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Thesis Summary

The aim of this project is to compare and contrast the performance of a representative set of
boundary based shape classification models using a large and common data set. A range of noisy
environments are considered to measure their performances in realistic experimental conditions. The
effects on performance, such as the sampling algorithm, model order and classifier are also considered.

Curvature and angle measurement based sampling methods have been shown to perform poorly
in adverse conditions. The low order complex autoregressive (CAR) and complex partial correlation
(CPARCOR) models have been shown to be robust in all noise conditions on even the most complex
data sets considered in this project. The more complex model of a spatially-varying AR process has
been shown to be more sensitive to noise than the more simplistic linear AR models. A high order
spectral AR model was also tested and showed inferior performance to the low order linear AR models.
The simple Fourier descriptors (FD) showed the most robust performances of all but it is believed that
they may perform less well when the data sets contain many similar shapes. Finally a wavelet-based
model is presented and improvements in the model are suggested.

Keywords: Time Series, AR models, Fourier Descriptors, Moment invariants, Wavelets



Acknowledgements

I would like to thank Dr. Richard Glendinning of the Pattern and Information Processing Group (PIP)
at DERA Malvern, firstly for agreeing to supervise the MSc project and secondly for his guidance
during the year. I would also like to thank all those within PIP who offered their support and
encouragement.



Contents

1 Introduction

2 Extracting Shape Boundaries from Images

2.1

5% Aot g 10]1 i R e i s

3 Sampling Points from Template Boundaries

3.1

TREIOGUEEISR . ~oili s . A A e s o D A e e e e S
S.31 . Booal ansleaBamBlng dn @ - din 5 o e T e e e s b
3.1.2  Angle of variation sampling: radial distances . . .. ... ... .........
3.1.3  Angle of variation sampling: complex coordinates . . . . . .. ... . ... ...
3.1.4  Angle of variation sampling: curvature measure . . . . .. .. ..........
3.1.5 Angle of variation sampling: polar coordinates . . .. .. ... .........

4 Feature Extraction Techniques

4.1
4.2

4.3

44

L OE NI DR wis i) s aneets v ko oks eais 78 i e s ool e B s E O]
Eotirier-Based Ieaetplons. =5 a i m o lere o b oo 2o i e S
4.2.1 “CurvatureFovrier meathodil i e . nle e e e e
A2 D tadiunikontiermethod  CWis L ¥, 8 o L TRk e e e e
4123 TUentour EOMmer TREEHO . '« s & sis 4 5 s o s r o h e e e st
42040 dAtmranbnethodl ol e LS IR e e MR L I T e
IR T LB T e S R L e T
z s B B ' s T R Tt e S e e L i e e e
4.3 2 Radivs AR method {(h) ™« i i e e e S e e e
4:3:3 SCnraturs AR TNStROd N 1 b ik i s s e e s e e
434 Radifis ARMEAOA (2] i« 50 0 ¢ v v s 578 Ss ok e e e i 1y s e
2 L 00 107 g M T e O S T e S O L Sl ) o)
4516w sOPARCOR miethod ™., LdSaas, 18 ety = WEL S R e )
4. T RS DeCEERI AR NVIGdR]l SRR B N O e o L IR [ B
41308 Non-statonasyMRiMadelling 0. oo e Sl L o SR e
A'Wavelet SHape INeHEHBEOP . .« % v oo s 4w & 5 5 5 s e s B A e s
A B 3 T T4 e T5T 1 s e R S S B e e
4420 Genersl THOMBEE INVRIENEE "= & 5 5 = 05 5 e i 0% 5 % A g e
443" Wavelet Toment-InvATIANES i 1 7 % b et E et sl a e e

5 Comparative Experiments

5.1
5.2
5.3

16175 ToYa 1 bLad el sbah ot SR o o e
L s T Lo R e T R T i o
andiinents and oMLt et i e s R e i A G E o et
#:3.3" sRadins AR method (i i « o il 5 % 0 e ls ahilihs 5k 5 i .
0:3:2 " Radnig AL mMethoa (2] s =i s %6 % %5 74 5 s inim o 2o E s o w2 A e
333 “Curvainre AR mebhod i h 5 S L L e e ey o iee e e 1o o e e e e



CONTENTS

5.3.4
5.3.5
5.3.6
5.3.7
5.3.8
5.3.9

Complex AR method (CAR)
GPARCOR methied = b s s s e o 7 e
Fourier Descriptor (FD) methods
Spectral ARmetHOd i c 25 v 5 6 608 Dt v b n o n T e e ek
Non=stationary-method: » o e MU S8 | E Ly Sy o
Wavelet moment-invariant method

6 Conclusions and future work

6.1 Summary of results
6.2 Conclusions
6.3 Future work

......................................

A A Gaussian classifer variant: RCS method

A.1 The Rotated Coordinate System (RCS) Method

B Further results

B.1 Benchmark data



List of Figures

2.1

3.1
3.2
3.3

4.1
4.2

5.1
5.2
5.3
5.4
5.5
5.6
5.7
5.8
5.9
5.10
5.11
5.12
5.13
5.14
5.15
5.16
5.17
5.18
5.19
5.20
5.21
5.22
5.23
5.24
5.25
5.26
5.27
5.28

5.29

First four elements from eachchain ode . . . . . . . v v i v oo v v v v v e e s 15
Illustration of the equal angle sampling sequence . . . ... ... ............ 18
Polygonal approximation of boundary by equi-spaced sampling . . . .. ... .. ... 19
Two consecutive tangentsof aboundary . . . . . . . . ... ...t 20
Mother and father biorthogonal wavelets . . . . .. oo v i o v it vt inio o e 33
Beatuye sclaction DYOCeRSia s mhisie 5 v b ile v A e e e e e A 35
Biate wetiU B S n s R SR s sy s e SRR R U e e 39
BENERICENA R G v N o B e e el el R S R 39
DafaiSattl) o e e s s s sl ¢ s sk e B 39
BT T R S R R g L SRR S i (RN S S 1 A S L | 40
Extracting features from boundarion . . . . . . v v o v v b w we n o s e e e e 42
CGaussian noise added toghape BI . .o v dr o v e s 6 e e S e e e 43
t=distributed noise added' toishape Bl . . . . . ; cv v v v v v m v o s e e s 43
RadimsPARA (NN S et i N 8 Sl e e s el s s o s 48
Badtug ABIRNNY SebCh . ml o o ol i v s v sl e e % 48
Tt AR NI S et TR R o I e et et W R s 48
Radins AR HeNNI = Sat-B I o0 e R e R 48
Radius ARMENNISSOtID 0 & 0 0 i v i v 5 s ot e 88 L s e ey e 48
R AR N S D s e L e e 2% 0 o ehimis v it i i et 48
Radin ARAENN) Set BOI.. . . o 0\ olv b b v o 2 b e e 6 h o w L s % b s 49
Radin ARTKNNY, St BOD L & il 0 onin vrs 5 ss s 5s 0w e 6 o b e s i 49
et SN VR I YRGSV LN s DIIRE o1 SO BN 1 R B s S D 49
RadinstA I NN Sat S et it ALl B b e o o B s e 49
Radins ARIR IS INSat(EGE IR 1 Bl e R e e 50
Rading ARLIREGIIROEIC L o i i b » s s iw v v e e B A 50
adios AR AR PHOEH 0 e N ¢ b i s e s i e A 50
Rading ARETIRES) Set Bl 5 0 . 8 e o s i a0 a5 5 il e s m ke d ot 50
Radivus AMBUSE-SEE D « - o o o c i e e dr s ot s o ool e e e 50
BadiesaThe] CREE . BRI o s e b a o e o B, e 50
Radius ARl (BOSY SBEBCIDY. . 0. v v on o i sl sin Lot s s i o sk o0 w6 s 51
Radins iR RS Set R i e e f o o N 51
RadiuspA R RS SETRIE 8ot e i e e T s ke B L 51
Rachost AR:T (RUSEISeR L 00 o e bl ot Sl s e R e s e 51

Scatter plot of the first 3 principal components of the AR(4) feature vector fitted to set
B (no boundary noise). The dots represent shape B1, the crosses represent shape B2,
the circles represent B3 and the triangles represent shape B4. . . . . . . . .. .. ... 55
Scatter plot of the first 3 principal components of the AR(4) feature vector fitted to
set B (N(0,0.5%) boundary noise). The dots represent shape B1, the crosses represent
shape B2, the circles represent shape B3 and the triangles represent shape B4. . . .. 55



LIST OF FIGURES

5.30

5.31
5.32
5.33
5.34
5.35
5.36
5.37
5.38
5.39
5.40
5.41
5.42
543
5.44
5.45
5.46
5.47
5.48
5.49
5.50
5.51
5.52
5.53
5.54
5.55
5.56
5.57
5.08
5.59
5.60
5.61
5.62
5.63
5.64
5.65
5.66
5.67
5.68
5.69
5.70
5.71
5.72
5.73
5.74
5.75
5.76
5.77
5.78
5.79
5.80
5.81
5.82

Scatter plot of the first 3 principal components of the AR(4) feature vector fitted to
set D (no boundary noise). The dots represent shape D1, the crosses represent shape
D2, the circles represent shape D3, the triangles (up) represent shape D4, the triangles
(left) represent shape D5, the triangles (right) represent shape D6, the squares represent
shape D7 and the diamonds represent shape DS.
Radius AR:2 (kNN), Set BCD
Radiuns "AR:2/(LNNICSEBED G G R0 8 6 a5 sl s B ils o 4 s o 5 e a e o s 58

Rading AR (BNIN) - SetB 3 i 0 0 000 s 5 55 v v b 5 s m o v wamle & o e e 58
Radium s (RN Bt I o L T i riinls e b 5 o w55 o B e o el 58
Ravdios ARZ(HOS), SebBUD . o 00y 5 v 6 0 6 v w vin s 65 soasi s o s o s i %5 58
Badina ARDSHUHCS, SebBEDIIL & ol 8 o b satetlen e o sMd oo s sl B s o 58
Radhiug aR-2URMCR) SabB 00 0 oo el cv i v s i s s e s s A 58
Radsl A=A URES ) Sel Han ot S e s e o e o = s e e @ 58
Radnis AR (NN Set Bt o e e s o e e s e sl G h 59
Ragia AR CINNISEE BT & ¢ o 0000 & Gontai ol 5 e 5 5 9 h 5 o A o ek e e o e e 59
Radivg AR (NN St s s v o0 5 s s e e e e e e e e e 59
RadnistARS (eNINTSBet B o o il 0 s e o B o il e 59
R A (RINIITRSCE Y B T8l n il 8 o pi kst s o o o 59
IR e b e D A e T o B o o b S i P R b I 59
R e AR N N e e e s St g U W ey, . e ) 59
Radume AR (NN Bt D L o i el i« 5 v e i e e 59
Radite ARZ(RCS). Seb BLoll aii s s o B i o A i e e e 60
Raditin ARB (BTSSR o6 v 0 0 ohahs 5w 9 i s 55 e S aid w46 d st s e 60
Radim ARDIRUSHL St B < s v vte s i i v v 5 s v e B e d x ool ol e 60
Baainn AN ATRES L Sebil .5, © ol g R Tl S e R s AT 60
Radin ARUDURNSY. SRl L. T 6hr e it s s o % 4% it e S e e 60
Radi A2 RUSE Bee M) L S S L. L e a2 e 60
Ruduis A3 (ROST Sek 1) o s L e ca s oo os % i e % % v e 60
Rading AR (ROSISSet DN . o0y Sl il e s ol e mic & v i ate i o e 60
Radins AR (ROSY SeEB - .o s o o D S B e ki d v e %l e 61
Radipat TR Bl B S e s B e e e B 61
Raditis AR IR C S 8ot B o L o il e o i v e e e 61
PRt AP (BUSISEEE B« - 0 i s fe v i box 8 ws s Bt ne P n e e afhaive s 61
Radis AR ARSI Setill L . 5l 8 8 J s o etm e m N o wa T el ceie e e 61
Rasfois ARG (RASISSRE T o5 % U0 bt b« o ol e M B0 0 M 61
Bl A RDPURESIVSOETY " o0 U n virs aim s 5 o w4 e s s o G o e s 61
RAdinRa 2 (ROS FGe 1] I S L R B W T s o e 61
Chrvature ARENNIIREEBILE. T S0l G alle 6l vk o o o i ol e ek 65
Crirvature ARINN)SSb B 0w & 0 a5 s e e e e e e s e 65
Curvatnre A (kINING BSete BT = Sia S el S i e N e e 65
Cunvature- AR HINNYESat BRI o e i s . 65
Cumrature ARITKINN)ISEEBOD & 5k 5 e as o o i e s e e et 65
neyature AR IRNNISSEHBOIY o - o 2 e o s it o e 65
Gurvature ARIENDI L SetilE: ol i cal oot o i sb el S T N e, e 65
Crevattre, ARNDI SEtTEN L ey ot e o Tt e e DS R S e e 65
Caraatare R REGNINet Al = b I Sl s s o e I e 66
Cursatore ARAROS) St Bl il it o o 5 e s e e e e i e s 66
Curvature AR(RES) SefDl. o o L c 5 s s v a e e e e w0 66
Curvatire AR TRES) BebD)nhle o = S S W @ i e e e 66
Curvatire AR (ROSEBeEBOD 0 o v o 604 6 e maiin @ 8 am i o a8 v v abs o 66
Clrvatuce ARGBRES) SetBOD w5 s 7 @ v o i e e s e e m e e e e e 66
Gnevature AR (RES) Setl . ohr - n i o el e e 66
Cayatnre A RS et e o e Ry e I o e b ot e s 66
Curyatiet S RS et I R o i L e ol s oo i 5 51 1] e 67
Guryattre AR RS St B . o, e e e s e e o e e 67
CurvatnreRITRIES ARab Bl L i TR e LR R L e v E a ek n 67
CuretreSARNIRE SN Get B IS T oL e AR e e 67



LIST OF FIGURES

583 Curvature AR (ROS) Bt D & o )hiee sm s o4 s it b i oo onesie 5 e o ahe o 67
84 Curvatnre AR [RES)Set Do slaam s 7o o mbale bbb e 67
BSY Cormatum AT IRES) - Set Dier o 1o v il b a e wbss e e v 3 b & b wa 67
ailG Cnret e U IRES) Sal Dl o I o e ekt e et it B Laren et 67
BTG RI CENIESab IBETE . i, L BSOS el il 2 5 e 8 72
TR R S et SRR S O 72
2GRN TEBE BIL L e St e fatias o e e e I e s e S b b s e 72
SOVCAR BRI Get B, i Tt s MR The, i o 0 bt L s 72
B R UGS SEE BCD Ll e o o (Bl o7 s 55 S el B v s 72
597 BABIRER) Se Pty S AW g B, 8 SR s R T 72
083 ORMARCS SELIE o 0 5 5 5 5 i mins e s e e ot 5w v ke o nn e a H ks B m e 72
B CCARIIOS |- Sap B sttt S RN o e L, e ) B KRR 72
SR B T R T S TR e e RS N L LIRS v R i 73
DR R VNN ORI o R e I P Rt b ot o it o i B e e T o g 73
SO CAR GNNIISet Bo . o o i e s it o sa ol s s b e 73
SRS TR R R O LS S e S S R L LS 73
BRI T I e I s S SESSIRIER. S G el i 73
SAABBCATR NN Bt 1) o v i o 0l T s D s amh e el o e B e e S 73
SIALCAR NN S0t B0 8 ool Sl o s e+ st s e e e & e e S 73
T I R L e L T SR T 73
[ et TGt [ - e Sl 1 WO, T e e L A S 74
DUHSEARARGE). Sot B S A A L DR RSN, LR e 74
O e T R B - I I T N R S L e, 74
o R 74
SRS Qe D . 5o e e st SR S L o R 74
STOSCAR ERCE SO o e et s S R R e e e S 74
HARCA R RO SEETE i o 2 7 ok 5 il o S R b s st g 2 e R e e e T4
FEIOCAR (RSSO 5w 7 S 1% 1 05 6w G oo ol s et dl by B o e 74
SRIIUAR IRES) SebIBY. £, 5 o 80c TSI O N | L0 o s il =y ol L sl 75
EVEIOAE TROSIESel Ry, . ot O B e iy, i 75
B A R G e e e . bl S e Tl 15 v P |y o S 75
SO AR TR0 SR R e SN G Fil o e L TR S ST R 75
STISCARICREEY St L o st o Tl o e R ] 75
BRACARIRCS), QORI & o s iy vainy s sl s s s v Pee o P S W M 75
S HTCAR (RESY SR o - v ve v et @00 0 s g b s B e W s A Bl B s 75
BAIBEAR RO SebD R b o o s B i e s e S e aee e Rl 75
SANCPARGOR (BINNJ Set BOUD: 5 o 0 0l 5 i 5 i m s st Fee o s s b o ob e el 81
SI2DCEARCORARNN). Set BOD: . 5 550 s ooy con s o 08 50 b Shalh e A 81
SUZTCPABROOR (RN, Seb B .. . o0 00 e o wb e mx don ol o bt e e 8% 4 a 81
S22 CPARCORBIENNI RS et F 8 = ol Tt i b o e ST e 81
123 CPARCORMBO 1 Set BOT | 0l U0 i At s e st st s oo o, ool o 0 81
S 24 CPARCOR TRES). SetBOTEE & o805 Lo 5 e i1 s s i o0 s 1 v SR ht (o s T 81
HADOPARCORABCE) St Bl S v Do v e b b o il st 5 o s s s 5% 81
o126 CEARCORARER), Set Bl L 2 ¢ o ild A v o o s oo m i) ) 5 s 8 slste s o e 81
oA TCPARTUR I ENNE. Set. B At o e o s e s i i o T e Yt o E s 82
S ASOPARCORUENN). SatBl 0 5 5o hue A8 DL e 82
5 1200 P ARCUE (KNI S8t 0 5 5 i i e o oo oo o s T e 82
SR0CPARGORAENN=Set Bara it 00 50 0o s vttt e 8 e L 82
5I13ICPARCOR (ENN). Set T ... oo oioie v vie s e ot R BB e 82
B2 G ARG CIRS NN SN s wla p B IS g whe, Ao vl 0 S B o, S . 82
S AR R N el D e i e i L e s 82
S 34 CPARCOR, (NN, Beb IS L0 o a s i ot foil i icwiares BE e 0 bl s 5 o i il b 0 82
SIS OPARGOR(ROS), Set B & . o v o s sl ol vcnonn ol Lol il e = o 5 s 83
SAIGUFARCOR (ROS), Bet Bl o0 e o v vl il e cataeinyi rokt phal s ae o e 83
5AI3TCPARGORNRBES), Set BT oo oL L s ol i s o s e e 83
5IGECPARGORANBRES) St B o . e s e s e s i e 83
SI39CPARCOR {RES) - Set Dl il o ainthl v St s o o e el L e 83



LIST OF FIGURES

5.140CPARCOR (RCS
5.141CPARCOR (RCS

- ) RN I o I S - T TSR | e | 83
N S TR & B T A SN B 83
8142CPARBORIROBY. Beb D x5 o S % % 0 4% 4w T A vt s e 83
BASCPARCIOR (ROQY Ba B . %o s s s v e 6 56 bl o L g 0o 84
5.144CPARCOR (RCS), Set B
B SCPARCOR RS BB s 1 0 a0 ot e et o b Ty 84

SRR ROGOEROSY SBEB  0 e il s o me aha G i o s & oot Tl e e 84
5:147CPABCORARUS). BT . o o e o a5 iuin s e n omow e 16 14 % 10 WA b ot 50 84
2 HBOPARCOR (BOB Bt I .. o cecer o a5 s e e s s % s 54 1 6 v A m e a e 84
S JASCPARGORIIRIIG). S D ... o von b e cieie oin % a5 24 % e & 5 5 5 5o 4 % 5 it maits alaia 84
5100 PARCOR ERESI SBEB oo siaras i % s o 5 5% 3 a5 & 4 & 050G % e i S 84
alalbirect ORARCOR (RESY, SebBr oaoabinin 5 noam s 25 5 G 5w % 2 6% e s o o 85
5:162Ditect/ CEPARCOR (ROS), SebiD .icivie v i b i a o s % 6k 5 50 5 o n 8 % e e m e ae 85
B15aDirect CPARGCOR (ROS); SEE B & iciive et i 55 2 5 55 8 5t ie o6 ot 1o e 1 2m o imrmmee 85
5154 Direct CEARCOR (RES) SRR/ o 0 o e inie o e vsl it 1o e T e Lata b m it 85
3 156DipectiGPARCOR CRGSY SeEI). ., T, 0 o e i e e b ol s . smtis oo fau 85
21060 irect CRARCORIRORY: SeRiTY: i Ul o b i il et e e (8 e a1 85
2. b7 rect i CRABINORIRERT, BebiTY oo o o i i s e 85
5.158Scatter plot of the first 3 principal components of the radial FD feature vector fitted to

set B (no boundary noise). The dots represent shape B1, the crosses represent shape

B2, the circles represent shape B3 and the triangles represent shape B4. . . . . . . .. 89

5.159Scatter plot of the first 3 principal components of the radial FD feature vector fitted to
set B (N(0,0.5%) boundary noise). The dots represent shape B1, the crosses represent
shape B2, the circles represent shape B3 and the triangles represent shape B4. . ... 90

s LR SIS S R ARSI NS ST N ¥l s S e, SR e (0 RSN SO 92
LR T s A e I N SO, NN e I e T I s It TR /| L W e 92
G2 T ara e RENURIESI R L e ot o bt ot e IR e e 92
S ke S L D L R s . b ol o Bpe B S P S L S 92
B84 CoREeur EDRINNYE - b il oo s £ M T B O e P 92
5. 160 Atine Anvariant B (RININ oo o o mr st ey s o1 s o b 5 e e et e e T e s 92
B.166 Cirvatnira DTG - T o T s e e a8l e o e e R i e e 92
S IGTRaGmE FRRITIN L o e e o it oo e e 2 e, e ok S e 93
G (GGG N IR B S e tn it L it SRR NS o ORI ERC IS 93
ARG S Te s P o RO R T e S SN e VG O s SR . i e oA 93
SR ITUCOREOUTHENERINING =y ot B T S . A L o A e s R e bl 93
R Bral I s P 8 6 TR Iy s R ol 01 O, TS SN T S BT R T R 93
BTz tne Tvapant IODOMEINIG S o i Lo bl o LRI L e e 93
Bl eaCarvatura BB BN 0 8l e sttt v i Ut o e P e b S 93
aulfaGureatare RN o st T S et L s T e e e e s s S 93
A Thadnis RN A o e e s T e e e Sy 94
oo i 53 G G B T e oo S AV S BT M s e s i & SR - e 94
ST Contont BEIMRNNY &0 e @515 % ahs 55 304 @5 ot 9 aE o b ol o ek e e 94
S I I e e T e e 94
S 7aAne Tnvertant ED (RNNISLS 0 e T e e ot S L S S 94
5.180AMne InyarianC FDUENNG. . o it e L o O it Bl et ok 94
bl 81 Spectral AR rethiod (BetsBR oS | Il oM SIS e e e 98
b.1828pectral ARanethod; St DI che v cvm i v i ahs o o o0 500 5 5 i b e e 98
5,1838pertral AR method, 'Set B oo n w5 e 8w s w B w B R R e e 98
5:184Roots ‘estimated from R} BhapeBL | & o 2 v s 5 s w s b b b G e e 98
5:185Roota estimated from A1), shapeBL 1 .« o G5 0ihn 4 % i n e e b B e e 98
5.186Roots estimated from r(i), shape B1 with N(0,0.5%) boundary noise . . . .. ... .. 98
5.187Roots estimated from 6(i), shape B1 with N(0,0.5%) boundary noise . . . . . ... .. 98
5.188Noen:staticnary AR method, Set B 1. & 5 6 o v o v b v e e e e bt e e e e e 100
5.189Non=stationary AR reetheod, SELTET | o 0 000 5 0 b w o in i m e on i i e ey 100
5.1905y(r) plotted against r, estimated from a non-noisy shape . . . . . ... ... .. ... 103
5.1918y(r) plotted against r, estimated from a noisy shape . . . .. ... ... ....... 103
5.192Wavelet M. Invariant (KNN), Bet Bl i« @« o 5 v wov v oot wob v m b as o % 5 5 8 5 105



LIST OF FIGURES

5.193Wavelet M. Invariant (KININ), Seb D . & « & ¢« v vw v v % i 4w s i oo % a s oo 105
5.194Wavelet M. Inariant (KNN); S8t B < o v i v i v v v i b 6 4 i v e v et m ve v s 105
5.195Wavelet M. Invariant (KNNJ}, Set B . . & ¢ ¢ i o v n v v b i v ot e e e ee e s 105
5.196Wavelet M. Invariant (kNN),Set B . . . . . .. .. .. ... ... ... ......... 105
5.197Wavelet M. Invariant (RCS), 8et B . . . . 0« v o v v v v o oo s r b s e e sn s 105
0.198Wavelet M. Invariant: (RCS), St D . . v 0 v o v v v v n e e e r e oo e e s s e e e e 105
Bt Radiog ATCTRNNICBEUE | v o 5 0 ot b s 5 m e i et 2 e ool 118
22 Hading AHISNENNY. Seb B i 50 5 5 tlaie mne & om aibom m 5 B0 2 e oah a s 118
DG hanue ARUTREMNG D Seb D) 6, o o 0 i o 0 e il e b e e by s e 118
Bk Enaine ARCTERINLBEl IF 5L s o b e i o e o s i e e 5 B e e B s 118
B.5 Badis AIRLUROAY SbBe . . . vw v ok e 55 aw o5 e ke b we s a sasmals 118
LT i S S S U N I A 118
B Ratins ARIREGY Bab B Ll 00 T L i s s i e e e et s e e 118
B SRadics AR TRESY ST 2o cn ol s e e a5 I e R e 118
BOSCRRINAY S ph AR ) Lam o )0 LD TR T Ty R e 119
B.10C AR HIENNSEE B i a0 €78 5 s 0 it e n e b e B e 119
3 WIREAT Sl iy o b S AR ST T N LN 5 S Ll VE TR vl il 119
R R TE ey b e A 3 LT eI & SRR R o L R I 119
B8 tm g an I i S SRS el T s LN L e T A S ) 119
BULCARIMCTYIRIE Rl | A i WA s e e bl R e 119
B15 CAR ERESEBOE D 0 1 0 v s o 5 eses s 2 s bl o i e i e 119
BURCARS RS R W R L ek B s b B O D 119
Bi7 CPARCORCENNL BB & cod b 00k w & 9% 900G 5is 0 8 % 6 3o s B o s il 120
BB CPARCOR VRNNI SO B o0 07 0 ahs s 56l bt s % e e it o o % oot W e emrn 120
S QP ARCOR RN Sebildoe, LR a s e o B o h et enmdty Lt bl U L 120
BRAGLPARGORAENNY, ST . . o8 il 4 o on s € it o co s 5 75 5 ol oo aalsres 120
PP ARGURROSY. SEET. . L I e om0 B ok b h b i 120
M2 OCPARUOR ROSBEE R . o b o i e e e n s o A s s B iy e Sl o 120
323 CEARCORIIRITS), BEE D ot o s i = o s a5 te a5 a5 5 0 4 e st 120
B4 CPARCORAROS), Bebi B 0 o i as 4w v o v o oo o 5 % %5 5 s s v a0 e 120

10



List of Tables

5:d Sdlective RUMMALYIOE PrEvIaaWOTK | = = e = 5 % 5l 5 6 B 7 8 e o o 36
b2 AR method A eaperimietital 10l 0 e e e e e o 45
5:3 AR/ method 2 GXperlmMentaisl: o 5 m a5 Sas o e e e e 53
od T VatuTe ARVEXPEATHEDE b B L L i SR e e e a o e al e s e 63
A s T R R B S U e GRS U, T S SRR AR 69
5.6 CPARCOR experiments (coefficients calculated by recursive algorithm) . .. ... .. 79
5.7 CPARCOR experiments (coefficients calculated by direct method) . . . ... ... .. 80
b.5 Bourier desCriPtOreXPEINTENtRS & & & i hine ws = G ahs = e = S b e e e 87
5.9 Houriercescriptor eXperIments % = Rt . 4 ek G G G Tt e e e 88
5.10 Spectral AR eHoriments’ « it i 5 il S i b e 3 e s s 6 % e e e e eereeia ae 96
5.11 Experimental conditions of figures 5.188 and 5.189 . . . ... ... . ... .. .. ... 99
5.12 Wavelet moment-invariant experiments . . . . . . . . . . . ... e 101
61 (Sammaryofresnlta NolRe ea B8R . 5 % L S v e e e R i e 108
6:2 0 Sumimary ot results: NOISETRSEE 1. 150 & i it @ it e e e e e e e e s 108

11



Chapter 1

Introduction

1.1 Background

Many industrial applications make use of two dimensional shape classifiers, including aircraft iden-
tification, classification of chromosomes, industrial part identification and hand-written character
recognition. For real-time applications it is desirable to use only the object boundary information
because of the reduction in data compared with the original 2D object image. It is for these reasons
that the Pattern and Information Processing Group at DERA are interested in exploring the use of
such techniques and their feasibility for real applications. This project was carried out as part of
Technology Group 10 of the Ministry of Defence (MoD) Corporate Research Programme at DERA
Malvern.

The shape classification processes found in the scientific literature consist of four stages: edge
extraction, boundary sampling, feature extraction and classification. A wide variety of sampling
methods, features and classifiers have been found. The shape information is encoded in the features
and common techniques include moment invariants, Fourier descriptors and time series models. All
of the boundary based features and classifiers can be computed relatively quickly but with varying
degrees of accuracy and robustness for classification i.e. some features will be more separable than
others for a particular dataset, but with another dataset this may not hold.

The performance of the aforementioned techniques can be significantly degraded by changes in
the statistical characteristics of the imaging noise in cluttered environments. These changes may be
caused by varying atmospheric conditions or even the relative effect of discretisation errors. This
suggests the need for a range of data sets and noise conditions to test the use of the features for

classification.
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CHAPTER 1. INTRODUCTION
1.2 Aims of the project

Most of the articles in the literature present models evaluated in ideal conditions (i.e. shapes with
noise-free, or very low noise, boundaries) and demonstrate each technique on small sets of well sep-
arated data (in feature space). As the classification performance of any model is dependent on the
data used, a common thread of data has been accepted by journal referees to benchmark each one.
Usually only one or two well separated data sets are used to demonstrate each particular technique.
This project aims to compare each technique as presented using a wider range of data, including
the well separated benchmark data, in similar noise-free conditions and also consider boundary noise
experiments to assess the performance and robustness of each one. The boundary noise experiments
represent more realistic and challenging tests to the robustness of the techniques. The work will be

used to scope further work on this Technology Group 10 project at DERA.

1.3 Overview

Chapter 2 describes how the shape boundaries were extracted from an image, chapter 3 describes
the boundary sampling algorithms tested in the experiments and chapter 4 describes the feature
extraction techniques employed. Chapter 5 describes the experiments conducted and discusses the
results. Finally chapter 6 presents the conclusions drawn from the comparative experiments and

describes some on-going and future work.
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Chapter 2

Extracting Shape Boundaries from

Images

2.1 Introduction

The first task in shape classification, using grey level imagery, is to segment objects from the back-
ground whilst maintaining a good representation of their physical shape. By segmenting objects from
background noise we create a binary image where the objects are white and the background is black
respectively. For high quality imagery where there is a high contrast between object and background,
it is a simple task. But when parameters such as brightness, colour and texture are non-uniform, the
task becomes more complicated. For the scope of this project, the shapes can be pre-processed so
that they are noise free and converted into a binary image. Image segmentation is an active research

area and many different approaches exist and are briefly described below.

e Edge detection. Edge detectors produce a binary image containing the object boundaries. They
operate by indicating significant changes in gradient in the grey levels with a connected unit
width line. The main problem with edge detectors is that they tend to produce edge segments
which aren’t necessarily connected, forming open boundaries. Further processing is required to
close the boundaries, and the method chosen for doing this will depend on the particular data

set.

e Segmentation by thresholding. Many thresholding schemes exist and some standard examples
are fixed, multiple and variable thresholds. Perhaps the best known method of automatic fixed
threshold setting is the histogram method. The threshold level is chosen to lie in a trough
between peaks in a brightness histogram of the image. Problems with thresholding schemes

occur in more complex images, where there are large variations in the grey levels assocaiated
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CHAPTER 2. EXTRACTING SHAPE BOUNDARIES FROM IMAGES

with objects and background. For example, an object’s intensity could fade due to illumination
effects. A global threshold is not usually successful, and so local thresholding schemes are often

implemented.

o Segmentation by pizel classification. Region growing is an example of this method, where an
initial classification of pixels is made and then the resulting groups of pixels are reassessed to
see if the classification could be improved by merging groups. This process continues iteratively,
gradually refining the membership of each pixel to the different groups. It is quite a complex

process and computationally intensive, as each pixel is examined many times.

2.2 Boundary Extraction

For this shape classification study, the shapes were extracted and preprocessed so that they were in
a controlled environment. Many of the shapes used were scanned from various articles using a HP
scanjet 6100C scanner. The images were then filtered and converted to binary images using the Paint
Shop Pro™ software package. The boundary extraction process is not central to the aims of this
project so standard methods were used. More sophisticated boundary extraction techniques should
be employed to implement this process in a real-world environment.

The edges of the binary images were detected using a Laplacian of a Gaussian [1] edge detector. The
edge detector works by convolving the image with a linear Laplacian of a Gaussian filter, producing a
closed unit width line around object boundaries. The boundaries are then located and traced around
in an anti-clockwise direction, converting the boundary coordinates into chain code format. Chain
code is an efficient way of storing boundary information and consists of a stream of numbers describing
a shape's boundary. The first two numbers are the cartesian coordinates of the first pixel found when
a shape is encountered while performing a raster scan of the whole image. The succeeding numbers
consist of a sequence of code numbers, each one representing a boundary step in one of the eight
directions relative to the current pixel. The boundary is traced for one complete circuit until the
original point is returned to. Figure 2.1 shows an example of some chain code. The columns represent

the first four elements of a series of chain codes.

41 41 126 130 142 151
58 154 191 126 207 94
B 2 3 4 3 TS
0 0 0 0 0 0

Figure 2.1: First four elements from each chain code

The experiments described in chapter 5 considered many realisations of each shape at different

orientations. The binary shapes were rotated by using the MATLAB image processing toolbox function
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(imnrotate.m). The boundaries and chain codes were calculated at each orientation and saved so that
each boundary could be recovered in an efficient manner. As the experiments were performed many

times using the same data sets, the chain code representation greatly increased the processing speed.
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Chapter 3

Sampling Points from Template

Boundaries

3.1 Introduction

Sampling M points from a boundary consisting of N points in total is widely used in the boundary
classification literature. The reason for its use is the reduction in computation required to describe
a shape, compared with sampling all of the boundary points. It has been shown [2] that by careful
selection of the number of sample points, sampling causes little, if any, reduction in classification
performance compared with using all of the points. Sixty four sample points were commonly used in
the literature and so sixty four sample points were chosen in our experiments (after confirming the
sensitivity of classification performance to the sampling frequency in preliminary tests). In addition
to reduced computation, sampling can also serve to smooth the inevitable digitisation noise.

Various sampling techniques exist including equal angle sampling [3], equi-spaced radial distance
sampling [4], equi-spaced complex coordinate sampling [5], equi-spaced curvature sampling [2] and
equi-spaced polar coordinate sampling [6]. Each sampling scheme has been implemented and used in
our comparative experiments. Below is a detailed description of the schemes. Each scheme assumes
that the boundaries are closed and are traced around by a boundary following algorithm [3]. In order
to sample the boundaries of the binary images used in our experiments, they are traced around using

a boundary following algorithm [3].

3.1.1 Equal angle sampling

The radial distance, measured from the centroid of a binary shape to the boundary, is sampled each
time the boundary follower crosses any of the N angularly equi-spaced radial vectors. The radial

vectors are projected from the centroid of the shape. Figure 3.1 shows the series of radial distances
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s

13

12
11

Figure 3.1: Tllustration of the equal angle sampling sequence

sampled sequentially from points 1 through to 14, with no reference to the angle at which they were
calculated. Note that although there are eight radial vectors in figure 3.1, there are fourteen sample
points. As sixty four sample points were specified for our experiments, sixty four radial vectors were
used. The precise number of sample points depends on the nature of the boundary (e.g. whether the
boundary is convex) using equal angle sampling.

It could be envisaged that sections of a boundary will consist of straight lines and certain rotations
of the boundary may cause consecutive points of a line segment to intersect a single radius vector. It
is desirable to have just a single sample per radius crossing, as a further rotation of the boundary will
cause the radial vector to no longer intersect consecutive points. This would produce samples which
are not invariant to the boundary orientation, as different sequences could arise from sampling the
same shape at different orientations. To overcome the problem of colinear points, Dubois and Glanz [3]
proposed that only one radius vector/boundary intersection be allowed between consecutive boundary
points and a particular radius vector. The start point of a sampling sequence is not considered to
be important for developing features but the sample values and ordering are, so if the boundaries
are sampled in a consistent manner the samples will be invariant to the shape orientation. In our
experiments the image was raster scanned until a boundary pixel was encountered.

Equal angle sampling is an extension of an earlier model where the boundary is blindly sampled
at all radial intersections i.e. radial vectors are consecutively examined for boundary crossings and
sampled at each one; some vectors may have more than one crossing if the boundary is non-convex.
This restricted the application to convex shapes only so that each sample is single valued, as multi-

valued samples would not be compatible with some feature extraction methods. The equal angle
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method allows for non-convex boundaries, so that the sampled sequence is invariant to shifts (as the
radial vectors are measured with respect to the shape centroid) and rotations (produces a shifted
sample sequence from the original non-rotated sample sequence). However, after sampling by this
method the original shape can no longer be reconstructed due to the lack of phase information. This

means that the samples could be sampled from different shape boundaries.

3.1.2 Angle of variation sampling: radial distances

This method consists of sampling the shape boundary at N equi-spaced distances, resulting in a

polygonal approximation of the original shape. At the i’th vertex of the polygon the distance of the

Figure 3.2: Polygonal approximation of boundary by equi-spaced sampling

boundary point i, (;,¥;), from the centroid of the object, (z.,y.), is computed by:

= \/(Ii T+ (i—9)? i=1,---,N (3.1)

Figure 3.2 shows 36 equi-spaced samples. Angle of variation sampling is also invariant to the orienta-
tion of the shape and is able to sample non-convex boundaries. Again the original boundary cannot

be reconstructed from the samples due to a lack of phase information.

3.1.3 Angle of variation sampling: complex coordinates

This method sequentially samples the boundary at equi-spaced distances, again forming a polygonal
approximation of the original shape. At each vertex the coordinates of the boundary pixels are sampled

with the origin positioned at the centroid of the binary shape. The coordinates are represented as

19



CHAPTER 3. SAMPLING POINTS FROM TEMPLATE BOUNDARIES

complex numbers given by equation 3.2.

zi = (i — ) + j(yi = Ye) (3.2)

This approach circumvents the problems discussed with the previous approaches as they are caused
by representing a 2-D time series (a boundary) as a 1-D one i.e. the extra phase information contained

in these samples allows the polygonal approximation of the original boundary to be reconstructed.

3.1.4 Angle of variation sampling: curvature measure

Again the boundary is sequentially sampled at equi-spaced distances forming a polygonal approxi-
mation. The angular change of a boundary tangent is calculated at each sample point producing a
sequence of curvature measures. The curvature of the boundary can be represented by the difference

between two consecutive tangents calculated in a window of length w, given by equation 3.3.

oy ¢an? (?Je = yi-—w) _ tan-1 (yi—1 = yi—l—w) (3.3)

Ti — Ti—w Ti1 —Ti—1-w

This is illustrated in figure 3.3. Again the original shape cannot be reconstructed from the samples

(ei-1)yG-1)

(i-w),y(i-w)) (x(D.y@)

(x(i-1-w),y(i-1-w))

Figure 3.3: Two consecutive tangents of a boundary

due to the lack of phase information. It would be thought that this sampling technique would pro-
duce samples that are greatly affected by boundary noise. Curvature sampling has been successfully
demonstrated in the literature [2], but was not tested in noisy boundary conditions. It is for this

reason that curvature sampling has been included in our experiments.
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3.1.5 Angle of variation sampling: polar coordinates

Eom [6] used a sampling method by again sequentially sampling at equi-spaced intervals along the

boundary, but computed the polar coordinates of the samples, as given by equation 3.4.

#;= tan~! (u) , Ty = V/(Is' = Ic)2 i = (!}n‘ = ?)‘r)z (3-4)

Ty — T

Again, it would be expected that angular measurements would be affected by boundary noise to a
much greater degree than radial measurements. As no results have been published using this technique
in noisy conditions it is included in our experiments. As these samples contain phase information, the

polygonal approximation of the original boundary can be reconstructed.
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Chapter 4
Feature Extraction Techniques

4.1 Introduction

A large amount of study has been devoted to two dimensional classification methods based on au-
toregressive (AR) models, Fourier-based descriptors (FD) and moment invariants. Several approaches
based on AR and FD methods are described in [2], along with a wavelet moment-invariant technique.
The AR and FD techniques use only information from the sampled boundary, whereas moment in-
variant techniques use the whole silhouette for feature extraction. The aim of having many types
of boundary representations and models from which to derive features is to objectively evaluate the

performances of the different approaches.

4.2 Fourier-Based Descriptors

The boundary sampling methods described in chapter 3 represent a boundary in the spatial domain.
By simply taking the discrete Fourier transform (DFT) of the samples, a boundary can be represented
in the frequency domain by a complex set of numbers, the Fourier descriptors (FD). The lower fre-
quency descriptors describe the general outline of the shape, whereas the higher frequency descriptors
describe the smaller details of the shape. The DFT is defined by,

1 N-1 s
F(k) = & > a(n)e= (4.1)

n=0

where F'(k) is the DFT of a periodic complex sequence z(n), (n = 0,:--, N — 1). The first sample,
F(0), is called the DC component, equal to the average of the input series.

The descriptors are translation invariant due to the form of the boundary samples (measurements

taken with respect to the shape’s centroid), orientation invariant as the absolute values of the FD's

are used and scale invariant as the absolute values are normalised.

22



CHAPTER 4. FEATURE EXTRACTION TECHNIQUES

4.2.1 Curvature Fourier method

The angle of variation method is used to sample the boundary sequence, at each point measuring
the curvature. Because the samples are real, the discrete Fourier transform (DFT) of the sample
sequence produces Fourier descriptors which are the same in both the positive and negative axes.
The curvature Fourier descriptors are then obtained by dividing the absolute values of the positive
frequency components by the absolute values of the DC component,

% [ifl_l Iszl]’"
|Fol” " |Fol

(4.2)

4.2.2 Radius Fourier method

The radius Fourier method is similar to the curvature Fourier method except that at each sample
point, the radial distance measured from the centroid of the shape is computed. As for the curvature

Fourier method, the DFT of the sample sequence produces FD’s of the form of equation 4.2

4.2.3 Contour Fourier method

The contour Fourier method uses the complex coordinate angle of variation sampling method to sam-
ples the complex coordinates at each sample point. The complex coordinates of the shape boundary
are directly transformed into the frequency domain by the DFT. As the input is complex, the negative
frequency axis is needed, but the DC component depends only on the position of the shape, so it is
not needed. The first non-negative frequency component is used to scale the values of the rest of the

descriptors, as shown below:

=

(4.3)

T
gyl L) 18 - Panl
P2 [ F 2 [ T Y N F 2T

4.2.4 A-Invariant method

In the same manner as for the contour Fourier method, the complex coordinates of the shape boundary
are sampled using the angle of variation scheme and are directly transformed into the frequency
domain by the DFT. The Fourier coefficients are then normalised (to remove the effects of affine

transformations), producing a feature vector of the form:
i
2= [[Agpl 142l |41l |4y (4.4)

where A; is given by,

_ Uy -ViUp i__(N )E
i 2 BT

A; = ; — -1
UpVy = VoUp
where U is the DFT of the x components of the boundary coordinates, V is the DFT of the y

components-of the boundary coordinates and p is a constant (e.g. p = 1).
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4.3 AR-Based Descriptors

4.3.1 Introduction

Time series models have recently been used for the purpose of shape classification. An autoregressive
model expresses each sample in a time series as a linear combination of previous samples plus an error
term. Boundary samples can be thought of as an ordered set of data, or time series, and these data
can be used in an AR model to produce model coefficients which can be used as features for shape

classification.

4.3.2 Radius AR method (1)

Dubois et al [3] continued the work of Kashyap et al [7] using the equal angle sampling method to
extract boundary information from shapes. The boundary samples were treated as a time series and
an AR model was fitted.

Because boundaries are sampled circularly, the time series are periodic i.e. r(t) = r(N + t) for
t =1,..., N where, r(t) is a boundary sample at time ¢ and N is the total number of samples describing

a closed shape boundary. The general form of an AR-model is given by,
T
re=a+Y Oirj+\/Be (4.5)
i=1

where ¢ is the current sample at time ¢ from the time series, r,; is the sample at lag j behind the
current sample, #; are the model coefficients to be estimated from the observed time series, m is the
model order, a is the constant to be estimated, /B¢, is the current error or residual and ¢, is a random
sequence of independent samples with zero-mean and unit variance.

The variance of ¢ is equal to one, therefore \/Fe; has a variance of 5. So 3 can be estimated as

1 N m 4
ﬁzﬁg n—a«—;ejn_j (4.6)

and the unknown parameter, o, can be estimated as

a=rF 1—i.9,- (4.7)

j=1

The parameter a is therefore related to the mean radial distance length, 7, and so is indicative

of the size of the shape. As \/f is related to the noise of the radial vector sequence, af VB gives a
signal to noise ratio. The coeflicients {f;,---,6,,} model the correlated shape variations and so they
describe the shape of the boundary, irrespective of the scale of the shape. The feature vector therefore

takes the form of z = [6,,60,, - -,Sm,a/\/ﬁ-jT‘
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The model parameters are estimated by fitting the model to the observed time series. The method
of least squares is used to find the model parameters that minimise the expected value of the square

error [3], as given by equation 4.8.

— - o~ =4 —1 - -
AL N N N
t Zt:l Tf—l 2y 2::1 Tt—1Tt—m Zt:l Te—1 Z,:| P11
= ¥ = N (4.8)
91?1 Zt:l Ti—m Zt:l Ti—mTt
N N N
It f LimiTi=1 *** Wiy Tt N i L 2=t

Equation 4.8 is of the form x = A~1b. In order to compute the inverse of A for these experiments,
Matlab’s (inv.m) function was used. This uses the method of Gaussian elimination to compute A.
If A is near singular, the algorithm can be susceptible to round-off error. If this occurs a warning
message is printed. As no such messages were encountered, as A was non-singular, (inv.m) was used
for these experiments.

In practical applications an alternative would be to use (mldivide.m), which will solve x = A~'b
by Cholesky decomposition [8] [9] (assumes A is symmetric, has positive diagonal elements and is

positive definite) which is faster and more numerically stable than using Gaussian elimination.

4.3.3 Curvature AR method

The curvature AR method uses the angle of variation sampling method, computing the curvature
function at each sample point. The samples collected from one circuit of a shape boundary gives the
time series, which is again assumed to be circular. The AR model coefficients are computed by using

the least squares method as shown in equation 4.8. The feature vector is defined as,

5 [91,92,---,9,,,,&/\/3}1” (4.9)

4.3.4 Radius AR method (2)

The radius AR method uses the angle of variation sampling method, computing the radial distance
from the centroid of the shape at each sample point. The samples collected from one circuit of the
boundary are assumed to be circular. The AR model parameters are estimated by the method of least

squares and the feature vector is defined by equation 4.9.

4.3.5 Complex AR method

The complex AR (CAR) method models the complex coordinate sequence, evaluated at each sample

point using the angle of variation sampling method. The sequence is treated as a circular one so that,
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Tj = TjpN, Yj = Yj+N and z; = x; +iy; = zj4n. The complex AR model is an extension of the real

AR model,

m
Zj = Z ApZj—k + E_.{-. (410)
=l
where ejf- is a random sequence of complex samples with zero mean and unit variance. The complex

AR coefficients are estimated by least squares error [5] so that the mean squares error €2(m,a) is

minimised,
€(m,a) = Ej”f.{”z =a’R(m)a -7 a—-a’ +ro (4.11)
where @ = [a, -+, am]T, T = [r1, -+ ,rm]T, 7k = E;(2,Z;-1) and
To Fl: Fz, " Tm—1
71, o, Fl! By Fm—'z’
R(?n) = T2, 1, 70, TN (412)
= S s
"m—1, Tm-2, Tm-=3, **'°, To

The CAR coefficients {a;}}"_, minimising the mean square error are obtained by,
a=R"r (4.13)

The real and imaginary parts of the complex AR coefficients are used as separate features, as shown
in equation 4.14 below:

T= [?’6(91), 2.'m'(gl): B re(em): im(ﬁm)]T (414)

If the shape is rotated by an angle #, then the complex autocorrelation coefficients become rjfiotated =
Ei{e'zj.e "z 1} = ry, so R(m) is rotation invariant. Therefore from equation 4.13, it can be seen
that the CAR model coefficients are also invariant to rotations of the shape. By the definition of
complex autocorrelation coefficients, they are also independent of the initial sampling point on the
boundary. The CAR coefficients are also invariant to shifts as the boundary samples are measured
from the centroid of the shape.

To make the CAR coefficients invariant to the scale of a shape the number of boundary sample
points should be kept constant. If the size of the shape changes by a factor p, each of the boundary
samples becomes pz;. Therefore rx, R and r become p?ry, p>R and p?r respectively. The CAR

coefficients are then obtained from (p*R(m))~'(p°r) = R~ (m)r.

4.3.6 CPARCOR method

Real partial correlation (PARCOR) coefficients are often seen to be more useful in speech signal
processing than real AR coefficients [5]. A real PARCOR coefficient of order m is defined as a

correlation coefficient between forward and backward prediction errors in the real AR model of order
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(m —1).
Extending this theory, complex partial correlation (CPARCOR) coefficients, p,,, of order m can be
viewed as a complex correlation coefficient between forward prediction errors {e/ (m — 1)} (complex

form of prediction error in equation 4.5) and backward ones {e}} in the CAR model of order (m —1):

ﬂ(d@n—lkﬂ%hﬂ—ln
{Eu(ef (m — 1)eg (m — 1)) Ey(eb_,,(m — 1)e;?,,(m — 1))}

Pm =

(4.15)

where,

m—1l

E? =2z — Z bkzj-l-k

k=1
The CPARCOR coefficient p,, is the same as the CAR coefficient a,, of the CAR model of order m.
CPARCOR coefficients {p;}7*,' of the CAR model of order (m — 1) are the same as those of order
m because only one CPARCOR, coefficient p,, is obtained from the model of order m. A recursive
algorithm for computing CAR and CPARCOR coefficients is presented in [5] that is faster than the
least squares solution. To denote order explicitly, notations such as a(m) and r(m) are used to denote

a and r.

The CAR coefficient a; of the CAR model of order 1 is given by,
a(l)=mn /7o (4.16)

For model orders greater than two, R(m) is given by,
R(m—-1), 7(m -1t
R(m) = ( R ) (4.17)
f'(m i l)ﬂ) To

where r(m — 1)! and r(m — 1) represent the reversed order elements of 7(m — 1) and the transpose

of r(m — 1)!, respectively. The CAR coefficients of order m is given by,

a(m—1) —a(m - 1)t
qm:[ Sl e (4.18)
Pm
and the CPARCOR coefficient of order m is shown to be,
Pm = (tm —r(m —1)*a(m — 1)/(ro = r(m — 1)Ta(m — 1)) (4.19)

By recursively computing equations 4.16 to 4.19 the CAR and CPARCOR coefficients can be deter-
mined using the fast algorithm. Similarly for the CAR coefficients, the CPARCOR coefficients are

complex valued and the real and imaginary parts are used as features as in equation 4.14.

4.3.7 A Spectral AR Model

The spectral AR method of Eom [6] models the polar coordinate sequence evaluated at each sample

point using the angle of variation sampling method. The series of samples collected from one complete
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circuit of a shape’s boundary is again assumed to be a circular one. The angle sequence is treated as
a separate sequence to that of the radial distance sequence and linear AR models are fitted to both
sequences by the method of least squares, as shown in equation 4.8. Applying the z-transform to both
sides of equation 4.5 gives:

A(2)R(2) = a + /Be(2), (4.20)

where R(z) and €(z) are z-transforms of r(t) and e respectively. A(z) is given by,
AR)=1-61z7 =i =@ 2™, (4.21)

The general order power spectral density S,(w) of the process r(t) is estimated by [10]:

" B
5rlw) = Alein) Ale2)

(4.22)
Spectral analysis has been used to estimate the spectrum of stationary stochastic processes [11]. Many
stationary stochastic processes can be approximated by a sufficiently high order AR process. Eom
used an AR(20) model to demonstrate this model. This approach tends to give a smooth spectrum
and it can also pick out narrow peaks in the spectrum [11], provided that the AR process is of a
high order. Eom [6] states that the roots of A(z) are related to spectral peaks and can therefore
be used as features for classification. As the roots of A(z) are real, the roots will be complex and
occur in conjugate pairs. The roots of the AR polynomials A(z) for the set of radial distances, r(t),
and the set of angles, (t), are estimated independently to form the feature vectors, ry,---,r, and
S1,° -, 8p respectively. The DC components of the power spectral densities, given by the real roots
of the AR polynomials, are a function of the average length and angle of the series respectively.
Each complex root has a corresponding conjugate, and only one root out of the conjugate pair is
needed in the feature vector, so those roots with positive imaginary components are retained and
rearranged by angular frequency. The feature vector is then formed by combining the two sets of
ordered complex roots. Therefore we have p complex features from 2p complex roots. By treating the
real and imaginary components as independent real numbers, the feature vector will consist of 2p real
numbers, &1, , Zap.

Finding all of the roots of a polynomial is a classical problem in numerical analysis and has
been widely studied [9]. The root finding algorithm (roots.m) was used to compute the roots of the
polynomials. The algorithm calculates the eigenvalues of a companion matrix A, where the eigenvalues

are the roots of the characteristic polynomial P(z) = det[A — xI]. The characteristic polynomial of
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the special m x m companion matrix,

ot et e g |7 \
am+1 Am41 Q41 41
1 0 0 0
A= 0 R O 0 ; (4.23)
\ 0 0 1 0 /

is equivalent to the general polynomial,

P(z) = ) aiz*, (4.24)

see [9, ch. 9.5] for a more detailed description.

4.3.8 Non-stationary AR Modelling

Paulik et al [4] observed that there is no reason to assume that shape boundaries are produced by
a stationary AR model. Cases where complicated boundaries are very similar and need to be clas-
sified separately, consideration of the possible non-stationary character might provide more accurate
boundary modelling, leading to improved classification.

This method [4] represents the radial distance boundary samples, sampled with the radial angle
of variation method, as a non-stationary random process which is the output of a spatially varying
circular autoregressive (SVCAR) linear system whose model coefficients can be expressed as a trun-
cated function expansion. The features derived from this scheme are invariant to scaling, translation

and rotation. A SVCAR model can be expressed as:

r(n) = Z a;(t)r(t — i) + /Bu(t) (4.25)
s(t) = () + b(t) (4.26)

where M is the model order, v/fw(t) is a random noise sequence with zero mean and variance f, s(t)
is the original radial vector sequence, b(t) is a non-stationary mean and r(t) is a zero mean sequence
formed by subtracting b(t) from s(t).

The spatially varying parameters, a;(#) and b(t) are expressed as a finite sum of known time
functions. Due to the circular nature of the boundary samples the discrete Fourier series (DFS) basis,

given by equations 4.27 and 4.28, is shown to be optimal by Paulik et al [4]

q
a;(n) = Zat—keu"!”k“/m (4.27)
k=0
-~ q .,
b(n) =) _ byeli2rkn/N) (4.28)
k=0
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The point at which the sampling of a given shape is started affects the coefficients by and aij.
This can occur if the boundary sampling is started at the uppermost point in an image frame but the
shape has been rotated from it’s original angle. Given an unshifted boundary sequence, s(n), and a
shifted boundary sequence, s'(n) shifted by A (i.e. s'(n) = s(n + A)), then s'(n) = 7'(n) + b'(n). It
has been shown ([4] that b = breU?™4) and al, = a;el2™*"4/N) where k = 0,---,¢. Using the
DFS as the basis set, the harmonic amplitudes for the sets of coefficients, (b, ai) and (b}, al,), are
identical and the phases only differ by 2rkA/N. Out of all the possible basis sets possible, only the
DFS allows a simple relationship between the model coefficients estimated from shifted versions of the
same sequence.

Using DFS basis functions, the parameters are estimated as a prediction error minimisation prob-
lem. To estimate the non-stationary mean, b(n), the mean approximation coefficients must be com-

puted first. As the DFS basis is an orthogonal family, we have

q
b= Z byeli2mkn)/N (4.29)
k=0
1 N-1 Y
bk = j—v-< Z s(n)e("z"k“)m (430)
n=0

A real regeneration formula for b, may be derived by using the properties of DFS coefficients for

real sequences, given by

- : 2mkn 2rkn
b(n) = by +2£ (ckco.s ( N ) — dj.sin ( N )) (4.31)

where ¢ and dj. are the real and imaginary components of 4.30. The stationary mean, r(t), can then

be calculated using equation 4.26 and the coefficients, a;x, may be estimated. The estimator of r(n)

is given by
M q
f(n) = Z ( a,-ke(jz’”""‘/m) r(n —1i) (4.32)
i=1 \k=0
If w=27/N, then
Yi(n) = [r(n — i), e’ r(n —i),e?*"r(n — i), -, " r(n — i)]T, (4.33)
¢’(n) = [Yl (n)Tl Y? (ﬂ')Tr STy YM (H)T]Tr (434)
0= [aiﬂr @, G20, Qg AMO, "t ran]Tr (435)
and
—a = [r(1),r(2),---,r(N)]". (4.37)

The prediction error is then given by

e=S50+a (4.38)
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where 6 is an array of estimates of SVCAR time-invariant modelling coefficients. Minimising the

squared prediction error, €'e, gives

ST86 = —STa (4.39)
The least squares estimate of 6 then gives
6= (ST8)"(-8Ta) (4.40)
Finally the residual variance is given by
i X
B s T 5y2
b=+ ;(f(n) ¢(n)"6)*. (4.41)

If the boundary sequence is described by the SVCAR model, then the following features are invariant
to translation, rotation (starting from same sample point) and scaling: the model coefficients, ax,
and the spatially variant mean coefficients, by, scaled by the residual standard deviation, v/f, giving
bi//B, where 0 < k < g.

To make the features invariant to rotation starting from any sample point, as it is desirable for
classification, an optimal shape matching algorithm which determines the degree of shift (A) between
two shape boundary sequences can be used [4]. A performance index which compares the SVCAR

parameters for the original and shifted starting point sequences is given by:

q 4 M ’ 3
J&) =3 {‘bk - e‘j“’mbi.r +3 Ia,;k — g Jwklgl, } (4.42)
k=1 =1

where A is the estimated sequence shift. The primed coefficients relating to the shifted sequence

are multiplied by a phase shift term, so when the estimated shift corresponds to the actual shift the
primed terms cancel the corresponding unprimed terms. To find the estimated sequence shift, J(A),

equation 4.42 is differentiated with respect to A, giving

6. 1 _ R M X : M :
Y El 2wk {sm{ka) By.cosiy, + ;Aikcos,\,-k] — cos(wkA) | Brsiniy, + ; Asksm,\ik‘l } =1
(4.43)
A modified version of 4.43 is given by 4.44
g
FA) =) (grsin(wkA) — hycos(wkA)) (4.44)

K=1

where,

M

g = lk Re ((bkb;’) + Z(a:ka;k))] (4.45)
i=1
; M

i=1

Equation 4.44 is a simple sum of sinusoids, with q harmonics and therefore a finite number of zeros.

The maximum frequency in 4.42 is q/N, so 4.44 will have only one zero crossing in any half-period,
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N/(2q). Once all of the zeros have been found the objective function J(A) can be evaluated and the
minimum point chosen as A. The feature vector can then be multiplied by exp(—j2rkA /N) prior to

classification. This feature vector is then fully rotation invariant.

4.4 A Wavelet Shape Descriptor

4.4.1 Introduction

Hu [12] first presented a paper using a moment based model to recognise shape silhouettes in 2D
images. Since then many adaptations have been published in the literature. Prokop and Reeves [13]
presented a survey of many of the pertinent techniques. Geometrical moments of an image are deter-
mined by integrating the image function over space, so that the image can be uniquely determined by
its geometrical moments of all orders. Low order moments can be used to classify significantly different
shapes as the moments are designed to capture global information about an image. However if the
shapes are similar or are corrupted by noise, the techniques are thought to give poor classification [14].
Shen and Ip [15] have used wavelet moment invariants to capture global and local information from the
shape of interest in an image and showed the performance improvement over other moment invariant

shape classification techniques.

4.4.2 General moment invariants

If f(z,y) represents a binary image using cartesian coordinates, then f(r,#) represents an image in

polar coordinates, where z = r cosf and y = r sinfl. A regular moment can be defined by equation 4.47

Mpq = f f aPy? f(z,y)dzdy (4.47)

Translation invariance is achieved by computing the centroid of the shape and shifting it to the centre
of the image. Scale invariance is achieved by the use of a scale factor, @ = \/mgg/E[m,,]. The

coordinates are then scaled by (z/a,y/a). Representing equation 4.47 in the polar domain,

Py = / / f(r,0)gp(r)e’®r dr do (4.48)

where Fj, is the pg-order moment, g,(r) is some function of radial distance » and p and g are integers.

If the image f(r,0) is rotated by an angle B, then the moment becomes Ffotated = [ eiaf  As

|| Eetatetil = \/F,;'E"‘“‘“*(F;;E"*““d}* = ||Fpqll, the moments are rotation invariant.
In order to reduce the feature extraction process from a 2D to a 1D problem, equation 4.48 is

rewritten as
Fro = [ $i0)gp(oir a, (4.49)
where Sy(r) = [ f(r,6)e’", so S,(r) is now a 1D sequence dependent on r. The form of g,(r)

determines the type of moment invariant model. If g, (r) is defined across the whole range of r, as for
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most geometric moment invariants, then Fy, is a global feature, whereas if g,(r) is defined locally then
Fpq is a local feature. This drove the development of the wavelet moment invariant, as the wavelet
transform is able to provide both position and scale localisation.

4.4.3 Wavelet moment invariants

If gp(r) is replaced with by, (1), where 1, (r) is a wavelet basis function defined along a radial axis

at any orientation and m =0,1,2,3,n =0,1,---,2™*! and ¢ = 0,1, 2, 3 then equation 4.49 becomes

|| Fuavelet| = | f () Bunltyr ) (4.50)

The ‘well-known’ wavelet basis function family can be represented as,

y*i(n) = %w(" - b), (4.51)

a
where a is a scale parameter and b is a shifting parameter. We used a biorthogonal B-spline mother

wavelet as it is close to the forms of other polynomial moments and its use was demonstrated by Shen

and Ip [15]. See figure 4.1 for the shape of the mother and father wavelets. The scale parameter is

Decompesition acaling Tunction phi Decomposition wavelel funclion psi
L5 i . 15F i i
1 1}
0.5 05
0 0
-8 -5
= -1
0 5 10 15 L] 5 10 15
Reconstruction scaling function phi Reconstruction wavelet function psi
1 1
0.5 05
U] 0
-05t -05

Figure 4.1: Mother and father biorthogonal wavelets

chosen so that a = ag', where m is an integer and the shift parameter is chosen so that ¥ (r — b/a)
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traverses the whole range of r, given by b = nbpaf'. The parameter r ranges between 0 and 1, so ag

and by are set to equal 0.5 and m and n are constrained as shown in equation 4.52,

a=ag, mi=0,1.2.3
(4.52)
b=nbal*, n=0.1,:..,2mt}
So the wavelet defined along a radial axis is given by,
Ym,a(r) = 2™ 2p(2™r - 0.5n) (4.53)

As there are many more feature coefficients for this model than for the previous models, Shen and
Ip [15] suggested the use of a feature selection algorithm to identify the most discriminative ones.
It is desirable for discriminative features to have a small intraclass variance and a large interclass
separation. Shen and Ip demonstrated the following univariate method which is easily implemented
and was sufficient for their experiments.

If the mean of each feature || F2%%*!|| for shape S; is m(S;, || F24v*t||) and the standard deviation

m,n,g

is 0(S;, |[Fearelet])), estimated from NTS training samples, then the inverse of the between-to within-

class variance ratio is given by,

(o (S, || Fming 1) + o (S;, | Fmne 1))

m,n,g

(S, [ Feetet]) = m(3;, eyt

m,n.g

QUIFmma®Il, 8i, 85) =

. =230 (4.54)

QUIIFRave I, Si, S;) indicates the effectiveness of feature ||F4¢/¢t|| to discriminate between shapes
S; and S;. If the features are assumed to be normally distributed then the probability of a class
conditional variable occurring between [m—3xo, m+3+c] is 99.8%. So the smaller Q(||Fusvelet||, S;, S;)
is, the greater the ability of feature ||Fu%**!|| to discriminate between shapes S; and S;. If Q < 1,
then || F%4vele!|| is almost certain to be able to discriminate between S; and S;. The feature selection
algorithm computes Q([|F,‘:::‘,:"jf“|[,8i,5j) for each feature over all N, classes and selects those
features with Q(||Fwave*||,Si, S;) < 1. A discrimination number, NDD(||F2avelet||)  reflects the

m,n.q

feature’s ability to discriminate between pairs of classes,

Nclnsl Netass

NDD(|FRid®) = > 3 w(QUIFmae],SS;) (4.55)

i=1 j=1,j#i
where w(z) = 1 if # < 1, else w(z) = 0. For each feature the worst overall discriminative measure is

calculated by,
QU (| Faaet) = maZ1 i Vot it AQUIF SIS, i, 7) - w(Q(IFSS ], S, 53))}  (4.56)

from the set Q(||F;‘:§f‘ff””,81,5_f) < 1,1 <,7 < Neass and i # j. Figure 4.2 illustrates the selection

process.
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Order NDD in
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wo or more features have equa
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overall discriminative
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according to their worst [

Figure 4.2: Feature selection process
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Chapter 5

Comparative Experiments

5.1 Introduction

An experimental comparison of the two dimensional shape classification techniques described in chap-

ter 4 is carried out. The requirement for such a comparison is driven by the small and selective data

sets found in the literature describing the techniques. Table 5.1 summarises some of the previous work

in the area and the experiments conducted on each type.

| Author | Model Sampling method | Classifier Data
Dubois et al [3] AR Equal angle Gaussian letters
kNN machine parts
Kartikeyan et al [16] | Non-linear quadratic | Angle of variation: | Gaussian aeroplanes
Volterra model radius
Paulik et al [4] Non-stationary AR | Angle of variation: | kNN industrial parts
radius lakes
aeroplanes
Sekita et al 5] Complex AR Angle of variation: | Gaussian machine parts
CPARCOR. radius leaves
Kauppinen et al [2] | FD’s Angle of variation: | kNN letters
CAR - radius machine parts
CPARCOR - contour aeroplanes
- curvature
Antoine et al [17] Wavelet coefficients | Angle of variation: | No classification | corkscrew
complex coords fractal analysis | Koch curve
Eom et al [6] Spectral AR Angle of variation: | MLP aeroplanes
polar coords numbers

machine parts

Shen et al [15]

Wavelet moment
invariant

uses whole
silhouette

Nearest
neighbour

letters
synthetic shapes
machine parts

The experiments attempt to address several issues that will have an effect on the

performance:

Table 5.1: Selective summary of previous work
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e Boundary sampling algorithm. Various boundary sampling algorithms have been used in the
shape classification literature and a representative selection have been implemented for compar-

ison in this project.

e Model Type. A range of models, that produce feature vectors for use in classification, are
evaluated and include AR models, Fourier descriptor models and a wavelet moment-invariant

based model.

e Model order. To investigate the effect of order on linear AR models, a range of orders from one
to ten were computed for each experiment. Standard time series theory would suggest the use
of a model order selection algorithm to determine the best order, such as Akaike’s information
criterion (AIC), but Paulik [4] made the observation that the determination of the best order is
an imprecise problem. The main reason being that each shape class constitutes a different set
of processes and will therefore have different optimal orders. Additionally, in order to compare

features they should be of the same order.

e Classifier. A Euclidian distance based k-nearest neighbour (kNN) classifier, where k=3, is
compared with the performance of a simple statistical Gaussian classifer (with a full covariance

matrix) and a multilayer perceptron (MLP) classifier (where appropriate).

o Effect of noise. To evaluate the usefulness of each technique to any real world application,
two noise types and levels are added, as boundary noise is inevitable. The noise distributions
used were spherical about each boundary sample, namely Gaussian and t-distributions. The
experiments included training the models on noisy data and testing on noisy data, and also

training on non-noisy data and testing on noisy data.

e Data type. A range of data was drawn from a variety of papers to fairly evaluate each technique.
Figures 5.1 - 5.4 show the data sets used. The AR, CAR, CPARCOR and FD’s were tested
over the complete range of data, whereas the spectral and wavelet moment-invariant techniques
were tested on data sets B and D, with the non-stationary technique tested on sets B and E.
Data set C was chosen as it is a simple, well separated, set of shapes commonly found in the
journal papers and so any further work should use them as benchmark tests. Data set B was
chosen because the shapes are slightly more complex as some have non-convex boundaries. Both
sets B and C consist of relatively simple shapes and are included in the experiments primarily
because they have been used in many journal papers and so any further tests should use them
as benchmark tests. Set D consists of an array of industrial parts, representing shapes which
might be encountered in a real application. Set BCD consists of all of the shapes from sets B,
C and D, and was used to investigate the effect of the number of classes on the classification

performance of each technique. Set E consists of fifteen shapes, with shapes E13, E14 and E15
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all being very similar. The other twelve shapes in set E are a mixture of shapes from sets B and

D. It was thought that set E should be used to investigate the performance of each technique to

discriminate between similar classes.

During the experiments the scale of the silhouettes was kept constant as scale invariance of the
features has already been demonstrated both theoretically and empirically. It was also decided not

to consider silhouette occlusion experiments due to time limitations but are none the less important

and should be considered for further work.
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Figure 5.1: Data Set C Figure 5.2: Data Set B
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Figure 5.4: Data Set E

40



CHAPTER 5. COMPARATIVE EXPERIMENTS

5.2 Methodology

The same process was used to conduct all of the experiments and is described below and illustrated in
figure 5.5. Firstly a silhouette of each shape was scanned-in and the silhouette boundaries traversed to
extract the chain code representation. Chain codes store boundary information in an efficient manner
(see chapter 2). The scale of each shape was kept constant as scale invariance has been demonstrated
both theoretically and empirically by each of the authors of the techniques being considered. Transla-
tion invariance is not an issue as all of the features are measured with respect to the centroid of each
shape. The chain code extraction process consisted of keeping a shape in a central position within
an image and rotating it using the MATLAB function (imrotate.m), at each rotation computing the
chain code. After computing the chain code of each shape, the boundaries were consecutively redrawn
and any desired synthetic noise was added prior to sampling. The boundary samples were then used to
compute a feature vector which was assigned a class label and saved. The next realisation of the shape
was then sampled and the process repeated for all of its orientations being considered. The process
was repeated for all of the shapes resulting in a full set of features. Hold-out tests were performed
throughout the experiments, where the feature vector was divided into separate training and testing
sets.

An exception to the algorithm in figure 5.5 is the wavelet moment invariant, technique, as it filled-in
the closed boundary and extracted its features directly from the resulting silhouette, so no boundary
sampling was necessary. After the feature extraction stage, the classifiers can be used to classify the

labelled data.
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Figure 5.5: Extracting features from boundaries
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Some of the experiments considered the effect of random noise on the shape boundaries. The noise

was generated by adding random noise to each sample point, (z;,y4), on the boundary,
T =x;+drcos(d), §;=uy;+drsin() (5.1)

where d is the mean distance between each sampling point, r is a sample from either a Gaussian
or a t-distribution and ¢ is a sample from a uniform distribution, producing spherically symmetric
noise. Examples of noisy boundaries are shown in figures 5.6 and 5.7 with noise levels N(0,0.5%) and
ts0(0,1).

This noise model does not attempt to precisely mimic real-world noise which is not. always possible
to model without prior knowledge, but is used to model the broad characteristics of a wide range of
real world noise generating mechanisms. The model has been used and demonstrated on small sets of
data in two journal papers [5] [2].

A random seed was used in these experiments as we are interested in ensemble comparisons. If
interest centers on the performance of particular noise realisations then of course the seed should be

kept constant.

Figure 5.6: Gaussian noise added to shape Bl Figure 5.7: t-distributed noise added to shape Bl
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5.3 Experiments and Results

The experiments were conducted in order to complete the comparisons of average correct classification
(ACC) performances between the models described in chapter 4. It was intended to closely reproduce
techniques found in journal publications so that a fair and more thorough comparison of techniques
could be conducted. It was then attempted to identify potential weaknesses and suggest further
improvements. All of the experiments were conducted using MATLAB on a Digital alpha station 500
computer. The full set of results are presented in figures 5.8 - 5.198. The AR model graphs plot ACC
against model order. The Fourier descriptor graphs plot ACC against the data set used. The z-axis
indices index the data sets displayed in the title in order.

The following subsections are structured by firstly presenting a brief description of each technique
together with a table describing the relevant experimental conditions. The columns showing the size
of the train and test sets represent the number of samples for training and testing per class. The noise
column shows the amount and type of noise, if any, added to the training and test sets. The dashes
indicate that no noise was added to the boundaries. A general student-t distribution is denoted by,
tu(p, @), where v is the number of degrees of freedom, u is the mean and ¢ is the variance of the
distribution. Each experiment is cross-referenced to a corresponding figure presenting the results,
which are positioned at the end of each subsection. Following the table is the analysis, which is
structured so that the performance of each classifier is discussed separately. The classifiers include
a kNN classifier, where k=3 and uses a Euclidian distance metric, a Gaussian classifier with a full
covariance matrix (see appendix A) and a multi-layer perceptron (MLP) which is used for the spectral
AR experiments only.

The experiments involved testing each classifier on features where:
e the models are fitted to noise free boundaries
e the test and train features were both fitted to boundaries containing noise of the same type

e the training features were fitted to noise free boundaries and the test features were fitted to

boundaries containing noise.

Boundary noise can occur in real life for a number of reasons, for example, changing environmental
conditions effecting the imaging of shapes and also partial occlusion. The relative noise levels could
be unpredictable and not easily modelled, without complete prior knowledge. For this reason, the
tests where the models are trained on noise free boundaries and tested on noisy boundaries measures

the robustness of each model when the amount, and type, of noise is unknown.

-+



CHAPTER 5. COMPARATIVE EXPERIMENTS

5.3.1 Radius AR method (1)
Introduction

The radius AR method 1 technique of subsection 4.3.2 uses the equal angle sampling technique to
extract boundary information from a sequence of shapes from each class at different orientations. The
equal angle sampling technique measures the radial from the centroid of the shape to the boundary
when the boundary follower crosses any of N angularly equi-spaced radial vectors. As a result the
number of samples from a shape at different orientations can vary. The boundary samples are treated
as circular time series and AR models of orders 1 to 10 are fitted to each series and labelled according
to class. All of the linear AR experiments solved the autoregression by the method of least squares.
The inverse of the matrix of autocovariance values in equation 4.8 was computed using (inv.m), which
calculates the inverse by Gaussian elimination. The determinants of several of these matrices were
computed at random to check that the they were non-singular. An alternative to (inv.m) would be
to use the left divide function which will be more stable if the matrix is near singular, as it calculates
the inverse in a different manner.

In these experiments we used 64 equi-spaced radial vectors, as increasing the number of samples
further had little or no effect on the classification performance. The feature vectors from each class
were split into testing and training data sets and a Gaussian and kNN classifier are compared. Table 5.2

describes the different tests performed using the AR method 1 technique.

Model Data Size train | Size test | Classifier | Noise Figure
set set (train/test)

Radius AR method 1 | Set C 10 15 kNN -/- 5.8
Radius AR method 1 | Set C 40 20 kNN -/- 5.9
Radius AR method 1 | Set B 10 15 kNN -/- 5.10
Radius AR method 1 | Set B 40 20 kNN -/- 5.11
Radius AR method 1 | Set D 25 25 kNN -/- 5.12
Radius AR method 1 | Set D 50 30 kNN -/- 5.13
Radius AR method 1 | Set BCD | 25 25 kNN -/~ 5.14
Radius AR method 1 | Set BCD | 50 30 kNN -/- 5.15
Radius AR method 1 | Set E 20 20 kNN -/- 5.16
Radius AR method 1 | Set E 50 30 kNN -/- 5.17
Radius AR method 1 | Set C 10 15 RCS -/- 5.18
Radius AR method 1 | Set C 40 20 RCS -/- 5.19
Radius AR method 1 | Set B 10 15 RCS -/- 5.20
Radius AR method 1 | Set B 40 20 RCS -/- 5.21
Radius AR method 1 | Set D 25 25 RCS -/- 8.22
Radius AR method 1 | Set D 50 30 RCS -/- 5.23
Radius AR method 1 | Set BCD | 25 25 RCS -/- 5.24
Radius AR method 1 | Set BCD | 50 30 RCS -/- 5.25
Radius AR method 1 | Set E 20 20 RCS -/~ 5.26
Radius AR method 1 | Set E 50 30 RCS -/~ 5.27

Table 5.2: AR method 1 experiments
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kNN classifier
Figures 5.8 - 5.17 show the performance of the radius AR method using a kNN classifier.

e No noise on boundaries

The tests on set C show there are no marked improvements in the results with extra training
data. The tests on set B show a fall in the average correct classification performance from those
on set C, averaging 80% (figure 5.11). It is thought that this is due to the more complex nature

of set B, as shapes B1 and B2 have non-convex boundaries.

Shape set D contains eight classes, but the shapes are visually quite different from one another.
With twenty five samples in the test and training sets (see figure 5.12), the performance is lower
than for the equivalent test on set C, as there are twice as many classes in set D. With fifty
samples in the training set, set D is classified ~ 100% correctly for all model orders. Data set
BCD has sixteen classes and as figures 5.14 and 5.15 show, with enough training data the shapes

are correctly classified in excess of 99% for all model orders.

Shape set E was thought to provide a difficult test to the classifiers, as Paulik et al [4] reported
that the linear AR method performed poorly on data sets of a non-stationary nature, such as
data set E. Shapes E13 - E15 are visually very similar, so the difficulty lies in the model being
able to distinguish between these similar shapes, whilst also being able to distinguish between
the more dissimilar shapes. Figure 5.16 shows this to be the case with a low number of training
samples. Paulik et al quoted the best performance of this technique to give an average correct
classification of 80.33%, using twenty training and 20 testing samples, with a model of order
two. Figure 5.16 shows that if the amount of training data is increased the ACC performance

is close to 100% for all model orders.

Gaussian classifier
Figures 5.18 - 5.27 show the performance of the radius AR method using a Gaussian classifier.

e No noise on boundaries

Applying the Gaussian classifier to the same experiments, the average correct classification
performances are generally better than the equivalent tests using a kNN classifier for low amounts
of training data, but worse at higher model orders (m = 7 — 10), where the covariance matrix in
the classifier can become singular. An illustration of the effect of increasing the training set size
on the potential performance of the linear AR method 1 is best shown in figures 5.26 and 5.27.
Figure 5.20 duplicates the results of [3] and also [5]. The Gaussian classifier has shown the ability
to classify all of the data sets 100% correctly, which is surprising given the justification of the use

of more complex models due to the lack of performance of linear models such as this. Data sets
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B, C, and D are particularly well classified at most model orders considered. These data sets are
commonly found in journal publications and so are important for benchmarking each technique.
As the results are not particularly interesting the results of the succeeding experiments on these
data sets are presented in appendix B and are referenced in the experimental description tables

in this section.

Summary

The AR method 1 technique has the ability to classify all of the shape sets completely correctly. From
reading the literature [4], this is a surprising result as the more complex AR techniques have been
demonstrated on sets such as set E and show that linear models are not as good. Another surprising
result is that none of the experiments in table 5.2 used many training samples and if more are used
the results improve significantly.

It is has been shown that the Gaussian classifier provides the better performance as long as enough
training data is used so the covariance matrix can be estimated reasonably accurately. If the training
set is too small then the covariance matrix can become close to singular, producing spurious results,
as shown in figure 5.26. It is also the most consistent classifier as the kNN could not classify set
B more than 85% correctly, whereas the Gaussian classifier classified set B 100% correctly for most
model orders.

As expected, shape set E was the most difficult set to classify with low amounts of training data.
Set BCD has more classes but the shapes are visually quite different, whereas set E contains a mix of
both visually similar and dissimilar shapes.

No noise tests were conducted using the equal angle sampling technique as the AR method (2),
shown in the next subsection, showed far better ACC levels in noise-free conditions and so was used

to represent the linear AR model in the presence of noise using radial distance sampling.
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5.3.2 Radius AR method (2)
Introduction

The radius AR method 2 of subsection 4.3.4 uses the radial angle of variation sampling technique
to extract boundary information from a sequence of shapes from each class at different orientations.
Recall that the radial angle of variation technique measures the radial distance from the shape centroid
to the boundary at N equi-spaced positions around the boundary. This provides uniform coverage of
the boundary, irrespective of the shape’s orientation, resulting in a constant number of samples. The
boundary samples are treated as circular time series and AR models of orders 1 to 10 are fitted to
each series and labelled according to class.

In these experiments we again used 64 spatially equi-distant samples as any more samples had
little or no effect on the average classification performance, which is also consistent with [2]. This
sampling method samples the radial distances from the centroid to the boundary at equi-spaced
intervals, providing spatially uniform coverage of the boundary. As the sampling is spatially uniform,
a constant number and an equal distribution of samples are sampled from the boundary, independent
of the shape’s orientation. The features from each class were split into test and train data sets and a

Gaussian and kNN classifier are compared. Table 5.3 shows the tests performed.
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Model Data Size train | Size test | Classifier | Noise Figure
set set (train/test)

Radius AR method 2 | Set B 10 15 kNN -/- B.1
Radius AR method 2 | Set B 40 20 kNN -/- B.2
Radius AR method 2 | Set D 25 25 kNN -/- B.3
Radius AR method 2 | Set D 50 30 kNN -/- B.4
Radius AR method 2 | Set BCD | 25 25 kNN -/- 5.31
Radius AR method 2 | Set BCD | 50 30 kNN -/- 5.32
Radius AR method 2 | Set E 20 20 kNN -/- 5.33
Radius AR method 2 | Set E 50 30 kNN -/- 5.34
Radius AR method 2 | Set B 10 15 RCS -/- B.5
Radius AR method 2 | Set B 40 20 RCS -/- B.6
Radius AR method 2 | Set D 25 25 RCS -/- B.7
Radius AR method 2 | Set D 50 30 RCS -/- B.8
Radius AR method 2 | Set BCD | 25 25 RCS -/- 5.35
Radius AR method 2 | Set BCD | 50 30 RCS -/- 5.36
Radius AR method 2 | Set E 20 20 RCS -/- 5.37
Radius AR method 2 | Set E 50 30 RCS -/- 5.38
Radius AR method 2 | Set B 40 20 kNN N(0,1)/N(0,1) 5.39
Radius AR method 2 | Set B 40 20 kNN N(0,1)/N(0,1) 5.40
Radius AR method 2 | Set B 40 20 kNN t10(0, 1) /t40(0,1) 5.41
Radius AR method 2 | Set B 40 20 kNN t4(0,1)/t4(0,1) 5.42
Radius AR method 2 | Set D 50 30 kNN N(0,0.5%)/N(0,0.5%) | 5.43
Radius AR method 2 | Set D 50 30 kNN N(0,1)/N(0,1) .44
Radius AR method 2 | Set D 50 30 kNN t40(0,1)/t40(0,1) 5.45
Radius AR method 2 | Set D 50 30 kNN t4(0,1)/t4(0,1) 5.46
Radius AR method 2 | Set B 40 20 RCS N(0,0.52)/N(0,0.52) | 5.47
Radius AR method 2 | Set B 40 20 RCS N(0,1)/N(0,1) 5.48
Radius AR method 2 | Set B 40 20 RCS t40(0,1)/t40(0, 1) 5.49
Radius AR method 2 | Set B 40 20 RCS t4(0,1)/t4(0,1) 5.50
Radius AR method 2 | Set D 50 30 RCS N(0,0.5%)/N(0,0.5%) | 5.51
Radius AR method 2 | Set D 50 30 RCS N(0,1)/N(0,1) 5.52
Radius AR method 2 | Set D 50 30 RCS t40(0,1)/t40(0,1) 5.53
Radius AR method 2 | Set D 50 30 RCS t4(0,1)/t4(0,1) 5.54
Radius AR method 2 | Set B 40 20 RCS -/N(0,0.5%) 5.55
Radius AR method 2 | Set B 40 20 RCS -/N(0,1) 5.56
Radius AR method 2 | Set B 40 20 RCS -/t40(0, 1) 5.57
Radius AR method 2 | Set B 40 20 RCS -/t4(0,1) 5.58
Radius AR method 2 | Set D 50 30 RCS -/N(0,0.5%) 5.59
Radius AR method 2 | Set D 50 30 RCS -/N(0,1) 5.60
Radius AR method 2 | Set D 50 30 RCS -/t40(0,1) 5.61
Radius AR method 2 | Set D 50 30 RCS -/t4(0,1) 5.62

Table 5.3: AR method 2 experiments
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kININ classifier

e No noise on boundaries (all data sets)

Figures B.1 - 5.34 show the performance of the technique using the kNN classifier. A general
observation is the high (~ 100%) average correct classification at model order one for all of the
data sets, except E. A surprising trend can be seen across all data sets: as the model order
increases the performance falls slightly. This is surprising as the performance would intuitively
be expected to improve with a higher order model, as it is a more complex model. Increasing
the amount of training data does not have an effect on the performances using sets B and D,

but increases the performances on the more complex sets BCD and E by 5-10%.

e Noise on boundaries of test and train sets (sets B and D)

The average correct classification levels decreased from those in the equaivalent noise free exper-
iments, see figures 5.39 - 5.46. The effect of the noise on the classification of the different order
models appears to be fairly random. The effect of the noise on the ACC levels on comparable
experiments using sets B and D affected the experiments using set D more. This would be ex-
pected as we have more classes in set D, possibly resulting in a denser feature space. Intuitively
the noise would be expected to increase the variance of the AR parameter coeflicient estimates.
As set B contains only four classes and set D contains eight classes it might be expected that
there would be increased overlap of the coefficients from each class in the feature space of set D.
Figure 5.28 shows the first three principal components of the AR(4) coefficients fitted to data
set B. Each of the classes are represented by the different plotting symbols. Figure 5.29 shows
the equivalent plot when the noise level is drawn from a N(0,0.5%) distribution. Note that the
features are less tightly clustered in figure 5.29 than in figure 5.28, but are still separable (full
separation can only be seen by rotating the figure).

The equivalent plot for data set D, figure 5.30, shows eight separable clusters (again the sepa-
rability is clearer if the figure is rotated), although more tightly packed in feature space than in

figure 5.28 (as there are more classes).

Gaussian classifier

e No noise on boundaries (all data sets)

The performance of the Gaussian classifier in equivalent test conditions is shown in figures B.5
- 5.38 and reveals a high level of classification (=~ 100%) across all model orders and data sets.
This is not surprising as the clusters in figures 5.28-5.30 look quite Gaussian. Even with a model

order of 1 the average correct classification performance is ~ 99%, as is illustrated in figure 5.37.

e Noise on boundaries of test and train sets (sets B and D)

54



CHAPTER 5. COMPARATIVE EXPERIMENTS
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Figure 5.28: Scatter plot of the first 3 principal components of the AR(4) feature vector
fitted to set B (no boundary noise). The dots represent shape B1, the crosses represent
shape B2, the circles represent B3 and the triangles represent shape B4.
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Figure 5.29: Scatter plot of the first 3 principal components of the AR(4) feature vector fitted
to set B (N(0,0.5%) boundary noise). The dots represent shape B1, the crosses represent
shape B2, the circles represent shape B3 and the triangles represent shape B4.

When the Gaussian classifier was applied to sets B and D, see figures 5.47 - 5.54, the results
were less affected by the addition of boundary noise than the equivalent kNN classifier tests,
presumably because the disperse features can be approximated by a Gaussian distribution. The

results also improve with higher model orders, which would be expected.
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Data set D feature space
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Figure 5.30: Scatter plot of the first 3 principal components of the AR(4) feature vector fitted to
set D (no boundary noise). The dots represent shape D1, the crosses represent shape D2, the circles
represent shape D3, the triangles (up) represent shape D4, the triangles (left) represent shape D5,
the triangles (right) represent shape D6, the squares represent shape D7 and the diamonds represent
shape DS8.

The Gaussian classifier appears to be the more robust classifier for these experiments.

e Noise on boundaries of test set only (sets B and D)

Further noise experiments included training on ‘non-noisy’ data and testing on noisy data using
a Gaussian classifier, see figures 5.55 - 5.62. The results are generally lower than the training
and testing on noisy data experiments. This is because the class means and covariances of the
features will be slightly different in the noisy feature space from those in the 'non-noisy’ feature

space, depending on the amount and type of boundary noise.

Summary

The tests on noise free boundary data sets show that the Gaussian classifier achieves the better ACC
performance on every test, achieving 100% ACC on all data sets with enough training data to allow
a reasonable estimation of the covariance matrix. This is a surprising result as Paulik et al presented
much lower results for the linear AR method 1 using data set E, as he did not use enough training
data. This also shows that the full potential of the radial AR method 1 has not been demonstrated
as the radial angle of variation technique has been shown to be superior to the equal angle sampling
method.

When noise was added to the boundary of the test and train sets the Gaussian classifier was shown

to be more robust than the kNN classifier for all of the data sets (see figures 5.47 - 5.54). The ACC
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improved with increasing model order. Very high levels of ACC (> 95%) were achieved on sets B and
D at every noise level attempted.

The comparable experiments where the training set is noise free and the testing set has noise added
to the boundaries, show that the performance drops considerably. This is because, if for example, the
test and train sets have a similar level and type of noise added to the boundaries then their estimated
class means and covariances will be similar in both sets. If the test set has noise added to the boundary
and the train set contains no boundary noise, then the class means and covariances will be slightly

different.
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Figure 5.37: Radius AR:2 (RCS), Set E
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5.3.3 Curvature AR method
Introduction

The curvature AR method of subsection 4.3.3 uses the curvature angle of variation sampling technique
to extract boundary information from a sequence of shapes from each class at different orientations.
The curvature function computes the angular difference between two consecutive boundary tangents
at each sampling point. The samples are measured at N equi-spaced positions around the boundary,
providing uniform spatial coverage. It is thought, but has not been demonstrated in the literature,
that curvature based methods would be greatly affected by noisy boundary conditions. The length
of the tangents are defined by a window parameter which defines the distance along the boundary
between the start and end points of each tangent. For these experiments a window of length twenty
five pixels was used to calculate the curvature function. This was empirically set so that the window
was long enough to overcome local pixelisation effecting the curvature measure, but not too long so
that it was able to extract local curvature information. The boundary samples are treated as a circular
time series and AR models of orders 1-10 are fitted to each each series and labelled according to class.
The coefficients are used as feature vectors and classified using a kNN and Gaussian classifier.

The results are shown to be comparatively poor, even for the simple benchmark data set B, so

only representative results are presented.
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Model Data Size train | Size test | Classifier | Noise Figure
set set (train/test)
Curvature AR | Set B 10 1§ kNN -/- 5.63
Curvature AR | Set B 40 20 kNN -/- 5.64
. Curvature AR | Set D 25 25 kNN -/- 5.65
' Curvature AR | Set D 50 30 kNN -/- 5.66
Curvature AR | Set BCD | 25 25 kNN -/- 5.67
Curvature AR | Set BCD | 50 30 kNN -/- 5.68
Curvature AR | Set E 20 20 kNN -/- 5.69
Curvature AR | Set E 50 30 kNN -/- 5.70
Curvature AR | Set B 10 15 RCS -/- 5.71
Curvature AR | Set B 40 20 RCS -/- 5.72
Curvature AR | Set D 25 25 RCS -/~ BarS
Curvature AR | Set D 50 30 RCS -/- 5.74
Curvature AR | Set BCD | 25 25 RCS -/- 5.75
Curvature AR | Set BCD | 50 30 RCS -/- 5.76
Curvature AR | Set E 20 20 RCS -/- 9.77
Curvature AR | Set E 50 30 RCS -/- 5.78
Curvature AR | Set B 40 20 RCS N(0,0.5%)/N(0,0.5%) | 5.79
Curvature AR | Set B 40 20 RCS N(0,1)/N(0,1) 5.80
Curvature AR | Set B 40 20 RCS 140(0,1)/t40(0,1) 5.81
Curvature AR | Set B 40 20 RCS £4(0,1)/t4(0,1) 5.82
Curvature AR | Set D 50 30 RCS N(0,0.5%)/N(0,0.5%) | 5.83
Curvature AR | Set D 50 30 RCS N(0,1)/N(0,1) 5.84
Curvature AR | Set D 50 30 RCS t40(0,1) /t40(0, 1) 5.85
Curvature AR | Set D 50 30 RCS 4(0,1)/t4(0,1) 5.86

Table 5.4: Curvature AR experiments
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kNN classifier

e No noise on boundaries (all data sets)

The general ACC trend over all model orders and data sets shows an increase with increasing

model order (see figures 5.63 - 5.70).

For data set B, the maximum classification level achieved was 80% at model order 4. When

applied to data set D, containing eight classes, the maximum ACC level achieved was 72%.

However the experiments using sets BCD and E, containing 15 and 16 classes respectively, show

a similar performance with a maximum level of ~ 60%.

Gaussian classifier

e No noise on boundaries (all data sets)

Again the general trend over all model orders and data sets shows an increase with increasing
model order. For data set B, the maximum ACC achieved was 85% at model order 7. This fell

to 75% when considering data set D, which contains twice as many classes.

e Noise on boundaries of test and train sets (sets B and D)

Figures 5.79 - 5.86 show that the curvature AR technique is not robust to the presence of noise

on the boundary as the results are similar to random classification scores.

Summary

The overall correct classification performances were much lower than for the radial linear AR tech-
niques and can be attributed to the curvature sampling algorithm as it is only difference.

The Gaussian classifier shows a superior average correct classification performance over all data
sets to that of the kNN classifier, indicating that the Gaussian classifier is more suited to classify AR
features.

The curvature AR technique has been shown to fail completely when even low levels of noise are
present on the boundary. This is intuitive since any small change to the boundary coordinates can
cause a large change in a gradient or angle, whereas a radial distance would only change by a small

fraction of its total length.
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5.3.4 Complex AR method (CAR)

Introduction

The CAR method of subsection 4.3.5 [5] uses the complex coordinate angle of variation sampling
technique to extract boundary information from a sequence of shapes from each class at different
orientations. The samples are measured at N equi-spaced positions along the boundary, providing
uniform spatial coverage. The complex form of the samples provides extra phase information so that
the polygonal approximation of the original boundary can be reconstructed. The boundary samples
are treated as a circular complex time series and CAR models of order 1-10 are fitted to each series
and assigned class labels for use as features for shape classification. We used 64 spatially equi-distant
samples. Increasing the number of samples had little or no effect on the classification performance.
The feature vectors from each class were split into testing and training sets and a Gaussian and

kNN classifier are compared. Table 5.5 describes the experiments performed.
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Model | Data Size train | Size test | Classifier | Noise Figure
set set (train/test)

CAR | Set B 10 15 kNN 2 B.9
CAR | Set B 40 20 kNN -] B.10
CAR | Set D 25 25 kNN - B.11
CAR | Set D 50 30 kNN i B.12
CAR | Set BCD | 25 25 kNN == 5.87
CAR | Set BCD | 50 30 kNN ~f 5.88
CAR | SetE 20 20 kNN -] 5.89
CAR [SetE 50 30 kNN - 5.90
CAR [SetB 10 15 RCS e B.13
CAR | Set B 40 20 RCS e B.14
CAR | SetD 25 25 RCS 5 B.15
CAR | SetD 50 30 RCS 5 B.16
CAR | Set BCD | 25 25 RCS -/ 5.91
CAR | Set BCD | 50 30 RCS - 5.92
CAR | SetE 20 20 RCS - 5.93
CAR | Set E 50 30 RCS -/- 5.94
CAR [ Set B 40 20 kNN N(0,0.5%)/N(0,0.5%) [ 5.95
CAR | Set B 40 20 kNN N(0,1)/N(0,1) 5.96
CAR | Set B 40 20 kNN t40(0,1)/t40(0, 1) 5.97
CAR | Set B 40 20 kNN t4(0,1)/t4(0, 1) 5.98
CAR | Set D 50 30 kNN N(0,0.5%)/N(0,0.5%) | 5.99
CAR | SetD 50 30 kNN N(0,1)/N(0,1) 5.100
CAR | SetD 50 30 kNN t40(0, 1) /t40(0, 1) 5.101
CAR | Set D 50 30 kNN t4(0,1)/t4(0,1) 5.102
CAR [ SetB 40 20 RCS N(0,0.5%)/N(0,0.5%) | 5.103
CAR [ SetB 40 20 RCS N(0,1)/N(0,1) 5.104
CAR | Set B 40 20 RCS t40(0,1)/t40(0, 1) 5.105
CAR | Set B 40 20 RCS t4(0,1)/t4(0, 1) 5.106
CAR | SetD 50 30 RCS N(0,0.5%)/N(0,0.5%) | 5.107
CAR | SetD 50 30 RCS N(0,1)/N(0,1) 5.108
CAR | SetD 50 30 RCS t40(0, 1) /t40(0, 1) 5.109
CAR | Set D 50 30 RCS t4(0,1)/14(0, 1) 5.110
CAR | Set B 40 20 RCS -/N(0,0.5%) 5.111
CAR | Set B 40 20 RCS -/N(0,1) 5.112
CAR | Set B 40 20 RCS -/t40(0,1) 5.113
CAR | Set B 40 20 RCS -/t4(0,1) 5.114
CAR | Set D 50 30 RCS -/N(0,0.5%) 5.115
CAR [ SetD 50 30 RCS -/N(0,1) 5.116
CAR | Set D 50 30 RCS -/t40(0,1) 5.117
CAR | Set D 50 30 RCS -Jt4(0,1) 5.118

Table 5.5: CAR experiments
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kNN classifier

e No noise on boundaries (all data sets)

Figures B.9 - 5.90 show a general trend of decreasing ACC levels with increasing model order
for all of the data sets tested. This is thought to be caused by having a small training set
with a large dimension feature vector, resulting in a very sparse training set. The decrease in
performance is greater than for the equivalent radius AR method 2 experiments as we have a

feature vector almost twice as long.

e Noise on boundaries of test and train sets (sets B and D)

For the tests on data set B, when the model order equals one, the ACC levels were greater then
90% for all noise levels. For model orders 2-10, the ACC performances fell to between 50-65%.

Only a small decrease in performance was observed with increasing noise levels.

For the tests on data set D, again a high level of ACC performance was observed at model
order 1. The effect of increasing noise levels was apparent as the ACC performances fell from
98% for for noise sampled from a N(0,0.5%) distribution to 82% for noise drawn from a N(0, 1)
distribution. The tests where the noise was drawn from a t49(0, 1) distribution reulted in similar
ACC levels to the noise drawn from the N(0,1) distribution, falling to 74% when the noise was
drawn from a t4(0, 1) distribution. The ACC performances of the kNN classifier for model orders

2-10 were similar to those described for set B, typically ACC values ranging between 50-60%.

Gaussian classifier

e No noise on boundaries (all data sets)

Figures B.13 - 5.94 show the improvement of the Gaussian classifier over the kNN classifier
applied to these data, where all model order tests are classified 100% correctly for sets B and
D, and tests when the model orders are between 3-10 for data sets BCD and E. The Gaussian
classifier performs as well as the equivalent tests using the radial AR method 2 technique on
all of the data sets (compare figures B.5 - 5.38 with B.13 - 5.94), although at high orders,
typically 8-10, spurious results can occur due to the covariance matrix of the Gaussian classifier
becoming almost singular. In these cases we are trying to estimate ten complex parameters
(20 real parameters in the feature vector) from only twenty training samples for set E. Note
this effect also occurs in figure B.13, but when the number of training samples is increased
the covariance can be estimated more accurately, see figures B.14 and 5.94, and the spurious
results at higher orders disappeat. Generally, with no noise added to the boundary, the Gaussian

classifier displays superior classification results to those of the kNN classifier.

e Noise on boundaries of test and train sets (sets B and D)
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Tests on set B (figures 5.95 - 5.102) show 100% ACC levels for noise drawn from N(0,0.5?),
N(0,1) and #49(0, 1) for model orders 1-10. For the tests using the #4(0, 1) noise distribution at

model order 1, the ACC fell to 75% but increased to 100% for model orders 3-10.

Tests on set D show a general degradation in ACC performances when the noise distributions
are, in order, N(0,0.5%), N(0,1), t40(0,1) and t4(0,1). The graphs also show that the higher
the model order, the higher the ACC performance.

e Noise on boundaries of test set only (sets B and D)

With no noise present in the training set but with noise added to the boundaries in the test set,
figures 5.111 - 5.118 show that high classification levels are achieved when compared with the
equivalent results for the radius AR method 2. This is thought to be due to the sampling method
as the complex coordinate samples contain phase information about the boundary, whereas the
radial distance samples are sequentially ordered according to the tracing of the boundary but
different radius shapes could give the same ordered lengths. Additionally we also have a more
complex model than the AR method 2 technique as we are estimating complex AR coefficients,
resulting in a feature vector twice as long if we consider the complex number components as real

numbers.

Summary

The Gaussian classifier was shown to exhibit superior performance to that of the kNN classifier. The
results using the Gaussian classifier improved on those achieved using the AR method 2, especially
in high boundary noise conditions with a noise free training set and a noisy test set. This could be
for two reasons: firstly the complex coordinate samples contain more phase information about the
boundary than the radial distance samples and secondly, the CAR model has a higher dimension,

more complex feature vector.
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5.3.5 CPARCOR method
Introduction

The CPARCOR method [5] of subsection 4.3.6 uses the complex coordinate angle of variation sampling
technique to extract boundary information from a sequence of shapes from each class at different
orientations. The boundary samples are treated as a circular complex time series and CPARCOR
models of order 1-10 are fitted to each series and assigned class labels. The CPARCOR coefficients are
first calculated by the fast recursive algorithm and then compared with the equivalent direct method.
The CPARCOR features can be computed directly from the CAR coefficients as the CPARCOR
coefficient p,, is the same as the CAR coefficient a,, of the CAR model of order m. To be consistent
with previous experiments we again used 64 spatially equi-distant samples.

The feature vectors from each class were split into test and train sets and a Gaussian and kNN
classifier are compared. Table 5.6 describes the experiments performed for the CPARCOR coefficients
computed by the recursive algorithm, and table 5.7 describes the experiments performed using the
CPARCOR coefficients computed directly from the CAR coefficients. The direct method was used
only as a consequence of the poor performance shown by the recursive method. The results would be

expected to be identical but the possible reasons for this are discussed [5].

CPARCOR coefficient estimation by the recursive algorithm

e kNN classifier

— No noise on boundaries (all data sets)
Figures B.17 - 5.122 a steady but rapid decline in ACC levels with increasing model order,
for all of the data sets.

— Noise on boundaries of test and train sets (sets B and D)

The ACC levels again decreased with increasing model order. The ACC levels decreased
with increasing noise level, such as samples drawn from N(0,0.5%), N(0, 1), t4(0,1), and

t4(0,1) distributions, for both sets B and D.
o Gaussian classifier

— No noise on boundaries (all data sets)

The results are very similar to those of the CAR model tests, where 100% is achieved for
all data sets. Again spurious results occur for high order models with small sets of training

data, due to a singular covariance matrix in the classifier.

— Noise on boundaries of test and train sets (sets B and D)
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Figures 5.135 - 5.142 show that the noise degrades the ACC levels significantly. It was

expected that the performance would be similar to those of the CAR model.

— Noise on boundary of test set only (sets B and D)

Figures 5.143 - 5.150 show that ACC levels are similar to random classification scores.

CPARCOR coefficient estimation by direct computation from CAR coefficients
e Gaussian classifier

— No noise on boundaries (all data sets)

As the Gaussian classifer was shown to be superior for the recursively computed CPARCOR
features, it was again used for the purposes of this comparison. Figures 5.151 - 5.153 show

the ACC performances for all data sets and equals 100%.
— Noise on boundaries of test and train sets (set D)

Four levels of noise were added to the boundaries of set D. The ACC results are far superior
to those calculated by the indirect recursive algorithm. Comparing figures 5.154 - 5.157
with figures 5.107 - 5.110, the results are almost identical to those of the CAR model.

Summary

With no noise added to the boundaries of either test or training sets the Gaussian classifier outperforms
the kNN classifier. Similar levels of ACC performance levels to those of the CAR model are shown
on all data sets when the CPARCOR coefficients are estimated by both direct and indirect methods.
However if noise is added to the boundaries, the ACC levels of the CPARCOR models calculated by
the indirect method dropped dramatically, for all data sets and noise types, especially at high orders.
This could be because the boundary noise changes the statistics of the boundary samples, so that
the assumptions made by the recursive estimation algorithm no longer hold. The recursive method
was described by Sekita [5] as an eztension of a complex series of Levinson-Durbin’s algorithm for
calculating real PARCOR coeflicients. This was the only reference found relating to this extended
technique but it is thought to be an approximation because the CAR coefficients computed using
both recursive and direct techniques produced very similar but not equal values, when tested on a
synthetically produced complex time series. Another possible reason for the poor performance of the
recursive algorithm could be due to the numerical sensitivity of the algorithm. The direct method is
a straight forward and foolproof implementation and so verifies the true performance of CPARCOR
coefficients.

It has been shown that the ACC experiments where the CPARCOR coefficients are calculated
directly from the CAR coefficients produce results very similar to those produced by the CAR model

and are more robust to boundary noise than the linear AR models. This is due to the fact that the
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number of parameters are greater and also the complex samples contain important phase information.
If phase information is present then a polygonal approximation of the original shape is possible,

whereas radial vector samples (no phase information) could result from any of a number of shapes.
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Model Data Size train | Size test | Classifier | Noise Figure
set set (train/test)
CPARCOR | Set B 10 15 kNN -/- B.17
CPARCOR | Set B 40 20 kNN -/ B.18
CPARCOR | Set D 25 25 kNN =8 B.19
CPARCOR | Set D 50 30 kNN By B.20
CPARCOR | Set BCD | 25 25 kNN -/- 5.119
CPARCOR | Set BCD | 50 30 kNN == 5.120
CPARCOR | Set E 20 20 kNN /- 5.121
CPARCOR | Set E 50 30 kNN -J- 5.122
CPARCOR [ Set B 10 15 RCS -/- B.21
CPARCOR | Set B 40 20 RCS -/- B.22
CPARCOR | Set D 25 25 RCS = B.23
CPARCOR | Set D 50 30 RCS iy B.24
CPARCOR | Set BCD | 25 25 RCS -/- 5.123
CPARCOR | Set BCD | 50 30 RCS -/- 5.124
CPARCOR | Set E 20 20 RCS -/- 5.125
CPARCOR | Set E 50 30 RCS -J- 5.126
CPARCOR | Set B 40 20 kNN N(0,0.5%)/N(0,0.5%) | 5.127
CPARCOR | Set B 40 20 kNN N(0,1)/N(0,1) 5.128
CPARCOR | Set B 40 20 kNN t40(0,1)/t40(0,1) 5.129
CPARCOR | Set B 40 20 kNN t4(0,1)/t4(0,1) 5.130
CPARCOR | Set D 50 30 kNN N(0,0.5%)/N(0,0.5%) | 5.131
CPARCOR | Set D 50 30 kNN N(0,1)/N(0,1) 5.132
CPARCOR | Set D 50 30 kNN t40(0, 1) /t40(0, 1) 5.133
CPARCOR | Set D 50 30 kNN t4(0,1)/t4(0,1) 5.134
CPARCOR | Set B 40 20 RCS N(0,0.5%)/N(0,0.5%) [ 5.135
CPARCOR | Set B 40 20 RCS N(0,1)/N(0,1) 5.136
CPARCOR | Set B 40 20 RCS ta0(0,1)/t40(0,1) 5.137
CPARCOR | Set B 40 20 RCS t4(0,1)/14(0,1) 5.138
CPARCOR | Set D 50 30 RCS N(0,0.5%)/N(0,0.5%) | 5.139
CPARCOR | Set D 50 30 RCS N(0,1)/N(0,1) 5.140
CPARCOR | Set D 50 30 RCS ta0(0, 1) /t40(0, 1) 5.141
CPARCOR | Set D 50 30 RCS t4(0,1)/t4(0,1) 5.142
CPARCOR | Set B 40 20 RCS -/N(0,0.5%) 5.143
CPARCOR | Set B 40 20 RCS -/N(0,1) 5.144
CPARCOR | Set B 40 20 RCS -[t40(0, 1) 5.145
CPARCOR | Set B 40 20 RCS -/t4(0,1) 5.146
CPARCOR | Set D 50 30 RCS -/N(0,0.5%) 5.147
CPARCOR | Set D 50 30 RCS -/N(0,1) 5.148
CPARCOR | Set D 50 30 RCS -/ta0(0,1) 5.149
CPARCOR | Set D 50 30 RCS -/t4(0,1) 5.150

Table 5.6: CPARCOR experiments (coefficients calculated by recursive algorithm)
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Model Data | Size train | Size test | Classifier | Noise Figure
set set (train/test)
CPARCOR | Set B | 40 20 kNN -/- 5.151
CPARCOR | Set D | 50 30 kNN - /- 5.152
CPARCOR | Set E | 50 30 kNN -/- 5.153
CPARCOR | Set D | 50 30 kNN N(0,0.5%)/N(0,0.5%) | 5.154
CPARCOR | Set D | 50 30 kNN N(0,1)/N(0,1) 5.155
CPARCOR | Set D | 50 30 kNN t40(0,1)/t40(0,1) 5.156
CPARCOR | Set D | 50 30 kNN t4(0,1)/t4(0,1) 5.157

Table 5.7: CPARCOR experiments (coefficients calculated by direct method)
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5.3.6 Fourier Descriptor (FD) methods
Introduction

The FD models described in subsections 4.2.1 - 4.2.4 include, radial, contour, curvature and affine-
invariant FDs. The boundary sampling methods are computed by the radial, complex coordinate,
curvature and complex coordinate angle of variation algorithms respectively. The boundary samples
are treated as circular time series and the FD models are computed for each series and assigned class
labels for use as feature vectors. In these experiments we used 64 spatially equi-distant samples.

Tables 5.8 and 5.9 show the range of Fourier descriptor experiments conducted. The numbers in
the noise column refer to the indices on the x-axes of the corresponding figures. The graphs show
that all of the Fourier descriptor techniques, with the exception of the curvature FD, yield remarkably
high classification performances.

For each type of FD model, each figure shows the ACC performances of the FD models applied
to each of the data sets individually, with two different amounts of training data on each plot. The
x-axis labels are indices for the data sets listed in the titles. The suffix '2" attached to a data set label
indicates that the larger amount of training data was used. Tables 5.8 and 5.9 refer to the precise size

of each training set.
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Model

Data

Size train

Size test | Classifier | Noise Figure
set set (train/test)
Radius FD All see AR set sizes RCS -/- 5.160
Contour FD All see AR set sizes RCS -/- 5.161
A-Invariant FD | All see AR set sizes RCS -/~ 5.162
Radius FD All see AR set sizes kNN -/- 5.163
Contour FD All see AR set sizes kNN -/- 5.164
A-Invariant FD | All see AR set sizes kNN -/- 5.165
Curvature FD | All see AR set sizes kNN -f- 5.166
Radius FD Set B | 40 20 kNN 1: N(0,0.5%)/N(0,0.5%) | 5.167
2: N(0,1)/N(0,1)
3: £4(0,1)/t4(0,1)
4: t40(0,1)/t40(0,1)
Radius FD Set D | 50 30 kNN 1: N(0,0.5%)/N(0,0.5%) | 5.168
2: N(0,1)/N(0,1)
3: t4(0, 1)/t4(0, 1)
4 t4(](0, 1)/340(0, 1)
Contour FD Set B | 40 20 kNN 1: N(0,0.5%)/N(0,0.5%) | 5.169
2: N(0,1)/N(0,1)
3: t4(0,1)/£4(0,1)
4: t40(0,1)/t40(0,1)
Contour FD Set D | 50 30 kNN 1: N(0,0.5%)/N(0,0.5%) | 5.170
2: N(0,1)/N(0,1)
3: t4(0,1)/t4(0,1)
4: t,m(ﬂ, l)ltqg(o, 1)
A-Invariant FD | Set B | 40 20 kNN 1: N(0,0.5%)/N(0,0.5%) | 5.171
2: N(0,1)/N(0,1)
3 f.4(0, 1}/t4(0, 1)
4: t40(0! 1)/t4g(0, 1)
A-Invariant FD | Set D | 50 30 kNN 1: N(0,0.5%)/N(0,0.5%) | 5.172
2: N(0,1)/N(0,1)
3: 14(0,1)/t4(0,1)
4: t40(0, 1)/14(} (0,1)
Curvature FD | Set B | 40 20 kNN 1: N(0,0.5%)/N(0,0.5%) | 5.173
2: N(0,1)/N(0,1)
3: £4(0,1)/t4(0,1)
4: t40(0, 1)/t4n(0, 1)
Curvature FD | Set D | 50 30 kNN 1: N(0,0.5%)/N(0,0.5%) | 5.174
2: N(0,1)/N(0,1)
3: 14(0,1)/t4(0,1)
4: £40(0,1)/t40(0,1)

Table 5.8: Fourier descriptor experiments
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Model

Data

Size train
set,

Size test
set

Classifier

Noise
(train/test)

Figure

Radius FD

Set B

40

20

kNN

i

- /N (0,0.57)
. -/N(0,1)
 =/14(0,1)
- -/t.m(ﬂ, 1

5.175

Radius FD

Set D

50

30

kNN

)
: -/N(0,0.5%)
: -/N(0,1)
. -/t4(0,1)
= -/tqu({],l)

5.176

Contour FD

Set B

40

20

kNN

- -/N(0,0.5%)
: -/N(0,1)

: -/ta(0,1)

< ~/t4(_)(0,1)

5.177

Contour FD

Set D

50

30

kNN

. -/N(0,1)
z ~/t4(0, 1)
= -/tq,n(o,l)

5.178

A-Invariant FD

Set B

40

20

kNN

T -/N(0,0.57)
1 -/N(0,1)

: -/tq(U, 1)

: -/t.m(ﬂ,l)

5.179

A-Invariant FD

Set D

50

30

kNN

- -/N(0,0.5%)
. -/N(0,1)
: _/tfl ({]s 1)

2
3
4
1
2
3
4
1
2
3
4
1: -/N(0,0.5%)
2
3
4
1
2
3
.
1
2
3
4: -/i',m([}, 1)

5.180

Table 5.9: Fourier descriptor experiments
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kNN classifier

e No noise on boundaries (all data sets)

Figures 5.163-5.166 show the results of each of the tests, on all data sets, using each of the four
FD techniques. The radial, contour and affine invariant FD methods show ACC performances
of 100% for all data sets, except for set E where the higher dimensional contour FD feature
vector required more training data. Figure 5.158 shows the first three principal components of
the radial FD feature vectors extracted from shape set B. The classes are very well separated

compared to the radius AR method 2 example in figure 5.28.

The curvature FD graph shows lower ACC levels ~ 80% even with high levels of training data.

Radial fourier leatures {sel B)

=0.06

Third principal component

Second principal component First principal component

Figure 5.158: Scatter plot of the first 3 principal components of the radial FD feature vector fitted to
set B (no boundary noise). The dots represent shape B1, the crosses represent shape B2, the circles
represent shape B3 and the triangles represent shape B4.

e Noise on boundaries of test and train sets (set B and D)

Figures 5.167 - 5.174 plot ACC performance against noise level for each of the data sets, B and

D. The noise level index is described in table 5.8.

The radius FD ACC levels were 100% for all levels. Even with the noise sampled from a t4(0,1)
distribution the ACC was ~ 98% for both sets B and D. Figure 5.159 shows the first three
principal components of the radial FD feature vectors extracted from shape set B, with noise
(N(0,0.5%)) added to the boundaries. The clusters are slightly less tightly bound owing to the

addition of the boundary noise but they are still highly separated.
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Radial fourier features (set B, N(0,0.5%) boundary nolse)

0.02

04 o T ]
0,02+ i ; e 2
5 : : g

=0.04
-0.06
-0.08 <

=0.14

Third principal componeant

0124

-0.14 )
0.256

0.35

- 0.2
0.15

Second principal component First principal component

Figure 5.159: Scatter plot of the first 3 principal components of the radial FD feature vector fitted to
set B (N (0,0.5%) boundary noise). The dots represent shape B1, the crosses represent shape B2, the
circles represent shape B3 and the triangles represent shape B4.

The affine-invariant and contour FDs classified set B, in all noise levels, completely correctly.
The results for set D were slightly lower by 1 — 2%. This could be because the contour and
affine-invariant feature vectors have almost twice as many dimensions as the radial FD feature

vector, therefore requiring more training data to characterise each class.
The curvature FD model was completely corrupted by the addition of all noise levels for both
data sets, as the ACC performances are no better than random.

» Noise on boundaries of test set only (sets B and D)

Figures 5.175-5.180 show the results for the radius, contour and affine-invariant FD tests on sets
B and D. The noise level index is described in table 5.9. Again all models classify set B 100%

correctly for all noise levels.

Set D however, shows some differences between the techniques. The radius FD classifies set
D correctly for all noise levels apart from t4(0,1) distributed noise, where the the ACC falls
to 98%. The affine-invariant FD experiments show better ACC results than the contour FD
experiments for all of the noise levels considered. It is thought that these two FDs again require

more fraining data then the radial FD to fully evaluate their potential.

Gaussian classifier

e No noise on boundaries (all data sets)

The Gaussian classifier gave very poor classification results when applied to all of the FD tech-
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niques (figures 5.160 - 5.162), with noise free boundaries. The results show very poor perfor-
mances as often the covariance matrix was near to, or completely singular. This could be due to
the high number of parameters (62 for the contour FD feature vector and 32 for the radial FD
feature vector) compared with the number of training samples, resulting in a poor covariance
estimate. The low performance could also be due to the higher frequency Fourier coefficients
having very small magnitudes in comparison with the low frequency coefficients and only varying

by tiny amounts. This can also cause the covariance matrix to become singular.

Summary

The FD techniques, apart from the curvature FD technique, gave excellent classification levels in
excess of 90% for all noise conditions on data sets B and D. The kNN classifier showed superior ACC
results than the Gaussian classifier due to the very small magnitudes of the high frequency Fourier
coeflicients, causing the covariance matrix to become singular. This shows that there are too many
variables for the Gaussian classifier to estimate accurately with small training sets.

The radius FD gave the most robust performance using these data, the next best was the affine-
invariant FD, closely followed by the contour FD technique. But the affine invariant and contour
FD’s have higher dimensional feature vectors and so require larger training sets to fully investigate
their potential. These complex FD’s contain extra phase information from the boundary sampling
algorithm and so would be expected to perform better than the radial FD. This wasn’t seen in these
results because the radial FD classified everything correctly, so more ‘complex’ shapes may be needed
to demonstrate the differences between techniques. Identifying the appropriate data is difficult and
time-consuming, so further experiments are recommended.

The curvature FD technique gave results no better than random in high levels of noise, see fig-
ure 5.174, again because of the weaknesses of the curvature sampling method. These results provide
further evidence that curvature sampling methods are very susceptible to boundary noise.

Fourier descriptors are global approximators and shapes in set B are visually very different, hence
the well separated feature clusters in figures 5.158 and 5.159. These graphs can be compared with
figures 5.28 and 5.29 where the AR features are not as well separated. This is because AR coefficients
are local operators and so reflect the differences in local detail. This does not mean that AR features
are not as useful for classification as more similar shapes will have very similar global detail and
local detail will become more important for feature discrimination. This is difficult to demonstrate as
the results for data set E show that both techniques classify it 100% correctly, although the Fourier

descriptors contain many more feature coefficients.
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5.3.7 Spectral AR method

Introduction

Spectral analysis is concerned with estimating the spectrum of a stationary stochastic process. Many
stationary stochastic can be approximated by an AR process of sufficiently high order. Eom [6] used
an AR(20) model to demonstrate this technique. The spectral AR method of subsection 4.3.7 uses
the polar angle of variation sampling technique to extract boundary information from a sequence of
shapes from each class at different orientations. The polar coordinates are measured at N equi-spaced
positions around the boundary providing uniform spatial coverage. Similarly to the complex coor-
dinates, the polar coordinates allow the polygonal approximation of the original boundary sequence
to be reconstructed. However, it is thought that the angular data would be affected more in noisy
boundary conditions, but no empirical evidence exists in the literature. The boundary samples are
treated as two circular time series, one containing radial distance samples, the other angle samples.
AR models are fitted to both series and the roots of the corresponding AR polynomials, A(z), are
computed. The MATLAB function (roots.m) was used to compute the roots. The roots are related
to the spectral peaks which were suggested by Eom to be useful features for shape classification. The
spectral peaks of an AR model are known to be very narrow so a high order model, with many roots,
is required to detect the peaks. Increasing the order of the model to 25 and then 30 gave no further
improvement in classification so AR models of order 20 were used, as suggested by Eom. In these
experiments we used 32 spatially equi-distant samples as increasing the samples further had little or
no effect on the classification performance.

The feature vectors were split into testing and training sets and Gaussian, kNN and multilayer
perceptron (MLP) classifiers are compared. The MLP is used as Eom [6] demonstrated his model
using this classifier. We used the scaled conjugate gradients (SCG) algorithm [18] to optimise the
weights and early stopping was used to terminate the training process. Sigmoidal functions were used
in the hidden and output layers. In hindsight, perhaps a more sensible activation function to use in
the output layer for this multi-class problem would have been a softmax function, which normalises
the outputs. Eom used 4p+1 nodes in the hidden layer, assuming 2p inputs, so the same number were
used in these experiments. As there are forty inputs (see section 4.3.7), eighty one nodes were used in
the hidden layer. This is thought to a very large number of nodes but no mention of any regularisation
techniques, such as weight decay for example, was mentioned by Eom. Regularisation controls the
complexity of a neural network during the training stage, making the generalisation performance less
sensitive to the initial model complexity. To try to follow the technique as closely as possible the same
number of hidden nodes were used and early stopping was implemented as the termination criteria
for the training of the MLP.

For these experiments we again have a large number of parameters to estimate in the feature vectors
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and a relatively small training set. Eom used just forty training samples and forty test samples to
estimate the weights in the network, claiming an average correct classification rate of 96.3% on set D
in a boundary noise free experiment (compare with figure 5.182). Eom does not however mention a
validation set for the MLP and also omits to specify the number of samples that were taken from the
boundaries.

Figures 5.181 - 5.183 present ACC results for a range of noise environments on data sets B and D.

Table 5.3.7 describes the experiments performed.

Data | Size train | Size test | Classifier | Noise Figure
set set (train/test)

B 50 25 RCS/ 1: -/- 5.181
kNN/ 2: N(0,0.5%)/N(0,0.5%)
MLP 3: N(0,1)/N(0,1)

D 50 25 RCS/ 1: -/- 5.182
kNN/ 2: N(0,0.5%)/N(0,0.5%)
MLP 3: N(0,1)/N(0,1)

D 150 75 RCS/ 1: -/- 5.183
kNN/ 2: N(0,0.5%)/N(0,0.5%)

A

MLP N(0,1)/N(0,1)

Table 5.10: Spectral AR experiments

Analysis

Figures 5.181 and 5.182 show the ACC performances of each of the classifiers in a range of noise
environments.

The Gaussian classifier showed the highest and most robust performance levels, having a 90% ACC
level with no boundary noise for set B and 78% for set D. This level rapidly declined to less than 60%
for set B and 35% for set D when only a low level of noise (N (0,0.5%)) was added to the boundaries
of the test and train sets.

The MLP was the next best classifier, giving an ACC performance 80% and 68% for sets B and
D, with no boundary noise present. The low performance is most probably due the combination of
the lack of training data and the high complexity of the MLP.

The kNN classifier showed the worst ACC levels, being on average 20% lower than the Gaussian
classifier in all noise conditions.

The poor performances of the spectral AR technique displayed in figures 5.181 and 5.182 is thought
to be due to inadequate amounts of training data. Figure 5.183 shows this to be the case, as the train
and test sets were increased from 50 and 25 samples to 150 and 75 samples respectively. The MLP’s
validation set was also increased from 25 to 75 samples. The performances of all of the classifiers
improved, but the MLP ACC was much closer to the ACC levels of the Gaussian classifier. This is

still a relatively small training set, but the increase in performance is significant and suggests that
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a much larger data set than quoted in [6] is required to achieve a similar level of classification using
an MLP classifier. In order to verify the implementation of Eom’s technique a data set of eight
aircraft taken from the article was used, with eight hundred training samples per class, four hundred
test samples per class and four hundred samples per class in the validation set. The average correct
classification performance was 93%, compared with 97.8% achieved by Eom.

Shape B1 was sampled eleven times, at different orientations, and the roots of the AR coefficients
were plotted. Figures 5.184 and 5.185 show plots of typical root values computed from the AR
coefficients that were estimated from the radial and angular sequences using noise-free boundaries,
respectively. The roots of the AR coefficients estimated from radial distances are more tightly clustered
than the equivalent roots estimated from the angular data. This indicates that the angular information
is not as useful a feature as the radial distance information and was verified in a separate test where
only the roots estimated from radial distance sequences were used as a feature vector. The test
classified set B without any addition of boundary noise using an MLP and was only 5% lower than
the results shown in figure 5.181. Figure 5.185 shows that the polynomial computed using the angular
AR coefficients is ill-conditioned.

If noise is added to the boundaries then an ill-conditioned polynomial will have widely differing
roots. This is shown in both figures 5.186 and 5.187 where N (0, 0.5?) noise is added to the boundaries.

This accounts for the low performance of the spectral AR method in noisy conditions.

Summary

With the low levels of training data compared with the number of estimated parameters, as specified
by Eom, the gaussian classifier gave the best ACC performances in all noise conditions.

When the amount of training data was increased, the ACC of both data sets increased significantly.
The MLP gave an ACC level of 81% for set D, compared with 85% for the Gaussian classifier. However
the MLP was least affected by noisy boundary conditions, although none of the classifiers performed
very well. The roots taken from the AR polynomial fitted to the angular sequences were shown to
be of little use for shape classification, with most of the discriminitive information contained in the
roots of the AR polynomials fitted to the radius sequences. However, both radial and angular AR

polynomials were shown to be extremely ill-conditioned in the presence of low amounts of boundary

noise.
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5.3.8 Non-stationary method

Introduction

The non-stationary AR method described in subsection 4.3.8 uses the radius angle of variation sam-
pling technique to extract boundary information from a sequence of shapes from each class at different
orientations. The boundary samples are treated as a circular time series and time varying AR models
are fitted to each series, and after phase correcting for the position of the first sample point on the
boundary (a phase difference exists between a reference shape, one from each class, and a correspond-
ing shape of the same class but at a different orientation), the coefficients are assigned class labels and
stored as feature vectors. In these experiments it was only necessary to use a model of order 1 and q
(an empirically set parameter used to estimate the non-stationary mean sequence) was set to 1.
Sixty four spatially equi-distant samples were again found to represent the boundary, as increasing
the sampling frequency had little or no effect on the classification. To demonstrate this technique,
Paulik et al [4] used data set E, so sets B and E were tested in a range of noise environments, see
figures 5.188 and 5.189. The indices on the x-axes label the experimental conditions shown in table

5.3.8.

Index | Size train | Size test | Noise
set set (train/test)
1 50 50 -/-
2 50 50 N(0,0.5%)/N(0,0.5%)
3 50 50 N(0,1)/N(0,1)
4 50 50 t40(0,1)/t40(0,1)
5 a0 50 t4(0,1)/t4(0,1)
6 50 50 -/N(0,0.5%)

Table 5.11: Experimental conditions of figures 5.188 and 5.189

kNN classifier

e No noise on boundaries (sets B and E)

Using the lowest number of parameters possible for this technique (m=1, q=1), the ACC levels

for sets B and E were equal to 100%.

e Noise on boundaries of test and train sets (sets B and E)

With the addition of noise to the boundaries the ACC levels fell dramatically to 70% for both
sets B and E, for the lowest level of noise tested (N(0,0.5%)). For higher levels of noise, the
ACC levels continued to fall, although they decreased more rapidly for increased noise levels
tested on set D. The non-stationary AR technique was not robust to the addition of noise to the

boundaries in these conditions as the local mean estimates will be more variable, necessitating
g
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a higher value of q (increasing the number of Fourier coefficients to estimate the non-stationary
mean), and the boundary samples are more complex sequences requiring higher order models to
minimise the residual error. Having observed the high levels of ACC achieved by the linear AR

methods on both sets B and D, the drop in performance is greater than expected.

After fitting the non-stationary AR model to a boundary sequence the coefficients are phase
corrected so that the feature vectors are invariant to the starting sample point on the boundary.
Noise effectively perturbs all of the boundary points, so any starting point on a reference bound-
ary will not be found on any of the test boundaries. The performance of the phase correction

algorithm will therefore begin to degrade with increasing levels of boundary noise.

Summary

The Gaussian classifier produced very poor classification performances using these features. For
example, the noise free test on set E gave an ACC of ~ 30%. This was again due to the covariance
matrix being near singular. The noise free boundary experiments show the high ACC performance
achievable using a kNN classifier with this model, using only 5 parameters. However the ACC falls
dramatically with the addition of noise to the boundary, for sets B and E, as the phase matching
algorithm performance will degrade in these conditions.
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5.3.9 Wavelet moment-invariant method
Introduction

The wavelet moment invariant technique of subsection 4.4.3 samples the whole shape silhouette, so
the hollow shape boundaries are filled-in using the MATLAB image processing function (bw fill.m).
The image is transformed from a two dimensional cartesian system to a polar system. r» and 6 were
incremented by 0.5 pixels from 0 to 7,4, and 0.5 degrees from 0 to 27 respectively, producing a 2-d
array indexed by r and . The S,(r) function is computed by approximating the integral over 8 (0-27)
using the MATLAB trapezoidal numerical integration function (trapz.m) to integrate over §. The
wavelet transform of S, (r) is computed for moments 0, 1,---, 3 and the wavelet transform is computed
for scales 1, 2, 4 and 8 (i.e. levels 0, 1, -+, 3) using the MATLAB wavelet toolbox function (cwt.m)
(a discrete approximation of the continuous wavelet transform).

The feature vectors from each class were split into test and train sets, then the features were
selected as shown by the flow chart in figure 4.2, and a Gaussian and kNN classifier are compared.
Table 5.12 describes the experiments. Figures 5.192 - 5.195 show ACC levels plotted against the

number of features chosen by the feature selection algorithm.

Model | Data | Size train | Size test | Classifier | Noise Figure
set set (train/test)
Wavelet | Set B | 30 30 kNN -/- 5.192
Wavelet | Set D | 30 30 kNN -/- 5.193
Wavelet | Set B | 30 30 kNN N(0,0.5%)/N(0,0.5%) | 5.194
Wavelet | Set B | 30 30 kNN N(0,0.5%)/N(0,0.5%) | 5.195
Wavelet | Set B | 30 30 kNN -/N(0,0.5%) 5.196
Wavelet | Set B | 30 30 RCS -/- 5.197
Wavelet | Set D | 30 30 RCS -/- 5.198

Table 5.12: Wavelet moment-invariant experiments
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kNN classifier

e No noise on boundaries (sets B and D)

Figure 5.192 shows that an ACC level for set B of 100% was achieved with 9 features. Figure
5.193 shows the performance on set D. The ACC level increases monotonically with the number
of features. The maximum number of 15 features were selected by the algorithm, giving an ACC

of 98%.
e Noise on boundaries of test and train sets (set B only)

Figure 5.194 shows the performance of the kNN classifier on set B when the boundary noise is
characterised by a N(0,0.5%) distribution. The ACC fell to 83% and a maximum of 7 features

were determined by the feature selection algorithm.

If the same train and test sets are used, but the selected features are chosen from the noise free
boundary experiment using set B, figure 5.195 shows the increase in ACC levels. This indicates
a weakness in the feature selection algorithm. Shen et al [15] suggest the use of the Branch and
Bound algorithm [19] to guarantee an optimum feature set but will be computationally more

demanding.

e Noise on boundaries of test set only (set B only)

Figure 5.196 shows the ACC when the training set does not contain any noise. The features are
the same as those in figures 5.192 and 5.195 as they were selected from the noise free training

set.

Gaussian classifier

e No noise on boundaries (sets B and D)

Figure 5.197 shows the ACC of the Gaussian classifier applied to set B. The level of classification
is generally lower than the equivalent test using the kNN classifier. For seven features the
covariance matrix was singular, causing the classifier to fail. This is because the features are

constant for some of the shapes.
Figure 5.198 shows the ACC of set D, which is generally lower than the equivalent tests using

the kNN classifier in figure 5.193.

General analysis

An improvement could be made to in the approximation of S,(r) by using finer increments in the
conversion from cartesian to polar coordinates, but would be computationally more expensive and the

advantages of doing so would be limited by the resolution of the image. Figures 5.190 - 5.191 show the
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difference between Sg(r) values generated from, (a) a shape with no boundary noise and (b), a shape
with N(0,0.5%) noise added to the boundary. Both Sp(r) sequences are similar and quite smooth (due

to the coarse coordinate system conversion).
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Figure 5.190: Sp(r) plotted against r, estimated from a non-noisy shape
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Figure 5.191: Sy(r) plotted against r, estimated from a noisy shape

If the classifier is to be able to differentiate between similar shapes belonging to different classes
it would be desirable to maximise the resolution of S;(r). As wavelet transforms provide good time
resolution and poor frequency resolution at high frequencies (low scales) and good frequency resolution
and poor time resolution at low frequencies (high scales), another improvement in the algorithm would
be to consider higher scales so that lower frequency components of S,(r) could be exploited. This
would provide enhanced capabilities to recognise noisy and noise-free shapes belonging to the same

class, allowing the identification of the global shape of S,(r) rather than the local detail.
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Summary

The kNN classifier was shown to provide better ACC levels than the Gaussian classifier on these data.
The wavelet moment invariant method has been shown to have potential for shape classification, but
requires a more sophisticated feature selection algorithm than the one implemented in this project,
such as the Branch and Bound algorithm for example, or even a multivariate algorithm (e.g. canonical
variates or PCA). Further improvements were identified such as increasing the accuracy of the coor-

dinate system conversion and also increasing the number of scales, so that more global information

can be used to recognise noisy shapes belonging to the same class.
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Chapter 6

Conclusions and future work

In this concluding chapter, the aims of this project are examined, the findings of this project reviewed,
conclusions are drawn and future work is discussed.

This project is part of an ongoing study at DERA carried out in collaboration with Dr. R. H.
Glendinning and aims to address the following weaknesses of earlier work on shape based classification

techniques for near real-time applications:

1. comparisons between techngiues are not comprehensive;

o]

. they use relatively small sets of self selected shapes;

(%]

. little attention is paid to describing realistic noise;

4. varying environmental conditions are often ignored.

The result of this is that little advice can be given to prospective shape classification engineers
or researchers on the relative importance of the various components and techniques of the boundary

based shape classification process. Specifically, this project aimed to address:
1. the applicability of different models to describe boundary characteristics;
2. the relative effect of model complexity;
3. the value of different sampling algorithms;
4. the value of different classifiers;

5. computational complexity of the different models.

Attention is paid to the interaction between these issues, the particular shapes used in our ex-

periments and the different noise models. The comparison of techniques was performed on an equal
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basis and the metrics used include the average correct classification (ACC) performance and the num-

ber of floating point operations (flops), thereby considering both the performance potential and the

computational cost.

6.1 Summary of results

To make the findings of this project clearer, we first present a selective summary of the results in tables
6.1 and 6.2. Table 6.1 provides a summary of the results in noise free boundary conditions, showing
the maximum ACC performances of each technique when applied to the most challenging data set
E (see page 40). Data set E is thought to be challenging because it contains many classes of both
visually very different and also very similar shapes. The spectral AR and wavelet moment invariant
techniques are tested on set D, which is a simpler subset of set E. The ‘flops’ column of table 6.1 shows
the number of floating point operations (flops) to compute one feature vector at model order 4 for all
of the linear AR-based models, order 20 for the spectral AR model and order 1 for the non-stationary
AR model. The number of flops for the linear AR tests are represented by the Radius AR 2 value, as
they are all approximately equal.

Table 6.2 summarises the best performances of each technique in noisy boundary conditions, where
the first set of results considers noise-free training sets and noisy testing sets and the second set of
results considers noisy testing and training sets. A noise free training set and a noise testing set is
infended to demonstrate the performance of each model when no prior knowledge is available about
any potential noise level or type. A noisy training and testing set is intended to demonstrate the
performance of each model when the amount and type of noise is known. Note the high amounts of
noise from a #4(0, 1) distribution added to the boundaries during these experiments. The ACC results
for the non-stationary AR and wavelet moment invariant techniques are presented for the simpler

shape set B for illustrative reasons.

6.2 Conclusions
The issues that this project aimed to address include the effects on shape classification of:

e the type of classifier

The Gaussian classifier performed well with the AR, CAR and CPARCOR models because the
coefficients were easily modelled by multivariate Gaussian distributions, see figures 5.28 and
5.158 for an example of the distributions of the first three principal components of AR features
compared with FD features. The Gaussian classifier performed less well when the feature vectors

were of a high dimension, as for FD’s, as the covariance matrices were almost singular. The kNN
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Feature Classifier | Data | Order ACC || Flops
(no noise) | %
Radius AR (1) RCS E 9 96 -
Radius AR (2) RCS E 4 100 42495
Curvature AR RCS E 8 78 -
Spectral AR RCS D 20 85 670447
Non-stationary AR kNN E 1 100 86603
CAR RCS E 4 100 27785
CPARCOR (recursive) | RCS E 3 100 26781
CPARCOR (direct) RCS E 3 100 102053
Radius Fourier kNN E - 100 158780
Curvature Fourier kNN E - 89 158824
Contour Fourier kNN E ~ 98 158917
A-invariant Fourier kNN E - 100 294799
Wavelet moment kNN D - 97 7489613
invariant

Table 6.1: Summary of results: noise free tests

Feature Classifier | Data Order | ACC | Data Order | ACC

-/N(0,0.5%) % (t4(0,1)/84(0,1)) %
Radius AR (2) RCS D 10 88 D 10 96
Curvature AR RCS B - - D 4 20
Spectral AR RCS - - - D (N(0,1)/N(0,1)) | 20 25
Non-stationary AR kNN B 1 25 B 1 60
CAR RCS D 5 100 D 10 95
CPARCOR (recursive) | RCS D 2 80 D 2 77
CPARCOR (direct) RCS D 6 100 D 10 91
Radius Fourier kNN D - 100 D - 98
Curvature Fourier kNN D - - D - 12
Contour Fourier kNN D - 100 D - 98
A-invariant Fourier kNN D - 100 D - 94
Wavelet moment kNN B - 92 B (N(0,0.5%)/ - 93
invariant N(0,0.5%))

Table 6.2: Summary of results: noise tests

classifier, with k=3 and a Euclidian distance metric, performed well on the well separated high
dimensional features of the FD’s and struggled to correctly differentiate between the closer and
more cloudy AR feature centres. The multi-layer perceptron (MLP) was only tested on spectral
AR features where the radial AR roots were classified equally as well by a Gaussian classifier.

Figure 5.184 shows the Gaussian-like centres of the radial AR roots.

e the model type and order

Noise free boundary conditions: Low order linear AR models (1-10) have been shown to
be able to classify set E ~ 100% correctly using the radial angle of variation method. This was
a surprising result as performances shown in the literature [4] were much lower using the same

data, typically 70%, due to the lack of training data used. The feature vector was also very fast
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to compute, see table 6.1.

The spectral AR model used the polar coordinate angle of variation sampling method and
estimated the roots of the AR polynomials fitted to the radius and angle sequences to detect
the peaks in the AR spectra. The roots estimated from the angle series varied wildly with
each realisation of a shape, resulting in a feature vector that was of little use for classification.
The model did however achieve a ACC of 85% for set D, where most of the discriminatory
information came from the AR polynomial of the radius sequence. The feature vector typically

required ~ 14 times more flops to compute than the linear AR model.

The non-stationary AR model classified set E 100% correctly in its least complex form (m=1,

g=1), although it required twice as many flops to evaluate as the linear AR model.

The CAR and CPARCOR (estimated both directly from the CAR coefficients and also recur-
sively) models classified all of the data sets, including set E, 100% correctly. The CAR and
CPARCOR features estimated recursively typically required 33% less flops than the linear AR

models and require the least number of flops to compute of all.

The radial, contour and affine invariant FD models, using the radial and complex angle of
variation sampling schemes classified all of the data, including set E, 100% correctly. The radius
and contour FD feature vectors required 4 times more flops than the linear AR feature vectors

and the affine invariant feature vectors typically required 8 times that amount.

The wavelet moment invariant technique is a silhouette based method and is accordingly much
less efficient to compute. Compared with the CAR model it requires ~ 270 times more flops to
evaluate a feature vector due to the hundreds of wavelet coefficients that are computed. The
ACC of set D was ~ 97%. The model was not tested on set E, which has 15 classes, due to
the large amount of computing time required to do so. The complete set of features for set
D, which has just 8 classes, took approximately 12 hours to compute on a DEC Alphastation
500 using MATLAB. The univariate feature selection algorithm was required to reduce the size
of the feature vector by choosing the most discriminatory coefficients. However the univariate
feature selection algorithm was shown to be sub-optimal and multi-variate alternatives, such as

PCA and canonical variates, have been suggested.

Noisy boundary conditions: The tests where the training set was noise free and the testing
set contained noise generally showed the same ACC performance trends as tests where both the

training and testing sets contained noise, but at a lower level.

The curvature based AR and FD models performed poorly due to the sensitivity of the sampling

algorithm.

The spectral AR model used the polar coordinate angle of variation sampling method and

109



CHAPTER 6. CONCLUSIONS AND FUTURE WORK

estimated the roots of the AR polynomials fitted to the radius and angle sequences to detect
the peaks in the AR spectra. During the boundary noise tests both the radius and angle
polynomials became more ‘ill-conditioned’ and the ACC dropped to 60% even for the simple
set B. The spectral AR model is therefore inappropriate for any application in adverse noise

conditions.

The non-stationary model produced very low ACC performances even for the small and visually
simple set B. This was because the phase matching algorithm adjusts the phase of the feature
vector so that the features are invariant to the location of the starting point on the boundary,
making the feature vector completely rotation invariant. If boundary noise is introduced it will
corrupt the model resulting in a much lower ACC performance. The non-stationary AR model

is therefore inappropriate for any application in adverse noise conditions.

The wavelet moment invariant ACC performance for set B was robust in noisy boundary ex-
periments but the best performance was difficult to quantify due to the poor univariate feature

selection algorithm.

The radial linear AR model proved to be robust to noise when the same amount and type was
included in the training and testing sets, but degraded when the training set was noise free and

the testing set contained noise.

The CAR and CPARCOR (estimated directly from the CAR coefficients) models provided much
more robust ACC performances in noisy boundary conditions, which was attributed to the phase
information contained in the complex coordinate samples. The CPARCOR coefficients estimated
recursively proved to be much less robust because the recursive algorithm is thought to be an

approximation to the direct method.

All of the FD models, with the exception of the curvature FD, classified all of the data sets
~ 100% correctly, even in high boundary noise conditions. The FD’s were slightly more robust
to boundary noise than the CAR model, particularly in high noise when the testing set was noise

free and the training set contained boundary noise, where the ACC performances were ~ 15%

better.

¢ the boundary sampling algorithm

The curvature and polar coordinate sampling methods both estimated angular measures around
the boundary and the ACC’s of the AR and FD models were typically 80 — 90% in noise free
conditions (see table 6.1). Table 6.2 shows that the spectral AR, curvature AR and FD models
performed poorly in boundary noise tests. These results are not unexpected due to the noise
sensitive curvature measures but have not been demonstrated in the literature. The polar

coordinate angle of variation method did not prove to be successful due to the ill-conditioning
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of the AR polynomials computed from the angular data. The radial data AR polynomial gave
ACC results equal to those using both radial and angular data, indicating that the angular data
provided no extra discriminatory information. However, in the presence of noise, both radial
and angular AR polynomials became ‘ill-conditioned’. Therefore curvature and polar coordinate

sampling algorithms are not suitable for application in adverse noisy boundary conditions.

The next most successful sampling algorithms were equal angle and radial angle of variation
sampling. The equal angle sampling method was shown to perform less well than the radial
angle of variation method with linear AR features on noise free boundary tests. This is because
the equal angle sampling method can produce varying numbers of samples at different boundary
orientations, especially if the boundary is non-convex. The angle of variation method however
provides uniform spatial coverage resulting in a constant number of sample points, which is a

more consistent method when the shapes are non-convex.

The complex coordinate angle of variation method provided the best ACC results for linear
AR and FD models, especially in adverse boundary noise conditions. Refer to table 6.2, fea-
tures CAR, CPARCOR and A-invariant FD. The complex coordinate feature vector contains
phase information, allowing the original polygonal boundary approximation to be reconstructed

whereas the radial distance samples could have resulted from more than one boundary shape.

e the range of data

Data set E, having fifteen classes with both similar and dissimilar shapes proved the hardest set
to correctly classify, especially in noisy boundary conditions. Data set BCD contained sixteen

classes but was generally more easily correctly classified as the shapes are all visually dissimilar.

To summarise, the main points to note from these experiments using these particular data sets of

shapes are:

e the suitability of the kNN Euclidian distance classfier for use with high dimensional FD’s;

e the suitability of the Gaussian classifier for use with low order (m<10) AR features, including

AR, CAR and CPARCOR coefficients;

e linear AR models are more powerful for shape classification than suggested in the literature
and more complex models are not necessarily an improvement, especially in noisy conditions.
Specifically, the spectral AR model involves estimating the roots of AR polynomials which
become ill-conditioned in the presence of boundary noise. The non-stationary AR model also

performs poorly in boundary noise conditions due to the failure of the phase matching procedure;

e confirmation of [2] of the similarity of the CAR and CPARCOR (estimated by the directly from

the CAR coefficients) models average correct classifications in noise free environments;
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o the similarity of the CAR and CPARCOR models giving high ACC levels in high noise environ-

ments, higher than the real AR models;

the excellent performance of the FD models in noise-free and noisy boundary conditions using
all of the Fourier coefficients, although they are much less efficient than the CAR model to

compute;

the benefit of phase information in sampling, provided by the complex coordinate angle of

variation sampling technique;

empirical evidence of the poor performance of curvature sampling as shown by both AR and FD

features.

6.3 Future work

The ultimate aim of this on-going project at DERA is to identify the strengths and weaknesses of

many leading and new boundary based shape classification models and to select the more robust

methods for use in real applications, of which there are many, including target tracking and condition

monitoring. Current and future work will expand on the experiments described here to:

measure the effects of occlusion on each technique and also investigate techniques designed to

cope with occlusion [21], [22]
consider the robustness of non-linear AR models [16], [23]

investigate boundary based wavelet techniques [24], [25], as they could provide more robust

models than FD’s as they combine both local and global information about a signal.

together with

the development of feature selection algorithms and further classifiers

investigating the potential of using subset selection to model each class with an AR model,
instead of fitting a fixed model to each of the classes [26]. AR models are universal approximators,
as are FD’s and wavelets. An investigation into subset selection using different model types to

model each class could extend this work further.
the improvement of the selection algorithm of the wavelet moment invariant model

endeavouring to find more challenging data sets to demonstrate the characteristics of each tech-

nique more clearly
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e investigating the effects of testing and training with boundaries containing different levels of

noise

e exploring the robustness of the FD’s. It is believed that the FD’s could perform poorly with

many similar shapes having small differences, as the FD’s are global operators (i.e. they do not

provide any local information), whereas AR models are local operators.

The output of this work will hopefully result in a journal publication [27] and a boundary based

shape classification toolbox, written in MATLAB.
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Appendix A

A Gaussian classifer variant: RCS

method

A.1 The Rotated Coordinate System (RCS) Method

The RCS method rotates the axes of the feature space coordinate system as well as scaling them [28].
The projections of the features onto the new axes result in a reduced mean-square intraclass distance.
Scaling the feature space has the effect of emphasising the common features and deemphasising the
uncommon features. If has been shown [28] that the optimum coordinate system for a particular pat-
tern class, giving the smallest mean-square intraclass distance, are in the directions of the orthogonal
eigenvectors of the sample covariance matrix. The eigenvalues are the variances of the data in the
directions of the new axes. The distance between a test vector, p, and the class Q training set, qu, in
the rotated and weighted class QQ pattern space is given by equation A.1,

2/m

S(p, {ax}) = H VA - HZ LB-——EC—IF} 7= m] (A.1)

where q is the sample mean vector in the original coordinate system, ¢; and \i are the i'th
eigenvector and eigenvalue of the sample covariance matrix respectively and m is the number of
dimensions of the feature vector.

As the smallest eigenvalue corresponds to the eigenvector which is in the direction of the minimum
sample variance, the projection of the sample points onto this eigenvector result in a feature which is
the most invariant of a particular class. The feature weights are inversely proportional to the square
root of the corresponding variances, so an unlabelled sample will be assigned to the class having the

closest mean in the direction of the eigenvector corresponding to the smallest eigenvalue.
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Further results

B.1 Benchmark data

The results presented in this appendix are of each technique applied to well separated benchmark
data. The tests were necessary to compare with the techniques in journal papers, but do not provide

interesting results as the shapes are well separated in feature space and are easily classified.
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APPENDIX B.

FURTHER RESULTS
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Figure B.2: Radius AR:1 (kNN), Set B
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