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Thesis Summary 

The aim of this project is to compare and contrast the performance of a representative set of 
boundary based shape classification models using a large and common data set. A range of noisy 
environments are considered to measure their performances in realistic experimental conditions. The 

effects on performance, such as the sampling algorithm, model order and classifier are also considered. 

Curvature and angle measurement based sampling methods have been shown to perform poorly 

in adverse conditions. The low order complex autoregressive (CAR) and complex partial correlation 
(CPARCOR) models have been shown to be robust in all noise conditions on even the most complex 
data sets considered in this project. The more complex model of a spatially-varying AR. process has 
been shown to be more sensitive to noise than the more simplistic linear AR models. A high order 
spectral AR model was also tested and showed inferior performance to the low order linear AR models. 

The simple Fourier descriptors (FD) showed the most robust performances of all but it is believed that 
they may perform less well when the data sets contain many similar shapes. Finally a wavelet-based 
model is presented and improvements in the model are suggested. 
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Chapter 1 

Introduction 

1.1 Background 

Many industrial applications make use of two dimensional shape classifiers, including aircraft iden- 

tification, classification of chromosomes, industrial part identification and hand-written character 

recognition. For real-time applications it is desirable to use only the object boundary information 

because of the reduction in data compared with the original 2D object image. It is for these reasons 

that the Pattern and Information Processing Group at DERA are interested in exploring the use of 

such techniques and their feasibility for real applications. This project was carried out as part of 

Technology Group 10 of the Ministry of Defence (MoD) Corporate Research Programme at DERA 

Malvern. 

‘The shape classification processes found in the scientific literature consist of four stages: edge 

extraction, boundary sampling, feature extraction and classification. A wide variety of sampling 

methods, features and classifiers have been found. The shape information is encoded in the features 

and common techniques include moment invariants, Fourier descriptors and time series models. All 

of the boundary based features and classifiers can be computed relatively quickly but with varying 

degrees of accuracy and robustness for classification i.e. some features will be more separable than 

others for a particular dataset, but with another dataset this may not hold. 

The performance of the aforementioned techniques can be significantly degraded by changes in 

the statistical characteristics of the imaging noise in cluttered environments. These changes may be 

  caused by varying atmospheric conditions or even the relative effect of discretisation errors. This   

suggests the need for a range of data sets and noise conditions to test the use of the features for 

classification. 
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1.2 Aims of the project 

Most of the articles in the literature present models evaluated in ideal conditions (i.e. shapes with 

noise-free, or very low noise, boundaries) and demonstrate each technique on small sets of well sep- 

arated data (in feature space). As the classification performance of any model is dependent on the 

data used, a common thread of data has been accepted by journal referees to benchmark each one. 

Usually only one or two well separated data sets are used to demonstrate each particular technique. 

This project aims to compare each technique as presented using a wider range of data, including 

the well separated benchmark data, in similar noise-free conditions and also consider boundary noise 

experiments to assess the performance and robustness of each one. The boundary noise experiments 

represent: more realistic and challenging tests to the robustness of the techniques. The work will be 

used to scope further work on this Technology Group 10 project at DERA. 

1.3. Overview 

Chapter 2 describes how the shape boundaries were extracted from an image, chapter 3 describes 

the boundary sampling algorithms tested in the experiments and chapter 4 describes the feature 

extraction techniques employed. Chapter 5 describes the experiments conducted and discusses the 

results. Finally chapter 6 presents the conclusions drawn from the comparative experiments and 

describes some on-going and future work. 

13



Chapter 2 

Extracting Shape Boundaries from 

Images 

2.1 Introduction 

The first task in shape classification, using grey level imagery, is to segment objects from the back- 

ground whilst maintaining a good representation of their physical shape. By segmenting objects from 

background noise we create a binary image where the objects are white and the background is black 

respectively. For high quality imagery where there is a high contrast between object and background, 

it is a simple task. But when parameters such as brightness, colour and texture are non-uniform, the 

task becomes more complicated. For the scope of this project, the shapes can be pre-processed so 

that they are noise free and converted into a binary image. Image segmentation is an active research 

area and many different approaches exist and are briefly described below. 

e Edge detection. Edge detectors produce a binary image containing the object boundaries. They 

operate by indicating significant changes in gradient in the grey levels with a connected unit 

width line. The main problem with edge detectors is that they tend to produce edge segments 

which aren’t necessarily connected, forming open boundaries. Further processing is required to 

  

close the boundaries, and the method chosen for doing this will depend on the particular data 

set. 

Segmentation by thresholding. Many thresholding schemes exist and some standard examples 

are fixed, multiple and variable thresholds. Perhaps the best known method of automatic fixed 

threshold setting is the histogram method. The threshold level is chosen to lie in a trough 

between peaks in a brightness histogram of the image. Problems with thresholding schemes 

occur in more complex images, where there are large variations in the grey levels assocaiated 

14
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with objects and background. For example, an object’s intensity could fade due to illumination 

effects. A global threshold is not usually successful, and so local thresholding schemes are often 

implemented. 

Segmentation by pixel classification. Region growing is an example of this method, where an 

initial classification of pixels is made and then the resulting groups of pixels are reassessed to 

see if the classification could be improved by merging groups. This process continues iteratively, 

gradually refining the membership of each pixel to the different groups. It is quite a complex 

process and computationally intensive, as each pixel is examined many times. 

2.2 Boundary Extraction 

For this shape classification study, the shapes were extracted and preprocessed so that they were in 

a controlled environment. Many of the shapes used were scanned from various articles using a HP 

scanjet 6100C scanner. The images were then filtered and converted to binary images using the Paint. 

Shop Pro?™ software package. The boundary extraction process is not central to the aims of this 

project so standard methods were used. More sophisticated boundary extraction techniques should 

be employed to implement this process in a real-world environment. 

The edges of the binary images were detected using a Laplacian of a Gaussian [1] edge detector. The 

edge detector works by convolving the image with a linear Laplacian of a Gaussian filter, producing a 

closed unit width line around object boundaries. The boundaries are then located and traced around 

in an anti-clockwise direction, converting the boundary coordinates into chain code format. Chain 

code is an efficient way of storing boundary information and consists of a stream of numbers describing 

ashape’s boundary. The first two numbers are the cartesian coordinates of the first pixel found when 

a shape is encountered while performing a raster scan of the whole image. The succeeding numbers 

consist of a sequence of code numbers, each one representing a boundary step in one of the eight 

directions relative to the current pixel. The boundary is traced for one complete circuit until the 

original point is returned to. Figure 2.1 shows an example of some chain code. The columns represent 

the first four elements of a series of chain codes. 

41 126 130 142 
154 191 126 207 
2 3 4 3 
0 0 0 0 

  

Figure 2.1: First four elements from each chain code 

The experiments described in chapter 5 considered many realisations of each shape at different 

orientations. The binary shapes were rotated by using the MATLAB image processing toolbox function
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(imrotate.m). The boundaries and chain codes were calculated at each orientation and saved so that 

each boundary could be recovered in an efficient manner. As the experiments were performed many 

times using the same data sets, the chain code representation greatly increased the processing speed. 

16



Chapter 3 

Sampling Points from Template 

Boundaries 

3.1 Introduction 

Sampling M points from a boundary consisting of N points in total is widely used in the boundary 

classification literature. The reason for its use is the reduction in computation required to describe 

a shape, compared with sampling all of the boundary points. It has been shown [2] that by careful 

selection of the number of sample points, sampling causes little, if any, reduction in classification 

performance compared with using all of the points. Sixty four sample points were commonly used in 

the literature and so sixty four sample points were chosen in our experiments (after confirming the 

sensitivity of classification performance to the sampling frequency in preliminary tests). In addition 

to reduced computation, sampling can also serve to smooth the inevitable digitisation noise. 

Various sampling techniques exist including equal angle sampling [3], equi-spaced radial distance 

sampling [4], equi-spaced complex coordinate sampling [5], equi-spaced curvature sampling [2] and 

equi-spaced polar coordinate sampling [6]. Each sampling scheme has been implemented and used in 

our comparative experiments. Below is a detailed description of the schemes. Each scheme assumes 

that the boundaries are closed and are traced around by a boundary following algorithm [3]. In order 

to sample the boundaries of the binary images used in our experiments, they are traced around using 

a boundary following algorithm [3]. 

3.1.1 Equal angle sampling 

The radial distance, measured from the centroid of a binary shape to the boundary, is sampled each 

time the boundary follower crosses any of the N angularly equi-spaced radial vectors. The radial 

vectors are projected from the centroid of the shape. Figure 3.1 shows the series of radial distances 

ald
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aN
 

12   
Figure 3.1: Illustration of the equal angle sampling sequence 

sampled sequentially from points 1 through to 14, with no reference to the angle at which they were 

calculated. Note that although there are eight radial vectors in figure 3.1, there are fourteen sample 

points. As sixty four sample points were specified for our experiments, sixty four radial vectors were 

used. The precise number of sample points depends on the nature of the boundary (e.g. whether the 

boundary is convex) using equal angle sampling. 

It could be envisaged that sections of a boundary will consist of straight lines and certain rotations 

of the boundary may cause consecutive points of a line segment to intersect a single radius vector. It 

is desirable to have just a single sample per radius crossing, as a further rotation of the boundary will 

cause the radial vector to no longer intersect consecutive points. This would produce samples which 

are not invariant to the boundary orientation, as different sequences could arise from sampling the 

same shape at different orientations. To overcome the problem of colinear points, Dubois and Glanz [3] 

proposed that only one radius vector/boundary intersection be allowed between consecutive boundary 

points and a particular radius vector. The start. point of a sampling sequence is not considered to 

be important for developing features but the sample values and ordering are, so if the boundaries 

are sampled in a consistent manner the samples will be invariant to the shape orientation. In our 

experiments the image was raster scanned until a boundary pixel was encountered. 

Equal angle sampling is an extension of an earlier model where the boundary is blindly sampled 

at all radial intersections i.e. radial vectors are consecutively examined for boundary crossings and 

sampled at each one; some vectors may have more than one crossing if the boundary is non-convex. 

This restricted the application to convex shapes only so that each sample is single valued, as multi- 

valued samples would not be compatible with some feature extraction methods. The equal angle 
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CHAPTER 3. SAMPLING POINTS FROM TEMPLATE BOUNDARIES 

method allows for non-convex boundaries, so that the sampled sequence is invariant to shifts (as the 

radial vectors are measured with respect to the shape centroid) and rotations (produces a shifted 

sample sequence from the original non-rotated sample sequence). However, after sampling by this 

method the original shape can no longer be reconstructed due to the lack of phase information. This 

means that the samples could be sampled from different shape boundaries. 

3.1.2 Angle of variation sampling: radial distances 

This method consists of sampling the shape boundary at N equi-spaced distances, resulting in a 

polygonal approximation of the original shape. At the i’th vertex of the polygon the distance of the 

  

Figure 3.2: Polygonal approximation of boundary by equi-spaced sampling 

boundary point i, (#;, yi), from the centroid of the object, (x2, yc), is computed by: 

7 = V (ie)? + (Yi — Ye)? H=1,--+,N (3.1) 

Figure 3.2 shows 36 equi-spaced samples. Angle of variation sampling is also invariant to the orienta- 

tion of the shape and is able to sample non-convex boundaries. Again the original boundary cannot 

be reconstructed from the samples due to a lack of phase information. 

3.1.3 Angle of variation sampling: complex coordinates 

This method sequentially samples the boundary at equi-spaced distances, again forming a polygonal 

approximation of the original shape. At each vertex the coordinates of the boundary pixels are sampled 

with the origin positioned at the centroid of the binary shape. The coordinates are represented as 
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complex numbers given by equation 3.2. 

% = (ti — Le) + j(Yi — Ye) (3.2) 

This approach circumvents the problems discussed with the previous approaches as they are caused 

by representing a 2-D time series (a boundary) as a 1-D one i.e. the extra phase information contained 

in these samples allows the polygonal approximation of the original boundary to be reconstructed. 

3.1.4 Angle of variation sampling: curvature measure 

Again the boundary is sequentially sampled at equi-spaced distances forming a polygonal approxi- 

mation. The angular change of a boundary tangent is calculated at each sample point producing a 

sequence of curvature measures. The curvature of the boundary can be represented by the difference 

between two consecutive tangents calculated in a window of length w, given by equation 3.3. 

i — Zi-w Ti-1 — Ti-1-w 

This is illustrated in figure 3.3. Again the original shape cannot be reconstructed from the samples 

  

&G-DyG-D)       

     
GOO) Ew) yw) “EZ 

(x(-1-w),yG-1-w)) 

Figure 3.3: Two consecutive tangents of a boundary 

due to the lack of phase information. It would be thought that this sampling technique would pro- 

duce samples that are greatly affected by boundary noise. Curvature sampling has been successfully 

demonstrated in the literature [2], but was not tested in noisy boundary conditions. It is for this 

reason that curvature sampling has been included in our experiments. 
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3.1.5 Angle of variation sampling: polar coordinates 

Eom [6] used a sampling method by again sequentially sampling at equi-spaced intervals along the 

boundary, but computed the polar coordinates of the samples, as given by equation 3.4. 

= -1( ¥i7 Ve = 2 2 6; = tan“! ( >" } , r; = V(ai — 22)? + (yi — ye) (3.4) Lj — Ze 

Again, it would be expected that angular measurements would be affected by boundary noise to a 

much greater degree than radial measurements. As no results have been published using this technique 

in noisy conditions it is included in our experiments. As these samples contain phase information, the 

polygonal approximation of the original boundary can be reconstructed. 
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Chapter 4 

Feature Extraction Techniques 

4.1 Introduction 

A large amount of study has been devoted to two dimensional classification methods based on au- 

toregressive (AR) models, Fourier-based descriptors (FD) and moment invariants. Several approaches 

based on AR. and FD methods are described in [2], along with a wavelet moment-invariant technique. 

The AR and FD techniques use only information from the sampled boundary, whereas moment in- 

variant techniques use the whole silhouette for feature extraction. The aim of having many types 

of boundary representations and models from which to derive features is to objectively evaluate the 

performances of the different approaches. 

4.2 Fourier-Based Descriptors 

The boundary sampling methods described in chapter 3 represent a boundary in the spatial domain. 

By simply taking the discrete Fourier transform (DFT) of the samples, a boundary can be represented 

in the frequency domain by a complex set of numbers, the Fourier descriptors (FD). The lower fre- 

quency descriptors describe the general outline of the shape, whereas the higher frequency descriptors 

describe the smaller details of the shape. The DFT is defined by, 

Imes ees 
F)=5 YS a(n)er™ (4.1) 

n=0 

where F(k) is the DFT of a periodic complex sequence x(n), (n = 0,---, N —1). The first sample, 

F (0), is called the DC component, equal to the average of the input series. 

The descriptors are translation invariant due to the form of the boundary samples (measurements 

taken with respect to the shape’s centroid), orientation invariant as the absolute values of the FD’s 

are used and scale invariant as the absolute values are normalised. 
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4.2.1 Curvature Fourier method 

The angle of variation method is used to sample the boundary sequence, at each point measuring 

the curvature. Because the samples are real, the discrete Fourier transform (DFT) of the sample 

sequence produces Fourier descriptors which are the same in both the positive and negative axes. 

The curvature Fourier descriptors are then obtained by dividing the absolute values of the positive 

frequency components by the absolute values of the DC component, 

Al. [Fwl]” 
= [IR TRal e4) 

4.2.2 Radius Fourier method 

    

The radius Fourier method is similar to the curvature Fourier method except that at each sample 

point, the radial distance measured from the centroid of the shape is computed. As for the curvature 

Fourier method, the DFT of the sample sequence produces FD’s of the form of equation 4.2 

4.2.3 Contour Fourier method 

‘The contour Fourier method uses the complex coordinate angle of variation sampling method to sam- 

ples the complex coordinates at each sample point. The complex coordinates of the shape boundary 

are directly transformed into the frequency domain by the DFT. As the input is complex, the negative 

frequency axis is needed, but the DC component depends only on the position of the shape, so it is 

not needed. The first non-negative frequency component is used to scale the values of the rest of the 

descriptors, as shown below: 

  (4.3) 

9 

Fogel (Fal Wal Fal 
ine A al el 

4.2.4 A-Invariant method 

In the same manner as for the contour Fourier method, the complex coordinates of the shape boundary 

are sampled using the angle of variation scheme and are directly transformed into the frequency 

domain by the DFT. The Fourier coefficients are then normalised (to remove the effects of affine 

transformations), producing a feature vector of the form: 

7 
a= [Age |A-ab lil Ag] (4.4) 

where A; is given by, 
_UV-VUE oN N A= Tae i=-(F-1), az 

where U is the DFT of the x components of the boundary coordinates, V is the DFT of the y 

components-of the boundary coordinates and p is a constant (e.g. p = 1). 
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4.3 AR-Based Descriptors 

4.3.1 Introduction 

Time series models have recently been used for the purpose of shape classification. An autoregressive 

model expresses each sample in a time series as a linear combination of previous samples plus an error 

term. Boundary samples can be thought of as an ordered set of data, or time series, and these data 

can be used in an AR model to produce model coefficients which can be used as features for shape 

classification. 

4.3.2 Radius AR method (1) 

Dubois et al [3] continued the work of Kashyap et al [7] using the equal angle sampling method to 

extract boundary information from shapes. The boundary samples were treated as a time series and 

an AR model was fitted. 

Because boundaries are sampled circularly, the time series are periodic i.e. r(t) = r(N +t) for 

t=1,...,N where, r(t) is a boundary sample at time t and N is the total number of samples describing 

a closed shape boundary. The general form of an AR-model is given by, 

m 
mr =a+ ars + VBE (4.5) 

jal 

where 7 is the current sample at time ¢ from the time series, r;_; is the sample at lag j behind the 

current sample, 6; are the model coefficients to be estimated from the observed time series, m is the 

model order, a is the constant to be estimated, Be; is the current error or residual and e; is a random 

sequence of independent samples with zero-mean and unit variance. 

The variance of €;, is equal to one, therefore fe; has a variance of 8. So B can be estimated as 

2 
N m 

eS x SS (: a= Sen) (4.6) 
t=1 j=l 

and the unknown parameter, a, can be estimated as 

= 

The parameter a is therefore related to the mean radial distance length, 7, and so is indicative 

of the size of the shape. As V/@ is related to the noise of the radial vector sequence, a//B gives a 

signal to noise ratio. The coefficients {1,---, 4m} model the correlated shape variations and so they 

describe the shape of the boundary, irrespective of the scale of the shape. The feature vector therefore 

takes the form of a = [01,62,---,0m,0/VB]’. 
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The model parameters are estimated by fitting the model to the observed time series. The method 

of least squares is used to find the model parameters that minimise the expected value of the square 

error [3], as given by equation 4.8. 

a1 
iN’ 63 N N 

4 Birt > Dirreitem eater Deer teat 

= ae eles (48) 
9m Veet Mm Drei Tt-mrt 

N N N 
a Diet Tint | oa fie N Dita" 

Equation 4.8 is of the form x = A~"b. In order to compute the inverse of A for these experiments, 

Matlab’s (inv.m) function was used. This uses the method of Gaussian elimination to compute A. 

If A is near singular, the algorithm can be susceptible to round-off error. If this occurs a warning 

message is printed. As no such messages were encountered, as A was non-singular, (inv.m) was used 

for these experiments. 

In practical applications an alternative would be to use (midivide.m), which will solve x = A~1b 

by Cholesky decomposition [8] [9] (assumes A is symmetric, has positive diagonal elements and is 

positive definite) which is faster and more numerically stable than using Gaussian elimination. 

4.3.3 Curvature AR method 

The curvature AR. method uses the angle of variation sampling method, computing the curvature 

function at each sample point. The samples collected from one circuit of a shape boundary gives the 

time series, which is again assumed to be circular. The AR model coefficients are computed by using 

the least squares method as shown in equation 4.8. The feature vector is defined as, 

a 
2S [01,025-++,8msca/V/B] (4.9) 

4.3.4 Radius AR method (2) 

The radius AR method uses the angle of variation sampling method, computing the radial distance 

from the centroid of the shape at each sample point. The samples collected from one circuit of the 

boundary are assumed to be circular. The AR model parameters are estimated by the method of least 

squares and the feature vector is defined by equation 4.9. 

4.3.5 Complex AR method 

The complex AR (CAR) method models the complex coordinate sequence, evaluated at each sample 

point using the angle of variation sampling method. The sequence is treated as a circular one so that, 
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j= Lj4Ny Yj =Yj+n and z; = 2; + iy; = zj4n. The complex AR model is an extension of the real 

AR model, 

  

m 

Yi agzjn tf (4.10) 
kel 

where df is a random sequence of complex samples with zero mean and unit variance. The complex 

AR. coefficients are estimated by least squares error [5] so that the mean squares error ¢?(m,a) is 

minimised, 

(ma) = Ejllef||? =a" R(n)a —77 a —a? +15 (4.11) 

where @ = [a1,-*+,@m]", 7 =[r1,-++,tm]", re = Ej(zj2j-x) and 

To 71, T2, ty Fm-1 

"1, T0, Ti, +7) Tm—2, 

R(m) = 125 "1, To, 7) Tm-3 (4.12) 

EL ee 

Tm-1) Tm-2) Tm-3; ***s To 

The CAR coefficients {a,}/_, minimising the mean square error are obtained by, 

a=Rr (4.13) 

The real and imaginary parts of the complex AR coefficients are used as separate features, as shown 

in equation 4.14 below: 

x = [re(0;), im(01),-++,7€(Om);im(Om)]” (4.14) 

If the shape is rotated by an angle @, then the complex autocorrelation coefficients become rfiratet = 

Ej{e'z;.e~ z;_,} = rx, so R(m) is rotation invariant. Therefore from equation 4.13, it can be seen 

that the CAR model coefficients are also invariant to rotations of the shape. By the definition of 

complex autocorrelation coefficients, they are also independent of the initial sampling point on the 

boundary. The CAR coefficients are also invariant to shifts as the boundary samples are measured 

from the centroid of the shape. 

To make the CAR coefficients invariant to the scale of a shape the number of boundary sample 

points should be kept constant. If the size of the shape changes by a factor p, each of the boundary 

samples becomes pz;. Therefore r,, R and r become p?r;, p?R and pr respectively. The CAR 

coefficients are then obtained from (p?R(m))~!(p?r) = R-!(m)r. 

4.3.6 CPARCOR method 

Real partial correlation (PARCOR) coefficients are often seen to be more useful in speech signal 

processing than real AR coefficients [5]. A real PARCOR coefficient of order m is defined as a 

correlation coefficient between forward and backward prediction errors in the real AR, model of order 
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(m—1). 

Extending this theory, complex partial correlation (CPARCOR) coefficients, pm, of order m can be 

viewed as a complex correlation coefficient between forward prediction errors {e/ (m — 1)} (complex 

form of prediction error in equation 4.5) and backward ones {e?} in the CAR model of order (m — 1): 

By (ef (m = Dez a(m — ») 

© {EE (m= Dee (m= NEE mln — Dee, — HE 
  (4.15) Pm * 

where, 
m-1 

Ce 3 beZi+k 
k=1 

The CPARCOR coefficient p, is the same as the CAR coefficient a,, of the CAR model of order m. 

CPARCOR coefficients {p,}/";' of the CAR model of order (m — 1) are the same as those of order 

m because only one CPARCOR coefficient p,, is obtained from the model of order m. A recursive 

algorithm for computing CAR and CPARCOR coefficients is presented in [5] that is faster than the 

least squares solution. To denote order explicitly, notations such as a(m) and r(m) are used to denote 

aandr. 

The CAR coefficient a; of the CAR model of order 1 is given by, 

a(1) =ri/ro (4.16) 

For model orders greater than two, R(m) is given by, 

a eee: mee 

  

(4.17) 
r(m—1)}, To 

where r(m — 1)! and r(m —1)* represent the reversed order elements of r(m — 1) and the transpose 

of r(m — 1), respectively. The CAR coefficients of order m is given by, 

a(m) = ROP a) (4.18) 
Pm 

and the CPARCOR coefficient of order m is shown to be, 

Pm = (Tm — (m — 1)ta(m — 1))/(ro — r(m — 1)" a(m ~ 1)) (4.19) 

By recursively computing equations 4.16 to 4.19 the CAR and CPARCOR coefficients can be deter- 

mined using the fast algorithm. Similarly for the CAR coefficients, the CPARCOR coefficients are 

complex valued and the real and imaginary parts are used as features as in equation 4.14. 

4.3.7 A Spectral AR Model 

The spectral AR. method of Eom [6] models the polar coordinate sequence evaluated at each sample 

point using the angle of variation sampling method. The series of samples collected from one complete 
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circuit of a shape’s boundary is again assumed to be a circular one. The angle sequence is treated as 

a separate sequence to that of the radial distance sequence and linear AR models are fitted to both 

sequences by the method of least squares, as shown in equation 4.8. Applying the z-transform to both 

sides of equation 4.5 gives: 

A(z)R(z) = a + VBe(z), (4.20) 

where R(z) and ¢(z) are z-transforms of r(t) and € respectively. A(z) is given by, 

A(z) =1- 6272 —----—Oq27™. (4.21) 

The general order power spectral density S,(w) of the process r(t) is estimated by [10]: 

A B 

Sle) = Fm Ae) (4.22) 

Spectral analysis has been used to estimate the spectrum of stationary stochastic processes [11]. Many 

stationary stochastic processes can be approximated by a sufficiently high order AR process. Eom 

used an AR(20) model to demonstrate this model. This approach tends to give a smooth spectrum 

and it can also pick out narrow peaks in the spectrum [11], provided that the AR process is of a 

high order. Eom [6] states that the roots of A(z) are related to spectral peaks and can therefore 

be used as features for classification. As the roots of A(z) are real, the roots will be complex and 

occur in conjugate pairs. The roots of the AR polynomials A(z) for the set of radial distances, r(t), 

and the set of angles, 6(t), are estimated independently to form the feature vectors, r1,---,rp and 

S1,°**,8p respectively. The DC components of the power spectral densities, given by the real roots 

of the AR. polynomials, are a function of the average length and angle of the series respectively. 

Each complex root has a corresponding conjugate, and only one root out of the conjugate pair is 

needed in the feature vector, so those roots with positive imaginary components are retained and 

rearranged by angular frequency. The feature vector is then formed by combining the two sets of 

ordered complex roots. Therefore we have p complex features from 2p complex roots. By treating the 

real and imaginary components as independent real numbers, the feature vector will consist of 2p real 

numbers, £1,°**, 2p. 

Finding all of the roots of a polynomial is a classical problem in numerical analysis and has 

been widely studied [9]. The root finding algorithm (roots.m) was used to compute the roots of the 

polynomials. The algorithm calculates the eigenvalues of a companion matrix A, where the eigenvalues 

are the roots of the characteristic polynomial P(x) = det{A — xI]. The characteristic polynomial of 
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the special m x m companion matrix, 

lt xe C8 i) A te ae 
Om +1 Am+1 Am. Am+1 

1 0 =r 0 0 

A= 0 1 ier Oh 0 ; (4.23) 

0 O 0% 2 0 

is equivalent to the general polynomial, 

mt. 

P(z) = Yo aint, (4.24) 
i=1 2 

see [9, ch. 9.5] for a more detailed description. 

4.3.8 Non-stationary AR Modelling 

Paulik et al [4] observed that there is no reason to assume that shape boundaries are produced by 

a stationary AR model. Cases where complicated boundaries are very similar and need to be clas- 

sified separately, consideration of the possible non-stationary character might provide more accurate 

boundary modelling, leading to improved classification. 

This method [4] represents the radial distance boundary samples, sampled with the radial angle 

of variation method, as a non-stationary random process which is the output of a spatially varying 

circular autoregressive (SVCAR) linear system whose model coefficients can be expressed as a trun- 

cated function expansion. The features derived from this scheme are invariant to scaling, translation 

and rotation. A SVCAR model can be expressed as: 

M 

r(n) = Yo ai(t)r(t - t) + VBu(t) (4.25) 
i=l 

s(t) = r(t) + b(t) (4.26) 

where M is the model order, /Sw(t) is a random noise sequence with zero mean and variance {, s(t) 

is the original radial vector sequence, b(t) is a non-stationary mean and r(t) is a zero mean sequence 

formed by subtracting b(t) from s(t). 

The spatially varying parameters, a;(t) and b(t) are expressed as a finite sum of known time 

functions. Due to the circular nature of the boundary samples the discrete Fourier series (DFS) basis, 

given by equations 4.27 and 4.28, is shown to be optimal by Paulik et al [4] 

a 
a(n) =) aigel2**r/") (4.27) 

io 
« a 3 

O(n) = S> byelrhr/™) (4.28) 
k=0 
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The point at which the sampling of a given shape is started affects the coefficients by and aig. 

This can occur if the boundary sampling is started at the uppermost point in an image frame but the 

shape has been rotated from it’s original angle. Given an unshifted boundary sequence, s(n), and a 

shifted boundary sequence, s'(n) shifted by A (i.e. s'(n) = s(n + A)), then s'(n) = r'(n) + b'(n). It 

has been shown [4] that bj, = b.e¥?*#4) and al, = ajelJ?"*4/N), where k = 0,--+,q. Using the 

DFS as the basis set, the harmonic amplitudes for the sets of coefficients, (b,, aix) and (bj, a/,), are 

identical and the phases only differ by 2tkA/N. Out of all the possible basis sets possible, only the 

DFS allows a simple relationship between the model coefficients estimated from shifted versions of the 

same sequence. 

Using DFS basis functions, the parameters are estimated as a prediction error minimisation prob- 

lem. To estimate the non-stationary mean, b(n), the mean approximation coefficients must be com- 

puted first. As the DFS basis is an orthogonal family, we have 

q 

Fn = So bet anenN (4.29) 
k=0 

1 N-1 

i= y Se s(n)e(-J2"kn)/N (4.30) 
n=0 

A real regeneration formula for bn may be derived by using the properties of DFS coefficients for 

real sequences, given by 

b(n) = bo 2 (<acos (=) = dgsin )) (4.31) 
kai 

  

where cj, and d;, are the real and imaginary components of 4.30. The stationary mean, r(t), can then 

be calculated using equation 4.26 and the coefficients, aj, may be estimated. The estimator of r(n) 

is given by 
M q 

F(n) => (= nacre) r(n—i) (4.32) 
i=1 \k=0 

If w=2n/N, then 

¥i(n) = [r(n — i), e#™r(n = i), 7r(n ~1),--- eM r(n — ad], (4.33) 

o(n) = [¥a(n)”, Yo(n)",---,¥ia(n)"], (4.34) 

8 = [a10, +++, @1g,420,***,@29,°**,@M05--- gl’ (4.35) 

$= [(),42),---, eN)I", (4.36) 

and 

—a = [r(1),7(2),---,r(N)]". (4.37) 

The prediction error is then given by 

e=Sb+a (4.38) 
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where 6 is an array of estimates of SVCAR time-invariant modelling coefficients. Minimising the 

squared prediction error, €”¢, gives 

S56 =-STa (4.39) 

The least squares estimate of 6 then gives 

6 = ($7S)-1(-STa) (4.40) 

Finally the residual variance is given by 

I 

N 

B= ED Urln) — omy"). (4.41) 
n=1 

If the boundary sequence is described by the SVCAR model, then the following features are invariant 

to translation, rotation (starting from same sample point) and scaling: the model coefficients, ajx, 

and the spatially variant mean coefficients, b,, scaled by the residual standard deviation, /2, giving 

by / VB, where O<k <q. 

To make the features invariant to rotation starting from any sample point, as it is desirable for 

classification, an optimal shape matching algorithm which determines the degree of shift (A) between 

two shape boundary sequences can be used [4]. A performance index which compares the SVCAR 

parameters for the original and shifted starting point sequences is given by: 

# pie no 1,2 
w(ay= > {ls & etutdyy| A Joie 2 etka, | \ (4.42) 

k=1 i=l 

where A is the estimated sequence shift. The primed coefficients relating to the shifted sequence 

are multiplied by a phase shift term, so when the estimated shift corresponds to the actual shift the 

primed terms cancel the corresponding unprimed terms. To find the estimated sequence shift, J(A), 

equation 4.42 is differentiated with respect to A, giving 

  

6d 2 4 2 M B 3 M : 
an » Qwk { sin(wkA) [Pom + Acoma —cos(wkA) [Perini + » Axsindix| > =0 

(4.43) 

A modified version of 4.43 is given by 4.44 

g 

F(A) = SO (gesin(wkA) — hycos(wkA)) (4.44) 
K=1 

where, 
M 

a= ! Re (oe) A Sve )| (4.45) 
i=1 

M 

Ie = : Im (oxi) + Yse))] (4.46) 
i=1 

Equation 4.44 is a simple sum of sinusoids, with q harmonics and therefore a finite number of zeros. 

The maximum frequency in 4.42 is q/N, so 4.44 will have only one zero crossing in any half-period, 
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N/(2q). Once all of the zeros have been found the objective function J(A) can be evaluated and the 

minimum point chosen as A. The feature vector can then be multiplied by exp(—j2mkA/N) prior to 

classification. This feature vector is then fully rotation invariant. 

4.4 A Wavelet Shape Descriptor 

4.4.1 Introduction 

Hu [12] first presented a paper using a moment based model to recognise shape silhouettes in 2D 

images. Since then many adaptations have been published in the literature. Prokop and Reeves [13] 

presented a survey of many of the pertinent techniques. Geometrical moments of an image are deter- 

mined by integrating the image function over space, so that the image can be uniquely determined by 

its geometrical moments of all orders. Low order moments can be used to classify significantly different 

shapes as the moments are designed to capture global information about an image. However if the 

shapes are similar or are corrupted by noise, the techniques are thought to give poor classification {14}. 

Shen and Ip [15] have used wavelet moment invariants to capture global and local information from the 

shape of interest in an image and showed the performance improvement over other moment invariant 

shape classification techniques. 

4.4.2 General moment invariants 

If f(x,y) represents a binary image using cartesian coordinates, then f(r,@) represents an image in 

polar coordinates, where « = r cos and y = r sin®. A regular moment can be defined by equation 4.47 

mon = ff 20 fe w)dody (447) 

Translation invariance is achieved by computing the centroid of the shape and shifting it to the centre 

of the image. Scale invariance is achieved by the use of a scale factor, a = /moo/E|moo]. The 

coordinates are then scaled by («/a,y/a). Representing equation 4.47 in the polar domain, 

n= / i F (7,8) gp (reir dr dB (4.48) 

where F;,, is the pq-order moment, gp(r) is some function of radial distance r and p and q are integers. 

If the image f(r,@) is rotated by an angle 8, then the moment becomes FRetated — FL ei98. As 

||FjRetated|| — | /F Rotated FrRotated)+ — || F,,||, the moments are rotation invariant. 

In order to reduce the feature extraction process from a 2D to a 1D problem, equation 4.48 is 

rewritten as 

Fon = f Sa(r)op(o)rar, (440) 
where S,(r) = J f(r,0)e?%, so Sy(r) is now a 1D sequence dependent on r. The form of gp(r) 

determines the type of moment invariant model. If gp(r) is defined across the whole range of r, as for 
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most geometric moment invariants, then F,, is a global feature, whereas if 9p(r) is defined locally then 

Fyq is a local feature. This drove the development of the wavelet moment invariant, as the wavelet 

transform is able to provide both position and scale localisation. 

4.4.3 Wavelet moment invariants 

If gp(r) is replaced with %mn(r), where tmn(r) is a wavelet. basis function defined along a radial axis 

at any orientation and m = 0,1,2,3,n =0,1,---,2™*! and q =0,1,2,3 then equation 4.49 becomes 

Wrage) =f Sy(0)< Umar dh (4.50) 

The ‘well-known’ wavelet basis function family can be represented as, 

vr) = Zev(2*), (451) 
where a is a scale parameter and b is a shifting parameter. We used a biorthogonal B-spline mother 

wavelet as it is close to the forms of other polynomial moments and its use was demonstrated by Shen 

and Ip [15]. See figure 4.1 for the shape of the mother and father wavelets. The scale parameter is 
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Figure 4.1: Mother and father biorthogonal wavelets 

chosen so that a = aj", where m is an integer and the shift parameter is chosen so that (r — b/a) 
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traverses the whole range of r, given by b = nbgaf'. The parameter r ranges between 0 and 1, so ao 

and bo are set to equal 0.5 and m and n are constrained as shown in equation 4.52, 

a=a%, m=0,1,2,3 
(4.52) 

b=nboaj', n=0,1,---,2™+1 

So the wavelet: defined along a radial axis is given by, 

Yin (r) = 2/2y(2™r — 0.5n) (4.53) 

As there are many more feature coefficients for this model than for the previous models, Shen and 

Ip [15] suggested the use of a feature selection algorithm to identify the most discriminative ones. 

It is desirable for discriminative features to have a small intraclass variance and a large interclass 

separation. Shen and Ip demonstrated the following univariate method which is easily implemented 

and was sufficient for their experiments. 

If the mean of each feature || Fyy47¢**|| for shape 5; is m(S;, ||Fu4vél*t||) and the standard deviation 

is o(Si, | eareteti(), estimated from NTS training samples, then the inverse of the between-to within- 

class variance ratio is given by, 

n(o(Sis|Fnsng Il) + 0(S5,lFmong ll) 
(Si, Pasay) = mS), ease) * mynd mynd 

QU Fina Ib SisS3) = n= 3.0 (4.54) 

Q(\|Fnarelet||, S;,9;) indicates the effectiveness of feature lEwarelet|| to discriminate between shapes 

S; and S;. If the features are assumed to be normally distributed then the probability of a class 

conditional variable occurring between [m—3+0,m-+3+o] is 99.8%. So the smaller Q(||Fv4vel*"||, S;, Sj) 

is, the greater the ability of feature ||Fw4”«l*t|| to discriminate between shapes S; and $j. If Q < 1, 

then ||F,4¢4'*"|| is almost certain to be able to discriminate between S$; and S;. The feature selection 

algorithm computes QF eavelt||, 5:55) for each feature over all Neiass classes and selects those 

features with Q(\|Finaree'||,S;,5;) <1. A discrimination number, NDD(\jFuavlet||), reflects the 

feature’s ability to discriminate between pairs of classes, 

Netase Netass 

NDD(|lFmoe)= >> dS w(Qceavelet|l, S:,$5)) (4.55) 
1 j= jKi 

where w(x) = 1 if 2 < 1, else w(x) = 0. For each feature the worst overall discriminative measure is 

calculated by, 

QUT (ll Frneng |) = MAT <i,j<Netaoesi¢s {Q(LFimincg lh Sin 53) W(Q( Fina tll, Sis S3))} (4.56) 

from the set Q(||Rwavel*t|], $;,5;) < 1,1 <$,9 < Netass and i # j. Figure 4.2 illustrates the selection 

process. 
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Figure 4.2: Feature selection process 
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Chapter 5 

Comparative Experiments 

5.1 Introduction 

An experimental comparison of the two dimensional shape classification techniques described in chap- 

ter 4 is carried out. The requirement for such a comparison is driven by the small and selective data 

sets found in the literature describing the techniques. Table 5.1 summarises some of the previous work 

in the area and the experiments conducted on each type. 

  

  

  

  

  

  

  

  

  

[ Author | Model | Sampling method | Classifier Data. 

Dubois et al [3] AR Equal angle Gaussian letters 
kNN machine parts 

Kartikeyan et al [16] | Non-linear quadratic | Angle of variation: | Gaussian aeroplanes 
Volterra model radius 

Paulik et al [4] Non-stationary AR | Angle of variation: | kNN industrial parts 
radius lakes 

aeroplanes 

Sekita et al [5] Complex AR Angle of variation: | Gaussian machine parts 
CPARCOR radius leaves 

Kauppinen et al [2] | FD’s Angle of variation: | kNN letters 
CAR - radius machine parts 
CPARCOR - contour aeroplanes 

- curvature 

Antoine et al [17] Wavelet coefficients | Angle of variation: | No classification | corkscrew 
complex coords fractal analysis Koch curve 

Eom et al [6] Spectral AR. Angle of variation: | MLP aeroplanes 
polar coords numbers 

machine parts 
  

Shen et al [15]     Wavelet moment 
invariant 

uses whole 
silhouette   Nearest 

neighbour     letters 
synthetic shapes 
machine parts 

  

The experiments attempt to address several issues that will have an effect. on the 

performance: 

Table 5.1: Selective summary of previous work 
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¢ Boundary sampling algorithm. Various boundary sampling algorithms have been used in the 

shape classification literature and a representative selection have been implemented for compar- 

ison in this project. 

Model Type. A range of models, that produce feature vectors for use in classification, are 

evaluated and include AR models, Fourier descriptor models and a wavelet moment-invariant 

based model. 

¢ Model order. To investigate the effect of order on linear AR models, a range of orders from one 

to ten were computed for each experiment. Standard time series theory would suggest the use 

of a model order selection algorithm to determine the best order, such as Akaike’s information 

criterion (AIC), but Paulik [4] made the observation that the determination of the best order is 

an imprecise problem. The main reason being that each shape class constitutes a different set 

of processes and will therefore have different optimal orders. Additionally, in order to compare 

features they should be of the same order. 

© Classifier. A Euclidian distance based k-nearest neighbour (kNN) classifier, where k=3, is 

compared with the performance of a simple statistical Gaussian classifer (with a full covariance 

matrix) and a multilayer perceptron (MLP) classifier (where appropriate). 

© Effect of noise. To evaluate the usefulness of each technique to any real world application, 

two noise types and levels are added, as boundary noise is inevitable. The noise distributions 

used were spherical about each boundary sample, namely Gaussian and t-distributions. The 

experiments included training the models on noisy data and testing on noisy data, and also 

training on non-noisy data and testing on noisy data. 

Data type. A range of data was drawn from a variety of papers to fairly evaluate each technique. 

Figures 5.1 - 5.4 show the data sets used. The AR, CAR, CPARCOR and FD’s were tested 

over the complete range of data, whereas the spectral and wavelet moment-invariant techniques 

were tested on data sets B and D, with the non-stationary technique tested on sets B and B. 

Data set C was chosen as it is a simple, well separated, set of shapes commonly found in the 

journal papers and so any further work should use them as benchmark tests. Data set B was 

chosen because the shapes are slightly more complex as some have non-convex boundaries. Both 

sets B and C consist of relatively simple shapes and are included in the experiments primarily 

because they have been used in many journal papers and so any further tests should use them 

as benchmark tests. Set D consists of an array of industrial parts, representing shapes which 

might be encountered in a real application. Set BCD consists of all of the shapes from sets B, 

C and D, and was used to investigate the effect of the number of classes on the classification 

performance of each technique. Set E consists of fifteen shapes, with shapes E13, E14 and E15 
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all being very similar. The other twelve shapes in set E are a mixture of shapes from sets B and 

D. It was thought that set E should be used to investigate the performance of each technique to 

discriminate between similar classes. 

During the experiments the scale of the silhouettes was kept constant as scale invariance of the 

features has already been demonstrated both theoretically and empirically. It was also decided not 

to consider silhouette occlusion experiments due to time limitations but are none the less important 

and should be considered for further work. 
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Cl ee Bl B2 

C3 C4 B3 B4 

Figure 5.1; Data Set C Figure 5.2: Data Set B 
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Figure 5.3: Data Set D 
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Figure 5.4: Data Set B 
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5.2 Methodology 

The same process was used to conduct all of the experiments and is described below and illustrated in 

figure 5.5. Firstly a silhouette of each shape was scanned-in and the silhouette boundaries traversed to 

extract the chain code representation. Chain codes store boundary information in an efficient manner 

(see chapter 2). The scale of each shape was kept constant as scale invariance has been demonstrated 

both theoretically and empirically by each of the authors of the techniques being considered. Transla- 

tion invariance is not an issue as all of the features are measured with respect to the centroid of each 

shape. The chain code extraction process consisted of keeping a shape in a central position within 

an image and rotating it using the MATLAB function (imrotate.m), at each rotation computing the 

chain code. After computing the chain code of each shape, the boundaries were consecutively redrawn 

and any desired synthetic noise was added prior to sampling. The boundary samples were then used to 

compute a feature vector which was assigned a class label and saved. The next realisation of the shape 

was then sampled and the process repeated for all of its orientations being considered. The process 

was repeated for all of the shapes resulting in a full set of features. Hold-out tests were performed 

throughout the experiments, where the feature vector was divided into separate training and testing 

sets. 

An exception to the algorithm in figure 5.5 is the wavelet moment invariant technique, as it filled-in 

the closed boundary and extracted its features directly from the resulting silhouette, so no boundary 

sampling was necessary. After the feature extraction stage, the classifiers can be used to classify the 

labelled data. 
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Figure 5.5: Extracting features from boundaries 
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Some of the experiments considered the effect of random noise on the shape boundaries. The noise 

  

was generated by adding random noise to each sample point, (zj, y;), on the bounds 

  

Ys     

    j + dr cos(6), 9; = yj +r sin() (5.1) 

where d is the mean distance between eacl 

  

sampling point, r is a sample from either a Gaussian 

or a t-distribution and @ is a sample from a uniform distribution, producing spherically symmetric 

  

noise. Examples of noisy boundaries are shown in figures 5.6 and 5.7 with noise levels N(0,0.5) and 

t40(0, 1). 

This noise model does not attempt to precisely mimic real-world noise which is not always possible 

to model without prior knowledge, but is used to model the broad characteristics of a wide range of 

real world noise generating mechanisms. The model has been used and demonstrated on small sets of 

data in two journal papers [5] 

  

A random seed was used in these experiment: 

  

Ss we are interested in ensemble comparisons. If 

interest centers on the performance of particular noise realisations then of course the seed should be 

kept constant. 

   

  

Figure 5.6: Gau 

  

an noise added to shape B1 Figure 5.7: t-distributed noise added to shape B1
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5.3 Experiments and Results 

The experiments were conducted in order to complete the comparisons of average correct classification 

(ACC) performances between the models described in chapter 4. It was intended to closely reproduce 

techniques found in journal publications so that a fair and more thorough comparison of techniques 

could be conducted. It was then attempted to identify potential weaknesses and suggest further 

improvements. All of the experiments were conducted using MATLAB on a Digital alpha station 500 

computer. The full set of results are presented in figures 5.8 - 5.198. The AR model graphs plot ACC 

against model order. The Fourier descriptor graphs plot ACC against the data set used. The x-axis 

indices index the data sets displayed in the title in order. 

The following subsections are structured by firstly presenting a brief description of each technique 

together with a table describing the relevant experimental conditions. The columns showing the size 

of the train and test sets represent the number of samples for training and testing per class. The noise 

column shows the amount and type of noise, if any, added to the training and test sets. The dashes 

indicate that no noise was added to the boundaries. A general student-t distribution is denoted by, 

tu(,0), where vu is the number of degrees of freedom, j is the mean and o is the variance of the 

distribution. Each experiment is cross-referenced to a corresponding figure presenting the results, 

which are positioned at the end of each subsection. Following the table is the analysis, which is 

structured so that the performance of each classifier is discussed separately. The classifiers include 

a kNN classifier, where k=3 and uses a Euclidian distance metric, a Gaussian classifier with a full 

covariance matrix (see appendix A) and a multi-layer perceptron (MLP) which is used for the spectral 

AR experiments only. 

The experiments involved testing each classifier on features where: 

© the models are fitted to noise free boundaries 

¢ the test and train features were both fitted to boundaries containing noise of the same type 

the training features were fitted to noise free boundaries and the test features were fitted to 

boundaries containing noise. 

Boundary noise can occur in real life for a number of reasons, for example, changing environmental 

conditions effecting the imaging of shapes and also partial occlusion. The relative noise levels could 

be unpredictable and not easily modelled, without complete prior knowledge. For this reason, the 

tests where the models are trained on noise free boundaries and tested on noisy boundaries measures 

the robustness of each model when the amount, and type, of noise is unknown. 
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5.3.1 Radius AR method (1) 

Introduction 

The radius AR method 1 technique of subsection 4.3.2 uses the equal angle sampling technique to 

extract boundary information from a sequence of shapes from each class at different orientations. The 

equal angle sampling technique measures the radial from the centroid of the shape to the boundary 

when the boundary follower crosses any of N angularly equi-spaced radial vectors. As a result the 

number of samples from a shape at different orientations can vary. The boundary samples are treated 

as circular time series and AR models of orders 1 to 10 are fitted to each series and labelled according 

to class. All of the linear AR experiments solved the autoregression by the method of least squares. 

The inverse of the matrix of autocovariance values in equation 4.8 was computed using (inv.m), which 

calculates the inverse by Gaussian elimination. The determinants of several of these matrices were 

computed at random to check that the they were non-singular. An alternative to (inv.m) would be 

to use the left divide function which will be more stable if the matrix is near singular, as it calculates 

the inverse in a different manner. 

In these experiments we used 64 equi-spaced radial vectors, as increasing the number of samples 

further had little or no effect on the classification performance. The feature vectors from each class 

were split into testing and training data sets and a Gaussian and KNN classifier are compared. Table 5.2 

describes the different tests performed using the AR method 1 technique. 

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

                  

Model Data Size train | Size test | Classifier | Noise Figure 
set set (train/test) 

Radius AR method 1 | Set C 10 15 kNN -/- 5.8 
Radius AR method 1 | Set C 40 20 kKNN -/- 5.9 
Radius AR method 1 | Set B 10 15 kNN -/- 5.10 
Radius AR method 1 | Set B 40 20 kNN -/- 5.11 
Radius AR method 1 | Set D 25 25 kNN -/- 5.12 
Radius AR method 1 | Set D 50 30, kNN -/- 5.13 
Radius AR method 1 | Set BCD | 25 25 kKNN -/- 5.14 
Radius AR method 1 | Set BCD | 50 30 kKNN -/- 5.15 
Radius AR method 1 | Set E 20 20 kNN -/- 5.16 
Radius AR method 1 | Set E 50 30 kNN -/- 5.17 

Radius AR method 1 | Set C 10 15 RCS -/- 5.18 
Radius AR method 1 | Set © 40 20 RCS = 5.19 
Radius AR method 1 | Set B 10 15 RCS a0 5.20 
Radius AR method 1 | Set B 40 20 RCS =f 521 
Radius AR method 1 | Set D 25 25 RCS -/- 5.22 
Radius AR method 1 | Set D 50 30 RCS ie 5.23 
Radius AR method 1 | Set BOD | 25 25 RCS a 5.24 
Radius AR method i | Set BCD | 50 30 RCS Le 5.25 
Radius AR method 1 | Set B 20 20 RCS ae 5.26 
Radius AR method 1 | Set | 50 30 RCS fe 5.27 
  

Table 5.2: AR method 1 experiments 
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KNN classifier 

Figures 5.8 - 5.17 show the performance of the radius AR method using a kNN classifier. 

« No noise on boundaries 

The tests on set C show there are no marked improvements in the results with extra training 

data. The tests on set B show a fall in the average correct classification performance from those 

on set C, averaging 80% (figure 5.11). It is thought that this is due to the more complex nature 

of set B, as shapes B1 and B2 have non-convex boundaries. 

Shape set D contains eight classes, but the shapes are visually quite different from one another. 

With twenty five samples in the test and training sets (see figure 5.12), the performance is lower 

than for the equivalent test on set C, as there are twice as many classes in set, D. With fifty 

samples in the training set, set D is classified ~ 100% correctly for all model orders. Data set 

BCD has sixteen classes and as figures 5.14 and 5.15 show, with enough training data the shapes 

are correctly classified in excess of 99% for all model orders. 

Shape set E was thought to provide a difficult test to the classifiers, as Paulik et al [4] reported 

that the linear AR method performed poorly on data sets of a non-stationary nature, such as 

data set E. Shapes E13 - E15 are visually very similar, so the difficulty lies in the model being 

able to distinguish between these similar shapes, whilst also being able to distinguish between 

the more dissimilar shapes. Figure 5.16 shows this to be the case with a low number of training 

samples. Paulik et al quoted the best performance of this technique to give an average correct 

classification of 80.33%, using twenty training and 20 testing samples, with a model of order 

two. Figure 5.16 shows that if the amount of training data is increased the ACC performance 

is close to 100% for all model orders. 

Gaussian classifier 

Figures 5.18 - 5.27 show the performance of the radius AR method using a Gaussian classifier. 

« No noise on boundaries 

Applying the Gaussian classifier to the same experiments, the average correct classification 

performances are generally better than the equivalent tests using a kNN classifier for low amounts 

of training data, but worse at higher model orders (m = 7 — 10), where the covariance matrix in 

the classifier can become singular. An illustration of the effect of increasing the training set size 

on the potential performance of the linear AR. method 1 is best shown in figures 5.26 and 5.27. 

Figure 5.20 duplicates the results of [3] and also [5]. The Gaussian classifier has shown the ability 

to classify all of the data sets 100% correctly, which is surprising given the justification of the use 

of more complex models due to the lack of performance of linear models such as this. Data sets 
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B, C, and D are particularly well classified at most model orders considered. These data sets are 

commonly found in journal publications and so are important for benchmarking each technique. 

As the results are not particularly interesting the results of the succeeding experiments on these 

data sets are presented in appendix B and are referenced in the experimental description tables 

in this section. 

Summary 

The AR method 1 technique has the ability to classify all of the shape sets completely correctly. From 

reading the literature [4], this is a surprising result as the more complex AR techniques have been 

demonstrated on sets such as set E and show that linear models are not as good. Another surprising 

result is that none of the experiments in table 5.2 used many training samples and if more are used 

the results improve significantly. 

It is has been shown that the Gaussian classifier provides the better performance as long as enough 

training data is used so the covariance matrix can be estimated reasonably accurately. If the training 

set is too small then the covariance matrix can become close to singular, producing spurious results, 

as shown in figure 5.26. It is also the most consistent classifier as the kNN could not classify set 

B more than 85% correctly, whereas the Gaussian classifier classified set B 100% correctly for most 

model orders. 

As expected, shape set E was the most difficult set to classify with low amounts of training data. 

Set BCD has more classes but the shapes are visually quite different, whereas set E contains a mix of 

both visually similar and dissimilar shapes. 

No noise tests were conducted using the equal angle sampling technique as the AR method (2), 

shown in the next subsection, showed far better ACC levels in noise-free conditions and so was used 

to represent the linear AR model in the presence of noise using radial distance sampling. 
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Figure 5.12: Radius AR:1(kNN), Set D Figure 5.13: Radius AR:1 (kNN), Set D 
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Figure 5.16: Radius AR:1 (kNN), Set E Figure 5.17: Radius AR:1 (kNN), Set E 
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Figure 5.18: Radius AR:1 (RCS), Set C 

  

  

  

  
Figure 5.20: Radius AR:1 (RCS), Set B 

    

Figure 5.22: Radius AR:1(RCS), Set D 
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Figure 5.23: Radius AR:1 (RCS), Set D
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Figure 5.24: Radius AR:1 (RCS), Set BCD Figure 5.25: Radius AR:1 (RCS), Set BCD 
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Figure 5.26: Radius AR:1 (RCS), Set E Figure 5.27: Radius AR:1 (RCS), Set E 
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5.3.2 Radius AR method (2) 

Introduction 

The radius AR method 2 of subsection 4.3.4 uses the radial angle of variation sampling technique 

to extract boundary information from a sequence of shapes from each class at different orientations. 

Recall that the radial angle of variation technique measures the radial distance from the shape centroid 

to the boundary at N equi-spaced positions around the boundary. This provides uniform coverage of 

the boundary, irrespective of the shape’s orientation, resulting in a constant number of samples. The 

boundary samples are treated as circular time series and AR models of orders 1 to 10 are fitted to 

each series and labelled according to class. 

In these experiments we again used 64 spatially equi-distant samples as any more samples had 

little or no effect. on the average classification performance, which is also consistent with [2]. This 

sampling method samples the radial distances from the centroid to the boundary at equi-spaced 

intervals, providing spatially uniform coverage of the boundary. As the sampling is spatially uniform, 

a constant number and an equal distribution of samples are sampled from the boundary, independent 

of the shape’s orientation. The features from each class were split into test and train data sets and a 

Gaussian and kNN classifier are compared. Table 5.3 shows the tests performed. 
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Model Data Size train | Size test | Classifier | Noise Figure 
set set (train/test) 

Radius AR method 2 | Set B 10 15 KNN -/- BA 
Radius AR method 2 | Set B 40 20 kNN B.2 
Radius AR method 2 | Set D 25 25 kKNN B.3 
Radius AR method 2 | Set D 50 30 kNN BA 
Radius AR method 2 | Set BCD | 25 25 kKNN 5.31 
Radius AR method 2 | Set BCD | 50 30, kKNN 5.32 
Radius AR method 2 | Set E 20 20 kKNN 5.33 
Radius AR method 2 | Set E 50 30 kNN 5.34 

Radius AR method 2 | Set B 10 15 RCS Bb 
Radius AR method 2 | Set B 40 20 RCS B.6 
Radius AR method 2 | Set D 25 25 RCS BZ 
Radius AR method 2 | Set D 50 30 RCS B& 
Radius AR method 2 | Set BCD | 25 25 RCS 5.35 
Radius AR method 2 | Set BCD | 50 30 RCS 5.36 
Radius AR method 2 | Set E 20 20 RCS 5.37 
Radius AR method 2 | Set E 50 30 RCS 5.38 

Radius AR method 2 | Set B 40 20 KNN NO, )/NO,1) 5.39 
Radius AR method 2 | Set B 40 20 kNN N(0,1)/N(O, 1) 5.40 
Radius AR method 2 | Set B 40 20 kNN tao (0, 1)/tao(0, 1) 5.41 
Radius AR method 2 | Set B 40 20 kNN t4(0, 1)/ta(0, 1) 3.42 
Radius AR method 2 | Set D 50 30 KNN N(0,0.57)/N(0, 0.52) | 5.43 
Radius AR method 2 | Set D 50 30 kKNN N(0,1)/N(0, 1) 5.44 
Radius AR method 2 | Set D 50 30 kNN t4o(0, 1)/tao(0, 1) 5.45 
Radius AR method 2 | Set D 50 30 kNN t4(0, 1)/t4(0, 1) 5.46 

Radius AR method 2 | Set B 40 20 RCS N(,0.52)/N(0,0.52) | 5.47 
Radius AR method 2 | Set B 40 20 RCS NO,D/NO, D 5.48 
Radius AR method 2 | Set B 40 20 RCS t40(0, 1)/tao(0, 1) 5.49 
Radius AR method 2 | Set B 40 20 RCS #4 (0,1)/t4(0, 1) 5.50 
Radius AR method 2 | Set D 50 30 RCS N(0,0.5)/N(0, 0.52) | 5.51 
Radius AR method 2 | Set D 50 30 RCS NO, DING, D 5.2 
Radius AR method 2 | Set D 50 30 RCS t4o(0, 1)/tao(0, 1) 5.53, 
Radius AR method 2 | Set D 50 30 RCS ta(0, 1)/t4(0, 1) 5.54 

Radius AR method 2 | Set B 40 20 RCS -/N (0, 0.57) 5.59, 
Radius AR method 2 | Set B 40 20 RCS -/N(0, 1) 5.56 
Radius AR method 2 | Set B 40 20 RCS ~/tao(0, 1) 5.57 
Radius AR method 2 | Set B 40 20 RCS -/t4(0, 1) 5.58 
Radius AR method 2 | Set D 50 30 RCS -/N(0, 0.57) 5.59 
Radius AR method 2 | Set D 50. 30 RCS -/N(0, 1) 5.60 
Radius AR method 2 | Set D 50 30 RCS -/tao(0, 1) 5.61 
Radius AR method 2 | Set D 50 30 RCS -/t4(0, 1) 5.62 
  

Table 5.3: AR method 2 experiments 
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kKNN classifier 

¢ No noise on boundaries (all data sets) 

Figures B.1 - 5.34 show the performance of the technique using the kNN classifier. A general 

observation is the high (~ 100%) average correct classification at model order one for all of the 

data sets, except E. A surprising trend can be seen across all data sets: as the model order 

increases the performance falls slightly. This is surprising as the performance would intuitively 

be expected to improve with a higher order model, as it is a more complex model. Increasing 

the amount of training data does not have an effect on the performances using sets B and D, 

but increases the performances on the more complex sets BCD and E by 5-10%. 

« Noise on boundaries of test and train sets (sets B and D) 

The average correct classification levels decreased from those in the equaivalent noise free exper- 

iments, see figures 5.39 - 5.46. The effect of the noise on the classification of the different order 

models appears to be fairly random. The effect of the noise on the ACC levels on comparable 

experiments using sets B and D affected the experiments using set D more. This would be ex- 

pected as we have more classes in set D, possibly resulting in a denser feature space. Intuitively 

the noise would be expected to increase the variance of the AR parameter coefficient estimates. 

As set B contains only four classes and set D contains eight classes it might be expected that 

there would be increased overlap of the coefficients from each class in the feature space of set D. 

Figure 5.28 shows the first three principal components of the AR(4) coefficients fitted to data 

set B. Each of the classes are represented by the different plotting symbols. Figure 5.29 shows 

the equivalent plot when the noise level is drawn from a N(0,0.57) distribution. Note that the 

features are less tightly clustered in figure 5.29 than in figure 5.28, but are still separable (full 

separation can only be seen by rotating the figure). 

‘The equivalent plot for data set D, figure 5.30, shows eight separable clusters (again the sepa- 

rability is clearer if the figure is rotated), although more tightly packed in feature space than in 

figure 5.28 (as there are more classes). 

Gaussian classifier 

e No noise on boundaries (all data sets) 

The performance of the Gaussian classifier in equivalent test conditions is shown in figures B.5 

- 5.38 and reveals a high level of classification (~ 100%) across all model orders and data sets. 

This is not surprising as the clusters in figures 5.28-5.30 look quite Gaussian. Even with a model 

order of 1 the average correct, classification performance is ~ 99%, as is illustrated in figure 5.37. 

« Noise on boundaries of test and train sets (sets B and D) 
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Figure 5.28: Scatter plot of the first 3 principal components of the AR(4) feature vector 
fitted to set B (no boundary noise). The dots represent shape B1, the crosses represent 
shape B2, the circles represent B3 and the triangles represent shape B4. 

Data set B feature space (N(0,0.5%) boundary noise) 
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Figure 5.29: Scatter plot of the first 3 principal components of the AR(4) feature vector fitted 
to set B (N(0,0.5") boundary noise). The dots represent shape B1, the crosses represent 
shape B2, the circles represent shape B3 and the triangles represent shape B4. 

When the Gaussian classifier was applied to sets B and D, see figures 5.47 - 5.54, the results 

were less affected by the addition of boundary noise than the equivalent kNN classifier tests, 

presumably because the disperse features can be approximated by a Gaussian distribution. The 

results also improve with higher model orders, which would be expected. 
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Data set D feature space 
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Figure 5.30: Scatter plot of the first 3 principal components of the AR(4) feature vector fitted to 
set D (no boundary noise). The dots represent shape D1, the crosses represent shape D2, the circles 
represent shape D3, the triangles (up) represent shape D4, the triangles (left) represent shape D5, 
the triangles (right) represent shape D6, the squares represent shape D7 and the diamonds represent 
shape D8. 

‘The Gaussian classifier appears to be the more robust classifier for these experiments. 

Noise on boundaries of test set only (sets B and D) 

Further noise experiments included training on ‘non-noisy’ data and testing on noisy data using 

a Gaussian classifier, see figures 5.55 - 5.62. The results are generally lower than the training 

and testing on noisy data experiments. This is because the class means and covariances of the 

features will be slightly different in the noisy feature space from those in the ‘non-noisy’ feature 

space, depending on the amount and type of boundary noise. 

Summary 

The tests on noise free boundary data sets show that the Gaussian classifier achieves the better ACC 

performance on every test, achieving 100% ACC on all data sets with enough training data to allow 

a reasonable estimation of the covariance matrix. This is a surprising result as Paulik et al presented 

much lower results for the linear AR, method 1 using data set E, as he did not use enough training 

data. This also shows that the full potential of the radial AR method 1 has not been demonstrated 

as the radial angle of variation technique has been shown to be superior to the equal angle sampling 

method. 

When noise was added to the boundary of the test and train sets the Gaussian classifier was shown 

to be more robust than the kNN classifier for all of the data sets (see figures 5.47 - 5.54). The ACC 
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improved with increasing model order. Very high levels of ACC (> 95%) were achieved on sets B and 

D at every noise level attempted. 

The comparable experiments where the training set is noise free and the testing set has noise added 

to the boundaries, show that the performance drops considerably. This is because, if for example, the 

test and train sets have a similar level and type of noise added to the boundaries then their estimated 

class means and covariances will be similar in both sets. If the test set has noise added to the boundary 

and the train set contains no boundary noise, then the class means and covariances will be slightly 

different. 
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Figure 5.31: Radius AR:2 (kNN), Set BCD 

  

      

Figure 5.33: Radius AR:2 (kNN), Set E 
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Figure 5.35: Radius AR:2 (RCS), Set BCD 
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Figure 5.37: Radius AR:2 (RCS), Set E 

58 

ram
on 

Con
y 
Ca
en
) 

v¢
 

8 
5 

5 
3 

ss
 

34
 

2 

ee 
  

Figure 5.32: Radius AR:2 (kNN), Set BCD 
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Figure 5.34: Radius AR:2 (KNN), Set E 
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Figure 5.36: Radius AR:2 (RCS), Set BCD 
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Figure 5.38: Radius AR:2 (RCS), Set E
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Figure 5.39: Radius AR:2 (kNN), Set B 
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Figure 5.41: Radius AR:2 (kNN), Set B 

  

  

Figure 5.43: Radius AR:2 (KNN), Set D 
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Figure 5.45: Radius AR:2 (kNN), Set D 
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Figure 5.40: Radius AR:2 (kNN), Set B 
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Figure 5.44: Radius AR:2 (kNN), Set D 

        

Figure 5.46: Radius AR:2 (kNN), Set D
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Figure 5.47: Radius AR:2 (RCS), Set B 
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Figure 5.49: Radius AR:2 (RCS), Set B 
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Figure 5.51: Radius AR:2 (RCS), Set D 
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Figure 5.48: Radius AR:2 (RCS), Set B 

  

      

  

  

Figure 5.52: Radius AR:2 (RCS), Set D 

        

Figure 5.54: Radius AR:2 (RCS), Set D
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Figure 5.55: Radius AR:2 (RCS), Set B 
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Figure 5.57: Radius AR:2 (RCS), Set B 
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Figure 5.61: Radius AR:2 (RCS), Set D 
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Figure 5.56: Radius AR:2 (RCS), Set B 
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Figure 5.58: Radius AR:2 (RCS), Set B 
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Figure 5.60: Radius AR:2 (RCS), Set D 

  

      

Figure 5.62: Radius AR:2 (RCS), Set D



CHAPTER 5. COMPARATIVE EXPERIMENTS 

5.3.3 Curvature AR method 

Introduction 

The curvature AR method of subsection 4.3.3 uses the curvature angle of variation sampling technique 

to extract boundary information from a sequence of shapes from each class at different orientations. 

The curvature function computes the angular difference between two consecutive boundary tangents 

at each sampling point. The samples are measured at N equi-spaced positions around the boundary, 

providing uniform spatial coverage. It is thought, but has not been demonstrated in the literature, 

that curvature based methods would be greatly affected by noisy boundary conditions. The length 

of the tangents are defined by a window parameter which defines the distance along the boundary 

between the start and end points of each tangent. For these experiments a window of length twenty 

five pixels was used to calculate the curvature function. This was empirically set so that the window 

was long enough to overcome local pixelisation effecting the curvature measure, but not too long so 

that it was able to extract local curvature information. The boundary samples are treated as a circular 

time series and AR models of orders 1-10 are fitted to each each series and labelled according to class. 

The coefficients are used as feature vectors and classified using a kNN and Gaussian classifier. 

The results are shown to be comparatively poor, even for the simple benchmark data set B, so 

only representative results are presented. 
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Model Data Size train | Size test | Classifier | Noise Figure 
set set (train/test) 

Curvature AR | Set B 10 15 kNN -/- 5.63 
Curvature AR | Set B 40 20 kNN -/- 5.64 
Curvature AR | Set D 25 25 kNN’ -/- 5.65, 

Curvature AR | Set D 50 30 kNN’ -/- 5.66 
Curvature AR | Set BCD | 25 25 kNN -/- 5.67 
Curvature AR, | Set BCD | 50 30 kNN -/- 5.68 

Curvature AR | Set E 20 20 kNN’ -/- 5.69 
Curvature AR | Set E 50 30 kNN -/- 5.70 

Curvature AR | Set B 10 15 RCS re 5.71 
Curvature AR | Set B 40 20 RCS -[- 5.72 

Curvature AR | Set D 25 25 RCS -/- 5.73 
Curvature AR | Set D 50 30 RCS -/- 5.74 
Curvature AR | Set BCD | 25 25 RCS -/- 5.75 
Curvature AR | Set BCD | 50 30 RCS -/- 5.76 

Curvature AR | Set E 20 20 RCS -/- 5.77 

Curvature AR | Set E 50 30 RCS -/- 5.78 

Curvature AR | Set B | 40 20 RCS N(,0.5°)/N(,0.5°) | 5.79 
Curvature AR | Set B_| 40 20 RCS N(,1)/NO, 1) 5.80 
Curvature AR | Set B 40 20 RCS t40(0, 1)/t40(0, 1) 5.81 
Curvature AR | Set B__| 40 20 RCS t4(0, 1)/ta(0, 1) 5.82 
Curvature AR | Set D 50 30 RCS N(0,0.57)/N(0, 0.57) | 5.83 
Curvature AR | Set D _| 50 30 RCS N(,1)/N(, 1) 5.84 
Curvature AR | Set D 50. 30. RCS t4o(0, 1)/ta0(0, 1) 5.85 
Curvature AR | Set D 50 30 RCS t4(0, 1)/t4(0, 1) 5.86 
  

Table 5.4: Curvature AR experiments 

63 

 



CHAPTER 5. COMPARATIVE EXPERIMENTS 

kKNN classifier 

e No noise on boundaries (all data sets) 

The general ACC trend over all model orders and data sets shows an increase with increasing 

model order (see figures 5.63 - 5.70). 

For data set B, the maximum classification level achieved was 80% at model order 4. When 

applied to data set D, containing eight classes, the maximum ACC level achieved was 72%. 

However the experiments using sets BCD and E, containing 15 and 16 classes respectively, show 

a similar performance with a maximum level of ~ 60%. 

Gaussian classifier 

« No noise on boundaries (all data sets) 

Again the general trend over all model orders and data sets shows an increase with increasing 

model order. For data set B, the maximum ACC achieved was 85% at model order 7. This fell 

to 75% when considering data set D, which contains twice as many classes. 

¢ Noise on boundaries of test and train sets (sets B and D) 

Figures 5.79 - 5.86 show that the curvature AR technique is not robust to the presence of noise 

on the boundary as the results are similar to random classification scores. 

Summary 

The overall correct classification performances were much lower than for the radial linear AR tech- 

niques and can be attributed to the curvature sampling algorithm as it is only difference. 

The Gaussian classifier shows a superior average correct classification performance over all data 

sets to that of the kNN classifier, indicating that the Gaussian classifier is more suited to classify AR. 

features. 

The curvature AR technique has been shown to fail completely when even low levels of noise are 

present on the boundary. This is intuitive since any small change to the boundary coordinates can 

cause a large change in a gradient or angle, whereas a radial distance would only change by a small 

fraction of its total length. 
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Figure 5.63: Curvature AR (kNN), Set B 
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Figure 5.67: Curvature AR (kNN), Set BCD 
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Figure 5.69: Curvature AR (kNN), Set E 
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Figure 5.68: Curvature AR (kNN), Set BCD 
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Figure 5.70: Curvature AR (kNN), Set E
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Figure 5.71: Curvature AR (RCS), Set B 
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Figure 5.77: Curvature AR (RCS), Set E 
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Figure 5.74: Curvature AR (RCS), Set D 
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Figure 5.78: Curvature AR (RCS), Set E
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Figure 5.79: Curvature AR (RCS), Set B 
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Figure 5.81: Curvature AR (RCS), Set B 

  

  

Figure 5.83: Curvature AR (RCS), Set D 
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Figure 5.85: Curvature AR (RCS), Set D 
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Figure 5.80: Curvature AR (RCS), Set B 
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Figure 5.82: Curvature AR (RCS), Set B 
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5.3.4 Complex AR method (CAR) 

Introduction 

The CAR method of subsection 4.3.5 [5] uses the complex coordinate angle of variation sampling 

technique to extract boundary information from a sequence of shapes from each class at different 

orientations. The samples are measured at N equi-spaced positions along the boundary, providing 

uniform spatial coverage. The complex form of the samples provides extra phase information so that 

the polygonal approximation of the original boundary can be reconstructed. The boundary samples 

are treated as a circular complex time series and CAR models of order 1-10 are fitted to each series 

and assigned class labels for use as features for shape classification. We used 64 spatially equi-distant 

samples. Increasing the number of samples had little or no effect on the classification performance. 

The feature vectors from each class were split into testing and training sets and a Gaussian and 

KNN classifier are compared. Table 5.5 describes the experiments performed. 
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CHAPTER 5. COMPARATIVE EXPERIMENTS 

Model | Data Size train | Size test | Classifier | Noise Figure 
set set (train/test) 

CAR | Set B 10 15 kKNN ae Bo 
CAR | Set B 40 20 KNN =f B.10 
CAR_ | Set D 25 25 KNN oe Bl 
CAR_| Set D 50 30 KNN oe B.12 
CAR_ | Set BCD | 25 25 KNN SE 5.87 
CAR | Set BCD | 50 30 KNN of 5.88 
CAR | Set E 20 20 KNN of 5.89 
CAR | Set E 50 30 KNN =f 5.90 
CAR | Set B 10 i. RCS -/- B.13 
CAR_| Set B 40 20 RCS oe B.14 
CAR | Set D 25 25 ROS of B15 
CAR | Set D 50 30 ROS ae B.16 
CAR | Set BCD | 25 25 RCS =fe 5.91 
CAR_| Set BCD | 50 30 RCS =f 5.92 
CAR | Set B 20 20 RCS -/- 5.93 
CAR | Set B 50 30 RCS -/- 5.94 
CAR | Set B 40 20 KNN N(0,0.57)/N(0, 0.57) | 5.95 
CAR | Set B 40 20 KNN NO, 1)/NO, 1) 5.96 
CAR | Set B 40 20 kKNN t4o(0, 1)/tao(0, 1) 5.97 
CAR_| Set B 40 20 KNN t4(0, 1)/ta(0, 1) 5.98 
CAR | Set D 50 30 KNN N(0,0.57)/N(, 0.52) | 5.99 
CAR | Set D 50 30 KNN NO, D/NO,D) 5.100 
CAR _| Set D 50 30 KNN t40(0, 1)/ta0(0, 1) 5.101 
CAR_| Set D 50 30 KNN 44(0, 1)/ta(0, 1) 5.102 
CAR [| Set B 40 20 RCS N(0,0.57)/N(0, 0.57) | 5.103 
CAR | Set B 40 20 ROS N(0,)/NO, 1) 5.104 
CAR | Set B 40 20 RCS tao (0, 1)/t40(0, 1) 5.105 
CAR_| Set B 40 20 ROS ta(0, 1)/t4(0, 1) 5.106 
CAR | Set D 50 30 RCS N(0,0.57)/N(0, 0.57) | 5.107 
CAR | Set D 50 30 RCS N(0,D/NO,1) 5.108 
GAR | Set D 50 30 RCS t40 (0, 1)/t10(0, 1) 5.109 
CAR | Set D 50 30 RCS ta(0, 1)/ta(0, 1) 5.110 
CAR | Set B 40 20 RCS -/N(0, 0.57) 5.111 
CAR | Set B 40 20 RCS -/N(0,1) 5.112 
CAR | Set B 40 20 RCS -/t4o(0, 1) 5.113 
CAR_| Set B 40 20 RCS -/t4(0, 1) 5.114 
CAR [Set D 50 30 RCS -/N(0,0.57) 5.115, 
CAR | Set D 50 30 RCS -/N(0,1) 5.116 
CAR | Set D 50 30 RCS -/t40(0, 1) 5.117 
CAR_| Set D 50 30 RCS =/ta(0,1) 5.118 
  

Table 5.5: CAR experiments 
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KNN classifier 

« No noise on boundaries (all data sets) 

Figures B.9 - 5.90 show a general trend of decreasing ACC levels with increasing model order 

for all of the data sets tested. This is thought to be caused by having a small training set 

with a large dimension feature vector, resulting in a very sparse training set. The decrease in 

performance is greater than for the equivalent radius AR method 2 experiments as we have a 

feature vector almost twice as long. 

Noise on boundaries of test and train sets (sets B and D) 

For the tests on data set B, when the model order equals one, the ACC levels were greater then 

90% for all noise levels. For model orders 2-10, the ACC performances fell to between 50-65%. 

Only a small decrease in performance was observed with increasing noise levels. 

For the tests on data set D, again a high level of ACC performance was observed at model 

order 1. The effect of increasing noise levels was apparent as the ACC performances fell from 

98% for for noise sampled from a N(0,0.5%) distribution to 82% for noise drawn from a N(0, 1) 

distribution. The tests where the noise was drawn from a t4o(0, 1) distribution reulted in similar 

ACC levels to the noise drawn from the N(0, 1) distribution, falling to 74% when the noise was 

drawn from a t4(0, 1) distribution. The ACC performances of the kNN classifier for model orders 

2-10 were similar to those described for set B, typically ACC values ranging between 50-60%. 

Gaussian classifier 

e No noise on boundaries (all data sets) 

Figures B.13 - 5.94 show the improvement of the Gaussian classifier over the kNN classifier 

applied to these data, where all model order tests are classified 100% correctly for sets B and 

D, and tests when the model orders are between 3-10 for data sets BCD and E. The Gaussian 

classifier performs as well as the equivalent tests using the radial AR method 2 technique on 

all of the data sets (compare figures B.5 - 5.38 with B.13 - 5.94), although at high orders, 

typically 8-10, spurious results can occur due to the covariance matrix of the Gaussian classifier 

becoming almost singular. In these cases we are trying to estimate ten complex parameters 

(20 real parameters in the feature vector) from only twenty training samples for set E. Note 

this effect also occurs in figure B.13, but when the number of training samples is increased 

the covariance can be estimated more accurately, see figures B.14 and 5.94, and the spurious 

results at higher orders disappeaf. Generally, with no noise added to the boundary, the Gaussian 

classifier displays superior classification results to those of the kNN classifier. 

¢ Noise on boundaries of test and train sets (sets B and D) 
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Tests on set B (figures 5.95 - 5.102) show 100% ACC levels for noise drawn from N(0,0.5?), 

N(0,1) and t4o(0, 1) for model orders 1-10. For the tests using the t4(0, 1) noise distribution at 

model order 1, the ACC fell to 75% but increased to 100% for model orders 3-10. 

Tests on set D show a general degradation in ACC performances when the noise distributions 

are, in order, N(0,0.5?), N(0,1), t4o(0, 1) and t4o(0,1). The graphs also show that the higher 

the model order, the higher the ACC performance. 

« Noise on boundaries of test: set only (sets B and D) 

With no noise present in the training set but with noise added to the boundaries in the test set, 

figures 5.111 - 5.118 show that high classification levels are achieved when compared with the 

equivalent results for the radius AR method 2. This is thought to be due to the sampling method 

as the complex coordinate samples contain phase information about the boundary, whereas the 

radial distance samples are sequentially ordered according to the tracing of the boundary but 

different radius shapes could give the same ordered lengths. Additionally we also have a more 

complex model than the AR. method 2 technique as we are estimating complex AR coefficients, 

resulting in a feature vector twice as long if we consider the complex number components as real 

numbers. 

Summary 

The Gaussian classifier was shown to exhibit superior performance to that of the kNN classifier. The 

results using the Gaussian classifier improved on those achieved using the AR method 2, especially 

in high boundary noise conditions with a noise free training set and a noisy test set. This could be 

for two reasons: firstly the complex coordinate samples contain more phase information about the 

boundary than the radial distance samples and secondly, the CAR model has a higher dimension, 

more complex feature vector. 
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Figure 5.93: CAR (RCS), Set E 

COMPARATIVE EXPERIMENTS 
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Figure 5.90: CAR (kNN), Set E 
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Figure 5.95: CAR (kNN), Set B 
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Figure 5.101: CAR (kNN), Set D 
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Figure 5.98: CAR (kNN), Set B 
  

  

    Figure 5.100: CAR (kNN), Set D     

Figure 5.102: CAR (kNN), Set D
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Figure 5.107: CAR (RCS), Set D 

1. 
i 
i 1 

Figure 5.109: CAR (RCS), Set D 
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Figure 5.106: CAR (RCS), Set B 

Figure 5.108: CAR (RCS), Set D 

    
Figure 5.110: CAR (RCS), Set D
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Figure 5.113: CAR (RCS), Set B 
  

Figure 5.115: CAR (RCS), Set D 

    
  

  
Figure 5.117: CAR. (RCS), Set D 
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Figure 5.114: CAR (RCS), Set B 
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5.3.5 CPARCOR method 

Introduction 

The CPARCOR method [5] of subsection 4.3.6 uses the complex coordinate angle of variation sampling 

technique to extract boundary information from a sequence of shapes from each class at. different 

orientations. The boundary samples are treated as a circular complex time series and CPARCOR 

models of order 1-10 are fitted to each series and assigned class labels. The CPARCOR coefficients are 

first calculated by the fast recursive algorithm and then compared with the equivalent, direct method. 

The CPARCOR features can be computed directly from the CAR coefficients as the CPARCOR 

coefficient p,, is the same as the CAR coefficient a, of the CAR model of order m. To be consistent. 

with previous experiments we again used 64 spatially equi-distant samples. 

The feature vectors from each class were split into test and train sets and a Gaussian and kNN 

classifier are compared. Table 5.6 describes the experiments performed for the CPARCOR coefficients 

computed by the recursive algorithm, and table 5.7 describes the experiments performed using the 

CPARCOR coefficients computed directly from the CAR coefficients. The direct method was used 

only as a consequence of the poor performance shown by the recursive method. The results would be 

expected to be identical but the possible reasons for this are discussed [5]. 

CPARCOR coefficient estimation by the recursive algorithm 

¢ KNN classifier 

— No noise on boundaries (all data sets) 

Figures B.17 - 5.122 a steady but rapid decline in ACC levels with increasing model order, 

for all of the data sets. 

— Noise on boundaries of test and train sets (sets B and D) 

The ACC levels again decreased with increasing model order. The ACC levels decreased 

with increasing noise level, such as samples drawn from N(0,0.57), N(0,1), tao(0,1), and 

t4(0,1) distributions, for both sets B and D. 

© Gaussian classifier 

— No noise on boundaries (all data sets) 

The results are very similar to those of the CAR model tests, where 100% is achieved for 

all data sets. Again spurious results occur for high order models with small sets of training 

data, due to a singular covariance matrix in the classifier. 

— Noise on boundaries of test and train sets (sets B and D) 
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Figures 5.135 - 5.142 show that the noise degrades the ACC levels significantly. It was 

expected that the performance would be similar to those of the CAR model. 

— Noise on boundary of test set only (sets B and D) 

Figures 5.143 - 5.150 show that ACC levels are similar to random classification scores. 

CPARCOR coefficient estimation by direct computation from CAR coefficients 

¢ Gaussian classifier 

— No noise on boundaries (all data sets) 

As the Gaussian classifer was shown to be superior for the recursively computed CPARCOR 

features, it was again used for the purposes of this comparison. Figures 5.151 - 5.153 show 

the ACC performances for all data sets and equals 100%. 

— Noise on boundaries of test and train sets (set D) 

Four levels of noise were added to the boundaries of set D. The ACC results are far superior 

to those calculated by the indirect recursive algorithm. Comparing figures 5.154 - 5.157 

with figures 5.107 - 5.110, the results are almost identical to those of the CAR model. 

Summary 

With no noise added to the boundaries of either test or training sets the Gaussian classifier outperforms 

the kNN classifier. Similar levels of ACC performance levels to those of the CAR model are shown 

on all data sets when the CPARCOR coefficients are estimated by both direct and indirect methods. 

However if noise is added to the boundaries, the ACC levels of the CPARCOR models calculated by 

the indirect method dropped dramatically, for all data sets and noise types, especially at high orders. 

This could be because the boundary noise changes the statistics of the boundary samples, so that 

the assumptions made by the recursive estimation algorithm no longer hold. The recursive method 

was described by Sekita [5] as an extension of a complex series of Levinson-Durbin’s algorithm for 

calculating real PARCOR coefficients. This was the only reference found relating to this extended 

technique but it is thought to be an approximation because the CAR coefficients computed using 

both recursive and direct techniques produced very similar but not equal values, when tested on a 

synthetically produced complex time series. Another possible reason for the poor performance of the 

recursive algorithm could be due to the numerical sensitivity of the algorithm. The direct method is 

a straight forward and foolproof implementation and so verifies the true performance of CPARCOR 

coefficients. 

It has been shown that the ACC experiments where the CPARCOR coefficients are calculated 

directly from the CAR coefficients produce results very similar to those produced by the CAR model 

and are more robust to boundary noise than the linear AR models. This is due to the fact that the 
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number of parameters are greater and also the complex samples contain important phase information. 

If phase information is present then a polygonal approximation of the original shape is possible, 

whereas radial vector samples (no phase information) could result from any of a number of shapes. 
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Model Data Size train | Size test | Classifier | Noise Figure 
set set (train/test) 

CPARCOR | Set B 10 15 KNN =f B17 
CPARCOR | Set B 0 20 KNN afr Bs 
CPARCOR | Set D 25 25 KNN Sf B.19 
CPARCOR | Set D 50 30 KNN af B.20 
CPARCOR | Set BCD | 25 25 KNN =f 5.119 
CPARCOR | Set BCD | 50 30 KNN By 5.120 
CPARCOR | Set E 20 20 KNN ofe 5.121 
CPARCOR | Set E 50 30 KNN of 5.122 
CPARCOR | Set B 10 15 RCS -/- B.21 
CPARCOR | Set B 40 20 RCS = B.22 
CPARCOR | Set D 25 25 RCS Be B.23 
CPARCOR | Set D 50 30 RCS a B.24 
CPARCOR | Set BCD | 25 25 RCS =/- 5.123 
CPARCOR | Set BCD [50 30 RCS = 5.124 
CPARCOR | Set B 20 20 RCS =F 5.125, 
CPARCOR | Set E 50 30 RCS =f 5.126 
CPARCOR | Set B 40 20 KNN N(0,0.57)/N(0,0.57) | 5.127 
CPARCOR | Set B 40 20 KNN N(O,D/NO,D 5.128 
CPARCOR | Set B 40 20 KNN to (0, 1)/t40(0, 1) 5.129 
CPARCOR | Set B 40 20 KNN t4(0, 1)/ta(0, 1) 5.130 
CPARCOR | Set D 50 30 KNN (0, 0.57) /N(0, 0.57) | 5.131 
CPARCOR | Set D 50 30 KNN N(@,1)/N(, 1) 5.132 
CPARCOR | Set D 50 30 KNN t40(0, 1)/tao(0, 1) 5.133 
CPARCOR | Set D 50 30 KNN t4(0, 1)/t4(0, 1) 5.134 
CPARCOR | Set B 40 20 RCS N(0,0.57)/N(0,0.57) | 5.135 
CPARCOR | Set B 40 20 RCS NO, D/NO, 1) 5.136 
CPARCOR | Set B 40 20 RCS t40(0, 1) /t40(0, 1) 5.137 
CPARCOR | Set B 40 20 RCS ta(0, 1)/t4(0, 1) 5.138 
CPARCOR | Set D 50 30 RCS N(0,0.57)/N(0,0.57) | 5.139 
CPARCOR | Set D 50 30 RCS NO, D/NO,1) 5.140 
CPARCOR | Set D 50 30 RCS tao (0, 1) /ta0(0, 1) 5.141 
CPARCOR | Set D 50 30 ROS t4(0, 1)/t4(0, 1) 5.142 
CPARCOR | Set B 40 20 RCS -/N(0, 0.57) 5.143 
CPARCOR | Set B 40 20 RCS -/N(0, 1) 5.144 
GPARCOR | Set B 40 20 RCS -/t4o(0, 1) 5.145, 
CPARCOR | Set B 40 20 RCS -/ta(0, 1) 5.146 
CPARCOR | Set D 50 30 RCS -/N(0, 0.5") 5.147 
GPARCOR | Set D 50 30 RCS -/N(0, 1) 5.148 
CPARCOR | Set D 50 30 RCS -/ta0(0, 1) 5.149 
CPARCOR | Set D 50 30 RCS =/ta(0, 1) 5.150 
  

Table 5.6: CPARCOR experiments (coefficients calculated by recursive algorithm) 
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Model Data | Size train | Size test | Classifier | Noise Figure 
set set (train/test,) 

CPARCOR | Set B | 40 20 KNN ape 5.151 
CPARCOR | Set D | 50 30 KNN -/- 5.152 
CPARCOR | Set E | 50 30 kNN -/- 5.153 

CPARCOR | Set D | 50 30 kNN N(0,0.5°)/N(0, 0.5") | 5.154 
CPARCOR | Set D | 50 30 kKNN N(0,1)/N(0, 1) 5.155 
CPARCOR | Set D | 50 30 kNN t40(0, 1)/t40(0, 1) 5.156 
CPARCOR | Set D | 50 30 kNN t4(0, 1)/t4(0, 1) 5.157 
  

Table 5.7: CPARCOR experiments (coefficients calculated by direct method) 
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Figure 5.119: CPARCOR (kNN), Set BCD 
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Figure 5.121: CPARCOR (kNN), Set E 
  

Figure 5.123: CPARCOR (RCS), Set BCD 
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Figure 5.125: CPARCOR (RCS), Set E 
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Figure 5.120: CPARCOR (kNN), Set BCD 

Figure 5.122: CPARCOR (kNN), Set E 
  

  

Figure 5.124: CPARCOR (RCS), Set BCD 
        

Figure 5.126: CPARCOR (RCS), Set E
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Figure 5.127: CPARCOR (kNN), Set B 
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Figure 5.131: CPARCOR (NN), Set D   
  

Figure 5.133; CPARCOR (kNN), Set D 
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Figure 5.128: CPARCOR (kNN), Set B 
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Figure 5.130: CPARCOR (kNN), Set B 
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Figure 5.132: CPARCOR (kNN), Set D 

        

Figure 5.134: CPARCOR (kNN), Set D
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Figure 5.135: CPARCOR (RCS), Set B Figure 5.136: CPARCOR (RCS), Set B 
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Figure 5.141: CPARCOR (RCS), Set D Figure 5.142: CPARCOR (RCS), Set D 
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Figure 5.143: CPARCOR (RCS), Set B 
  

  
Figure 5.144: CPARCOR (RCS), Set B 
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Figure 5.145: CPARCOR (RCS), Set B 
  

  
Figure 5.146: CPARCOR (RCS), Set B 
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Figure 5.147: CPARCOR (RCS), Set D     
  

Figure 5.149: CPARCOR (RCS), Set D 
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Figure 5.148: CPARCOR (RCS), Set D   
Figure 5.150: CPARCOR (RCS), Set D



CHAPTER 5. COMPARATIVE EXPERIMENTS 

za 

it 

I 

  
Figure 5.151: Direct CPARCOR (RCS), Set B 
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Figure 5.152: Direct CPARCOR (RCS), Set D 
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Figure 5.153: Direct CPARCOR (RCS), Set E 
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Figure 5.154: Direct CPARCOR (RCS), Set D 
  

    
  

Figure 5.156: Direct CPARCOR (RCS), Set D 
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Figure 5.155: Direct CPARCOR (RCS), Set D 

  

    
Figure 5.157: Direct CPARCOR (RCS), Set D



CHAPTER 5. COMPARATIVE EXPERIMENTS 

5.3.6 Fourier Descriptor (FD) methods 

Introduction 

The FD models described in subsections 4.2.1 - 4.2.4 include, radial, contour, curvature and affine- 

invariant FDs. The boundary sampling methods are computed by the radial, complex coordinate, 

curvature and complex coordinate angle of variation algorithms respectively. The boundary samples 

are treated as circular time series and the FD models are computed for each series and assigned class 

labels for use as feature vectors. In these experiments we used 64 spatially equi-distant samples. 

Tables 5.8 and 5.9 show the range of Fourier descriptor experiments conducted. The numbers in 

the noise column refer to the indices on the x-axes of the corresponding figures. The graphs show 

that all of the Fourier descriptor techniques, with the exception of the curvature FD, yield remarkably 

high classification performances. 

For each type of FD model, each figure shows the ACC performances of the FD models applied 

to each of the data sets individually, with two different amounts of training data on each plot. The 

x-axis labels are indices for the data sets listed in the titles. The suffix '2’ attached to a data set label 

indicates that the larger amount of training data was used. Tables 5.8 and 5.9 refer to the precise size 

of each training set. 
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  Model Data Size train 

  
    
  

  

  

  

  

  

  

  

  

  

  

  

  

  

              : N(0,1)/N(0, 1) 
: t4(0, 1) /t4(0, 1) 

: tao (0, 1)/t40(0, 1)   

Size test | Classifier | Noise Figure 
set, set (train/test) 

Radius FD All see AR set sizes RCS -/- 5.160 
Contour FD All see AR set sizes RCS -/- 5.161 
A-Invariant FD | All see AR set sizes RCS -/- 5.162 
Radius FD All see AR set sizes kNN -/- 5.163 
Contour FD All see AR set sizes kNN -/- 5.164 
A-Invariant FD | All see AR set sizes kNN -/- 5.165 
Curvature FD All see AR set sizes kNN -/- 5.166 

Radius FD Set B | 40 20 kNN 1: N(0,0.5°)/N(0, 0.5?) | 5.167 
2: N(0,1)/N(0,1) 
3: t4(0, 1)/t4(0, 1) 
4: t4o(0, 1)/t40(0, 1) 

Radius FD Set D | 50 30 KNN T: N(0,0.52)/N(0, 0.5") | 5.168 
2: N(0,1)/N(0, 1) 

3: t4(0,1)/ta(0, 1) 
4: tao (0, 1)/tao(0, 1) 

Contour FD Set B | 40 20 ENN 1: N(0,0.5°)/N(0, 0.52) | 5.169 
2: N(0,1)/N(0, 1) 
3: t4(0,1)/t4(0, 1) 
4: t40(0, 1)/tao(0, 1) 

Contour FD Set D | 50 30 kNN 1: N(0,0.57)/N(0, 0.5?) | 5.170 
2: N(0,1)/N (0,1) 
3: t4(0,1)/ta(0, 1) 

4: tao (0, 1)/t40(0, 1) 
A-Invariant FD | Set B | 40 20 kNN 1: N(0,0.57)/N(0, 0.57) | 5.171 

2: N(0,1)/N(0, 1) 
3: ta(0, 1)/ta(0, 1) 
4: tao (0, 1) )/ts0(0, 1) 

A-Invariant FD | Set D | 50 30 ENN T: N(0,0.5°)/N(0, 0.5%) | 5.172 
2: N(0,1)/N(0, 1) 

3: ta(0,1)/ta(0, 1) 
4: tao(0, 1)/ta0(0, 1) 

Curvature FD Set B | 40 20 kNN 1: N(0,0.57)/N(0, 0.57) | 5.173 
2: N(0,1)/N(0,1) 
3: t4(0, 1)/t4(0, 1) 
4: t4(0, 1)/ta0(0, 1) 

Curvature FD | Set D | 50 30 kNN 1: N(0,0.57)/N(0, 0.5?) | 5.174 
2: 

3: 
4: 

  

Table 5.8: Fourier descriptor experiments 
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Model Data Size train 
set 

Size test, 
set 

Classifier Noise 
(train/test) 

Figure 

  
  

Radius FD Set B 40 20 kKNN T: -/N(, 0.52) 
2: -/N(0,1) 
3: -/t4(0, 1) 
4: -/t49(0, 1) 

5.175 

  

Radius FD Set D 50 30 1: -/N(0, 0.57) 
2: -/N(0,1 
3: -/t4(0,1 

4: -/tso(0,1) 

5.176 

  

Contour FD Set B 40 20 T: -/N(0, 0.57) 
2: -/N(0,1) 
3: -/t4(0, 1) 
4: -/t40(0, 1) 

5.177 

  

Contour FD Set D 50 30 KNN T: -/N(0,0.5°) 
2: -/N(0,1) 
3: -/t4(0, 1) 
4: -/tao(0, 1) 

5.178 

  
  

A-Invariant FD Set B 40 20 KNN T: -/N(0, 0.57) 
2: -/N(0,1) 
3: -/t4(0, 1) 
4: -/t40(0, 1) 

5.179 

  

A-Invariant FD     Set D   50   30   KNN   T: -/N(0, 0.5%) 
2: -/N(0,1) 
3: -/t,(0.1) 
4: -/t4o(0, 1)   5.180 

  

Table 5.9: Fourier descriptor experiments 
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kNN classifier 

¢ No noise on boundaries (all data sets) 

Figures 5.163-5.166 show the results of each of the tests, on all data sets, using each of the four 

FD techniques. The radial, contour and affine invariant FD methods show ACC performances 

of 100% for all data sets, except for set E where the higher dimensional contour FD feature 

vector required more training data. Figure 5.158 shows the first three principal components of 

the radial FD feature vectors extracted from shape set B. The classes are very well separated 

compared to the radius AR method 2 example in figure 5.28. 

The curvature FD graph shows lower ACC levels ~ 80% even with high levels of training data. 

Radial fourier features (set B) 
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Figure 5.158: Scatter plot of the first 3 principal components of the radial FD feature vector fitted to 
set B (no boundary noise). The dots represent shape B1, the crosses represent shape B2, the circles 

represent shape B3 and the triangles represent shape B4. 

* Noise on boundaries of test and train sets (set B and D) 

Figures 5.167 - 5.174 plot ACC performance against noise level for each of the data sets, B and 

D. The noise level index is described in table 5.8. 

The radius FD ACC levels were 100% for all levels. Even with the noise sampled from a t4(0, 1) 

distribution the ACC was ~ 98% for both sets B and D. Figure 5.159 shows the first three 

principal components of the radial FD feature vectors extracted from shape set B, with noise 

(N(0,0.5?)) added to the boundaries. The clusters are slightly less tightly bound owing to the 

addition of the boundary noise but they are still highly separated. 
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Radial fourier features (set 8, N(0,0.5") boundary noise) 
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Figure 5.159: Scatter plot of the first 3 principal components of the radial FD feature vector fitted to 
set B (N(0,0.5") boundary noise). The dots represent shape B1, the crosses represent shape B2, the 
circles represent shape B3 and the triangles represent shape B4. 

The affine-invariant and contour FDs classified set B, in all noise levels, completely correctly. 

The results for set D were slightly lower by 1 — 2%. This could be because the contour and 

affine-invariant feature vectors have almost twice as many dimensions as the radial FD feature 

vector, therefore requiring more training data to characterise each class. 

The curvature FD model was completely corrupted by the addition of all noise levels for both 

data sets, as the ACC performances are no better than random. 

© Noise on boundaries of test set only (sets B and D) 

Figures 5.175-5.180 show the results for the radius, contour and affine-invariant FD tests on sets 

B and D. The noise level index is described in table 5.9. Again all models classify set B 100% 

correctly for all noise levels. 

Set D however, shows some differences between the techniques. The radius FD classifies set 

D correctly for all noise levels apart from t4(0,1) distributed noise, where the the ACC falls 

to 98%. The affine-invariant FD experiments show better ACC results than the contour FD 

experiments for all of the noise levels considered. It is thought that these two FDs again require 

more training data then the radial FD to fully evaluate their potential. 

Gaussian classifier 

e No noise on boundaries (all data sets) 

The Gaussian classifier gave very poor classification results when applied to all of the FD tech- 
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niques (figures 5.160 - 5.162), with noise free boundaries. The results show very poor perfor- 

mances as often the covariance matrix was near to, or completely singular. This could be due to 

the high number of parameters (62 for the contour FD feature vector and 32 for the radial FD 

feature vector) compared with the number of training samples, resulting in a poor covariance 

estimate. The low performance could also be due to the higher frequency Fourier coefficients 

having very small magnitudes in comparison with the low frequency coefficients and only varying 

by tiny amounts. This can also cause the covariance matrix to become singular. 

Summary 

The FD techniques, apart from the curvature FD technique, gave excellent classification levels in 

excess of 90% for all noise conditions on data sets B and D. The kNN classifier showed superior ACC 

results than the Gaussian classifier due to the very small magnitudes of the high frequency Fourier 

coefficients, causing the covariance matrix to become singular. This shows that there are too many 

variables for the Gaussian classifier to estimate accurately with small training sets. 

The radius FD gave the most robust performance using these data, the next best was the affine- 

invariant FD, closely followed by the contour FD technique. But the affine invariant and contour 

FD’s have higher dimensional feature vectors and so require larger training sets to fully investigate 

their potential. These complex FD’s contain extra phase information from the boundary sampling 

algorithm and so would be expected to perform better than the radial FD. This wasn’t seen in these 

results because the radial FD classified everything correctly, so more ‘complex’ shapes may be needed 

to demonstrate the differences between techniques. Identifying the appropriate data is difficult and 

time-consuming, so further experiments are recommended. 

The curvature FD technique gave results no better than random in high levels of noise, see fig- 

ure 5.174, again because of the weaknesses of the curvature sampling method. These results provide 

further evidence that curvature sampling methods are very susceptible to boundary noise. 

Fourier descriptors are global approximators and shapes in set B are visually very different, hence 

the well separated feature clusters in figures 5.158 and 5.159. These graphs can be compared with 

figures 5.28 and 5.29 where the AR features are not as well separated. This is because AR coefficients 

are local operators and so reflect the differences in local detail. This does not mean that AR features 

are not as useful for classification as more similar shapes will have very similar global detail and 

local detail will become more important for feature discrimination. This is difficult. to demonstrate as 

the results for data set E show that both techniques classify it 100% correctly, although the Fourier 

descriptors contain many more feature coefficients. 
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Figure 5.160: Radial FD (RCS) Figure 5.161: Contour FD (RCS) 
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Figure 5.162: Affine Invariant FD (RCS) 

  

     
Figure 5.163: Radial FD (kNN) Figure 5.164: Contour FD (kNN) 

        

  
Figure 5.165: Affine Invariant FD (kNN) Figure 5.166: Curvature FD (kNN) 
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Figure 5.167: Radius FD (kNN) 

Figure 5.169: Contour FD (kNN) 
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Figure 5.171: Affine Invariant FD 

          

Figure 5.173: Curvature FD (kNN) 
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Figure 5.168: Radius FD (kNN) 

  

    

Figure 5.170: Contour FD (kNN) 
  

      

  
  

Figure 5.174: Curvature FD (kNN)
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Figure 5.175: Radius FD (kNN) 
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Figure 5.177: Contour FD (kNN) 
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Figure 5.179: Affine Invariant FD (kNN) 
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Figure 5.176: Radius FD (kNN) 
  

    
  

  

Figure 5.178: Contour FD (kNN) 

  

Figure 5.180: Affine Invariant FD (kNN)
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5.3.7 Spectral AR method 

Introduction 

Spectral analysis is concerned with estimating the spectrum of a stationary stochastic process. Many 

stationary stochastic can be approximated by an AR process of sufficiently high order. Eom [6] used 

an AR(20) model to demonstrate this technique. The spectral AR method of subsection 4.3.7 uses 

the polar angle of variation sampling technique to extract. boundary information from a sequence of 

shapes from each class at different orientations. The polar coordinates are measured at; N equi-spaced 

positions around the boundary providing uniform spatial coverage. Similarly to the complex coor- 

dinates, the polar coordinates allow the polygonal approximation of the original boundary sequence 

to be reconstructed. However, it is thought that the angular data would be affected more in noisy 

boundary conditions, but no empirical evidence exists in the literature. The boundary samples are 

treated as two circular time series, one containing radial distance samples, the other angle samples. 

AR models are fitted to both series and the roots of the corresponding AR polynomials, A(z), are 

computed. The MATLAB function (roots.m) was used to compute the roots. The roots are related 

to the spectral peaks which were suggested by Eom to be useful features for shape classification. The 

spectral peaks of an AR model are known to be very narrow so a high order model, with many roots, 

is required to detect the peaks. Increasing the order of the model to 25 and then 30 gave no further 

improvement in classification so AR models of order 20 were used, as suggested by Eom. In these 

experiments we used 32 spatially equi-distant samples as increasing the samples further had little or 

no effect on the classification performance. 

The feature vectors were split into testing and training sets and Gaussian, kNN and multilayer 

perceptron (MLP) classifiers are compared. The MLP is used as Eom [6] demonstrated his model 

using this classifier. We used the scaled conjugate gradients (SCG) algorithm [18] to optimise the 

weights and early stopping was used to terminate the training process. Sigmoidal functions were used 

in the hidden and output layers. In hindsight, perhaps a more sensible activation function to use in 

the output layer for this multi-class problem would have been a softmax function, which normalises 

the outputs. Eom used 4p+1 nodes in the hidden layer, assuming 2p inputs, so the same number were 

used in these experiments. As there are forty inputs (see section 4.3.7), eighty one nodes were used in 

the hidden layer. This is thought to a very large number of nodes but no mention of any regularisation 

techniques, such as weight decay for example, was mentioned by Eom. Regularisation controls the 

complexity of a neural network during the training stage, making the generalisation performance less 

sensitive to the initial model complexity. To try to follow the technique as closely as possible the same 

number of hidden nodes were used and early stopping was implemented as the termination criteria 

for the training of the MLP. 

For these experiments we again have a large number of parameters to estimate in the feature vectors
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and a relatively small training set. Eom used just forty training samples and forty test samples to 

estimate the weights in the network, claiming an average correct classification rate of 96.3% on set D 

in a boundary noise free experiment (compare with figure 5.182). Eom does not however mention a 

validation set for the MLP and also omits to specify the number of samples that were taken from the 

boundaries. 

Figures 5.181 - 5.183 present ACC results for a range of noise environments on data sets B and D. 

Table 5.3.7 describes the experiments performed. 

  

  
  

  

  

Data | Size train | Size test | Classifier | Noise Figure 
set set (train/test) 

B 50 25 RCS/ ia /e 5.181 
kNN/ 2: N(0,0.5*)/N(0, 0.5?) 
MLP 3: .N(0,1)/N(0, 1) 

D 50 25 RCS/ ti/= 5.182 
kNN/ 2: N(0,0.52)/N(0, 0.5?) 
MLP 3: N(O,1)/N(0,1) 

D 150 75 RCS/ Bal 5.183 
kNN/ 2: N(0,0.5?)/N(0, 0.57) 

3:               MLP N(0,1)/N(0,1) 
  

Table 5.10: Spectral AR experiments 

Analysis 

Figures 5.181 and 5.182 show the ACC performances of each of the classifiers in a range of noise 

environments. 

The Gaussian classifier showed the highest and most robust performance levels, having a 90% ACC 

level with no boundary noise for set B and 78% for set D. This level rapidly declined to less than 60% 

for set B and 35% for set D when only a low level of noise (N(0,0.5?)) was added to the boundaries 

of the test and train sets. 

The MLP was the next best classifier, giving an ACC performance 80% and 68% for sets B and 

D, with no boundary noise present. The low performance is most probably due the combination of 

the lack of training data and the high complexity of the MLP. 

‘The KNN classifier showed the worst ACC levels, being on average 20% lower than the Gaussian 

classifier in all noise conditions. 

‘The poor performances of the spectral AR. technique displayed in figures 5.181 and 5.182 is thought 

to be due to inadequate amounts of training data. Figure 5.183 shows this to be the case, as the train 

and test sets were increased from 50 and 25 samples to 150 and 75 samples respectively. The MLP’s 

validation set was also increased from 25 to 75 samples. The performances of all of the classifiers 

improved, but the MLP ACC was much closer to the ACC levels of the Gaussian classifier. This is 

still a relatively small training set, but the increase in performance is significant and suggests that 
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a much larger data set than quoted in [6] is required to achieve a similar level of classification using 

an MLP classifier. In order to verify the implementation of Eom’s technique a data set of eight 

aircraft taken from the article was used, with eight hundred training samples per class, four hundred 

test samples per class and four hundred samples per class in the validation set. The average correct 

classification performance was 93%, compared with 97.8% achieved by Eom. 

Shape B1 was sampled eleven times, at different orientations, and the roots of the AR coefficients 

were plotted. Figures 5.184 and 5.185 show plots of typical root values computed from the AR 

coefficients that were estimated from the radial and angular sequences using noise-free boundaries, 

respectively. The roots of the AR coefficients estimated from radial distances are more tightly clustered 

than the equivalent roots estimated from the angular data. This indicates that the angular information 

is not as useful a feature as the radial distance information and was verified in a separate test where 

only the roots estimated from radial distance sequences were used as a feature vector. The test 

classified set B without any addition of boundary noise using an MLP and was only 5% lower than 

the results shown in figure 5.181. Figure 5.185 shows that the polynomial computed using the angular 

AR coefficients is ill-conditioned. 

If noise is added to the boundaries then an ill-conditioned polynomial will have widely differing 

roots. This is shown in both figures 5.186 and 5.187 where N(0, 0.5?) noise is added to the boundaries. 

This accounts for the low performance of the spectral AR method in noisy conditions. 

Summary 

With the low levels of training data compared with the number of estimated parameters, as specified 

by Eom, the gaussian classifier gave the best ACC performances in all noise conditions. 

‘When the amount of training data was increased, the ACC of both data sets increased significantly. 

The MLP gave an ACC level of 81% for set D, compared with 85% for the Gaussian classifier. However 

the MLP was least affected by noisy boundary conditions, although none of the classifiers performed 

very well. The roots taken from the AR polynomial fitted to the angular sequences were shown to 

be of little use for shape classification, with most of the discriminitive information contained in the 

roots of the AR polynomials fitted to the radius sequences. However, both radial and angular AR 

polynomials were shown to be extremely ill-conditioned in the presence of low amounts of boundary 

noise. 
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Figure 5.181: Spectral AR method, Set B Figure 5.182: Spectral AR method, Set D 

  

      

  
  

            

  

Figure 5.184: Roots estimated from r(i), Figure 5.185: Roots estimated from 0(i), 
shape B1 shape BL 

         
Figure 5.186: Roots estimated from r(i), Figure 5.187: Roots 

shape B1 with N(0,0.5*) boundary noise shape B1 with N(0, 0. 
98 
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5.3.8 Non-stationary method 

Introduction 

The non-stationary AR method described in subsection 4.3.8 uses the radius angle of variation sam- 

pling technique to extract boundary information from a sequence of shapes from each class at different   

orientations. The boundary samples are treated as a circular time series and time varying AR models 

are fitted to each series, and after phase correcting for the position of the first sample point on the 

boundary (a phase difference exists between a reference shape, one from each class, and a correspond- 

ing shape of the same class but at a different orientation), the coefficients are assigned class labels and 

stored as feature vectors. In these experiments it was only necessary to use a model of order 1 and q 

(an empirically set parameter used to estimate the non-stationary mean sequence) was set to 1. 

Sixty four spatially equi-distant samples were again found to represent the boundary, as increasing 

the sampling frequency had little or no effect on the classification. To demonstrate this technique, 

Paulik et al [4] used data set E, so sets B and E were tested in a range of noise environments, see 

figures 5.188 and 5.189. The indices on the x-axes label the experimental conditions shown in table 

5.3.8. 

  

  

  

  

  

  

            

Index | Size train | Size test | Noise 
set set (train/test) 

I 50 50 aE 
2 50 50 N(0,0.57)/N(0, 0.52) 
3 50 50 N(0,1)/N(0, 1) 

4 50 50 t4o(0, 1)/t40(0, 1) 
5 50 50 t4(0, 1)/ta(0, 1) 
6 50 50 -/N(0, 0.52) 
  

Table 5.11: Experimental conditions of figures 5.188 and 5.189 

KNN classifier 

e No noise on boundaries (sets B and E) 

Using the lowest number of parameters possible for this technique (m=1, q=1), the ACC levels 

for sets B and E were equal to 100%. 

© Noise on boundaries of test and train sets (sets B and E) 

With the addition of noise to the boundaries the ACC levels fell dramatically to 70% for both 

sets B and E, for the lowest level of noise tested (N(0, 0.52). For higher levels of noise, the 

ACC levels continued to fall, although they decreased more rapidly for increased noise levels 

tested on set D. The non-stationary AR technique was not robust to the addition of noise to the 

boundaries in these conditions as the local mean estimates will be more variable, necessitating 
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a higher value of q (increasing the number of Fourier coefficients to estimate the non-stationary 

mean), and the boundary samples are more complex sequences requiring higher order models to 

minimise the residual error. Having observed the high levels of ACC achieved by the linear AR 

methods on both sets B and D, the drop in performance is greater than expected. 

After fitting the non-stationary AR model to a boundary sequence the coefficients are phase 

corrected so that the feature vectors are invariant to the starting sample point on the boundary. 

Noise effectively perturbs all of the boundary points, so any starting point on a reference bound- 

ary will not be found on any of the test boundaries. The performance of the phase correction 

algorithm will therefore begin to degrade with increasing levels of boundary noise. 

Summary 

The Gaussian classifier produced very poor classification performances using these features. For 

example, the noise free test on set E gave an ACC of = 30%. This was again due to the covariance 

matrix being near singular. The noise free boundary experiments show the high ACC performance 

achievable using a kNN classifier with this model, using only 5 parameters. However the ACC falls 

dramatically with the addition of noise to the boundary, for sets B and B, as the phase matching 

algorithm performance will degrade in these conditions. 
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Figure 5.188: Non-stationary AR method, Set Figure 5.189: Non-stationary AR method, Set 
B E 
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5.3.9 Wavelet moment-invariant method 

Introduction 

The wavelet moment invariant technique of subsection 4.4.3 samples the whole shape silhouette, so 

the hollow shape boundaries are filled-in using the MATLAB image processing function (bw fill.m). 

The image is transformed from a two dimensional cartesian system to a polar system. r and @ were 

incremented by 0.5 pixels from 0 to maz and 0.5 degrees from 0 to 27 respectively, producing a 2-d 

array indexed by r and @. The S,(r) function is computed by approximating the integral over 6 (0-27) 

using the MATLAB trapezoidal numerical integration function (trapz.m) to integrate over 6. The 

wavelet transform of S,(r) is computed for moments 0, 1,---, 3 and the wavelet transform is computed 

for scales 1, 2, 4 and 8 (i.e. levels 0, 1,---, 3) using the MATLAB wavelet toolbox function (cwt.m) 

(a discrete approximation of the continuous wavelet transform). 

The feature vectors from each class were split into test and train sets, then the features were 

selected as shown by the flow chart in figure 4.2, and a Gaussian and kNN classifier are compared. 

Table 5.12 describes the experiments. Figures 5.192 - 5.195 show ACC levels plotted against the 

number of features chosen by the feature selection algorithm. 

  

  
  

  

  

  

  

  

          

Model | Data | Size train | Size test | Classifier | Noise Figure 
set set (train/test.) 

Wavelet | Set B | 30 30 kKNN -/- 5.192 
Wavelet | Set D | 30 30 kNN -/- 5.193 
Wavelet | Set B | 30 30 kNN N(0,0.57)/N(0, 0.57) | 5.194 
Wavelet | Set B | 30 30 kNN (0, 0.5)/N(0, 0.52) | 5-195 
Wavelet | Set B | 30 30 kNN -/N(0, 0.57) 5.196 
Wavelet | Set B | 30 30 RCS -/- 5.197 
Wavelet | Set. D | 30 30 RCS -/- 5.198           

Table 5.12: Wavelet moment-invariant experiments 

101



CHAPTER 5. COMPARATIVE EXPERIMENTS 

KNN classifier 

¢ No noise on boundaries (sets B and D) 

Figure 5.192 shows that an ACC level for set B of 100% was achieved with 9 features. Figure 

5.193 shows the performance on set D. The ACC level increases monotonically with the number 

of features. The maximum number of 15 features were selected by the algorithm, giving an ACC 

of 98%. 

Noise on boundaries of test and train sets (set B only) 

Figure 5.194 shows the performance of the kNN classifier on set B when the boundary noise is 

characterised by a N(0,0.5?) distribution. The ACC fell to 83% and a maximum of 7 features 

were determined by the feature selection algorithm. 

If the same train and test sets are used, but the selected features are chosen from the noise free 

boundary experiment using set. B, figure 5.195 shows the increase in ACC levels. This indicates 

a weakness in the feature selection algorithm. Shen et al [15] suggest the use of the Branch and 

Bound algorithm [19] to guarantee an optimum feature set but will be computationally more 

demanding. 

Noise on boundaries of test set only (set B only) 

Figure 5.196 shows the ACC when the training set does not contain any noise. The features are 

the same as those in figures 5.192 and 5.195 as they were selected from the noise free training 

set. 

Gaussian classifier 

« No noise on boundaries (sets B and D) 

Figure 5.197 shows the ACC of the Gaussian classifier applied to set B. The level of classification 

is generally lower than the equivalent test using the kNN classifier. For seven features the 

covariance matrix was singular, causing the classifier to fail. This is because the features are 

constant for some of the shapes. 

Figure 5.198 shows the ACC of set D, which is generally lower than the equivalent tests using 

the kNN classifier in figure 5.193. 

General analysis 

An improvement could be made to in the approximation of S,(r) by using finer increments in the 

conversion from cartesian to polar coordinates, but would be computationally more expensive and the 

advantages of doing so would be limited by the resolution of the image. Figures 5.190 - 5.191 show the 
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difference between So(r) values generated from, (a) a shape with no boundary noise and (b), a shape 

with N(0,0.57) noise added to the boundary. Both So(r) sequences are similar and quite smooth (due 

to the coarse coordinate system conversion). 

  

    

    

Figure 5.190: So(r) plotted against r, 

  

       
Figure 5.191: So(r) plotted against r, estimated from a noisy shape 

  

If the classifier is to be able to differentiate between similar shapes belonging to different clas 

it would be desirable to maximise the resolution of S,(r). As wavelet transforms provide good time 

resolution and poor frequency resolution at high frequencies (low scales) and good frequency resolution 

and poor time resolution at low frequencies (high scales), another improvement in the algorithm would 

be to consider higher scales so that lower frequency components of S,(r) could be exploited. This 

would provide enhanced capabilities to recognise noisy and noise-free shapes belonging to the same 

class, allowing, the identification of the global shape of S,(r) rather than the local detail. 
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Summary 

The KNN classifier was shown to provide better ACC levels than the Gaussian classifier on these data. 

  

The wavelet moment invariant method has been shown to have potential for shape classification, but 

  

requires a more sophisticated feature selection algorithm than the one implemented in this project, 

such as the Branch and Bound algorithm for example, or even a multivariate algorithm (e.g. canonical 

variates or PCA). Further improvements were identified such as increasing the accuracy of the coor- 

dinate system conversion and also increasing the number of scales, so that more global information 

can be used to recognise noisy shapes belonging to the same class. 
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Figure 5.192: Wavelet M. Invariant (kKNN), Set B 

  f 

Figure 5.194: Wavelet M. Inariant (kNN), Set B 

  
Figure 5.193: Wavelet M. Invariant (kNN), Set D 
     
  

Figure 5.195: Wavelet M. Invariant (kKNN), Set B 

  

      

Figure 5.196: Wavelet M. 
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Figure 5.197: Wavelet M. Invariant (RCS), Set B 
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Figure 5.198: Wavelet M. Invariant (RCS), Set D



Chapter 6 

Conclusions and future work 

In this concluding chapter, the aims of this project are examined, the findings of this project reviewed, 

conclusions are drawn and future work is discussed. 

This project is part of an ongoing study at DERA carried out in collaboration with Dr. R. H. 

Glendinning and aims to address the following weaknesses of earlier work on shape based classification 

techniques for near real-time applications: 

1, comparisons between technqiues are not comprehensive; 

2. they use relatively small sets of self selected shapes; 

3. little attention is paid to describing realistic noise; 

4, varying environmental conditions are often ignored. 

The result of this is that little advice can be given to prospective shape classification engineers 

or researchers on the relative importance of the various components and techniques of the boundary 

based shape classification process. Specifically, this project aimed to address: 

1. the applicability of different models to describe boundary characteristics; 

2. the relative effect of model complexity; 

3. the value of different sampling algorithms; 

4. the value of different classifiers; 

on . computational complexity of the different models. 

Attention is paid to the interaction between these issues, the particular shapes used in our ex- 

periments and the different noise models. The comparison of techniques was performed on an equal 
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basis and the metrics used include the average correct classification (ACC) performance and the num- 

ber of floating point operations (flops), thereby considering both the performance potential and the 

computational cost. 

6.1 Summary of results 

To make the findings of this project clearer, we first present a selective summary of the results in tables 

6.1 and 6.2. Table 6.1 provides a summary of the results in noise free boundary conditions, showing 

the maximum ACC performances of each technique when applied to the most challenging data set 

E (see page 40). Data set E is thought to be challenging because it contains many classes of both 

visually very different and also very similar shapes. The spectral AR and wavelet moment invariant 

techniques are tested on set D, which is a simpler subset of set E. The ‘flops’ column of table 6.1 shows 

the number of floating point operations (flops) to compute one feature vector at model order 4 for all 

of the linear AR-based models, order 20 for the spectral AR model and order 1 for the non-stationary 

AR model. The number of flops for the linear AR tests are represented by the Radius AR 2 value, as 

they are all approximately equal. 

Table 6.2 summarises the best performances of each technique in noisy boundary conditions, where 

the first set of results considers noise-free training sets and noisy testing sets and the second set of 

results considers noisy testing and training sets. A noise free training set and a noise testing set is 

intended to demonstrate the performance of each model when no prior knowledge is available about 

any potential noise level or type. A noisy training and testing set is intended to demonstrate the 

performance of each model when the amount and type of noise is known. Note the high amounts of 

noise from a t4(0, 1) distribution added to the boundaries during these experiments. The ACC results 

for the non-stationary AR and wavelet moment invariant techniques are presented for the simpler 

shape set B for illustrative reasons. 

6.2 Conclusions 

The issues that this project aimed to address include the effects on shape classification of: 

e the type of classifier 

The Gaussian classifier performed well with the AR, CAR and CPARCOR models because the 

coefficients were easily modelled by multivariate Gaussian distributions, see figures 5.28 and 

5.158 for an example of the distributions of the first three principal components of AR features 

compared with FD features. The Gaussian classifier performed less well when the feature vectors 

were of a high dimension, as for FD’s, as the covariance matrices were almost singular. The kNN 
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Feature Classifier | Data | Order ACC || Flops 
(no noise) | % 

Radius AR (1) RCS E 9 96 = 
Radius AR (2) RCS E 4 100 42495 
Curvature AR. RCS E 8 78 - 
Spectral AR RCS D 20 85 670447 
Non-stationary AR kNN E aL 100_|| 86603 
CAR RCS EB 4 100 || 27785 
CPARCOR (recursive) | RCS E 3 100 26781 
CPARCOR (direct) RCS E 3 100 102053 
Radius Fourier kNN E - 100 158780 
Curvature Fourier kKNN E 2 89 158824 
Contour Fourier KNN E - 98 158917 
A-invariant Fourier kNN E : 100 294799 
Wavelet moment kNN D - 97 7489613 
invariant                 

Table 6.1: Summary of results: noise free tests 

  

  
  

  

  

  

  

  

  

  

  

  

  

    
Feature Classifier | Data Order | ACC | Data Order | ACC 

-/N(0,0.5?) % (ta(0, 1)/t4(0, 1)) % 
Radius AR (2) RCS D 10 88 D 10 96 
Curvature AR RCS - = : D 4 20 
Spectral AR ROS = : q D (NO, 1)/N@,1)) | 20 5 
Non-stationary AR kKNN B 1 25 B 1 60 
CAR RCS D 5 100 D 10 95 
CPARCOR (recursive) | RCS D 2 80 D 2 TC. 
CPARCOR (direct) RCS D 6 100 D 10 gt 
Radius Fourier kNN D - 100 | D - 98 
Curvature Fourier kNN D - = D = 12 
Contour Fourier KNN D - 100 | D : 98 
A-invariant Fourier KNN D - 100 | D : 94 
Wavelet moment KNN B 5 92 | B(N(,05)/ = 93 
invariant N(0,0.5?))                 

Table 6.2: Summary of results: noise tests 

classifier, with k=3 and a Euclidian distance metric, performed well on the well separated high 

dimensional features of the FD’s and struggled to correctly differentiate between the closer and 

more cloudy AR feature centres. The multi-layer perceptron (MLP) was only tested on spectral 

AR. features where the radial AR roots were classified equally as well by a Gaussian classifier. 

Figure 5.184 shows the Gaussian-like centres of the radial AR roots. 

the model type and order 

Noise free boundary conditions: Low order linear AR models (1-10) have been shown to 

be able to classify set E ~ 100% correctly using the radial angle of variation method. This was 

a surprising result as performances shown in the literature [4] were much lower using the same 

data, typically 70%, due to the lack of training data used. The feature vector was also very fast 
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to compute, see table 6.1. 

The spectral AR model used the polar coordinate angle of variation sampling method and 

estimated the roots of the AR polynomials fitted to the radius and angle sequences to detect 

the peaks in the AR spectra. The roots estimated from the angle series varied wildly with 

each realisation of a shape, resulting in a feature vector that was of little use for classification. 

The model did however achieve a ACC of 85% for set D, where most of the discriminatory 

information came from the AR polynomial of the radius sequence. The feature vector typically 

required ~ 14 times more flops to compute than the linear AR model. 

The non-stationary AR model classified set E 100% correctly in its least complex form (m=1, 

q=1), although it required twice as many flops to evaluate as the linear AR model. 

The CAR and CPARCOR (estimated both directly from the CAR coefficients and also recur- 

sively) models classified all of the data sets, including set E, 100% correctly. The CAR and 

CPARCOR features estimated recursively typically required 33% less flops than the linear AR, 

models and require the least number of flops to compute of all. 

The radial, contour and affine invariant FD models, using the radial and complex angle of 

variation sampling schemes classified all of the data, including set E, 100% correctly. The radius 

and contour FD feature vectors required 4 times more flops than the linear AR feature vectors 

and the affine invariant feature vectors typically required 8 times that amount. 

The wavelet moment invariant technique is a silhouette based method and is accordingly much 

less efficient to compute. Compared with the CAR model it requires ~ 270 times more flops to 

evaluate a feature vector due to the hundreds of wavelet coefficients that are computed. The 

ACC of set D was ~ 97%. The model was not tested on set E, which has 15 classes, due to 

the large amount of computing time required to do so. The complete set of features for set 

D, which has just 8 classes, took approximately 12 hours to compute on a DEC Alphastation 

500 using MATLAB. The univariate feature selection algorithm was required to reduce the size 

of the feature vector by choosing the most discriminatory coefficients. However the univariate 

feature selection algorithm was shown to be sub-optimal and multi-variate alternatives, such as 

PCA and canonical variates, have been suggested. 

Noisy boundary conditions: The tests where the training set was noise free and the testing 

set contained noise generally showed the same ACC performance trends as tests where both the 

training and testing sets contained noise, but at a lower level. 

The curvature based AR and FD models performed poorly due to the sensitivity of the sampling 

algorithm. 

The spectral AR model used the polar coordinate angle of variation sampling method and 
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estimated the roots of the AR polynomials fitted to the radius and angle sequences to detect 

the peaks in the AR spectra. During the boundary noise tests both the radius and angle 

polynomials became more ‘ill-conditioned’ and the ACC dropped to 60% even for the simple 

set B. The spectral AR model is therefore inappropriate for any application in adverse noise 

conditions. 

The non-stationary model produced very low ACC performances even for the small and visually 

simple set B. This was because the phase matching algorithm adjusts the phase of the feature 

vector so that the features are invariant to the location of the starting point on the boundary, 

making the feature vector completely rotation invariant. If boundary noise is introduced it will 

corrupt the model resulting in a much lower ACC performance. The non-stationary AR model 

is therefore inappropriate for any application in adverse noise conditions. 

The wavelet moment invariant ACC performance for set B was robust in noisy boundary ex- 

periments but the best performance was difficult to quantify due to the poor univariate feature 

selection algorithm. 

The radial linear AR model proved to be robust to noise when the same amount and type was 

included in the training and testing sets, but degraded when the training set was noise free and 

the testing set contained noise. 

The CAR and CPARCOR (estimated directly from the CAR coefficients) models provided much 

more robust ACC performances in noisy boundary conditions, which was attributed to the phase 

information contained in the complex coordinate samples. The CPARCOR coefficients estimated 

recursively proved to be much less robust because the recursive algorithm is thought to be an 

approximation to the direct method. 

All of the FD models, with the exception of the curvature FD, classified all of the data sets 

~ 100% correctly, even in high boundary noise conditions. The FD’s were slightly more robust 

to boundary noise than the CAR model, particularly in high noise when the testing set was noise 

free and the training set contained boundary noise, where the ACC performances were ~ 15% 

better. 

« the boundary sampling algorithm 

The curvature and polar coordinate sampling methods both estimated angular measures around 

the boundary and the ACC’s of the AR and FD models were typically 80 — 90% in noise free 

conditions (see table 6.1). Table 6.2 shows that the spectral AR, curvature AR and FD models 

performed poorly in boundary noise tests. These results are not unexpected due to the noise 

sensitive curvature measures but have not been demonstrated in the literature. The polar 

coordinate angle of variation method did not prove to be successful due to the ill-conditioning 
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of the AR polynomials computed from the angular data. The radial data AR polynomial gave 

ACC results equal to those using both radial and angular data, indicating that. the angular data 

provided no extra discriminatory information. However, in the presence of noise, both radial 

and angular AR polynomials became ‘ill-conditioned’. Therefore curvature and polar coordinate 

sampling algorithms are not suitable for application in adverse noisy boundary conditions. 

The next most successful sampling algorithms were equal angle and radial angle of variation 

sampling. The equal angle sampling method was shown to perform less well than the radial 

angle of variation method with linear AR features on noise free boundary tests. This is because 

the equal angle sampling method can produce varying numbers of samples at different boundary 

orientations, especially if the boundary is non-convex. The angle of variation method however 

provides uniform spatial coverage resulting in a constant number of sample points, which is a 

more consistent method when the shapes are non-convex. 

The complex coordinate angle of variation method provided the best ACC results for linear 

AR and FD models, especially in adverse boundary noise conditions. Refer to table 6.2, fea- 

tures CAR, CPARCOR and A-invariant FD. The complex coordinate feature vector contains 

phase information, allowing the original polygonal boundary approximation to be reconstructed 

whereas the radial distance samples could have resulted from more than one boundary shape. 

the range of data 

Data set E, having fifteen classes with both similar and dissimilar shapes proved the hardest set 

to correctly classify, especially in noisy boundary conditions. Data set BCD contained sixteen 

classes but was generally more easily correctly classified as the shapes are all visually dissimilar. 

To summarise, the main points to note from these experiments using these particular data sets of 

shapes are: 

¢ the suitability of the kNN Euclidian distance classfier for use with high dimensional FD’s; 

the suitability of the Gaussian classifier for use with low order (m<10) AR features, including 

AR, CAR and CPARCOR coefficients; 

linear AR models are more powerful for shape classification than suggested in the literature 

and more complex models are not necessarily an improvement, especially in noisy conditions. 

Specifically, the spectral AR model involves estimating the roots of AR polynomials which 

become ill-conditioned in the presence of boundary noise. The non-stationary AR model also 

performs poorly in boundary noise conditions due to the failure of the phase matching procedure; 

confirmation of [2] of the similarity of the CAR and CPARCOR (estimated by the directly from 

the CAR coefficients) models average correct classifications in noise free environments; 
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« the similarity of the CAR and CPARCOR models giving high ACC levels in high noise environ- 

ments, higher than the real AR models; 

the excellent performance of the FD models in noise-free and noisy boundary conditions using 

all of the Fourier coefficients, although they are much less efficient than the CAR model to 

compute; 

the benefit of phase information in sampling, provided by the complex coordinate angle of 

variation sampling technique; 

empirical evidence of the poor performance of curvature sampling as shown by both AR and FD 

features. 

6.3 Future work 

The ultimate aim of this on-going project at DERA is to identify the strengths and weaknesses of 

many leading and new boundary based shape classification models and to select the more robust. 

methods for use in real applications, of which there are many, including target, tracking and condition 

monitoring. Current and future work will expand on the experiments described here to: 

¢ measure the effects of occlusion on each technique and also investigate techniques designed to 

cope with occlusion [21], [22] 

* consider the robustness of non-linear AR models [16], [23] 

© investigate boundary based wavelet techniques [24], [25], as they could provide more robust 

models than FD’s as they combine both local and global information about a signal. 

together with 

« the development of feature selection algorithms and further classifiers 

investigating the potential of using subset selection to model each class with an AR model, 

instead of fitting a fixed model to each of the classes [26]. AR models are universal approximators, 

as are FD’s and wavelets. An investigation into subset selection using different model types to 

model each class could extend this work further. 

the improvement of the selection algorithm of the wavelet moment invariant model 

endeavouring to find more challenging data sets to demonstrate the characteristics of each tech- 

nique more clearly 
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« investigating the effects of testing and training with boundaries containing different levels of 

noise 

« exploring the robustness of the FD’s. It is believed that the FD’s could perform poorly with 

many similar shapes having small differences, as the FD’s are global operators (i.e. they do not 

provide any local information), whereas AR. models are local operators. 

The output of this work will hopefully result in a journal publication [27] and a boundary based 

shape classification toolbox, written in MATLAB. 
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Appendix A 

A Gaussian classifer variant: RCS 

method 

A.1 The Rotated Coordinate System (RCS) Method 

The RCS method rotates the axes of the feature space coordinate system as well as scaling them [28]. 

The projections of the features onto the new axes result in a reduced mean-square intraclass distance. 

Scaling the feature space has the effect of emphasising the common features and deemphasising the 

uncommon features. It has been shown [28] that the optimum coordinate system for a particular pat- 

tern class, giving the smallest mean-square intraclass distance, are in the directions of the orthogonal 

eigenvectors of the sample covariance matrix. The eigenvalues are the variances of the data in the 

directions of the new axes. The distance between a test vector, p, and the class Q training set, qx, in 

the rotated and weighted class Q pattern space is given by equation A.1, 

(se) 8 

/m 

  

i 

2, 

S(p,{ax}) = | T] Vas 
j=l 

where q is the sample mean vector in the original coordinate system, c; and \i are the i’th 

eigenvector and eigenvalue of the sample covariance matrix respectively and m is the number of 

dimensions of the feature vector. 

As the smallest eigenvalue corresponds to the eigenvector which is in the direction of the minimum 

sample variance, the projection of the sample points onto this eigenvector result in a feature which is 

the most invariant of a particular class. The feature weights are inversely proportional to the square 

root of the corresponding variances, so an unlabelled sample will be assigned to the class having the 

closest mean in the direction of the eigenvector corresponding to the smallest eigenvalue. 
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Appendix B 

Further results 

B.1 Benchmark data 

The results presented in this appendix are of each technique applied to well separated benchmark 

data. The tests were necessary to compare with the techniques in journal papers, but do not provide 

interesting results as the shapes are well separated in feature space and are easily classified. 
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Figure B.1: Radius AR:1 (kNN), Set B Figure B.2: Radius AR:1 (kNN), Set B 
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Figure B.3: Radius AR:1(KkNN), Set D Figure B.4: Radius AR:1 (kNN), Set D 
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Figure B.5: Radius AR:1 (RCS), Set B Figure B.6: Radius AR:1 (RCS), Set B 
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Figure B.7: Radius AR:1(RCS), Set. D Figure B.8: Radius AR:1 (RCS), Set D 
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