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Thesis Summary 

The aim of this Research Project was to study synchronisation in one-dimensional 

chains of coupled nonlinear systems, such as van der Pol oscillator and Duffing res- 

onator. The results were obtained using numerical experiments, and, where appropri- 

ate, are discussed in terms of the linear perturbation theory and the recently proposed 

Partial Contraction theory [1]. Simple nonlinear systems, such as Duffing resonator, 

provide a good understanding of the nonlinear properties of MEMS [2] [3] and NEMS 
[4] devices. Therefore, the results obtained here are also discussed in the context of 

application to MEMS and NEMS resonators and their arrays. 
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Chapter 1 

Introduction 

The aim of this thesis is to study entrainment in chains of coupled van der Pol oscillators 

and Duffing resonators, with a view to applications for MEMS and NEMS devices. In 

this chapter we first present the motivation for the Project (next section), while, a 

brief overview of MEMS and their relationship to the nonlinear Duffing resonator is 

presented in Section 1.2. The phenomenon of synchronisation is discussed in Section 

1.3, which also contains a brief discussion on network geometries to couple the nonlinear 

oscillators. Some theoretical considerations are presented in Section 1.4, and, the 

chapter ends with a brief layout of the rest of the thesis 

1.1 Motivation for the Project 

Historically, van der Pol oscillator has been associated with the triode valve [6], and 

both, van der Pol and Duffing equations have been used to study the behaviour of 

coupled electrical circuits [7]. The study will also have relevance to the field of MEMS 

and NEMS, as discussed below: 

MEMS (MicroElectroMechanical Systems) and NEMS (Nano ElectroMechanical 

Systems) have played an important role in the technological advancement in many 

fields [8], and, have a wide range of applications in the field of sensors [9], life sciences, 

photonics and communications [8], to name a few. As technology progresses, the size 

of the MEMS devices will decrease, making it easier to drive them into the nonlinear 

regime. Therefore, a good understanding of their nonlinear properties is vital for the
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design of future devices. 

Many applications of MEMS and NEMS, such as, optical switches [10] and mechan- 

ical spectrum analysis of electrical waveforms [11], involve arrays of MEMS. A system 

of coupled MEMS resonators has also been considered pattern recognition and mechan- 

ical neurocomputing [12]. Also, with diminishing device size, it becomes more difficult 

to isolate individual components. Therefore, it is anticipated that an understanding of 

the collective behaviour of arrays of MEMS and NEMS could be an important step in 

the design of future devices. 

In this thesis we present a study of synchronisation in a chain of coupled nonlinear 

oscillators, with a view to understanding the collective behaviour of a class of MEMS 

and NEMS, namely, MEMS and NEMS resonators. 

1.2 MEMS: A Brief Overview 

MEMS devices can respond to external stimuli, for example in sensing applications, 

and, then, in response to the stimuli, move (or actuate) the mechanical part of the 

device. Some everyday examples include accelerometers in car airbags, pressure sensors 

and ink jet printers. Thus, as the name suggests, there are two parts to MEMS devices: 

sensors or actuators (electrical) and beams, diaphragms or nozzles etc. (mechanical). 

There are two types of actuators commonly used [13]: (i) Parallel plate capacitors, 

and, (ii) Comb drive capacitors. These are shown in Figure 1.1 schematically. For the 

parallel plate capacitor, the electrostatic load (composed of a DC voltage and a much 

smaller AC voltage), the mechanical restoring force and the damping force together 

govern the dynamic behaviour of the system. The DC voltage produces an electrostatic 

force on the moving plate, thereby moving it to a new equilibrium position, and the 

AC voltage drives the plate about this newly established position. The ratio of the 

mechanical motion to the electrostatic force is known as transduction factor e. 

Next, we consider a longitudinal mode beam resonator which is excited with a 

parallel plate capacitor, and, derive the nonlinear differential equation associated with 

the system. 

10
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(a) (b) 

  

          
      

Figure 1.1: Schematic diagram of actuators: (a) Parallel plate capacitor. and, (b) 
Comb drive capacitor. 

1.2.1 MEMS as Duffing resonator 

Figure 1.2 shows a schematic diagram of a longitudinal mode beam resonator with 

half-length L and cross-sectional area A. The beam is fixed in the middle, is actuated 

symmetrically, and its ends move in opposite directions; The longitudinal displacement 

cant Actuator Actuator 
Beam 

[| ] | 

< > 
=> (Gass <_ 

Output 

  

  

    

Figure 1.2: Schematic diagram of a longitudinal mode beam resonator. 

of the beam, u, is governed by the wave equation [14]: 

au 8 /,.8 
oASe = - (ar), (1.1) 

where g is the beam density and Y is the nonlinear Young’s modulus, 

¥=5=1+KS+%9%), (1.2) 

where T is force divided by area A, S = oe is the displacement gradient, and, Y; and 

Y are the first order and second order corrections to the linear Young’s modulus. If x 

11
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represents the motion of the beam tip, solution to Equation (1.1) can be approximated 

as u(x,t) = a(t) sin(7z/2L). Thus, substituting for u(x,t) in Equation (1.1), we get 

Pu mw? AY 4Y; 31 Yo 9 : 
eAL aa =-G (1+ Ges ten?” | (1.3)   

Equation (1.3) describes the nonlinear vibrations in a longitudinal mode beam res- 

onator, and, can be rewritten as 

= F,,cos(wt), (1.4) 

  

ma + ya + k( 

where, ¥ is the damping term, I’, is the forcing term at frequency w, and, 

  

k(a) = ko(1 + +hyx + kya”), (1.5) 

with 

a AY 4Y, 3n?Yo 
m=poAL, k= Te PS a0 and k= Ter?" (1.6) 

Equation (1.4) is the ‘lumped model’ representation of the electromechanical resonator 

[14]. Figure 1.3 shows the electrical representation of the longitudinal mode beam 

  

Mechanical resonator 

Figure 1.3: Electrical equivalent circuit for the longitudinal mode beam resonator. 

resonator with capacitive excitation [15], where C = e?/k, L = m/e”, R= Vkm/(Qe*), 

and, the quality factor Q = \/k/m/(y/m). 

In general, k; is small, so that the electromechanical system can be represented by 

the Duffing equation 

&+6¢+ax + Ba? =T cos(wt), (1.7) 

with 

6=7/m, T=F,/m a=ko/m and B=koko/m. (1.8) 

12
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Thus, the quality factor Q, in terms of the parameters of the Duffing equation, is 

Q=va/b. (1.9) 

The Duffing resonator of Equation(1.7) is discussed further in Subsection 2.1.2. 

1.3. Synchronisation and Networks 

Synchronisation is a cooperative behaviour of many-body interacting systems, where 

coordinated group behaviour is seen even though each individual acts independently. 

The Dutch researcher Christian Huygens was probably the first to discover the syn- 

chronisation phenomenon when he observed that two pendulum clocks, which were 

attached to a common beam, always moved in complete synchrony, but in opposite 

direction to each other [6]. Some of the examples of synchronisation from the natural 

world include bee swarms, bird flocking, schools of fish swimming together [16]; here, 

bees, birds, fish move with the same velocity through air/water, keeping a constant dis- 

tance between them. The phenomenon is encountered in diverse fields such as physics, 

engineering, biology and social sciences. The study of cooperative phenomenon in 

coupled multiple systems has many applications: Recently, researchers working in the 

area of brain science have recognised the importance of rhythm and synchronisation 

of neurons in understanding brain function. [17], and those of cardiac cells in heart- 

beat [18]. Synchronisation in distributed multi agent system has also been simulated 

recently [19], and, the relevance of the phenomenon to MEMS and NEMS has already 

been discussed in Section 1.1. 

1+————-2 

— j-1+— jj     opi 

Figure 1.4: Coupled two-, chain and globally connected network of oscillators 
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CHAPTER 1. INTRODUCTION 

The process of synchronisation can be studied by modelling the behaviour of net- 

works of coupled nonlinear oscillators. There can be many types of networks, ranging 

from simple geometries shown in Figure 1.4, to more complex networks such as scale- 

free and small world networks [20]. The coupling between any two oscillators can be 

linear [1] [21] [22], or, nonlinear [23]. A one-dimensional chain of oscillators is the 

simplest geometry of a network of coupled oscillators, where the interaction can be 

between the nearest neighbours, or with a group of neighbours [6]. A ring structure is 

encountered if the first and last members of the chain are coupled. A more interesting 

geometry is when all oscillators are globally connected to all other oscillators and the 

system goes through a transition (Kuramoto transition) where some of the oscillators 

synchronise spontaneously while others remain incoherent [6]. 

In this thesis, we consider synchronisation in two coupled oscillators (next chapter) 

and for chains of coupled oscillators (Chapters 4 and 5). 

1.4 Theoretical Considerations 

It is almost impossible to solve the second order differential equations describing the 

system of coupled nonlinear oscillators analytically, except for a few simple cases. In 

the literature, various perturbation methods have been used to solve these nonlinear 

differential equations [24], [25]. However, for more complex systems, such as networks 

of nonlinear oscillator, it becomes necessary to resort to finding numerical solutions. 

However, there are some exceptions, such as Kuramoto model [17] discussed above, 

for which a general solution can be found. The recently proposed Partial Contraction 

Theory [1] has even wider application, where it extends the principle of contraction to 

obtain conditions for synchronisation for general networks of coupled nonlinear oscil- 

lators. So far, the theory has been applied to study the stability of synchronisation 

of identical oscillators only (van der Pol oscillators [1] and Lorenz [26] oscillators). A 

brief introduction to the theory will be presented in Chapter 3. 

14
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1.5 Plans for the Rest of the Thesis 

A brief review of the properties of single van der Pol oscillator and Duffing resonator 

is presented in the next Chapter, and, some synchronisation properties of two- coupled 

systems explored. Chapter 3 presents a brief introduction to the Partial Contraction 

theory, while, Chapter 4 considers synchronisation in chains of identical unforced os- 

cillators. Results of our numerical simulations for chains of Duffing resonators with 

external forcing, and, those for hybrid chains of Duffing resonator and van der Pol 

oscillator, are presented in Chapter 5. The main results of the thesis are summarised 

in Chapter 6. 

15



Chapter 2 

Single and Two- Coupled Nonlinear 

Oscillators 

In this Chapter we review some of the key properties of the single van der Pol oscillator 

and the Duffing resonator which make them suitable for MEMS applications (Section 

2.1). Also, the behaviour of a simple system of two-coupled nonlinear oscillators will 

be explored in Section 2.2. 

2.1 Single Nonlinear Oscillators 

2.1.1 van der Pol Oscillator 

The van der Pol oscillator was originally discovered by the Dutch physicist and engineer 

Balthasar van der Pol in 1927 when he found stable oscillations, known as limit cycles, 

in electrical circuits employing vacuum tubes. Driving these circuits near the limit 

cycle results in entrainment, i.e., the driving signal pulls the current along with it. 

van der Pol, together with his colleague van der Mark, were probably the first [27] to 

report deterministic chaos when they reported hearing irregular noise at certain driving 

frequencies [28]. 

The electric circuit with negative differential resistance, shown in Figure 2.1, can 

16
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be represented by the van der Pol equation [29], 

+ p(x? — 1)e+ px =0, (2.1) 

where, p represents the strength of the harmonic part of the oscillator and j defines 

the strength of the nonlinear damping; the damping term is negative for small dis- 

placements (a(t) < 1) and positive for large displacements (x(t) > 1). The system is 

decays to zero for js < 0. For jz > 0, the nonlinearity term can be associated with 

negative resistance in a triode valve; This is shown in Appendix A. In this case, the 

Ril) 

Figure 2.1: Electric circuit corresponding to van der Pol oscillator. 

phase portrait of the oscillator is a limit cycle [25], i.e., all trajectories lead to the same 

cycle (Figure 2.2), with the exception of the case when « = ¢ = 0. The latter is an 

equilibrium point of the oscillator, obtained by setting # = 0 and ¢ = 0 in Equation 

(2.1). 

(a) (b) 
x(t) x(t) 

x(t) 

  

Figure 2.2: Phase portrait of a van der Pol oscillator showing limit cycles for p = 1, 
and, (a) u = 0.5, (b) = 2.5. The limit cycle changes from circular to diamond shape 

as jt increases.
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Equation (2.1), which is a second order differential equation, can be linearised as: 

r= y 

—p(x? — 1)y — px. (2.2) «.
 i 

Defining ¢ = f(a, y) and y = f(x,y), the Jacobian of the linearised system of equa- 

tions is: 

of Of 
Bole (2.3) 

Gf Ofe 
Or Oy 

Linearisation of the second order differential equation, as shown in Equation (2.2), can 

be compactly written as 

x =f (x,t), (2.4) 

where x = (a, y) and f = (f, fo), so that Equation (2.3) can be written as 

df F= ~ i (2.5) 

The Jacobian matrix, F,ap for Equations (2.2) is 

0 1 
Fyap = ( ) (2.6) 

—p—2pey —y(2? —1) 

The real part of the eigenvalues, obtained on substituting « = ¢ = 0 in Equation (2.6), 

is greater than zero; therefore, the equilibrium point (x, 4)=(0,0) for Equation (2.1) 

is unstable, and is a repellant since all trajectories lead, even close to the equilibrium 

point, away from it (Figure 2.2 (b)). The limit cycle, on the other hand, is an attractor 

since trajectories with different initial values converge to the same cycle. 

2.1.2 Duffing Resonator 

For the yan der Pol oscillator, the nonlinearity is in the velocity term +; The Duffing 

resonator, on the other hand, is nonlinear in the spring constant-term [30], and, as 

we saw in Subsection 1.2.1, it provides a framework for analysing the nonlinearities 

present in MEMS [2] [3] and NEMS [4]. The equation describing a damped, forced 

18



CHAPTER 2. SINGLE AND TWO- COUPLED NONLINEAR OSCILLATORS 

Duffing resonator is 

£+6¢+ ax + Bx*® =Tcos(wt), (2:7) 

where, 6 (> 0) and I are strengths of damping and the external driving force, respec- 

tively, and w is the frequency of the driving force. Both, linear and nonlinear spring 

constants, a and (3, respectively, can be positive or negative; 6 > 0 represents a hard 

spring, whereas, 3 < 0 represents a soft spring. 

The phase portriat of the resonator for a, > 0 are closed curves but not limit 

cycles, since they depend on the initial values of x and «@. There is only one equilibrium 

point at (x, ¢ ) = (0, 0) which is stable for 6 > 0. For a and @ having opposite signs, 

the Duffing resonator can be expressed as motion in a double potential well (a < 0, 

8 > 0), or in a double-hump potential (a > 0, 3 < 0) [30]. For this case, the resonator 

has two additional equilibrium points at (x,¢) = (+/a/8, 0). These points too are 

stable for a, 6 > 0. As shown in Figure 2.3, the phase portrait for this case constitutes 

both closed and open curves, depending on the initial values of x and « [21]. For some 

a) 

x(t) 

  

  
Figure 2.3: Phase portriat for a single (undamped, unforced) Duffing oscillator with 

a=1,/2=—1, 

parameters, the Duffing resonator can exhibit chaotic behaviour where, as shown in 

Figure 2.4, there is no sign of the resonator settling down to a periodic motion. The 

Duffing resonator also exhibits hysteresis behaviour in its frequency response, which 

has an important parallel in frequency-amplitude response in some MEMS [2] [3] and 
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(b) 
x(t) 

  

t 
950 1000 

Figure 2.4: Phase portrait (a) and time trajectory (b) for a chaotic Duffing oscillator 

(a =—1,6 =1,6=0.1,T = 0.35 and w = 1.4). 

NEMS [4] devices, and will be discussed in greater detail in Subsection 2.1.3. 

Sometimes, the nonlinearities in spring constant and damping are combined in a 

single oscillator, viz. 

é+ (a? —1)¢ +ax + Bx =0, (2.8) 

which has features of both van der Pol and Duffing oscillators. This is known as the 

van der Pol-Duffing oscillator [22] and exhibits limit cycle behaviour. This is shown in 

Figure 2.5. 

  

Figure 2.5: Phase portrait for a van der Pol- Duffing oscillator exhibiting limit cycle 

behaviour (a = —1, = 0.5 and ys = 0.1). 

The equilibrium points for this oscillator are similar to those for the Duffing res- 
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onator; Linearising Equation (2.8), one can write the Jacobian of the system as 

0 1 
Fyap-pur = : (2.9) 

—a — 362? —2pary —p(x? — 1) 

For the equilibrium point (x, @ ) = (0, 0), Equation (2.9 simplifies to 

0 Or 2: 
Fyap_pur = (2.10) 

—a pt 

which is similar to the Jacobian obtained for a van der Pol oscillator at its equilibrium 

point. 

2.1.3 Hysteresis in the Duffing Resonator 

In order to study the behaviour of a Duffing resonator around resonance, we assume 

that 6 < 1 and w a, s0 that to first approximation 

a(t) = Acos(wt + ¢), (2.11) 

where ¢ is a phase constant to be determined. Substituting Equation (2.11) in Equation 

(2.7), equating terms with cos(wt) and sin(w#), and, neglecting higher harmonic terms, 

we get 

[(a—w?)A+ *A4?| cos? —wdAsing =, (2.12) 

(a—w?)A+ 3943] snp UsAcee=0 (2.13) 

Multiplying Equation (2.12) with cos@ and Equation (2.13) with sin@, and, adding 

the result we get 

[(a — w?)A + BA¥] =P cos 4; (2.14) 

Similarly, multiplying Equation 2.12 with sing and Equation (2.13) with cos @, and, 

subtracting the result from each other, we get: 

—wiA =Tsing. (2.15) 

Finally, squaring Equations (2.14) and (2.15), and adding them together, we get 

2 

(uae 404° + (6Aw)? = 22, (2.16) 
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Equation (2.16) describes the behaviour of the Duffing resonator near resonance, which 

is different from that of a linear oscillator, and, also, the behaviour is different for 

8 > 0 and @ < 0; This is shown in Figure 2.6, where the resonance peak bends 

(a) (b) 

  

Figure 2.6: Duffing resonator showing hysteresis for (a) @ > 0 (a =$=1,5 =0.1 and 

TP =1), and (b) 6 <0 (a= 79.5, 8 = 13.25, 6 = 0.052 and [ = 0.6) [5]. 

to the right for the case of hard spring 6 > 0) (a) and to the left for the soft spring 

(8 < 0) (b). (The resonance peak of a linear oscillator does not bend.) The parameters, 

a=£=1,6 =0.1 andT =1, used for generating Figure 2.6 (a) were chosen randomly, 

and, will be used throughout the thesis for comparison purposes; This will be referred 

to as Duffing A. Parameters from a power systems device [5] were used for generating 

Figure 2.6 (b). 

Figure 2.7 (a) shows the amplitude-frequency response for a Duffing resonator with 

a = 100, = 10,6 = 0.1 and [ = 5; These parameters are for a device built to sense 

small changes in mass [31], and will be referred to as Duffing B. The hysteresis curve 

was obtained numerically, i.e., without the approximations used for deriving Equation 

(2.16). From the Figure one can see that the amplitude of the Duffing resonator 

would follow different paths for increasing and decreasing frequencies: As the driving 

frequency increases from below the resonance (blue), the amplitude of the resonator 

increases up to the top of the curve; any further increase in the driving frequency results 

in a drop in the resonator amplitude, where it follows the lower branch of the A — w 

plot; This is known as the ‘Jump phenomena’ [30]. Starting from the high-frequency 

end (magenta), the amplitude increases gradually as the frequency increases, followed 

by a smaller jump, and merges with the upper curve. In Figure 2.7 (b) we plot the 
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(a) (b) 

Tie) 200 

  

Figure 2.7: The Duffing resonator (a) showing jump phenomena (dashed lines) and 

hysteresis, and, (b) the transition (ring-down time) for the jump from upper to lower 

branch as the frequency is increased from w = 12. 10*Rads~! to w = 12.5 10°Rads™ 
at t=150 ms. 

time trajectory of the Duffing resonator close to the high frequency jump, w * 12.0, 

where the effect of a slight increase in the frequency at t=150 ms is also shown. As the 

frequency increases beyond the tip of the curve, the amplitude drops from A = 2 to 

A & 0.2 as expected; however there is a delay in the onset of the amplitude decrease, 

and, the amplitude is seen to decay to the new value instead of a sudden amplitude 

drop. This is known as the ‘Ring-down time’ [32], and, has been studied in greater 

detail by Zhang et al. [33]. Ring-down behaviour has been observed by Deng and 

Collins [31]; however, the delay in onset of ring-down observed by them is larger than 

that predicted by the theory. 

In addition to the application of the hysteresis and jump phenomena associated 

with the Duffing resonator (Figure 2.7 (a)) for sensing changes in mass [32 [34], there 

are many other MEMS applications such as switches [35] and signal amplification [36] 

[37]. The quality factor Q (Equation (1.9)) is one of the most important characteristics 

of the MEMS resonators to be considered, especially for sensor application: higher the 

Q-value of the sensor, the better its performance. Grasser et al. [38] have proposed an 

artificial enhancement of the MEMS’ Q-factor by modulating its stiffness at a harmonic 

frequency of the resonant frequency 
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2.2 Two Coupled Oscillators 

In Section 2.1, we discussed some properties of the single van der Pol oscillator and 

the Duffing resonator; In the present Section, we explore the system when two of these 

oscillators are coupled to each other. In general the coupling can be diffusive or non- 

diffusive [23], linear or non-linear, mechanical [39] or reactive [40], and, may involve 

the displacement (x), velocity (), or a combination of the two. In this thesis we shall 

explore the effect of linear diffusive displacement and velocity couplings. 

2.2.1 Coupled van der Pol Oscillators 

Storti et al. [41] have considered the case of two identical van der Pol oscillators coupled 

through a combination of a linear diffusive displacement (x) and velocity (a) coupling: 

& + w(a}— Udit pr. = pk(x2—21) + ur(t2— 41), 

dg + w(ag — 1)dte + pt = k(x, — x) + p(t — 2), (2.17) 

where k and « are the strengths for the two couplings, respectively. Four types of 

motions for the oscillators can be obtained depending on the initial values: the two 

oscillators can be in total in-phase synchrony, anti-phase locked, or slightly in phase 

or slightly anti-phase [41]. With only x- coupling present, the two oscillators can be 

synchronised in-phase or in anti-phase, depending on oscillator parameters and initial 

values [42]. This is shown in Figure 2.8 for p) = p2 = 1, 1 = 2 = 2.5, and, 

ky, = ke = 0.7; No such initial-value dependence is seen when the two oscillators are 

coupled through the velocity term only; this case is discussed next. 

Velocity Coupling 

In this Section we present a linear perturbation analysis to indicate transition in the 

system. We consider the general case of non-identical van der Pol oscillators with 

asymmetric velocity coupling: 

ay + play =1)a,+ pit, = pki (%2 — 4), 

fg + fa (#5 — Lsto + pov, = poke(t1 — 42). (2.18) 

24



CHAPTER 2. SINGLE AND TWO- COUPLED NONLINEAR OSCILLATORS 

(b) 
x(t) 
2 
1 
0 

eI 

  

20 40 

Figure 2.8: Two identical «-coupled van der Pol oscillators (9 = 1,2 = 2.5,and,k = 

0.7) showing (a) anti-phase locking, and, (b) synchronisation for initial values of 4 {0] = 
£2(0] = 0, x2[0] = 1.2, and, [0] = —0.1 for (a) and 2x;[0] = 0.01 for (b). 

One of the equilibrium point for this system is (x1, @1, x2, £2) = (0, 0, 0, 0). The two 

equations can be linearised as: 

i=y", h= =p (at — Vy — pit + paki (%2 — 41), 

2 =, Yo = — Ha (23 — 1) ye — pow2 + pake(aé, — a2), (2.19) 

Similar to the case for a single oscillator (Subsection 2.1.1), the above equations can 

be compactly written as X = f(x, t), where x = (x1, 41,2, yo), and the Jacobian of the 

system is : 

_ df 

~ dx’ 

The system is said to be contracting, (i.e., all trajectories tend to a single trajectory 

(2.20) 

asymptotically), if all eigenvalues \; of the Jacobian F are negative, or, alternatively, 

if F is negative definite [43]. 

Therefore, the Jacobian for identical oscillators, Equation (2.19) with p; = p2 and 

[41 = fa, at the equilibrium point (x1, @1, 72, Z2) = (0, 0, 0, 0) is 

0 1 0 0 

aah tect =) [Ky 
Foyap = , 

0 0 0 iV 

0 HK —p —p(K2 — 1) 

with the characteristic equation 

(\? + pu(e1 + Ko — 1))A + p)(A? — w+ p) = 0. (2.21) 
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From the above equation, F has at least two positive roots for 1 > 0; some roots of F 

can be negative, and F semi-negative definite, if «; +2 > 1. For this case, the system 

is contracting, x; — X2 asymptotically and complete synchronisation will be achieved. 

Synchronisation of two identical oscillators is shown in Figure 2.9(a). The two identical 

oscillators can also be coupled in a way leading to oscillator death as shown in Figure 

2.9(b) [1]. 

(a) (b) 
x(t) x(t) 
2 1.5 
1 1.0 

0.5 
o 0.0 

=1 -0.5 
t ot tf 

274/16) 8710 246 18 10 

Figure 2.9: Two identical van der Pol oscillators coupled through the velocity term 

showing (a) synchronisation, and, (b) oscillator death. 

For the case when the two velocity-coupled van der Pol oscillators are non-identical, 

the same condition, «; + k2 > 1 leads to synchronisation when p; — p2 is small, but 

the oscillators are not synchronised for large p; — p2. This is shown in Figure 2.10. 

Therefore, the synchronicity of the coupled van der Pol oscillators depends on the off- 

diagonal terms of the Jacobian Fy,ap, whereas, from Equation (2.21), it is seen that 

the negative definite nature of the Jacobian depends only on its diagonal terms. This 

will be discussed further in Subsection 4.5. 

2.2.2 Coupled Duffing Resonators 

Fang et al. [44] and Raj et al. [23] have considered chaos and synchronisation in two 

coupled Duffing resonators with nonlinear aya} coupling where both resonators were 

driven identically; the resonator trajectories were seen to be very sensitive to initial 

values of x and « so that for some resonator parameters there can be as many as six 

attractors [23]. 
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(a) (b) 
x(t) x(t) 
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=] “1 

ee 
20 980 1000 

Figure 2.10: Two non-identical velocity coupled van der Pol oscillators with K+ #2 > 1 

showing (a) synchronisation when p;—/2 small (p; = 2.0, p2 = 1.5, fr = fa = 1.7), and, 

(b) non-synchronous behaviour when p; — p2 large (1 = 2.9, pr = 1.8, pa = 0.83, pg = 

1.7). 

Here we present time trajectories of two diffusively «-coupled identical Duffing 

resonators for a = 9 = [ = 1 and 6 = 0.1 (Duffing A), where only one resonator 

is driven externally. Velocity coupling leads to synchronisation of the two resonators, 

with the amplitude of the master resonator larger than that of the slave resonator 

(similar to Figure 2.11 (a)). Diffusive x- coupling, on the other hand, results in a more 

interesting behaviour, as shown in Figure 2.11 (a) - (d): 

  

(a) w=1.5 (b) w=2.0 
x(t) x(t) 
2 2 

1 1 

0 0 

= = 

-2 t -2 t 
750 7710 790 750 7710 790 

(Cla 2-1 (d) w=2.15 
x(t) x(t) 

2 z 

1 1 

0 oft I 
=I cal   t cae eee ea =D 2 

750 7710 790 750, 7710 790 

Figure 2.11: Time trajectories of two identical diffusively «- coupled Duffing resonators, 

where only one of them (shown in red) is driven externally. The values of parameters 

used is: a= @=[T =1,6=0.1, and, the initial values are same for all four cases. 
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For a range of frequencies, the two resonators are in phase with each other with 

almost equal amplitudes (Figure 2.11 (a)). Increasing the driving frequency, for another 

range of frequencies, the amplitude of the slave resonator (shown in blue) is larger than 

that of the master resonator (shown in red) (Figure 2.11 (b)); This is followed by non- 

synchronous chaotic behaviour exhibited by the resonators at w = 2.1 (Figure 2.11 

(c)), and a slight increase in the driving frequency results in a sudden decrease in 

amplitude for both resonators which are anti-phase locked (Figure 2.11 (d)). This 

jump-frequency is smaller than the corresponding frequency of w ~ 3 for the single 

Duffing resonator (Figure 2.6 (a)) since the initial values of « and « have been kept 

fixed for these calculations. 

We have also considered two coupled Duffing resonators for the Duffing B system; 

Figure 2.12 shows the variation of the amplitude of the master resonator, Aj, and, 

the ratio of the amplitudes of the slave to that of the master, f, for both a- and 

velocity- coupling: The master resonator exhibits the usual jump phenomena, similar 

(a) x—coupling (b) Velocity—coupling 
Af Ay, f 

' 1 
w ere 

ara vem Lee ll 9 10 

  

Figure 2.12: Frequency-dependence of the amplitude of the master resonator (blue), 

and the ratio of the amplitudes of the slave to that of the master (magenta), for both 

x- and velocity- coupling. The values of parameters used are: a = 100, = 10,T = 5, 

6 = 0.1, and, the initial values are same for all four cases. 

to that shown by a single Duffing resonator, (Figure 2.7 (a)). The slave resonator, on 

the other hand, while showing a smaller jump phenomena, shows different frequency 

responses for x- and velocity-couplings: For 2-coupling the resonator has non-negligible 

amplitude only for a very small range of frequencies, while the velocity-coupling appears 

to be more effective in driving the slave resonator. The chaotic behaviour, and slave 

amplitude exceeding master amplitude, seen for coupled Duffing A, are not observed 
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for the coupled-Duffing B system. 

2.2.3 Coupled Duffing-van der Pol Oscillators 

Displacement coupling of two van der Pol - Duffing oscillator has has been considered 

by Kadji and Yamapi [22] and by Criminale et al [21]; the former consider one-way 

diffusive K(a, — x2) coupling of identical van der Pol-Duffing oscillators, described by 

Equation (2.8), while Criminale et al. consider non-diffusive x-coupling of (dissimilar) 

van der Pol oscillator and Duffing) resonators with a < 0 (the double-well Duffing). 

In this thesis, we consider the single-well Duffing resonators, corresponding to a > 0, 

only. 

We first consider a van der Pol oscillator coupled to a Duffing resonator with 

displacement- (u(a) = x) or velocity- (u(a) = @) coupling: 

& +(e? -1)t:+pr, = K(u(z2) —u(a)), 

dy + dita + at + Bad K(u(a1) — u(a2)). (2.22) 

In the absence of any coupling, the amplitude of the Duffing resonator decays to zero 

while the van der Pol oscillator exhibits self-sustained oscillations. However, even a 

small coupling between the driving van der Pol oscillator and the Duffing resonator 

results in sustained oscillations by the Duffing resonator, the amplitude of oscillations 

increasing with the coupling constant. Figure 2.13 shows the time trajectories for the 

two oscillators for both x- and velocity couplings. It may be noticed that for velocity 

coupling the van der Pol oscillator loses some amplitude due to the coupling with the 

unforced Duffing resonator. 

Finally, two diffusively coupled identical van der Pol - Duffing oscillators behave 

similar to two diffusively coupled van der Pol oscillators, namely, in-phase synchroni- 

sation is seen for velocity coupling, while, for z- coupling, the coupled system exhibits 

motion in-phase or anti-phase, depending on the initial values. 
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(a) (b) 
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Figure 2.13: z-coupled (a) and velocity-coupled (b) van der Pol oscillator (red) and 
Duffing resonator (blue) for p= a = 6 =n = K = 1 and 6 = 0.2. 

2.3 Summary 

In this Chapter we presented some properties of single van der Pol oscillator and Duffing 

resonator and also discussed their relevance to MEMS devices. We also discussed 

the effect of linear displacement and velocity coupling on the motion of two coupled 

oscillators. The experiments in this chapter have shown that a range of behaviour 

can be expected even in the simple case of coupling two dynamical objects together. 

The condition for in-phase synchronisation for velocity coupled identical van der Pol 

oscillators was also derived under a perterbation analysis (Section 2.2.1). This same 

condition has been obtained by Wang and Slotine [1] considering contraction of a 

single van der Pol oscillator and using Partial Contraction theory. This theory will be 

discussed in more detail in the next Chapter. 
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Chapter 3 

Partial Contraction Theory 

In the previous chapter we saw a local analysis, based on linearised perturbation the- 

ory, to display the change in behaviour of coupled systems. We now consider a global 

approach capable of scaling up to chain and networks of oscillators. The concept of 

contraction is re-visited and extended to networks of coupled oscillators in the next 

Section, and applied to a ring of four coupled oscillators in Section 3.2. Partial Con- 

traction Theory for general networks is presented in Section 3.3, and the Chapter ends 

with a short Summary. 

3.1 Contraction and Partial Contraction 

In Section 2.1.1 we discussed that linearisation of the second order differential equation 

can be compactly written as 

&=£(x,t), (3.1) 

where x = (x,y), so that Equation (2.3) can be written as 

df 
1a 3.2 ax (3.2) 

and that the system is said to be contracting, (i.e., all trajectories tend to a single 

trajectory asymptotically), if all eigenvalues \; of the Jacobian F are negative, or, 

alternatively, if F is negative definite.
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Wang and Slotine, [1], have extended this concept to networks of coupled oscillators, 

where only part of the system is known to be contracting; Thus consider a system where 

i” variable x = (x1, Xz) can be considered separately as 

X1 — h(x1, t) = x2 — h(xo, t), (3.3) 

with h(x, t) = f(x, t) + u(x,t), where u(x, t) refers to the network part of the system; 

Then, if, h is contracting, then x; and x2 will converge to each other asymptotically, 

leading to complete synchronisation. This concept of Partial Contraction Theory can 

be applied to the case of two identical velocity-coupled van der Pol oscillators considered 

in Section 2.2.1, as follows: For identical oscillators, Equation (2.18) can be rewritten 

as: 

a+ u(2? +hitko—1)ti+pr. = p(K2d1 + Ki 42), 

a + (ap +h + K2— ldo + pro = (Kot + Kida). (3.4) 

Therefore, from Appendix B, the system will be contracting and x1 — x2 if Ky +K2 > 1, 

which is exactly the condition we obtained in Section 2.2.1. 

3.2 Ring of Four Coupled Oscillators 

We apply Partial Contraction Theory to obtain conditions for complete synchronisation 

in one-way and two-way coupled ring of four oscillators, and use the result to compare 

the two couplings for a ring of identical van der Pol oscillators. 

3.2.1 Oscillator Ring with Two-way Coupling 

We consider equations of motion for a ring of four two-way coupled oscillators shown 

below: 

From Equation (3.1), the linearised equations for the four oscillators can be written 

1 —f(x1,t) = u(x4) — u(x) + u(x2) — u(x), (3.5) 
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Figure 3.1: A ring of four oscillators with two-way coupling. 

X2—f(x2,t) = u(x1) — u(x2) + u(xs) — u(x), (3.6) 

X3 — £(x3,t) = u(xe) — u(xs) + u(x4) — u(xs), (3.7) 

X4—£(xa,t) = u(xs) — (x4) + u(x1) — u(x), (3.8) 

where u represents the coupling between any two oscillators. The above equations may 

be rearranged as 

%1 — £(x1, t) — 2Qu(x1) = Xs — f(xs,t) — 2u(xs) = u(xe) + u(x4) (3.9) 

&2 — £(x2, t) — 2u(x2) = x4 — f(x4,t) — 2u(x4) = u(xi)+u(xs) (3.10) 

Therefore, from Equation (3.3), if £(x,t) — 2u(x) is contracting, then, x, — xg and 

X2 — X4 asymptotically, so that, 

%1 — (x,t) —2u(x1) = 2u(x2) (3.11) 

X2 — f(xX2,t) —2u(x2) = 2u(x) (3.12) 

Once again, the two equations can be rearranged as 

X1 — f(x1, t) — 4u(x1) = Xo — f(x2, t) — 4u(xg) = 2u(x2) + 2u(x2) (3.13) 

Therefore, once again from Equation (3.3), Xi — X2 asymptotically if f(x, t) — 4u(x) 

is contracting. Hence, the sufficient condition for the network to synchronise is that 

f(x, t) — 2u(x) (3.14) 

is contracting. 
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3.2.2 Oscillator Ring with One-way Coupling 

Next we consider a condition for total synchronisation in a ring of four oscillators with 

one-way coupling, as illustrated in the figure below: 

Figure 3.2: A ring of four oscillators with one-way coupling. 

In order to proceed with the analysis for this system, we need to consider another 

aspect of Partial Contraction Theory, namely, building an auxiliary system f(y) to the 

original system of oscillators [1]. Equations of motion for the oscillators can be written 

as 

% =f (xi,t) +K(xiya—x1) 7=1,2,3,4 (3.15) 

where, K > 0 is the coupling between the oscillators, and the subscripts are calculated 

circularly. The system is equivalent to 

4 
% = f(x, t) — K(x) + x14 + x42) + K Oxi, (3.16) 

f=1. 

so that an auxiliary system can be constructed: 

4 

Ji = F(yi, t) — K(2yi + yina + Yinx2) + K Ox: (3.17) 
i=l 

For the auxiliary system to admit to a particular solution y; = y2 = y3 = Ya = Yoo, We 

study the Jacobian matrix of the auxiliary system, [1]: 

F-2K -—K =k 0 

qe 0 Fy — 2K =i =i 

=K 0 Fy — 2K -K 

= -K 0 Fy = 2K 
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where F; = Hie) Then the symmetric part of the Jacobian can be written as 

i 1 
J.=Th, - 3 Uk - 5+ (3.18) 

where 

Fi,—K 0 0 0 

1 0 Fy, — K 0 0 
Tr, = . (3.19) 

0 0 Fi, — K 0 

0 0 0 Fi, — K 

hak hae Ouch 0 

Kok kok 0K 0K 
a ; ond Jp — : (3.20) 

(BOA che fe 010 

KK Kh Ke 0K 0K 

The system considered will evolve to complete synchronisation if the symmetric part 

of the Jacobian of the system, J,, is contracting. Since K > 0, so that, Ud, J, > 0, 

it may be seen from Equation (3.18) that J, will be negative definite if Ij, is negative 

definite. Thus, a sufficient condition for complete synchrony for a ring of one-way 

coupled oscillators is that 

F,,—K <0. (3.21) 

From Equation (3.21) and Appendix B, it can be seen that a ring of four one-way 

velocity - coupled van der Pol oscillators will converge to the same trajectory if K > 1; 

From Equation (3.14) and Appendix B, on the other hand, we see that the condition 

u> 3 is sufficient for a two-way coupled ring of van der Pol oscillators to synchronise 

completely. Therefore, two-way diffusive coupling is more efficient in inducing complete 

synchronisation in a ring of four velocity - coupled van der Pol oscillators; this is shown 

in Figure 3.3 for jz = 1 and & = 1.1, where the ring of van der Pol oscillators with two- 

way coupling reaches synchronisation before the ring of one-way coupled oscillators. 

So far, the conditions for complete synchrony were obtained in terms of the con- 

traction of the Jacobian of the system within the framework of the Partial Contraction 
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Figure 3.3: Time trajectories for a ring of four velocity-coupled van der Pol oscillators 

with (a) two-way coupling, and, (b) one-way coupling. 

theory. From the discussion at the end of Subsection 2.2.1 we have seem that for a 

system to be contracting, the real part of the eigenvalues of its Jacobian should be 

negative, which is mainly determined by the trace of the Jacobian matrix. In the next 

section we present an extension of the theory to general networks, where the condition 

for synchrony is in terms of the eigenvalues of the Jacobian of the oscillator system 

and that of the network, which would depend on the full symmetric Jacobian. 

3.3. Networks with General Structures 

We extend the analysis of Subsection 3.2.2 to a general network of oscillators coupled 

through linear diffusive term Kj connecting nodes i and j in the network. It is also 

assumed that the coupling is bi-directional and symmetric and positive definite, i-e., 

Kj; = Kj, > 0. Then a network of n oscillators is represented as 

%i = f(x, t) + | Ky — x), (3.22) 
jeNi 

where N; denotes the indices of the active links in the network, An auxiliary system 

can be constructed as 

n n 
yi =F(yi,t) + OO Ky(yi -yi) -K Dy + KO x, (3.23) 

IN: j=1 jel 

Once again, we are interested in the particular solution, y; = y2 = --- = Yn = Yoo, and 

compute J,, the symmetric part of the Jacobian for the auxiliary system, {1} [45], as 

y= eee Un ee (3.24) 
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where Lx is similar to the symmetric part of the weighted Laplacian in the graph 

theory, and is defined as L = 3); jen, Thy where 

TK = pees (3.25) 

nxn 

It can be shown that, [1},[45], that the network of oscillators will achieve global 

synchronisation if 

Amin(L) > Amar(Fis); (3.26) 

where, A are eigenvalues of the corresponding matrices. Thus, if the eigenvalues asso- 

ciated with the MEMS resonator in the network have an upper bound, one can always 

find coupling strengths which will satisfy Equation (3.26), leading to complete synchro- 

nisation of the whole network system. 

3.4 Summary 

We have presented the concept of Partial Contraction Theory when a part of the 

network is contracting, which is determined mostly by the trace of the Jacobian matrix 

of the part of the system. We also presented Partial Contraction theory for a general 

network of oscillators, and, the condition for total synchrony was obtained in terms 

of its eigenvalues, which is a more general property of the matrices representing the 

system. We found that if eigenvalues associated with the MEMS resonator in the 

network have an upper bound, a critical coupling strength exits above which the whole 

network would evolve to complete synchrony. However, Partial Contraction theory can 

only be applied to study complete synchronisation and only for a network of identical 

oscillators. In the next Chapter we consider one-dimensional chains of linear oscillators, 

and some of the results will be discussed in terms of the theory. 
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Chapter 4 

Chain of Identical Oscillators 

In this Chapter we consider the motion of one-dimensional coupled chains of simple 

oscillators, beginning with a mass on a spring in Section 4.1. In the next Section 

we consider a more complex dynamical system, a chain of van der Pol oscillators 

having non-linear damping but linear spring constant. In Section 4.3, we extend our 

consideration to include a non-linear spring constant. For both these cases we consider 

both diffusive w- and velocity- coupling, restricting ourselves to the nearest-neighbour 

interaction. For some parameter values, complete synchronisation is achieved in both 

cases, and is analysed in terms of the Partial Contraction Theory in Section 4.5. 

4.1 Linear Oscillators: Fermi Pasta Ulam Model 

The frequency spectrum of a chain of linear oscillator which are coupled linearly is 

constant in time; However, the addition of a weak non-linear coupling term leads to 

a number of interesting phenomena such as redistribution of energy from the initial 

mode [46] and formation of soliton-like breathers [47]. The Hamiltonian describing the 

motion of of masses m;, coupled through nonlinear spring, may be written as [48] 

i 

y+1 
  (iu — 25) |, (4.1) 
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where 7) is the strength of the non-linear coupling, and v is either 2 or 3. The corre- 

sponding coupled differential equation for the i" oscillator can be written as 

  

Hi = (Wir + Bia — ai) + ( (Bit — (4.2) 

Below we discuss some interesting solutions of Equation (4.2) when the initial dis- 

placement of the oscillators in the chain is in the lowest mode (Section 4.1.1), or in the 

highest mode (Section 4.1.2). 

4.1.1 Fermi Pasta Ulam Paradox 

The Fermi Pasta Ulam (FPU) problem is named after the three scientists [49], who 

over fifty years ago together with Mary Tsingou, used a computer to solve Equation 

4.2 numerically. It was expected that when the chain of non-linearly coupled linear 

oscillators was initially in its lowest (a) mode, shown in Figure 4.1 (b), high-frequency 

modes would appear and the initial energy would eventually be almost equipartitioned. 

However, when they let the program run overnight (accidently!), they found that, after 

remaining in the state of equipartition for some time, the system moved away from it, 

and, after 157 cycles of equipartition, returned to the initial mode with almost 97% 

efficiency [46]. Figure 4.1 (a) shows the transfer of energy to a higher mode, which 

almost returns to the initial mode (Figure 4.1 (b)). 
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Figure 4.1: Displacement of simple oscillators in a chain with non-linear coupling index 

v = 3, and coupling constant 7 = 0.5: (a) at t=6030, and (b) at t=0 and t=6031. 

Not only was the above work instrumental in starting a new field of ‘Numerical 

Experiment’, but has also been at the origin of the concept of solitons [46] and Discrete 

Breathers (DB), which are discussed below. 
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4.1.2 Discrete Breathers 

Discrete breathers (DBs), also known as Intrinsic Localised Modes (ILMs) [50], are 

spatially localised and time-periodic excitations in non-linear lattices. They can be 

odd or even, i.e., the displacements of the oscillators is anti-symmetric or symmetric 

about the zero axis [47]. In FPU lattices, DBs can form when the chain, initially in the 

high-frequency (3) mode, Figure 4.2 (a), follows a path to equipartition. This is a kind 

of Anti-FPU problem, where we begin with the short wavelength mode, instead of the 

long-wavelength one. Formation of odd, even and combination modes is illustrated in 

Figures 4.2 (b) - (d) for cubic coupling and 71 = 0.05. 

(a) (b) 

(d) 

  

  

  
Figure 4.2: Formation of discrete breathers in a chain of linear oscillators where v = 3, 

and, the non-linear coupling strength 7 = 0.05: (a) Initial displacement of the chain 
of oscillators in the @ mode, (b) odd- mode breather (t = 565), (c) two coupled even- 

mode breathers (t = 810), and, (d) an odd- mode breather surrounded by even- mode 

breathers (t = 650). 

These DBs or ILMs have energy profiles resembling those of localised defect /impurity 

modes in a harmonic lattice, but, like solitons, they can move. Therefore, ILMs could 

be used to study the stabilisation of an arrays of MEMS resonators, in line with the 

use of a travelling pulse to study the stabilisation of arrays of actuators and sensors 

{51]. Discrete breathers have also been studied experimentally in nonlinear electric 

transmission line arrays [52]. Sato et al. [53] have presented a detailed study of ILMs 
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in MEMS arrays with Duffing-like on site nonlinearity combined with inter-site cubic 

nonlinearity in momatomic and diatomic lattices; They find that, for their arrays of 

MEMS cantilevers, while both on-site and inter-site nonlinearities lead to localisation, 

inter-site nonlinearity provides greater energy localisation, since, inter-site nonlinearity 

is about two orders of magnitude larger for their MEMS arrays. 

4.2 Dynamic Systems: Chain of van der Pol Oscil- 

lators 

As discussed in Chapter 2, the van der Pol oscillator admits self-sustained oscillations, 

Therefore, it can be used to drive a collection of Duffing resonators, whose amplitude 

would otherwise decay to zero in the absence of an external force. In Section 4.3, we 

consider a chain of identical (unforced) Duffing resonators with non-linear damping 

(van der Pol-Duffing oscillator described by Equation (2.8)), and, in Chapter 5 we 

consider the hybrid case of Duffing resonators driven by van der Pol oscillators. In 

this section we present results for chains of van der Pol oscillators coupled through 

their displacements or their velocities. For all these cases, we consider a chain of 32 

units with two-way linear diffusive coupling. Unlike the FPU model (Section 4.1), 

the initial oscillator values are set randomly and the coupled differential equations 

have been solved numerically for floating boundary condition. In addition to the time 

trajectories of the chains of oscillators, some of the results will be presented in terms 

of a measure of synchronisation, C,; this will be especially useful for comparing the 

effect of oscillator parameters and coupling constants on the level of synchronisation 

reached. 

4.2.1 Measures of Synchronisation 

In addition to complete synchronisation (CS) and being totally unsynchronised, the 

network of oscillators could be in one of many states of (partial) synchronisation, such 

as: General synchronisation [54], phase synchronisation [55] [56], where the oscillators 
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move with the same phase but with different amplitudes. The collection of coupled os- 

cillators could also exhibit lag-synchronisation [18], or be phase-locked, where, although 

oscillators are not moving with the same phase, their phase difference with each other 

remains constant with time [57] [58]. A special case for the latter is anti-phase locked 

synchronisation: We saw an example of this for two 2-coupled van der Pol oscillators 

(Figure 2.8); For the case of a chain of oscillators, anti-phase locking would imply that 

there are two groups of oscillators which are in complete synchrony with each other 

and anti-phase-locked with the other group. 

Just as there are many forms of synchronisation, there are many measures of syn- 

chronisation suggested in the literature [59] [60], most of them for the system of two- 

coupled oscillators. In order to compare the level of entrainment in chains of different 

systems and for different coupling constants, we define a measure of synchronisation 

as: [61 

i <Ps <i = 
oo s:so where B= <2) Ss, 4.3 

Soy l= a => <2, >") » oe i 
Cyyne = 

where, n is the number of oscillators in the chain, < ... > represents the time average, 

and 2; could represent the displacement or the phase of the i‘h oscillator. 

4.2.2 Velocity Coupling 

We first consider a chain of velocity-coupled van der Pol oscillators: The equation of 

motion for the 7, van der Pol oscillator is: 

# + w(x? —1)¢1 + pr, = p(t — 21) 

+ pla? —1)a;+ pa; = pa(tin1+4;-1—24;) 1 = 2,31 (4.4) 

32 + p(x 3p — 132 + prs. = pr(%31 — £32). 

For simplicity, we have chosen p = 1 for all the results presented in this work, unless 

otherwise stated. Since the initial state of the 32 oscillators is assigned randomly, 

the initial motion of the oscillators is practically uncorrelated to each other; This is 

illustrated in Figure 4.3, where the displacement of each oscillator at t = 0 is also 
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shown. However, soon a cooperative motion of oscillators emerges, as shown in Figure 

4.4, 

(b) 
x;(t) 

  

Naren MRNA 
ea 2 

  

Figure 4.3: (a) Time-dependence of the displacement of the 32 velocity-coupled van 

der Pol oscillators, and, (b) oscillator displacement along the chain for t=0. 

(b) 
x(t) 

  

_ t 
195 200 

Figure 4.4: Time-dependence of the displacement of a chain of 32 velocity-coupled van 

der Pol oscillators showing emergence of cooperative behaviour: (a) time trajectories 

and (b) oscillator displacement along the chain for t=200. 

For the case of velocity coupling, total synchronisation is almost always achieved 

asymptotically; This is illustrated in Figure 4.5, where almost complete synchronisation 

is obtained for 4 = k = 0.1 for t 10000, where the net coupling between the oscillators 

is very small (sj = 0.01). The corresponding phase portrait for the 32 oscillators is 

presented in Figure 4.6, which shows that the phase portrait of all the oscillators 

converges to a single limit cycle. 

We have used the measure of synchronisation defined above (Equation (4.3)) to 

calculate the time t, needed to achieve 90 % synchronisation, (C, = 0.9), for various 

values of js and «. Figure 4.7 shows the variation of t, with the relative coupling 

constant « for different values of jz. From Figure 4.7, one can easily see that time needed 
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(a) (b) 
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Figure 4.5: (a) Time-dependence of the displacement of the 32 velocity-coupled van 

der Pol oscillators, and (b) oscillator displacement along the chain for t=99700. 

Xi(t) 

, xi(t) 

Figure 4.6: Phase portrait of the 32 velocity-coupled van der Pol oscillators (4 = « = 

0.01). 

to reach CS decreases as the (relative) coupling constant « increases; This is to be 

expected. However, from the figure it is also apparent that the rate of synchronisation 

depends on the nonlinear damping parameter ju: synchronisation is achieved more 

rapidly as yz increases. In agreement with Wang and Slotine [1], we find that it is 

the relative coupling constant «, rather than total coupling jk, which is relevant for 

comparison purposes. A more detailed discussion of our results in the context of the 

Partial Contraction theory will be presented in Section 4.5. 
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Figure 4.7: Variation of t,, time needed to achieve 90% synchronisation (C, = 0.9), 

with the coupling constant « for various values of jz in velocity-coupled chains of van 

der Pol oscillators; C, was calculated using Equation (4.3). 

4.2.3. Displacement Coupling 

We next consider a chain of x-coupled van der Pol oscillators, governed by the equation 

1+ (a? —1)a1 + pr. = pk(x2—2) 

+ p(a?—Uait+ pr; = pk(tigi+2i-1—22;) 1=2,31 (4.5) 

go + W (a3 — l)da2+ prs. = pk(w31 — X32), 

where, once again, p = 1. The motion of the oscillators is random in the beginning, 

similar to Figure 4.3; Unlike the case for velocity coupling, total synchronisation is 

generally not observed for displacement coupling. In Figure 4.8, we present the time 

trajectories and oscillator displacement for js = 0.1 and total coupling constant k = 2. 

For this case, it is seen that the oscillators in the chain arrange themselves into roughly 

3 groups, two groups which are almost totally synchronised within themselves but 

anti-phase locked with each other; The motion of the third group of oscillators is 

somewhat non-cooperative. We have observed that once the pattern of synchronisation 

is established, it does not change with time. The same behaviour is seen for other 

coupling constants for » = 0.01. Thus for this case, calculating C, using oscillator
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phases is more pertinent. Oscillator phase, in general, is calculated using the Hilbert 

Transform; however, since the limit cycles for the coupled system are seen to encircle 

the origin in the phase plane, we have used the following definition for calculating the 

oscillator phases [18] 

a; (t) 
6;(t) = arctan (20) : (4.6) 

(b) 
xi) 

  

t 
995 1000 

Figure 4.8: (a) Time trajectories, and, (b) oscillator displacement for x-coupled chain 
of van der Pol oscillators for jz = 0.1 and total coupling pw = 2. 

We have also solved Equation 4.6 for 4 = 0.5, 1 and 2; In all these cases, the 

32 oscillators are seen to form two groups, one which has all oscillators within the 

group more-or-less (x)-synchronised with each other, while the remaining oscillators 

are unsynchronised. In these cases, it is more useful to consider oscillator displacement 

while calculating the corresponding measure of synchronisation, C,. The dependence 

of C, on the coupling constant for the four cases is shown in Figure 4.9, where, unlike 

the case for velocity coupling, the level of synchronisation for 2-coupling is much less 

dependent on the coupling constant. 

4.3. Dynamic System with Added Nonlinear Spring 

Constant 

In Section 4.1 we considered the behaviour of one-dimensional chains of linear oscil- 

lators, identical masses on a spring, while, in Section 4.2, we discussed the effect of 

adding some internal dynamics to the oscillator in the form of non-linear damping term; 

In this Section, we discuss the effect of adding a non-linear (cubic) spring constant to 
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Figure 4.9: The measure of phase synchronisation (i = 0.1), and, displacement syn- 

chronisation (42 = 0.5, 1 and 3), plotted against the (total) coupling constant ux for a 

chain of x- coupled van der Pol oscillators. 

this dynamical system. The coupled equations of motion for this van der Pol - Duffing 

system are: 

4 + p(w? — 1a + pa; + Ba} = pw (Gig, + 2;-1 — 26;) + pk(eign + 21-1 -—2aj) 1 = 1,32, 

(4.7) 

where, once again, jk and jk are the w- and velocity coupling strengths, respectively, 

and both ends of the chain are free. For the trivial case of js = 0, no emergent be- 

haviour is seen for the z-coupling, while, the velocity coupling results in the oscillators’ 

amplitudes decaying to 0. For this Section, we once again assume p = 1. 

4.3.1 Velocity Coupling 

The dynamics of the velocity-coupled chain of identical van der Pol - Duffing oscillators 

is obtained by numerically evaluating Equation 4.7 with k = 0. In general total syn- 

chronisation is achieved asymptotically, similar to the case of the velocity-coupled chain 

of van der Pol oscillators. However, exceptions have been encountered for some combi- 

nations of ju, and «, where the oscillator chain fails to synchronise completely. This 

is illustrated in Figure 4.10, where complete synchronisation is obtained for js = 0.1, 
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« = 4 and 8 = 0.1 while low synchronisation is seen for pp = 0.1, « = 4 and f = 0.25. 

In fact, the time trajectories of Figure 4.10 (b) are very similar to the time trajectories 

for x-coupled van der Pol oscillators with 4 = 0.1, Figure 4.8 (a). 

(a) (b) 
x;(t) x;(t) 
2 
1 iif 
0 0 

=1 \ El \    t = t 
1990 2000 3990 4000 

Figure 4.10: Time trajectories of velocity-coupled identical van der Pol - Duffing oscil- 

lators with yp = 0.1, « = 4, (a) showing complete synchronisation for 3 = 0.1 and (b) 

incomplete synchronisation for 3 = 0.25. 

4.3.2 Displacement Coupling 

For the case of oscillators coupled through displacement, we substitute « = 0 in Equa- 

tion (4.7); Unlike the x-coupled chains of van der Pol oscillators (Subsection 4.2.3), 

where complete synchronisation is not achieved in general, addition of the cubic spring 

constant results in total asymptotic synchronisation of the oscillators, even for weakly 

coupled chains. This is illustrated in Figure 4.11. 

(a) (b) 
x,(t) x;(t) 
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=I 
t t 

00 9990 10000 

Figure 4.11: Evolution of complete synchronisation for a chain of x-coupled identical 

van der Pol - Duffing oscillators for 4 = 1, 8 = 0.1 and coupling constant k = 0.1. 

In order to study the effect of the non-linear spring constant @ on the rate of 

synchronisation, we have calculated the minimum relative coupling constant k, kmin, 
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needed to reach 90 % synchronisation (C, = 0.9), for various values of and pi. It is 

2=01 

   
Figure 4,12: Minimum coupling constant k required for 90 % synchronisation (C, = 0.9) 

by t=1000, vs , in chains of z- coupled van der Pol - Duffing oscillators, for various 

values of j1, . 

seen that, for all , the coupling strength needed to achieve synchronisation decreases 

as 3 increases. 

4.4 Effect of Frequency Distribution 

So far, we have assumed all oscillators to have identical frequencies and obtained com- 

plete synchronisation in 3 out 4 cases discussed: chains of both a- and «— coupled 

identical van der Pol - Duffing oscillators, and, chains of velocity-coupled van der Pol 

oscillators. In the real world, it is difficult for all real oscillators in a network to have 

the same frequency. Osipov and Sushchic, [62], have compared the effect of the spa- 

tial distribution of frequencies along the oscillator array: They found that, keeping 

the total frequency range constant, the level of synchronisation increased significantly 

when the frequency distribution was changed from ‘a monotonically varying along the 

array’- one to the one with irregular variation. In this Section we discuss the effect on 

synchronisation when the frequencies are allowed to vary randomly within 20% of the 

set frequency, e.g., p= 1+0.1. 
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Though not complete synchronisation, for all the three cases, a high degree of en- 

trainment is seen for some combination of oscillator parameters and coupling constants; 

This is illustrated in Figures 4.13 and 4.14. 

(a) (b) 

         
S Xs t t 

3995 4000 3995 4000 

  

Figure 4.13: Time trajectories for jz = 0.1, relative coupling constant K(k) = 2 and 

20% frequency spread: (a) velocity-coupled van der Pol oscillators, and (b) «x-coupled 
van der Pol - Duffing oscillators with @ = 0.5. The velocity coupled chain of van der 
Pol - Duffing oscillators shows unsynchronised motion for these parameters. 

(b) 

   
Figure 4.14: Time trajectories for j = 1, relative coupling constant «(k) = 0.5 and 20% 
frequency spread: (a) velocity-coupled van der Pol oscillators, and (b) velocity-coupled 

van der Pol - Duffing oscillators with @ = 0.5. The x- coupled chain of van der Pol - 

Duffing oscillators shows less synchronisation for these parameters. 

4.5 Comparison with Partial Contraction Theory 

Finally, in this Chapter, we compare our results with Partial Contraction theory [1]. 

The theory has been applied to obtain conditions for complete synchronisation in net- 

works of identical oscillators. (A brief review of Partial Contraction Theory was pre- 

sented in Chapter 3.) For networks of van der Pol oscillators, the theory has been used 
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to obtain the minimum coupling needed to achieve asymptotic complete synchronisa- 

tion, and, in its general form, the theory involves the symmetric form of the Jacobian 

of the system. For chains of velocity-coupled van der Pol oscillators, Partial Contrac- 

tion Theory predicts that complete synchronisation is reached if « > 1. [63] This is in 

contrast to the results presented in Section 4.2, where the motion of a chain of velocity 

coupled van der Pol oscillators always resulted in complete synchronisation asymptot- 

ically. Also, their analysis does not comment on the effect of 4 on synchronisation, 

whereas, our calculations show such a dependence (Figure 4.7). 

In Subsection 2.2.1 we presented an analysis of two velocity- coupled van der Pol os- 

cillators in terms of the linear perturbation around the equilibrium point (21, 41,72, ¢2) 

= (0,0,0,0) and derived the condition «; + 2 > 1 for contraction and thus total syn- 

chronisation; The same condition was obtained in Section 3.1 using the global theory 

of Partial Contraction. However, we can also consider the perturbation of the sys- 

tem about the stable limit cycle [64]. For small jz, behaviour of the i" van der Pol 

oscillator can be approximated by a sinusoidal trajectory 7; = Acos(Qt — ©), where 

A = 2, and, 2 and © are the frequency and phase of the oscillator. Thus, a linear 

perturbation analysis of the system represented by Equations (4.5), about the limit 

cycle, gives that complete synchronisation will be achieved for all « > 0 (Appendix C). 

A similar condition was obtained by Enjieu Kadji et al. [64] for an «- coupled ring of 

four van der Pol oscillators, where the stability analysis predicted total synchronisa- 

tion for coupling constant > 0; However, their numerical simulations showed regions 

of instability even when this condition was satisfied. Therefore, although some of our 

numerical experiments result in total synchronisation for coupling constants for which 

Partial Contraction theory predicts otherwise, there could be regions of instability in 

the vicinity of this parameter space. Partial Contraction Theory, on the other hand, 

gives condition for synchronisation for the whole parameter space. 

In Chapter 3, (Sections 3.3 and 3.4), we mentioned that a critical coupling strength 

for a network of MEMS could always be found above which the network synchronised 

completely if there was an upper bound for the eigenvalues associated with the MEMS 
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unit. Our numerical experiments show that it is possible to achieve asymptotic syn- 

chronisation for some parameter space even when the coupling is weaker. 

As a corollary, from Equations (2.6) and (2.9), we see that a linear perturbation 

expansion around the equilibrium point (2;,4@;) = (0,0) would lead to the same char- 

acteristic equations for both the van der Pol and the van der Pol-Duffing oscillators, 

leading to similar contraction properties. However, since van der Pol-Duffing oscilla- 

tor also exhibits a limit cycle behaviour (Figure 2.5), linear perturbation around their 

respective limit cycles would result in different Jacobian matrices, and therefore differ- 

ent eigenvalues, for the two oscillators, thus possibly accounting for the difference in 

synchronisation characteristics for the chains of the two systems. 

4.6 Summary 

In this Chapter we studied the behaviour of chains of identical oscillators, and, starting 

with linear oscillators, explored the effects of adding internal complexities to these os- 

cillators: For chains of linear oscillators, we found that nonlinear coupling of oscillators 

lead to interesting behaviour such as Fermi-Pasta-Ulam paradox and intrinsic localised 

modes, with potential application for studying nonlinearities in MEMS arrays. We 

then added nonlinear damping to these oscillators (van der Pol oscillators) and found 

that even linear coupling resulted in interesting features like total synchronisation for 

velocity-coupled chains but not for chains with x- coupling. However, the addition 

of a nonlinear (cubic) spring constant term resulted in oscillator synchronisation for 

a-coupling as well. In the next chapter we consider coupling oscillators with nonlin- 

ear damping (van der Pol oscillator) with oscillators with nonlinear spring constant 

(Duffing resonator), and, present results for these hybrid chains. 
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Chapter 5 

Chains of Coupled Hybrid 

Oscillators 

In chapters 1 and 2, we saw that the Duffing resonator is important in understanding 

the nonlinear behaviour of many MEMS devices and that some of Duffing oscillator’s 

nonlinear properties could be used for enhancing the device performance, such as, use 

of frequency mixing near the onset of Duffing bistability for amplification of small 

displacement signals in micro-devices [36] [37]. However, Duffing resonators require 

external forcing for sustained motion; In Section 5.2, we propose and present results 

for a hybrid chain of coupled van der Pol - Duffing oscillators, where the former provides 

the driving force. Before that, in Section 5.1, we consider a chain of Duffing resonators, 

which is driven externally, either at one end, or from the middle. 

5.1 Chain of Duffing Resonators 

In Subsection 2.2.2 we explored the behaviour of two coupled Duffing resonators with 

only one of them being forced; In this section we extend the study to a chain of Duffing 

resonators with one of them being forced externally. The equations of motion for the 

chain of (forced) Duffing resonators, with x- coupling, are 

+ 6% +0rt+ 6a? = wiyi+ai-1-22;, 1=1,32 (41)



CHAPTER 5. CHAINS OF COUPLED HYBRID OSCILLATORS 

B+ 6d +00, + Bap = x41 + 21-1 — 2x, +Tcos(wt), (5.1) 

where both ends of the chain are free (xp = 33 = 0), and, either 1=1 (end forcing) 

or 1=16 (mid-forcing) in a chain of 32 resonators. For 2-coupling, we first present 

the results for numerically solving Equation (5.1) for a= 6 =T =1, and, 6=0.1 

(Duffing A system); When the driving frequency w < 1.0, there is very little coupling 

between the resonators. For w * 1.0 to w * 1.6, the amplitude of the resonators 

in the chain increases with frequency. Figures 5.1 and 5.2, respectively, present the 

time trajectories and oscillator displacements along the chain for the case of end- 

forcing and mid-forcing for w = 1.6. Partial entrainment is seen for the chain of 

resonators with end-forcing, whereas the chain with mid-forcing is unsynchronised. 

(Although the measure of synchronisation, calculated using Equation (4.3), is low for 

both chains, C, ~ 0.005 for the chain with mid-forcing is much smaller than that for 

the corresponding chain with end-forcing (C, = 0.022).) 

  Figure 5.1: The time trajectories (a), and, oscillator displacements along the chain (b), 

for a chain of 2- coupled Duffing resonators forced with frequency w = 1.6 from one 

end. 

As w is increased further, the displacement of the resonators away from the forcing 

begins to decrease, so much so that, at w = 2.2, the displacement for most of the chain 

is negligible; this is shown in Figure 5.3 for the chain with end-forcing and mid-forcing 

at t=406. By w = 2.5, the displacement of the whole chain (except for the foreed 

resonator) is ® 0. This is similar to the behaviour of single- and two-coupled Duffing 

resonators (Figure 2.7 (a) and Figure 2.11, respectively); however, no jump phenomena 

was seen for the chains of Duffing resonators. 
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Figure 5.2: The time trajectories (a), and, oscillator displacements along the chain (b), 

for a chain of x- coupled Duffing resonators forced with frequency w = 1.6 from the 

middle of the chain. 

(b) 
x 

   
Figure 5.3: The oscillator displacements along the chain of Duffing resonators forced 
with frequency w = 2.3, from one end of the chain (a), and, from the middle of the 

chain (b). 

We have also used equations similar to Equations (5.1) to study the cooperative 

behaviour of chains of velocity-coupled Duffing resonators. As can be seen from Figures 

5.4 and 5.5, in contrast to the x-coupling (figures 5.1 and 5.2), the velocity-coupling is 

not very effective in coupling the chain of Duffing resonators; this is in contrast to the 

case of two coupled Duffing resonators, Section 2.2.2, where the velocity was seen to 

be an effective coupling mechanism. 

Additionally, unlike the case of two-coupled resonators, (Subsection 2.2.2), chains 

of Duffing B resonators (aw = 100, 3 = 10,5 = 0.1 and T = 5) were found not to couple 

with each other significantly for either x- or velocity- coupling.
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Figure 5.4: The time trajectories (a), and, oscillator displacements along the chain (b), 

for a velocity-coupled chain of Duffing resonators forced with frequency w = 1.6 from 

one end. 
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Figure 5.5: The time trajectories (a), and, oscillator displacements along the chain (b), 
for a velocity-coupled chain of Duffing resonators forced with frequency w = 1.6 from 

from the middle of the chain. 

5.2 Hybrid Duffing - van der Pol Systems 

In this Section, we present the results of coupling van der Pol oscillator with Duffing 

resonators so that the former acts as driver for the latter. Two geometries have been 

considered: 

(i) Chain of alternating van der Pol - Duffing systems; 

(i) Chain of Duffing resonators driven by a single van der Pol oscillator at either 

one or both ends. 

Both linear diffusive a- and velocity- couplings have been considered. Once again, 

we found that Duffing B resonator did not couple effectively with other Duffing res- 

onators or with the van der Pol oscillator. Therefore, the results presented in this 

section are for the Duffing A system (a = 8 =T = 1 and 6 = 0.1) only.
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5.2.1 Alternating Duffing - van der Pol Oscillators 

The equations of motion for the chain of oscillators/resonators are: 

Poin + (toi — Year tera = Uta) 1=0,15 

Paina + Siaixe + ota. + Btdiy9 = u(aeiy2) i= 0,15 (5.2) 

where, u(x;) = %i41 + 2-1 — 2a; for a- coupling and u(2;) = @41 + 2-1 — 24; for 

velocity coupling, with zp = &p = 133 = #33 = 0.. 
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Figure 5.6: Time trajectories and displacement along the chain for (a) the van der 
Pol sublattice, and, (b) for the Duffing sublattice, for 4 = 0.1. Both time trajectories 

and oscillator displacement show that the van der Pol sublattice is more entrained 

compared to the Duffing sublattice. 

A general result of these experiments is that the chain of alternate Duffing res- 

onators and van der Pol oscillators evolves into two sub-lattices, each composed of 

oscillators of similar type. This is shown in Figure 5.6 for 44 = 0.1 and x— coupling. 

For this case (2 = 0.1), the sublattice of van der Pol oscillators shows a behaviour 

similar to that of chain of x- coupled van der Pol oscillators (Subsection 4.2.3), where 

most of the van der Pol oscillators form two groups synchronised within the group 

and anti-phase locked with each other. The Duffing sublattice, on the other hand, is 

unsynchronised. The same sublattice behaviour is seen for other values of ju as well, as 
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shown in Figure 5.7 for 2 = 1, where the sublattice of van der Pol oscillators is more 

entrained compared to the Duffing sublattice. 

(a) (b) 
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Figure 5.7: Time trajectories for (a) the van der Pol sublattice, and (b) for the Duffing 
sublattice, for = 1. 

For the case of velocity coupling and jz = 0.1, the amplitudes of both van der Pol 

oscillators and Duffing resonators in the hybrid chain decay, instead of the sustained 

oscillations seen for the z- coupling (Figure 5.6); the rate of amplitude decay depends 

on 6, the damping term for the Duffing system. For ju = 1 and velocity coupling, on the 

other hand, not only do we get sustained motion for both the sublattices, the van der 

Pol as well as the Duffing sublattice exhibit synchronisation; This is shown in Figure 

5.8, where the phase portraits of 32 oscillators are seen to merge into two limit cycles, 

one for each sublattice. 

4) 

  

  
Figure 5.8: Phase portraits of velocity- coupled chain of alternating van der Pol and 

Duffing oscillators for 4 = 1 for van der Pol sublattice (blue) and for the Duffing 

sublattice (magenta). 

Figure 5.9 shows the time trajectories for the two sublattices, where it is seen that. 
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the motion of oscillators in each subgroup is time-delayed with their neighbours by a 

constant amount, so that shifting the displacement of the oscillators along the chain 

by a constant time delay results in almost total synchronisation. From Figure 5.9 it is 

also seen that the same time delay leads to total synchronisation for both sublattices; 

This could also be viewed as total phase synchronisation for the whole hybrid chain of 

van der Pol oscillators and Duffing resonators. 

   ib 
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Figure 5.9: Time trajectories for the van der Pol (a) and the Duffing (b) sublattices 

for js = 1, showing time-delay synchronisation. 

A similar behaviour of delay-synchronisation for both van der Pol and Duffing 

sublattices has been seen for a range of values of jz, and also for other values of a and 

8, with » = 1. As shown in Figure 5.10, the instantaneous displacement for both van 

der Pol and Duffing sublattices exhibits an ordered wave-like pattern, which moves to 

higher frequency modes with increasing 1 for <5. For = 5, though the chain still 

forms two sublattices, the the delayed synchronisation is not there. 

The strong effect of velocity coupling seen here is in contrast with the case of velocity 

coupling for a chain of Duffing resonators (Section 5.1, where velocity was not found 

to be an effective coupling mechanism. Therefore, incorporating electrical circuits or 

actuators with van der Pol oscillator-like characteristics, in an array of Duffing-like 
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Hal p=3 

| . 
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Figure 5.10: Instantaneous displacement along the chain for a velocity-coupled chain 
of alternating Duffing and van der Pol systems. The displacement pattern for the van 

der Pol and the Duffing sublattices is similar. 

  

  

MEMS resonators, will result in greater coupling efficiency, especially when velocity 

coupling is more desirable. 

5.2.2 Duffing Chain Driven by van der Pol Oscillators 

The equations of motion for the chain of oscillators/ resonators are: 

#, + 64;+00;+ 62? = ula) 1=2,31 

tj +u(a} —1)a;+2; = kyu(aj) j= 1,82 (5.3) 

where u(z;) are as defined for Equation (5.2), and k; is the strength for coupling 

between the chain of the Duffing resonators and the j*” van der Pol oscillator. We 

here consider the cases of both-ends forcing (ki = k32 = 1), and, one-end forcing (k, = 

1, k32 = 0) for the chain of Duffing A system. Considering the case of - coupling first, 

Figure 5.11 presents the time trajectories and, instantaneous displacements along the 

chain, for the chain of Duffing resonators coupled to van der Pol oscillators at both ends 

(1 = 0.1). From the figure, it is seen that, as in the case of chains alternating Duffing 

and van der Pol systems (Subsection 5.2.1), Duffing resonators form two sublattices, 

this time one from each half of the chain. As jp increases, the displacement of Duffing 

resonators in the middle of the chain (furthest from the forcing van der Pol oscillators) 

decreases, so much so that, at 4 = 5, most of the chain has negligible displacement. 

The formation of two sublattices, for end - forcing of Duffing chain with van der Pol 

oscillator, is seen more clearly for the case of velocity coupling for 1 = 0.3 (Figs. 5.12), 
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(b) 

  

(d)    995 1 000 

Figure 5.11: Time trajectories (a), and displacement along the chain (b), for the chain 

of z- coupled Duffing resonators with van der Pol forcing at both ends. The chain of 
Duffing resonators forms two sublattices as shown by splitting the time trajectories : 

(c) from i = 2, 16 and (d) from i = 17,31. 

where resonators within each sublattice have almost the same phase (but different 

amplitudes), and the two sublattices are almost in anti-phase with each other. The 

relative phases of the two sublattices changes with changing j1; Also, as in the case of 

x- coupling, the displacement of the resonators in the middle of the chain decreases as 

1 increases, 

For the case of forcing from one end only (k; = 1,k32 = 0), the chain of Duffing 

resonators behaves similar to a single sublattice in the case of forcing at both ends. 

The resonator displacement along the chain for z- and velocity coupling is shown in 

Figure 5.13, where it is seen that the resonator displacement decays along the chain. 

Therefore, for MEMS application purposes, in order to get significant displacement, the 

forcing needs to be reinforced by inserting van der Pol oscillators dispersed throughout 

the chain. 
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Figure 5.12: Time trajectories (a), and displacement along the chain (b), for the chain 

of velocity- coupled Duffing resonators with van der Pol forcing at both ends (i = 1, 
32). The chain of Duffing resonators forms two sublattices as shown by splitting the 

time trajectories : (c) from 7 = 2,16 and (d) from i = 17,31. 

5.3 Summary and Relevance to MEMS Arrays 

In this section we summarise the results obtained in this chapter in the context of 

arrays of MEMS and their applications. As we have already seen in Sections 1.1 

and 4.1.2, arrays of MEMS have the potential for applications in wide-ranging fields 

from mechanical neurocomputing to discrete transmission lines, to optical and thermal 

sensors. It was also seen in Sections 2.1.3 and 1.2.1 that the nonlinear properties of 

many of these MEMS devices can be effectively studied using the Duffing equation, 

and, the nonlinear properties of the Duffing resonator near resonance harnessed for 

various MEMS application. 

In this chapter, we first studied the collective response of a linear chain of Duffing 

resonators which was driven either from one end or from the middle of the chain. We 

found that the velocity-coupling was not very efficient in transferring energy from the 

driven resonator to the rest of the chain, while a resonance-like behaviour was seen for 

the a-coupling, as the driving frequency was varied. We next studied a chain of alter- 

nating Duffing resonators and van der Pol oscillators (with no external forcing) and 
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Figure 5.13: Displacement along the chain for the Duffing resonators with van der Pol 

forcing at one end only (a) for z- coupling, and (b) for velocity coupling. 

found that both the z-coupling and the velocity coupling lead to strong displacement 

throughout the chain. Also, both couplings lead to the formation of sublattices, where 

the oscillator/ resonator of each type grouped together. For 2- coupling, entrainment 

was seen for the van der Pol sublattice but not for the Duffing sublattice. Velocity cou- 

pling, on the other hand, resulted in phase-locked synchronisation in both sublattices 

for a range of parameters. 

We also considered the end forcing of a chain of Duffing resonators with van der 

Pol oscillators. Once again, the Duffing resonators grouped into two sublattices; In 

this case the resonator displacement was seen to decay as the separation from the van 

der Pol oscillator increased. 

Therefore, the performance of a chain of Duffing resonators can be substantially 

improved by coupling them with van der Pol oscillators, which also act as drivers 

for the resonators. The introduction of van der Pol oscillators in a chain of Duffing 

resonators is specially effective for the case of velocity coupling, which was found not 

to couple Duffing resonators well. 
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Chapter 6 

Conclusions 

In this project we have studied the synchronisation properties of diffusively-coupled 

nonlinear systems such as van der Pol oscillator and Duffing resonator, with a view to 

MEMS and NEMS applications; Both linear displacement- and velocity couplings were 

considered. In addition to numerical simulations, we used linear perturbation theory 

and the Partial contraction theory to investigate the synchronisation aspects of two 

coupled- and one- dimensional chains of these systems; The results are summarised 

below: 

e For velocity coupled van der Pol oscillators (both two-coupled and chains), our 

numerical simulations indicated asymptotic complete synchronisation for all cou- 

pling strengths, «, considered. We found that our results were consistent with 

linear perturbation theory when the expansion was around the limit cycle (Sec- 

tion 4.5). Partial contraction theory, on the other hand, gives a critical value for 

kK, Ke, 80 that total synchronisation is predicted for all k > Ke. Since the results of 

partial contraction theory apply to the whole of the initial- value space, while our 

numerical simulations sample only part of it, there is no contradiction between 

the theory and our numerical results. Therefore, our numerical experiments sug- 

gest that, in order to obtain complete synchronisation in practical systems, it 

may not be necessary to have as strong a coupling as predicted by the theory. 

e For the x-coupling, the two coupled van der Pol oscillators exhibit either in-phase 
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or anti-phase synchronisation (Subsection 2.2.1); the chains of 2-coupled van der 

Pol oscillators, on the other hand, were seen to exhibit partial synchronisation, 

as evidenced by calculating the measure of synchronisation, C, (Figure 4.9). 

However, as we saw in Section 4.3.2, incorporation of the cubic spring constant 

term resulted in complete synchronisation of the system. This system can be 

viewed as a Duffing resonator with nonlinear damping (and no external forcing). 

e The forced Duffing resonator, with its cubic spring constant, has been used widely 

to study the nonlinearities in MEMS and NEMS (Section 2.1.3). We explored 

the nonlinear properties of a single resonator near resonance for a number of 

parameters, including those for real MEMS devices. This investigation was ex- 

tended to the case of two-coupled and chains of Duffing resonators, where only 

one resonator was forced. The numerical experiments were done for two sets of 

parameters, one chosen randomly (Duffing A), and the other from experiments 

(31) (Duffing B). For the two-coupled system we found that, close to resonance, 

both displacement and velocity were an effective coupling mechanisms for both 

Duffing A and Duffing B (Subsection 2.2.2). For a chain of Duffing resonators, 

on the other hand, velocity was seen to be an ineffective coupling mechanism 

for either systems; for Duffing B system even displacement coupling was not an 

effective coupling mechanism (Section 5.1). 

e Finally, we have proposed a hybrid chain of Duffing resonators coupled to the 

van der Pol oscillators. Two geometries were considered, one with alternating 

van der Pol - Duffing systems (Subsection 5.2.1), and two, a chain of Duffing 

resonators driven by a van der Pol oscillator, either from one end only, or from 

both ends (Subsection 5.2.2). The Duffing B system was found not to couple well 

with the van der Pol oscillators. On the other hand, hybrid chains of Duffing 

A resonator and van der Pol oscillators showed strong effects with both 2- and 

velocity coupling. For chains of alternating Duffing A - van der Pol systems, the 

oscillators/ resonators grouped into two sublattice, each composed of identical 

oscillators. For 2-coupling, the sublattice of van der Pol oscillators was more 
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entrained compared to the Duffing sublattice. For velocity coupling, on the other 

hand, delay synchronisation was seen in both sublattice for a range of oscillator 

parameters (Subsection 5.2.1). Thus, hybrid chains of velocity- coupled Duffing- 

van der Pol systems has the potential application where a synchronous behaviour 

in an array of MEMS resonators is desirable. 

e For the case of a chain of Duffing resonators being drive by a van der Pol oscillator 

from one or both ends, the resonator displacement decreased as the separation 

from the van der Pol oscillator increased, specially for velocity coupling, There- 

fore, for MEMS application purposes, in order to get significant displacement, 

the forcing needs to be reinforced by inserting van der Pol oscillators dispersed 

throughout the chain. 

Therefore, we propose that the performance of an array of Duffing-like MEMS 

resonators can be significantly improved by incorporating van der Pol oscillator- like 

nonlinear damping in some resonators distributed along the chain, Also, complete syn- 

chronisation in these arrays could be achieved by incorporating the nonlinear damping 

in all the resonators. 
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Appendix A 

Derivation of van der Pol Equation 

In Subsection 2.1.1 we mentioned that, for jz < 0, the electrical circuit in Figure 2.1 

represents the van der Pol [29], as may be seen below: 

From Kirchoff’s law, 

dl 1 
L“= + RDI a | tat =0, Ad pt RWI + (A.t) 

where, R(I) = —ro+rel? is the negative resistance (ro, 2 > 0), J is the electric current, 

L is the induction and C is the capacitance in the circuit. Taking time-derivative of 

the Equation (A.1), we get 

#1 dR(I).\ dl 1 
Lapt (a+ 31 ation” (A.2) 

Substituting for R(J), we get 

I dla 
Dee et al se =0. (A.3) 

Defining = ro/L, p = 1/LC, and changing variable from 7 to x, where, J = 

ro/ (3 
    x, we recover the van der Pol equation (2.1) 

&+ p(x? —1)¢ + px =0. (A.4) 
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Appendix B 

A Damped van der Pol Oscillator: 

Contraction Properties 

Let us consider a second order nonlinear system 

&+ pla? + y)e + uee =0, (B.1) 

where, j4,x > 0. This represents a damped van der Pol system, where both the time 

and phase trajectories go to zero. Linearsing Equation (B.1), we can write 

3 

She eke aay 
    

y = —wWor, (B.2) 

so that the Jacobian of the system is 

—H(2? +x) wo . 
Fu-vap = : (B.3) 

—Wo 0 

The Jacobian Fy_,ap is negative definite, and the system is contracting, if 

2 bs 
X =([v y] Fu-rvap <0. (B.4) 

y 

Substituting from Equation (B.3), and doing the maths, we get 

X =—p(z? +x)2?. (B.5) 

From Equation (B.5) we see that X is always negative, except for when x=0; Therefore, 

Fu_vap is semi-negative definite, and the system is semi-contracting. 
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Appendix C 

Linear Perturbation Theory for a 

Chain of Oscillators 

In this section we shall focus on a chain of velocity coupled van der Pol oscillators, 

Equation (4.2.2) 

% + p(a? — 1)ai + pai = pa (in. + 2-1 — 24;) 1 = 1,32. (C.1) 

where we consider liner perturbation around the limit cycle, so that 

a;(t) = o(t) + &i(t), (C.2) 

where, as discussed in Section 4.5, 

Xo(t) = Acos(Mt — ®), (C.3) 

Where A = 2. Expanding Equation (C.1) around xo and retaining terms linear in € 

only, we get 

& + l(a? — 1): + 2aorin€i) + o6 = p(n + G1 — 26;) 7 = 1,32. (C.4) 

From Equation (C.3) we have x3 = 2{1 + cos[2(Qt — ®)]} and aoaig = 2 sin[2(Qt — ®)]; 

Therefore, substituting for 22 and xpa’g into Equation (C.1), and neglecting higher 

harmonics of Qt, we get 

& + wl + 0G = we(Eiy2 + G1 — 2KE;) 7 = 1,32. (C.5) 
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APPENDIX C. LINEAR PERTURBATION THEORY FOR A CHAIN OF OSCILLATORS 

Equation (C.5) can be rewritten as 

  

f= WE, (C.6) 

where, 

Fi -k k 0 0 0 0 

ko Fy-2k k 0 0 0 

v= (C.7) 

0 Os k Fy —2k  k 

0 Cm 0 k Fy —k 

with 

Fo= Pt | and r(! ‘a (C.8) 

i 0 pK 

Equation (C.7) can be decomposed into VW = F + K, where, 

By 0-70). 0 -k k 0-0 0 0 

0m 0 0 kh 2h b= 70 0 20 

a and K= 

0 0 ++ Fy 0 0 0 O-+ k -2k k 

0 0 0 Fx O 0° 0-0 & =k 

(C.9) 

For pp > 0, F, is negative definite since the real part of its eigenvalues, A12 = ae ae 

SEE is negative; Therefore, F is also negative definite. It can also be shown, 

using mathematica, that the eigenvalues of K are either zero or negative for « > 0. 

Therefore, the Jacobian obtained for linear perturbation about the limit cycle, V, is 

negative definite, and the system of velocity - coupled chain of van der Pol oscillators 

synchronises asymptotically for coupling constant « > 0. 
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