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Thesis Summary 

This project investigates whether it is possible to correlate changes in the EEG struc- 

ture with changes in the complexity of the original signal. Based on the assumption 

that the complexity of the EEG is due to the non-linear interaction of a few degrees 

of freedom, dynamical embedding of the EEG is performed to capture the dynamics 

of local sections of the underlying manifold, which are smooth non-linear fitting sur- 

faces. Singular value decomposition (SVD) projects these sections of the manifold onto 

orthogonal axes that retain maximum variance, thereby identifying the degrees of free- 

dom associated with the original EEG signal. Furthermore we assume that any change 

in the interaction of these degrees of freedom indicates a change in the brain state of 
the subject. We model this interaction by applying two measures of complexity, (i) 

entropy and (ii) Fisher’s information content. Finally we performed experiments to 
see if changes in complexity corresponded to changes in the structure of the EEG and 

compared the performance of the two measures. 

Keywords: Dynamical Embedding, Feature Extraction, Manifold, Singular Value 

Decomposition, Degrees of Freedom
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Chapter 1 

Introduction 

The ability to perform non-invasive monitoring of a subject’s neo-cortical brain activity 

has led to the formation of vast databases of high precision multi-channel electroen- 

cephalographic(EEG) data. The database at BAE SYSTEMS contains hundreds of 

EEGs recorded while subjects were asked to perform various tasks. These records are 

then used to score subject vigilance throughout the duration of these tasks. 

If the scoring of subject vigilance could be accurately and robustly automated in real 

time, its use in monitoring those whose occupation requires a high degree of concentra- 

tion and vigilance and a responsibility for the safety of others, could help in eliminating 

those accidents where human error is to blame. 

This has motivated the search for advanced data processing techniques specifically 

designed to measure subject vigilance from the EEG. Our goal in this project was 

to try and establish if there was any interesting structure in the EEG identified by 

various feature extraction techniques and complexity analysis that might correlate with 

a clinically scored measure of subject vigilance. This project primarily explores the use 

of dynamical embedding and orthogonal techniques to model the underlying generator 

of the EEG data [1, 4, 17, 19] and looks at the use of two complexity measures, entropy 
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and Fisher’s information content, to model the complexity of the data based on the 

interaction between the basis vectors of the underlying feature space [7, 15, 18]. In 

particular the novel approach of using single channel EEG data was explored. This 

approach avoids the use of standard EEG analysis techniques, such as Fourier frequency 

analysis, as these have been shown to be of limited practical use [16], as they do not 

allow us to reconstruct the underlying dynamics of the system and require the averaging 

of the time series over relatively long segments of EEG, whereas dynamical embedding 

allows us to consider much shorter segments. 

1.1 Thesis overview 

e Chapter 2 gives a brief introduction to the physiology of the brain and the origin 

of the EEG signal, giving examples of EEG waveforms. The chapter concludes 

with a section on single channel analysis. 

e The implementation of the dynamical embedding approach is explained in detail 

in chapter 3, and the criterion for choosing the embedding parameters are pre- 

sented. The second half of this chapter gives the results obtained when dynamical 

embedding was performed on the EEG. 

e Chapter 4 introduces all of the theory required for the implementation of the 

entropy and Fisher complexity measures and presents the results of testing these 

measures on different waveforms of the EEG. 

e Chapter 5 presents the conclusions based on all of the key results obtained in 

the previous chapters. 

e Recommendations for future work for the continuation of this project are made 

in chapter 6. 
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Chapter 2 

Electroencephalographic data 

The electroencephalograph records the electrical activity at the scalp, generated by 

underlying brain structures, using a number of non-invasive surface electrodes. First 

discovered by Berger in 1928, electroencephalography allows quantitative research into 

the dynamical function of the neocortex, from where it is believed the ENG signal 

originates [2]. 

Starting with the recording process of the EEG, this chapter takes the reader through 

the characteristics of the EEG and contrasts normal clean wake EEG, with noisy EEG. 

Finally there is a description of the data used in this project and a chapter summary. 

2.1 EEG recording 

The process for recording the EEG is shown in figure 2.1, which shows a cross-section 

of the scalp and neocortex together with the relative size of the electrode. The arrows, 

which represent the macro-columns of the neocortex, contain upwards of 10° neurons 

and 10!° synapses [2]. When these neurons fire the resulting dipole moment that is 

generated is recorded as a varying electrical signal by the scalp electrode. This signal, 
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which has a peak amplitude, before amplification, of the order of +10°nV, is known 

as the EEG. 

EEG recorder 

  

Figure 2.1: Extracranial recording of EEG data 

2.1.1 Selective sensitivity of EEG recordings 

There are three factors which affect the sensitivity of an EEG recording. 

e The physical size of the electrode and the diffusion caused by the conductivity 

in the skull and scalp, which limit the surface spatial resolution of the resulting 

EEG to about 10cm? [2]. 

e The proximity of the surface electrodes to the neocortex; this causes the recording 

to be more sensitive to sources in the neocortex than to sources deeper in the 

brain. 

e The sensitivity of the surface electrodes to different types of dipole layer in the 

sulcus; they are most sensitive to correlated perpendicular dipole layers, such as 
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ab or de in figure 2.1, they are less sensitive to correlated tangential layers as in 

region efg and completely insensitive to opposing dipole layers such as bed. 

2.2 Brain waves 

Clinical interpretation of the EEG usually involves the characterisation of constituent 

waveforms. This is done by observing the frequency content and to a lesser extent the 

morphology of these waveforms, although as previously mentioned this technique is of 

limited use when attempting to identify the specific characteristics of the underlying 

brain state, such as vigilance. The method does however provide an insight into the 

general characteristics of the brain state captured by the EEG and can differentiate 

between wake and sleep states and aid in the diagnosis of certain major brain diseases 

such as epilepsy. 

It is generally accepted that the brain has no signal of interest with a frequency con- 

tent higher than about 60Hz. Therefore the constituent waveforms are split into five 

frequency bands known as alpha, beta, gamma, theta and delta. 

2.2.1 Characteristics of different frequency bands 

The characteristics of each frequency band, together with brain state and type of 

person that exhibit them are given below. 

e Alpha 

Alpha waves are contained within the 7 to 13Hz frequency band. They are 

strongest over the occipital cortex (posterior region of the scalp). Alpha-activity 

is generally enhanced by closing the eyes and relaxation and abolished by eye 

opening or alerting by any mechanism i.e. thinking, calculating. However in 
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contrast it has also been strongly linked to creativity and mental work. Creative 

subjects show alpha activity when listening and coming to a creative solution 

for advanced problems. It is the major rhythm seen in normal relaxed adults 

- it is present during most of life especially beyond the thirteenth year when it 

dominates the resting trace. 

e Beta and gamma 

Beta activity is ‘fast’ activity. It has a frequency content of 13Hz and greater. It 

is usually seen on both sides in a symmetrical distribution and is most evident 

frontally. It may be absent or reduced in areas of cortical damage. It is generally 

regarded as normal rhythm and is dominant in most subjects who have their 

eyes open and are alert or anxious. Gamma activity corresponds to frequencies 

greater than 30Hz although it is sometimes included in the beta band. 

e Theta 

Theta activity has a frequency of 3 to 7Hz and is classed as ‘slow’ activity. It 

is abnormal in adults in wake state but is perfectly normal in the first stages of 

sleep and also in children in wake state up to 13 years old. 

e Delta 

Delta activity is 3Hz or below. It is characterised by the highest amplitude and 

the slowest waves. It is quite normal and is the dominant rhythm in infants up 

to one year and in stages 3 and 4 of sleep. It is usually most prominent frontally 

in adults and posteriorly in children. 

2.2.2 Wave morphology 

Certain waves have characteristic forms irrespective of their frequency and are recog- 

nisable by their shape: in other instances pairs or groups of waves have typical appear- 
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ances. The difficulty in clinical EEG scoring lies in recognising the artifacts and being 

able to differentiate between normal variants and abnormalities. Normal variants are 

waveforms that appear unusual but are not abnormal. 

Normal wake EEG, a 20 second segment of which is shown in figure 2.2, is usually a 

linear combination of alpha, beta, theta and delta waves. 

  

      

Figure 2.2: Examples of a clean section of normal wake EEG 

Artifacts are disturbances in the EEG that do not originate from the neocortex and 

are therefore of no physiological interest. These include electrode movement and loss 

of contact (electrode ‘pop’) and electromyographic (EMG) noise caused by muscle 

movement, which includes eye blink. When electrode loss occurs there is generally no 

signal observed. An example of EMG artifact over a 20 second period is shown overleaf 

in figure 2.3, it clearly shows that the signal of interest is obscured. 

2.3 Experimental data 

The EEG data used in this project was collected from healthy volunteer subjects who 

were asked to perform simple visual tracking tasks over a period of about 7 hours. 

The data was recorded using an Oxford Instruments Medilog system utilising multiple 

channel measurements and was supplied by BAE SYSTEMS. The electrodes were sited 
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Figure 2.3: Example of EMG artifact obscuring signal of interest 

according to the international 10-20 system [3] and a diagram of this set-up is shown 

below in figure 2.4. The sampling rate used for the recording was ongg = 256Hz and 

the data was quantised to 2 bytes per sample (16 bits). 

  

Figure 2.4: The placement of electrodes using the 10-20 system 
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2.3.1 Single channel analysis 

There were 16 data channels available for experimental use, however we have chosen to 

select only one channel (O1) and to perform single channel analysis. This is because: 

e We were interested to see if it was possible to perform feature extraction using 

single channel data. 

e Since the EEG was recorded during visual tracking tasks performed by the sub- 

ject, it made sense to select a single channel that was located near the occipital 

cortex where the visual cortex is situated. Channel O1, to the rear left of the 

brain was selected for use in all further analysis. 

2.4 Summary 

The apparently contrasting causes for alpha-activity illustrate the severe problems 

experienced when trying to monitor subject vigilance using simple frequency analysis. 

The level of alpha activity is not consistent for different types of subject; for some, 

creative thinking and mental work (and therefore vigilance) produces high levels of 

alpha activity and for others, merely opening their eyes abolishes all trace. 

We need to adopt a completely different approach to EEG analysis, that is robust and 

subject adaptive. Subsequent chapters present a novel approach to feature extraction 

that allows us to model local sections of the reconstructed manifold of the underlying 

EEG generator. Consequently we are able to model the interaction between the degrees 

of freedom identified and hence the complexity of the signal. 

22



Chapter 3 

Modelling the underlying generator 

of the EEG 

We hypothesise that the EEG signal is generated by the non-linear interaction of a 

few degrees of freedom as opposed to the linear interaction of many degrees of freedom 

[1]. A simple system (one with a few degrees of freedom), that is linear, will behave 

simply and will be in equilibrium, periodic or quasiperiodic. However, simple nonlinear 

systems can exhibit extremely complex behaviour. Such behaviour, as seen in the EKG, 

is characterised by its complexity and sensitivity to the initial state of the system [2]. 

Based on this, we can assume the existence of an unobservable deterministic generator 

of the observable data. Therefore from a finite number of samples of the time series, it 

should be possible to reconstruct the whole dynamics of the manifold that generated 

that time series. Sauer et al. [19] show that almost every smooth map from a d- 

dimensional smooth manifold M to R??* is a diffeomorphism on M, that is, a smooth 

one-to-one map which has a smooth inverse. This chapter describes how a system 

using dynamical embedding may be implemented to model the underlying generator 

of the EEG. Furthermore the choice of a set of basis vectors that span the underlying 
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feature space (orthogonal or independent) is made. The method presented here uses 

singular value decomposition (SVD) and calculates an orthogonal spanning set. Based 

on this decision the factors affecting the crucial choice of embedding parameters are 

then presented. 

3.1 Dynamical embedding 

Consider a continuous system governed by the set of N first-order differential equations 

a) SFX, Xo, v =a (3.1) 

where the F; are non-linear functions of the independent variables X; and the system 

is contained in an N-dimensional vector space S. The dimension of this vector space 

is associated with the number of degrees of freedom of the system. Each X(t) = 

(X1, Xo, ..., Xw,t) represents the state of the system at time ¢ and is a point in the 

vector space S. In 1986 Broomhead and King [4] introduced SVD and embeddings to 

implement Takens’ theorem which states that it should be possible to reconstruct the 

dynamics of a deterministic system [5]. The method consists of projecting each sample 

x(t), which is the observable signal representing the state of the system X(t), onto the 

feature space. In this space each delay vector, X(i), is defined by 

Lepr 

Te Mf—-1)r 

which contains a section of time series data containing M samples, sampled with 

a delay, or lag, of rs between each successive sample. It is standard practice and 
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practical to fix 7 such that there is a delay of a whole number of samples. Therefore 

each delay vector is a point in the embedding space R™ and represents a window of 

data, of length M, of the time series. To construct the embedding matrix X that 

represents a discrete trajectory of the EEG data through a certain period of time, 

we run this window through a section of data constructing n successive delay vectors 

that correspond to the columns of the embedding matrix that map out this trajectory. 

Therefore X is defined by 

xe Ltr tt Tt4nr 

tr Tty2r 8 Lt4(n41)r 
X= (3.3) 

Tep(t—a)r Tep(M)r Mt (4n-1)r 

We now wish to characterise this trajectory. Here, we assume an orthogonal spanning 

set of the feature space and calculate the eigenvectors and eigenvalues of the trans- 

formation described by the embedding matrix, X, using SVD. The complementary 

approach involving a non-orthogonal spanning set is introduced in chapter 6. 

3.1.1 Singular value decomposition (SVD) 

Consider the real M x n matrix X. We may decompose it as follows 

K=U+S5+V" (3.4) 

Where S is a diagonal matrix whose elements are o; arranged in descending order of 

magnitude. Then o? is the i” eigenvalue of C = X * X7. The columns of V are 

the eigenvectors of C and the matrix U is the matrix of projections of X onto the 

eigenvectors of C [15]. 
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3.2 Choice of embedding parameters 

There are three choices that must be made when performing dynamical embedding on 

real data; 

e Embedding delay, + 

e Embedding dimension, M 

e The number of delay vectors, n 

The specific factors affecting these choices are presented in the following sections, 

however there are two general guiding principles. These are; 

e The dimensionality of the underlying vector space S. This is unknown a priori 

and is intrinsic to the problem itself and will vary depending on the system being 

observed e.g. ECG, EEG or the stock market ete. 

e The information content of the embedding matrix, X. This is predominantly 

dictated by the sampling rate of the data and to a lesser extent the morphology 

of the data. 

It is clear that each parameter is not completely independent and will have an effect on 

the choice of the others. However by ensuring that all of the theoretical requirements 

are met, we restrict the range of choice of each parameter and by analysing the results 

of different combinations of choices we may identify the combination that correctly 

captures the dynamics of the underlying system. 
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3.2.1 Embedding delay, + 

The first selection to be made is the delay, 7. As previously mentioned when dealing 

with discrete data, 7 is always set to be a whole number of samples and is based 

on the sampling rate of the data. Nyquist’s stability theorem states [6] that a signal 

must be resampled at at least twice the rate of the highest frequency component 

contained within the signal, assumed to be 60Hz in our case, to avoid aliasing, therefore 

Onyq = 120Hz. Setting 7 to select every 24 data point gives a resampling rate of 

Onga = 128Hz, which narrowly fulfills the Nyquist criteria. However due to the noise 

present in the data we choose to select every available data point, giving a resampling 

rate of opgq = 256Hz, easily fulfilling the stability criteria, therefore r = 1/256s. 

In our case the resampling rate is the same as the actual sampling rate of the EEG 

data and is therefore the highest we can choose. However for data that is sampled at a 

much higher frequency it is important to consider the problems that may be caused by 

highly correlated data, where each consecutive data point offers very little additional 

information about the signal due to the very high sampling rate. 

Since each delay vector (which represents a discrete point on the M-dimensional recon- 

structed manifold) consists of a window of size n of the time series, it will be necessary 

to down sample when using data with a high sampling rate to avoid unneccesarily large 

windows that contain correlated and therefore redundant information. 

3.2.2 Embedding dimension, M 

Takens’ theorem states [5] that M > 2D +1 for the dynamics of the system to be 

completely captured, where D is the dimension, or the number of degrees of freedom 

[20], of the underlying system. 
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For noiseless systems we discover that the number of non-zero singular values, o;, in 

the diagonal decomposition matrix S corresponds to the embedding dimension M= 

2D +1,where D is the dimension of the underlying system. The redundancies that 

appear indicate that the system can be completely described by a linear combination 

of the eigenvectors corresponding to the non-zero singular values, what we shall term 

convergence of the singular spectrum [18]. 

Most real systems are not noiseless and this is especially true of the EEG. What were 

once redundancies in noiseless data will now appear as relatively low singular values 

corresponding to the small contributions of the extra eigenvectors needed to reconstruct 

the noise which projects onto each dimension, D, of the noiseless system. Therefore for 

convergence of the singular spectrum we are looking for the value of M at which point 

the Euclidean difference between singular spectra calculated with windows of size M 

and M +1 has converged toward zero. This value of M then corresponds to the size 

of the delay vector, M, required. 

As discussed earlier in this chapter, the dimensionality of the EEG is assumed to be 

quite low, say, D < 5, therefore M > 11. In practice the size of the delay vector, M, 

is greater than the embedding dimension M due to correlations and the noise in the 

data that appears due to the EEG recording quality. This is highlighted by the value 

returned using convergence of the singular spectrum, and previous work in this area 

[7] shows that an initial value of M = 150 is sensible and this is confirmed by results 

presented in the following section. 

3.2.3 The number of delay vectors, n 

With a value for M and 7 initially selected, we can now proceed in selecting a value 

for n that will fulfil all of the remaining theoretical and practical requirements. 
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The number of delay vectors, n, will now define the overall information content of the 

embedding matrix, X, along with the period of time (section of time series samples) 

over which the corresponding trajectory, defined by X in the feature space, is mapped 

out. The information content therefore depends on the values of M and n and the 

sampling rate of the data, since each embedding matrix, X, contains M +n — 1 time 

series samples. 

We must ensure that the information content of X is large enough to contain one cycle 

of the lowest frequency component of interest in the EEG. This is regarded as being 

about 0.5Hz, therefore (M +m —1) > 128. We must also ensure full rank of the 

embedding matrix, therefore n > M. 

Pseudo-stationarity 

There is however a restriction placed on the upper limit of n: we must ensure pseudo- 

stationarity of the signal for the period of time that corresponds to the trajectory in 

feature space mapped out by X. 

When we process a large section of EEG data each consecutive non-overlapping em- 

bedding matrix will give us one corresponding singular spectrum. Clearly if we set 

our value of n to be too high, each embedding matrix could, for example, represent a 

minute’s worth of wake EEG and the dynamics of the neocortex and hence the struc- 

ture of the underlying system will certainly have changed over that period of time. 

By taking too large a section of data we are in a sense averaging the dynamics of the 

system over that period, instead of monitoring the subtle changes occurring within 

that section. 

With the above requirements we performed a number of experiments described in the 

next section to determine a reasonable value for n based on all of these factors. 
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3.3. Experiment varying the value of n 

Part of the remit for this project was to develop a graphical user interface (GUI) that 

could be used to accurately display and investigate the properties of large sections of 

EEG data alongside the results of the various feature extraction techniques employed 

(user guide and documentation are available separately). Utilising this software we 

were able to investigate the effect of changing the value of n, on the structure of the 

singular spectrum. 

From the previous section we have an initial value of M = 150. Therefore we must 

ensure full rank of the embedding matrix, n > M, so we performed experiments varying 

n from an initial value of 150 up to 1500. Remembering that each embedding matrix, X, 

contains (M +n —1) time series samples and that the sampling rate is og2g = 256Hz, 

these values of n represent a range of approximately 1 second (n = 150) up to 6 seconds 

(n = 1500). 

3.3.1 Results 

The following pages show snapshots taken from the GUI for the different values of n. 

They show at the top a 3-D contour plot of the singular value spectra through time 

that directly corresponds to the original EEG trace shown below it. 
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Figure 3.1: GUI snapshot for M = 150, n = 150, showing the original EEG trace 
(in blue), and above it a contour plot of the singular spectrum corresponding to the 

section of EEG trace. 

  
Figure 3.2: GUI snapshot for M = 150, n = 400, showing the original EEG trace 
(in blue), and above it a contour plot of the singular spectrum corresponding to the 

section of EEG trace. 
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Figure 3.3: GUI snapshot for M = 150, n = 1500, showing the original EEG trace 

(in blue), and above it a contour plot of the singular spectrum corresponding to the 

section of EEG trace. 

It can be clearly seen from figures 3.1-3.3 that n = 150 satisfies all of the conditions 

previously outlined: we see how the underlying system appears to change at quite a 

high rate and we therefore require a relatively small value of n as a result. 

3.3.2 Morphology of the singular spectrum 

We notice that our initial estimate of M = 150 guarantees convergence of the singu- 

lar spectrum, indicating that we have selected the correct parameters to completely 

capture the dynamics of the underlying system for wake EEG based on our original 

hypothesis that the EEG is generated by the non-linear interaction of a few degrees 

of freedom. We can see that most of the power in the singular spectrum is contained 

within the first few singular values up to the point at which the kink occurs, usually 

around the 10“ component. Based on previous assumptions we know that these prin- 

cipal components are representative of the relative contributions of the few degrees 
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of freedom [4] that we have previously discussed and that the relatively low singular 

values from the point at which that kink in the singular spectrum occurs, onwards, are 

a result of the intrinsic noise present in the EEG recording [17]. Furthermore we notice 

in figure 3.1 that the morphology of the singular spectrum changes as small bursts of 

externally generated noise (artifact) are encountered in the EEG. This is because there 

are now more degrees of freedom present in the signal due to the noise and therefore 

the dynamical embedding process is struggling to completely capture the dynamics 

of the system, highlighted by the fact that we no longer have complete convergence 

of the singular spectrum for those regions of data. This is further demonstrated by 

figure 3.4 below, which shows the singular spectrum contour map for a section of EEG 

data corrupted with EMG noise. It should be noticed that there is now a completely 

different type of singular spectrum morphology for this type of data. 

  
Figure 3.4: GUI snapshot for M = 150, n = 150 with a section of ENG corrupted with 
EMG noise 
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3.4 Summary 

We have shown in this chapter that for wake EEG sampled at oggg = 256Hz, the 

method of dynamical embedding, with parameters r = 1/256, M = 150 and n = 150, 

is able to capture the dynamics of the underlying system. 

Using these parameters, each embedding matrix, X, will represent approximately 1s 

of data and an advantage of being able to use such relatively small sections of data 

to perform the embedding is that the computational efficiency for implementation of 

this method will be such that real time analysis is possible, since the algorithm is 

exponential in the size of X. 

We also noticed how the morphology of the singular spectrum changed depending 

on the structure of the EEG and it is this that we wish to take advantage of when 

attempting to model the complexity of different sections of EEG data. The next 

chapter investigates how effective different measures of complexity are at detecting 

subtle changes in wake EEG. 
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Chapter 4 

Complexity analysis 

Based on our original hypothesis (chapter 3), we assume that each degree of freedom 

must have some physiological interpretation as to the current brain state. However al- 

though we now have an indication of the relative significance of each degree of freedom, 

we do not know exactly how these degrees of freedom combine to form the underlying 

generator, which may consist of the linear interaction of a few smaller non-linear gener- 

ators [2] which will have a more obvious physiological meaning. Therefore it is possible 

that the structure of the EEG signal and the underlying generators can change, due to 

a change in brain state, without a dramatic change in the weighting of each degree of 

freedom, resulting in only a small change in the morphology of the singular spectrum. 

The general structure of the singular spectrum for normal wake EEG is shown in figure 

4,1. This chapter investigates the implementation of two different types of complexity 

measure, (i) entropy and (ii) Fisher’s complexity measure, that take advantage of this 

structure in the singular spectrum to highlight changes in signal complexity. Although 

our primary aim is to distinguish between different levels of complexity within nor- 

mal wake ERG, and not to develop an EMG detector, it is vital that the complexity 

measure used is able to distinguish between the two types of waveform.



The first part of this chapter discusses the issues concerned with the application of 

the entropy measure to a function that is not inherently a probability distribution and 

then presents the results of using entropy to measure the complexity of the EEG. The 

implementation of the Fisher measure is then presented along with the many practical 

considerations involved in its accurate calculation. Finally there is a summary of the 

chapter and an evaluation of the relative performances of the two different types of 

complexity measure. 
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Figure 4.1: An example of the singular spectrum morphology for wake EEG. The 

location of the kink as suggested by previous work indicates the separation between 

signal and noise. 
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4.1 Entropy 

The intuitive measure of disorder, entropy was originally developed by physicists for 

application in thermodynamics. It was not until 1948 that Shannon introduced en- 

tropy to information theory as a measure of uncertainty or information content in 

probabilistic systems. The differential entropy [8], which is defined for a continuous 

random variable x as 

H(x) = -f- p(x)logp(x)dx (4.1) 
00 

is used to measure the change in uncertainty or information content of a continuous 

function p(x). 

4.1.1 Entropy applied to the singular spectrum 

We can clearly see that the structure of the singular spectrum for normal wake EEG is 

not random with most of the power, and therefore information content, concentrated in 

the first few singular values. We also notice that for different structures such as EMG 

noise and other artifacts there is a complete change in the morphology and therefore 

the spread in power distribution, leading to a change in the information content of 

the signal (see figure 4.4). On a smaller and more subtle scale we also notice that the 

structure and location of the ‘kink’ in the singular spectrum changes throughout wake 

EEG. As stated in section 3.2.2 our assumption is that the ‘signal’ part of the EEG 

is contained within the first few singular values leading up to the kink, and thereafter 

the smaller singular values correspond to the noise. We then hypothesise that this 

subtle change in the singular spectrum, due to an increase or decrease in the number 
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of degrees of freedom representing the signal part of the ENG, indicates a change in 

the brain state of the subject. We would like to monitor this change by using the most 

appropriate type of complexity measure. 

The singular spectrum clearly lends itself to measures of information content and al- 

though it is not intrinsically a probability distribution we may model it as a probability 

density function (PDF) if it satisfies the requirements of a PDF (see Roberts et al. [15]), 

namely 

e The probabilities must sum to 1 te ee oj=1 

e All values of p(x), (o;), must be positive 

Clearly all singular values, o;, are positive and by introducing appropriate normali- 

sation we may regard the singular spectrum as a PDF. Assuming points are sampled 

uniformly from o;, the discrete version of the formula for the differential entropy is 

  

given by 

M 
H=-) Glog 6; (4.2) 

i=1 

where 

a CA 
Gi (4.3) 

s we % 

4.1.2 Entropy and noise 

The graphs in figures 4.2 and 4.3 show the weighting function that is attributed to each 

singular value when the differential entropy is calculated and an example of a singular 
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spectrum that has been normalised to power 1 with superimposed weighting function. 
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Figure 4.2: Weighting function introduced by entropy, —p(x)logp(x) 
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Figure 4.3: Typical wake EEG singular spectrum normalised to power 1, with super- 

imposed entropy weighting function(dotted line) 

40



We can see that the superimposed weighting function happens to intersect the singular 

spectrum at roughly the point at which the kink occurs. It increases or decreases very 

sharply either side of it and therefore we would expect to detect subtle changes in the 

morphology of the singular spectrum such as the movement of the kink which defines 

the boundary between signal and noise. We also notice that due to the normalisation 

of the signal, the ability to distinguish between clean wake EEG and sections corrupted 

with EMG, an example of which is shown below in figure 4.4, could be compromised 

as the singular spectrum for EMG now appears to be very similar to that for wake 

EEG. 
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Figure 4.4: Typical singular spectrum for EEG corrupted with EMG, normalised to 

power 1, with superimposed entropy weighting function(dotted line). Notice the lack 

of kink structure, due to the degrees of freedom introduced by the external EMG 

generator. 
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4.1.3 Different normalisation 

Although we would no longer fulfil the theoretical requirements for modelling the 

singular spectrum as a PDF, we could emphasise the change in the structure of the 

singular spectrum for the two extreme types of signal by using a more appropriate 

normalisation. 

By normalising the singular spectrum so that the first singular value, a1, has a mag- 

nitude of 1, we would take full advantage of the structure of the differential entropy 

weighting function, —p(zx)log(p(x)) where p(x) = 9;, to highlight a change in signal 

complexity. Figures 4.5 and 4.6 show the different normalisations of the singular spec- 

tra corresponding to the same sections of normal wake EEG and EEG corrupted with 

EMG shown previously with the superimposed weighting function. We can now clearly 

see the difference in the singular spectrum between normal wake EEG and EEG cor- 

rupted with EMG, and would still expect to be able to detect any changes in the kink 

structure. 
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Figure 4.5: Typical wake EEG singular spectrum normalised to first value 1 with 
superimposed entropy weighting function (dotted line) 
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Figure 4.6: Typical singular spectrum for EEG corrupted with EMG, normalised to 

first value 1 with superimposed entropy weighting function (dotted line). The different 

scaling further highlights the lack of kink structure in the singular value spectrum for 

daat corrupted with EMG 
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4.1.4 Results 

The following page shows screen shots of sections of the GUI that was designed as part 

of the project. Figures 4.7 and 4.8 show the original EEG in blue with the superimposed 

entropy complexity measure in red. Figure 4.7 compares the two different types of 

entropy measure, with different normalisations, when applied to normal wake EEG, 

and figure 4.8 compares the same two measures over normal wake ENG corrupted with 

EMG. 

  

Figure 4.7: Screen shots from GUI showing the two entropy measures for wake EEG. 
Notice how the two entropy complexity measure are almost identical when monitoring 
subtle changes in wake EEG 
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Figure 4.8: Screen shots from GUI showing the two entropy measures for wake EEG 
corrupted with EMG artifact. Notice how the entropy complexity measure with first 
value 1 normalisation has a far greater dynamic range. 

4.1.5 Conclusions 

The results confirm our hypothesis, that different normalisation will result in two 

entropy measures that are selectively sensitive to changes in different sections of the 

singular spectrum. 

Sensitivity to subtle changes in kink structure 

From figure 4.7 we can see that the entropy measure is highly variable corresponding 

to very subtle changes in the EEG waveform and the singular spectrum. Therefore 
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we can say that the entropy measures normalised to power 1 and first value 1, are 

sensitive to subtle changes in kink structure corresponding to a change in the number 

of degrees of freedom. 

Sensitivity to EMG artifact 

Figure 4.8 confirms our hypothesis that the entropy measure with power 1 normali- 

sation is unable to highlight the difference in structure of EEG corrupted with EMG 

artifact. The entropy values corresponding to the corrupted section are very similar to 

those in normal wake EEG sections. However for the first value 1 normalisation the 

entropy values for the corrupted section are off the scale, peaking at approximately 

H = 47, indicating a much higher relative signal complexity. Therefore the normal- 

isation of the singular spectrum, resulting in the best entropy measure, is given by 

equation 4.4 below and requires the first singular value, o;, to have a magnitude of 

1. This normalisation allows us to clearly highlight sections of EEG that are contami- 

nated with EMG noise (which are of no interest to us) whilst retaining the sensitivity 

to subtle changes in the morphology of the singular spectrum. 

= — (4.4) 
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4,2 Fisher’s information measure 

Proposed by Fisher in 1934, Fisher’s information content, I(@) is defined as the infor- 

mation about @ in a sample of n independent observations [9] and is given by 

1() = B (Aeon (4.5) 
00 

  

Where P(6) is the likelihood of the sample, and the expectation F is over n samples 

of P(6). 

If we sample uniformly from @ we find that the discrete version of the Fisher measure 

is given by equation 4.6. The full derivation is given in appendix A. 

  

n U 2 

Iy(0) = 99 SEP (46) 

Where 

Reo (47) 

This is equivalent to the sum of the partial derivatives at each point squared divided 

by the value of the function at each point. 
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4.2.1 Fisher measure applied to the singular spectrum 

The structure of the singular spectrum for normal wake EEG is such that the gradient 

varies greatly; being very large over the first few singular values, then gradually flat- 

tening off with a stationary point of inflection near the kink. Any movement in the 

position of this kink will result in a change in the gradient to the region either side of 

it. Therefore we expect the Fisher measure to be able to detect subtle changes in the 

location of the kink. 

As was shown earlier in this chapter the singular spectrum corresponding to EMG 

artifact is completely different, therefore we also expect the Fisher measure to be able 

to distinguish between normal wake EEG and EEG corrupted with EMG artifact. 

4.2.2 Numerical calculation of the Fisher measure 

By modelling the singular spectrum as a PDF, as before, where the 6; now correspond 

to the likelihood P,(@), we may monitor the change in Fisher information content of 

the singular spectrum. Computationally, the most difficult part of the Fisher measure 

calculation is the evaluation of the derivative at each point of the singular spectrum. 

There are two obvious ways of doing this: 

e Functional approximation of the singular spectrum by a continuous function 

leading to a functional evaluation of the derivative at each point. 

e The use of existing singular values to perform a discrete calculation of the Fisher 

measure, by numerical implementation of difference equations. 
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4.2.3 Functional approximation 

Based on our hypothesis that the structure of the singular spectrum and specifically 

that around the kink is an indication of the underlying brain state, it is essential 

that none of the shape in the structure is lost when the functional approximation is 

performed. This section describes two techniques that were used to try and model the 

singular spectrum. 

Polynomial interpolation 

Interpolation of the singular spectrum using least squares polynomial curve fitting [10], 

enables us to accurately calculate the derivative at each data point, since this only 

requires functional differentiation and the evaluation of a known n‘ order polynomial, 

which is trivial. However it proved impossible to retain the structure of the sharp initial 

gradient and the kink without introducing large errors in other parts of the function. 

Figures 4.9-4.11 show plots of the evaluated interpolation function superimposed on 

the original singular spectrum for values of n between 10 and 36. We can clearly see 

that the interpolation resulted in either oscillations due to over fitting, or smoothing 

of the kink structure when lower order polynomials were used. 
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Figure 4.9: Polynomial interpolation plot for n = 10, the original function, which is the 

singular value spectrum, is shown in green with the interpolated function superimposed 

in blue. The singular value spectrum corresponds to normal wake EEG, with the kink 

located around component 15 indicating an underlying dimensionality of 7. Notice how 

there are considerable errors between the original values and the interpolated function, 
this is because the degree of the polynomial, n, is too low. 
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Figure 4.10: Polynomial interpolation plot for n = 20, the original function, which is the 

singular value spectrum, is shown in green with the interpolated function superimposed 

in blue. The singular value spectrum corresponds to normal wake EEG, with the kink 

located around component 15 indicating an underlying dimensionality of 7. Here we 

have increased the value of n to 20, but we are still under fitting the original data. 
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Figure 4.11: Polynomial interpolation plot for n = 36, the original function, which is the 

singular value spectrum, is shown in green with the interpolated function superimposed 

in blue. The singular value spectrum corresponds to normal wake EEG, with the 

kink located around component 15 indicating an underlying dimensionality of 7. The 

degree of the polynomial, n, is now considerably larger (36), but although we can 
now approximate the first section well, we do this at the cost of introducing severe 

oscillations at the end. 
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Spline interpolation 

It it is well known that interpolation using high-order polynomials often produces 

ill-behaved results [12]. There are numerous approaches to eliminating this poor be- 

haviour. Of these approaches, cubic splines are very popular. In cubic splines, cubic 

polynomials are found to approximate the curve between each pair of data points, called 

abscissae. Since an infinite number of cubic polynomials can be used to approximate a 

curve between two points, additional constraints are placed on the cubic polynomials 

to make the result unique. By constraining the first and second derivatives of each 

cubic polynomial to match at the abscissae, all internal cubic polynomials are well 

defined, with the slope and curvature of the approximating polynomials continuous 

across the abscissae. Since the first and last polynomials do not have adjoining cubic 

polynomials additional constraints must be introduced. The most common approach 

is to adopt a not-a-knot condition. This condition forces the third derivative of the 

first and second cubic polynomials to be identical, and likewise for the last and second 

to last cubic polynomials. The derivative of a function described by splines is then 

straightforward. Since the k'” cubic polynomial is given by 

8x (x) = ay (a — 24)® + dy (a — re)? + cy(x — te) + dk (4.8) 

Te LTS Tey 

the derivative of s,(x) is over the same section and is written as 

ds,(z) 

dx 
  = 8a,(a — xp)? + 2b, (a — ve) + cK (4.9) 

Figures 4.12-4.14 overleaf show three typical singular spectra, corresponding to two 

sections of normal wake EEG, and a section with significant EMG artifact, that have 

been interpolated using natural cubic splines with not-a-knot end conditions. 
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Figure 4.12: Interpolation plot using a natural cubic spline with not-a-knot end con- 

ditions. The original data points are in red and the spline interpolation function is 

superimposed in blue. The singular value spectrum corresponds to normal wake EEG, 

with the kink located around component 13 indicating an underlying dimensionality 

of 6. Notice how there is a considerable error located around components 2 — 3 due to 

the over fitting of the data. 
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Figure 4.13: Interpolation plot using a cubic spline with not-a-knot end conditions. The 

original data points are in red and the spline interpolation function is superimposed 

in blue. The singular value spectrum corresponds to normal wake EEG, with the kink 

located around component 7 indicating an underlying dimensionality of 3. Notice how 

there is a considerable error located around components 2 — 3 due to the over fitting 

of the data. 
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Figure 4.14: Interpolation plot using a cubic spline with not-a-knot end conditions. The 

original data points are in red and the spline interpolation function is superimposed 

in blue. The singular value spectrum corresponds to wake EEG corrupted with EMG 

noise. There is no clear kink indicating the separation between signal and noise due to 

the extra degrees of freedom introduced to the signal by the external EMG generator. 

Notice how there is considerable error in the first section due to over fitting. 
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These results indicate a vast improvement over polynomial interpolation. There is 

very little noise in the interpolated function and the structure of the kink remains 

intact. However there still remains a slight error in the first section of the spline 

function which can be seen as a notch, which will unfortunately introduce noise into 

the Fisher measure. We can try and eradicate this notch by employing the more 

advanced technique of smoothing splines. 

A smoothing spline is a cubic spline which more or less follows the presumed underlying 

trend in noisy data using a smoothing parameter P which can vary between 0 and 1. 

For P = 0, this is the least-squares straight line fit to the data, while, on the other 

extreme, ie, for P = 1, this is the ‘natural’ or variational cubic spline interpolant. The 

transition region between these two extremes is usually only a rather small range of 

values for P and its location strongly depends on the data. It has been shown [13] that 

the value of P at which this transition occurs, and for which the ‘best’ fit is expected, 

is given by 

  (4.10) 

e=h'/16 

where h is the average distance between the given abscissae. Figures 4.15 - 4.17 show 

the improvement in the interpolation of the singular spectra shown previously, although 

there still remains a slight notch. The results for the calculation of the Fisher measure 

using smoothed splines are displayed alongside those using discrete difference equations 

(presented in the following section) at the end of the chapter.
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Figure 4.15: Interpolation plot using a smoothed cubic spline with not-a-knot end con- 

ditions, with optimal smoothing parameter P. The original data points are in red and 

the spline interpolation function is superimposed in blue. The singular value spectrum 

corresponds to normal wake EEG, with the kink located around component 13 indi- 

cating an underlying dimensionality of 6. Notice how the error that was previously 
located around components 2 — 3 when using the natural spline, has been smoothed 

out resulting in no significant error. 
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Figure 4.16: Interpolation plot using a smoothed cubic spline with not-a-knot end 

conditions, with optimal smoothing parameter P. The original data points are in 

red and the spline interpolation function is superimposed in blue. The singular value 

spectrum corresponds to normal wake EEG, with the kink located around component 7 

indicating an underlying dimensionality of 3. Notice how the error that was previously 

located around components 2 — 3 when using the natural spline, has been smoothed, 

but there still remains a significant notch. 
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Figure 4.17: Interpolation plot using a smoothed cubic spline with not-a-knot end 

conditions, with optimal smoothing parameter P. The original data points are in 

red and the spline interpolation function is superimposed in blue. The singular value 

spectrum corresponds to wake EEG corrupted with EMG noise. There is no clear kink 

indicating the separation between signal and noise due to the extra degrees of freedom 

introduced to the signal by the external EMG generator. Notice how the error that 

was previously located in the first section when using the natural spline, has been 

smoothed out resulting in no significant error. 
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4.2.4 Discrete calculation 

Differentiation describes the slope of a function at a point, which is a microscopic prop- 

erty of a function. As a result numerical differentiation is avoided where possible due 

to the extreme sensitivity of the derivative to minor changes in the shape of a function, 

especially where the data is obtained experimentally. The standard approach is to per- 

form a least squares polynomial fit or cubic spline interpolation and differentiate the 

resulting polynomials. However we have already seen that these techniques are unable 

to perfectly fit the singular spectrum, and so we shall perform numerical differentiation 

of the singular values in order to compare the two different approaches. The derivative 

of y = f(z) can be approximated by 

Wy 5, Ou — Heth fe) (4.11) 

which is the forward finite difference of y divided by the forward finite difference of x. 

The corresponding difference equation for the derivative at each point of the singular 

spectrum is given below by equation 4.12, where we know that h = 1. 

Alon) = On — ns (4.12) 

We know that that the simple forward difference is extremely sensitive to slight changes 

in the shape of the function [10], and will result in a very noisy Fisher measure. We may 

improve the numerical stability by utilising more data points in the calculation of the 

derivative to average out the sudden changes, and act as a low pass filter. However we 

must ensure that the averaging does not destroy the information contained within the 

kink structure. Pan and Tompkins [11] present an implementation of a derivative filter 

used to calculate the derivative at each point of an electrocardiogram (ECG). The filter 

is designed to retain the spike structure of the QRS complex and that of the slower T- 
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wave, seen during each heartbeat for patients who exhibit normal sinus rhythm (NSR). 

Since the structure in the singular spectrum that we wish to preserve is also apparent 

in the ECG we shall implement a modified version of the Pan and Tompkins filter 

[21], that takes advantage of modern processing power giving an improved response, 

to enable a cleaner Fisher measure to be derived. The difference equation (4.13) for 

the digital differentiator is given below, the sample delay is 2. 

AGE 20n + Ont1 es = 20n44 (4.13) 

4.2.5 Results 

The following pages show the Fisher measure results of the same 4 hour section of EEG 

data previously used for the entropy analysis. They show the original EEG trace, with 

the Fisher complexity measure superimposed. Figure 4.18 shows the three different 

Fisher measures calculated using smoothed cubic splines, forward difference equation 

and digital derivative filter, applied to wake EEG. Figure 4.19 shows the three different 

Fisher measures applied to EEG corrupted with EMG artifact. 
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Figure 4.18: Screen shot of GUI showing all three Fisher measures applied to wake 
EEG. From top to bottom they are: Smoothed cubic spline, forward difference, digital 

derivative. 
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Figure 4.19: Screen shot of GUI showing all three Fisher measures applied to wake 

EEG corrupted with EMG artifact. From top to bottom they are: Smoothed cubic 

spline, forward difference, digital derivative. 
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4.2.6 Conclusions 

The results confirm our hypothesis, that different methods used to calculate the deriva- 

tive at each point in the singular spectrum will result in Fisher measures that have 

different noise profiles, and are selectively sensitive to changes in different sections of 

the singular spectrum. 

Sensitivity to subtle changes in kink structure 

As expected we find the forward difference Fisher measure to be extremely noisy with 

random spikes occurring throughout the section shown in the middle plot of figure 4.18. 

Surprisingly the smoothed cubic spline Fisher measure is almost identical (top plot), 

and no real trend can be observed in either of these measures over the clean wake EEG 

section. However the digital derivative Fisher measure is somewhat smoother, and 

clear DC trends can be observed, along with spikes that clearly correspond to changes 

in the EEG structure (see bottom plot on figure 4.18 at ~ 55.4mins and ~ 56.5mins 

corresponding to the digital derivative Fisher measure) 

Sensitivity to EMG artifact 

Again both the smoothed cubic spline and forward difference Fisher measures are noisy 

and the dynamic range is poor, with values corresponding to sections of wake EEG 

occasionally equal to sections corrupted with EMG artifact (see ~ 107.7mins on top 

and middle plots of figure 4.19). We see a marked improvement in the digital derivative 

Fisher measure (bottom plot of figure 4.19), and can clearly distinguish between wake 

EEG and EMG artifact. Therefore the method used to calculate the derivative at 

each point of the singular spectrum, resulting in the best Fisher measure, is the digital 
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derivative filter for which the difference equation (4.14) is given below 

— 20n + Ont — Int3 — 2On44 : (4.14) Aon) 

4.3 Summary 

Table 4.1 below gives a summary of the relative performances of each complexity 

measure. When comparing the best Fisher measure (digital derivative) with the best 

entropy measure (first value 1) we see that the entropy measure is smoother, with a 

superior dynamic range, and we therefore conclude that although both measures are 

able to monitor the changes in EEG signal complexity the first value 1 entropy measure 

is a slightly better measure of complexity to use in this instance. 

  

  

  

  

  

  

  

[ Complexity measure | Kink sensitivity | EMG sensitivity ] 

Entropy (Power 1) Good Poor 
Entropy (First value 1) Good Good 
Fisher (Smoothed cubic spline) Poor Poor 
Fisher (Forward difference) Poor Poor 
Fisher (Digital derivative) Fair Fair           

Table 4.1: Table summarising the relative performances of each complexity measure 

However the entropy and the Fisher measures are fundamentally different. Entropy 

is a global measure that will remain constant irrespective of the ordering of compo- 

nents, and Fisher is a local measure that is highly dependent on the local structure 

(i.e. gradient) which is determined by the ordering of components. When using sin- 

gular value decomposition, the ordering of components is not explicitly determined, 

but is intrinsic to the method itself, whereby components are rank ordered by variance 

between eigenvectors. However for topographic systems where neighbourhood relation- 
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ships matter, and component ordering is not obvious or predetermined, such as for 

independent component analysis (ICA), the Fisher measure could be of considerable 

use. 
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Chapter 5 

Conclusions 

We have presented in this thesis a new application of entropy and the Fisher measure 

for monitoring the complexity of the EEG. 

In chapter 3 a technique known as dynamical embedding was introduced. The tech- 

nique allows us to reconstruct the dynamics of the underlying generator by modelling 

the interaction of the degrees of freedom associated with local sections of the manifold, 

which are non-linear fitting surfaces, using an arbitrary basis, which for this thesis was 

an orthogonal spanning set. 

The principal challenge in using this method was choosing the correct values for the 

embedding parameters. We have shown that a number of criterion intrinsic to the data 

and the problem itself dictate the values of the embedding delay 7 and the embedding 

dimension, M. The final selection for the number of delay vectors, n, was based on the 

convergence of the singular spectrum and experiments showed that parameters chosen 

based on these criterion were correct and captured the dynamics of the system. 

The complexity measures implemented in chapter 4 showed us that although entropy 

is a global measure, by appropriately normalising the singular spectrum, we made the 
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entropy measure sensitive to changes in the local structure of the singular spectrum 

which resulted in an excellent complexity measure. Furthermore we showed that care- 

ful discrete calculation of the gradient at each point of the singular spectrum using a 

derivative filter, reduced the noise in the Fisher measure making it of significant prac- 

tical use for the analysis of topographic systems where neighbourhood relationships 

between components matter and entropy is of little use in highlighting this. 

The testing of the complexity measures was performed using only one EEG record. The 

next task should be to test their performance on other EEG records whose waveform 

morphology differs from the record used in this project. Also single channel analysis 

should be applied to other EEG channels over much longer time scales, in order to 

highlight any possible longer term variability in the complexity of the signal. 
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Chapter 6 

Future Work 

6.1 Vigilance 

With the GUI in place, the first task for any future work would be to attempt to 

correlate changes in complexity with a scored measure of ‘vigilance’. However, the 

existing approach of attempting to detect subtle changes in subject ‘vigilance’, over a 

long section of EEG data, without knowing a priori the expected change in complexity 

is unrealistic. We should first limit ourselves to being able to discriminate between 

gross levels of ‘vigilance’, and for this I suggest we would require the following two 

types of EEG data: 

e A section of EEG recorded whilst the subject is given every opportunity to per- 

form at an optimal level of concentration. This would mean plenty of sleep and 

rest in the days leading up to the experiment together with a sound nutritional 

program and a moderate degree of physical exercise and plenty of mental re- 

laxation, since it has been shown that the state of the mind and suppleness of 

the body are highly interdependent. The surroundings in which the experiment 

takes place are also important and should be quiet and comfortable to induce a 
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peaceful state of mind and minimise any distractions. 

e An EEG recorded whilst the same subject has been deprived of the opportunity 

to cultivate a mind capable of single-pointed continuous concentration. Therefore 

sleep and rest should be deprived leading up to, and immediately prior to, the 

experiment and any form of exercise should be stopped and the diet adjusted 

accordingly. The surroundings can be less comfortable and distracting. 

Whilst these are clearly two rather unrealistic and extreme cases, and we are changing 

many variables at the same time, the initial aim should be to analyse ‘vigilant’ and 

‘non-vigilant’ data and investigate the structure of the complexity measures. 

6.2 Complexity analysis of topographic systems 

As mentioned in chapter 5, by choosing a different basis for modelling the local man- 

ifold, and corresponding technique where the ordering of components is not predeter- 

mined (such as ICA), we can investigate the effects of various ordering criterion on the 

Fisher complexity measure. 

6.2.1 ICA experiment 

We performed initial experiments using Hyvarinen and Oja’s fast-fixed point ICA al- 

gorithm [14] to calculate 150 non-orthogonal source components to correspond to the 

same number of components needed to model the local manifold when an orthogonal 

basis was used. Therefore we may write 

x= As (6.1) 
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where x is the matrix of n observed random vectors, A is the n x M mixing matrix and 

s is the source vector. We then ordered each component according to its total RMS 

power contribution to the original observed random vectors contained by x. To do this 

we rank ordered the RMS values of the columns of the mixing matrix, A. Figure 6.1 

shows the results obtained for the same EEG record over the first minute, with the 

Fisher measure superimposed over the EEG trace. It can be seen that the structure of 

the function from which the complexity measure is derived is now very different to the 

singular spectrum, and the Fisher measure also exhibits some interesting structure. 

Any further work in this area is expected to prove worthwhile. 

  

Figure 6.1: GUI snapshot for Fisher measure, using ICA with RMS ordering of com- 
ponents 
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Appendix A 

Discrete Fisher derivation 

Fisher’s information content, [(), is defined by 

1(6) = i (5 o«(P) P(6)d0 (A) 

where P(@) is the likelihood. In the case of the singular spectra, the prior probability 

distribution is uniform. Therefore, since the likelihood is given by 

posterior x prior x likelihood (A.2) 

and the posterior distribution is assumed to be the singular spectrum, P(@), we may 

regard P(@) as the likelihood. Therefore we may write 

1(0) = ef (Fa) P(0)d0 (A.3) 
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1(0) = i aa (Ad) 

So we may write the discrete version of the Fisher measure, over M samples, as 

  Iu(0) = s ae (A.5) 

where 

Pi(0) = a (A.6) 

and 

P(0) = 6; (A.7) 
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