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Thesis Summary 

Topography preserving maps have proved useful in the clustering of paroxysmal events 

in the Electroencephalogram (EEG) - in particular epileptiform events (EEvs) and arte- 
facts. With the aim of enhancing performance of pre-existing systems, a novel variant 

of Kohonen’s Self Organising Feature Map (SOFM) is considered. Realistic, synthetic 
EEvs have been generated using a 3-sphere head model, superimposed on true EEG. 

Pre-processing by means of Principal Component Analysis has allowed dimensionality 

reduction of the synthetic, interictal 25 channel EEG. This was clustered employing 

an Adaptive Subspace variant of the SOFM. The resulting clusters were interpreted to 

allow classification. This has permitted the development of a scheme to automatically 

detect and extract features from EEG traces, which offer results comparable with those 
in the literature over the synthetic data. 

Keywords: Electroencephalography, Feature Extraction, Topography Preserving 

Maps, Clustering, Epileptiform Events
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Chapter 1 

Introduction 

1.1 The Electroencephalogram 

May I succeed in achieving my plan ... and create a kind of brain mirror, 

the electroencephalogram! 

Hans Berger, from his diary of 16th November 1924. 

Publishing in 1929, Hans Berger, was the first to measure scalp electrical potentials 

caused by underlying brain activity in humans. He introduced one of the most potent 

tools in the diagnosis of neurophysiological disorders; the electroencephalogram (EEG). 

Berger’s crude system has been succeeded by an evolving range of idiosyncratic 

electrode placements culminating in an international standard, the 10-20 system (see 

Section 2.2), which emerged in 1958 in the work of H. Jasper. Originally, these 

EEG traces were stored on paper, which was then laboriously interpreted by a clinical 

electroencephalographer (EEGer). With the advent of computer based recording, vast 

quantities of EEG data are now stored. However, Petsche notes, that in EEG analysis 

such increases in raw data can ‘frequently decrease the efficiency of the work, for nothing 

is more difficult than to sift the chaff from the wheat’ [3]. With ever increasing amounts 

of data, now including video, there is a desire for automation of the processing. 

Electroencephalography is a widespread diagnostic procedure, with over half of 

EEG referrals specifically involving the diagnosis of epilepsy. EEG is a vital tool in the 

diagnosis of epilepsy [4], given that the patient need not experience an obvious parox- 

ysmal event. Diagnosis is made possible by the appearance of epileptiform patterns 

defined by Chatrain [5] as;
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Epileptiform Pattern. Interpretative term. Applies to distinctive waves or 

complexes, distinguished from background activity, and resembling those 

recorded in a proportion of human subjects suffering from epileptic disor- 

ders and in animals rendered epileptic experimentally. Epileptiform pat- 

terns include spikes and sharp waves, alone or accompanied by slow waves, 

occurring single or in bursts lasting at most a few seconds. Comment: (1) 

Term refers to interictal paroxysmal activity and not to seizure patterns. 

Cf. seizure pattern. (2) Probability of association with clinical epileptic 
disorders is variable. 

Despite these Epileptiform Events (EEvs) evidencing stereotyped features [6] and 

EEG being such a widespread, largely standardised, clinical procedure difficulties re- 

main in automating the procedure of feature extraction and classification. 

Whilst the EEG trace can be construed as a background process with ‘superim- 

posed transient nonstationarities’ (TNS) [7], the epileptiform transients of interest are 

overawed by a battery of artefacts (i.e. extracerebral sources such as eye blinks, mus- 

cle activity or electrodes), which are present in all EEG. The problem is aggravated 

by their similarity to the true EEv and the ultimately subjective definition of what 

constitutes an EEv. 

1.2 Automated EEG Analysis 

Automated EEG analysis has a substantial history in its attempt to relieve the bur- 

den on the trained electroencephalogropher. These fall into two groups; the first and 

simplest aims at data reduction, an event detection stage triggers a recording device 

thus substantially reducing the amount of data for later evaluation. The second, which 

is the ultimate aim of this study is, automated classification. Several techniques have 

been applied, including; 

e Mimetic Methods; whereby parameters of the data are extracted and compared 

to thresholds; exceeding combinations of these thresholds signals an event. 

e Template Matching; in which positive correlation with a template is used in 

classification. 

10
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e Parametric Methods; given the assumption that the background is stationary, 

deviation from this predicted stationarity is considered an event. 

e Syntactic Methods, in which positives are based on structured complexes of fea- 

tures. 

e Neural Networks; which are trained to recognise EEvs. 

e Expert Systems; which attempt to use knowledge based reasoning in a fashion 

akin to a trained EEGer. 

However, due to unacceptable rate of false positives, which result in misdiagnosis, these 

systems cannot be relied upon in the routine EEG setting [4]. 

Glover, Raghavan, Ktonas and Frost [8] note that ‘Invariably, when an automated 

detection system’s false positives are shown to an EEGer, he points to temporal and 

spatial (multiple channel) contextual clues to explain why the waveforms were not in- 

cluded in the visual scoring’. Glover et alia emphasize contextual information in their 

knowledge based system. This reflects a growing awareness in the field of the impor- 

tance of the EEv’s contextual information for correct classification. Such systems often 

remain useful, achieving the first aim, that of data reduction e.g. Gabor and Seyal [6] 

considered the effectiveness of an Artificial Neural Network system as an epileptiform 

event detector. They concluded that the system, due to a significant false positive 

count, is only robust enough to be useful as a strategy for data reduction of long term 

EEG recordings. 

Recent implementation of Topography Preserving Maps (TPM) [9], coupled with 

a mimetic stage and a fuzzy logic decision stage have proven favourable in comparison 

with results of previous automations. Consider Table 1.1. 

Low values for False detections per hour, and high values for Selectivity (a measure 

of the system’s discrimination between EEvs and artefacts) and Sensitivity (which 

reflects the proportion true EEvs detected) are indicators of useful performance. 

The TPM utilised in System 9; Kohonen’s Self Organising Feature Map (SOFM), 

is not considered ideal, however, for the clustering of features that have undergone 

11
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Sys Method Hours | % EEv | Train | Sensitivity | Selectivity | Error/ 
/ Test hour 

1 ANN + ANN 0.043 ? 6/4 0.9000. 0.6900 ~1023 

2 Mimetic 2.0 100 | Blind | 0.5900 0.8900 37 
3 Mimetic 33.0 100 | Blind - 0.4100 117 
4 Mimetic + state | 33.0 100_| Blind - 0.6700 AT 

5 Mimetic + ANN 0.3 100 Same 0.7400 0.7400 ~ 804 

6 Mimetic + ANN 0.3 100 | Same 0.4600 0.4600 ~ 5598 

7 Mimetic + 3.0 73 Same} 0.5300 1.000 0 
Expert System 

8 Mimetic + 3.2 88 Blind 0.1400 0.8100 2 

Expert System 

9 | Mimetic + SOFM | 3.2 88 Blind | 0.5500 0.8200 7 
+ Fuzzy Logic                 

Table 1.1: A comparison of the sensitivities, selectivities and false detection rates 
between spike detection systems. After James et al [2]. For definitions of Selectivity, 
Sensitivity and Error Rate see Section 4.3.1 and Section 4.3.2. The Percentage EEv 

defines the percentage of Epiletiform Events in the Training Set. 

transformation. A recent paper on the generation of synthetic EEvs [1], suggests 

that a common dipole morphology, which undergoes elementary transformations, can 

replicate the statistics of the EEG trace. As such an invariant feature detector should 

offer improved performance in the place of the SOFM. 

A variant of the SOFM, inspired by the Learning Subspace Method [10], employs 

the property of subspaces to accurately model classes invariant of transformation of 

the data. 

The approach considered in this Thesis involves acknowledging the data reduction 

methods previously researched as a first stage. The resulting reduced data will be con- 

sidered as candidate epileptiform discharges (CEDs). These candidates (both true EEv 

and artefact) will remain in an appropriate window of context, spatial and temporal. 

These CEDs will then be clustered with an unsupervised clustering algorithm. The 

resultant map will then, in a principled fashion, be used to extract class discriminant 

information. 

12



CHAPTER 1. INTRODUCTION 

1.3. The Thesis in Brief 

Outline of this and succeeding chapters. 

Chapter 1 Has seen the introduction of the EEG, and outlined the desirability and 

methods which have been applied previously to the automation of EEG analysis. 

Chapter 2 Here the concepts which underlie the generation of 10-20 System EEG 

traces will be briefly considered. These will be extended towards an explanation of 

the desirability and construction of the synthetic data set. Data reduction, or event 

detection is also addressed. 

Chapter 4 This section offers brief discussion of the merits of alternative cluster- 

ing methods. The novel nature of the Adaptive Subspace SOFM is considered, with 

thought given to the extraction of measures of performance from trained ASSOFMs. 

The practical steps involved in training the ASSOFM is outlined. 

Chapter 5 Collated results from implementation of the ASSOFM. 

Chapter 6 A discussion of the results, relating these critically to the choices made 

in previous sections, and offering comparisons with previous studies. 

Chapter 7 Conclusions and reflections on the results discussed in Chapter 6. Av- 

enues for related investigation. Closing comments. 

13



Chapter 2 

The EEG 

2.1 Introduction 

This chapter briefly considers the origins of EEG data, detailed examination is beyond 

the scope of this report and the reader is directed to other texts [11]. Focus is then 

directed to the EEvs, their morphology and the desirability of synthetic EEv. The 

generation of synthetic data is addressed before EEG data reduction strategies are 

considered. 

2.2 The Neocortex 

In mammals, the largest section of the brain is called the Neocortez. Lying immediately 

within the skull, it is elaborately folded to allow a large surface area to be compressed 

into a small volume. This small volume is considered vital to conscious process, and 

the electrical field it generates is reflected in the EEG. 

The traces considered in this study are from electrodes placed on the scalp according 

to, a widespread variant of, the 10-20 system of Jasper [12]. Consider Figure 2.1. The 

considered implementation of the 10-20 system presented by Nuwer et alia [13], consists 

of 25 electrodes: Fp1, F3, C3, P3, 01, F7, T3, T5, Fp2, F4, C4, P4, 02, F8, T4, T6, 

Fz, Cz, Pz, F9, T9, P9, F10, T10 and P10. Key to regions of the Neocortex; F - 

Frontal, P - Parietal, C - Central, O - Occipital. Note that the ‘central’ appellation 

14
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nasion 

  

Inion 

Figure 2.1: The 10-20 System for Electrode Placement, after Jasper (1958). Fpl, F3, 

C3, P3, O1, F7, T3, T5, Fp2, F4, C4, P4, 02, F8, T4, T6, Fz, Cz, Pz, F9, T9, P9, F10, 
T10 and P10. Key to regions of the Neocortex; F - Frontal, P - Parietal, C - Central, 

O - Occipital
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is for convenience only, there is no such named region of the Neocortez. The nasion is 

the bridge of the nose, and the inion a raised segment of bone at the base of the skull. 

2.3 Analysing the EEG 

Classification of EEG is done grossly by frequency e.g. the Alpha rhythm, of 8-13Hz, 

which occurs in the posterior of the head, particularly in the occipital region, or in the 

case of localised transients such as those considered within this report, by morphology 

e.g. the epileptiform pattern defined by Chatrain in the Introduction (see Figure 2.2 

and Figure 2.3). 

c4-p4 

Figure 2.2: A Sharp-Wave, from a single EEG channel, clearly distinct from back- 
ground. 

£p2-£4 

Figure 2.3: A Spike, from a single EEG channel, clearly distinct from background. 

Localised transients are often extra-cranial sources, know as artefacts and many 

evidence a highly similar morphology to spikes and sharp-waves. Examples of these 

include; eye-blinks which result in frontally localised spikes, muscle contractions which 

16



CHAPTER 2. THE EEG 

generate gross electrical fields to which the EEG is sensitive, and artefacts of the record- 

ing apparatus where by movement of electrodes can cause what is termed ’electrode 

pop’ which is evidenced by a localised spike on a single channel. 

The consistent labelling of sizeable data sets takes considerable human effort and 

expertise, consequently they are often proprietary in nature, being commissioned and 

employed in the calibration of commercially available systems. Even with available 

data, the subjective nature of an EEv’s definition renders these data sets inconsistent 

between EEGers, who given human fallibility, or even apriori knowledge of the patient’s 

state will make differing decisions. This also results in a fundamental difficulty in 

the evaluation of any automated EEG analysis in comparison with previous systems 

employing differing test sets. This is further aggravated by the idiosyncratic levels of 

certainty ascribed to potential events that suffer no universal convention. For reliable, 

replicable results there is a requirement of objectively defined data sets, where an EEv 

may be labelled consistently. This is impossible with labelling by expert, or committees 

of experts, as there is no objective criterion for a true EEv. In an attempt to alleviate 

this limitation, this Thesis considers construction of a synthetic data set. 

The EEG is a linear summation of electrical activity within the brain [14]. An EEv 

can be modelled, as superimposed TNS on an additive background noise process, if we 

assume that the TNS is independent from the background activity. Given a suitable 

model of the physiological basis of these TNS, adding it to the EEG of a normal 

individual would give rise to a biologically plausible, synthetic EEv. Further, normal 

EEG traces could be used as a source of artefact TNSs, allowing the data set to contain 

true artefacts, as well as the synthetic EEv superimposed on true background. There 

are many examples of normal EEG available. Given the previous scheme, an arbitarily 

sized, objectively labelled data set could be generated. As this is an exploratory report, 

and not an attempt to produce a diagnostic utility, it is considered that such a data 

set will be useful for proof of principle. It eliminates the problems associated with 

subjectively labelled data whilst retaining biological plausibility with the caveat that 

the resulting system will be proved only over the given model of EEvs. 

17
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2.4 Synthetic Data 

A plausible modelling of the abnormal neuronal activity, which underlies an EEv was 

recently considered by Kobayashi et alia [1]. The field generated by the action of neu- 

rones can be modelled as a current dipole. EEvs can be synthesised using this current 

dipole with fixed, randomly determined, location and orientation within the brain, and 

a moment having a spike-like waveform. The EEG trace can then be determined at 

each electrode in the 10-20 system using the potential field obtained by solving the 

forward problem! for the current dipole model with a 3 sphere head abstraction. The 3 

spheres referring to the brain, skull and scalp. This noiseless, synthetic EEv can then 

be superimposed on a background segment from a normal EEG trace giving rise to an 

event that satisfies Chatrain’s subjective definition. 

The synthetic EEvs were the combination of two transients, constructed in turn 

from the dipoles in the following Equation, split into spike transient( 2.1) and slow 

wave transient components ( 2.2). 

81(t) = 3000 - asp exp{—(200 + 50: bgp): || t — 0.01 - cy — 0.096 ||} (2.1) 

+1500 - dy» exp{—(40 + 15 + dy): || t — 0.01 - cy» — 0.192 ||} (2.2) 

Variables asp, bsp, Csp, @wvs bw» aNd Cwy were random on the interval [0,1] to intro- 

duce jitter in time and amplitude, with the subscripts referring to the spike (Equation 

component 2.1) and slow wave compnents (Equation component 2.2) in turn. 

A further set of variables were employed to locate and orient the current dipole 

within the upright skull, with the centre considered as the origin. 

e ¢, 4 and f determine the orientation and distance along that orientation of the 

dipole. i.e. The eccentricity f can be considered the distance along the radius 

defined under spherical co-ordinates by @ and 6. 

e Dz, Dy and Dz determine the current dipoles moment. 

'The forward problem refers to classic electrostatic theory, for a useful reference see Nunez and 
Katznelzon, 1981 [14]. This study employs the algortithm implemented by Kobayashi et al. [1] 

18
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Synthetic Dipole Moment 

  ce a 
Figure 2.4: Single Spike and Slow Wave dipole as defined in Equation components 2.1 

and 2.2. 

As an example of the above transients (2.1 and 2.2), Figure 2.4 displays a sample 

spike and slow wave dipole. Figure 2.5 display the results of solving the forward model 

of the 10-20 system’s 25 channels. Figure 2.6 show the resultant superimposition of 

background EEG. 

The EEG, both for background and artefacts, was extracted from 4 patients. These 

each consisted of 2 minute readings on the hour for 48 hours to give a broad sampling 

of EEG activity over a resulting 6 hours and 24 minutes. The EEG data was recorded 

form patients in the Montreal Neurological Institute and Hospital in the long term 

monitoring unit using the standard 10-20 system outlined above, sampling at 200Hz. 

2.5 Data Reduction 

With the availability of normal EEG, attention was directed at extracting both artefact 

TNS, and suitable background. 

19
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25 Channels 

10-20 System 41 Samples (205ms) 

  

Figure 2.5: Single Spike and Slow Wave dipole propagated through 3 Sphere Model to 
the 25 Channels of the 10-20 System using algorithms impemented by [1]. 

25 Channkls 

10-20 System 41 Samples (205ms) 

  

Figure 2.6: Single Spike and Slow Wave dipole propagated through 3 Sphere Model to 

the 25 Channels of the 10-20 System with additive noise which assumes independence 
of epileptogenic event from background. 
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The aim of this Thesis lies, not in enhancing previous methodologies for event 

detection, but improving the classification of EEvs. Hence, a simple implementation 

of the mimetic method was used in the extraction of artefact TNSs and superimposed 

synthetic EEvs. The mimetic approach employs a series of thresholds, detailed below, 

which characterise the data based on the parameters of the data. The aim of this 

mimetic stage is data reduction; to admit at least 100% of the synthetic EEvs and as 

few artefacts as possible. This study’s implementation differs from previous work in the 

tuning of the accuracy of this mimetic stage, i.e. the data over which the parameters are 

chosen are definite epileptiform, without the spurious outliers of subjectively labelled 

data. This results in a first stage, over the chosen parameters, that can be considered 

optimal i.e. all synthetic EEvs are detected. However, the parameters chosen may not 

be the most efficient if consideration is given to the number of artefacts they also pass 

onto the classification stage. 

The detection of events allows the extraction from the data set of windowed can- 

didate events. It also ensures there is no bias in the data set in that the artefacts and 

synthetic EEvs both pass through the same thresholds. 

The heuristic method used to extract artefact TNSs (and ultimately the superim- 

posed synthetic EEvs to ensure parity) was as follows; 

e The first order differential of each of the 25 channels of normal EEG was taken 

over a section of 1200 samples, or 6 seconds sampled at 200Hz. 

e An increase in rate of change be followed by a decrease in rate of change or 

vice a versa, and the difference between indicate a certain sharpness, then a flag 

indicating a vertex was set. 

e The true value at this flagged point was then compared to a floating average of 

recent values (within 50ms), which set a distinction indicator. 

e The vertex and distinction indicators were tallied across channels, i.e. at a given 

instant in time; if there were sufficient flagged channels then it was considered a 

Candidate Epileptiform Discharge (CED) at this point. 
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Detecting artefacts introduced a dilemma; to extract artefacts, and suitable artefact 

free background EEG, required the setting of thresholds which would admit 100% of 

the synthetic EEvs. Without having a selection of EEvs available, it was impossible to 

determine these parameters without visually scanning the data for periods of suitable 

background onto which the synthetic EEvs could be projected. In turn, the parameters 

that admitted these spikes could then be used to extract artefact TNS. 

These parameters were developed over the initial segments of patient A, and then 

tested over segments of patient B and patient C. 

Empirically it was noted that the difference between initial and following slope that 

indicated a vertex should be 0.003, on data in the Volts range. The prominence above 

the floating average was to be 0, and the tally for these flags was determined to be at 

least 4 for a suitable CED, i.e. to avoid isolated spikes dominating the artefact data set. 

EEG segments which had no CED, defined by these thresholds, were then employed in 

the construction of synthetic data, which were in turn tested to ensure the synthetic 

EEvs were detected as CEDs. 

Empirical results also suggest that the synthetic EEG would rarely tally above 20 

and that this could be used as a discriminant against gross artefacts such as muscle 

artefact. Whilst the number of artefacts admitted to any classification stage will higher 

it entails the misclassification of some synthetic EEvs before that classification stage. 

Introducing this, as an arbiter, is beyond the scope of the mimetic stage that is intended 

purely as a data reduction strategy. 

The resulting CEDs were extracted embedded in suitable context. That is; 41 

samples x 25 channels, in which the TNS vertex was situated at the 15th sample. 

This was to maintain parity with a previous study by James [9], which considered this 

dimension of context to retain maximal information. 
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Chapter 3 

Clustering with Topography 

Preserving Maps 

3.1 Introduction 

Clustering is often used to aid exploratory data visualisation, or for the optimal place- 

ment of basis functions in Radial Basis function networks. Clustering entails the pro- 

jection of points in a given data space R* into another RY (often called feature, or 

projection space), in which those with similar properties are grouped. Topography 

Preserving Maps (TPMs) attempt to ensure that data which are close under some 

metric (e.g. Euclidean distance) remain so after mapping, often allowing the dimen- 

sion y to be less than « to aid visualisation. 

This behaviour can be usefully exploited in the construction of a classifier. Clus- 

tering, in and of itself, does not allow the classification of events. To extract a useful 

classifier for novel data, a further stage of calibration is required which utilises the 

clusters as indicators of class membership. 

3.2 Selection of Topographic Mapping Algorithm 

In the following passages, a brief description is given of selected TPM algorithms, 

before concluding with those algorithms adopted for further work. These are then 
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given a more rigorous exposition, especially in the case of novel, or unusual variants. 

Examples of TPMs include; 

e Kohonen’s Self-Organising Feature Map (SOFM) [10]; Between 1981 and 1982, 

Kohonen formulated a robust, unsupervised, globally ordering map algorithm; 

the SOFM. The SOFM produces an elastic net of vectors (nodes) that form an 

approximate model of the N dimensional input space’s density function. This 

elastic net (commonly two dimensional), on convergence forms a grid of vec- 

tors that retains information about the structure of the data. When this shows 

smooth transition from node to node, as in the SOFM, this is termed an ‘ordered’ 

fashion. The main uses for this self-organising process lie in data visualisation 

and the creation of abstractions where trivial details are excised from the repre- 

sentation. The SOFM is not a classification algorithm. However, classification 

can be achieved by examination of the known training set and the clusters which 

the respectively classed data points favour. Further the SOFM generalises, i.e. it 

allows the clustering of novel data after training is complete. 

e Bishop, Svensen and William’s Generative Topographic Map (GTM); Presented 

in 1997, the GTM was introduced as an alternative to the SOFM [15]. Alter- 

nate in the sense that it purports to replicate the acknowledged usefulness of the 

SOFM without recourse to biologically inspired heuristics. The GTM employs L 

latent variables (again often two) to explicitly model the density function of the 

D dimensional input space. The algorithm uses the Expectation-Maximisation 

(EM) algorithm, which confers guaranteed convergence, to determine the map- 

ping that generates the hidden variables. 

e The Sammon Mapping; Published in 1969, the Sammon Mapping focuses on the 

structure of the data [16]. Inter-point distances are calculated, the algorithm 

attempts to retain these, within a margin of error, in the projection space. This 

is performed by the minimisation of this error function, termed stress. There are 

several implementations of this error function, perhaps the most obvious of which 
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is gradient descent. Ultimately, this algorithm does not define a generative func- 

tion that would allow novel data to be projected into the feature space, without 

re-calculating the inter-point distances and in turn the stress minimisation. 

The SOFM, whilst biological and heuristic in inspiration has been employed suc- 

cessfully in a variety of applications, including the one at hand [9]. There is also a large 

body of supporting literature, which offer detailed suggestions on how to implement the 

SOFM. Further, it is readily amenable to modification, the neural network community 

suggests that the variants are too widespread to catalogue. 

The GTM offers several advantages, primarily its rigorous mathematical basis. In- 

deed it was inspired to be a rigourous alternative to the SOFM. However it relies, 

ultimately, on the correct definition of several a priori factors; e.g. the number and 

placement of the basis function of the generalised linear network which underlie the 

mapping function are the most prominent. Further, the GTM is new, and as such 

literature on the calibration of these variables is minimal. 

For the Sammon Mapping and related methods (e.g. multi-dimensional scaling), the 

lack of a functional mapping prohibits their use where we require the classification of 

later, novel data. A recent implementation entitled Neuroscale, which employs a feed 

forward network to model the Sammon Mapping, removes this restriction. Its primary 

advantage over the raw Sammon Mapping lies in that it allows the stress terms to be 

modified by a priori knowledge, ameliorating the clustering of similarly classed data 

points. A brief treatment of Neuroscale with regard to EEG is presented by Noel [17]. 

This Thesis is aimed at overcoming the limitations of previous implementations 

of an automated system for EEv classification [9] which employed the SOFM. The 

SOFM based classifier is considered sub-optimal for data that has undergone elemen- 

tary transformations, i.e. Kohonen notes that the SOFM lacks the ability to detect 

invariant features [10]. Hence the GTM, which by inference would also demonstrate 

this limitation, would only be a useful candidate for a comparative study. However, as 

noted, the SOFM is amenable to modification. Hence this Thesis is directed towards 

the exploration of the viability of a novel implementation of a variant SOFM which 
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overcomes this restriction. In this thesis, the pursuit of a novel implementation of the 

SOFM will be considered. 

3.3. Kohonen’s Self Organising Feature Map 

Before considering extending the SOFM, the basic form is outlined below. The SOFM 

is more often than not employed in the form of a two-dimensional lattice for that is 

the easiest to visualise. 

A simple SOFM, which defines the mapping using the Euclidean metric will be used 

to clarify the method by which the globally ordered mapping emerges. 

The following offers the basic method of how a SOFM clusters data. 

Consider now the mapping of a set of vectors; z(t) € R", to a set of i parametric 

reference vectors, or nodes. Define the nodes of the SOFM as; m; € R", i.e. they have 

the same number of elements as the input vector x(t). 

These model vectors m, will come to represent the distribution through the fol- 

lowing algorithm, and in light of the eventual convergence properties presented below 

(Equation 3.2) these may be selected initially at random. 

The nodes are connected in parallel to the input z(t). This connection entails the 

comparison of the vectors in z(t) and m,, from which it can be determined under some 

metric (in this case Euclidean) which of these nodes m; is the closest. This node is in 

turn designated m-, the winning node; 

e=argmin,{|| « — m; ||} (3.1) 

This winning node me, is then altered to reflect the input x(t), the proportion 

by which this update occurs is termed the learning parameter a, where 1 would see 

the node replicate the data, and 0 would see no change. During this learning stage, 

those nodes which lie topographically near each other, i.e. nodes within a defined 

neighbourhood will be similarly influenced by x, or by some function of x related 

to distance from the winning node. This function is denoted h,;(t). This ensures 

a smoothing of the neighbouring nodes, from which the global ordering ensues as 
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convergence is approached. 

It is apparent from the following equation that any arbitrary value may be applied to 

m,(0) (as noted above), given h,i(t) + 0 as t + oo i.e. the conditions for convergence; 

mj(t + 1) = m;(t) + hei(t)[2(t) — mi(t)] (3.2) 

The simplest of choices for h,; is that of a so-called ‘top hat’ function. This sees 

the neighbourhood of updated nodes include those abutting m, and in turn those 

abutting these. This employs a universal value of the learning rate parameter a over the 

neighbourhood. Both the size N of this neighbourhood (a square in two dimensions), 

and the value a decrease monotonically throughout training, with a decaying from 1 

to 0, and N from some initial value to 1. Kohonen notes from empirical studies that if 

the network is not very large i.e. less than a few hundred nodes then the selection of 

these initial parameters is not crucial to convergence. 

On the presentation of novel data, the closest node under the metric would be 

considered the winner. If it is assumed that some form of calibration has taken place, 

this node will have been assigned a class and hence classifiy the novel datum. A method 

of calibration is considered in Chapter 4. 

3.4 The Adaptive Subspace Self Organising Feature 

Map (ASSOFM) 

Having considered the basic SOFM, attention is now focused of the possibility of ad- 

dressing the underlying cause of the SOFM inability to model data invariantly under 

transformation. 

In certain applications, classes can be ably represented by a set of basis vectors that 

span a linear manifold, or subspace. This is demonstrated by the Learning Subspace 

Method (LSM) of Kohonen. It is possible for these basis vectors, appropriately chosen, 

to be able to model data which has undergone elementary transformations invariantly, 

i.e. linear combinations of the basis vectors allow the retention of invariant classification 
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were mundane classifiers employing template matching, or the Euclidean metric for 

example might fail. 

As noted SOFM itself is not an optimal solution for the classification of data that 

have undergone elementary transformations. 

If the concept of subspace classifier and adaptive node are coupled then there is a 

possibility that a useful self organising visualisation tool and classifier could be con- 

structed, which would be blind to elementary transformation between similarly labelled 

data. Kohonen has already considered an implementaion which combines the SOFM 

and adaptive basis vectors which he termed the ASSOFM. However, Kohnonen’s sug- 

gested variant pursues temporal invariance, whereas in this Thesis the temporal isola- 

tion of the feature is already considered in the mimetic stage of pre-processing consid- 

ered in Chapter 2. 

It can be seen from the construction of the synthetic data set in Chapter 2, that 

the underlying epileptiform discharge has a stereotyped morphology that undergoes 

several transformations. This suggests that the considered EEG data classification 

may be susceptible to modelling with adaptive subspaces, where template matching et 

alia have given sub-optimal results. 

To clarify; the nodes of the standard SOFM are to be replaced with sets of adaptable 

basis vectors, which in turn span an adaptive subspace. Such an implementation 

demands the creation of a subspace metric to allow the definition of the winning node 

m,, and a means of adapting the spanning basis vectors in relation to the learning 

parameter a and the data, such that the distance under the new metric is reduced. 

3.4.1 A New Metric and the Rotation Operator 

(i) Distance Between Subspaces 

After Oja [18]. To give a distance between two subspaces L' and L? a metric must be 

defined. Such a metric will be defined by the maximum distance from the unit sphere 

in one of the subspaces, to the other. Let S! denote the set; 

S' = {x |e L', || x |= 1} (3.3) 
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i.e. the unit sphere in L!, Let P? denote the projection matrix on L? 

Pp 

P= sD uur, (3.4) 
i=l 

where L? is given in terms of its orthonormal basis {uj...up}, where p is the number of 

linearly independent vectors spanning the subspace L?. This gives rise to the metric; 

6(L', L?) = max{(«"(I — P?)x)? | x € S'} (3.5) 

6(L’, L?) = maxmin || x —y ||,z € S',y € L’. (3.6) 

Perhaps a more intuitive notion to that of distance would be that of angles betwixt 

subspaces. Watkins [19] notes that the above metric may be seen in terms of the relative 

orientation of two k-dimensional subspaces, which is in turn described by k canonical 

angles. The metric defined above can be seen as the sine of the largest canonical angle 

between L! and L?. A MATLAB implementation is noted in the appendix. 

(ii) Adaptive Basis Vectors 

Having now defined a metric, some means of updating the winning node, and neigh- 

bourhood is required, in such a fashion that the distance between node and data sub- 

space is reduced. An appeal can be made to the second interpretation of the metric, 

and the idea of rotation i.e. to allow reducing this angle, and hence the distance. 

Consider the projection matrix 

ast 

ain 
Nei (3.7) 

with z € R" a vector. This matrix is symmetric and idempotent. A is the projection 

matrix onto L+(zx) orthogonal to z: for any v € L+(x), Av = v, while Ax = 0 [for proof 

see Ojal. 

If we act on L with A, i.e. L’= AL, then all the basis vectors will be projected into 

L+. All their linear combinations are therefore also in L+. The transformation 

Tat ===) 0 (3.8) 
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can thus be viewed as a rotation of subspace L to a direction orthogonal to vector z. 

If we now consider L’ as one of the classification subspaces, and the vector x as our 

input, we see that the projection of x onto this subspace has the value zero, which 

entails that if we used our metric above, then perfect classification i.e. zero distance 

has been achieved. If we replace the projection matrix by an elementary matriz of the 

form A = I + axz™ with x defined as before, and a scalar parameter a, a learning 

paramater lying on the interval (0, 1], we have feasible way of rotating a subspace such 

that the projection of a given point x, can be improved as a function of the learning 

rate. This allows the update of a given subspace node, with respect to the data, over an 

arbitary value of the learning rate such that the distance from the node subspace and 

that of the point is reduced. A MATLAB implementation is noted in the appendix. 

Coupled with the new metric, which allows the determination of the nodes to be 

updated, all the elements needed to construct an ASSOFM clustering algorithm are in 

place. 
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Chapter 4 

Methodology 

4.1 Introduction 

With consideration already given to the nature of the data set, and the theory of clus- 

tering methods, this chapter relates the practical implementation and interpretation of 

these clustering methods as a classifier. 

4.2 Probabilistic Interpretation of the SOFM used 

for Classification 

Given the generation of clusters using the ASSOFM, a method of implementing this as 

a classifier is required. That is, once training is complete, the ASSOFM when presented 

with a CED should offer a probability of the CED being a true EEv. Each node must 

offer a probability between 1, for Epileptiform Discharges, and 0 for artefacts. A 

principled calibration of the SOFM was presented by James [9]. Some elements of this 

method are reproduced here. 

In contrast with the method presented by Kohonen, where a label is assigned due 

to maximal voting, per SOFM node, over a calibration set (often the training set) an 

alternative approach is suggested by James [9]. Given that this study will be directly 

compared with this previous study that method, outlined below, is employed for parity. 
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The success rate for each node 7 is given by; 

Si g= (4.1) 
Gy 

where s; is the number of EEvs detected, and n; is the number of detection in total for 

that node. By appealing to Bayes Theory, it is possible to assign probability to each 

node. This probability results from a weighted mixture of the prior probabilities and 

the posterior probabilities. This gives rise to the following estimate of the probability 

of any given node 4; 

  
pasate 

Ve BED 

Consider the following simplified example; Two nodes h and i. Node h was the winning 

(4.2) 

node 10 times, 9 of which were EEvs and 1 an artefact. This gives a success rate, as 

defined above, of 0.9. However, employing the probabilistic estimation, this results 

in a value of 0.83. If node i was found to be the winning node 100 times, 90 times 

out of which for EEv waveforms, then the success rate remains as for node h but the 

probability now becomes 0.89. This reflects a greater confidence in node i as its results 

are over a larger sample. 

Consider also, if node h was victorious for true EEvs 10 times and node i accurate 

for 100 classifications, this would offer a success rate 1.0. However, with the suggested 

scheme above of estimated probabilities, node h would have an value of 0.86 whilst 

node 7 would be assigned 0.99. 

4.3 Measures of Performance 

Given a method of assigning estimated probability labels to each node, we want a 

measure of performance of a given ASSOFM, for a given probability threshold used in 

classification. 

4.3.1 Selectivity and Sensitivity 

The final gauge of the classifier performance is not the number of EEvs detected, as 

there remains the likelihood that it will classify a number of artefacts as EEvs. To 
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illuminate this a ratio of correctly and incorrectly classified events must be employed. 

Two new properties are be defined to allow this measure of performance; Sensitivity 

and Selectivity (after James [9]), which are a function of the classification threshold 

di,, which defines those CEDs classified as EEvs. 

correct EEv detections(d;;,) 

total number of true EEvs ’ G5) 
sensitivity (di,) = 

and 

correct EEv detections(d;;,) a a 
total number of detections(d,,) a 

selectivity (di,) = 

Sensitivity is a measure of EEv detection, with 1 indicating only true events being 

detected. However, this must be contrasted with selectivity, a measure of how many 

unwanted artefacts enter the classification. A selectivity of 1 would indicate a discrim- 

inating classifier that resulted in no incorrect classifications. It is possible to have a 

system that detects all EEvs, but due to a low selectivity be useless, thus a balance 

between the two measure is desirable. In the case of a medical diagnosis this balance 

can be seen as the dilemma between missing a clinical event i.e. an EEv, which has se- 

rious consequences, or misdiagnosing an individual, which whilst serious would appear 

to be less important. The obvious optimal would see both as 1. 

Selectivity and sensitivity are functions of the probability threshold d,,, above which 

it is considered classification of an EEv to be accurate. The definition of an actual EEv 

could be altered by raising (or lowering) this probability threshold, this would have an 

effect of increasing selectivity and decreasing sensitivity (or vice versa). To exploit this 

a range of thresholds must be examined. 

4.3.2 False Detection Rate 

The False detection rate, often measured per hour, is simply the number of artefacts 

erroneously classified as EEvs by the system over the period of one hour of EEG. 

This is important in measuring the practical utility of the system (in tandem with the 

abstracted measures of sensitivity and selectivity). If this rate is zero, then there is 

certainty over any positive classification. Given the suspicion of a high false positive 
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rate, this entails a manual re-examination of the data, defeating the aim and reducing 

the system to a data reduction strategy. 

4.4 The Dimensionality of the Data 

In the Introduction, the importance of the retention of contert into which the CED 

was embedded to visual, and hence must be in turn to human like automatic classi- 

fication was noted. However, the dimensionality of the data offered by the mimetic 

stage requires some further investigation. It would be desirable if the data dimension- 

ality could be reduced, whilst retaining the implicit information, even from a purely 

computational point of view. Preprocessing’s primary aim is the improvement of the 

Signal to Noise ratio, allowing the enhancement of the performance of any next stage, 

including those considered here. 

There are a variety of methods for dimensionality reduction including; the ubiq- 

uitous Principal Component Analysis (PCA), Singular Value Decomposition (SVD), 

Independent Component Analysis (ICA, a form of Blind Source Separation), Projection 

Pursuit, Canonical Variables and the SOF itself. 

Previous research suggests that EEG data has a low underlying dimensionality [1], 

ie. a dimensionality less than the 25 channels of the 10-20 EEG. In this study it 

is known that two generators underly the synthetic data without noise. Anecdotal 

application of ICA to the extraction of the underlying generator in EEvs has offered 

a dimension of 1. It is therefore considered that dimensionality reduction can be 

employed in the expectation of the retention of information. 

The aim of this Thesis is not to produce the optimal utility but rather exploit the 

theorised qualities of the ASSOFM. As such, an ideal pre-processing stage has the 

requirement of not affecting classification, but merely aiding it by rendering the data 

in a concise form.
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4.4.1 Principal Component Analysis 

Initially PCA was considered, also called the Karhunen-Loéve transform. PCA is a 

linear method of dimensionality reduction that results in a data re-expression that 

is a linear combination of the original variables, thus retaining the same dimension. 

However, it returns information about the relative importance of these components 

in the terms of variance explained. This allows specific elements, which have least 

associated variance to be discarded, and hence the dimensionality reduced in a fashion 

that attempts to retain maximal information. 

The Principal Components may be extracted practically using this algorithm; 

1. First compute the mean of data point and then subtract this. 

2. The covariance matrix of the resultant is then calculated from which the Eigen- 

values and Eigenvectors are then found. 

3. These Eigenvalues are ordered by variance explained. The data is then projected 

onto the Eigenvectors, thus giving rise to the new variables each of which has a 

related variance. 

4, By discarding those of lowest variance, the dimensionality is reduced whilst re- 

taining maximum information. 

Principal Component Analysis is not without limitations. The Principal Components 

are not invariant to scaling in the data, though this can be alleviated by the use of 

normalisation post subtracting the mean. PCA evidences sensitivity to outliers, and 

being a linear technique it may return sub-optimal components that do not reflect the 

implicit dimensionality of non-linear data. 

4.4.2 Results and Conclusions of PCA/SVD applied to the 

Candidate Epileptiform Discharges 

The CEDs had dimensions of 41 samples x 25 channels. Spatial information, i.e. has 

already been used to judge the candidates, so this information is explicit in each of the 
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Figure 4.1: Comparison of PCA and SVD over the example dipole, using mean and 

non mean corrected data of 41 samples x 25 channels. 

data points. The spatial dimension is therefore the primary candidate for reduction. 

SVD and from that in turn PCA were applied to both synthetic and artefact candi- 

date epileptiform discharges with the following results. Figure 4.1 shows the results of 

PCA and SVD on the example 3 Sphere Model propagated dipole with additive noise 

(Figure 2.4) considered in Chapter 2. This results conform with the expectation of a 

low dimensionality, given the assumption that variance is a useful arbiter of dimension- 

ality of the EEG, and the fact that it is know that two generators underly the noiseless 

data. PCA consistently accounts for 85% of the data variance with 5 principal compo- 

nents. However this does not entail that there are 5 underlying components, or that the 

first 85% of the variance is the signal of interest. It could reflect a non-linearity within 

the data that PCA is struggling to model. However, it is felt that the arbitrariness 

of a specific variance target given that noise is a significant and varying component, 

accounts for such a high number of dimensions. Empirically, visual comparison of the 

generative dipole and the dominant components suggest that PCA is extracting useful 

data. Consider again Figure 4.1 in contrast with that of the dipole; Figure 2.4. 
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It was decided to employ the first 5 principal components, given the variance over 

these 5, in tandem with the fact that two generators underly the synthetic data without 

noise. Whereas, had this been unknown, further components would have been included 

to explain 95% of the variance. This gives rise to candidate event data points of 41 

temporal steps x 5 principal components. 

4.5 Initial Implementation of the ASSOFM 

A cautious strategy was employed in the testing of the variant adaptive subspace 

SOFM algorithm. A trial data set employing a jittered, fixed dipole morphology for the 

generation of the synthetic candidate epileptiform discharges was implemented. This 

would allow evaluation both, of the practical implementation of the ASSOFM from a 

computational point of view, and offer preliminary clustering results. As a secondary 

goal these initial ASSOFM would also allow the testing of the classification procedure 

and invariance to dipole transformations. This invariance is tested by examining the 

performance of the trial ASSOFM over the data sets that have dipoles of a random 

nature, as opposed to the fixed nature of the training set. 

Ensuing ASSOFMs would be trained on the fully random data sets to evaluate 

whether this would result in any alteration in performance. Further, these ensuing 

ASSOFMs would explore modelling ability of the subspace in situation where there 

was no 1 to 1 correspondence between data and adaptive basis vectors. These will 

then be evaluated over the training set and novel data. 

Trial Method A and B 

The first trial algorithm, termed Method iA (where the i denotes initial), employs 

the complete CED, i.e. 5 Principal Components by 41 times steps, to determine the 

rotational operator. 

Employing empirical parameters, previously developed for the standard SOFM im- 

plementation, several sizes of network were implemented to discover the optimum size. 

The nodes themselves employed five basis vectors, again of dimension 41. Starting 
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with 6 by 6 nodes, followed by an 8 by 8, 10 by 10 and ultimately 15 by 15 nets. In 

all instances the initial neighbourhood was half that of the net size (7 in the case of 

the 15 by 15), and decayed monotonically to one. The learning rate parameter, a, was 

initialised as one and decayed monotonically to zero. 

Given a data set of 7000 CEDs, alternating between artefacts and synthetic, it was 

estimated that 15 passes through the data set to allow useful convergence. To facilitate 

analysis of this projection the map was displayed and saved after each complete pass 

through the data to allow analysis. The nodes were populated at random with equal 

numbers of artefact and synthetic candidates. 

The second exploratory implementation, Method iB, followed a differing form, pri- 

marily to explore the usefulness of smaller nodes, and an alternate winner strategy. 

The nodes in this instance employed three basis vectors, again of dimension 41. Fur- 

ther, each data point was considered as an event, composed of the five components. 

The rotation operator, in contrast to Method A, was not defined by the whole event, 

but by a single winning component. This imposes a five fold increase in computational 

cost, as each component is compared to every node individually to determine both the 

winning component and winning node. Further, the distance was then weighted, with 

the primary principal component considered twice as important as the next and so on. 

Other parameters remained as for Method iA. 

As noted in Section 4.2, it is possible to extract a probabilistic interpretation of the 

trained SOFM, and by extension the ASSOFM. In all cases, this calibration is done 

over the training set. 

These procedures were then repeated but with a data set constructed using 2000 

random dipoles and a further 2000 artefacts extracted from 3 patients, which were 

ordered randomly by each pass of the ASSOFM algorithm. Method A was extended to 

test the modelling ability of the ASSOFM by examining a range of subspace spanning 

basis vectors. 
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Chapter 5 

Results 

5.1 Introduction 

This section collates the results of the ASSOFM. 

5.1.1 ASSOFM Labelling Convention 

To aid swift recall of the ASSOFM employed this convention is employed throughout 

the results; (i)ANxNbvM. Where the leading ‘i’ reflects the initial examination over 

the fixed dipole data set defined below. The first upper case letter refers to the method 

employed, either A or B. The variable N refers to the ASSOFM’s size, whilst M is 

the number of basis vectors employed in each node. For example iB6x6bv3, refers to 

the initial implementation of Method B, over a 6 by 6 network of nodes, each of which 

defines a subspace spanned by 3 subspace vectors. 

5.1.2 Review of Data Types 

Definition of Data Types employed. As noted previously the synthetic data is gener- 

ated with the aid of 6 variables and incorporating jitter. The initial implementations 

employed data from a fixed dipole, whereas ensuing results were obtained employing a 

data set composed of randomised dipoles. The following define the labels employed in 

the tables. 
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e Fixed data - Data which is composed of single jittered reference dipole, which 

has a constant set of variables. The data set annotated with an asterisk, Fixed* 

was composed of 7500 CEDs, equally composed of synthetic EEvs and artefact 

TNS. 

e Type A - Data composed of a dipole which was jittered, and had random eccen- 

tricity f. 

e Type B - Data composed of a dipole which was jittered, and had random eccen- 

tricity and orientation ¢ and 6. 

e Type C- Data composed of dipoles that were generated with all variables random. 

The data set annotated with an asterisk, Type C was composed of 4000 CEDs, 

again equally balanced. 

e An asterisk further indicates that the data set was the Training Set for that 

particular ASSOFM 

5.2 Example Estimated Probability Map 

All the following results are derived from the Probability Maps defined under Sec- 

tion 4.2. An example, Al0x10bv5 is given here to make clearer the process involved in 

extracting these results. 

The results from a converged ASSOFM take the following form displayed in Fig- 

ure 5.1. 

The training set, in this case Type C*, is used to calibrate the map i.e. to calculate 

the EEv probability. This results in a Probability Map of the nodes. This is presented 

numerically in Table 5.1 and in Figure 5.2. 
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Node | 1 2 3 4 5 6 7 8 9 10 
0.76 | 0.90 | 0.79 | 0.64 | 0.61 | 0.54 | 0.53 | 0.54 | 0.41 | 0.30 
0.92 | 0.85 | 0.80 | 0.77 | 0.90 | 0.75 | 0.73 | 0.60 | 0.52 | 0.38 
0.72 | 0.83 | 0.85 | 0.89 | 0.79 | 0.72 | 0.65 | 0.60 | 0.63 | 0.23 
0.76 | 0.75 | 0.90 | 0.80 | 0.76 | 0.77 | 0.70 | 0.54 | 0.44 | 0.13 
0.63 | 0.81 | 0.83 | 0.77 | 0.68 | 0.78 | 0.71 | 0.46 | 0.25 | 0.15 
0.58 | 0.79 | 0.66 | 0.80 | 0.68 | 0.81 | 0.54 | 0.56 | 0.28 | 0.05 
0.58 | 0.51 | 0.65 | 0.63 | 0.64 | 0.66 | 0.56 | 0.26 | 0.19 | 0.09 
0.45 | 0.41 | 0.41 | 0.29 | 0.38 | 0.43 | 0.28 | 0.20 | 0.19 | 0.063 
0.37 | 0.27 | 0.27 | 0.27 | 0.21 | 0.11 | 0.03 | 0.17 | 0.16 | 0.07 
0.20 | 0.22 | 0.22 | 0.16 | 0.04 | 0.09 | 0.03 | 0.05 | 0.15 | 0.09 
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Table 5.1: Numerical estimated EEv Probability Map from trained ASSOFM: 
A10x10bv5 
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Figure 5.1: Converged ASSOFM Nodes. This displays the 41x5 Adaptive Basis Vectors 
in a 10x10 ASSOFM: A10x10bv5.
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Estimated EEv Probabilty ~ A10x10bv5 

No
de
    

Figure 5.2: This displays the estimated EEv probabilities over the 10x10 ASSOFM, 

A10x10bv5. The estimated probability values above 0.5 suggest with increasing confi- 

dence that any novel data which is assigned that node can be classified as EEv, and 

that those below 0.5 are not. 
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5.3 Results for both Method iA and A, employing 

nodes spanned by five basis vectors. ASSOFM: 

(i) ANxNbv5. 

The ASSOFM implementation iANxNbv5; results are presented graphically in Fig- 

ure 5.3 and Figure 5.4. Sensitivity and Selectivity over the Fixed*, i.e. training data, 

and Type C (random dipole data set) are presented in Tables 5.3 and 5.2. Error rate 

is tabulated in Table 5.4. 
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Figure 5.3: Selectivity and Sensitivity from ASSOFM for iANxNbv5 over Fixed* data 
set 

KEY + Selectivity o Sensitivity 

The ASSOFM implementation ANxNbv5; results are presented graphically in Fig- 

ure 5.5. Sensitivity and Selectivity over Type C* (random dipole data set) are presented 

in Tables 5.6 and 5.5. Error rate is tabulated in Table 5.7. 
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Figure 5.4: Selectivity and Sensitivity from ASSOFM for iANxNbv5 over Type C. 
KEY + Selectivity o Sensitivity 

Probability Threshold 0.10 | 0.50 | 0.70 | 0.85 
Size N | Data Type Selectivity 

15x15 Fixed* 0.5000 | 0.6258 | 0.7434 - 

Type C 0.5093 | 0.7492 | 0.8622 | 0.9242 

10 x 10 Fixed* 0.5000 | 0.6126 | 0.7284 - 

Type C 0.5000 | 0.7194 | 0.8313 | 0.8696 

8x8 Fixed* 0.5000 | 0.6163 | 0.7168 - 

Type C 0.5000 | 0.6939 | 0.7899 - 

6x6 Fixed* 0.5000 | 0.5824 - 

Type C | 0.5000 | 0.7263 | 0.8055 | = - 

  

  

  

  

              

Table 5.2: Results for ASSOFM iANxNbv5- Selectivity. Measured over the Fixed* 
data set, and calculated over novel data of Type C. 
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Probability Threshold 0.10 | 0.50 | 0.70 | 0.85 
  

  

  

  

  

Size N | Data Type Sensitivity 

15x 15 Fixed* 1.0000 | 0.6383 | 0.1374 0 

Fixed 1.0000 | 0.8000 | 0.2667 0 
Type A | 1.0000 | 1.0000 | 0.6000] 0 
Type B 1.0000 | 1.0000 | 0.5000 0 
Type C 0.9990 | 0.7155 | 0.4660 | 0.2260 

10 x 10 Fixed* 1.0000 | 0.6014 | 0.1203 0 

Fixed 1.0000 | 1.0000 | 0.3667 0 

Type A 1.0000 | 0.9000 | 0.3000 0 
Type B__ | 1.0000 | 1.0000 | 0.2000} 0 
Type C 1.0000 | 0.6985 | 0.4460 | 0.2100 

8x8 Fixed* 1.0000 | 0.5594 | 0.0709 0 
Fixed 1.0000 | 0.9000 | 0.2333 0 

Type A 1.0000 | 1.0000 | 0.1000 0 
Type B_ | 1.0000 | 1.0000 | 0.3000] 0 
Type C 1.0000 | 0.6210 | 0.3590 0 

6x6 Fixed* 1.0000 | 0.5331 0 0 

Fixed 1.0000 | 1.0000 0 0 
Type A 1.0000 | 1.0000 0 0 
Type B 1.0000 | 1.0000 0 0 

Type C 1.0000 | 0.5720 | 0.3830 0             

Table 5.3: Results for ASSOFM iANxNbv5- Sensitivity over the Fixed* data set, and 

over data sets; Fixed, Type A, Type B and Type C 

Probability Threshold 0.10 | 0.50 | 0.70 | 0.85 
  

  

  

Size N| Data Type Error Rate 

15x15 Fixed* 3500 | 1336 | 166 0 

10x10 3500 | 1331 | 157 | 0 
8x8 3500 | 1219 | 98 0 
6x6 3500 | 1338 | 0 0 

15x15 Type C 1967 | 479 | 149 | 37 

10x10 2000 | 545 | 181 | 63 
8x8 2000 | 548 | 191 | 0 
6x6 2000 | 431 | 185 0             

Table 5.4: Results for ASSOFM iANxNbv5- Error Rate over the Fixed* data set (3500 

possible artefacts) and over Type C(2000 possible artefacts). 
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Figure 5.5: Selectivity and Sensitivity from ASSOFM for ANxNbv5 over Type C*. 
KEY + Selectivity o Sensitivity 

  

  

Probability Threshold | 0.10 | 0.50 | 0.70 | 0.85 
Size N Selectivity 

15 x 15 0.5605 | 0.7525 | 0.8371 | 0.9344 
10 x 10 0.5643 | 0.7272 | 0.8143 | 0.9097 
8x8 0.5307 | 0.7293 | 0.8066 | 0.9074 
6x6 0.5211 | 0.7013 | 0.7963 | 0.8636           

Table 5.5: Results for ASSOFM ANxNbv5- Selectivity over data set Type C*. 
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Probability Threshold 0.10 | 0.50 | 0.70 | 0.85 
Size N | Data Type Sensitivity 
15x 15 Type C* 0.9935 | 0.8375 | 0.5910 | 0.1790 

Fixed 1.0000 | 0.9000 | 0.8667 | 0.2333 

Type C 1.0000 | 1.0000 | 0.6667 | 0.3000 

10 x 10 Type C* 0.9875 | 0.8225 | 0.5240 | 0.1310 

Fixed 1.0000 | 1.0000 | 0.9667 | 0.4667 

Type C 1.0000 | 1.0000 | 0.9000 | 0.4333 

8x8 Type C* 0.9910 | 0.7720 | 0.5340 | 0.0490 

Fixed 1.0000 | 1.0000 | 0.9667 | 0.1000 

Type C 1.0000 | 0.8667 | 0.8667 | 0.0667 

6x6 Type C* | 0.9925 | 0.7630 | 0.4690 | 0.0855 

Fixed 1.0000 | 1.0000 | 0.8000 | 0.2667 

Type C 1.0000 | 1.0000 | 0.9000 | 0.6000 

  

  

  

  

              

Table 5.6: Results for ASSOFM ANxNbv5- Sensitivity over data sets Type C*, Fixed 
and Type C 

Probability Threshold 0.10 | 0.50 | 0.70 | 0.85 
  

  
Size N | Data Type Error Rate 

15x15 Type C* 1558 | 551 | 230 | 25 
10x10 1525 | 617 | 239 | 26 
8x8 1753 | 573 | 256 | 10 
6x6 1824 | 650 | 240 | 27             

Table 5.7: Results for ASSOFM ANxNbv5- Error rate over Type C* (2000 possible 

artefacts) 
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5.4 Results for Method A, employing nodes spanned 

by four basis vectors. ASSOFM: ANxNbv4. 

The ASSOFM implementation ANxNbv4; results are presented graphically in Fig- 

ure 5.6. Sensitivity and Selectivity are presented in Tables 5.9 and 5.8. Error rate is 

tabulated in Table 5.10. 
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Figure 5.6: Selectivity and Sensitivity from ASSOFM for ANxNby4 over Type C*. 

KEY + Selectivity o Sensitivity 

  

  

Probability Threshold | 0.10 | 0.50 | 0.70 | 0.85 

Size N Selectivity 

10 x 10 0.5439 | 0.7162 | 0.7926 | 0.8919 

8x8 0.5211 | 0.7224 | 0.7812 | 0.8737 

6x6 0.5306 | 0.6999 | 0.7672 -           
Table 5.8: Results for ASSOFM ANxNbv4- Selectivity over data set Type C*. 
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Probability Threshold 0.10 | 0.50 | 0.70 | 0.85 
Size N | Data Type Sensitivity 

10x 10 Type C* 0.9875 | 0.9905 | 0.5465 | 0.0990 

Fixed 1.0000 | 0.9333 | 0.9000 | 0.4333 

Type C 1.0000 | 0.9667 | 0.8000 | 0.1000 

8x8 Type C* 0.9910 | 0.9920 | 0.5015 | 0.0415 

Fixed 1.0000 | 1.0000 | 0.9667 0 

Type C 1.0000 | 1.0000 | 0.8000 0 

6x6 Type C* 0.9925 | 0.9880 | 0.4745 0 

Fixed 1.0000 | 1.0000 | 0.6000 0 

Type C | 1.0000 | 1.0000 | 0.6000} 0 

  

  

  

  

            

Table 5.9: Results for ASSOFM ANxNbv4- Sensitivity over data sets Type C*, Fixed 

and Type C. 

Probability Threshold 0.10 | 0.50 | 0.70 | 0.85 
  

  

Size N | Data Type Error Rate 
10x10 Type C* 1661 | 638 | 286 | 24 
8x8 1823 | 588 | 281 | 12 
6x6 1748 | 627 | 288 0             

Table 5.10: Results for ASSOFM ANxNbv4- Error rate over Type C* (2000 possible 

artefacts). 
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5.5 Results for Method A, employing nodes spanned 

by three basis vectors. ASSOFM: ANxNbv3. 

The ASSOFM implementation ANxNbv3; results are presented graphically in Fig- 

ure 5.7. Sensitivity and Selectivity are presented in Tables 5.12 and 5.5. Error rate is 

tabulated in Table 5.13. 
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Figure 5.7: Selectivity and Sensitivity from ASSOFM for ANxNbv3 over Type C* 
KEY + Selectivity o Sensitivity 

  

  

Probability Threshold | 0.10 | 0.50 | 0.70 | 0.85 
Size N Selectivity 
10 x 10 0.5029 | 0.7103 | 0.7965 | 0.9000 
8x8 0.5029 | 0.7103 | 0.7965 | 0.9000 
6x6 0.5000 | 0.6730 | 0.7476 | -           

Table 5.11: Results for ASSOFM ANxNbv3- Selectivity over data set Type C* 
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Probability Threshold 0.10 | 0.50 | 0.70 | 0.85 
  

  

  

  

Size N | Data Type Sensitivity 
10x10] Type C* | 0.9995 | 0.7600 | 0.4735 | 0.0585 

Fixed 1.0000 | 1.0000 | 0.5667 | 0.1333 

Type C 1.0000 | 0.7667 | 0.7000 | 0.0667 
8x8 Type C* | 0.9995 | 0.7600 | 0.4735 | 0.0585 

Fixed 1.0000 | 1.0000 | 0.7000 | 0.1667 

Type C 1.0000 | 0.8667 | 0.7000 | 0.0333 
6x6 Type C* | 1.0000 | 0.7295 | 0.1970 0 

Fixed 1.0000 | 0.9333 | 0.3333 0 
Type C 1.0000 | 1.0000 | 0.1333 0             

Table 5.12: Results for ASSOFM ANxNbv3- Sensitivity over data sets Type C*, Fixed 

and Type C. 

Probability Threshold 0.10 | 0.50 | 0.70 | 0.85 
  

  

Size N | Data Type Error Rate 
10x10 Type C* 1976 | 620 | 242 | 13 
8x8 1976 | 620 | 242 | 13 

6x6 2000 | 709 | 288 | 0             

Table 5.13: Results for ASSOFM ANxNbv3- Error rate over Type C* (2000 possible 
artefacts) 
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5.6 Results for Method A, employing nodes spanned 

by two basis vectors. ASSOFM: ANxNbv2. 

The ASSOFM implementation ANxNbv2; results are presented graphically in Fig- 

ure 5.8. Sensitivity and Selectivity are presented in Tables 5.15 and 5.6. Error rate is 

tabulated in Table 5.16. 
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Figure 5.8: Selectivity and Sensitivity from ASSOFM for ANxNbv2 over data set Type 

G*: 
KEY + Selectivity o Sensitivity 

  

  

Probability Threshold | 0.10 2 0.50 | 0.70 | 0.85 

Size N Selectivity 

10 x 10 0.5000 | 0.6785 | 0.7822 | 0.8901 
8x8 0.500 | 0.6276 | 0.7874 | 0.8824 

6x6 0.5000 | 0.6394 | 0.7478 -         
  

Table 5.14: Results for ASSOFM ANxNby?2- Selectivity over data set Type C*. 
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Probability Threshold 0.10 | 0.50 | 0.70 | 0.85 
  

  

  

  

Size N | Data Type Sensitivity 
10x10] Type C* | 1.0000 | 0.6480 | 0.3035 | 0.0405 

Fixed 1.0000 | 0.6333 | 0.1000 0 
Type C 1.0000 | 0.8333 | 0.3667 0 

8x8 Type C* | 1.0000 | 0.7060 | 0.2000 | 0.0600 
Fixed 1.0000 | 0.9000 | 0.3333 0 
Type C 1.0000 | 0.6333 | 0.1333 0 

6x6 Type C* | 1.0000 | 0.5815 | 0.1260 0 
Fixed 1.0000 | 0.8000 | 0.3333 0 
Type C 1.0000 | 0.9000 | 0.1333 0             

Table 5.15: Results for ASSOFM ANxNby2- Sensitivity over data sets, Type C*, 

Fixed and Type C. 

Probability Threshold _ 0.10 | 0.50 | 0.70 | 0.85 
  

  

Size N | Data Type Error Rate 

10x10 Type C* 2000 | 614 | 169 | 10 
8x8 2000 | 838 | 108 | 16 
6x6 2000 | 656 | 85 0             

Table 5.16: Results for ASSOFM ANxNbv2- Error rate over Type C* (2000 possible 
artefacts) 
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5.7 Results for Method A, employing nodes spanned 

by one basis vector. ASSOFM: ANxNbvl. 

The ASSOFM implementation ANxNbv1; results are presented graphically in Fig- 

ure 5.9. Sensitivity and Selectivity are presented in Tables 5.18 and 5.17. Error rate 

is tabulated in Table 5.19. 
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Figure 5.9: Selectivity and Sensitivity from ASSOFM for ANxNbv1 Type C* 

KEY + Selectivity o Sensitivity 

  

  

Probability Threshold | 0.10 | 0.50 | 0.70 | 0.85 
Size N Selectivity 
10 x 10 0.5000 | 0.7381 | 0.8566 | 0.9265 
8x8 0.500 | 0.7392 | 0.8395 | 0.9507 
6x6 0.5000 | 0.7339 | 0.8374 | 0.9352           
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Probability Threshold 0.10 | 0.50 | 0.70 | 0.85 
Size N | Data Type Sensitivity 

10 x 10 Type C* 1.0000 | 0.6455 | 0.4390 | 0.2080 

Fixed 1.0000 | 0.8333 | 0.4667 | 0.3667 

Type C 1.0000 | 1.0000 | 1.0000 | 0.3667 
8x8 Type C* 1.0000 | 0.5965 | 0.4055 | 0.1350 

Fixed 1.0000 | 0.8000 | 0.5000 | 0.3667 

Type C 1.0000 | 1.0000 | 1.0000 | 0.5000 

6x6 Type C* 1.0000 | 0.5365 | 0.3425 | 0.1660 

Fixed 1.0000 | 0.8000 | 0.5000 | 0.3000 
Type C 1.0000 | 1.0000 | 0.9667 | 0.1667 

  

  

  

  

            

Table 5.18: Results for ASSOFM ANxNbvl1- Sensitivity over data sets Type C*, Fixed 
and Type C. 

Probability Threshold 0.10 | 0.50 | 0.70 | 0.85 
  

  

Size N | Data Type Error Rate 

10x10 | Type G* | 2000] 458 | 147 | 33 
8x8 2000 | 421 | 155 | 14 

6x6 2000 | 389 | 133 | 23             
Table 5.19: Results for ASSOFM ANxNbv2- Error Rate over Type C* (2000 possible 
artefacts). 
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5.8 Results for both Method iB and B, employ- 

ing nodes spanned by three basis vectors. AS- 

SOFM: (i)BNxNbv3. 

The ASSOFM implementation iBNxNbv3; results are presented graphically in Fig- 

ure 5.10. Sensitivity and Selectivity over the Fixed*, i.e. training data are presented 

in Tables 5.21 and 5.20. 
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Figure 5.10: Selectivity and Sensitivity from ASSOFM for iBNxNbv3 over Fixed* data 
set. 
KEY + Selectivity o Sensitivity 

  

  

Probability Threshold | 0.10 | 0.50 | 0.70 | 0.85 
Size N Selectivity 

10 x 10 0.5000] 0.5580] - |] - 
8x8 0.5000 | 0.5528} - | - 
6x6 0.5000 | 0.5516 | - | -         
  

Table 5.20: Results for ASSOFM iBNxNby3- Selectivity over Fixed* data set. 
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The ASSOFM implementation BNxNbv3; results are presented graphically in Fig- 

ure 5.11. Sensitivity and Selectivity over Type C* (random dipole data set) are pre- 

sented in Tables 5.23 and 5.22. 

Probability Threshold 0.10 | 0.50 | 0.70 | 0.85 
  

  

  

  

Size N | Data Type Sensitivity 

10x 10 Fixed* 1.0000 | 0.6417 | 0 0 

Fixed 1.0000 | 0.7667} 0 0 
Type A 1.0000 0 0 0 

Type B | 1.0000] 0.1000} 0 | 0 
TypeC | 1.0000] 0.5000| 0 | 0 

8x8 Fixed* 1.0000 | 0.5903 | 0 0 

Fixed 1.0000 | 0.5000} 0 0 
Type A 1.0000 0 0 0 

Type B | 1.0000] 0.4000] 0 | 0 
Type C 1.0000 | 0.6000 | 0 0 

6x6 Fixed* 1.0000 | 0.3866] 0 0 
Fixed 1.0000 | 0.4333 | 0 0 

Type A 1.0000 | 0.8000] 0 0 
Type B 1.0000 | 0.8000} 0 0 
Type C 1.0000 | 0.8000 | 0 0             

Table 5.21: Results for ASSOFM iBNxNbv3- Sensitivity over Fixed* data set 

  

  

Probability Threshold | 0.10 | 0.50 | 0.70 | 0.85 
Size N Selectivity 
10 x 10 0.5000 | 0.6580 | 0.7344 | - 
8x8 0.5000 | 0.5894 | 0.7174] - 
6x6 0.5000 | 0.6856 | 0.8148 | _-         
  

Table 5.22: Results for ASSOFM BNxNbv3- Selectivity over data set Type C*. 

57



CHAPTER 5. RESULTS 

ASSOFM 10x10 ASSOFM 8x8 
100 1100 - Hse 

a) 2 0 i He 5 
He 

60 i: 8 60 
2 2 
2 40 ° 2 40 

5 5 
20 20 

- om =     
02 04 06 o8 1 G2) 04 joe cos, 4 

Probability Threshold Probability Threshold 

° ° 

o oO 

ASSOFM 6x6 

8 
e
e
e
 

8.
 
38
 

% 
Sen

sit
ivi

ty 
/ S

ele
cti

vit
y 

    ° 
} 02 04 06 08 1 

Probability Threshold 

Figure 5.11: Selectivity and Sensitivity from ASSOFM for BNxNbv3 over Type C*. 
KEY + Selectivity o Sensitivity 

Probability Threshold 0.10 | 0.50 | 0.70 | 0.85 
Size N | Data Type Sensitivity 

10x 10] Type C¥ | 1.0000 | 0.1260 | 0.0235] 0 
Fixed 1.0000 | 0.8333 | 0.4667 | 0.3667 
Type C___| 1.0000 | 1.0000 | 1.0000 | 0.3667 

8x8 | Type C¥ | 1.0000 | 0.1385 | 0.0165 | 0 
Fixed 1.0000 | 0.8000 | 0.5000 | 0.1667 
Type C__| 1.0000 | 1.0000 | 1.0000 | 0.5000 

6x6 | Type C¥ | 1.0000 | 0.2290 | 0.0220 | 0 
Fixed 1.0000 | 0.8000 | 0.5000 | 0.3000 
Type C__| 1.0000 | 1.0000 | 0.9667 | 0.1667 

  

  

  

  

            

Table 5.23: Results for ASSOFM BNxNbv3- Sensitivity over data sets Type C*, Fixed 
and Type C. 
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Chapter 6 

Discussion 

6.1 Introduction 

This section offers a subjective evaluation of the ASSOFM clustering, followed by an 

objective analysis of the results. It then continues with the comparison of the measures 

of performance obtained in this study with a range of results from the literature in the 

field of automated EEG analysis. 

6.2 The Viability of the ASSOFM as a Topography 

Preserving Map 

Before considering the resulting classification, attention must be directed at the clus- 

tering ability of the ASSOFM. 

Table 5.1 and in Figure 5.2 reflect example results from the ASSOFM A10x10bv5 

(ie. Method A, 10x10 ASSOFM with Adaptive Subspaces spanned by 5 x 41 dimen- 

sional basis vectors, trained and calibrated over a Type C* data set). 

Consider especially the visual representation, Figure 5.2. For a topographically 

ordered map (of sufficient size to avoid sharp quantisation) it is expected to observe a 

smooth transition from one node to its neighbours in this case, in terms of estimated 

probability. 
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CHAPTER 6. DISCUSSION 

This topological ordering behaviour can also be inferred from the sensitivity curves, 

where plateaux as evidenced in ANxNbv1’s Selectivity /Sensitivity (Figure 6.1 repeated 

in this section) represent sharp quantisation of the topographic ordering. This sharper 

quantisation here is a direct result of there being fewer nodes. 

Consider the graph of the Al0x10bv1; as the Probability Threshold dy, increases, 

those nodes assigned that probability or greater are included in the scoring as EEv 

detections. It can be determined from A6x6bv1 (which has 36 nodes as opposed to the 

100 or 64) that ranges of thresholds exist over which the performance is not altered. 

This is representative behaviour of topographically ordered maps, and in the next 

section discussion will include the ramifications of this quantisation.    
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Figure 6.1: Selectivity and Sensitivity from ASSOFM for ANxNbv1 over data set Type 

C*. Demonstrating the degradation of the Sensitivity curve. 
KEY + Selectivity o Sensitivity 

An extreme example of this quantisation can be noted in the results of BNxNbv3 

(Figure 5.11), where it is considered that a useful topographically ordered map has not 

evolved. This cannot be considered a direct product of ASSOFM size as it is evident 

across all three sizes considered. In this case the winning strategy, i.e. the method 
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of determining the rotational operator, involved only a single principal component, as 

opposed to the results considered above for ANxNbv1. However this quantised result 

contrasts sharply with the initial trial, iB NxNbv3, which differs in that it has a fixed 

dipole data set as opposed to the random dipoles in training set Type C*, but as is 

evident in Figure 5.10 does not suffer this catastrophic stepping. It is considered that 

this winning strategy was unable to generalise given differing forms of the dipole where 

it had shown success over a fixed dipole. 

The results of the iBNxNbv3 implementation remain valuable as they demon- 

strated that a topographically ordered map could evolve in a situation in which there 

was not a one-to-one correspondence between basis vectors and principal components. 

This spurred the exploration of ASSOFMs with a variety of nodes which allowed the 

production of useful maps. A further analysis of the modified winning strategy, not 

coupled with the node alteration was omitted, this implies that this strategy cannot 

be dismissed without further inquiry. 

6.3 Classification 

Previous studies (Table 6.1) have offered selectivities of less than the minimum 0.5 

noted in this study. The Selectivity and Sensitivity curves differ from the stereotypical 

relationship. James et alia [9], show the classic ‘X’ shape; with Selectivity initially 

0, and Sensitivity at 1. As the threshold increases they converge and cross, tending 

towards 1 and 0 respectively. This selectivity occurs at low thresholds (e.g. trivially 0) 

which entails classification of all CEDs (both synthetic and artefact) as EEvs. Recalling 

that selectivity is defined as the total of true EEvs detected, divided by the total 

number of detections it becomes obvious that the value of 0.5 is to be expected. This 

is a product of the balanced data set (i.e. 50% EEv, 50% artefact) which is unique 

amongst those trials considered. Presented in Table 6.1 below are the collated results 

of previous automated systems. Overleaf on Table 6.2 we can see selected results from 

this study tabulated in a simialr form 
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6.4 Comparison with Previous Studies 

Table 6.2 offers results collated from Chapter 5 to be compared with Table 6.1. How- 

ever, caution must be employed in any direct comparison. Consider the highlighted 

result for A15x15bv5 and the final result in Table 6.1. Whilst The latter suggests a 

lower error rate than Al5x15bv5, whilst offering reduced Selectivity and Sensitivity 

this exposes the arbitrariness of the Error Rate unless it is considered across standard 

data. 

With this caveat, the following have been selected to offer a representative overview 

of the ASSOFM implementations. 

It is immediately obvious that there is a great range of performance in previous 

studies. If Error Rate is taken as the arbiter it suggest that this study is comparable 

with the systems exhibiting the lowest rates i.e. 0 - 117. As noted Error Rate is an 

arbitrary measure related to the number of artefacts happen to lie within a given hour 

in the data set employed by those studies. As these data sets were not available for 

this study (again a primary motivation for synthetic data sets, or at least standardised 

data sets) Error Rate cannot be considered a useful measure alone. Hence, Sensitivity 

and Selectivity must be considered the primary measures of classification performance. 

  

Sys Method Hours | % EEv | Train | Sensitivity | Selectivity | Error/ 
/Test hour 

di ANN + ANN 0.043 ? 6/4 0.9000 0.6900 | ~1023 
2 Mimetic 2.0 100 | Blind 0.5900 0.8900 37 
3 Mimetic 33.0 100 | Blind - 0.4100 117 

4 Mimetic + state | 33.0 100 | Blind - 0.6700 47 

5 Mimetic + ANN 0.3 100 Same 0.7400 0.7400 ~804 

6 | Mimetic + ANN 0.3 100 | Same] 0.4600 0.4600 | ~5598 
ts Mimetic + 3.0 73 Same 0.5300 1.000 0 

Expert System 

8 Mimetic + 3.2 88 Blind | 0.1400 0.8100 2 
Expert System 

9 | Mimetic ++ SOFM | 3.2 88 Blind] 0.5500 0.8200 fi 

+ Fuzzy Logic                 
Table 6.1: A comparison of the sensitivities, selectivities and false detection rates be- 

tween spike detection systems. After James et al (1999). For definitions of Selectivity, 
Sensitivity and Error Rate see Section 4.3.1 and Section 4.3.2 
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Tallying the proffered results offers a rough measure of performance. This should 

be done with reference to the secondary measure, Error rate, else the results from 

low thresholds dy), (i.e. 0.1) which offer Selectivities of 1 and Sensitivities 0.5 would be 

classified as useful. The highest tally offered in the previous literature is 1.59 for System 

1, though this has an Error rate of an order above those evidenced by the best results 

in this study. For those of a lower Error rate, for example System 7 (which uniquely 

offers 0 errors; though given that this study continues the search for an optimal EEv 

classification system we must suggest that this system has not yet been implemented for 

novel data), a tally of 1.53 measured across the training data is noted. The equivalent 

systems developed here, with results across their training sets offer 1.58 in the case of 

A15x15bv5 to 0.90 for iA15x15bv5, with both offering Error rates of ~ 125. 

A more useful test of the systems is across novel data, i.e. Blind tests. Consider 

  

  

  

  

  

  

  

  

System Method di, | Hours | Train | Sensitivity | Selectivity | False/ 
/Test hour 

iA15x15bv5 0.70 | 4.48 | Blind 0.4660 0.8622 37 

iA15x15bv5 Mimetic | 0.70 | 1.60 | Same 0.1374 0.7434 104 

iA6x6bv5 | +ASSOFM | 0.70 | 4.48 | Blind 0.3830 0.8055 41 

A15x15bv5 0.10} 4.48 | Same 0.9935 0.5605 348 

A15x15bv5 0.50 | 4.48 | Same} 0.8375 0.7525 122 
A15x15bv5 # 0.70 | 4.48 | Same 0.5910 0.8371 51 

A15x15bv5 0.85 | 4.48 | Same 0.1790 0.9344 6 

A8x8bv5 0.50 | 4.48 | Same 0.7720 0.7293 128 

A8x8bv4 0.70 | 4.48 | Same} 0.5015 0.7182 62 
A10x10bv3 0.70 | 4.48 | Same | 0.4735 0.7965 63 
A10x10bv2 0.70 | 4.48 | Same | 0.3035 0.7822 38 
A6x6by1 0.70 | 4.48 | Same | 0.3425 0.8374 30               
  

Table 6.2: Collated ASSOFM performance measures offered for comparison with pre- 
vious studies in Table 6.1. Training set Type C* was composed of three patient EEGs. 

These were recorded for 2 minutes per hour for 48 hours, resulting in 4 hours and 48 
minutes of EEG which spanned the full gamut of human, and hence artefact activity. 

2144 artefacts were extracted from this, of which a random subset of 2000 were em- 

ployed, giving rise to an adjusted time 4 hours 28 minutes. The Fixed* training set 

employs 3500 artefacts, extracted from a single patient over a single 48 hour period 

offering 1 hour 36 minutes. The error rate presented here may be obtained by dividing 
the values presented previously by 4.48 for Type C*, or 1.6 for Fixed*. The artefacts 

were matched with a similar number of synthetic EEvs giving rise to an % EEv of 50. 

Applying Type C* to the initial trials (iA and iB) results in a Blind trial, applying this 
set to the secondary implementations results in a trial noted as Same (A and B). 
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system 2 and 9, both that exhibit desirably low Error rates, and a tallies of 1.48 and 

1.35 in turn. ASSOFMs iA15x15bv5 and iA6x6bv5 considered here, offer commensurate 

Error results, with comparable tallies of 1.32 and 1.18. 

If it is considered that a high Selectivity is most desirable i.e. false diagnosis must 

be minimised, or that Epileptiform Spikes are prolific in Epileptic individuals hence 

allowing a low Sensitivity to still be useful in diagnosis. System 8, which offers the 

desirable Error Rate of 2 can be construed as an example of such a system. Such 

a system can be constructed easily by raising the threshold above which EEvs are 

classified in the ASSOFM’s considered here. ASSOFM A15x15bv5, which is shown at 

a range of thresholds highlighted by a # in Table 6.2, shows a directly comparable 

result to System 8 at threshold of 0.85. 
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Chapter 7 

Conclusions 

7.1 Evaluation of the ASSOFM System 

It is apparent from the results collated in Chapter 5, and discussed in Chapter 6, that 

the system involving the novel variant ASSOFM (Method A) has the ability to form 

clusters in a self organising fashion. 

There is an awareness however, that clustering algorithms, when presented with 

random data will exhibit clustering behaviour, and that clustering itself is not an 

arbiter of utility. The converged ASSOFMs were further examined to give rise to a 

classifier, calibrated with an appeal to Bayesian methods (after James [9]). It is noted 

that this calibration reveals a topological ordering of these clusters. 

These estimated probabilities were used to extract. measure of performance over the 

training set and novel data. These measures show parity with previous research in the 

field of automated EEG analysis. As such, it is considered that the clusters formed 

by the ASSOFM can be interpreted in such a way as to form a classifier, given the 

assumption that the synthetic data is representative of clinical data. 

Hence, it is considered that the subspaces employed have an ability to model arte- 

facts and synthetic EEvs. As a consequence the Metric (defined in Section 3.4.1) to 

determine the distance from a candidate node subspace from the subspace in which 

a data point was embedded is considered to be a valid measure of difference between 

these two classes. Further the Rotational Operator (defined in Section 3.4.1) is thus 
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an appropriate tool in the modification of a given subspace’s basis vectors. 

However, consideration must be given to the nature of the data set employed in 

this study. Whilst it is established that the system presented can classify to a degree 

commensurate with systems offered elsewhere, the lack of examination over novel, 

clinical data means the results can only be considered for proof of the system as a 

classifier over this data set. Any comparison between these systems is dependent on 

the representative nature of this synthetic data. It may be suggested that previous 

results also suffer from data set specific results, consider especially the arbitrary nature 

of the Errors per hour over differing patients. In the absence of a verification of the 

accuracy of the EEv model employed, either by the processing of novel clinical data 

or further study of the model, this study can only suggest the potential utility of this 

ASSOFM system. 

This utility may be exposed with a consideration of the results of the preliminary 

examination of the ASSOFM algorithm. It may be noted that iANxNbvM was trained 

and calibrated using a fixed dipole, i.e. defined by a fixed eccentricity f, ¢, 0 and by 

moment Dz, Dy and Dz. Measures of performance were obtained over this data set, 

and over a data set composed of random dipoles. The results tabulated in Tables 5.2, 

5.3 and 5.4 demonstrate the system’s ability to model novel data out-with that consid- 

ered in the training set in line with the performance inferred by the training set. This, 

it is suggested, is evidence of the system’s ability to model an underlying generator 

(the jittered synthetic dipole) which has undergone different transformations. 

This demonstration of invariant classification is an evaluation of the total system. 

Thus, it may be held that the Principal Component Analysis employed in dimensional- 

ity reduction was vital in presenting the clustering stage with data in which underlying 

generators may have been rendered prominent, and thus rendered trivial the differing 

clustering of artifact and synthetic data. Thus, without further examination, it cannot 

be concluded that the ASSOFM subspace nodes confer this behaviour on the system, 

even given that this behaviour in the Learning Subspace Method of Kohonen directly 

inspired their use. Without results for PCA across genuine EEvs, it cannot be asserted 
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that the application of PCA was not taking advantage of the apriori knowledge that 

the synthetic EEvs had a low underlying dimensionality. This is a re -expression of 

the caveat that the system is proved only for the data set considered. However, even 

given that this may not be a distinguishing feature of true EEvs and TNSs, it can 

be said that the clustering algorithm ordered elements which had undergone differing 

transformations, the synthetic EEvs, similarly. 

7.2 Optimal ASSOFM Parameters 

It is apparent that performance, measured as Error Rate (which between results in 

this study is an accurate measure of relative performance over the same data) im- 

proves marginally between 6x6, to 8x8, to 10x10 and 15x15 maps. The performance of 

the differing numbers of basis vectors spanning the subspaces, again considering Error 

Rate as an arbiter shows that for a given d,, that two basis vectors is optimal, with 

a single subspace offering 50% larger error rates and 3,4 and 5 offering at least 100% 

greater. The Selectivity remains similar across all ASSOFM sizes and basis vectors, 

the improved Error Rate being accounted for by a reduction in Sensitivity, i.e. pro- 

portionally less of both artefacts and synthetic EEvs are classified as EEvs. This is 

considered a degradation in performance, as such it is concluded that 5 basis vectors, 

i.e. one to one correspondence with the data, offers the best overall performance. 

7.3 Expanding the Study 

The desirability of synthetic data, as discussed previously, must be contrasted with the 

fact that the system cannot be realistically evaluated without clinically labelled data. 

Whilst an accurate, widely accepted, synthetic model could improve the comparability 

of systems by creating a standard method of a implementing a data set, the proof of 

utility arises only with real data. As such, the first suggested course is the application 

of the presented system to real data, this would offer a true measure of performance. 

This would not answer the questions about the influence of the pre-processing i.e. 

67



CHAPTER 7. CONCLUSIONS 

PCA, on the systems performance. A comparable study using this study’s mimetic 

and PCA stages, but employing the basic version SOFM, would potentially reveal any 

performance gains in employing the ASSOFM. 

It is noted that the SOFM and in turn the variant ASSOFM are heuristically 

inspired, albeit useful, algorithms. This suggest that the parameters involved are 

arbitrary, and given the novel nature of the ASSOFM, the SOFM heuristics which were 

employed need to be re-examined, or a principled alternative examined. EXPAND!! 

The Generative Topographic Mapping is presented as a principled alternative to the 

SOFM. Considering that the aim of this study is to develop a system element which 

can surpass the SOFM in System 9, in Table 6.1, an examination of this alternative is 

desirable given its claim to replicate the results of the SOFM, but without the heuristic 

nature of parameters such as network size, or in the ASSOFM number of basis vectors. 

It is suggested that future work consider such a principled TPM. 

7.4 Closing Comments 

In synopsis; a system is presented that, given accurate synthetic modelling of EEv, 

can be compared favourably to present systems extant in the literature. This system 

employs a novel implementation of the SOFM that by modelling classes with adaptive 

subspaces, coupled with PCA, confers invariant classification to transformations in 

the data. It is considered that the ASSOFM element of the system will bear further 

examination, especially in contrast to principled TPMs such as the GTM. 
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Appendix A 

Appendix - Selected MATLAB 

Functions 

A.1 Subspace Distance Function 

MATLAB 5.2 Function for determining the distance between the data, and nodes 

subspace (cf. Section 3.4.1. 

function [subspace_delta] = subspace_distance_function(X,U) 

w%subspace distance function 

h 

“Dagmar Scott Fraser May 1999 

h 

h After Oja (1983) Subspace Methods of Pattern Recognition 

h & Watkins (1982) Understanding the QR Algorithm 

% Define a metric for subspace distance [difference] . 

% X - input data matrix - assumes ||X|| = 1. 

% U - ASSOFM node subspace basis vectors - 
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% must be orthonormal. Though a treatment 

% exists in Oja for a non-orthogonal basis. 

% 

% Construct the projection matrix P from the candidate 

% subspace L_assofm, spanned by U. 

% 

% P 

%P=E ui ui. (2.8 ja) 

4 i=1 

h 

% where U is the orthonormal basis {u_1, ... u_p} of L_assofm where 

% p is the no. of linearly independent vectors spanning the subspace, 

% where u_i is a vector of dimension (in this case) 41. 

h 

yMore simply P = UU’, the projection matrix of X onto subspace L_assofm 

h 

P =U * U’; %Projection matrix for L_assofm 

I eye(size(P)); 

argument = I - P; 

% Determine distance delta 

subspace_delta = max( max( sqrtm( X’ * argument * X ))); 

vend file 

A.2 Rotation Operator 

MATLAB 5.2 Function for determining the Rotation Operator (cf. Section 3.4.1. 

function [rotation_operator] = subspace_rotation_operator (alpha, X) 

vsubspace rotation operator 
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h 

%Dagmar Scott Fraser May 1999 em: y 

h 

h 

h 

h 

h 

After Oja (1983) Subspace Methods of Pattern Recognition 

& Kohonen (1995) Self Organising Maps 

alpha - 0 < alpha < 1, learning parameter of the rotation operator. 

X - input matrix, assumes that ||IXI| = 1. 

Rd I + alpha XX’ / ||X||~2 --[ denominator ignored as ||X||==1] 

argument = X * X’; 

{m,n] = size(argument) ; 

rotation_operator = zeros([m,n]); 

rotation_operator = eye([m,n]) + ( alpha * argument ); 

vend file 
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