chapter 7]. 

One important property of NEUROSCALE is that it has excellent generalisation properties and 

furthermore it is relatively insensitive to model complexity. Both these properties result from 

the use of the relative supervision training algorithm. In particular the NEUROSCALE model 

naturally tends to adopt a solution with low curvature, and hence the trained network pro- 

duces a smooth transformation which gives rise to improved generalisation. In addition this 

training algorithm automatically incorporates a regularising component which reduces the 
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sensitivity of the transformation to the complexity of the model (ie. the number of hidden 

units). 

An alternative neural network implementation of Sammon’s Mapping, and one which is 

particularly popular in the pattern recognition literature, is SAMANN [Mao and Jain 1995]. 

This model uses a multi-layer perceptron (MLP) to effect the transformation from the data 

space to the feature space. However it suffers from a number of drawbacks compared with 

the NEUROSCALE model. Firstly the training of SAMANN involves a back-propagation step 

in order to compute the error derivatives with respect to the weights. When on-line learning 

is used then N(N — 1) back-propagations are required for N(N — 1)/2 pairs of input points. 

Alternatively, for a model linear in the weights such as an RBF network, these derivatives 

can be derived directly in a straightforward fashion. Another disadvantage of the SAMAN- 

N model is that the use of sigmoidal output units in the MLP requires that the training set 

of inter-point distances be scaled such that all the values are in the range [0,1]. This can 

be achieved by dividing through by the largest inter-point distance value. However if a 

new unseen data point is presented to the trained SAMANN network it could be projected 

incorrectly if its distance to a point in the original dataset is larger than any of the original 

inter-point distances. One solution to this problem is to use linear output units in the net- 

work. However it was shown by de Ridder and Duin that the training of such networks 

does not converge well, even if the weights are initialised such that the network performs 

a PCA projection of the original dataset [de Ridder and Duin 1997]. As an alternative the 

authors recommend training a network on the result of a Sammon Mapping of the origi- 

nal data. However such a posteriori training has been shown to lead to networks with high 

curvature and poor generalisation performance [Tipping 1996, Chapter 6]. 

NEUROSCALE isa highly effective and flexible neural network implementation of Sammon’s 

Mapping which defines a transformation from the input space to the map space. Recent 

studies of neural network based feature extraction methods [Lerner et al. 1999] have tended 

to focus on the SAMANN model, suggesting that NEUROSCALE has yet to be explored fully 

by the pattern recognition community at large. 
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2.5 Conclusions 

This chapter has described the established techniques for multivariate data projection, incor- 

porating methods from both the fields of statistical pattern analysis and neural computing. 

These techniques have been grouped according to the emphasis they place on the preserva- 

tion of the underlying geometric structure in the data. In addition the techniques may also 

be categorised according to their linear-nonlinear and supervised-unsupervised nature. 

Figure 2.8 shows a taxonomy of the techniques covered in this chapter, based on the afore- 

mentioned categories. Metric and Nonmetric MDs are categorised as unsupervised and 

supervised respectively; the former considers the dissimilarity data to be representative of 

spatial distance measurements, whereas the latter treats the data as being of a more subjec- 

tive nature. Sammon’s Mapping is classed in its traditional sense as an unsupervised tech- 

nique (although as previously noted it is possible to include supervisory information into 

the mapping process). NEUROSCALE which can incorporate varying degrees of supervisory 

information depending on the value of the parameter a, spans both the supervised and un- 

supervised domains. 

     Multivariate Data Projection 

  

( Unsupervised ) ( Supervised i (_ Unsupervised ) ( Supervised ) 
  

          

  

PCA Canonical Variates Sammon’s Mapping Nonmetric MDS 

(LDA) Metric MDS 
Nonlinear DA 
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Nonlinear PCA 
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¢? =0 8 = a=0 mh ne aL 
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Figure 2.8: A taxonomy of the different approaches to multivariate data projection. 

31



Chapter 3 

Investigation into Artefactual 

Structure 

3.1 Introduction 

The main emphasis of the techniques considered up to this point has been on the degree 

to which the underlying geometric structure in the data is preserved. The previous chapter 

detailed the established methods for the projection of high-dimensional data and the extent 

to which they can be considered topographic. In particular it was noted that mappings which 

minimise simple STRESS measures of the form ));;(d}; — dj;)?, optimally preserve the inher- 

ent structure in the data through the retention of spatial distance relationships, on both a 

local and a global scale. 

However, if a mapping technique is to be used in practice as a tool for the exploration and 

visualisation of high-dimensional datasets, then it is important that a level of confidence 

can be placed on the knowledge that is derived from the resulting low-dimensional config- 

urations. This can be achieved if the following two conditions are met. Firstly, as previ- 

ously noted, the technique should produce a visualisation space whose geometric structure 

reflects that of the original data space. Secondly, any structure which is observed in the vi- 

sualisation space should be truly representative of similar structure in the data space. This 

latter point can also be expressed as the requirement that the mapping should be free from 

artefacts, ie. the occurence of structure in the map data which is not present in the original 

input data. 

This chapter presents a series of investigations into the problem of artefactual structure in 

topographic mappings. The problem is investigated both experimentally and theoretically, 

and a variety of different topographic constraints are considered. The insights gained from 
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this work are then used to examine the use of topographic mappings in the analysis of 

neuroanatomical connection data, and in particular the spatial organisation of the primate 

visual system. 

3.2 Topographic Mappings of Unstructured Data 

This section presents the experimental work which was performed in order to investigate the 

artefactual structure problem. Initially four different datasets were produced each of which 

characterised unstructured data of a particular dimension. For each dataset, 1000 points were 

drawn independenly from a uniform random distribution on the interval [0,1], where p 

indicates the dimension of the input space - for which values of 5, 10, 30, and 100 were 

chosen. Thus each of the four datasets represented 1000 points randomly! scattered inside a 

unit hypercube of dimension p. 

A Sammon mapping of each dataset was then performed as follows. Firstly an initial set 

of map points was generated by randomly sampling 1000 points from within a unit square. 

Then, for a given error (or stress) measure, the set of map points was iteratively adjusted 

through the use of the conjugate gradients optimisation algorithm. When the solution had 

stabilised (or the maximum number of iterations had been reached), the final error value 

was recorded. This procedure was repeated fifty times (each time with a different initial 

configuration of the map points) and the configuration with the lowest final error value was 

chosen. In this way it was hoped that the resulting configuration would not represent a 

solution corresponding to a sub-optimal local minimum. 

The remainder of this section shows the resulting Sammon maps for the various error mea- 

sures used and discusses the nature of the spatial configurations derived from unstructured 

data of different dimensions. Appendix A details the error gradient ie for each of the error 

measures used. 

3.2.1. STRESS Based Mappings 

Recall that the standard STRESS measure (or Sammon STRESS) is defined as: 

stress = > > (dj; — di)” 
i j>i 

where dj; and dj; are the Euclidean distances between points i and j in the input space and 

the map space respectively. 

* ‘Strictly, the distribution of the points was pseudo-random. 
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(a) 5-dimensional input data (b) 10-dimensional input data 

  

        
  

  

(c) 30-dimensional input data (d) 100-dimensional input data 

Figure 3.1: Maps produced with the STRESS measure from uniformly randomly distributed 
data of different dimensions. 
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Figure 3.2: Histograms showing the number of configurations with a given final STRESS 
value for each of the datasets used.
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Figure 3.1 overleaf shows the resulting minimum STRESS maps for each of the datasets and 

figure 3.2 shows the histograms of the final STRESS values over the fifty runs. 

The resulting map plots indicate that the map points are approximately located inside a ball 

ora disc, and as the dimension of the input data increases the shape of the resulting configu- 

ration becomes more “disc like”. This is interesting since it might naively be expected that a 

mapping of data randomly distributed within a hypercube would result in a configuration 

of map points randomly distributed within a square. Indeed this would appear to be the 

most intuitive and perhaps more importantly, the most informative configuration possible 

given the nature of the input data. 

An insight into this effect can be gained by considering the spatial arrangement of the input 

data space. Firstly, as the dimension p of the input space increases, the number of corners of 

the resulting hypercube increases exponentially or, to be precise, as 2?. If the dimension of 

the map space is q (where q < p) then there will be an inevitable distortion of the data during 

the mapping procedure due to the lack of dimensions to capture the spatial arrangement of 

the input data. In particular it was found experimentally that a mapping of only the corners 

of a high-dimensional hypercube produced a circular configuration in the map space. This 

is not surprising however, since any hypercube of side d can be positioned perfectly within 

ahypersphere of radius 4,/p so that each corner of the hypercube just touches the surface of 

the hypersphere. Hence points lying on the corners of a hypercube can also be considered 

to lie on the surface of the matching hypersphere. A mapping of these points to a two- 

dimensional space therefore gives rise to a circular configuration. Thus the optimal solution 

(in terms of the minimisation of STRESS) is to position the map points corresponding to input 

points near to the corners of the hypercube, close to the circumference of a disc in the map 

space. 

3.2.2 SSTRESS Based Mappings 

As described in Section 2.4.2, the SSTRESS measure is defined as: 

ssrress =} > (di? — d3,)? 
i j>i 

where d}, and dj; are the squared Euclidean distances between points i and j in the input 

space and the map space respectively. 

Figure 3.3 overleaf shows the resulting minimum SSTRESS maps for each of the datasets and 

figure 3.4 shows the histograms of the final SSTRESS values over the fifty runs. It is clear 

from the resulting maps that significant artefactual structure is produced by the SSTRESS 

mappings of uniform random data. As the dimension of this data increases, a noticeable 

ring structure is observed which becomes more well-defined with the increasing dimension. 
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Figure 3.3: Maps produced with the SSTRESS measure from uniformly randomly distributed 
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Figure 3.4: Histograms showing the number of configurations with a given final SSTRESS. 
value for each of the datasets used. 
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For 5-dimensional input data the configuration looks almost random, with just some slight 

clustering of the map points away from the centre of the configuration. However for 10- 

dimensional input data the map points are clearly clustered in a ring shape, although there is 

an overall fuzziness to the structure. For 100-dimensional input data however this fuzziness 

has disappeared and the resulting configuration is sharp and annular in nature. 

Clearly then, the use of the SSTRESS measure gives rise to a significant artefactual structure 

when used to map the high-dimensional random datasets considered in this chapter. In 

addition the greater the dimensionality of the dataset the greater the degree of artefactual 

structure observed. This effect is known as dimensionality mismatch and refers to the general 

observation that the distortion of a map increases with the difference or mismatch between 

the dimension of the data space and the dimension of the map space. 

The histograms displaying the number of configurations with a given final SSTRESS value 

indicate that the majority of the solutions correspond to low SSTRESS configurations. Thus 

the training of SSTRESS maps on unstructured data does not appear particularly prone to 

sub-optimal local minima and therefore any single SSTRESS mapping of high-dimensional 

random data is likely to suffer from artefactual structure. 

3.2.3 Mappings with Different Powers of the Euclidean Distance 

Since the SSTRESS measure utilises a squared Euclidean distance metric, it is worthwhile 

investigating if other powers of the Euclidean distance metric give rise to similar artefactual 

structure. 

The SSTRESS function can be generalised to any arbitrary power n of the distance metric, to 

give: 

SSTRESS, = > > (dip — d3,)? 
a j>i 

Figure 3.5 shows the resulting maps for n = 3, 4, 5, and 6 trained on the 100-dimensional 

uniform random dataset. For powers 3, 4 and 5 of the Euclidean distance metric, the config- 

urations produced are very similar and each indicates that approximately equal numbers of 

the 1000 points are located on the corners of an equilateral triangle in the map space. Since 

any configuration is invariant (in terms of the resulting error) under rotation, reflection and 

translation, the final orientation of the configurations is not relevant to this analysis. 

One possible explanation for this tendency to adopt an equilateral triangle configuration, 

is that such a grouping of the map points results in only two unique values for the inter- 

point spatial distances in the map space. The points are either zero apart (assuming they 

are located at one corner exactly), or they are a distance / apart - where | represents the 
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Figure 3.5: Maps produced with different powers of the Euclidean distance metric for the 
100-dimensional uniform random dataset. 
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length of a side of the equilateral triangle (measured with the given metric). Although the 

configuration will result in a large error for points whose inter-point distance in the data 

space lies away from these two extremes, it is possible that the reduction in the error for 

points which are very close together (dj? ~ 0) or very far apart (dj? ~ 1) outweighs this 

error; and hence this configuration provides an effective minimum error solution. 

For the power 6 Euclidean distance metric, the configuration changes and adopts a cross 

shape with some significant clustering in the centre. As the power of the Euclidean metric 

increases then, at some point the equilateral triangle configuration becomes unfavourable in 

terms of the minimisation of the error measure. 

3.2.4 Mappings with Minkowski Metrics 

For a d-dimensional feature vector x; = (2j1, Zi2,... , Ziq), the Minkowski metric giving the 

distance between x; and x;, is defined as: 

d 
d(i,k) = ye |@ig — @Ry ) where r > 1 

j=l 

For r = 1 the metric is simply the sum of the distances (between the two points) along each 

axis and is known as the Manhattan or city-block distance. For r = 2 the metric is equal to 

the standard Euclidean distance. 

Figure 3.6 overleaf shows the resulting maps for Minkowski metrics of r = 1 and r=3 

trained on the 100-dimensional uniform random dataset. The configuration for r = 1 indi- 

cates that the points are clustered around the edges of a curved diamond shape. However 

for r = 3 the resulting configuration shows that the map points are approximately randomly 

distributed inside a square (although there is some slight clustering around the edges). This 

is interesting since it represents the most intuitive and indeed the most informative config- 

uration when the input points are randomly distributed within a high-dimensional hyper- 

cube. 

However, there is a fundamental objection to the use of non-Euclidean distance metrics 

in data visualisation algorithms. Since the observer of the map is limited to viewing the 

map space from a strictly Euclidean standpoint, the topographic structure “seen” by the 

observer does not reflect that defined by the inter-point distances (as measured by the metric 

used). This problem stems from the simple fact that human beings are only capable of seeing 

through “Euclidean eyes”. Thus from a purely theoretical stance, the standard Euclidean 

metric is to be preferred for data visualisation. 
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(b) Minkowski Metric: r = 3 

Figure 3.6: Maps produced with two different Minkowski metrics for the 100-dimensional 

uniform random dataset. 
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3.3. Theoretical Analysis of Artefactual Structure 

This section presents a theoretical analysis of the artefactual structure problem. The low- 

dimensional map configuration is considered to be produced by a mapping trained with 

uniformly randomly distributed input data on the SSTRESS measure. The set of map points 

is defined by a matrix Y = (yi, y2,..- ,yw)' and the set of input data points by a matrix 

X= (x1,x0,--. »xw)" 

We begin by first defining the SSTRESS error measure: 

E=)\> (a3 -a, 
i g>t 

Differentiating E with re to a particular map vector y; we obtain: 

5 =-4> (aj - 4 -y;) 
i ag 

For the Euclidean distance metric ||... . ||, we have: 

I? 2 
EF = |x; — x5? = ee — x4) "(Xi — x5) = Noa lI? + Ix? — 2x; 

5 = ll ys — ysll? = (vi — ys)" (vi — ys) = Ilysll? + Ilys? — 2 yivs 

Substituting (3.2) and (3.3) into (3.1) and rearranging, gives: 

a 
a = —4> [ (lx? = Ilys?) + (lal? = Ilys?) + 2 (viys — xx) ] (vi - ys) 

i j#t 

This equation can be expanded into a number of distinct terms, given by: 

OE 
=— =-4)> ([lxl? — llysll?) ve > 

+4> (lx? - llysl?) ys 
aA 

=A > (Ils 1? = Ilysll?) ve 
IFt 

+4 (Ilx5 I? = Ilys?) ys 
j#Ft 

— 85° (ylys) yi 
i#t 

+850 (Ix;) y; 
IFt 

+850 (viva) ¥s 
It 

a 5) (9%) Yi 
ift 

(3.1) 

(3.2) 

(3.3) 

(3.4) 

(3.5) 

(3.6) 

(3.7) 

(3.8) 

(3.9) 

(3.10) 

(3.11)
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We can simplify terms (3.4) and (3.8) - (3.11), as: 

> (lbxell? = yall?) ys = CM = 1) (Ilex? = Ilys) ys 
iA 

YS oy y= >> wy) ys = yey! DO (ys) 
Jt IFt JF 

DY 665) 91 = DS (ved) x) = vod DS Oy) 
iA iA iA 
dX iva) ys = Do (vay3) vi 
iA iA 
Dd ba) ys =O (v9) x 
I#Fi iF 

Since we are considering the position of the map vector y; at the minimum SSTRESS solution 

(ie. oe = 0), then we can divide through by —4(N — 1). This gives: 

OE 
=— o ([lxill? — llyill?) ve 
oy: i 

(raz) 
+E lbs? - ysl?) x 

  ~ (Ill? — Ilya?) 

dAi 
1 

— Ils? = Ilys?) ys 
aA 

+2yiy} eS j Viyi N-12 /¥i 
Fi 

1 
— 2 yx, (Fa DD ») 

j4i 

1 < 
= ala Ss Yi; | Yi 

iAt 

1 
+2 (Fs 7 Eye) x 

Sift 

(3.12) 

(3.13) 

(3.14) 

(3.15) 

(3.16) 

(3.17) 

(3.18) 

(3.19) 

Now, since the value of the SSTRESS measure is only dependent on the inter-point distances, 

6 and d, we can centre the mean of the set of points x and y on the origin without affecting the 

overall geometric structure of the resulting map and hence the value of Z. Mathematically
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then, we have for large N: 

wail cy = E(x] = 0 

1 
Wei SS yj ~ Ely] =0 

xt 

where 0 represents the zero vector of the appropriate dimension and €[-] the expectation 

operator. This leads to terms (3.13), (3.16) and (3.17) vanishing. In addition terms (3.18) 

and (3.19) simplify to give: 

1 
Neal S yay} = Elyy'] = covly, y) 

ivi 
1 

WSi yg ~ Elyx"] = cov(y, x) 
ix 

where cov(a,b) represents the covariance matrix of the vectors a and b. The expression 

governing the minimum SSTRESS solution is therefore: 

Fe & (Nix? = lyst?) —2 only, 9) ys +2 cooly, x) 
1 

+ aq ilaslP — llys IP)  -¥s) 
fi 

=0 

This represents a general formula for the value of the map vector y; at the minimum SSTRESS 

solution, regardless of the nature of the input data x. However in this analysis we are interest- 

ed in the case where the input data is uniformly randomly distributed in a high-dimensional 

space. 

First consider the covariance matrix cov(y,y). If the input data x is uniformly randomly 

distributed about the origin, then the overall geometric structure of the set of map points 

y will be isotropic, since the problem is inherently symmetric about the origin. Therefore 

cou(y, y) is diagonal, and equal to: 

2 oy 0 
1 1 

cou(y,y) = es , = ya te = Wail 
i i 

Next consider the covariance of y and x, given by cou(y,x). If the dimension of the input 

vectors is p and the dimension of the map vectors is g, then cov(y, x) is a matrix of dimension 

q x p. Each element in the matrix represents the degree of association between particular 
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features of y and x. Thus, we have: 

Oh OR ot Oy : 
couly,x)=| 2 ¢ 2 GF 1 R= D YijTix 

; i 
a % rede w? 

where for clarity 0? represents oj,,. Since the input data x is uniformly randomly distributed 

about the origin and the set of map points is isotropic and centred on the origin, then the 

associativity between any two features of y and x is zero if p > q. Thus cov(y,x) is equal to 

the zero matrix for high-dimensional input data. 

Finally, consider the term: 

A Dlx? = llysl?) ys) 
I#i 

This can be expanded to give: 

P q 

(rh: Dy 7 aD ns) vi (3.20) 
j#i k=1 j#i k=1 

1 —  y (3.21) 
jAt 

1 
Rees (3.22) 

Fi 

For large N, term 3.20 simplifies to: 

(poz — 40%) yi 

Assuming the input data is uniformly (and independently) randomly distributed along each 

coordinate axis and of a high dimensionality (ie. p is large), then term 3.21 simplifies to: 

1 eh eae 1/2, en 1 if 
Fabs - abi (Ss Yj ™ Pos Wid a 

i#i i#i 

Finally term 3.22 is the third order moment, or skewness, of the distribution of map points 

y. This provides a measure of the asymmetry of the distribution about its mean. Thus if the 

map points are isotropic, then for large N we have: 

ub 
Wai Soyjyiys ~ ély'yy] =0 

It 

Thus, under the conditions outlined above, the equation governing the minimum SSTRESS 
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solution is given by: 

OE 
Oyi 
  R (iIxell? — lye?) ys — 205 ye + (D0 — 905) yi 

(llx« 11? — Ilya? +203 — (a+ 2) 05) yi 
0 

Ignoring the trivial solution that y; = 0, then we have: 

xi? — Ilys? + poz — (g+2) 0; =0 

Summing over all points i, gives: 

N 

DY (ill? = lye? +p03 — @ +2) 04) =0 
i=l 

lees yp 
> =P Ilya? -> > lx? = poz -— @ +2) 05 

Na No 

> qoy+ (q+2)o, = 2poz 

p : 
+ = se (6.23) 

Thus the variance of the map points is related to the variance of the input points by a factor of 

at Table 3.1 below shows the values of the observed and predicted variances for the two- 

dimensional configurations (q = 2) generated from data uniformly randomly distributed 

(o% = 0.0835) in unit hypercubes of varying dimensions p, as displayed in figure 3.3. The 

results indicate that the accuracy of the above relationship between o7, and o7, improves as 

the dimension p of the input space increases. This is not surprising however since the proof 

assumes the input data to be of a high dimensionality. 

Although equation (3.23) does not give an explicit form for the map configuration, it is possi- 

ble to give a heuristic justification for the emergence of artefactual “annular” structure with 

random high-dimensional input data. Whilst (3.23) shows that the map variance must be 

very small relative to the data variance, it is also required that data points lying in opposite 

corners of the hypercube be kept far apart in the map space. One way then of balancing 

these two contrasting requirements is to position the map points onto a circle. 

  

  

  

  

  

Dimension p | Number of Points N | 0; observed | 0; predicted | Percentage Error 

5 1000 0.166 0.139 16.4% 

10 1000 0.303 0.278 8.1% 

30 1000 0.864 0.835 3.4% 

100 1000 2.823 2.783 14%               
Table 3.1: A comparison of the predicted and observed variances. 
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3.4 Extending the Results to Metric Mps 

The various experiments considered so far have all utilised input data in the form of a set 

of high-dimensional data points. The distances between the individual data points are com- 

puted and the purpose of the mapping algorithm is to find a set of two-dimensional map 

points whose spatial configuration matches these inter-point distances as closely as possible. 

In this sense then, Sammon’s Mapping is the most natural interpretation of the mapping 

algorithm. 

As noted in Section 2.4.2, Metric MDs and Sammon’s Mapping are closely related. Whereas 

Sammon’s Mapping operates on a set of input vectors (which in turn describe a set of 

objects), Metric MDs is designed to work with proximity data which details the dissimilari- 

ties between the objects. Clearly it is possible to produce a dissimilarity matrix from a set of 

input vectors, simply by computing the inter-point distances, and then “use” Metric MDs 

to generate a low-dimensional configuration space. Although this will produce an identical 

solution to that resulting from a Sammon Mapping of the raw input data; the motivation 

behind MDs is to elucidate structure from data which does not live in an explicit data space. 

Thus it is more appropriate to think of performing Sammon’s Mapping on data composed 

of input vectors and Metric MDs on data detailing proximity values. 

Given this interpretation of the two techniques, it is desirable to see what insight can be 

gained about the nature of artefactual structure in Metric MDs from the results of the pre- 

vious sections. It is useful then to first compare the form of the SSTRESS measure in both 

Sammon’s Mapping and Metric MDs. This is given by: 

SSTREss = }> So (|x: — xj||? —d3;)? = $0 S063; - a)? 
i j>i i j>i 

It has already been shown that if the vectors x are uniformly (or normally) randomly dis- 

tributed in a high-dimensional space then the resulting SSTRESS mapping will exhibit a 

strong annular structure. Hence from an MDs perspective we can expect a similar result if 

the dissimilarities 6 correspond to the inter-point distances between such vectors. 

It is also useful to consider what interpretation can be given to the different distance metrics 

investigated so far, within a framework of MDs. Fora particular distance metric || .. . ||, the 

SSTRESS function is given by: 

sstress = )> > (63 == (B= Ilys — ysl)? 
i j>i s 354 

This function can be generalised to any arbitrary power n of the distance metric, to give the 

generalised SSTRESS function: 

SSTRESSn = )) > (6% — 3)” = JDO (65 Ilys — ysl")? 
i j>i a j>i 
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where the dissimilarities 5 are assumed to be spatial distances derived from the metric |] . . . ||. 

An alternative interpretation however, is to consider this measure as being a special case of 

the standard STRESS function, given by: 

STRESS = )> ) > (6ij — dig)” = D> D> (Sis Ilys — yall)” 
i j>i i j>t 

where the class of possible metrics is now taken to include any valid distance metric raised 

to a power n. In this way then, the SSTRESS measure can be viewed as a particular form of 

STRESS - employing the squared Euclidean distance metric. 

The advantage of this interpretation is threefold. Firstly it provides a more principled 

approach to the use of squared distances since they can be considered to be the result of 

using a squared metric, as opposed to an ad-hoc modification (to the STRESS function) to 

enable the optimisation to be performed by alternating least squares methods. Secondly it 

reduces the problem of Metric MDs to one of choosing just a distance metric (rather than 

a distance metric and an optimisation function), allowing the comparison of configurations 

produced by different metrics to be performed more easily. Finally no additional manipula- 

tion of the dissimilarity data is required (such as squaring, cubing, etc) since the dissimilarity 

values are assumed to be derived from the chosen distance metric. 

It is worth noting that this interpretation does not arise in Sammon’s Mapping since the 

spatial distances between the data points can be computed explicitly as || x; — x; ||. With 

MDs, it is the fact that only the dissimilarities are known, and not the input vectors x, that 

results in the various possible ways of interpreting the role of the metric in the procedure. 

This is an important but subtle distinction between the two techniques. 
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3.5 Application to Neuroanatomical Connection Data 

3.5.1 Introduction to Brain Connectivity and Scaling 

Research into neuroanatomy has established that the various gross structures of the brain are 

divided into a large number of different processing regions. Although the spatial position of 

these regions in the brain is now reasonably well known, the overall processing architecture 

defined by the inter-connection of the regions is less well understood. Knowledge of this 

processing architecture for a particular brain structure would reveal much important infor- 

mation about its operation and function. Therefore in recent years neuroanatomists have 

begun to catalogue a large number of the connections between the various regions in the 

brain. Such connectional data, as it is known, is often complex and uncovering structure in 

this data is an important and challenging problem. 

One technique which has been used for such analysis is Multidimensional Scaling. In par- 

ticular Nonmetric Multidimensional Scaling, or NMDS, has been applied to connection data 

derived from experimental investigations into the pattern of connections between regions in 

the macaque monkey visual cortex. This connection data typically details the type of the con- 

nection between two regions. Inherent in the use of Multidimensional Scaling to understand 

this data is the assumption that the type of the connection between two regions provides a 

measure of information about the proximity of these regions within the gross processing ar- 

chitecture of the structure under consideration. In particular, regions which are linked by a 

bi-directional or reciprocal connection are assumed to be closer together than regions which 

are linked by a one-way connection. Similarly, regions linked by a one-way connection are 

assumed to be closer together than regions which have no connection between them. 

Given this assumption then, the role of Multidimensional Scaling in analysing brain con- 

nectivity data is to derive a two-dimensional configuration which reflects the proximity 

relationships contained within the data. Such a configuration would hopefully reveal the 

topological organisation of the different regions and the overall processing architecture of 

the structure. 

However, there has been much recent controversy in the scientific literature as to the validity 

of the configurations derived with MDs, and in particular the extent to which the resulting 

maps are corrupted by artefactual structure. Given the preceding analysis of the artefactual 

structure problem and the results gained into the importance of the choice of distance metric 

in the error function, the aim of this section then is to investigate the configurations derived 

for one particular application of MDs to connectivity data (that of the primate cortical visual 

system) and research the extent to which previous results have been corrupted by artefactual 

structure. 
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3.5.2 Overview of Previous Work on the Primate Cortical Visual System 

The first person to apply techniques from Multidimensional Scaling to connection data was 

Young in 1992. He applied NMDs, with the SSTRESS measure, to a matrix of connections 

between thirty areas of the macaque monkey visual cortex [Young 1992]. This matrix of con- 

nections (which forms the input dataset) is shown in table 3.2, where each value refers to a 

particular type of neuroanatomical connection ?. The resulting two-dimensional configura- 

tion as derived from NMDs is shown in figure 3.7. 

By connecting areas which have a one-way or a bi-directional connection (as given by the 

connection matrix) with a straight line on the configuration map, it is possible to reveal 

the details of the underlying topological organisation of the macaque visual cortex. When 

Young carried this procedure out, he found strong evidence for the “two-streams” hypoth- 

esis of visual processing. In particular, he concluded that, starting from area V1, visual 

information flows out in two highly distinct and hierarchically organised streams (known 

as the dorsal and the ventral streams), as defined by the division and the ordering of the 

areas in the two arms of the configuration. The two streams then reconverge in areas A46 

and STPa, and the visual information is recombined here. In addition connections between 

2 The values in table 3.2 represent similarity values from which dissimilarities were generated as the input to the 
NMDs procedure. 
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Table 3.2: A matrix of connections between areas of the macaque visual cortex. Connections 
coded as ’2’ represent reciprocal or bi-directional connections, those coded as 1’ represent 

one-way connections (direction not indicated), and those coded as ’0’ represent connections 
which have been explicitly tested for and found absent or connections which are not present- 
ly known. In addition the matrix is symmetric. 
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Figure 3.7: Young’s configuration after applying NMDs (with SSTRESS) to the primate data. 
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Figure 3.8: Support of the configuration for the “two streams” hypothesis. 
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the two streams are much less dense than those within each stream. These observations are 

illustrated in figure 3.8. 

Of particular interest is the fact that the configuration has a strongly annular form. That 

such a shape is potentially indicative of artefactual structure in the configuration was first 

noted by Simmen, Goodhill and Willshaw. They produced NMDs representations of ternary 

dissimilarity matrices (ie. containing just the values 0, 1 and 2) in which the entries were 

assigned at random [Simmen, Goodhill, and Willshaw 1994]. As expected the resulting 

configurations revealed an annular form. A performance measure was then computed to 

provide some insight into the effectiveness of the configurations for capturing the underly- 

ing structure (or lack of) in the proximity data. This measure, termed RSQ, is the squared 

correlation between the input dissimilarities and the corresponding spatial distances in the 

configuration®. The values obtained with the configurations derived from random dissimi- 

larity matrices were found to be slightly less than the value obtained with Young’s configu- 

ration. Thus the authors concluded that although the visual system data is not entirely due 

to a random process, it is most likely that “Young’s configuration reflects a mixture of both 

genuine and artefactual structure”. 

3.5.3 Analysis of the Organisation of the Primate Cortical Visual System 

Given the results contained earlier in this chapter concerning the role of the distance met- 

ric in the derivation of configurations that exhibit artefactual structure, it is natural to see 

what insight can be gained into the degree of artefactual structure in Young’s configuration. 

Although a thorough comparison is not possible, since the previous results apply strictly 

to Metric MDS, it is nevertheless worthwhile examining the configurations generated with 

Metric MDS as the nature of the connection data may allow for the dissimilarity values to be 

considered approximately at the interval level of measurement and thus suitable for analysis 

by metric techniques. 

Configurations were therefore derived with Metric MDs using the standard Euclidean met- 

ric and also this metric raised to a number of different integer powers. For each particular 

metric, one thousand randomly initialised configurations were generated and these were 

then adjusted in order to minimise the error function as defined by the metric. The con- 

figuration with the minimum final error value was then chosen. The proximity matrix of 

dissimilarity values was produced by taking the matrix of connection values as given in 

table 3.2 and subtracting each value from the constant 2. In this way areas which were un- 

connected were assigned a dissimilarity of 2 and areas which were reciprocally connected 

were assigned a dissimilarity of 0 (the areas which were ‘one-way’ connected retained a 

value of 1). 

> An RsQ of 1 indicates a perfect solution and a value of 0 a completely uncorrelated solution. 
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In order to accurately compare each of the resulting configurations with that derived by 

Young, it was necessary to linearly transform the configurations using a Procrustes Ro- 

tation [Mardia, Kent, and Bibby 1997, Chapter 14]. This technique provides a method 

for aligning two configurations in an optimal least-squares sense. The Procrustes method 

allows for three types of transformation, namely: rigid rotation, reflection, and isotropic 

scaling. If both configurations under comparison had been derived from a Metric MDs 

procedure, then this latter operation of scaling would not have been appropriate since the 

procedure explicitly matches the spatial distances with the dissimilarities. However since 

Young’s configuration is the result of a nonmetric procedure (which only places importance 

on the ordering of the spatial distances), it could be isotropically scaled in the alignment pro- 

cess. Once the two configurations had been aligned, the residual sum-of-squares error (RSS), 

which gives a measure of the goodness of fit between the two configurations, was computed. 

Figure 3.9 shows the resulting configuration derived from Metric MDs trained to minimise 

the SSTRESS function, together with Young’s original configuration for ease of comparison. 

Since Young’s configuration was generated from the ALSCAL implementation of NMDs, 

which is designed to minimise the SSTRESS measure, this is the most accurate compari- 

son between the metric and nonmetric techniques. The metric configuration is very similar 

to Young’s configuration and it displays the same annular structure and hierarchical for- 

mations. Some regions are slightly displaced in the metric configuration (eg. V4, TF, PO, 

VIP) but this is not unexpected since the metric technique is less flexible than its nonmetric 

counterpart. This result therefore represents a reasonable justification for a comparison of 

configurations derived from metric techniques with the configuration Young derived with 

NMDs. The Rss value for the two configurations was 1.352. 

Figure 3.10 shows the resulting configuration derived from Metric MDs trained to min- 

imise the STRESS function. As expected the configuration is less annular in nature and the 

tight clustering of the hierarchies observed in Young’s configuration is less evident here. In 

addition there is more opportunity for cross-talk across the centre of the configuration, par- 

ticularly between the regions Vp, V4 and TF, which are all connected reciprocally. The Rss 

value between this configuration and Young’s was 2.606. 

Figure 3.11 shows the configurations derived with the Euclidean distance metric raised to 

the powers 3, 4, 5, and 6. For the powers 3 - 5 of the metric, the regions begin to cluster near 

to the corners of an equilateral triangle, as observed more directly with random input data 

in figure 3.5. For the power 6 metric, the region A46 is centred whilst the other regions tend 

towards the corners of the triangle. Due to the low number of regions and hence configu- 

ration points (N = 30), an accurate comparison with the maps of figure 3.5 is not possible. 

However the general structure of these configurations does appear to indicate the presence 

of a random component in the primate visual cortex connection data. 
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3.5 Application to Neuroanatomical Connection Data 

Overall these results indicate that there is a strong possibility that Young’s configuration 

contains a degree of artefactual structure and this artefactual structure manifests itself in the 

annular nature of the configuration. In addition the use of the STRESS measure with the stan- 

dard Euclidean distance metric is likely to result in a more accurate spatial configuration for 

this problem, and this configuration provides less favourable evidence for the “two stream- 

s” hypothesis of visual processing than Young’s SSTRESS derived configuration. The use 

of the NMDs technique with the standard Euclidean distance metric would provide further 

insight into this problem and is an area for further research. 
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Figure 3.9: Comparison of Young’s NMDs configuration with that derived from Metric MDs 
trained with the SSTRESS measure. 
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Figure 3.10: Comparison of Young’s NMDs configuration with that derived from Metric 

MDS trained with the STRESS measure. 
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Figure 3.11: Configurations of the Primate Visual Cortex data derived from Metric MDs 
trained with Euclidean distance metrics raised to different powers. 
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3.6 Conclusions 

This chapter has presented a detailed study into the problem of artefacts from topograph- 

ic mappings (in particular Sammon’s Mapping and Metric Multidimensional Scaling). It 

was shown initially that the presence and degree of artefactual structure is determined by 

the choice of distance metric. The SSTRESS measure was shown to give rise to an annular 

structure in the map space when trained on uniformly randomly distributed input data. In 

addition the map points around this ring were observed to become more tightly clustered 

as the dimension of the input data increased. 

However this error measure can be viewed as a particular variant of the standard STRESS 

measure which employs the squared Euclidean distance metric and it is this metric which 

is responsible for annular configurations from random input data. When analysed theoreti- 

cally it was found that the variance of uniformly randomly distributed input data is related 

to variance of the corresponding map data by a factor of ae where p is the dimension of 

the input space, q is the dimension of the map space and p > q. 

Mappings utilising the STRESS measure (with the standard Euclidean distance metric) were 

found to produce a more accurate spatial representation of random input data, although 

some slight curvature of the map spaces was observed. Higher powers of the euclidean 

distance metric were shown to result in clusters of map points located on the corners of an 

equilateral triangle. In addition it was noted that from purely theoretical considerations, the 

standard Euclidean distance represents the most natural choice of metric for the purposes 

of data visualisation. 

These results were then used to investigate a prominent and controversial use of techniques 

from Multidimensional Scaling in the analysis of the connectivity of regions in the macaque 

monkey visual cortex. It was found that the configuration derived by Young through Non- 

metric MDs with the SSTRESS measure was likely to contain a degree of artefactual structure 

which would not be present in a configuration derived with the STRESS measure. Thus it 

was concluded that the primate cortical visual connectivity data was likely to contain a ran- 

dom component which gave rise to the annular configurations observed with the SSTRESS 

measure, and as a consequence such configurations were not reliable sources of evidence for 

the “two-streams” hypothesis of visual processing in the primate visual cortex. 
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Chapter 4 

Conclusions 

4.1 Overview 

This thesis began by considering the properties that are necessary for a technique to be use- 

ful as a tool for the visualisation and exploration of high-dimensional data. It was noted 

that sucha technique must be capable of accurately representing structure present in the da- 

ta in the low-dimensional visualisation space, and in addition any structure which is present 

in the visualisation space should be representative of true underlying structure in the data 

space. Much research has gone into addressing the former point yet very little work has 

been performed concerning this latter (and equally important) point. The work contained 

within this thesis therefore is an attempt to redress this balance. 

4.2 Summary of the Key Results 

Since a detailed discussion of the main results of this thesis is presented in the conclusions 

to Chapter 3, only a brief summary of the key results will be provided here. These are as 

follows: 

e Low-dimensional maps derived from the minimisation of the SSTRESS measure with 

randomly distributed input data within a high-dimensional hypercube will result in 

configurations which exhibit an annular or circular artefactual structure in the map 

space. 

The use of the standard STRESS measure with a Euclidean distance metric provides the 

most accurate topographic representation of the original data and reduces the possi- 

bility of corruption by artefacts. 
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¢ The configuration of the gross organisation of the primate visual cortical processing 

system derived with Nonmetric Multidimensional Scaling (trained with the SSTRESS 

measure) is likely to be corrupted by a degree of artefactual structure. 

4.3 Directions for Future Research 

Perhaps the most significant and potentially beneficial area for future research is the ex- 

tension of the results conatined within this thesis to the technique of Nonmetric Multidi- 

mensional Scaling. Since this technique is much more widely used than Metric MDs, an 

experimental study into the problem of artefactual structure in NMDs configurations would 

be a worthwhile area for future research. 

Another area for future work is the extension of the results to the NEUROSCALE model, as 

described in section 2.4.3. Since the model is a neural network implementation of Sammon’s 

Mapping, it might be expected that its susceptibility to artefactual structure is similar to that 

of Sammon’s Mapping. However the influence of the relative supervision training algorithm 

and the generalisation property of NEUROSCALE provide new areas for research. 

Asa brief introduction to this topic, figure 4.1 overleaf shows the training and test set projec- 

tions for two NEUROSCALE models trained on 100-dimensional uniform random input data, 

one with the standard Euclidean distance metric and the other with the squared Euclidean 

distance metric. As would be expected, the configurations produced with the training da- 

ta are consistent with the configurations produced by the equivalent Sammon Mappings. 

However the projections of the test data are novel and worthy of further research. 
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(b) Squared Euclidean distance metric 

Figure 4.1: Training and test set projections for two NEUROSCALE models (each with 100 
hidden units, basis function width of 7.0) trained on 100-dimensional uniformly randomly 
distributed input data using different distance metrics. The training points are denoted by 
blue crosses and the test points by red circles. 
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Appendix A 

Derivatives of STRESS for Various 

Distance Metrics 

A.1 Overview 

This appendix details the derivative of the STRESS measure EF with respect to a particular 

map point y; for various distance metrics. For the general case, we have: 

B= OD (dij — dis)? 
i ji 

where: d}, = ||x; — x; || and dj; = || yi — y;I- 

The derivative of E w.r.t. y; is then given by: 

4 ais 
—=-9 2 A - 2 (di - ae (Aa) 

Thus it only remains to find the value of the term ee for different distance metrics. 

A.2 Euclidean Distance Metric 

Define the metric: 

1 

dij = llyi — ys ll = [Qa — yy)? + (Yee — vp)? ]? 

63



AS Power n Euclidean Distance Metric 

Then we have: 

  dij _ 1 ag | Zn] Lge 

  

yi 2° | 2(yis — yin) 
Odiy _ Yi- Yi > ais 
oy; diy 

Therefore: 

#4 
ae (a Jo -¥5) (A2) 
ee oe 

A.3 Squared Euclidean Distance Metric (or SSTRESS measure) 

Define the metric: 

diz = llyi — ys ll = (Ya — Yn)” + (Gia — Yja)? 

Then we have: 

2(yin — Yn) 

2(Yi2 — Yj2) 
: 

= Ay, ay: —y3) 

Therefore: 

= 49) (dij — 4) (Yi — ys) (A.3) 
o ra 

A.4 Power n Euclidean Distance Metric 

Define the metric: 

2 dij = ll ys — ys ll = [(ya — yr)? + (Yr — 2)? ] 

  

  

Then we have: 

Odiy =ie 2 2(yir — Yyr) 

yi 2 2(Yi2 — Yj2) 

> Gland i-y) 
Therefore: 

= -2n oan — di) (yi— ys) (AA) 
iFt 
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A6 Minkowski Metric: r = 3 
  

A.5 Minkowski Metric: r = 1 (Manhattan Distance) 

Define the metric: 

di; = |lyi — ysl] =l4a — yal + |yi2 — yy2l 

Then we have: 

ay _[ a 
Oy; b 

where : a=41, ifya >yj and : b=41, if yin > Yo 

a=-1, ifya <p b=-1, if vin <yj2 

Therefore: 

OE a 
—=-2 d?. — dj; AS =D a ¢| (A5) 

A.6 Minkowski Metric: r=3 

Define the metric: 

1 
di =|lyi— yall = [Iva —ynl + lye — vel]? 

Then we have: 

Le ene 
dy; 3° | 3b 

where: a=4+(¥a-va), ifva > and: b=+(vin—yye)?, if yi > vje 

a@=-(yi—yp)?, ifya <yp b=—(Yis—Yj2)", if Yin < Yj 

Therefore: 

  

OL ae is — Gig a 
ay; 2D ( a, vie (A6) 

ixt 
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