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Thesis Summary 

High Throughput Screening (HTS) is an effective means to determine the chemical com- 

pounds which are efficient on a given biological target. The experiments are carried out 
using a standard format, the 96-well plate, where six wells are controls whose expected 

values are known. However the measurement techniques are subject to variation which 

renders the assessment of an experiment difficult. In the context of quality control of 

an industrial task, a novelty detection method can be employed to determine abnormal 

or unusual outputs where the novel points can be defined as the observations which 
have extreme values compared to other measures observed under the same experimen- 

tal conditions. The new method proposes to screen an additional set of three plates 

featuring only control wells which constitue the reference data to compare the plates. 
This set of plates is used to estimate the distribution of the control values. In the first 

place, a Gaussian Mixture Model is trained with the EM algorithm. A point is declared 
‘novel’ if its probability is below a novelty threshold. The technique is compared to a 

traditional approach of outlier detection. The choice of this threshold is investigated 

together with alternative approaches to the problem. 

Keywords: Novelty detection, outliers, Mixture Models, EM algorithm, 

High Troughput Screening.



Acknowledgements 

I am grateful to Pfizer Research for funding the work described in this thesis 

I gratefully acknowledge the help of Ian Nabney who supervised the project and 
provided me with thoughtful criticism and advice. I should like to thank him also for 
patiently coping with my careless spelling. 

The help and suggestions of Andrew Weaver were much appreciated when writing 
the C code. I would like to thank him for kindly providing the data structure used in 
the last stage of the project 

I must express my thanks to Wilma Keighley for her enlightening answers concern- 
ing the application domain. 

Finally I am very indebted to Neil Pickles for his help with the practical aspects 
of the project. I am especially grateful to him for collecting the data and answering 
many questions about HTS (at least twice each).



Contents 

        

1 Introduction 9 
11) High broughputcereening... Muy moe ee ot ds a 9 

LISh eDhe rls. process a vrgmaciees close tae SGD 5. on.) heel he 10 
1.1.2 Controls and assessment of the assay 13 
T13 “Advantages and disadvantages <7. 50. ci a os 13 

12) p@outrolstandvanalysis anasto ty eho ek Suc eee 14 
1.2.1 An example of data analysis 14 

deos2 a Othersplate tormiata ists ene. Gosia ot al <s 18 
SMO Uni ary a ciety we keit se ee, otal ae imme aee Neat, ck wen 19 

ORME AL Se esate = 02; ose ene ME ae wee SE Seas NM es 20 

LSD eApproach tuner een. ae Bear ai ce spe eee aa cc la eae 21 

ISIS MONEEVIEW Se ini cs as eae Se eee Sars a eee es 21 

2 Preliminary study 23 
2.1 Goodness-of-fit tests for Gaussian distribution .............. 23 

Dl lemy test ate real caste rae nas dais ls ip ssenes a: os 24 

2.12, eKolmogorov-Smirnov test . 03. ee SG cass ot es 27 
Pe Sem CONCIISION tre Ue ortdc lh MRD! RUM et Ge kod Ci ots 27 

22a Outlierdekert ona uet ais bude ik eer ene MEAN oa, Me 28 
2.2.1 A methodology for univariate problem .............. 28 

2:2.20 eQuanvile-Quantile plot; is st mlsiehs cabelas mss os ae 29 
22 BUAGTUD OS Gest imam. Fort int tear ae aeemeince 0! Sol meet eg 30 
2.2.4 Outlier detection in the context of HTS control ......... 31 

23” Correlation tests cme een ans, cess eee esate hs 6.5 6) cs Foe wo 35 

2.3.1 Principle and application to the controls ............. 35 

25372 COMMONS elke sake el. eRe, RS, ehcec cn 5 «ithe & 35 

3 Novelty detection 37 

3.15 Probability densityestimation . .. (aa. ase a«< ssi wae ou 38 

Silelew Mixture miodeluses © cera ONcM cette). Meret g On Pe Re caries 38 
3.1.2 EMalgorithm.... 40 
3-13 2 Why MixturerModels? <2 35.05 02) &. seh See cei, fc 42 

3.2 SNurmber of comiponentsne: «1 Abe s eiels ae. aiken es eae mated oo 44 
3.3 -Draming:and validation procedure 2.5.08)... 2 0 ye be ae 44 

Beil eC LOSS VAC AtlOON «ctw! Geet ns Uae oe apna 45 

3:0-2 ig OCLECHION CLILeTION w/.) 24a) ses eee ee way eos eae) Oe ne 46 

3.4 How is the novelty threshold defined? ...........022..04. AT



CONTENTS 

        

   

  

3-0, Model parametersselection.:.0a sas ssc sa. ee a creek ce AT 
3:5 “Choite of: sizeof the basis, sages sc e. AT 
S00 Choice of Boe?) te Diego? 0,08) — = nc9-s ate as owen ots 48 

4 Application 53 
alee Novelty detection on Screen?) tress cutee Ul es.emier awe + a. 53 
sO te DISCUSSION «<a. Wadia rues Usa Genelec ia = Can. lige 57 
4.3 Adaptive Mixture Model for novelty detection .............. 58 

Wail Training procedures 0. src net araee ee re MOM eu 59 
32 SN CUWOLK: BCOW NIG: coh mer ienineL ee emesis a 60 
ASS LOCalcooung ote ag teks su, So ees BL Meee 61 
4:3.4 © Applications 6 20 ea sessile. «oe Cee ys 62 

43:5 ae DISCUSSION, ..a,5 tt a tava nen toe ae reeled oT 65 

Ad: sBrom plates:ton wells... peti. vees nee: (crea a: ah. 67 
4.4.1 Conditional densities 67 

AUAGD eR Col banana anean ORE Cras evics Me ies were dae my Sa 68 
4.5 The standard controls 7. 

4.5.1 Variation of the controls val 

B2d.2 A PDUCALIONS 4.0 emma RM ttO re ese Bo ees eels ge 74 

5 Conclusion 83 
5,1 7 Resultsofthe preluminarystudy gees lo. Jefk Gok ae ak ss os 83 
0.27 Newrapproaciyssmr. marameisern ess fs o,c Meh. oa. adhe Ge ace lee fA etm ein 84 

5.2.1 The method 84 

5.2.2 Achievement 85 

5.2.3 Limitations 86 
Dow burther Stiidies ac). songs oquetne shee ie on cake haste es i oe 87 

58 eeNormal wells arid “platesie sacs Ns tle Yay ta) ca wens ge 87 

5.3.2 Novelty detection on the control plates .............. 88 

SiS - Ebel Gs ose tngt. eg reese ove een eM oes oe, 89 

5.3.4 Detection on a day-to-day basis .............2..44 89 

A Screen references 91 
Aud. Sereent) toot: Meee, \h bane re yeria Amys 91 

A.1.1 HTA and Totals & NSBs plates . . 91 
Ast2)) Standardicontroliplates..is 2 3). cba rene ets. he aes 92 

ACD: (OGLOEM Leet oy teesifars’ arn ative) cree 1s. 1 SORE eM Os Ginnie we 92 
A.2.1 HTA plates 92 

A.2.2. Totals & NSB plates 93 

GAS OGRE OT. Oras ener es esaeen ta omni fe SN oles EN een sen ees ee 93 

A.3.1 HTA plates 93 
A 3:2 eo Lovelay Se \NS Bap ates tts Meweeld.. 0) 9 Pid. elias es oe Me as Soa, 94 

A.4 Screen 1b (same controls as Screen 1)... 2.22... eee eee 94 

AASV AN plates | caches ant sss cement aes 4 a eiaesaaG see 94



CONTENTS 

  

B Results 95 
B.1 Screen 1 95 
B.2 Screen 1b 95 
B.3 Screen 9 96 

C Computation of the error after normalisation 97



List of Figures 

Tel.) High Throughput Screening Process... <) 3 7.. 9785s aye se te 8 10 
12) “Normal HTS 06-welliplate 10. 20.2 0b Gee ss ee as 15 

153. Hitsl determinatiomeeccn. slat men mews acl GM ors feet otha ets aes 16 
LAs Quality: Control’ were kta sc MMe eas cere we otro. sue mes 16 

1.5° ‘Potals & NSB 's and IGco plates 2 ses. esas s Roce i ee ne 19 

2.1 Observed and expected distribution (single Gaussian) of the controls. . 24 
2.2 Point plots and normal quantile-quantile plots for the HTS controls .. 34 

ole iraining and validation procedure sl 0.04 Sch 4 Ge teey ass a S 46 
3.2 Model order determination (Cross validation) .............. 49 
3.3. Standard deviation contours and sample data and probability density 

TOGGLE Weegee. scene ON st na 1 e cots) oo eMac ae tok ha 50 

41 Novel-plates (1-52): Totals &NSBS Sa... ss see ei va pe oe 55 
4:2 Novel-plates (53-104): Totals & NGBs oo. ee ya es te 56 
4.3 Novel plates (105-156): Totals & NSBs . 0... he ee eee 56 
4.4 Novel plates (157- ae OLAISSOH OV OU39 Bier te) eee, Heme. ah als 57 
4.5 Network growth based on Mahalanobis distance for a 2-dimensional data 

SPGCe oN ine. tees sung ara at ca be GOeunGels eee green yee Al v 61 

4.6 Novel plates (1-52) (adaptive algorithm) .................- 62 
4.7 Novel plates (53-104) (adaptive algorithm) ................ 63 
4.8 Novel plates (105-156) (adaptive algorithm) ............... 63 

4.9 Novel plates (157- oe (adaptivelalgorthrn) 8.65 Seas oink meme 64 
4.10 Basis growth during the training... 1.4. 6 wc ee 64 

4.11 Conditional distributions: Totals & NSBs................. 70 
4.12 Progress curve of an enzyme-catalysed reaction ............. 12 

4.13 Standard controls and activations (Screen 2) ............... 73 
4.14 Standard controls 1D distribution (Screen2) ..............- 75 
4.15 Activations and inhibitions (Screen2).. 2... 5.6.20. ee eee 76 

4.16 Novel plates (1-52): Totals, NSBs & Standards.............. 80 
4.17 Novel plates (53-104): Totals, NSBs & Standards ............ 81 
4.18 Novel plates (105-156): Totals, NSBs & Standards............ 81 
4.19 Novel plates (157-206): Totals, NSBs & Standards............ 82 

4.20 Probability density of the difference |D9-— D3|.............. 82 

C.1 Normalisation and log-likelihood error on a 2 Gaussian Mixture Model 98



List of Tables 

2.1 Parameters estimation for statistical tests... .2.....556:.... 25 

2.2 x? tests on maximum and minimum controls. .............. 26 
2.3 Kolmogorov-Smirnov tests on max and mincontrols........... 28 
2A Discord ancvstecteu many eee: a, vs ee kee» 1 Uaariety vee h'a o> ea) Gada 33 

2.5 Correlation tests (significance level 0.5%) .............---. 36 

‘G/lmmeCCNGTALSALION GFTOle, & ceinar Payee Me. hues 5. Se lla ios l4. ony SS 51 

4.1 Proportion of rejected plates per day (assay): Totals & NSBs...... 55 
4.2 Contribution measure on Screen 2: Totals & NSBs............ 69 
4.3 Repartition of rejected wells for 5 %: Totals 8 NSBs .......... 71 
4.4 Contribution measure on Screen 2: Totals, NSBs & Standards ..... 79 
4.5 Repartition of rejected wells for 5 %: Totals, NSBs & Standards .... 80 

5.1 Kolmogorov-Smirnoff normality tests on normal wells .......... 88 
0:2) Dalydetection envocreen 20 ive seen. es Kw a Wes ss ws 90



Chapter 1 

Introduction 

The success of a drug discovery process depends entirely on its capacity either to find 

new chemical entities or to reveal unknown characteristics of some existing molecules. 

High Throughput Screening (HTS) offers an empirical means to identify novel com- 

pounds which act efficiently against a given therapeutic target. 

This chapter provides an introduction to HTS to supply the necessary background 

and understand the quality control of this method. Details can be found in [BKRW97]. 

The second part focuses on the control wells which are the means of assessing plate 

quality. We show how the problem of HTS quality control will be tackled using these 

wells. This final section outlines the practical constraints which should be taken into 

consideration and gives an overview of this thesis. 

1.1 High Throughput Screening 

Combinatorial chemistry makes use of automated and miniaturised devices to screen 

simultaneously a large number of mixtures. Indeed, recent progress in technologies 

such as bioassays, robotics, computation and data handling now enables large series of 

experiments, involving tests of thousands or millions of molecules. HTS takes advantage 

of these advances so that comprehensive collections of compounds can be screened in 

order to find relevant biological activity. The efficiency of the method relies on the
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volume of data generated by this technology. Therefore, the more quickly relevant 

information is found, the more efficient the method. Typically, drug discovery groups 

examine growing numbers of samples to determine the few compounds, called ‘lead 

compounds’, that will progress to the next round of screening, and eventually to the 

development of a pharmaceutical agent of commercial value. 

1.1.1 The HTS process 

The HTS process summarised in Figure 1.1 can be divided into five successive steps: 

compounds supply, assay, data capture, data analysis and sample follow-up. 

Compounds supply 

Automation is developed as much as possible so as to increase throughput; thus a 

standard format is required for conveying small liquid samples. The most common is 

the 96-well plate, each well having a volume capacity of up to 2ml. This type of plate 

— as well as the other formats : 48, 384 and higher — is also called ‘microtitre plate’ 

or ‘microplate’ because of the small volume of mixture required for each well. 

Vast libraries of compounds held by pharmaceutical companies, as the largest source 

of new potential lead compounds, constitute the basis of the HTS process. Indeed, au- 

tomated methods enable the relatively rapid synthesis of impressive libraries of com- 

pounds. The dry samples are provided in tubes formatted for the microtitre plate 

format and dissolved afterwards. These are placed for storage into a liquid sample 

10
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bank, source of all compounds for HTS. 

Assay and data capture 

Compared to traditional experiments on a few samples, an assay for HTS has its own 

requirements. For instance, the handling steps should be limited and the solvent’s 

compatibility ensured. In addition, the difference of incubation time! between the mi- 

croplates of the beginning of a screen and those of the end has to be evaluated by 

control wells on each plate. The variation which may occur from one plate or one assay 

to another will be discussed in greater length in Chapter 4. 

Various hardware items are involved in the manipulation and the analysis of the 

96-well plates for HTS: 

¢ The liquid handling and assay assembly are carried out by manual pipetting 

devices (fast but restrictive — the same volume is distributed to all the wells — 

and prone to error) or robotic sample process (accurate and versatile but still 

slow). 

e The separation includes the filtration equipment to harvest the contents of a plate 

(essentially manual) and the plate washers. 

¢ Signal detection instruments measure the radiometric, fluometric, colorimetric or 

luminometric activity to estimate the chemical activity of the mixtures. These 

measures form the data on which this study is based. 

The signal measures are saved in databases to be checked and assessed for a reliable 

interpretation of the data. 

The period during which the various compounds of the mixture remain active. 

11
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Data analysis 

Partly computerised, the data analysis is the key step of the HTS process and will be 

described thoroughly in Section 1.2.1. It has two goals: 

e The assay validation ensures the accuracy and the validity of the data with respect 

to the assay specification, 

e The decision making determines the ‘hits’ — mixtures whose activity is consid- 

ered to be significant — of the assay. 

Both operations are manual and conducted by means of a data graphical representa- 

tion. The assay validation is possible thanks to special wells on each plate dedicated to 

the control of the assay. The decision making aims at the selection of the wells whose 

activity is greater than a threshold fixed by the operator. A sample decision interface 

permits the simultaneous view of a wide range of data in order to assess the bioactivity 

of a sample to take decisions about its future. 

Computer controls are necessary throughout the HTS process including instrument 

controls (integrated software controls for robots or external computers for liquid han- 

dling) and data capture (bespoke programming of the plate reading devices). The 

contribution of computing systems is more significant in data management, since the 

capacity to deal with large amounts of data remains the keystone of combinatorial 

chemistry. Indeed, only powerful databases can manage the massive quantity of infor- 

mation generated by the screening. 

Sample follow-up 

The samples whose activity is revealed by HTS as active on a given target influence 

the choice of compounds for further screening in order to maximise the chances of 

finding a mixture of biological efficiency. On the last stage, they are submitted to 

lead optimisation which aims at improving the efficiency of the compounds. Contrary 

12
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to HTS, this optimisation relies on an existing knowledge base and is performed on 

small samples which need not be as robust as those of mass screening. If its activity is 

estimated sufficient, the lead compound is finally validated and added to the company 

library and database as active towards the target. 

1.1.2 Controls and assessment of the assay 

To prevent any variation in the analysis of the test sample activity and establish the 

validity of the assay, control positions are always present on each plate. Typically, they 

consist of: 

e a maximum well (100% of activity) ; 

¢ a minimum well (0% of activity); 

¢ a standard well (= 50% of activity) . 

The controls are generally analysed using softwares which offer different views of 

the data (graphical and tabular views of the control results). The assistance of a 

graphical representation of these controls is convenient for the operator and appears 

to be very efficient to compare controls of the same assay and allow assessment of the 

experiment. This assessment consists of the de-selection of the controls that reveal 

anomalous results. These controls can also be effective at detecting rogue plates or 

handling mistakes. However, it should be noted that this manual data assessment is 

fairly subjective and may vary from one operator to another. After validation, active 

samples of the screen can be determined to be submitted to further studies. 

1.1.3 Advantages and disadvantages 

The main advantage of HTS over traditional chemical schemes is that little information 

on the structure of the compound is necessary to perform the screening; hence its 

applicability to any molecular target. In addition, the record of successes as well as 

failures in databases can be utilised to design further experiments. 

13
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The obvious drawback of such an empirical search is that it can be time consuming; 

hence the need of efficiency. Moreover, the inherent variation of measurement tech- 

niques may induce false hits which must be rejected further on. Finally, the range of 

prospect for a laboratory is limited by the chemical diversity of its own library since the 

likelihood of finding a new compound by this method depends entirely on the selection 

of mixture to screen. 

The increasing number of screens demands substantial improvements in the HTS 

process. Besides, as the pressure to find novel therapeutics increases, the cost effective- 

ness and the speed of HTS become all the more crucial. From this point of view, the 

introduction of computing systems such as quality control software within an integrated 

HTS facility may contribute to render the process as efficient as possible. 

1.2 Controls and analysis 

This section concentrates on data analysis from the viewpoint of the quality control of 

HTS. To begin with, we present an example of data analysis together with the problems 

to be solved for this quality control. In the second place, the data which constitute the 

basis of this study are described. 

1.2.1 An example of data analysis 

This part introduces a naive example of data analysis for standard plates. Although 

simplified, it places this work in its biochemical background. 

It is generally considered that the data analysis starts with the control well checking 

even if its object is basically to provide reliable data to the actual data analysis. As 

stated in Section 1.1.2, the operator inspects a graphical representation of the control 

data to assess the assay and to detect would-be handling mistakes (such as insertion of 

an incorrect volume of substrate) or rogue plates. Once spotted, these control values 

14
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Normal well 

  

  

Minimum control well       

Standard control well 

Maximum control well     
Figure 1.2: Normal HTS plate 

can be de-selected which ends the assessment of the assay. The rejected control values 

will thereby not be taken into account for the detection of the ‘hits’. 

Suppose one wishes to detect a novel enzyme inhibitor, an active compound which 

prevents the action of an enzyme receptor. Each plate is provided with 90 different 

substrates (each mixture featuring 20 dry samples) and 6 control substrates (Figure 1.2) 

where: 

e the enzyme causes its normal reaction in a completely uninhibited manner (max- 

imum controls: D1, D7); 

¢ the enzyme is fully inhibited, though present (minimum controls: D2, D8); 

¢ the enzyme is partially inhibited by a compound whose activity on this enzyme 

is known to be ‘average’ (standard controls: D3, D9). 

For a given screen, all the control wells of the same type (marimum, minimum or stan- 

dard) of all the plates contain the same mizture. 

Because of the variation within an assay, it is important to measure accurately the 

maximum and minimum activity of this enzyme in the solution: that is to say, to fix 

15
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the boundaries 0% and 100% of Figure 1.3 in order to evaluate the actual inhibition 

of the enzyme receptor. The minimum and maximum controls are intended for both 

quality control and calculation of these boundaries. The role of the standard controls 

is restricted to the quality control. 

Ideally, all the maximum (respectively minimum and standard) control values of all 

the plates for a given screen should be the same since they contain exactly the same 

solution and measure the same activity. Practically, the activity boundaries (0% and 

100%) are estimated as the mean of a selection of controls (respectively minimum and 

maximum controls) of the assay”. This selection is achieved by visual inspection on 

a graphical representation of the control data similar to Figure 1.4. If the operator 

considers that a value of a control deviates significantly from the mean of this control, 

this value can be de-selected. The mean of this control is re-calculated (without the 

control which was removed). These controls are then checked again regarding this new 

mean and so on, until all the points are thought to be correct, hence assessment of 

the assay. The standard deviations (denoted in dash lines) computed for the minimum 

and maximum controls help the operator to decide whether a point should be kept®. 

This procedure determining whether a given point is an ‘outlier’ is obviously greatly 

subjective. Once this task completed for the two controls, the value for the minimum 

(maximum) activity defining the boundaries 0% (100%) is taken as the average value 

of those assessed. In other words, the de-selection of a point, say a maximum, affects 

the analysis in the sense that the value of this control does not influence the computing 

of the average of the maximum values which gives the estimation for the maximum 

activity of a compound (i.e. the minimum activity for the receptor). 

Concerning the first part of this data analysis, we should insist on the fact that if a 

single point (a control well) is de-selected, there is no consequence whatsoever on the 

The screening procedure is generally spread over several different dates for it is too long to be 
conducted in a row. In this case, the quality control and the analysis is carried out ‘assay by assay’. 

We shall see in Section 2.1 that the use of these standard deviation error bars which assumes the 
normality of the data can be put into question. 

Le
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remaining wells of this plate as far as the data analysis is concerned other than the 

modification of the activity boundaries. Otherwise stated, if a control is de-selected, 

no action in practice is taken over other values of the plate even if this may indicate 

that something has gone wrong with it. On the other hand, if all the six controls are 

suspicious the corresponding plate can be de-selected. 

After assessment, the operator sets a threshold above which the wells are considered 

as ‘hits’ (as indicated in Figure 1.3, for a 60% threshold‘). If the shape of this diagram is 

consistent with what can be expected for an average screen (according to the operators, 

a ‘Gaussian shaped’ plot centred in 50% of activity) the validity of the assay is assessed. 

The contents of these wells are then stored in the database as being relevant towards 

the enzyme and will be submitted to further tests. 

1.2.2 Other plate formats 

Other types of format than the standard 96-well plate can be involved in HTS. This 

section presents the [C50 plates and the Totals & NSB plates®. 

The C50 plates are generally employed after a comprehensive screening on normal 

plates that resulted in the detection of a few lead compounds to determine their op- 

timum concentration. On the [C9 plates, the same compounds are disposed on two 

successive columns from A3 to A12 in different concentrations (Figure 1.5) whereas 

the first two columns are dedicated to the controls (maximum and minimum). The 

data analysis is conducted similarly as in Section 1.2.1 to determine the hits, which 

correspond in this case to the compounds offering the best activity regarding the target 

together with the optimum concentration. 

The Totals & NSB plates are generated especially for this study. The 96-well plate 

4In Figure 1.3, some wells may even have a negative activity with respect to the target (in the 
previous example, the corresponding compound would activate the receptor instead of inhibiting it). 

° Totals for ‘totally inhibited’ (the minimum controls) and NSB for ‘Non Specific Binding’ (the 
maximum controls). 

18
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Totals & NSB plate (‘control plates’) IC50s 
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Figure 1.5: Totals & NSB’s and ICs plates 

is separated into two parts, 48 wells for the minimum controls and 48 for the maximum 

controls (Figure 1.5) whose content was discussed in Section 1.1.2 and 1.2.1. 

Note: in the following chapters, we shall try and avoid the terms ‘Totals’ and ‘NSB’ 

and prefer ‘mimimum’ or ‘maximum’ control for clarity of the argument. The Totals 

& NSB plates may be referred as the ‘control plates’ since they contain only control 

wells. Similarly, a 96-well plate will be called ‘normal plate’. 

1.3 Summary 

As frequently emphasised in this introduction, the assessment of HTS data makes use of 

a great deal of subjectivity. The aim of the study is to determine whether a probability 

density based method could help the assay assessment exposed in Section 1.1.2. 

This section presents the objectives of this project and the methods chosen to 

achieve them. The last part gives an overview of this thesis. 
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1.3.1 Aims 

This work is aimed at measuring the variance in the HTS data. To do so, we focus 

on the detection of unusual values of the control wells mentioned in Section 1.1.2 to 

determine the points which could be de-selected. This task can be regarded as a novelty 

detection problem in the context of probability density estimation. In other words, the 

underlying density function of the control well values can be modelled so as to detect 

unlikely values (called ‘novel points’ or ‘outliers’). It implies the formalisation of this 

‘novelty criterion’ to provide a quantitative measurement of this novelty in numeric 

(and therefore objective) terms. The software to be provided should point out these 

outliers and give a numeric evaluation of this novelty. 

Requirements 

The method for assessing the quality of the HTS data should fulfil the following con- 

straints: 

¢ it should not be computationally expensive even if the time for learning and test- 

ing is not crucial. Typically a procedure which takes a few minutes is acceptable; 

e as noted above, the control system must pin-point the abnormal plates of the 

screen; a measure of ‘abnormality’ should be provided for both the plates and 

the wells so that the latter can be ordered with respect to this measure; 

¢ the software must produce outputs which can be easily understood and thereby 

avoid the “black box trauma” of neural computing; 

e the method should leave a possibility of automation; it should be designed as a 

help for the operator who will validate the results of the detection but allows the 

eventuality of running without any intervention. 

We shall refer frequently to these requirements throughout this thesis to justify the 

decisions that will be taken concerning the novelty detection method. 

20
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1.3.2 Approach 

Each HTS screen is performed with respect to a given target so the control values of 

two different screens have a prioria different distribution. As a result, from a practical 

point of view, the approach consisting in ‘learning’ the distribution of these values 

requires the screening of three additional plates (the ‘Total & NSB plates’ or control 

plates) for each screen. These very plates are used to train and validate a model for 

the underlying distribution of the control values. The control values of the normal 

HTS plates which are ‘unlikely’ according to this model (the probability density) are 

declared ‘novel’ (and have to be pin-pointed to the operator as being ‘unusual’ ). In 

terms of handling, the additional plates necessitate little extra work: a typical run for 

HTS features more than 200 plates. 

1.3.3 Overview 

This thesis consists of four parts. The second chapter presents preliminary works on 

some HTS data and is divided into three distinct sections. Through popular statistical 

tests, the first section shows that these data are poorly represented by a single Gaussian. 

In the second section, standard statistical methods whereby the problem of abnormality 

detection can be tackled are described. Attention is drawn to the difficulty of using such 

techniques for the purpose of HTS quality control. Finally, we study the correlation 

between the three controls: minima, maxima and standards. 

The third chapter reviews in detail the model inference framework. First, we define 

the probability density model involved, Gaussian Mixture Models, and the technique 

for its training, the Expectation-Mazimisation algorithm. Second, the data selection is 

examined and we deal with the problem of choosing a proper novelty threshold for the 

density. The third part investigates the choice of the model parameters. 

The fourth chapter is concerned with the application of this framework. The first 

part applies a model to the novelty detection of an HTS screen by learning the distribu- 

tion of the minima and the maxima. An alternative approach to novelty detection, the 
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‘Adaptive Mixture Model’, employing the same density model but a dynamic learning 

procedure is outlined and tested on the same screen. The strengths and weaknesses of 

the two methods in the context of routine use are discussed. Once a plate is declared 

novel because of unusual control values, the next step is to spot its abnormal compo- 

nents. The third part treats this problem thanks to the conditional densities of the 

model previously described. The last part of this chapter is dedicated to the inclusion 

of the standards in the model. 

The results produced in this chapter concern Screen 2 (Appendix A.1). For obvious 

practical reasons, it was not possible to present in detail the results of the novelty 

detection on all the screens referenced in Appendix A. This screen was chosen because 

it features the smallest daily variation (see Section 4.5) and is therefore close to the 

type of data which could be provided by a automated screening device. 

In the final chapter, we present a summary of the study and reflect on additional 

questions which may constitute an extension of those treated hereafter. 

This work is aimed at providing a robust method helping an operator to take a more 

reliable decision. Bearing in mind the constraints mentioned above, it implies that 

however appealing or theoretically elegant a method can be, the one and only criterion 

for choosing or discarding it should remain its practical efficiency. 
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Chapter 2 

Preliminary study 

As the training and the validation of the model rely on the control plates, we start 

with a one-dimensional study of these values. 

The quality control of HTS is generally performed comparing the controls (minima 

and maxima) with one standard deviation from their respective means. This procedure 

implicitly assumes the normality of the data. The first part of this chapter investigates 

this hypothesis by testing the normality! of the controls. The traditional approach 

of outlier detection is described and applied to the HTS data. Finally, we test the 

independence of the three controls and examine the implications of the results regarding 

the HTS control procedure. 

2.1 Goodness-of-fit tests for Gaussian distribution 

The two following standard procedures, y? and Kolmogorov-Smirnov, test the goodness- 

of-fit on a Gaussian distribution (comparing the observed and expected distribution of 

Figure 2.1). Both sections present briefly the tests and the results obtained when ap- 

plied on the HTS controls. For the following sections, n denotes the size of the sample 

1We should be cautious with the term ‘normality’ since ‘normal’ and ‘Gaussian’ are widely con- 
sidered as synonymous (but some may restrict the former to Gaussian distribution with zero mean 
and unit variance). To describe such a distribution, we shall prefer ‘Gaussian’ to ‘normal’ to prevent 
confusion with the ‘normal’ plates. However, in Section 2.1, the denomination ‘normality’ as in “nor- 
mality test” refers to ‘the condition of being Gaussian’. The word has no implication whatsoever so 
far as the ‘novelty’ or ‘abnormality’ of the plates are concerned. 

23



CHAPTER 2. PRELIMINARY STUDY 

Maximum onl plate Manin cont pata expected ny ancien 15; 
    

  

  

01 ° ~~ expects namber of cont lates 
al rer of conta plates 

umb
er 

o c
oo

 p
late

s 

        

      
  

   
a alll HE. | till lk                                   

  

  3 0 ry 

Figure 2.1: Observed and expected distribution (single Gaussian) of the controls 
(Screen 2) 

and k the number of clusters (or bins) of the test. 

The two tests-of-fit on a Gaussian distribution are performed using the means ji and 

the variances ? computed in Table 2.1. Both of them test the following hypotheses: 

  

Ho: the sample is drawn from the normal distribution with mean fi and variance G2. 

4: the sample is not drawn from the normal distribution with mean fi and variance 6?.       

The samples consist of three screens referenced in Appendices A.1.1, A.2.2 and A.3.2. 

Each of them features three control plates (144 minimum wells, 144 maximum wells). 

2.1.1 x? test : 

The x? test can compare two binned samples to test whether they are drawn from the 

same distribution. Because it remains one of the most popular goodness-of-fit tests, it 

is used frequently to compare two densities drawn from continuous variables. This is 
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Parameters estimation |) Minimum plates || Maximum plates 

ae 3? a $e 

Screen 2 56.1528 | 3.0710 |} 1095.1 | 54.5483 

Screen 1 (1b) 95.98 122.7 || 3462.9 | 169.1 

Screen 9 27.32 9.04 575.1 74.16       

“The mean is estimated by f@ = 4 30", 2; where n is the size of the 
sample 

‘Similarly, for the variance we have: ¢ = 

  

Table 2.1: Parameters estimation for statistical tests 

the reason why the x? test is applied on the HTS control data to test their normality. 

Since both controls are continuous variables, the clustering is arbitrary. 

Principle 

Let O; be the number of events observed in the i** bin and E; the expected number 

according to the known distribution. The test statistic y? = Dh, aes has an 

approximate x? distribution if: 

1. no expected frequency is smaller than 1; 

2. no more than a fifth of the expected frequencies are smaller than 5. 

It may be necessary to combine bins in order to satisfy these conditions (see [MGH89] 

for detail). The number of degrees of freedom v is given by the number of bins minus 

the number of constraints. The number of constraints is the number of estimated 

parameters plus one. 

Application 

Since these two parameters are estimates and the sum )°*, O; is fixed, the number of 

degrees of freedom v is k — 1 — 2 where k is the number of bins for the test.
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These bins have equal width and divide the interval [min(control), max(control)] (orig- 

inally) into 25 clusters . Table 2.2 shows the results obtained for the y? statistic. 

  

x? test Minimum controls Maximum controls 
  
  

Degrees of freedom v 11 (14 bins) 20 (23 bins) 
  

    

  
    

    

‘ 5% | 1% 5% 1% 
Critical values* 

19.67 | 24.72 31.41 | 37.56 

huge 19.7573 35.7496 
  

Conclusion Some evidence for non-normality Some evidence for non-normality 
  
  

Degrees of freedom v 14 (17 bins) 12 (15 bins) 
  

    

  
    

    

ad 5% 1% 5% 1% 
Critical values 

23.68 | 29.14 21.02 | 26.21 

Neosho 27.9242 24.4020 
  

Conclusion Some evidence for non-normality Some evidence for non-normality 
  
  

  

    

  
    

    

    
Degrees of freedom v 4 (7 bins) 13 (16 bins) 

5% | 1% 5% 1% 
Critical values 

9.48 | 13.27 22.36 | 27.68 

acem 186.4604 22.7099 

Conclusion Normality rejected Some evidence for non-normality           

“A significance level of a =1% gives a confidence level, probability of failing to reject Hy when Ho is true 
of 99% (the critical values for 5% are lower than those for 1%). The dual test (a significance level of 99% 
rejects the normality for the six samples. The Kolmogorov-Smirnov tests will be carried out in the sam 
way. 

Table 2.2: y? tests on maximum and minimum controls 

Note: the different numbers of bins are due to the combinations necessary to satisfy 

the requirements of the x? test on small expected frequencies. The value of the 2 
XScreen 1 

statistic is due to the presence of a great number of outliers in the control plates. 
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2.1.2 Kolmogorov-Smirnov test 

The Kolmogorov-Smirnov test can be applied to unbinned distributions that are func- 

tion of a single independent variable; thus it is particularly suitable for continuous 

variables such as the HTS control values. It can be more reliable than the \? test in 

such cases since no arbitrary categories are required. 

Principle 

The test is based on the cumulative distribution function S, given by 

i 
5,(z) = pity € Biy<c} 5 

The Kolmogoroy-Smirnov statistic D is defined as the maximum value of the abso- 

lute difference between the the cumulative distribution function S,, and the expected 

distribution function F: 

D= max (S,(z)—F()| . (2.1) 
—co<r<co 

Application 

The value F in x of equation (2.1) is given by the distribution function of the Gaussian 

of mean ji and standard deviation G: F(z) = f*,, Toa xl hy. Table 2.3   

shows the results of the test on HTS control values. 

2.1.3 Conclusion 

The x? rejects the normality of the data and the Kolmogorov-Smirnov test gives mixed 

results for the same hypothesis. It suggests that the implicit assumption of normality 

is not sufficient to carry out the quality control of the data. The following chapters 

investigate some more complex models for the variation of the control values to improve 

the representation of the data provided by a single Gaussian model. 
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Kolmogorov-Smirnov test Minimum controls Maximum controls 
  
  

Critical values* 
5% 1% 5% 1% 
  

  0.11132 | 0.1357   0.11132 | 0.1357 
  
  

  

  

  

  

  
  

        
Dscreen 2 0.0567 0.0580 

Conclusion Normality accepted Normality accepted 

Dsereen 1 0.1154 0.0370 

Conclusion Some evidence for non-normality | Normality accepted 

D5creen 9 0.2615 0.0650 

Conclusion Normality rejected Normality accepted       

*For sample size n>100, the critical value D, can be found to be 
— [=n Da = an   , where a < 1 is the significance level of the test. 

Table 2.3: Kolmogorov-Smirnov tests on max and min controls 

2.2 Outlier detection 

Before explaining why the control plates can be used for density inference, it proves 

interesting to mention in the first place statistical techniques for dealing with the 

possible presence of outliers in the HTS data. This section shows how the problem 

would be tackled by standard methods to detect outliers in the univariate case and the 

limitations of such an approach. 

2.2.1 A methodology for univariate problem 

A standard approach of outlier detection proposes a two-step procedure: 

1. Use points, sequence, box, or normal quantile-quantile plots to spot extreme 

observations; 

2. Apply statistical tests for outliers (also called ‘discordancy tests’) with an ap- 

propriate significance level to determine whether the points selected in 1 differ 

significantly from the rest of the sample. 
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There is a plethora of tests available for outlier testing - [BL78] describes 22 tests 

for the Gaussian case only ~ depending on various assumptions such as normality. 

It should be noted that most of the techniques involved in outlier detection are 

derived under the assumption of an underlying Gaussian density. 

2.2.2 Quantile-quantile plots 

We first define the plots mentioned above in the step 1. The quantile-quantile plots 

can compare two samples suspected to be drawn from the same distribution. 

Let {y;}:=1,2,....n and {2;}i=1,2,..,.m two ordered samples with n < m. For each data 

fraction f; = i/n in the smaller sample, 2’(f;) (called ‘interpolated quantile’) for the 

largest sample is defined as: 

De i, 

a(fi) = 
(l—g)te+ 92x41 otherwise , 

where h = (m+1)fi, k is the integer portion of h and g =h—k (ifm <k, «'(fi) = 

The quantile-quantile consists in plotting Q,(fi) = yi versus Qx(fi) = 2'(fi), 

t= 1,2,...,n. If the two samples are identical, all the plotted points lie on the 

same line. 

The standard normal quantile-quantile plot consists in plotting y; versus Qsn(fi), 

where f; = (i— §)/(n + 4) and Qsy(f) = 4.91(f9™ — (1 — f)°™). 

In the general case, the normal quantile-quantile plot for a sample of mean ju and 

variance @ is derived from Qsy by Qn(f) = oQsn + hu. 

Unusual trends or clustering on the plot may highlight outliers?. 

The distinction between the two normal quantile-quantile plots is taken into account for consis- 

tency with the literature but is not actually necessary; a line remains a line after a linear transforma- 

tion, an outlier remains an outlier. 
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2.2.3 Grubbs tests 

This part presents a simple method based on the Grubbs’s statistics Ly; and Ex, to test 

if a subset of a sample {z;};=1,...n is formed of outliers. The test should proceed as 

follows: 

1. Sort the data {z;}:<1,...n in {yi}ient,....n 

Wi SY2S---Yn 

2. (a) If the & largest values in the data set are suspected as outliers: 

ag Yi - UL)” (2. 
Syy i=1 

n
 i 

where: 

  
yok 

Ue ak 

and 
n 

Sw = ivi J) - 
i=l 

(b) Conclude that the group of k observations are outliers if the calculated value 

of L, is less than the critical value® for L;, Grubbs test statistics‘. 

3. (a) Similarly, if the k most extreme values are suspected as outliers (some are 

the largest while others are the smallest ones) 

Ey = — (x — 25)" (23) 

where: 

© 2; is the y; corresponding, to the i** smallest |y; — yz|; 

© Zg average of the y; corresponding to the n — k smallest deviations. 

3See the tests referenced N4 and N5 in [BL78] p91 and pp304-306 for the critical values. 
4Alternative approach suggests the consider the statistic Se (or ESD for Extreme Studentized 

Deviate); the strong points and drawbacks of this method being comparable to the use of the second 
(t-2)? order “> ~~» we chose to present the latter.   
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(b) Conclude that the group of k observations are outliers if the calculated value 

of E, is less than the critical value for £, Grubbs test statistics. 

The limitations and situations where Grubbs tests may fail are discussed in the 

next section. 

2.2.4 Outlier detection in the context of HTS control 

This section demonstrates the outlier detection on the HTS data. We discuss the 

results and underline the weak points of the method in the context of HTS quality 

control. 

Application to HTS controls 

The methodology described in Section 2.2.1 is applied on Screen 2. Scatter plots and 

normal quantile-quantile plots in Figure 2.2 guide the analysis. These plots highlight 

various suspiciously extreme values. The following controls (marked in Figure 2.2) are 

chosen to test their abnormality®: 

Minimum controls: 66(D2), 95(D6) (Figure 2.2(a)); 

Maximum controls: 95(D1), 95(D7) (Figure 2.2(b)); 

Standard controls: 128(D3), 95(D9) (Figure 2.2(c)); 

For the standards, one may choose a third point pointed up ‘7??? in Figure 2.2(c) 

which corresponds to the control D3 of the plate 95 but let us keep it apart for argu- 

ment’s sake. 

Table 2.4 shows the results obtained for this outlier detection test. 

°As in Section’l.2.1, we note ‘66(D2)’ the first minimum control (D2) of the plate 66. 
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Comments on the discordancy tests 

1. The procedure requires judgement on the part of the analyst: it is necessary 

to choose a set of outliers. As a consequence, the test. may prove positive even 

though some of the extreme values of the sample are left aside. Looking back 

at the standard control 95(D3) in Figure 2.2(c), it would have been sensible to 

include it in the test set since it differs only slightly from one of the controls 

tested, the standard control 95(D9). Nevertheless the test succeeded. In a semi- 

automated method, the former control would not have been detected if such a 

mistake had been done. 

2. The test is sensitive to other outliers: the test may not be conclusive because of 

the presence of other extreme values in the n — k values considered as ‘normal’. 

This problem is known as ‘masking’. It explains why the test on the maximum 

controls is not positive. The two controls 95(D1), 95(D7) arise naturally in the 

point plot of Figure 2.2(b), yet these outliers are masked by the relatively high 

values of the first 40 plates. The difference between these plates and the rest of 

the screen will be debated more thoroughly in subsequent chapters. The design 

of the test (a subset tested for abnormality with respect to the rest of the sample) 

implies that the failure of a test does not necessarily mean that the chosen points 

are not outliers but rather that these are not the only ones. 

More generally, if two points happen to be different from the sample by an order 

of magnitude, each point will appear both on the numerator and the denominator of 

equations (2.2) and (2.3). As a result, the corresponding test will not be significant. 

This is the reason why the procedure making use of graphs is generally reckoned more 

reliable for outlier detection. 

The choice of a proper value for k, the number of outliers to be tested, is obviously 

crucial. One might not have been worried about choosing more outliers than necessary, 
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Discordancy test Min 66(D2) 95(D6) Max 95(D1) 95(D7) Std 128(D3) 95(D9) 
  
  

  

        

            

5% 1% 5% 1% 5% 1% 
Critical values 

0.833 | 0.802 0.833 | 0.802 0.821 | 0.794 

test statistic 0.5518 0.8184 0.6903 

Conclusion Positive Some evidence Positive 
  

Table 2.4: Discordancy tests 

had the validation been carried out manually. The problem is that in the case of the 

discordancy tests, such a choice would make the test fail. On the other hand, if too 

few outliers are chosen for testing, the test. might succeed in the case of large samples 

despite leaving extreme values undetected as was the case for the standard 95( D3). 

Potential problems in applying the tests 

The application of outlier detection in the context of a quality control of HTS data 

highlighted the following problems: 

e The method is not based on a density estimation so no description of the data is 

provided in terms of probability; 

e In particular, no measure of novelty is possible, neither is an ordering in the 

outliers detected; 

e This procedure is greatly subjective for the choice of the outliers and the value of 

k to be tested for; in addition the ‘manual’ graph inspection leaves no possibility 

of automation. 

e The analysis is more complex in the multivariate case (among other things, the 

visualisation in a 6-dimensional space is not as easy); 
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Figure 2.2: Point plots (left) and normal quantile-quantile plots (right) for the HTS 
controls 
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2.3. Correlation tests 

This section presents a popular test for correlation between two random variables X 

and Y from which two samples {z;}i=1..n and {y;}i21..n have been drawn. It is based on 

Pearson’s r (or sample correlation coefficient) and is applied on the three HTS controls, 

minima, maxima and standards, of the normal plates. 

2.3.1 Principle and application to the controls 

The tests of existence of a correlation between the various controls are based on Pear- 

son’s sample correlation coefficient given by: 

Sry 

VSaeSyy 

where sey = 4 Dii(yi — 9)(ai — Z) and Soe = 2, DR, (2i — 2)? (if r = +1 there n= 

r= 

exists a linear dependence between X and X). The statistic is given by: 

r(n — 2)? 
ts (— rye 

cou(X,Y) ea It can be assessed and tests the nullity of the correlation coefficient p = 

as a Student cumulative statistic®. 

This statistic tests the following alternative: 

  

Ho: X andY are not correlated (p = 0); 

Hy: X and Y are correlated (p # 0). 

      
The results are shown in Table 2.5. 

2.3.2 Comments 

As expected, the controls of the 96-well plate are all mutually correlated. 

° cf [MGH89] p440 for example. 
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Independence tests min/max min/std max/std 

t-statistic 4.10 2.98 9.69 

Critical values t., 2.576 2.576 2.576 
  

Conclusion       Independence rejected   Independence rejected   Independence rejected 
  

Table 2.5: Correlation tests (significance level 0.5%) 

There is a strong correlation between maximum and standard controls. If we recall 

that there is no difference between the standards and the normal plates’ , this strong 

correlation shows that it makes sense (‘statistically speaking’) to rely on the controls 

to assess the quality of the data collected: an unusual variation of the controls would 

denote an unusual variation of the whole plate. 

A significant difference exists between the correlation of maxima and standards and 

the two other statistics. These two controls may be more sensitive to the experimental 

conditions than the minima. 

"The only difference between a standard control and a normal well is that the activity of the 
standard is known (cf Section 1.1.2). 
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Chapter 3 

Novelty detection 

Novelty detection aims at determining abnormal or unusual outputs of any industrial 

task. In the context of the quality control of an experimental scheme, ‘novel’ points 

can be defined as the observations which have unusual values compared to other data 

observed under the same experimental conditions. So far as HTS is concerned, the 

novel control wells should be studied since they may reveal experimental conditions 

which may not be those that were intended and therefore should not be taken into 

account in the activity boundary computation (Section 1.2.1). 

From a probabilistic point of view, if the distribution of ‘normal values’ is known, 

a novel point is the one which is ‘unlikely’ for this distribution. Precisely, a point is 

declared ‘novel’ if its probability is below a novelty threshold to be determined. As a 

result, this chapter focuses on: 

e modelling the distribution of normal controls; 

e defining the ‘novelty threshold’. 

In this chapter, we motivate the choice of the density model, Gaussian mixture 

models, and describe the probability density inference technique, the Expectation- 

Mazimisation algorithm. In the second place, we show how this model can be trained 

on the three control plates. The choice of the novelty threshold is then discussed to- 

gether with its implications regarding the HTS quality control. Finally, we consider 
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the possibility of data pre-processing and determine the parameters of the model. 

3.1 Probability density estimation 

This section presents an overview of the techniques used to infer the density of the HTS 

control values. A density model, the mixture model, is introduced and we describe how 

the parameters of this model can be estimated by the Expectation-Mazimisation or EM 

algorithm in the Gaussian case. Details can be found in (Bis95]. 

3.1.1 Mixture models 

A mixture model represents the underlying density function p(x) of the data as a linear 

combination of M basis functions: 

M 

P(x) = 27 P()eCls) (3.1) 

where P(j) and p(x|j) are respectively the priors (or ‘mixing coefficients’) and the 

likelihood that x is from component j. 

The priors should satisfy the constraints: 

O20) = 1G, 

(3.2) 

wi Pu)=1.. 

The components p(x|j) of the mixture are normalised so that: f p(x|j)dx = 1, Vj, 

j = 1,...,M. The component densities p(x|j) are chosen to be Gaussian density 

functions: 

P(x|j) = ees = 5 = 4;)B5 (x a)" , (3.3) 
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where yz; and 5; are respectively the mean and the covariance matrix of the compo- 

nent j. The problem of density estimation is therefore to determine the parameters of 

the model: {P(j),#;,5;, j = 1,...,M}. This type of model is generally known as 

‘Gaussian mixture model’. 

The elements of the covariance matrix model © = (ort rer. are intended to model 

the covariance! cov(X,, X1) = €[(X,4 —EXx)(Xi—EX;)] of the underlying random vari- 

ables X;, X; (it is therefore symmetric). Those commonly used for mixture models can 

be divided into three different types presented here together with their main properties: 

1. Full covariance matrix: 

¢ no constraint on the model; 

e the number of parameters is d(d + 1)/2 and the inversion of ¥ in equation 

(3.3) is difficult (computationally expensive); 

e the curves of equal density values are ellipses without any constraint on their 

directions. 

2. Diagonal matrix Diag(o?,... ,03) where the o; are not necessary equal: 

¢ ignores the possible correlation between variables (the covariance cov(X;, Xx) 

for k # 1 ‘is modelled by 0’); 

¢ the number of parameters is d, the inversion of © is easy; 

the curves of equal density values are ellipses whose axis directions are given 

0 

a : 0 

0 : 

by the standard basis vectors | ],...,]*],....]° (‘the axis of the graph’). 
: ° 0 

0 i 1 - 

0 

3. oI where o is a real positive number and J the identity matrix: 

1€[X] is the expectation of X. 
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© constrains the elements of the diagonal to be equal and the others to be 

nought; 

¢ the number of parameters is equal to 1, the inversion of © is trivial; 

it is generally used on centred data; 

e the curves of equal density values are circles. 

The choice of the covariance matrix used for novelty detection will be discussed in 

detail in Section 3.5.2. 

3.1.2 EM algorithm 

The Expectation-Mazimisation or EM algorithm provides a effective means to deter- 

mine the parameters of a mixture model. This section presents briefly this iterative 

algorithm and the initialisation used. 

The updating relations 

Suppose we want to find a mixture model (3.1) which describes the distribution of a 

data set T = {xn}nz=i,...,v where x, = (2, Lee 2) is a d-dimensional vector. 

Most of the techniques for determining the parameters of a Gaussian mixture model 

rely on the maximisation the likelihood of the parameters: £L = Te, p(x”) i.e. min- 

imising the negative likelihood error given by: 

N M 
B=—In£=—-SoIn{ ¥ PU)p(x"ls)} ; (3.4) 

n=1 j=l 

To simplify the notation, let @ be the set of parameters to be determined: 

6 = {P(j), mj, Bj, J =1,-..,M} 

Let Q(9, 0’) = E[ln £|6’], function of the observed data {x,}n=1,...,v- The EM algorithm 

  

starts from an initialisation 0 and alternates two steps: 
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E-step: Find Q(0, 6%) = €[In £9"); 

M-step: Choose 6” to maximise Q(0, 0%“). 

The maximisation of the likelihood £ (M-step) is obtained gradually at each iter- 

ation (new) by conditioning the expectation (E-step) on the values of the parameters 

of the former (old). If we recall the expression of E, this is equivalent to choosing 

o"™ for minimising the expectation €[£|0°4] leading to a new error E"*”. In the case 

of mixture model (3.1), it can be shown? that the new error admits the upper bound 

given by: 

a Pree(j)pte“(x"j) EM < Rold P45 |” {SD : 3.5 < Xd (lx") p4(x") Pold(j] x”) (3.5) 

As the E-step maximise the expectation conditioned on the old parameters (E°!@ is 

fixed), we wish to minimise the second term of (3.5), which will lead to a minimum 

unless £"*“ is already a minimum. 

In the case of Gaussian mixture, the value of 0" = {P"*“(j) He ae, i = 

1,... ,M} can be expressed as a function of 6% = {P#(j), w2!4, melt, j = 1,..., M}. 

For © = Diag(o?,... ,03) (the choice of such a covariance matrix is justified in 

Section 3.2) the minimum of the second term of (3.5) is obtained by differentiation 

with respect to the parameters P(j), s1;, of). This leads to the updating relations: 

new Un P4(j|x")x" 
ww = PGR)’ eS 

old ten) n() __,(3)y2 
(j) newy2 UnP lx \aer = He") : 

(2 jel Ep Peld(j |x") , (3.7) 

s\new 1 old (=| n PG) a= ap EO (3.8) 

for ae aye lee Proof and details can be found in [Bis95] for the case 

& = 07! (change the expression of equation (3.7)). 

2Using equation (3.4) and Jensen’s inequality: In (=, 21) > Dj AyIn(@;) if A; > 0 and 
35 Aj = 1 (See [Bis95] for example). 
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Starting values 

The performance of the EM algorithm for minimising the error (3.4) can depend on 

the starting points of the updating equations (3.6), (3.7) and (3.8) . In the training 

1 procedure, the parameters are initialised to j; for P(j) for all j. The centres y; are 

chosen randomly in the interval [min(T) max(T)] and the variance as: 

min || 4; — Hy || - 

As far as the implementation is concerned, the method checks the values of pat 

at each step of the EM-algorithm using the Linpack reciprocal condition estimator in 

order to avoid ill-conditioned matrices. 

3.1.3. Why Mixture Models? 

Several theoretical arguments can be provided to justify the choice of mixture model as 

the structure for density inference. First, the models (3.1) have the universal approxi- 

mation property: they can fit any probability density. Another powerful consequence 

of using Gaussian mixtures defined by the equations (3.1), (3.2) and (3.3) is that it 

becomes straightforward to compute the conditional densities because these remain 

Gaussian (cf Section 4.4.1). 

From a practical point of view, the mixture models were preferred to other proba- 

bility density estimators such as Parzen windows estimator because of their speed in 

evaluating the density at a new data point, which should be regarded as an asset in a 

routine use. 

A drawback is the extra time necessary for training when compared to Parzen 

windows estimator, for example. In particular, the main critics argue on the slow 

convergence of the EM if the mixture components are not well separated [XJ95]. This 

relatively slow convergence should not be considered as a problem since in practice, the 

control of HTS is not on-line: the extra plates and the standard plates are generally 

screened on different days. Furthermore, even in an automated procedure, the model 
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can be trained on the control plates while the normal plates are being screened. This 

training is a matter of a few minutes in this case which clearly fulfild the requirements 

settled in Section 1.3.1. As a result, the learning time is not a crucial issue? as long as 

it remains in this order of magnitude. Moreover other non-linear optimisation methods 

such as gradient based methods are expected to perform poorly on such an ill-separated 

mixture [XJ95]. 

The EM algorithm may not be suitable for problems involving several clusters when 

the starting points do not separate sufficiently the group means. In such a situation, 

the EM can converge to an inappropriate local minimum for the error (3.4) as reported 

in ({Rip96], p208) and therefore a poor local maximum for L. In the case of the HTS 

controls, the nature of the data, a measure of activity for wells containing the same 

mixture, does not suggest separated clusters. The examination of the data provided 

confirms this intuition (see Figure 3.3 for example). As a result, the complexity M to 

be determined in Section 3.5.1 does not aim at distinguishing distinct clusters but at 

determining a more accurate description of the data‘. 

The following advantages of the EM overdraw the drawbacks: 

¢ the EM provides a monotonic convergence without the need to set a learning 

rate; 

e the EM gives low computational overhead®. 

‘The implementation in Matlab of the learning procedure which will be described in Section 3.3 
takes 2min 36s on a Spare (Sun4d) for the data of Screen 2 (206 plates, Appendix A.1) which is quite 
acceptable in the context of the HTS control since the quality control is not intended to be carried 
out straight after the screening. Moreover this relatively fast training would permit the integration of 
the novelty detection scheme into an automated control system. 

4As mentioned in Section 2.1, the distribution of the control values of HTS can hardly be considered 
as Gaussian (unimodal). Nevertheless the density function is not well separated so that clusters can 
not be characterised. 

®The software is expected to run on micro-computers. 
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3.2. Number of components 

The choice of M, the number of basis functions in the model (3.1) is known to be 

difficult [LB88]. The available tests for testing the number of components of a mixture 

model can be divided into two categories: 

e the tests based on the likelihood ratio test® are the most common (using boot- 

strapping for example as in [Lac87]), 

the tests based on moment estimators [FL94]. 

The first problem is that there exists no criterion to determine the optimal choice for 

the number of components M. Indeed, the tests mentioned above can compare two 

models in order to choose between 1 and 2 components. Besides, all the tests rely on 

the hypothesis of homoscedasticity (the basis functions have equal variance) which is 

not necessarily compatible with the the EM algorithm. 

So far, the problem of an adequate choice of number of basis functions in its gener- 

ality remains unsolved from a theoretical point of view. This is the reason why for this 

study, the choice of the number of components in the basis is empirical (Section 3.5.1). 

3.3. Training and validation procedure 

This section explains the procedure for determining a probability density model which 

describes the distribution of the HTS control values. Cross validation is used to avoid 

®The problem of deciding the number of components of a model can be formulated in terms of 
likelihood maximisation: suppose we have an alternative Ho, Hy for 2 different values (or number) of 
parameters. Hp is rejected if : 

max L(0) < max L(8). 
O\Ho Oley 

The likelihood ratio test uses the statistic: 

_ maxgiz, L(A) 
Wis ti 

maxg|#, C() 

If the distribution of \* is known (which is the case only with serious restrictions on Hj), critical 
values can be determined and the hypotheses Ho can be tested versus Hy. 
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over-fitting the data. The criterion for selection among several models is discussed in 

the second part. 

3.3.1 Cross validation 

The minimisation of the error (3.4) on a single set T does not ensure a good performance 

of the model when presented new data. To find the model which has the best prediction 

on new data the learning procedure for density inference we proceed by cross-validation. 

The Gaussian mixture model is trained and validated on the sets whose construction 

is detailed in Figure 3.1. As they constitute the reference regarding the distribution 

of the controls, the data formed by the control values of the three first plates generate 

both the training and the validation set. The set C of 2-tuples, random permutation 

of the control values, is split into two sets C, and C: 

¢ C; is used to generate the training set: a set of 4-tuples T is created randomly 

from Cy; 

© C2 is used to generate randomly 4-tuples’ for the validation set V. 

This procedure is repeated ten times. A more complex cross validation procedure for 

generating training and validation sets can be considered. One might choose to divide 

C into ten subsets, using nine of them for training and evaluating the error on the last 

one. Such a procedure can be repeated ten times by changing the validation set for one 

of the nine training sets (see [Bis95] p374 for example). In practice, this alternative 

gives similar results on the generalisation error as the one previously mentioned. As a 

result, we chose the simplest cross validation procedure. 

*We call ‘d-tuple’ a vector belonging to a d-dimensional space (d components). The 4-tuples refer 
to the 2 Totals and 2 NSBs of the normal HTS plates exposed in Section 1.2.2: (D2, D1, D8, D7) = 
(min, mazx,,ming,mazr2). Similarly, 6-tuples will be considered when the standard controls are 
included to the procedure to create vectors of the form (mini, maz, std,, ming, maze, std2) (Sec- 

tion 4.5). 
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Figure 3.1: Training and Validation set generation 

3.3.2 Selection criterion 

One of the ten models computed by the procedure indicated in Section 3.3.1 must be 

chosen according to what is considered to be ‘a good model’. The best fit with respect 

to the generalisation error is kept: our choice will be the probability density which 

provides the best description of the validation set distribution (the one which gives the 

smallest error (3.4) on Y). 

A different criterion of choice among those ten models can be considered. One may 

select the model inducing the smallest number of novel points in the validation set 

(using as novelty boundary the smallest value of the density function on the training 

set). These two strategies differ in principle. The first one prefers the best description 

of the data. The second, focusing on novelty detection, implies that the training set 

is ‘perfect’ so that the fewest elements should be abnormal., Therefore a good model 

would be the one that rejects few points. In practice, the two strategies give similar 

results on detecting novelty on the screen test, HTS Screen Number 2. 
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3.4 How is the novelty threshold defined? 

The advantage of using a novelty threshold is that it ensures the detection to be car- 

ried out systematically; regarding the second requirement exposed in Section 1.3.1, it 

constitutes an objective criterion for deciding whether a point is unusual. We choose 

to define the novelty threshold as the minimum value of the density function of the 

validation set. It implies that the controls of the normal plates which have a smaller 

probability than the smallest probability of the controls of the control plates are de- 

clared novel. 

Instead of using the training set to fix this novelty threshold, another possibility 

would be to compute its value as a significance test. Using a set of points sampled from 

the density function, a value for the threshold corresponding to, say, a 95% novelty 

rate can be determined (i.e. to set the novelty threshold to the 95‘* percentile of 

the density function). In this case, we would expect to find ten ‘abnormal’ plates on 

a ‘normal’ screen (normal plates classified as abnormal by chance). This alternative 

takes advantage of the probabilistic description of the data provided by the probability 

density. This would have been impossible with the standard statistical techniques 

described in Section 2.2. Finally, such a choice of threshold is intuitive and easily 

interpreted. In this respect, it follows the third constraint of Section 1.3.1. 

3.5 Model parameters selection 

3.5.1 Choice of M: size of the basis 

The difficulty concerning the number of basis functions mentioned in Section 3.2 re- 

quires an empirical answer to the question “what is the value of M?”. This section 

explains why the value of M is set to 2. 

As described in Section 3.3.1, cross validation is used to find a model for each 

complexity. The data set was made of three control plates (288 wells) that is to say 
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3x48 = 144 minimum controls and 144 maximum controls (Screen 2, Appendix A.1.1). 

First, a single Gaussian density is fitted to the data x = {x'}i<i.144, using the 

estimators 4 = €[x] and © = €[(x — p)’]. For the complexity M = 2,... ,6, the 

parameters of the Gaussian Mixture Models are obtained by the EM algorithm using 

the equations (3.6), (3.7) and (3.8) and the initialisation indicated in Section 3.1.2. 

The first set is used to train the model using re-sampling. The generalisation error 

of this model is found on the 144 points validation set. This procedure was used ten 

times for each complexity. Figure 3.2 shows the negative log-likelihood error for the 

different values of M. 

The curve of the error on the validation set clearly shows the improvement between 

the single Gaussian and the 2 mixture model but does not decrease significantly for 

higher values. As a result, the model complexity M is set to 2. 

3.5.2 Choice of ©: o°J vs. Diag(o?,..., 03) 

In order to choose the structure of the covariance matrix © and a possible data pre- 

processing, three different procedures are tested: 

1. Train the model on raw data with © = Diag(o},... ,03); 

2. Train the model on raw data with © = o7/; 

3. Train the model on centred data with © = o7!. 

The generalisation error (negative log-likelihood on the validation set) is then com- 

puted for the three cases. The mixture is composed of 2 Gaussians and trained using 

the same procedure as in Section 3.5.1. 

Table 3.1 presents the average of the generalisation error for ten runs. The results 

for the centred data includes the correction term induced by the normalisation (cf Ap- 

pendix C). 
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The full covariance matrix described in Section 3.1.1 is not tested. As noted in 

this section, this structure is computationally expensive because it features d(d + 1)/2 

parameters instead of d for the diagonal case. In the case of the 96-well plate (d = 4,5 

or 6), it implies 10 parameters instead of 4. If the method is extended to the [Cso plates 

exposed in Section 1.2.2 which features 2 x 8 = 16 controls, it means 16(16+1)/2 = 136 

instead of 16 parameters. In addition, the computation of the inverse of the covariance 

matrix is very difficult in the general case of a full covariance matrix. As this inverse 

should be computed once at each iteration of the algorithm, it makes the use of a 

full covariance matrix all the more expensive. As a result, this matrix structure is 

inappropriate from a practical point of view. 

Another reason for using only diagonal matrices such as the three structures above 

stated, will become clear when we shall use the conditional densities to spot the un- 

usual wells (see Section 4.5). In the case of diagonal matrices (the marginal variables 

are mutually independent regarding the model), the conditional densities of a multi- 

dimensional Gaussian are straightforward; even if they remain Gaussian, they would 

require extra calculation if the correlation between the variables were taken into ac- 

count. 

  

Diag(o?, 03) oI | Centred data 
  
  

Error 589.9229 734.7716 590.5702               

Table 3.1: Generalisation error 

As expected the model with © = 0? performs poorly on the raw data because of 

the different variances of the two controls. The performance of the model © = o?/ on 

centred data and the performance of the model Diag(o?, 03) on raw data are similar. 

Their respective training times are close to each other. 

The model for novelty detection on HTS was trained on raw data with the matrix 

Diag(o?,... ,o3) for four main reasons: Toe 9d 
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¢ The small dimension of the problem (4 and 5/6 in the last stage of the project) 

does not require pre-processing which can be necessary in high dimension prob- 

lems; 

e The complexity of the model can be largely determined by the transformation 

applied to the data and should be avoided if possible [NCCR*97]. The normali- 

sation involves a loss of information in the data, which may alter the model; 

e In particular, the normalisation imposes an extra constraint on the ratio between 

the two axis of the ellipsis of Figure 3.3 (given by a, where the Gj are the standard 

deviations used for normalisation); 

¢ Because of this small dimension, the use of Diag(o?,... ,03) for © is not compu- 

tationally expensive when compared to S = o°/: the gain of the latter in terms 

of memory allocation and speed is not significant.



Chapter 4 

Application 

This Chapter presents the results obtained by the novelty detection techniques de- 

scribed in Chapter 3 on HTS data. 

In the second place, an alternative method is introduced: the ‘Adaptive Mixture 

Model’, whereby the number of components of the mixture can be determined during 

training. This method is tested on the same screen to compare it to the first approach. 

Third, since we are not only interested in spotting rogue plates but also unusual 

well values, we demonstrate how the conditional densities of the mixture model enable 

to distinguish within the 4-tuple which component may be abnormal. 

Finally, we include the last two controls, the standards, in the novelty detection 

technique. 

4.1 Novelty detection on Screen2 

The novelty detection method has been applied on Screen 2 to detect novel plates (the 

ICso plates were not used for the tests). 

The novelty threshold is defined as the minimum of the likelihood function on the 

validation set. The alternative proposed in Section 3.4 gives similar results for a 1% 

rejection region. 

Figure 4.1-4.4 show the results obtained for this screen. The normal plates are 
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ordered from 1 to 206 (which correspond to the reference 6-211 in Appendix A.1.1). 

The first and the second graphs from top represent respectively the values of the 

maximum and the minimum wells in a similar way to that used in practice for assessing 

a screen'. On these graphs, the stars ‘*’ denote the first maximum and minimum 

controls (D1 and D2 in Figure 1.2) of the 96-well plate. The plus ‘+’ denote the 

maximum D7 and the minimum D8. 

The third plot is the negative logarithm of the likelihood? of the corresponding 

4-tuples and the dotted line represents the novelty threshold above which a point is 

declared novel. This graph can be seen as a measure of the novelty of the plate: the 

higher this value, the more the corresponding plate differs from those which have been 

learnt from the control plates (the ‘more novel’ the plate is)°. 

The novelty detection on the Screen Number 2 declared 73 plates as novel out of 206 

plates. The results day by day are summarised in Table 4.1. To compare these results 

to the manual HTS control, the rejection of a plate does not imply here that all four 

controls D1, D2, D7 and D8 are ‘abnormal’ (and would be de-selected in the visual 

inspection described in Section 1.1.2) but only that at least one component of this 4- 

tuple is unusual or perhaps that no single value is strictly unusual, but the combination 

of values is. The question of determining which control(s) is abnormal among the four 

will be raised in Section 4.4. 

'The dotted lines of each graph represent F, +o, and Z—c;, used to guide the operator in a real 
HTS analysis. 

?The value p(z) taken by a density function p for a point z is generally called the ‘likelihood’ of this 
point as mentioned in Chapter 3. Since it can be interpreted as an error (the smaller the likelihood, 

the greater the error), it is convenient to consider —log(p(x)) which has values in the interval [0, +00). 
For convenience of analysis, the graph has been resized; the circles ‘o’ on the third graph (plate 7 in 

Figure 4.1 for example) correspond to values of the negative log-likelihood lying out of the boundaries 
and therefore denote ‘very novel’ plates 
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Date Total number of plates | Number of rejected plates | Proportion 

28/11/96 40 38 95% 

06/11/96 40 4 10% 

13/11/96 NG! 2 18% 

07/11/96 40 6 15% 

12/11/96 40 17 42% 

13/11/96 35 6 17%         
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Table 4.1: Proportion of rejected plates per day (assay) 

%* Rejected control (D1 or D2) 
af Rejected contro! (D7 or D8) 

* Accepted plates 
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Figure 4.1: Novelty detection on HTS screen: plates 1 to 52. 
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Figure 4.2: Novelty detection on HTS screen: plates 53 to 104. 
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Figure 4.3: Novelty detection on HTS screen: plates 105 to 156. 
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Figure 4.4: Novelty detection on HTS screen: plates 157 to 206. 

4.2 Discussion 

The first remark is that the number of plates declared novel is high (35%). Among 

the first 41 plates (first assay), all but 2 are declared novel. Indeed, the values of the 

maximum controls of Figure 4.1 are much greater for the plates 1-40 than those of 

the other plates while the minimum controls have similar values. According to the 

Appendix A.1.1, these plates belong to the same assay (were screened on the same 

day). This variation is due to a systematic difference in the experimental procedure; 

the period between dilution and screening was longer for this assay than for the others 

of the same screen so that the reaction is more advanced leading to higher maximum 

control values for those plates. It explains the dissimilarities between the proportions 

of rejected plates per assay shown in Table 4.1. If the first assay is omitted, the pro- 

portion of rejected plates falls to 19%. 
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In order to illustrate the fact that a combination of values can be rejected whereas 

the control values may be acceptable separately, we can compare the plate 91 with the 

plates 89 and 85 of Figure 4.2. The maximum controls of the plate 91 are similar to 

those of the plate 89 so are the minimum controls of the plate 91 to those of the plate 

85; it is the combination of the four values of the plate 91 which is unusual. 

It can be noticed that in Figure 4.1-4.4, some plates may have been rejected al- 

though they seem to be similar to accepted ones. In Figure 4.3, for example, the plates 

113 and 139 have comparable control values whereas the latter is accepted and the 

former rejected. The third plot in Figure 4.3 explains this singularity. The two plates 

have similar novelty values close to the threshold; the first one happens to be above 

the threshold and the second below. The fact remains that in every method making 

use of a threshold, such borderline cases occur systematically. Because the software is 

intended to highlight the control values which are unusual in order to help the oper- 

ator make a decision, these points around the threshold should not be considered as 

problematic. 

4.3 Adaptive Mixture Model for novelty detection 

In view of the difficulty of determining the number of components of a mixture model, 

an adaptive algorithm for Gaussian mixtures was tested. Detail can be found in [RT94]. 

The method is based on a stochastic estimation of the parameters of the Gaussian 

together with a growth criterion for the number of components based on the minimum 

Mahalanobis distance*. Once the training completed, the novelty detection is based 

on the same criterion. 

*For the Gaussian density of mean mand covariance matrix © considered in Section 3.1.1, the 
quantity A? = (x — 4)? 57*(x — 2) is called the Mahalanobis distance from x to BL. 
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4.3.1 Training procedure 

5” The algorithm uses “reinforcement learning®” to maximise the log-likelihood Xo, log p(x;) 

over all x; in the training set. The iterative procedure is defined as follows: 

Mia tL P(i/xe)x — By] 

Mie = “Ta +aPGR) ee 
Diet cel PG ee) (Ke = oye)(Ke = My)” — Diu) 

- ot = lathes uMinan( ee (=a aiPGED) : G2) Diep 

where x; is a vector randomly chosen in T and q a learning coefficient. The proof 

by a gradient descent that equations (4.1) and (4.2) converge to a minimum of the 

error (3.4) can be found in [RT94]. Similarly to the EM algorithm, there is no real 

restriction on the type of the covariance matrix ©. The method was implemented with 

a full covariance matrix. 

The main characteristic of the method relies on its using the same threshold noted 

€max for training and novelty detection, representing the maximum value of a training 

growth threshold e;. 

In Section 3.3, the number of components of the basis was fixed and determined 

empirically by cross validation. The basis of the ‘Adaptive Mixture Model’ to the 

contrary grows dynamically. At a given time t during the training, if the corresponding 

X; is not properly represented by the model (i.e. is ‘novel’ for the model) a new function 

is added to the basis (Figure 4.5). 

The test value for growth is defined as the greatest activation within the network: 

A(x) = max { W(x; Hea» Bist j=l... uh ,t 21 (4.3) 

where U(x; x, ) = exp [- (x — w)E(x — w)]- The mixture model grows by one 

Gaussian according to the criterion: 

5 Reinforcement learning is also sometimes called ‘learning with a critic’. It describes a learning 
procedure which gives a feedback from the environment saying whether the result is right or wrong. 
This definition, which is the common acceptance of reinforcement learning, differs from the present 
use. In the case of the adaptive mixture model it is characterised according to [RT94] by the learning 
parameter a; in equations (4.1) and (4.2) which “cools” this response. 
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<e growth , 
A(x) (4.4) 

>€& —nogrowth . 

The growth criterion (4.4) can be reformulated using (4.3) as the smallest Mahalanobis 

distance between x and the elements of the basis: 

min { (x, = Hj) E5* (xe - i) j= mu} >Q (4.5) 

with Q; = 21n(1/e;). In other words, the basis grows if the current vector x; is too far, 

in the Mahalanobis distance sense, from the nearest centre. 

The growth threshold 0 < € < €maz is initially set as €¢) = 0 and monotonically 

increases with time® according to: 

‘ t 
= min { ener, énaz—} : (4.6) 

’ 

where 7, is an integer to be chosen between 1 and the number of iterations of the 

algorithm (in most cases we used rt, = N where N is the size of the sample). The 

novelty criterion for a vector x of the test set becomes: 

<€maz —xXis novel , 
A(x) (4.7) 

> mar —Xts not novel . 

4.3.2 Network growth 

If A(x,) < €, the new centre and covariance matrix are defined as: 

Puy = Xt; (4.8) 

iu 
(Sar4t) ae dugTrlC], Beale yds, (4.9) “l

l 

where C = (plyyy1 — ME "(Marga — My)” and dy: = 1 if k = 1 and 0 otherwise. The 

priors are all set to P;(j) = Set j Sloe MP. 

The initial value ¢9 is chosen only for consistency with the increase of ¢;. The condition (4.4) does 
not apply for ¢ = 0 where the basis is empty, and must grow at the first step of the algorithm. 
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@ New input vector 

Q Previous input vector 

    

e Basis function centre 

No growth 

  

Growth 

  

  

  

Figure 4.5: Network growth based on Mahalanobis distance for a 2-dimensional data 
space 

It can be noticed that the priors P;(j) remain the same throughout the training. 

In that respect, the learning procedure does not provide an ‘optimal’ choice for the 

number of Gaussians for describing the probability density (we would expect to update 

the P,(j) as well as 4; and ¥;). However, the ‘right’ (possibly minimum) number of 

Gaussians in the basis is not crucial for novelty detection. 

4.3.3 Local cooling 

The problem of the lack of adaptation for the recently added basis function can be dealt 

  

with by allowing both the adaptation gain and the time to be vectors (a = [a1,... ,am]? 

and t = [t,,... ,tu]* ) and: 

Ope 
= ales ce ‘4 4.1 Qt; tj + Ta od M ( 0) 

The parameter a; which appears in equation (4.1) and (4.2) is analogous to a learning 

rate. It governs the influence of the vector x; in the updating of yz, Dy. a0/Ta gives the 
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Figure 4.6: Novelty detection on HTS screen: plates 1 to 52. 

initial value of a (for the first updating after addition of a function to the basis). With 

a M-dimensional time t, the parameter a is the same for the updating of two distinct 

functions of the basis. Thus, the updating equations (4.1) and (4.2) are consistent 

between the first and the last added basis function. 

4.3.4 Application 

The Adaptive Mixture Model algorithm is applied on Screen 2 for novelty detection 

with the parameters: €mar = 107!°, 7 = N (so that e reaches its maximum value 

after one iteration through the training data), ao = 0.7 and ty = 1. The results of the 

detection are shown on Figure 4.6-4.9. 

53 plates are declared novel. The training was performed in 4min 20s on a Sparc 

(Sun4d) with the parameters and leads to a 9 function basis. 
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Figure 4.7: Novelty detection on HTS screen: plates 53 to 104. 
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Figure 4.8: Novelty detection on HTS screen: plates 105 to 156. 

63



CHAPTER 4. APPLICATION 

co
nt

ro
l 

va
lu

e 

Maxima 

1400- 

4 * 
1200} x5 Sig SRD ay 3 3S 0c BE BE 5 9g 2K I 36 IRE HE 3 Ke 

RE EK OX RE KORO RR AS Rx RR * Pe Se 40008%** KK xX SN TK 2S 3g ki x 

  
1 L 1 1 1 1 L 1 L 

157 162 167 172 tae 182 187 192 197 202 

  

    

Minima 

3 80 
g x, x = x, BGO mH re sc 5g gg Me KM ER 3H a ae ae Ane rege 
= RGR SK AE jg OOS sshd HI 3H BIE SS 9 SS 6 HE SEE 
8 40} ye L 1. L 1 L 1 1 1 1. 

157 162 167 172 LAY 182 187 192 197 202 

Mahalanobis distance and threshold 
100 y r T T T T u T u 

80r of 

60+ - 4 
BOR ge ge eee se Re Oe Sea a P30) oie = ae cco NS oa = ; Ania Tyee a 

i 2 oe : . S     

° 1 L 1 1 L L 1 
157 162 167 172 SCALE 182 187 192 197 202 

plate number 

Figure 4.9: Novelty detection on HTS screen: plates 157 to 206. 
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Figure 4.10: Basis growth during the training 
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4.3.5 Discussion 

First of all, the tests show that the procedure tends to over-fit the data as under- 

lined in Figure 4.6-4.9 (to be compared with the results of Figure 4.1-4.4). The model 

complexity determination in Section 3.5.1 showed that a 2 Gaussian mixture model 

gives a good representation of the data whereas a more complex model does not pro- 

vide significant improvement regarding the negative log-likelihood error. However, it 

should be emphasised that the Adaptive Mixture Model do not aim strictly at a good 

representation of the data in terms of probability but to the model which rejects the 

smallest number of point in the training set. 

The method is slow but some reservations have to be brought since the algorithm in 

our case is implemented using full covariance matrices (in [RT 94] the covariance matri- 

ces are diagonal). In addition, the fixed value 1/M for the priors induces a rapid growth 

of the basis and the evolution of the basis is highly dependent on the ordering of the 

training points. As a result the calculation becomes computationally intensive’. The 

cost of the training is certainly more due to the size of the basis rather than the actual 

complexity of the algorithm: the evaluation of the likelihood of a point with respect 

to a mixture model is more expensive for a 50 function basis than for a 2 function basis. 

Secondly, one may argue that the stochastic approach may be justified in [RT94] 

since the case study concerns sleep phases whereas so far as the HTS screen is con- 

cerned the order of the plates is not important. It should be noticed that in the case 

study of [RT94] the learning procedure of the adaptive mixture is applied 44 times 

on the training data; even though the phenomenon is ‘naturally’ time-dependent, the 

learning procedure takes actually no account of this property. Moreover, experiments 

show that for the HTS data, the number of rejected points can vary significantly (they 

7A version of the adaptive algorithm where the priors are updated as in the EM algorithm by the 
updating relation P(j):41 = P(j): + ax(P(J|xt) — P(J)t) (see [RT94]) was also tested. This diminishes 
significantly the growth (by a third in average); some priors may tend to 0 (and the corresponding 
Gaussians de facto useless in the model). A possibility to overcome this difficulty could be to withdraw 
the corresponding Gaussians of the model according to a fixed prior threshold but require the choice 

asuch a value which is precisely what we wanted to avoid in this Section. 
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can double) with the ordering of the training set. 

Another drawback of fixed mixing coefficients P(j) is that such an algorithm does 

not reach for a optimal value for the number of basis functions to properly describe 

the distribution of the training set and as a consequence can not replace the methods 

mentioned in Section 3.2. Though not a problem in principle so far as novelty detection 

is concerned, the growing number of basis functions results in expensive and useless 

calculations which should be avoided in practice. 

Finally, the main drawback is precisely that the novelty threshold is used for train- 

ing and test since it constitutes the growth criterion. In other words, if the novelty 

threshold is changed during the test procedure, the detection is not consistent any 

more (if the threshold is lowered in the test procedure, the novelty detection model is 

more susceptible to novel points of the test set than to points in training set). In the 

prospect of an automated scheme such a constraint is not acceptable. In the case of 

the HTS data, the threshold ma, must be very small to prevent the basis from an ex- 

cessively rapid growth which would induce an intractable computation. Figure 4.10(a) 

shows the network growth during the training . Figure 4.10(b) underlines the problem 

of the choice of a suitable parameter for maz. When set to the value chosen in [RT94], 

the basis grows to 50 functions; the training part takes 13min 21s on the same machine. 

With regard to the practical restrictions of Section 1.3.1 we should stress that the 

choice of the parameter €mar as the threshold for growth may prove delicate for the 

operator. One might find much easier indeed to set a threshold on a probability density 

as in Section 3.4 than to choose a suitable value for a growth based on a Mahalanobis 

distance. Besides, the selection of a threshold before the training is not necessarily an 

asset in the context of a quality control (we ignore a priori the ‘quality’ of a screen). 

In view of the same restrictions, determining the threshold a posteriori according to 
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the probability density leaves a certain control on the novelty detection procedure to 

the operator and prevents the ‘black box trauma’ mentioned in the introduction. 

4.4 From plates to wells 

The material covered in the first part of this chapter has concentrated on the four 

control wells to determine the unusual plates. The joint distribution and a suitable 

novelty threshold provide an effective means to determine the novel plates in a HTS 

screen. In practice the operator concentrates on well values rather than plates to spot 

abnormal control values. The main focus in the next part of this text is on locating 

these unusual control wells using conditional densities. The technique is applied on 

Screen 2. 

4.4.1 Conditional densities 

The problem can be described more generally. Suppose two continuous random vari- 

ables by X,Y drawn from two distinct distributions px, py. How can values taken by 

X and Y be compared in terms of probability? As far as HTS is concerned in particu- 

lar, it is important to determine which component(s) of the vector (a1,... , a) is the 

most unlikely (i.e. which wells of the controls is the most ‘abnormal’). 

In this case, we choose the distribution function to order the components of the 

d-tuples regarding their ‘novelty’. To compare these components we need the distri- 

bution of each component X; conditioned on the other d—1 components p(X;|%X1,... 

> Xi-1, Xig1,.-. , Xa). Since the model is a mixture of Gaussians of diagonal covari- 

ance matrix (the X; are independent) these conditional distributions are the marginals 

exp{—54"} which is the projection of p(x)      whose density is given by p(y) = Vara? 

on the axis 2. 

The measure of the ‘contribution’ of the component 2; to the rejection of the vector 
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X = (21,...2;.... ,@a) is given by: 

Ax(vi) = min{ Fx,(x;),1 — Fx,(x;)} (4.11) 

where: 

00 

Fx,(0:) = P(X; <2) = Fo FE bln yale dye 

= [ pxtuddy... {© pxtudy [ pxaluday 

= [© pxuay « (4.12) 

00 

The closer to zero \x(zx;) is, the ‘more novel’ the %;, well value. 

This measure is justified empirically since we are interested in the extreme values 

of the distribution function, close to 0 and 1. This would not provide a proper means 

of comparison for values between the centres in the case of a distribution including two 

distinct clusters for example. 

The computation of the conditional densities of a d-dimensional joint density is 

straightforward: the properties of multivariate normal distributions are easily extended 

to Gaussian mixture models (the conditional probabilities remain Gaussian). This cal- 

culation would not have been as simple with a full covariance matrix (¢f Section 3.5.2). 

4.4.2 Results 

The measure (4.11) is applied for on Screen 2 with: 

  
i = Hi)? . x hay, 7=1...4. 

zi 
Fx, (z;) =f rai P 

The results are shown in Table 4.2 (The first 40 plates are omitted). 

Table 4.3 summarises the results in terms of number of wells rejected per plate for 

a 5% rejection region (the first 40 plates are omitted). The conditional densities are 

shown in Figure 4.11. 

The analysis of such a measure does not provide new information about the vari- 

ation of the controls but similarly as the log-likelihood for the plates, such a measure 
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n || loglike ||m* mini [Me Maxd [m+ min2 [M+ Max2 i 

  

41 || 2.56e+01 ||m* 1.3e-06 NIM* 1.7e-01 |m+ 6.5e-02 [M+ 3.5e-01 | 
55 || 2.92e+01 ||m* 1.0e-04 N|M* 4.1e-02 |m+ 2.2e-01 |M+ 8.1e-02 | 
66 || 4.98e+01 ||m* 2.6e-08 NIM* 1.8e-01 |m+6.5e-02 [M+ 3.1e-01 | 
83 || 2.76e+01 ||m* 1.1e-03 NIM* 7.6e-03 Nlm+ 2.2e-01 |M+3.5e-01 | 
85 || 2.43e+01 ||m* 1.1e-03 NIM* 2.6e-02 |m+4.7e-01 |M+ 9.6e-02 | 
91 || 2.73e+01 ||m* 3.5e-04 NIM* 3.2e-02 |m+ 2.2e-01 IM+ 8.1e-02 | 
95 || 3.51e+02 ||m* 2.6e-08 NIM* 1.5e-04 Nim+ 1.1e-13 NIM+ 8.6e-12 NI 
96 || 3.95e+01 ||m* 2.6e-05 NIM* 4.3e-04 Nlm+ 3.3e-01 [M+ 2.7e-05 NI 

107 || 2.63e+01 ||m* 3.0e-03 NIM* 1.0e-01 m+ 4.9e-03 NIM+ 1.3e-01. | 
124 || 3.08e+01 ||m* 7.7e-03 NIM* 3.1e-01  |m+ 1.1e-02 NIM+ 1.9e-07 NI 
133 || 4.07e+01 ||m* 2.1e-01 |M* 1.1e-01 |m+ 7.2e-07 NIM+ 9.0e-08 Nl 
134 || 2.55e+01 ||m* 3.7e-01 |M* 3.3e-01 |m+ 2.2e-01 |M+ 4.0e-07 NI 
136 || 4.86e+01 ||m* 1.8e-02 NIM* 1.2e-04 Nim+ 1.3e-01 |M+ 5.0e-11 NI 
137 || 2.47e+01 ||m* 2.6e-02 |M* 1.1e-01  |m+ 5.9e-05 NIM+ 3.9e-01 | 
142 || 2.44e+01 ||m* 3.0e-03 NIM* 1.1e-01 |m+ 6.5e-04 NIM+ 1.1e-01 | 
143 || 4.30e+01 ||m* 9.7e-11 NIM* 1.5e-01 |m+ 6.5e-04 NIM+ 1.5e-01 | 
144 || 4.29e+01 ||m* 1.4e-01 |M* 3.1e-01 [m+ 3.5e-09 NIM+ 1.9e-07 NI 
147 || 7.25e+01 ||m* 1.3e-22 NI|M* 3.2e-01 m+ 5.9e-05 NIM+ 2.8e-04 NI 
148 || 4.03e+01 ||m* 1.0e-11 NIM* 2.7e-01 [m+ 1.9e-03 NIM+ 4.1e-01 | 
149 || 4.30e+01 ||m* 1.0e-12 NIM* 9.3e-02 [m+ 1.4e-01 [M+ 1.3e-02 NI 
152 || 2.46e+01 ||m* 1.1e-03 NIM* 1.6e-01 [m+ 1.1e-02 NIM+ 1.6e-01 | 
153 || 3.80e+01 ||m* 6.0e-09 NIM* 1.0e-01 |m+ 2.1e-04 N|M+ 1.5e-01 | 
154 || 3.17e+01 ||m* 3.5e-04 N|M* 6.3e-02 |m+ 1.5e-05 NIM+ 4.6e-01 | 
156 || 2.99e+01 ||m* 6.0e-09 NIM* 4.6e-01 m+ 1.4e-01 |M+ 1.0e-01 | 
157 || 2.44e+01 ||m* 3.0e-03 NIM* 5.0e-01 m+ 3.2e-05 NIM+ 1.6e-01 | 
158 || 2.77e+01 ||m* 1.3e-06 N|M* 2.2e-02 Nim+ 8.5e-02 |M+ 4.3e-01 | 
159 || 2.62e+01 ||m* 2.6e-05 NIM* 9.8e-02  |m+ 1.1e-02 NIM+ 2.3e-01 | 
163 || 2.76e+01 ||m* 2.6e-05 NIM* 7.7e-02 [m+ 1.3e-03 NIM+ 3.2e-01 | 
166 || 2.69e+01 ||m* 6.1e-06 N|M* 3.4e-01 Im+ 1.9e-03 NIM+ 4.6e-01 | 
176 || 3.65e+01 ||m* 6.0e-09 NIM* 7.3e-02 m+ 6.5e-04 NIM+ 2.4e-02 NI 
186 || 2.67¢+01 ||m* 3.0e-03 NIM* 6.3e-02 |m+ 4.7e-02 |M+ 4.9e-02 | 
188 || 3.63e+01 ||m* 1.4e-01 |M* 3.1e-02 |m+ 3.4e-07 NIM+ 1.2e-01 | 
193 || 2.60e+01 ||m* 1.1e-03 N|M* 6.8e-02  |m+ 1.4e-01 [M+ 4.9e-02 | 
194 || 2.49e+01 ||m* 7.7e-03 NIM* 8.2e-02 m+ 4.7e-02 |M+ 5.3e-02 | 
202 || 3.59e+01 ||m* 1.3e-06 NIM* 2.9e-01 Im+ 1.9e-03 NIM+ 2.9e-02 | 
203 || 2.84e+01 ||m* 3.5e-04 NIM* 2.7e-02 |m+ 1.4e-01 [M+ 8.4e-02 | 
204 || 2.97e+01 ||m* 6.1e-06 NIM* 1.2e-01 I|m+ 4.7e-02 |M+ 1.2e-01 | 
206 || 2.99e+01 ||m* 1.0e-04 NIM* 5.5e-02 |m+ 8.5e-02 [M+ 8.9e-02 | 

Table 4.2: Results of contribution measure on Screen 2 (N denotes wells whose measure 
of novelty given by the equation (4.11), is below 5%). 
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Figure 4.11: Conditional distributions (the stars ’*’ denote the centres of the basis 
functions) 
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number of wells | number of plates | proportion 

1 13 17% 

2 53 68 % 

3 11 14 % 

4 1 1%           

Table 4.3: Repartition of rejected wells for 5 % 

enables to quantify the novelty of a well. For instance, a visual inspection of the re- 

jected plate 156 in Figure 4.3 would suggest an analysis such as “the min * (D2) is 

suspicious whereas the others seem correct”; the conditional densities provide an ob- 

jective measure with the corresponding controls m* flagged ‘N’. In a word, the measure 

enables to order the wells of the rejected plates in terms of novelty. 

If the method was used automatically to reject the unusual values for the standard 

wells, 156 wells out of 824 would be rejected (18.9 %). 

4.5 The standard controls 

This section undertakes the final stage of this study: the inclusion of the standard 

controls in the novelty detection. 

As the HTS data come mainly from enzyme assays and research of potential in- 

hibitors or activators, the first part of this section provides a brief summary of the 

behaviour of such assays. The problems for the HTS controls that arise from this 

behaviour are described and in particular those of the standard controls. We finally 

discuss the possibilities to solve them and the results obtained. 

4.5.1 Variation of the controls 

In Section 4.2, we mentioned the significant difference between the maximum controls 

of the first assay (first 40 plates) and the rest of Screen 2. This variation was attributed 
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to biological variance; in other words, the experimental conditions of the two assays 

were different. For instance, the concentrations of substrate, the time of reaction or the 

temperature may vary from one assay to the other which induce a systematic difference 

between assay measures. 

The enzyme assays 

An enzyme is a biological catalyst. It enhances the rate of a chemical reaction. The 

activity of an enzyme can be measured by the rate of product formation during the re- 

action. Figure 4.12 shows schematically a typical curve obtained when the time-course 

of product formation (the result of the chemical reaction enhanced by the enzyme) 

is determined. The rate of the reaction at a given time is given by the derivative of 

this function. Initially, this rate is constant (the time-course is linear) but after a time 

which depends on the reaction, the rate decreases. This decline may be due to vari- 

ous reasons such as a fall of the substrate concentration, the approach of the reaction 

equilibrium or more generally some changes in the assay conditions. 

[Product]    

  

(Substrate 
utilisation)) 

Time 

Figure 4.12: Progress curve of an enzyme-catalysed reaction 

Since the HTS assay should not be run under these limiting conditions (the non- 

linear part of the curve on Figure 4.12), the controls (the standards and the maximum 

controls) which reveal such conditions should be flagged as novel. 
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The case of the standards 

Contrary to the maximum controls the standard controls variation does not depend 

only on the factors mentioned above. Ideally, the activation (4.13) should remain 

the same throughout the assay, whatever the time, the temperature or the substrate 

concentration. However, for some reactions, the incubation time may be too long for 

the reaction to remain on the proportional area of the reaction curve on Figure 4.12 so 

that the assertion of a constant activation is no longer true. This variation is clear on 

the standard controls of Screen 2 (Figure 4.13(a)). 
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Figure 4.13: Standard controls and activations (Screen 2) 

Five distinct regions emerge from this graph (1-40, 41-80, 81-91, 92-171, 172-206) 

which correspond to different assays (see Appendix A.1.1) denoting an important vari- 

ation in the experimental conditions. 

How to deal with variation? 

It has been suggested that the ‘non-stationarity’ of the standard controls can be re- 

moved by differencing with the maximum controls (respectively the minimum controls) 

because they share the same evolution during the linear part in Figure 4.12. Thus we 

form the activation: 
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Aoiuati Std — min ie 
Activation = -———— . 4.18 

Maz — min ( ) 

Similarly, we define the inhibition of a standard control: 

Deas Max — Std tion = —___—_—_ , 1 Inhibition Wan Ta (4.14) 

Without day to day assay variation, this ratio should remain ‘constant’. Otherwise 

it denotes a difference in the experimental procedure and the corresponding plate should 

be detected. 

4.5.2 Applications 

As previously emphasised, the difficulty in analysing the standard controls comes from 

their high variability. This section presents three ways of learning the density function 

of the standards: using directly the standards of the control plates, relying on the 

normal plates or transforming the data of the control plates for learning. 

The strong points and drawbacks are described for these three approaches. 

First possibility: standards, minima and maxima alike 

The first possibility to take into account the standard controls for novelty detection of 

HTS is similar to that exposed for the minimum and maximum controls. An additional 

plate of standard controls can be used as reference to learn the distribution of the raw 

data. The problem with such an approach is illustrated in Figure 4.14. 

The modelled distribution can not be expected to be a good description of the con- 

trol values because it does not take into consideration the variation of the controls for 

the whole screen. Indeed, the distribution of the control values on the control plates is 

significantly different from that of the normal plates as shown in the histograms. 

The problem in using the same method is the following. Comparing minima from 

the control plates to the corresponding controls of the normal plates makes sense: the 
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Figure 4.14: Standard controls 1D distribution (Screen 2) 

variation is mainly due to handling mistakes (empty wells, double substrate inserted...) 

and measurement variation. If enough care is taken when screening the control plates, 

they can provide a ‘description of normality’ to detect the outliers in the normal plates. 

The problem with the standards comes partly from the fact that we artificially create 

6-tuples from the control plates for the sake of the learning procedure. On the normal 

plates, the standard and maximum controls are significantly correlated (Section 2.3). 

As a consequence, if, a standard has an unusually high or low value depending on 

the experimental conditions, one might suggest that this variation can be removed by 

differencing with the maxima (inhibition) since maxima and standard controls are very 

likely to vary in the same way (see Section 2.3). On the control plates though, the 

maximum and the standard controls can not be expected to be correlated the way they 

are in the normal plates so that this time variation should be removed by computing 

the inhibition. 

Furthermore, the variation which is due to different days of screening, thus differ- 

ent experimental conditions, is very unlikely to appear on control plates screened on a 

single day. 

If a method similar to the one indicated in Section 3.3 ® is applied on Screen 2, 

SCross validation with 10 iterations; 144 ‘plates’ (6-tuples) constitute the validation set, the training 
is generated by re-sampling 144 ‘plates’ from a basis of 72 3-tuples (min, maz, standards). 
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Figure 4.15: Transformed controls (Screen 2) 

185 plates are declared novel (198 for the 95** percentile) because of this difference. 

The computation of the activation or inhibition does not remove this variation as 

can be noticed on Figures 4.15(a) and 4.15(b)°. 

An alternative: learning the normal plates directly 

The second possibility to deal with the standard controls is to model the distribution 

of the standards (via inhibition) on the normal plates. 

The main drawback is that potential outliers are present in the training set therefore 

the model inference may be altered. 

If the number of outliers on a given screen is small, the novelty detection does 

not suffer since their presence will not modify significantly the model. Therefore their 

probability remains low and they can still be flagged as ‘abnormal’. Typically, handling 

mistakes would be detected if they concerned only a few plates or a few wells. However, 

if an unusual variation occurs on a larger scale, their probability according to the model 

®The inhibition (resp. activation) computed for the plate 128 is greater than 100% (resp. smaller 
than 0%). For this plate the standard control is higher than the maximum control (which most 
certainly due to a handling mistake). 
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is higher and this variation in the standard values can not be flagged as abnormal. For 

example, if a problem occurs with a measurement instrument throughout an assay, it 

would not be detected. 

Finally, from a practical point of view, one of the weaknesses of this procedure is 

that the quality control of the data cannot start before the whole screen is completed. 

If the learning proceeds on the normal plates using two random selections of 103 

plates to constitute the training and the validation set (and cross validation with ten 

runs), 3 plates are declared novel (20 plates if the novelty threshold is set to the 95** 

percentile). 

Where the standards can make the difference... 

A third possibility to deal with the problem of the standards is the following: instead of 

considering the two standard controls for a given plate, one may consider the absolute 

value of their difference. This can be justified considering three remarks: 

e for a given plate, two standard controls whose values remain on the linear part 

of the curve in Figure 4.12 do not reveal an ‘abnormality’; we can model the 

tolerated gap between those controls (the ‘degree of freedom’ on this line of 

the standard value). This gap can be modelled regardless of the experimental 

conditions using the control plates; 

¢ the variance of the measures above is already taken into consideration by the 

maximum and minimum controls therefore the information provided by the stan- 

dards in this respect is redundant; 

e it seems more sensible to consider an unsigned measure of this difference; if a 

gap D is estimated as normal between the control D3 and D9 (D3 = D9 + D), 

it makes sense to accept the symmetric situation (D9 = D3 + D) as acceptable 

as well. 
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In terms of quality control and regarding the constraints settled in Section 1.3.1, 

our replacement of the two standards by their difference in the model is not a problem 

since these wells are used only for the controls contrary to the maximum and minimum 

controls for which it is important to keep the original values; it is one purpose of the 

assessment to discard abnormal values of these controls for the activation boundary 

computation (Section 1.1.2). 

One may argue that if a significant variation occurs for the two controls, the dif- 

ference of the two is not necessarily abnormal. In such a case, that difference would 

appear on the other controls as well'®, so that the corresponding plate would be flagged 

as novel all the same. As a consequence, this transformation of the controls should 

not be considered as a problem but rather as a means of extracting relevant and non 

redundant information from them. 

The results of the novelty detection after pre-processing are shown on Figure 4.16- 

4.19 (the notations are the same as in Figure 4.1-4.4). The third graph represents the 

value of the difference between D3 and D9. 

62 plates out of 206 are declared novel. 

The last column of Table 4.4 shows the contribution of the standards to the novelty 

detection procedure. Indeed points declared normal by the detection using only four 

controls (Section 4.1) can be rejected when the standards are taken into account (col- 

umn ‘Diff’ in Table 4.4). In particular, the plates 128 and 198 seem to be acceptable 

so far as the maximum and the minimum controls are concerned (both were accepted 

in Section 4.1). Yet the examination of the difference between the two standard con- 

trols reveals that there is clearly a significant difference between the observed and the 

expected values which would require further examination of these plates. 

The same procedure could have been applied on the maximum and the minimum 

controls. Remember we want the plate variation due to systematic changes in the 

10Remember the maximum and the standard controls are highly correlated (Section 2.3). 
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66 || 4.08e+01 ||m* 3.6e-08 NIM* 2.6e-01 |m+ 7.4e-02 [M+ 2.8e-01 | D 4.7e-01 | 
95 || 1.94e+02 ||m* 3.6e-08 NIM* 2.8e-04 Nim+ 1.9e-12 NIM+ 3.5e-09 WN] D 2.2e-01 | 
96 || 3.51¢+01 ||m* 1.8e-03 NIM* 8.8e-04 Nim+ 4.1e-01 |M+ 1.1e-04 N| D 1.5e-01 | 

124 || 3.15e+01 ||m* 4.8e-02 |M* 2.9e-01 |m+ 2.1e-02 NIM+ 2.8e-06 NI D 4.0e-01 | 
128 || 6.50e+01 ||m* 1.2e-01  |M* 3.6e-01 |m+ 3.3e-01 [M+ 3.6e-01 | D 1.3e-02 NI 
133 || 3.78e+01 ||m* 1.6e-01 |M* 1.4e-01 [m+ 1.7e-05 NIM+ 1.6e-06 NI D 3.3e-01 | 
134 || 2.73e+01 ||m* 4.5e-O01 |M* 4.3e-01 [m+ 2.9e-01 |M+ 4.7e-06 NID 9.2e-02 | 
136 || 4.11e+01 ||m* 7.7e-02 |M* 2.5e-04 Nim+ 1.3e-01 |M+ 8.5e-09 NI D 3.3e-01 | 
137 || 3.69e+01 ||m* 3.9e-02 |M* 1.4e-01 [m+ 4.7e-04 NIM+ 3.6e-01 | D 1.3e-02 NI 
143 || 3.36e+01 ||m* 1.4e-06 NIM* 2.1e-01 [m+ 2.9e-03 NIM+ 1.1e-01 | D 1.8e-01 | 
144 || 4.04e+01 ||m* 2.4e-01 |M* 4.1e-01 [m+ 3.0e-07 NIM+ 2.8e-06 NI D 3.3e-01 | 
147 || 5.52e+01 ||m* 1.9e-13 NIM* 2.9e-01 |m+ 4.7e-04 NIM+ 6.6e-04 NI D 2.9e-01 | 
148 || 3.29e+01 ||m* 3.8e-07 NIM* 3.6e-01  |m+ 6.6e-03 NIM+ 4.2e-01 | D 2.1e-01 | 
149 || 3.5ie+O1 ||m* 1.0e-07 N|M* 1.2e-01 |m+ 2.0e-01 [M+ 1.6e-02 NI D 3.3e-01 | 
153 || 3.23e+01 ||m* 1.5e-05 NIM* 1.3e-01 |m+ 1.2e-03 NIM+ 1.4e-01 | D 4.6e-01 | 
154 || 2.86e+01 ||m* 8.1e-03 NIM* 7.2e-02 [m+ 1.7e-04 NIM+ 4.7e-01 | D 9.2e-02 | 
156 || 2.81e+01 ||m* 1.5e-05 N|M* 3.9e-01 |m+2.0e-01 [M+ 9.3e-02 |D 3.7e-01 | 
158 || 2.63e+01 ||m* 3.2e-04 NIM* 4.3e-02  |m+ 1.3e-01 [M+ 4.3e-01 | D 1.5e-01 | 
166 || 2.64e+01 ||m* 7.9e-04 N|M* 4.4e-01 |m+ 6.6e-03 NIM+ 4.7e-01 | D 7.1e-02 | 
176 || 3.32e+01 ||m* 1.5e-05 NIM* 1.0e-01 [m+ 2.9e-03 NIM+ 2.6e-02 | D 4.8e-01 | 
188 || 3.03e+01 ||m* 2.4e-01 |M* 2.7e-02 [m+ 9.8e-06 NIM+ 8.2e-02 | D 8.3e-02 | 
198 || 3.10e+01 ||m* 4.0e-01 |M* 3.1e-02 [m+ 3.3e-01 M+ 8.8e-02 | D 1.3e-02 NI 
199 || 2.71e+01 ||m* 1.7e-01  |M* 1.9e-03 Nim+ 1.3e-01 [M+ 4.2e-02 | D 2.1e-02 NI 
202 || 2.85e+01 ||m* 3.2e-04 NIM* 3.9e-01 |m+ 6.6e-03 NIM+ 1.7e-02 N| D 1.8e-01 | 

Table 4.4: Contribution measure for each of the 5-tuple 

experimental conditions to be flagged. If the same method had been applied on the 

other controls, we would have detected only an unusual variation between the controls 

of a given plate. The transformation applied only on the standards achieves a bal- 

ance between the ‘acceptable variation’ controlled by the minima and maxima and the 

potential problems on a plate basis controlled by the difference of the standards. 
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Figure 4.16: Novelty detection on HTS screen: plates 1 to 52. 

  

  

number of wells | number of plates | proportion 

1 7 11% 

2 47 76% 

3 7 11% 

4 i 2%         
  

Table 4.5: Repartition of rejected wells for 5 %: Totals, NSBs & Standards 
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Figure 4.17: Novelty detection on HTS screen: plates 53 to 104. 
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Figure 4.18: Novelty detection on HTS screen: plates 105 to 156. 
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Figure 4.19: Novelty detection on HTS screen: plates 157 to 206. 
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Chapter 5 

Conclusion 

This chapter presents the conclusion of this thesis. To start with, we sum up the results 

of the preliminary study and emphasise the weak points of the traditional approach 

of outlier detection in the context of an industrial control. The new method to tackle 

the problem of novelty detection is also recalled. Its advantages are discussed together 

with cases where it might give poorer results. The last section mentions related issues 

which can be investigated on the same grounds. 

5.1 Results of the preliminary study 

In the first place, the correlation tests showed that the control variation due to experi- 

mental conditions reflects properly the variation of the standard wells. In other words, 

it validates the procedure based solely upon the controls for assessment of the data 

quality. 

Second, the severe limitations of the traditional approach of dealing with outliers 

were put forward: 

e Regarding the quality control of HTS data, the method whereby the outlier de- 

tection is treated as a problem of hypothesis testing reveals a lack of robustness: 

— The systematic use of various plots as a preliminary stage to testing outliers 
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is tedious and does not bring any improvement to the current control of 

HTS data that is to say: it can be subjective and unreliable, in particular 

when choosing the number of outliers to be tested; 

— It does not provide any representation of the data in terms of probability 

nor any measure of abnormality neither for the plates nor for the wells. 

Therefore it can not be used for ordering the abnormal plates or controls 

with respect to this novelty. 

e It does not allow the possibility of automation, since the manual graph analysis 

stage is highly recommended to set the number of points to be tested. 

These limitations suggest that a method based on probability density inference 

should be preferred because it would provide a description of the data which can be 

used as an objective criterion for the determination of abnormal plates and wells. 

5.2 New approach 

This section describes the approach of the Quality control of High Throughput Screening 

based on density inference. We summarise the method investigated and more particu- 

larly what it implies from the user’s point of view. We then discuss strong points and 

potential limitations of the method. 

5.2.1 The method 

An additional set of three plates called ‘control plates’ is added to the beginning of 

the screen. These plates include the minimum, maximum and the standard controls. 

The mixture contained by these controls are exactly the same as the mixture of the 

corresponding controls of the ‘normal plates’. As a result, the measure of the activity 

of the control plates can be used to assess the variability of the normal plate controls 

through probability density inference. 
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Using the principle of maximum likelihood, we have formulated the problem of 

dealing with abnormal values in terms of density estimation and novelty threshold. A 

Gaussian mixture model framework was chosen to perform this estimation. It was pre- 

ferred to other methods because of both practical constraints (computational efficiency, 

EM algorithm) and theoretical assets (universal estimation property, straightforward 

conditional densities). Cross validation was used to determine empirically the model 

complexity and the structure of the the covariance matrix. 

The novelty detection proceeds as follows: if the control values of a given plate 

reveals a low probability, this plate is declared ‘novel’ or ‘abnormal’. This probability 

constitutes a measure of the abnormality of the plate. In the second place, the condi- 

tional densities of the control plates with respect to the model are computed in order to 

highlight the value(s) which differ significantly from what is expected. The threshold 

can be modified according to the degree of novelty required for the quality control. 

5.2.2 Achievement 

Section 4.1 showed satisfactory results in regard to detection based on minimum and 

maximum controls. The number of rejected plates was higher than expected due to 

a variation which has been discussed in great length in Section 4.5. The method was 

improved by inclusion of the standards in the procedure as a fifth component taking 

into account their difference (Section 4.5.2). Some plates featuring suspicious standard 

controls were detected although the corresponding plates were accepted by the first 

scheme. 

The negative log-likelihood together with the conditional densities provide a mea- 

sure of the novelty‘of the rejected plates or wells. Subsequently it constitutes a quanti- 

tative criterion whereby a objective decision can be taken for the quality control of HTS. 

The second part of the study was concerned with the choice of a proper threshold. 
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Two possibilities have been suggested: 

¢ the minimum of the likelihood function on the validation set; 

the critical value for the density probability corresponding to the level of novelty 

desired. 

The adequate choice should be determined by the user. The first possibility has the 

obvious advantage of not requiring any intervention. It is also intuitive: the controls 

of the control plates being considered as the reference of normality, all of them should 

be accepted by the model they infer. On the other hand, the use of a critical value in 

similar way to a statistical test permits the user to tune the detection as desired. 

The high number of rejected plates pointed out in Section 4.1 should not raise con- 

cern. First of all, they do reveal a significant difference between normal and control 

plates so this difference should appear in the detection. Second, if the control is con- 

ducted manually the novelty threshold can be adapted in order to fulfil the constraints 

which may arise from experimental restrictions such as the price of the compounds or 

the cost of a second run. The contribution of the method in such a case is that it 

enables the user to validate the plates from the most to the least likely. 

5.2.3 Limitations 

The limitations of the method were emphasised in Section 4.5. These are mainly due 

to the fact that the entire variation on the whole screen can not be captured by the two 

control plates if the screening is conducted under unsteady experimental conditions. 

The various days of screening involve significant differences between the distributions 

of the data of each assay. The computation of inhibition (or activation) does not re- 

move this variation (Section 4.5.1). The system will detect any variation between the 

control and normal plates. It is up to the user to determine whether this inconsistency 

is acceptable. 
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A potential problem is also the versatility of such a scheme if the screening of the 

first three plates is not properly controlled. As the density inference proceeds on the 

control plates, the ‘representation of normality’ can not be expected to be valid if the 

screening of these plates is poorly controlled. The outlier detection can cope with rare 

and significant mistakes on the control plates but if a serious difference occur between 

control and normal plates, the detection would most certainly detect a great number 

of novel plates since its reference is inaccurate. 

Nonetheless, it can be noticed that if the HTS is eventually automated as it can 

be Pfizer aim for the future, such a variation will be removed. Both of these problems 

due to different days of screening would therefore disappear. 

5.3. Further studies 

This section reviews a few extensions of the argument above related to novelty detec- 

tion. These concern on the one hand a more thorough study of the normal wells of the 

normal plates and on the other hand different approaches of the quality control of the 

HTS data. Since some of these options were investigated, we give a ‘flavour’ of what 

can be expected of such studies. 

5.3.1 Normal wells and plates 

It would certainly prove useful to model the distribution of the normal well values. 

Goodness-of-fit tests showed that the modelling of the the distribution by a normal 

distribution gives mitigated results as can be noted in Table 5.1. 

If the ‘normality’ of the distribution for the normal wells of an HTS screen could 

be modelled such a work would have two advantages: 

e a plate which would not have this distribution could be flagged as abnormal and 
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Screen 5% 1% 
    

Screen 1 |] 20.00 | 35.65 
  

Screen 1b |} 81.74 | 88.59 
  

Screen 2 || 96.66 | 98.85 
  

Screen 9 |} 70.81 | 80.86             

Table 5.1: Kolmogorov-Smirnoff normality tests on normal wells 

therefore could be examined more thoroughly to determine whether this is either 

due to an unusual number of ‘hits’ for the plate or induced by a problem which 

occurred during the screening. 

a probabilistic definition of a ‘hits’ could be designed such as a compound which 

appear in the top n% of a screen. 

Besides, it may be interesting to compare two plates from two different assays. This 

would require only a ‘rescaling’ of the data which can be obtained by multiplying the 

values of the wells of a given plate by the activation of this plate. 

5.3.2 Novelty detection on the control plates 

For the time being, a simple method was implemented to suppress outliers in the first 

three plates: a point further than 2 standard deviations from the mean is removed 

from the training set. The tests for outlier detection exposed in Section 2.2 could be 

used on this purpose. As was emphasised, such tests should be carried out with great 

care, in particular in an automated procedure. This was the reason why they were 

not used for detection on the control plates. Nevertheless they might prove useful if 

the quality control of HTS was intended to be done automatically: a visual inspection 

of the control plates guided by the value of the statistical tests may help the operator 

to remove those outliers. As a result, the operator would have to inspect three plates 

instead of 206. 
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5.3.3 The IC50s 

The data for the ICs9 (Figure 1.5) did not allow to perform substantial experiments 

to tests the method for this format properly. The method used for the 96-well plate 

can be easily extended to the ICsos; only the dimension of the data would differ. If 

the screen is studied plate by plate, the 4/6 dimensional space of our study would be 

replaced by a 16-dimensional space. If experimental characteristics make the study 

on one single line of the ICs9 more sensible, then the network would be trained on a 

2-dimensional space. 

5.3.4 Detection on a day-to-day basis 

As frequently indicated in the previous chapters the controls are subject to an impor- 

tant variation from one day to another. To treat this problem, it is possible to train a 

model for each assay (whose date that may appear in the header of the data file). The 

results of a first attempt is shown in Table 5.2!. 

Nonetheless the problems of learning directly on the normal plates exposed in Sec- 

tion 4.5.2 remain. In such an approach, if a substantial set of plates was abnormal it 

would not be detected and would result in the detection of false hits. Furthermore, if 

the control for those those plates happen to be correctly modelled by a single Gaussian, 

such a procedure might result in over-fitting the data because of the small size of the 

training set. Note that in results on Screen 2 in Table 5.2 the plate 95 which clearly 

differs from the rest of the screen (which had the highest negative log-likelihood) is not 

declared novel. 

The preliminary studies and a prototype of the method presented in this thesis were 

initially implemented Matlab. The code detecting novel plates and unusual well values 

was re-written in C. The final software will be incorporated in the HTS procedure for 

real-world tests. 

1The learning procedure is the one used in Section 4.5. It proceeds by cross-validation and includes 
minimum, maximum and standard controls. 
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Dates 28/11/96 | 06/11/96 | 13/11/96 | 07/11/96 | 12/11/96 | 13/11/96 

Plates 1-40 41-80 81-91 | 92-131 | 132-171 | 172-206 

Number of rejected plates 1 2 2 0 1 1 

Plates rejected 37 51,76 88,89 f 137 176                   

Table 5.2: Daily detection on Screen 2 

90 

 



Appendix A 

Screen references 

A.1 Screen 2 

A.1.1 HTA and Totals & NSBs plates 

Screen Number 

Number of plates 

Counter used 

Control plate 

Normal plate 

Date/s of Assay/s 

211 

Anthos HTII 

Totals & NSBs: 1-3 

1C50: 4-5 

cHTA: 6-211 

1: 1-5 = 19/11/96 

2: 6-45 = 28/10/96 

3: 46-85 = 06/11/96 

4: 86-96 = 13/11/96 

5: 97-136 = 07/11/96 

12/11/96 

13/11/96 

6: 137-176 

T: 177-211 
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A.1.2 Standard control plates 

Screen Number 

Number of plates 

Counter used 

Control plate 

Date/s of Assay/s 

2 

3 

Anthos HTII 

Standards Only: 2+3 

Max/Min/Standards: 1 

1: 1-3 = 14/05/97 

A.2 Screen 1 

A.2.1  HTA plates 

Screen Number 

Number of plates 

Counter used 

Control plate 

Invalid plates 

Date/s of Assay/s 

1 

115 

Packard 9912V Microplate Topcount 

HTA: 1-115 

35 & 57: Double ligand 

717 & 78: No assay window 

1: 1-16 = 01/07/96 

: 17-46 = 10/07/96 

: 47-86 = 17/07/96 

: 87-106 = 18/07/96 

5: 107-114 = 17/09/96 

e 
w 

wv 

6: 115 = 03/10/96



APPENDIX A, SCREEN REFERENCES 

A.2.2 Totals & NSB plates 

Screen Number 

Number of plates 

Counter used 

Control plate 

Date/s of Assay/s 

A.3 Screen 9 

1 

6 

Packard 9912V Microplate Topcount 

Totals & NSBs: 1-3 

ibs 1-6 = 13/02/97 

A.3.1 HTA plates 

Screen Number 

Number of plates 

Counter used 

Control plate 

Invalid plates 

Date/s of Assay/s 

9 

206 

Wallac LKB 1205-001 Beta Plate LSC 

HTA: 1-206 

173-299 : A6 ALL ACTIVE (not relevant) 

de 

Pr 
wo 

Ww 
o
a
 

D
a
m
a
 

9/1/97 = 1-20 

: 15/1/97 = 21-50 

: 16/1/97 = 51-74 

: 22/1/97 = 75-108 

: 23/1/97 = 109-134 

: 24/1/97 = 135-142 

: 05/2/97 = 143-172 

: 06/2/97 = 173-206 
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A.3.2 Totals & NSB plates 

Screen Number 

Number of plates 

Counter used 

Control plate 

Date/s of Assay/s 

9 

3 

Wallac LKB 1205-001 Beta Plate LSC 

Totals & NSBs: 3 

1 : not provided = 1-3 

A.4 Screen 1b (same controls as Screen 1) 

A.4.1  HTA plates 

Screen Number 

Number of plates 

Counter used 

Date/s of Assay/s 

1 

2 

0 

31 cHTA + 32 HTA 

Packard 9912V Microplate Topcount 

8: 

9: 

1 

: 1-10 = 30/07/96 

: 11-16 = 14/08/96 

: 17-26 = 15/08/96 

: 27-56 = 21/08/96 

: 57-93 = 28/08/96 

: 94-95 = 1/11/96 

: 96-155 = 5/11/96 

156-209 = 6/11/96 

210-224 = 11/11/96 

0: 240-263 = 21/11/96 
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Appendix B 

Results 

B.1 Screen 1 

112 plates are declared novel out of 112. 

448 wells out of 448. 

  

  

number of wells | number of plates | proportion 

1 0 0% 

2 4 12% 

3 15 13% 

4 83 74%           

B.2 Screen 1b 

212 plates are declared novel out of 263. 663 wells out of 1052. 

  

number of wells | number of plates | proportion 
  

1 5 2% 

2 45 21% 

3 80 38% 

4 82 39%          



APPENDIX B. RESULTS 

B.3 Screen 9 

150 plates are declared novel out of 206. 

389 wells out of 824. 

  

  

      

number of wells | number of plates proportion 

1 28 18% 

2 61 38% 

3 43 27% 

4 27 17% 
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Appendix C 

Computation of the error after 

normalisation 

The problem can be formulated as follows: Suppose we have a sample J, = {z, ae 

A mixture model M, is trained on this sample using the EM algorithm. In the second 

X-a place, the linear transformation ¢: X — =>   is applied on J, to find 72 and a model 

Mz is trained on J2. How can we compare the two models in terms of performance? 

The problem is schematically shown in Figure C.1. To simplify the notations, we con- 

sider the case oJ in one dimensional case. 

This Section shows that if two models J, and J; are trained with such a procedure, a 

linear term must be added to the error € to compare it to €;. To do so, we compute &) 

on M, = {P(j),0;,4j,J =1..-d}, the mixture model computed by the EM algorithm 

using the initialisation {P({), 0, BO} and €, on Mz. the mixture model computed 
0) 4 

using the transformed initialisation {P(j) , abt, } to show that 

& = & +N In(b) . (C.1) 

First, we show by induction that the parameters of Mz found by the EM algorithm 
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APPENDIX C. COMPUTATION OF THE ERROR AFTER NORMALISATION 

  

Figure C.1: Normalisation and log-likelihood error on a 2 Gaussian Mixture Model 

are given by {P(j),o;b7?, 4=*,j =1...d}. In Section 3.1.2, we had: 

ney | oo ele ae 
ws = SS Palan) 2) 

Ey Pe(jla”)| la” — sel 
Pee 

POY aoe Plo. (ca) 

(a3)? (C3) 

Since the distribution of the data is unchanged by linear transformation the priors 

(C.4) and the posterior probabilities P(j|x”) remain the same from the raw data to 

the normalised (P“(j|2") = P“(j|y"), Vz, y, t). 

If the assertion is true until the old step, for the new step of the training of M2 we 

have: 

pm = neta ly”) 
(ormmye = De PeCile lv" — ape 

i E.PjTy) 

(C.5) 

(C.6) 

The equation (C.5) gives: 
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APPENDIX C. COMPUTATION OF THE ERROR AFTER NORMALISATION 

" _ on Peld(5|a") (= 2) 
new 

  

  

ae 3D, P4(j[2”) 

; SP ila” ya” 

yee oe ee 
a Un Pld(j|a") 
; neu 
upew = Hl ee (C7) 

Similarly, from equation (C.6) we find: 

BRO epee elle ‘new\2 

(oy) = > Pj ar) , 

pyoreeye - EaPMGle" Dll — wp P 
; En PGE") 

which gives 

Caron hae (C.8) 

The proof above is easily reproduced for the first step of the EM algorithm. So fi- 

nally, the parameters of M; found by the EM algorithm are given by {P(j),jb-', “= 

je ea. 

, 

The second part proves the relation (C.1). The error for M, is given by: 

  

  

N 

& =—In{ [I p(ea)} 
n=1 

ne 1 (2n — #3)? =-In{ P xp(— A C9 n{ 1220) eas a} i} (C.9) 

Similarly, the error for Mz is given by: 

N 

& =—In P(Yn) »=—In{ T]otn)} 
iw 1 (Yn = 15)? ee { Pj eae C.10 n{ IL > PG) peg omn(— )} (C.10) 
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APPENDIX C. COMPUTATION OF THE ERROR AFTER NORMALISATION 

Substituting (C.7) and (C.8) in (C.10) we deduce 

N M a 

ce -In{ 2G) —— 
: I x 2mn(a;b-!)? 

N M 1 
= -in{ TI o>> PQ) FS xv(- 

wealy j=l 2roF 

  

= N M ; 1 Gta? , 
=-In{ TP) Fag a} (C.11) 

and finally, from (C.9) we conclude 

S=8&—Nin(t) 8 

The proof is easily extended to the case of the application ®: x — Bx +a where 

x and a are d-dimensional vectors and B a d x d invertible matrix. In this case, we 

find: 

&,;=&+N In(det(B)) . 

To summarise, the method used in Section 3.5.2 to compute an error comparable 

to the one computed on raw data in order to compare two mixture models proceeds as 

follows: 

1. the application X > ae is used to centre the data; 

2. a mixture model is trained on the centred data with © = oJ; 

3. the negative log-likelihood error €, is computed on the centred model; 

4. the error € is computed with respect to: 

d 

& = &+N In(T]%) 
t=1 

where WN is the size of the sample. 
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