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1. Thesis summary 

There is growing interest in neural networks in the industrial world and more and 
more safety related software involves or will involve them. Therefore a need for 

assessing the level of safety of a neural network software has become an essential 
task. The first year of this project gave an overview of neural network technology, 
which included in particular a description of the main principles on which it is based 

and an emphasis on the differences between software embedding neural network 

technology and “classical” software (see [D2]). This lead to a set of good practice 
tules to develop a successful neural network application, from which guidelines to 
assess a neural network system had been derived (see [D3]). 

The aim of this project is to explore more deeply the different means and techniques 

which will allow us to assess the ability of a neural network to perform a certain task. 

Firstly the work concentrates on the data set and the verifications that have to be 

carried out to ensure its quality. The main problems that have to be addressed in this 

context are typically the validity of the noise model, the possibly multivalued 

character of the mapping function, how representative of the real data the data set is 

and finally the links between the features of the data set and the features of the model 

(ie. of the neural network). From this study, the aim is to improve the set of 

assessment guidelines. Secondly, a shorter part of the thesis shows how to reason 

about a NN embedded in a safety related environment, that is how a safety case could 

be obtained for neural network software. Finally a set of issues and ‘suggestions for 
future research are provided. 

This document is necessarily limited in its scope. Indeed, we have chosen to restrict 

our study to the two main types of models currently used, namely, the radial basis 

function network and the multi-layer perceptron. We have excluded, for instance, 

unsupervised techniques and recurrent neural networks that raise notoriously difficult 

problems. However, whatever the model used, they are related in that they are data- 

driven. Consequently, issues relative to the data discussed in this thesis are central and 

generally applicable to each of these models. 
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5. Foreword 

¢ This project has been developed in collaboration with Lloyd’s register (LR). 

« This document is intended for anyone interested in neural networks (NN) 

technology, and in particular for assessors of NN applications. To read this 

document, it would be useful to have read Deliverable 2 ([D2]) of last year’s 

project. No further prior knowledge of NN technology apart from what is in this 

Deliverable is required. Besides, it is assumed that the reader has studied 

mathematics to, at least, an A-level standard (some knowledge in statistics might 

also be particularly useful). Finally, note that experience in conventional software 

development or in the assessment of conventional software applications may be 

helpful. 

* Appendix A contains two complementary points which fit more in last year’s 

project but are also relevant to this project. These two topics are an introduction to 

Bayesian learning and a presentation of classification problems using cost matrices 

and posterior probabilities. 

¢ Appendix B contains the sections of the Guidelines ({[D3]) which were modified 

this year.



6. BUSINESS CONTEXT 

6.1 Lloyd's Register 

6.1.1 Overview 

Lloyd's Register (LR) is an international company, whose work can be summarised by 

the following statement: LR provides its customers with services intended to help 

them to comply with safety, quality and reliability standard criteria. LR provides 

commercial safety and quality assessment, and in the case that compliance 

requirements are fulfilled LR can award certification. Finally, LR is active in research, 

which allows LR to play a part in the definition and the improvement of new 

international safety and quality standards. 

Nowadays there is an increasing appreciation of the importance of safety and quality. 

LR is a financially stable group that has always belonged to the leading group of 

classification societies. Moreover, LR is one of the pioneers in the domain', and hence 

is now highly renowned. 

The range of sectors within which LR operates is considerable, and while its main 

sector of activity remains the marine, LR is present in numerous others. For instance, 

LR has clients in the chemical, oil, transport, and software systems industries. 

LR is arranged in 2 main divisions and 1 group: 

¢ the ship division: which, in 1994, represented 57% of LR income, 

e the industrial division: 21% of LR income in 1994, 

6.1.2 Industry division 

This division, which is the initiator of the project, has two types of departments: 

"LR has provided certification services since 1760. 

8



¢ the plan appraisal departments, which operate in various fields (such as piping, 

machinery design) and provide expertise in these fields. 

¢ the assessment departments, which provide assessment in the same fields as the 

Plan appraisal departments. 

SIRM (System Integrity and Risk Management) which has commissioned the project, 

belongs to the latter group of departments, and is itself arranged in 2 groups: “system 

integrity group” and “risk management group”. These have a common theme the 

safety of software systems. 

Most of the staff concerned with the project, belong to the system integrity group. 

The system integrity group provides 2 different commercial services: “assurance” and 

“certification”. 

Assurance means: ensuring that a system complies with certain criteria in order to 

answer the question “is this system appropriate for a particular use?”. The quality 

standard criteria are principally concerned with process rather than product: i.e. 

checking that appropriate methods have been used to develop the software. 

One of the main differences between the certification and the assurance processes, is 

that the certification process may lead to the award of a certificate, whereas the 

assurance process does not. Nevertheless, assurance and certification can both cover 

any phase of the software life cycle, and are available to any user or supplier of 

software. Usually these services are requested when the software forms part of a high- 

integrity system. 

6.2. Validation and verification of embedded neural system 

6.2.1 Why neural networks? 

Commercial neural network (NN) applications have been in existence for more than 

5-10 years, but now the technology is moving from research to products in more safety 

related areas.



Their power and their efficiency are becoming more widely known, and in a few 

years, safety related systems including software based on neural network technology 

will probably start to be widely developed. 

For LR, this means a potential new market. Indeed, neural network technology has 

already been applied in several fields relevant for LR’s business”, and many others 

will surely be found in the future. 

Furthermore, in the case that LR were to be the first to propose the assessment of 

safety related systems including neural network technology, that would be an 

important advantage over competitors: that is the advantage of pro-activeness. 

NNs are a new way of viewing software. Indeed, the classical view of software 

development is mainly based on the implementation of an algorithm. This classical 

approach is not valid with NNs, since using NN consists of building a model that is 

based on data. For instance, this means an absence of rigorous specification to 

describe the NN functionality. But above all, this means for LR, that most of the usual 

software assessment methods no longer cover all aspects of system safety. 

Hence, LR would like to have available methods to assess safety related systems 

including NN technology. As NN technology is currently not mastered by LR, Aston 

University Neural Computing Research Group is to develop such methods in this 

project. 

This project is important, since its results will be used on the international market. 

The whole project is planned to last 3 years. The purpose of this MSc project was, first 

to complete last year’s technical context by focusing more on the data and to improve 

the guidelines. Secondly to analyse whether a safety case could be obtained for NN 

software and finally to raise the main research issues that will have to be solved to 

complete the overall project. This phase of the project has lasted one year. 

* for instance, neural networks are used in medical instrumentation, and currently, pilot studies are 
being carried out in the naval vessel and car motor ignition fields. 
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6.2.2. Project definition 

A safety critical application must be an example of rigour, and “nearly right” is not 

acceptable, since, by definition, if there is any problem with this kind of application, 

the consequences may be catastrophic. Hence, in safety critical systems, it is important 

to be able to show that the probability of dangerous failure is very low. 

If a serious problem occurred with a safety critical application certified by LR, and 

this problem occurred in conditions for which the application had been certified, then 

LR’s credibility would be affected and LR could be liable. 

However, as NNs are probabilistic models, a set of questions arises: 

e Are there any limitations, or specific context for their use? 

« What are the phases of the system development life cycle that cannot be taken into 

account by using conventional software assessment? 

« What are the key safety properties that need to be assessed? 

The key aspect that has to be taken into account in neural network software is that it is 

highly data dependent. This is why the assessment of the data set and the way in 

which it was used are fundamental. The main task of this MSc project is to identify 

the problems related to the data set and to provide techniques to tackle them. The 

guidelines must be updated in order to include the new findings. 

The main points that will be examined in the study of the data set are: 

© noise and multivalued function mappings. 

° “representativity” of the data set, that is if it is appropriate and of good quality for 

the task we want to carry out. 

¢ the links between data set and choice of the model. 

The final part of the project will be to examine neural networks in a safety critical 

context that is to see if a safety case can be obtained for NN software. 

Note: the guidelines must have a very practical aspect®, They must enable LR 

assessors, first, to answer the crucial question “is a system safe for the use for which it 

has been designed?”, and secondly, to understand what are, in terms of safety, the 

underlying safety requirements. Moreover, they must be relevant for the typical scale 

* since they are intended for software assessors and not neural network specialists, implementors, nor 

system designers. 
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of LR projects. What has also to be firmly emphasised is that the guidelines are only 

to be used with a good knowledge of the technical documents (typically [D2] and 

[D8)). 

The last stage of the MSc project may consist of testing the guidelines through at least 

one case studies, in order to correct and refine them; but for scheduling reasons, these 

cases studies are not included in the thesis. 
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7. Introduction 

We mainly focused on the two main types of neural networks architectures which are 

Multi Layer Perceptrons (MLP) and Radial Basis Functions networks (RBF). Thus 

there are no special sections for less frequently used architectures like Kohonen 

networks (and other unsupervised learning techniques) or recurrent networks. But 

since all these models rest all on the same principles and are all data driven, all the 

findings of the project apply to all kinds of neural networks. It can be considered that 

at the current state of the project, all the problems which are common to all NN have 

been treated, as well as some which are more particularly related to one kind of 

architecture or problem (time series data for example). Nevertheless, in the final 

section we will present some material that future work on the project could cover.



8. Data Analys 

8.1 Introduction 

In this section what we seek is a deeper insight in the data in order to improve our 

guidelines and consequently our methods of NN assessment. Several issues will have 

to be examined: 

Analysis of the quality of the data 

Analysing the quality of the data is not an easy task since a great deal of parameters 

have to be taken into account. Some clear cut rules to assess the quality of our data set 

will not always be found but we will try to get a standard methodology to assess it, 

and to study the consequences this data has on the subsequent modelling process. 

The issues that we will address are: 

¢ how to model our data density and the importance of mixture models. 

¢ how to check if the data is not too noisy (and hence if the assumptions about the 

noise are accurate). 

¢ how to check if the functions that maps the inputs to the outputs is not multivalued. 

¢ how to tackle all the difficulties linked with how representative the data is of the 

problem. 

* to check if there are enough data points in our data set to carry out a good 

training. 

* for classification problems to check if there are enough data points for each 

class. 

* to check if the density of the data is homogeneous. 

* to check if there is some missing data. 

* to examine how to handle “large” data sets. 

Selection of the model 

And the other main issue that is related to data analysis is the influence the data will 

have on the choice of the model (see [D3]). 

¢ How does the data have to be split for time series? Is cross validation the best way 

of doing what we want? can we use a validation and test set? 

¢ How to choose the best algorithm to train the NN. 

¢ How to find the right complexity for the network and how to reduce it if it is too 

high?



* How to tackle the problem of random numbers that can occur in the learning 

process. 

¢ Committees of networks as solution against randomness and generalisation 

problems. 

8.2 Density modelling 

Density modelling has already been mentioned in [D2] since it plays a key role in the 

analysis of the data set and consequently in the training of the NN. At many stages in 

the process, a good understanding of the data is needed in order to carry out a good 

training. One of the tasks of the assessors is thus to check if a suitable model has been 

chosen and if it has been put to an appropriate use. In what follows we will provide a 

deeper insight into these topics. 

8.2.1 Importance of density modelling in the NN context 

Density modelling has several applications in NN application development and plays a 

key role in the following areas: 

¢ in the training process for neural networks. 

¢ in some methods for computing error bars. 

¢ inthe modelling of Conditional Density Networks. 

¢ in the estimation of some noise models. 

* in the estimation of missing values. 

After giving two short examples to explain how parametric and non-parametric 

methods work we will principally focus on one form of semi-parametric methods: the 

mixture model. 

8.2.2 Parametric models and non parametric models 

8.2.2.1 Parametric models 

These models assume a specific functional form for the density to be modelled. An 

easy example to understand how this comes about is to consider a data set S and to 

model it with a gaussian distribution. Some straightforward computations show that 

the mean and the variance of the distributions are given by: 

p=elx]and T= el(x - p)(x- u)' where x is the data set. 
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This computations are straightforward and computationally not very expensive, but 

the drawback of these methods is that since they assume a specific functional density, 

they might be incapable of providing a good representation of the true density. 

8.2.2.2 Non-parametric models 

In these models, no specific density function is assumed. The simplest non-parametric 

methods are histograms but they have a lot of disadvantages (non continuous and hard 

to generalise to higher dimensions because of the dimensionality increase). There are 

also kernel based methods and a method called K-nearest neighbour algorithm but the 

main drawback of all these methods is that they all suffer from the “curse” of 

dimensionality and are very often difficult to use in practice (for more details see [d]). 

In such an approach, the density function is represented as a linear superposition of 

kernel functions, each of these being centred on a data point. 

8.2.3 Semi-parametric models: mixture models and maximum likelihood 

8.2.3.1 Description 

In the mixture model, the density is still represented as a linear sum of kernel 

functions but the number of kernel functions is treated as a parameter of the system 

and is usually much less than the number of data points. Unlike with non parametric 

methods, the mixture model grows with the complexity of the problem and not with 

the size of the data set. 

M 

P(e) = >) pals) PC) 
j=l 

The parameters P(j) are called the mixing parameters. An important property of 

these mixture models is that they can approximate any continuous density to arbitrary 

accuracy provided the model is large enough and the parameters chosen carefully 

enough. 

Here we are considering only mixture models where the individual component 

densities are given by Gaussian distributions. 

 



Let us now consider the error function that will have to be minimised to find the 

adjustable parameters. It is a negative log-likelihood error function: 

N M. 

£ = Sin ¥ lx") PU) 
n=l jel 

The derivatives of E don’t need to be computed (they would anyway lead to highly 

non linear equations). We can determine the coefficients with an iterative process 

called the Expectation Maximisation algorithm (EM algorithm) where the error 

  

Iu.ction is going to be decreased at each iteration. It is a simple and practical method 

to estimate the mixture parameters without having to compute solutions for highly 

non-linear equations. 

8.2.3.2 EM algorithm 

We are not going to give a demonstration and a long description of this algorithm (see 

[d] for that) but only an outline that will show how easy it is to use it. 

The input of the algorithm are: data set and initialisation for u,o and P(j). 

The outputs are: the final values of the mixture model for “4,0 and P(j). 

What has to be noticed about this algorithm is that: 

¢ itis iterative 

* it tends to converge quite rapidly 

Mixture models have many important applications in the NN context, among which 

are for example: 

¢ the configuration the basis functions in RBF networks. 

¢ the use of mixture density networks. 

8.3 Noise models 

As we have already mentioned it several times, the data plays a key role in NN 

training. To obtain an accurate model we have to ensure that the level of noise that 

corrupts our data is not too high and that the assumptions that we have made to model 

this noise are accurate.



8.3.1 Rule of thumb ? 

In Deliverable D2 we wondered whether a rule of thumb could not be found to 

estimate the maximum level of noise. This rule of thumb would have been a function 

of: 

¢ the data set mean value 

¢ the data set standard deviation 

© the size of the training set 

What is noteworthy here is that the maximum level of noise does almost not depend 

on the features of the network. 

It is straightforward to understand that: 

¢ the smaller the data set mean value is the smaller the maximum level of noise is 

going to be. 

¢ the larger the size of the training set is, the less influence a given noise level will 

have and thus the higher the maximum level of this noise will be. 

¢ the influence of the standard deviation might be a harder to explain since it has a 

direct influence on the quality of the data set. 

The literature does not mention the existence of such a rule of thumb because it is 

difficult to find how these three factors are linked together. Such a rule could probably 

not work since noise is connected with conditional variance. 

That's why we are going to use another method to determine which noise model is the 

best one. 

8.3.2 Different kinds of noise 

If fis the function that we try to map then the real noisy function that we will actually 

map is: 

y= f(x) +0; (x) + 02 (x) +07 (x) 

where 

o2(x) is noise due to the weights of the NN. 

, (x) is noise in the outputs (i.e. targets) of the training set. 

a; (x) is noise present in the inputs of our data set. 
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In our study of the noise we seek to take into account all these different sources of 

noise in order to be as precise as possible. 

8.3.3. Normal quantile plots of the residuals 

Most of the time it is assumed that the noise is gaussian and of zero mean. Let us now 

try to see how such an assumption could be checked. 

Once our net has been trained with a given noise model, a good way to test if the noise 

model was actually gaussian as it had been assumed could have been to plot 

histograms of the residuals of the net (the residuals are the differences between the 

real outputs of the net obtained with the training set inputs and the targets used to 

carry out the training; the residuals are expected to behave like the noise). But as we 

will see in the examples below, this method is not always very effective. A far more 

effective method is to draw a normal quantile plot of the residuals. If another kind of 

noise is assumed there are similar tests which work in the same way. Here we are 

using a gaussian noise in our example since it is the one most commonly used. 

For each quantile we count the number of points we find in it (the quantity is 

normalised) and then this quantity is plotted with respect to the expected number of 

point value if it were a gaussian. 

If the results are good, that is if the distribution is actually gaussian the normal 

quantile plotting plots the residuals on the line y = x, otherwise the further away from 

the line the points are, the less normal the distribution is. 

We now show some examples that will illustrate how to interpret a normal quantile 

plotting. Every normal plot of the residuals will be presented with a histogram of the 

residuals to show that it is more powerful than them. In the examples the data to be 

modelled is a sine wave with a gaussian noise of zero mean. The network used is an 

MLP and there are 100 points in the training set (see [o]).
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Figure 1: Histogram of the residuals for a well trained NN. 

Here the network was trained with input points within [0.1,0.4]. The histogram 
of the errors does not really look like a gaussian distribution. We can however 
see that the points are numerous between -0.05 and 0.05. 
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Figure 2: Normal quantile plot for a well trained network. 

This is the normal quantile plotting of the network. We can observe that all the 
points are on the line y=x and thus the residuals are gaussian, that means that the 
noise is gaussian. 

When the network has to extrapolate, the normal quantile plots make it possible to 
detect it. 
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Figure 3: Histogram of the residuals for an extrapolating NN. 

Here the training was carried with the same points than previously but the 

testing set was a set of points within [0, 0.7]. This means that the network had to 

extrapolate for the values between 0.4 and 0.7. This histogram looks like a skew 
gaussian distribution with a long tail. 
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Figure 4: Normal quantile plot for an extrapolating NN. 

This is the normal quantile plot of the example tested on [0,0.7]. Here it is 

obvious that the NN extrapolates for the high values since the points move away 

from the line at the top. The assumptions were thus poor for these high values. 
Let us now consider an undertrained network. 
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Figure 5: Histogram of the residuals for an undertrained NN. 

On the histogram it can also be observed that the distribution of the residual is 
not at all gaussian and that the noise model assumptions break down. 
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Figure 6: Normal quantile plot for an undertrained NN. 

It is obvious that this noise distribution is not gaussian. 

8.3.4 Statistical tests to check a distribution 

8.3.4.1 The chi-squared goodness-of-fit test 

This test is easy to use and is valid over a very wide range of situations. Indeed, all 

that the test demands is that n independent observations are capable of being classified 

into a number, say k non overlapping categories and that the probabilities of 

observations falling into these categories can be calculated when the appropriate null 

hypothesis is assumed true. The procedure has the name “chi-squared” because the 

null distribution of the test statistic is approximately a chi-squared distribution. This 

test can easily be used for our problem of normality checking. 
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8.3.4.2 The Kolmogorov-Smirnov test 

This test is specifically designed for analysing goodness of fit situations where the 

underlying distribution is continuous. One immediate consequence is that we are 

saved the awkwardness of creating arbitrary categories as needed in the chi-squared 

test. Another useful feature of the test is that it can be carried out using either an 

arithmetical method or an equivalent graphical approach. 

The Kolmogorov-Smirnoy test statistic is defined as the absolute value of the largest 

difference between two relative cumulative frequency distributions. This test is used 

to test the deviations of observed continuous frequency distributions from expected 

ones and for setting confidence limits to a cumulative frequency distribution. 

For a sample of n=42 items the 5% critical values of D is found to be 0.20517. 

Observed values of D greater than this critical value would be considered significant. 

For sample sizes n>100 the two tailed value D, can be found as 

D, = ¥-1n(05a) / (2n) . 

8.3.4.3 Significance Testing 

This test can be used to check if the value of the mean of the noise distribution that we 

have assumed is zero. It is a classical student test: 

  

pe X= Mo 

s/Vn 

This test is carried out when we have assumptions that have to be checked about the 

mean of a distribution. In the formula above s is the square root of the sample 

variance, that is a value that we can compute easily. If the population is normal then 

the random variable t has a distribution called the t-distribution. What is more, 

confidence intervals are easy to compute with this distribution. Let us for example 

compute this significance test for the same three situations than in the previous 

  

paragraph. 

oe s t PR 

[0.1,0.47] -0.0160 0.272 -0.2335 0.591 

[0,0.7] -0.0054 0.848 -1.5051 0.934 

Undertrained -0.2321 0.8477 -2.7378 0.997 

The conclusion is that the first case is fine since P is near 0.5, the second one is poorer 

and the last one is very poor. 

23:



8.3.5 A new approach: Input noise 

8.3.5.1 Presentation of the perturbation model 

So far every time we have discussed a noise model, this noise was always on the 

targets, whereas the inputs were always considered as being noise free. Most of the 

time it is legitimate to consider the inputs as noise free but it can also be 

inappropriate. In that case the performance of our NN will be affected by the noise 

present in the inputs. 

The aim of what follows is to try to find out what influence a noise in the inputs can 

have on the outputs once this noise has been propagated through a NN. The results 

that we will get are a covariance matrix on the outputs (i.e. an error bar because of the 

noise present in the inputs). 

Since the outputs of one network (or of one layer) are often the inputs of another 

network or layer, this procedure could be a basis for an error prediction algorithm for 

NN. 

It has to be mentioned that the technique we are dealing with is very new and a lot of 

research has still to be done to make it widespread practically. This new method is 

based on a perturbation model, that is to study how an error present in the inputs will 

affect the reliability of the outputs. 

In a perturbation model it is assumed that all the variables of interest can be 

approximated using an expansion of the type: 

x=X+ Ox 

where x is the measured value, % the real value and dx is the error in the estimate. 

It is furthermore assumed that the error 6x will have a gaussian distribution, that is: 

E[&x6x7]= x 

The principal assumptions of this estimate are 

¢ that the previous approximation can be applied not only to the variables but also to 

the functions. 

* thatdx is small compared to x. 
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8.3.5.2 Validity of the Model 

It has been said that the high degree of non-linearity present in the component 

functions prevented the use of perturbation models. However, if we consider that the 

error is due to the weights rather than to the functions themselves (this is the case 

provided that we have an appropriate number of hidden units), then the functions can 

be considered to be independent of the error and act only as propagators of three 

sources of errors: 

¢ error in the inputs 

¢ error in the weights 

* error resulting from an erroneous weight vector acting on an erroneous input vector 

If we look at Taylor’s expansion of the usual non linear functions used in NN we have 

that: 

$+ by = f (#4 dx) = f (2) + Oxf (x) + O(8x”) 

=> by = oxf (x) + O(&?) 

And so we see that the suitability of a perturbation model for estimating the 

transmission of an error through a non-linear activation function is mainly dependent 

on the magnitude of the first derivative of the function. 

Since the maximum of the derivative of the sigmoid (and the logistic sigmoid) 

activation function is bounded, there are no problems for this perturbation analysis. 

But let us now apply this analysis to an MLP. 

8.3.5.3 Application of the perturbation model to an MLP 

MLPs can be treated as having several independent layers for the purpose of 

perturbation models analysis because the outputs of any layer in the model is solely 

dependent of the inputs of that same layer. 

This analysis has to be performed once the training has been carried out. 

The input vector x is given by: 

x=k+ & 

where x is the actual input value, < the expected value and 6x the error present in the 

input. 
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The output is given by y = f(x) 

v, is the weight vector corresponding to the hidden layer node j. 

This weight vector is decomposed in the same way than the inputs: 

v, =v, +ov 
J d d 

Thus according to Taylor’s expansion: 

5, + Oy, = f (07 8) + (07x + Sv 8 + v7) f/(072) + 0[ Sx?) 

= by, = (0) de + 67 2) f'(07 2) 

We now compute the covariance of an output. 

Note: m is the index of node y,, and n is the index corresponding to y, ; consequently 

y,, and y, are the weight vectors which link the inputs to respectevely y,, and y,. 

Vi. = E875] 
= E|(97ée + 672) f'(672)(67 5 + v7 2) F (972)] 

= f (628) f (678) E| (v7 &x)(v? Gx) + (67 x)( v7 2) + (5028)(07 &) + (672)(5.72)] 

Note: all the terms are second order terms. 

  

  

if m=n: 

Y|,,=£ (678) (62 X0,, +207U,, 2+ 2V,,3) 

if m#n: 

Y= (One) Ff (87 2)(O1X9, + 920, 2+ 07U,,2) 

Where 
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e Xand Y are the covariance matrices for dx and dy. 

¢ U,, is the covariance matrix of 6v, and dx. 

e YV,, is the covariance matrix of dy,,. m 

We can now distinguish the three sources of error as mentioned below: 

the first term in X is due to the propagation of the error present in the input. 

¢ the term with the inverse of the hessian is the error added because of the errors in 

the weights. 

¢ the terms in U are due to further error due to the imperfect weights applied to 

imperfect inputs. 

Let us know see how to implement this results in order to use them to predict the 

covariance of our outputs. 

Once the training has been carried out, we have to use the above formula. 

¢ First term: 97 X0,, 

¥,, is a vector with the weights of the first layer of the Network. 

X is the covariance matrix of the noise vector. This means that an assumption has to 

be made about the noise model present in the inputs. This assumption can be checked 

with the same methods than the for the noise in the outputs. But very often this noise 

is known thanks to sensors and no further assumptions have to be made. This term can 

be computed easily. 

* Second term: £’V,,% 

This term can be obtained with Bayesian techniques (see [d] pp 397-398). What is 

actually done in this context is that V,, is equal to the Hessian of the trained NN. Once 

the Hessian has been computed (many software packages can compute such a 

Hessian) this term is also easy to compute. 

© Third term: 97U,,¥,, 

U,,, is the covariance matrix of dx and dv, . 

This term can be considered as negligible. It is indeed sensible to consider that the 

probability distributions of the errors in the weights and in the inputs are independent. 

8.3.5.4 Example of formulae use 

In this example we are going to illustrate what we described previously. Since the 

formulae look a bit complicated and the indexes may be confusing, it is probably 

useful to explain how they work. 

20



Let us consider the following MLP with three inputs and five hidden units. 

  

Figure 7: Example MLP for perturbation model computation. 

This is the network for which we will compute the covariance matrix of the 
outputs. 
The network is trained with a data set with some noise on the inputs. We will compute 

the covariance matrix of the outputs. This will be a 5X5 square matrix. The expression 

of a generic term of the covariance matrix is: 

  

  

if m=n: Y|,,.=f'(078)' (92 X0,, +297U,, 2 + £7V, 2) 

if m#n: Yana F (On2)F (97 R)(OL XO, + 02, 2+ 97,3) 

We have already explained why the terms in U, could be discarded. Two kinds of 

terms have to be computed: 97 XV, and %’V,,%. 

© 9X8, 
  

X is the covariance matrix of the noise. It can be computed with any statistical 

package once the noise has been estimated by sensors or a model has been assumed. 

The indexes of the two hidden unit output nodes are m and n. The two weight vectors 

that are used here are those inputting the two output nodes as it is shown on the figure 

below. 
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Figure 8: Example NN with only the links relevant for the output covariance 
computation. 

The solid lines are the weights of vector v,, and the dashed line corresponds to 

v a 

For every output node all there is to do is to take these two vectors and to compute 

their product by X like in the formula. The dimensions always fit for MLPs. 

© £VE 
  

This term has to be computed only for values on the diagonal of the covariance 

matrix. V,, is actually the hessian of the MLP because of the analogies with the 

bayesian framework (see [d], chapter 9). This hessian can be computed with a 

statistical package. But attention has to be paid to the fact that in our formula only the 

values of the hessian corresponding to inputs are needed (and not those of the biases 

and outputs). Once the hessian contains only input derivatives, the dot product of this 

hessian by the input vector is rendered possible since the dimensions will fit. 

8.3.5.5 Application of a perturbation model to RBF networks 

Unlike the layers of an MLP, the two layers of an RBF network perform different 

functions: 

¢ the first layer performs a non-linear expansion of the inputs 

* the second layer performs a weighted sum of the hidden layer output values 

In the first layer there are two sources of errors: 

¢ anerror present in the inputs: dx 

© anerror in the center position: du 
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The Taylor expansion yields a formula like the one for the MLP. This formula would 

be a bit more complicated than the one for MLPs but all the terms are however 

relatively easy to compute ( see [u] and [v] ). 

8.3.5.6 Other methods using input noise 

Input noise is not only used in perturbation models. Other methods which are used in 

NN take it into account. For example the learning method with uncertain data (see 

paragraph 8.5.5.2) uses input data and in that framework it can be shown that in some 

cases, input noise can be assimilated to output noise. 

Another learning method called clearing (see paragraph 8.6.3) manages to compute 

the ratio between the input signal and the input noise, and then reduces the complexity 

of the network. 

8.3.6 Noise added to improve generalisation performance 

It can sometimes be appropriate to use a noise model in order to improve the 

generalisation performance of the NN. It consists in adding a noise to the input vectors 

during the whole training process. For sequential training a different noise vector is 

added to each input vector before it is presented to the network. For batch training 

each data point is replicated a number of times and a new random noise vector is 

added to each copy. 

The effect of this noise is very easy to understand heuristically. It will “smear out” 

each data point and hence make it more difficult for the network to fit too precisely 

the input points. It is a way to reduce overfitting. The best choice for this noise is 

surely gaussian noise and its variance should not be too great. 

Noise can be added to the activation as well as to the error function, in order to jump 

out of a local minimum. 

Three important points to note are that: 

¢ A different noise value must be added to each value each time it is used by the 

network, It is not sufficient to simply build a new training set to which noise has 

been added. Noise must be added dynamically during learning. + 

¢ Adding noise to the training data must preserve the mean value of that data. That is 

to say that the noise has to have zero mean. 

¢ Of course the noise must be turned off in the testing set. 
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8.4 Multivalued function detection 

An important cause of failure in the NN context are multivalued functions. When we 

indeed try to map a data set with a NN without being aware that this data set was 

generated by a multivalued function then our NN will not work properly. That is why 

we have to pay attention to this problem, since once it is known that a data set was 

generated by a multivalued function, then some appropriate NN solutions exist to map 

these functions. It is such a method that we will propose in what follows. This method 

will play a key role in our assessment of the data that is used to train a NN. 

In [D5] a visualisation method based on histograms and dimension reduction was 

proposed but this method is not very effective since it is based only on the data and 

does not require any training of the network. But for problems involving many inputs 

and outputs it is very often hard to ascertain whether in some regions the function is 

multivalued. Visualisation techniques are indeed impossible to use for problems 

involving more than a few variables. 

8.4.1 Forward and inverse problems 

For many potential NN applications (control of industrial plants, analysis of spectral 

data, topographic reconstruction) there exists a well-defined forward problem. This 

forward problem is characterised by a functional (i.e. single valued) mapping. In 

practical applications however, we often have to solve the corresponding inverse 

problem. These inverse problems are often multivalued, that means with input values 

for which there are several valid output values (i.e. input values for which output 

distribution is peaked in more than one place) 

If a least squares technique is applied to an inverse problem it will approximate the 

average of the target value and will lead to very poor results. 

The example below gives us an illustration of that. 
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Figure 9: Example of forward and inverse problems. 

Here the forward problem is to compare the position of the “hand” (semi-circle 

on the top) for a given pair of joint angles. The inverse problem however would 

be to know the value for the pair of joint angles given the position of the hand. 

As shown on the two drawings on the left there are clearly two different values 

for the angle for the same position of the “hand”. If this problem was tackled 

with a least-squares method the position of the angle that we would get would be 

the mean of the two angles that is what is represented on the right hand side 
drawing. This is completely wrong. 

Figure 10.3 
  

4 (
ra
ge
ts
) 

       3 a 
15 210 “5 0 5 10 15 

x (inputs) 

Figure 10: Example of a multivalued mapping function. 

This is an example of a multivalued function corresponding to an inverse 

problem (not the one above though). To spot the forward problem the curve has 
to be rotated by 90 degrees. 
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This problem cannot be solved by changing the structure of the network or choosing 

another algorithm since it is a fundamental consequence of the use of a sum-of - 

squares error function. 

8.4.2 Forward-inverse model 

This is a method that can be used when one wishes to model the function only on one 

of its branches. 

To solve our problem we will propagate the error through a forward-inverse model, 

that is a combination of two networks. This networks will be described in the 

guidelines below which explain how to carry out a forward-inverse training. 

|. Train a network (network 1, see figure 11) the direction in which the mapping 

function is not multivalued. Once this network has been trained, its weights should 

no longer change. 

2. Build a second network (network 2) which is to learn the inverse problem. This is 

the network which will finally be used. 

3. To train the new network (network 2): 

¢ Present each input and produce an output from the network being trained (network 

2). 

* Pass the outputs of network 2 through network 1. 

¢ The error is (n-i) since the outputs of the double model are equal to its inputs. 

¢ The error is propagated through network 1. 

¢ The error at the end of network 1 is going to be propagated through network 2 (and 

not the error at the output of network 2). 

¢ Update the weights of network 2. Nothing changes in network 1. 

4. Once the training has been completed, network! can be discarded. 

5. Network 2 maps the multivalued function on one of its branches. 

33



cs 
o 

a 
= 

O 

hs NETWORK 2 

wer 

Figure 11: The two NN of the forward-inverse model. 

~ 

is 

~ 
te

 

  
Network 1 is the network which has been trained with the forward problem and 

network 2 is he network that is being trained. 

For details about this method see [t]. 

Now a more powerful method will be presented. This method will allow to model the 

whole multivalued function. 

8.4.3. Conditional distribution modelling 

The basic goal of training a feed forward neural network is to model the statistical 

properties of the data-generator expressed in terms of class-conditional distribution. 

function p(tlx). 

A sum-of-squares error function as we saw it above (see also [D2]) is a model of the 

data in terms of a gaussian distribution with a global variance parameter and an x- 

dependent mean. But this model is inappropriate if the data has a complex structure.



A very powerful means of modelling conditional distributions is based on the use of 

mixture models (this is one of the applications of the mixture models to which we 

alluded in the density modelling paragraph). 

The Mixture Model represents the output data distribution as a linear distribution of 

adaptative kernels. In this context the conditional density is 

p(tlx) = )=da,(e j(tlx) 

where 

tee el 
(22)? Oo; ao 2G, 5 

  

  

6, (ts) = 

In practice we are going to use a NN which will give us the parameters (mixing 

coefficients) a(x), ;(x) and o; (x). 

This network can be any feed forward network (as it has universal approximation 

capabilities). We can for example use an MLP with a hidden layer of sigmoidal units 

and an output layer of linear outputs. 

Then finally to obtain our model for the conditional density we will have to minimise 

a negative log likelihood error function E with respect to the parameters of the NN 

ae ,(x), uj(x)and oj (x) ) 

The error function is given by: 

M 

Ema, 6"), (rh 
jal 

And to obtain what we are seeking with a NN, we can use a standard backpropagation 

procedure since we know the expression of the derivatives of the error function with 

respect to the parameters of the outputs of the nets (see [d] for the expressions of the 

derivatives). 

The minimisation of this model with respect to the parameters of the NN will lead to 

our model of the conditional density of the target data. 
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Figure 12: Conditional density obtained with a mixture density network. 

This figure shows how the conditional density that we obtained with a Mixture 

Density Network models the multivalued function of figure 10. These are several 
gaussians. Three different areas can be observed: 

¢ from 0 to 0.25: only the first gaussian has an influence that means that only 
the mixture coefficient for this gaussian is non zero. 

¢ from 0.25 to 0.80: all three gaussians of the mixture model play a role. The 
three mixture coefficients are different from zero. 

¢ from 0.80 to 1: only the last mixing coefficient is non zero. 

Actually this methodology allows to model mutivalued distributions but not to detect 

if a function is multivalued without a training. 

Summary 

A NN is used to determine the coefficients of the mixture model. These coefficients 

are the coefficients of the mixture model of the conditional density. Such a network is 

sometimes called a mixture density network in the literature. The conditional densities 

that these networks allow us to obtain represent a complete description of the 

generator of the data. 

8.4.4 Mixture density networks and noise: a conclusion over noise 

Mixture density networks make it possible to model any data generator; they can thus 

also be used to model a noisy data set. Neural networks with sum of squares error 

functions model a data set with constant variance and x dependent mean. With a 

mixture density network however, for any given value of x the conditional density 

p(tix) can be modelled. This can be used to model complex noise. 
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We have now reached a point were almost all the kinds of noise which corrupt our 

data can be tackled. A short summary of the techniques we examined is useful. 

e When a normal distribution is assumed for the noise, this assumption can be 

verified with graphical and statistical tools. Similar tools exist for other 

distributions as well. 

¢ The influence on the outputs of a noise in the inputs can be computed with a 

perturbation model. 

¢ The mixture density network that we used for multidimensional mapping 

modelling can also be used to model noise since such a network makes it possible 

to model any kind of data generator as far as the inputs are concerned, and thus a 

data generator with noise. This can be used to model complex noise. 

e In the Bayesian context that was alluded to in [D2] and in appendix A of this 

document, the noise is modelled by a conditional density that corresponds to the 

likelihood. This means that noise actually is modelled in the weights of the NN. 

In a word, all the noises that could possibly exist in a training set fall in the scope of 

one of these domains that we have studied. 
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8.5 ‘“Representativity” of the data set 

In this section we suppose that the study of the noise and of the eventual multivalued 

character of the function we want to map have been studied (see previous paragraphs). 

What interests us now is to see if we have enough data points, if these points are 

representative of our problem and what further checks could be carried out in order to 

improve the quality of the data as much as possible. We will also discuss how to 

quantify uncertainty. 

8.5.1 Size of the data set 

In the [D3] Guidelines we often alluded to a “large” data set or we wrote sentences 

like “if the data set is large enough” (see [D3]). Nevertheless it is known to be very 

hard to quantify these ideas. The size of the data set is a relative quantity that can only 

be compared with the problem that we want to solve using this data. In our validation 

context we have to distinguish between two situations: 

¢ The data set of the NN software that we have to assess is very small. In such a case 

we have to check if it has been handled properly. 

© The data set is huge in which case we have to ensure that dimension reduction and 

point discarding have been carried out properly. 

In a classification problem, the ideal situation would be that we have an equal number 

of data points for each class even though we know that there will be a lot more 

outputs in some classes than in some others. 

If this is not the case, we can chose between the alternative with highest performance 

among these ones: 

¢ Discard some points for the classes where there are too many points so that the 

training can be carried out with the same number of points in each class; this 

number being the minimum of all the numbers of points in all the classes. In such a 

case it is necessary to adjust the posterior probabilities. (see [D2] and Appendix A) 

¢ Another possibility is to train the network with all the available points. If there are 

enough points in the under represented class the training could nevertheless be 

good. 

The number of points that we need depends also on the level of noise. The noisier the 

data is, the more points will be needed to carry out a good training. 

In a regression problem the main problem is the density of the data in the training set. 
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8.5.2 Data density 

For regression problems particuliar attention has to be paid to whether there are some 

regions of the input space where there is less data than in others or even no data at all. 

This can be detected with visualisation techniques for example. 

But once such a problem has been detected, most of the time there is no further data 

available and hence it is impossible to tackle the problem. The only solution that we 

then have is to take this problem into account in the computation of our error bars (see 

section 9.2). This will make us aware of the fact that in the regions of lower density, 

the results are likely to be less accurate than in other ones. The error bars will thus be 

broader. This will hence make it possible for us to use a network which was trained 

with data of different densities. In this data density context a distinction can 

nevertheless be drawn between MLPs and RBF networks. 

« MLPs are more efficient in low density regions. They are better in extrapolation 

tasks than RBFs. 

¢ RBFs are more local oriented NN. 

8.5.3 Feature extraction and dimension reduction 

This section is relevant for cases where the training set is very large or has a very large 

dimension so that it has to be reduced to make it computationally less expensive. We 

seek some standard way of doing that with a range of classical tools. 

8.5.3.1 Normalisation and whitening 

Normalisation is a very well-known technique. It consists of applying a linear 

transformation so that all the inputs have similar values: For each variable x,, its 

mean and its variance are computed with respect to the training set: 

where n= ,,... 

patterns. 
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The transformed variable has zero mean and unit variance. But normalisation has one 

major drawback: each of the input variables is treated as independent from the other 

ones. To tackle this drawback we can use a technique called whitening. 

. f - Coen 
Let us group the input variables into a vector x= Gas x) which has mean vector 

  

and variance matrix given by: 

and 

  

We then consider a vector of linearly transformed input variables given by: 

x" SA a" 

  

where U is the eigenvector matrix of 2. 

In the transformed coordinates, the data set has zero mean and a covariance matrix 

which is given by the unit matrix. In a word whitening is a more sophisticated linear 

rescaling which takes into account the correlations between the variables. 

Other techniques that can be used are PCA and factor analysis but their description is 

out of the scope of this document. Information about them can be found in [q]. 

8.5.3.2 Removing the less useful variables 

8.5.3.2.1 Statistical test 

It makes sense in a huge data set to discard individual variables that are highly 

dependent on other variables. When there is no specific knowledge about which 

variables should be discarded, analytic methods should be employed. 

Statistical tests can be used. For classifications tasks for example a t-test could be 

used to compare the distribution of each variable in each of the different classes, using 

only those who differ significantly. 

The independence between the different input variables may be measured by 

calculating the covariance between each pair of variables. On the covariance matrix 

the highest values are those of dependent pairs of variables and these may be 

discarded. 
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8.5.3.2.2 Neural Network solution 

Some less brute force and potentially more effective methods exist and they are based 

on NN. It consists in building a NN with too many inputs and a small number of 

hidden units. If the weights in the network are then initialised with small random 

values then there will be no pressure from the input variables for the weights from the 

less useful input variables. Consequently the input units in the trained network which 

have not moved far from their original values may be most safely discarded. A new 

network can then be trained with only the new points (it can be verified with the new 

one). 

Another even better method to assess the relative importance of different inputs is 

automatic relevance determination. It is a Bayesian technique based on the use of a 

separate regularisation coefficient for each input. If a particular coefficient acquires a 

large value, this indicates that the corresponding input is irrelevant and can be 

eliminated. To get more information about this technique see [d]. 

8.5.3.2.3 Information theory: entropy based analysis 

Information theory can be used to select a set of input variables for a NN. By 

measuring the mutual information between each input variable and the set of target 

outputs in the training set one is able to select the single feature with the most 

predictive power over the outputs. Further features may then be selected by two 

criteria. A new feature must predict something about the outputs but it must not 

predict much about the input variables already in the set. A new variable must share a 

lot of mutual information with the outputs but not with the inputs. By applying these 

techniques it is possible to choose a set of variables which are independent and which 

predict the output data well. This technique is not optimal but it can reach a usable 

solution in a short time. 

Here are the different entropies that can be calculated and their use: 

¢ Entropy between any number of input units: 

This provides a measure of independence. A good input set has high unit 

independence. 

¢ Entropy of an output vector given an input vector: 

It measures how well the output data may be predicted. 

¢ Entropy of the input vector given the output vector: 
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If the entropy of the input vector given the output vector is higher than that of the 

output given the input, then the problem may be ill posed. 

e Entropy of any single output unit given the input vector: 

It provides a measure of how well the input data is able to predict the output unit’s 

value. 

¢ Entropy of any single input given the output vector: 

It provides a measure of how well it independently predicts the output vector. 

8.5.3.2.4 Outlier removal 

Some data points are outliers not only due to a given variable value but due to the 

vector as a whole. In isolation they cannot be detected despite being atypical. These 

points often show up in a plot of the first or two of the three principal components. 

If data is scarce and the act of discarding an example simply because one of its 

elements is an outlier is to be avoided, outlying values may be replaced with some 

other value: the mean for that variable is a good choice. But extra care must be paid 

during the testing phase to ensure that these replacements have not biased the network 

if such a strategy is adopted. 

The input density can also be modelled with the techniques described earlier in this 

context and low density probability points can be considered as outliers. 

[D2] has already dealt with these kind of problems. The techniques described in the 

previous paragraphs such as entropy computations can be used in this context. It has 

to be justified in a NN project how a large data set has been handled particularly if 

some points have been discarded and if so, the reason why some points have been 

discarded rather than others has to be given. 

8.5.4 Time series data 

Time series forecasting and analysis is a domain in which NN are often used. The 

tasks we encounter are regression and sometimes classification. These problems are 

the usual ones that NN can solve, and in that respect time series problems do not differ 

from other problems using NN. However, a special section is devoted to time series 

problems because they present a lot of peculiarities in the pre-processing phase. 

Several techniques have to be applied to a time series data set before it can be used, 

and attention has to be paid to this pre-processing in order to get the best performance. 

In this context, pre-processing plays such a key role that it needs to be assessed. The 
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assessors will have to check if appropriate manipulations have been carried out on the 

data set. The main problems that will have to be addressed are: 

¢ to check whether the data distribution is normal if it was assumed so and what 

transformations can be carried out to render it more normal. 

¢ to check whether the data is stationary or not and if not to find the most effective 

way to render it stationary. 

8.5.4.1 Normality 

The data set is often assumed to be normal. Most classical techniques in statistics are 

derived under the assumption of normality of data; thus it becomes convenient to 

transform the original data so that transformed data satisfies the assumption of 

normality. 

Normality can be checked with one of the following methods, all of which have 

already been discussed in this document (see paragraphs 8.3.3 and 8.3.4 of this 

document for details). 

¢ Histograms: they best describe the skewness in the distribution. 

¢ Normal quantile plotting (see paragraph 8.3.3). 

¢ Statistics: two statistical tests were described in paragraphs 8.3.4.1 and 8.3.4.2 

which permit to check the normality of a distribution. 

8.5.4.2 Box-Cox transformation to achieve normality 

A distribution can be made approximately normal using some transformations. One of 

the most efficient ones is the Box-Cox transformation. The Box-Cox transformation is 

a general class of transformations to attain normality; each input point X, is 

transformed according to the following formula: 

Xm 

m 

where m is chosen by the user and is used to achieve normality. This choice is 

empirical but it can be estimated by some statistical packages. 

The values of m < / are useful for data skewed to the right, while values of m > / are 

used for data skewed to the left. For skewed data, simple transformations such as 

power or logarithm can be used to remove asymmetry. For more information on the 

Box-Cox transformation see [f]. 
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8.5.4.3 Stationarity 

There is a major difference between usual statistical data and a time series problem. In 

most statistical problems, random sampling procedures make it possible to obtain 

replicated observations under identical conditions. In a time series problem, however, 

at each point we are faced with only one single value for each point in time, and 

observations which are dependent over time. In order to use some inferential statistics 

we must be able to recreate some notion of replicability. To do this, the notion of 

stationarity is indispensable (see [k] for more information). 

A time series {y,:t = 12} is said to be stationary if the joint distribution of any 

collection of & values is invariant with respect to arbitrary shifts on the time axis. This 

definition is actually not used in practice since it cannot be tested. What is used in 

practice is the notion of “weak stationarity” (although it is often called stationarity). A 

time series {yt = 1203} is said to be weakly stationary or second order stationary if 

the mean, the variance and the covariance are time independent. From now on, 

stationarity will mean weak stationarity. 

A stationary time series is characterised by the fact that the statistical (stochastic) 

portion of the series does not depend on the time but rather depends on the difference 

between time points. In particular, the series will have the following properties: 

¢ Constant mean. 

¢ The correlation between values at two different time points depends only on how 

far apart they are. 

We may suspect that the series is not stationary if: 

1. The mean level is not constant over time or, 

2. The extent of deviations from the mean is changing over time. 

If such departures from stationarity are evident, it is reasonable to adjust the series by 

applying a transformation that improves the stationarity without destroying the 

essential features of the series. 

The airline data set of figure 13 shows an example of a non-stationary time series. 
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Figure 13: Airline data set. 

This airline data set represents the evolution of the total number of millions of 
miles flown by American aircraft per month (month number 0 is january 1963). 
This time series exhibits increasing mean and increasing variance: it is not 
stationary. 

A first step towards stationarity could be the logarithmic transformation. It is generally 

appropriate whenever an analysed series has a variance increasing linearly with mean. 

Logarithmic transformation helps eliminate the changing variance, as it is shown on 

the figure below. 
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Figure 14: Airline data set after log transformation. 

This is the same time series as figure 13 but it has been transformed by a 

logarithmic transformation. The data in the log scale seems to have a more stable 

variance, but the assumption of constant mean is still violated by the upward 
trend. Hence the transformed process is still not stationary. 

Another useful means of checking whether a function is stationary or not is to use its 

Sample Auto Correlation Function (SACF). It is an inferential tool which makes it 
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possible to describe the behaviour of an observed series. Let us now give the 

definition of the SACF. 

The sample variance is defined as 

where y, are the data points and y is the mean of these points. 

The k” sample covariance is 

(%,-H)(vie -9) 

the k" sample correlation is then: 

% =. te 

Yo 

This definition corresponds to the maximum likelihood estimator when the data is 

normally distributed. 

If the series is stationary the values of the SACF decrease quickly and are low (see [f] 

and [m] for more details), thus it is a quite straightforward means for checking 

stationarity. On the figure below for example, it allows us to draw the conclusion that 

the series is not stationary. 
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Figure 15: SACF plot of the airline data. 

This is a plot of the SACF of the airline data set. The values are high and thus 
the series is non stationary. 
As we have seen in the examples, by using the log transformation, we have stabilised 

the variance of the series, but the trend in the mean is still violating the stationarity 

assumption. The following parts of this section will discuss the methods of achieving 

stationarity, which are usually more effective than simple logarithmic transformations. 

8.5.4.4 Detrending 

Detrending is a way of removing trends and seasonality, two of the main causes of 

non-stationarity in a time series. It consists in subtracting an estimated trend and/or an 

estimated seasonality component from the data. Time series data is detrended because 

it is usually the local behaviour which is modelled, unencumbered by long term 

effects such as trends or seasonality, as a stationary stochastic process. 

There are two methods of detrending: 

1. Regression 

2. Moving Average 

¢ Regression as a method of detrending is generally used for removing linear trends 

over time (this can be carried out by the simple linear regression of data on time), 

and correcting for seasonality. . 

¢ MA detrending is based on the smoothing properties of the moving average model. 

MA (in a Moving Average Model of order g the measurement of each point is a 

weighted sum of the g previous white noise. Such a model is by construction 

stationary) smoothing of the data can successfully extract any linear and non linear 

trend but may not be able to deal with seasonality. 
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Choice of the method of correcting for trend is usually chosen by visual examination 

of the plot of the data. 

¢ If the data exhibits trend close to linear, simple linear regression on time may yield 

a good result. 

¢ If the trend is obviously non linear, MA smoothing is more effective in estimating 

the trend. 

To illustrate what can be done with regression, let us take a Manufacturing Shipments 

Series data set: it represents a monthly evolution of the quantity of manufactured 

shipments. The scales of the axis are not of first relevance. This is a non stationary 

series with mean increasing over time. So, to attain stationarity, elimination of a non 

linear trend might be necessary. 
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Figure 16: Manufacturing shipment data set with linear regression estimated 
trend. 

The series is clearly not stationary. If we assume that dependence between the 

mean and time is linear (or close to linear), linear regression can be used to 

estimate the trend. After subtracting this line from the original data we obtain 

detrended Manufacturing Shipments series (see below), which is closer to 

Stationarity but still shows departures from stationarity in mean. This is perhaps 

due to the non linearity in the trend. The linear trend estimated by linear 
regression over time is the light line on the plot. 
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Figure 17: Detrended manufacturing shipment data. 

The regression detrended series is obtained as a difference between original 
series and an estimate of the linear trend. It has to be noted that the detrended 

series is still non stationary. This is not surprising since the original series 

exhibits a non linear trend. 

Analysis of the SACF can then be a very important part of the data analysis. If a series 

is non stationary, the SACF may decay very slowly as we have it in the Manufacturing 

Shipments series example. In this case all lags are high. (see figure 18). 
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Figure 18: SACF plot of the manufacturing shipment data set. 

The SACF of manufacturing shipments series is typical for a non stationary 

process (i.e. slow decay and high lags). The dotted line is the threshold above 
which the SACf is significantly different from 0. 

Let us now analyse the SACF of the detrended data. 
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Figure 19: SACF plot of the detrended manufacturing shipment data set. 

The SACF of the detrended series is decaying more quickly although it is not 

completely satisfactory. It does not have as a long tail as the SACF of original 

series did. SACF at some lags are statistically significant. For example, the 

significant value at lag 12 tells us that this series exhibits a yearly periodic 

behaviour. But the number of lags above significance level still indicates the lack 

of improvement. 
Another way of extracting the trend from a series is by using the Moving Average 

(MA) method. Moving average method of estimating the trend involves averaging 

successive observations from the series. 

We may for example fit a polynomial to the first (2m-+ 1)" points in order to find the 

trend value at the (m+1)” point (point of the middle of the set; that is why an odd 

number of points is taken), and the same thing is then done for all the other points of 

the series. In this case the order of the MA model would have been 2m+1. Usually this 

order is determined by an automated procedure on a computer (see for example the 

Box-Jenkins methodology on paragraph 8.5.4.7) 

This method is particularly useful when the data exhibits a non-linear trend, since in a 

MA model, every part of the time series is represented locally by a polynomial. Let us 

consider the same shipment data example. 
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Figure 20: Manufacturing shipment data set with MA estimated trend. 

Moving Average provides a smoothed version of the original data. The higher the 

order of the MA process is, the higher the degree of smoothing. Therefore a high- 

order MA provides an estimate of the trend in the data. The trend estimated by a 
MA(S) follows the data structure more closely, providing a more accurate line on 

the figure. 
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Figure 21: MA detrended manufacturing shipment data set. 

Hence, after detrending we obtain the series satisfying stationarity assumptions 

(the MA detrended series is obtained by subtracting the estimated trend from the 
original data). 

The SACF of the detrended data confirms that the detrended time series is stationary. 
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Figure 22: SACF plot of the MA detrended manufacturing shipment data set. 

The SACF of the detrended series gives us a small number of significant lags, 

while the values at all other lags are diminished. The large value at lag 12 

indicates that removing of seasonality may also be useful. 

Comparison of linear regression and moving average methods of detrending for 

Manufacturing Shipments data indicates that MA detrending gives more satisfactory 

- results than linear regression. For other series however, the linear regression method 

can also be used for eliminating trend and seasonality simultaneously (whereas MA 

cannot eliminate seasonality). Actually the best thing to do is to try both method and 

to choose the one that gives the best results. A plotting can give a hint of which one it 

could be. 

Let us now say a few words about Correcting for seasonality. Generally elimination of 

trend and seasonality can be achieved in one step. A linear regression model with 

trend component is constructed under the assumption that the data depends linearly 

not only on time but also on the phase of the period. Depending whether the seasonal 

components are additive or multiplicative, various models can be assumed to get rid 

of the seasonal component. If m,is the smooth component of the series, s, the 

seasonal component and €, the error term, then the model can be 

y, =m, +5, +&, or 

y, =M,S,€, Or 

y, =M,8, +, 

These values can then also be determined with appropriate software (see [k] ) and the 

seasonal effect removed. As it had already been mentioned trend and seasonality can 

be removed together. A new method called differencing is particularly powerful for 

that. 
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8.5.4.5 Differencing 

8.5.4.5.1 Definition 

Differencing is very effective in removing both trends and seasonality (in the cases of 

polynomial trend). When a time series exhibits a polynomial trend together with 

seasonality it proves to be very effective to do so. 

The first backward difference of a series is defined as: 

VX, =X,-X,. 

VX,, the sum obtained by differencing the original sum once, is trend-free if the 

original series contains only a linear trend. 

The second difference of a series is defined as: 

Ya a 

V’X,, the sum obtained by differencing the original sum twice, is trend-free if the 

original series contains at most a quadratic trend. Further differences at higher order 

lags are defined similarly. 

It can also be useful to introduce seasonal differences. 

V,4,—=X,-x 

In order to use differencing to remove trends and seasonality it ha to be decided how 

many differences have to be taken. Usually software is used to do that. Otherwise 

several solutions have to be compared. 

8.5.4.5.2 Example 

Let us illustrate the effect of differencing on the logarithms of airline data. 
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Figure 23: Differenced log airline data set. 

To remove seasonality we apply differencing at lag 12. The differenced series has 
no seasonality but still exhibits some fluctuations. 

  

Figure 24: plot of the seasonally differenced airline data set. 

The plot of V(V.2(x,)) shows that seasonality has almost disappeared. The 

SACF will have to be plotted to confirm this result. 
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Figure 25: SACF plot of the differenced log airline data set. 

The SACF has two significant lags, which may draw our attention, namely lag 1 
and lag 11, but the global result is still good. 

Differencing is an important tool to transform the data into a stationary series. It can 

eliminate trends and seasonality. It is often preferred to detrending. 

8.5.4.6 Box-Jenkins Method 

The Box-Jenkins methodology is one of the main algorithms which are used in time 

series analysis (see [k]). It consists of several steps, allowing one to fit a model to the 
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observed data and provides several methods of model testing. B-J modelling consists 

of three steps: 

|. Identification: Using tools such as auto-correlation measures to identify models to 

explain appropriately transformed data. 

2. Estimation: Estimating the parameters of the models identified in the previous step. 

3. Diagnostics: Checking the adequacy of the model estimated in the previous step. If 

the module is not satisfactory, we start with a new model. 

8.5.5 Missing data 

8.5.5.1 “Usual” methods 

What we mean here by missing data is when there are data points where some 

components are missing. We try to give a standard way of dealing with such 

problems. Several alternatives can be tried. 

¢ discarding the vector with missing data. But this can lead to poor results because it 

assumes that the cause of the mechanism responsible for the missing data is 

independent from the data itself. Nevertheless this procedure can be adequate when 

there are only a few input vectors with points with missing components. 

* another way to address this problem is to seek a maximum likelihood solution (see 

[d]) and to use the EM algorithm to find the input density. Once the input density 

has been found the conditional mean of the missing value can be computed. If 

x= Cee te is the input vector, let us assume that x, is missing. Thanks to 

the density modelling methods p(x) can be modelled. Thus Elxlx,,..5, | can be 

computed. The value obtained for this conditional expectation is the value that can 

be chosen for x, . 

¢ another technique based on the same input density modelling exists. Instead of 

using directly the conditional mean as in the method described above, a weighted 

integration across all possible values for that input is used (see [n]). 

Whichever of the methods is used we must attach a measure of confidence to the NN 

outputs which reflect the influence of such a training point on a given generalisation 

point. We should manage to take this into account in the computation of error bars 

(see section 9.2). 
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Missing data is a field where a lot of research is still going on at present because 

there’s not yet a satisfactory solution for every kind of problem. This is a presentation 

of a newer method. 

8.5.5.2 Input uncertainty 

In this section we deal with a new method to tackle these problems like noise in the 

inputs and missing data. This method can actually be more efficient for missing data 

problems than the averaging methods of the previous paragraph. 

8.5.5.2.1 Framework 

We consider a regression model with input points fx, Soe jand outputs {y, ReeeYe be 

The outputs are given by: y* = flat)ce*, where e€* is a zero mean random noise. 

To account for uncertainty it is assumed that no information can be got from x and that 

we can only obtain samples from z with 

zt =x* +6 

where 65* is a random noise with standard deviation P,(5)?. A sum of squares 

network will approximate the expectation of the network. A network will thus 

approximate: 

1 Elz) = 55] FORE Pax () 

And thus in general E(ylz) # f(z) 

8.5.5.2.2 Different situations 

Let us now assume that € and 6 both have gaussian distributions with respective 

means 0 and variances o” and o.. Several situations can occur. 

¢ If the inputs are certain (that is there is no noise in the inputs) then we have that: 

E(zlx) = f(). 

¢ If the inputs are uncertain (i.e. noisy). Equation (1) describes the convolution of f(x) 

with the noise process P;(z—x). The noise will therefore blur or smooth the 
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original mapping. In some special cases f(x) can be recovered from a network 

trained on deficient data by deconvolution (but this can be very error sensitive). 

e If a linear approximation is valid, then the input noise can be transformed into 

output noise. This means that if f(x) is approximately linear over the range 

where P;(5) has a significant amplitude, we can substitute the noisy input and the 

network will still approximate f(x). 

8.5.5.2.3 Learning with maximum likelihood: 

Now we will give the main steps of the modified maximum likelihood algorithm. 

More details (particularly about the mathematical background) can be found in [w]. 

¢ Train the network using the complete data set. Estimate the covariance of the noise 

in the targets. 

¢ Estimate the input density P(x) using gaussian mixtures. 

¢ Include the incomplete training patterns in the training. 

e For every incomplete training pattern, compute the maximum likelihood and its 

derivatives (with some integration tricks and approximations described in [w]). 

What has to be emphasised is that this method can provide better results for missing 

data problems than the usual approximations with mean substitution. What can 

happen with the substitution method is that if the difference between network 

prediction and target is large, the error is also large and the data point contributes 

significantly to the gradient although it is very unlikely that the substitute value was 

the true input. 

8.5.6 How to split the data set 

8.5.6.1 Small data sets: resampling techniques 

With small data sets it can happen that the whole data set has to be used to carry out a 

training successfully. That means that no data is left for a testing set. 

Note: once again we use words like “small data set” and “successfully” which are 

pretty subjective. But as it has already been said they cannot be quantified since they 

are too closely related to a specific problem. This means, for example, problems 

where the data density is low over the whole data space or in a classification problem 

where we don’t have enough points. 

In all these situations we cannot afford the luxury of keeping aside part of the data set 

to test the NN with it. 
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8.5.6.1.1 Cross validation (CV) 

In this case we can use a procedure termed cross-validation. The training set is split in 

S distinct sets. We then train a NN using data from the S-/ of this small sets and then 

we test its performance by evaluating the error function with the remaining set. We 

then start again using another of the sets as testing set. The average error rates over all 

S partitions is the cross-validated error rate. The only drawback of this method is that 

it requires the training process to be repeated S times. But in our validation context 

this is not a major drawback. What has also to be emphasised is that the increase in 

computational speed of computers makes these techniques very practical today for 

large samples and complex learning systems. 

8.5.6.1.2 Bootstrapping 

Leave-one-out estimators (i.e. cross-validation) are virtually unbiased. That means 

that they can be applied to much larger samples than bootstrapping, yielding accurate 

results. 

While leaving one out is nearly unbiased, its variance is high for small samples. 

Unbiased means that the estimator will over the long run average to the true error rate. 

This is a bit like a drunk person walking trying to walk a straight line. The person 

might average right down the center even when wobbling to the right and left. 

In small samples variance tends to dominate, thus a low variance estimate that may 

even be somewhat biased has the potential of being superior to cross-validation on 

small samples. This is why a bootstrap estimator is interesting (see [h] for more 

details). 

The two main bootstrap estimators are known as e0 and .632 bootstrap. For an e0 

bootstrap estimator a training group consists of n cases sampled with replacement 

from a size n sample. On the average e0 trains on 63.2 % of the cases. The error rate 

on the test group is the e0 estimator. 200 iterations are considered necessary to get a 

good result. Thus it is computationally more expensive than CV. 

The .632 is another version of this one. This is a technique for small samples. Usually 

it was considered that a sample was small when it had 30 or fewer cases. The variance 

effect is most pronounced in quite small samples, 30 or fewer, but the effect continues 

somewhat up to 100. Both e0 and .632 are low variance estimators. For moderately 

sized sample sets, eO is clearly biased pessimistically, because on the average it uses 

only 63.2 % of the data for the training. It gives however very strong results when the 
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true error rate is high. As the samples grows in size .632 is overly optimistic but it is 

very strong on small samples when the true error rate is relatively low. 

Under 30 points, bootstrap is better than cross validation. It can be better till 100. 

For problem where the number of points is just around one hundred it is not 

straightforward to choose between a testing set and CV. 

8.5.6.2 Testing Sets 

When there is enough data to split the set in a training and a testing set another 

question arises: how are we going to split the data that is what size should our testing 

set have and what points should it contain ? 

8.5.6.2.1 Splitting the data set in two 

The Ratio between the size of training set and the size of the testing set (and 

eventually validation set) usually is two thirds for the training set and one third for the 

validation set. When there is a validation set one half for the training set and one 

quarter for each of the others is fine. 

8.5.6.2.2 Splitting strategy 

See [D2] about how to choose the points of the testing set. The strategy that has to be 

used to split the data actually depends on the kind of data and of the kind of problem 

we want to solve. 
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8.6 Selection of the model 

8.6.1 Regularisation 

To find the best model, the usual methodology is to train a range of networks and then 

with a testing set to try to find the one with the smallest error. This method has already 

been dealt with in [D2]. Here we present another methodology that can be an 

alternative or a complement. It is based on the control of the effective complexity of 

the model. 

A regularisation term is added to the error function. The larger the weights grow the 

larger the error becomes, thus introducing a force to choose the simpler of a set of 

possible solutions and so improve generalisation performance. 

The technique of regularisation consists of adding a penalty term Q to the error 

function: 

E=E+vQ 

where v is a parameter that controls the extent to which the penalty tem Q 

influences the form of the solution. v should fall between 0 and 1. Several tests can 

be computed to find the best value. 

Q. can have several different values (see [d]) but the most usual one is: 

  

1 2 

2h 

8.6.2 Complexity evaluation 

8.6.2.1 “prediction error” 

This complexity criterion will allow us to have an estimation of a “prediction error” 

-(that is something like a “generalisation error’) once training has been carried out. 

This prediction error is minimal for an optimal generalisation performance. 

PE = training error + complexity term 
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Where the complexity term is a penalty term which grows with the number of free 

parameters in the model. 

We can see how this works heuristically: 

¢ if the model is too simple, the PE will be large because the training error will be 

large 

¢ if the model is too complex however then the PE will be large because the 

complexity term will be large. 

So we observe the trade-off between a too simple model and an overfitting model. 

For a sum-of-squares error and a linear NN the complexity term is: 

where: 

E is the value of the sum-of-squares error, 

N the number of data point in the training set, 

W the number of weights, 

o® the variance of the noise (a noise model has to be assumed) 

Fortunately this criteria can also be generalised to non-linear models and allow the 

presence of a regularisation term. 

The Generalised Prediction Error is then given by: 

GpEn ee NG? 
Nas Ni 

where E, N and o* are the same parameters than above and where y is the effective 

number of parameters in the network, which is given by: 

  a I 
‘
M
e
 

» 

A, are the eigenvalues of the Hessian matrix of the unregularised error evaluated at the 

error minimum, and Vv is the regularisation coefficient. 
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This method is very interesting since it can be used to find the best NN model in the 

case where we did not have enough points to split them into training and testing set. 

After training several models and computing the generalisation error for each of them, 

finding the best one will be easy. But this “prediction error” can also be used for NN 

with testing sets. In such cases it can give a hint of the kind of NN that could be tested 

(see [d] pp 340-341). 

8.6.2.2 VC dimension related boundaries 

This criteria will be less useful in practice since it provides only some very high 

boundaries. One result can nevertheless be interesting for classification problems as 

we will see it. 

In [c], Haussler has developed some boundaries for the number of weighting 

parameters needed to get an optimal generalisation for any case of NN application 

(regression as well as classification). These boundaries are however so high that it is 

almost pointless to use them in reality since the network that we are going to use will 

have less variable parameters than the VC dimension boundaries would have 

suggested us. 

The only useful result for our validation process is the rule of thumb that for 

classification problems links the number of nodes with the number of patterns needed 

to carry out a good training. 

N=W/E 

where E is the expected error, W the number of weights and N the minimum number 

of input patterns needed for the training. 

This result had already been described in [D2]. 

In a word these results (and particularly the “prediction error’) are a very useful tool 

for complexity evaluation and thus for finding the NN with best performance. They 

are very useful for cases where there is not enough data to make a testing set. 

8.6.3. Complexity reduction: “Clearning” 

Weigend (see[y]) has recently developed a new method which allows us to model 

conditional densities for the outputs thanks to a very detailed study of the inputs (this 

study of the inputs is mainly based on the study of the input noise, see 8.3.6). This 

method also makes it possible to discover properties of the data otherwise not 
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accessible, and particularly the ratio between the input signal and the input noise. 

Eventually this method will make it possible to reduce the complexity of a network 

and to optimize the architecture of this network. 

The basic idea of clearning is to simultaneously clean the data and learn the 

underlying process. That means that on one hand the model will modify the data and 

on the other hand the data will modify the model. Clearning is usually used in 

conjunction with standard pruning. 

Here we will just present some of the main results of this method, but in no way give a 

detailed description of it; see [y] for that. 

Basically what clearning is supposed to do is to drastically reduce the complexity of a 

network thus making it more efficient, thanks to a close study of the input data. What 

is more, interesting results about the structure of the noise in the data will be gained. 

In the formalism of clearning, the model we are seeking is allowed to modify data if 

the cost of changing the data is smaller than the benefit associated with the lower 

output errors. 

Practically, learning (use of the data to modify the model) and cleaning (use of the 

structure to modify the data) come about with the use of a special cost function which 

is: 

pele aeate\2 elie ipea\? E=—>nly oan x?) 

where the first part is the usual sum-of-squares error function between the network 

output y and the data output y“. The second term is the squared deviation between 

the cleaned input x and the data input x“. 

The error derivative for the weights is the same as for the standard error function. The 

cleaned inputs however are updated according to 

x, =x" +A, 

and A,,, =(1-K)A, -n(y-y") V
L
 

The update depends thus on: 
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© proportionality to the output error. 

© proportionality to the sensitivity of the output with respect to the input (derivative 

term). 

The two parameters of the error function are the learning rate 7 and the cleaning rate 

«. A statistical interpretation of this function can be given in a maximum likelihood 

framework. We assume that each pattern was generated by a “true” input (estimated 

by x) and a true output (estimated by y). We then assume that all input and output 

components were independently corrupted by additive gaussian noise. 

This means that the inputs can be characterised by their noise levels. This method 

allows to compute the noise level and the signal level variance separately. The 

deviation A(t) of each input and of each output as functions of the pattern index t (t 

is the time when each prediction is made, plotted along the horizontal axis) allows us 

to: 

© detect outliers in the output 

© characterise input variables by their stochasticity: the mean of the squared error 

across the time characterises the signal to noise ratio of each input feature. 

* estimate the error covariance matrix.: the computation of this matrix can help 

investigating the validity of the assumption of statistical independence of the noise 

inputs 

In the clearning context, it is the combination of clearning with a pruning algorithm 

which makes it possible to arrive at very small networks which are more efficient than 

the huge initial networks. But let us first explain what a pruning algorithm is. 

Note: Pruning algorithms 

Pruning is a technique aiming at optimising the network architecture as part of the 

training process itself. A systematic procedure is needed for exploring some space of 

possible architectures. The usual technique which would consist in training a set of 

networks and to choose the best one is not very efficient since only a small number of 

models can be trained (all of the various parameters of the NN cannot be changed; 

one has to focus on the number of hidden units for example). What is more this 

technique is computationally very expensive. A good alternative approach is to start 

with a relatively large network and gradually to remove either connections or 

complete units (for examples of pruning algorithms see [d] pp 353-363). 
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In practice, clearning is carried out until Y(y-y4) increases on the validation set. 

What has to be removed are the weights that respond most to the noise. In every 

iteration, a new input is presented and the size of the weights at the end of this 

iteration are compared to its fluctuations in response to the inputs during that epoch. 

A test value which corresponds to the ratio of the weights at the end of the epoch over 

the fluctuations during the epoch is computed and if this value is large, the weight is 

kept. If it is small the weight is pruned (for more details see [y]). The computation of 

this test value is carried out on the cleaned values. 

8.6.4 Designing a classification MLP 

The best way to find the most appropriate network to a given problem is to test a 

number of nets and then to select the one with the smallest testing error. What we 

intend to do in this paragraph is to give a number of rules that have to be respected to 

find a MLP with a correct degree of complexity. Experimentation will also be required 

here. Some of the previous results will also be used. 

Complexity depends on several causes: the number of inputs and outputs nodes and 

the number of hidden nodes. Since the number of inputs and outputs depend mainly 

on the size of the data set we will focus on the hidden layers 

8.6.4.1 Hidden layer size 

When choosing the number of hidden units h, some elementary rules have to be 

respected: 

e Never choose h to be more than twice the number of input units. 

© p patterns of i elements can be loaded into ilog, p hidden units. But never more 

should be used. For good generalisation, less have to be used. 

¢ In a classification problem, it has to be ensured that there are at least I/e times as 

many training examples as there are weights in the network. 

Feature extraction requires fewer hidden units than inputs. 

The number of hidden units required for a classification tasks increases with the 

number of classes in the task. ‘ 

But choosing the right number of hidden units does not give the best solution. Some 

finesse can be introduced with new means: for example a regularisation term (see 

8.6.1).



8.6.4.2 Network health measure 

Looking at the test error performance is not the only way to gain insight into the health 

of a network. It can be done thanks to the distribution of the weights values. A NN 

should have small weights if it is to be able to generalise well. We can construct a 

very simple picture of the health of a network by drawing a histogram of the weights. 

It shows a count of the number of weights in the NN which fall in within each range 

of sizes. They can be plotted as simple bar charts. The range in which the values vary 

has to be divided y 10 or 20. The vertical axis shows the frequency of weights of each 

size. A good histogram shows a hump around the values with low magnitude. 

Indicating that most of the weights are low. A histogram with peaks at the extreme of 

the horizontal axis has probably overfitted the data. 

Note: the variance has also to be taken into account since an untrained net with low 

initial random weights will produce a healthy histogram. That’s why it is also a good 

idea to monitor the variance in the size of the weights as the network learns. Weights 

which do not move far from their initial points do not contribute much to the solution 

(if none of the weights moves, the network has not learned). 

8.6.5 Use of random numbers 

NN frequently use random numbers in the training process. This can add to the 

difficulties of assessment since the function that is implemented on the data is not 

deterministic. 

Most training algorithms require a set of random values at the initialisation (weights, 

etc...) and these random parameters are then incrementally adjusted so as to improve 

the value of the function to be optimised. 

The most obvious test of robustness is to run the algorithm several times with another 

initialisation and then to check if the state that the NN reaches is the same for every 

run. But two main issues are raised here: 

* how many times does it need to be run? 

¢ how to compare the outcomes of the training algorithm? 

Another difficulty arises with the drawing of the different numbers. 

Since this problem is central in validation and verification of NN we will provide a 

method for dealing with it. This method is based on committees of NN. 

A general technique for dealing with the random number uncertainty is to repeat the 

basic training algorithm and then to take the best solution. But the approach with 
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committees may be better since it is an average of all the networks which is chosen 

rather than the result of the best network independently from the other ones (and 

which might depend on the randomly chosen starting point). Members of the 

committee are created using independently chosen random starting points for the 

network parameters (see [i] for details). 

8.6.6 Committees of Networks 

This paragraph about committees of NN has a double purpose: on one side to gain 

more insight in the advantages of a committee solution in order to allow LR to see 

how some NN applications that they will have to assess could be improved and on the 

other hand it will help them to assess NN applications involving committees. 

8.6.6.1 Description 

A common technique in the NN context is to train a set of different NN with the same 

training set and then to select the best one. But as we know, the net which gave the 

best results on the training set is not necessarily the one which will give the best 

results with the test set. This problem can be overcome by combining the networks in 

the collection in such a way as to obtain a prediction that is better than the predictions 

of any individual network. 

As a means of dealing with the influence of random numbers used in training, one can 

see why committees should be effective: we are using a sample of the networks 

arising from these random numbers, rather than just an individual. The average of a 

sample should have lower variance. 

Committees are also a means to: improve generalisation performance of a NN 

application. Usually in a NN application we train several nets and choose the best one 

after using a test set. The committee is more powerful since it takes into account all 

the nets and it is not the same net which gives the best results every time. 

8.6.6.2 Simple committees 

In the case where the sum-of-squares errors of all the networks present in the 

committee are not correlated, the average sum-of-squares error of the committee 

would be divided by Z (i.e. the number of networks present in the committee). 

In reality however, the improvement is generally much smaller than this because the 

errors of the different models are highly correlated. From the point of view of 

validation we want our committee to be sufficiently large so that the observed average 

is highly likely to approximate the expectation



8.6.6.2.1 Generalised committees 

In the simple committee approach discussed above, all we have done is averaging the 

predictions of the N networks of the committee. However we might know that some of 

the NN of the committee will make better predictions than others. We would therefore 

be able to reduce the error still further if we gave a greater weight to some member of 

the committee. 

Thus we consider a generalised committee prediction output given by a weighted 

combination of the predictions of the members of the form: 

Yoav = we y, (x) 
ial 

and the @, are determined by minimisation of a generalisation error: 

Ee = {van (x)- (x))'| 

8.6.6.3 Conclusion 

Committees of NN are actually an example of Multiversion Systems. Such systems 

are often used in engineering because of their ability to increase the reliability of 

systems. In the NN context, their reliability will be better than that of any single NN 

application that is obtainable. Their power comes from their duality: 

© combination of a set of appropriate NN 

¢ selection strategy. 

As discussed in [D2], if a NN is trained on a given problem this methodology can 

deliver an equivalent multiversion system with a superior performance and in some 

cases the increase can be dramatically high. 

8.6.7 Mixture of experts 

Here we consider the problem of learning a mapping in which the form of the 

mapping is different for different regions of the’ input space. Although a single 

homogeneous network could be applied to this problem the task would be easier if a 

different expert network was assigned to each different region. A gating network 

which also sees the input vector decides which of the experts should be used to 

determine the output. 
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The decomposition of the problem into different regions might well be known but if it 

is not, it can be considered as part of the training process; that is that each network 

should find it. The architecture of such a network is as follows: 

OUTPUTS 

NM. 

  

  

Gating 
Netw ork 

  

    
  

Netw ork 1 ) [tenons ; 

    
  

      
IN PUTS 

Figure 26: Example of a mixture of experts network. 

The error function that is used is the negative logarithm of the likelihood function 

with respect to the probability density given by a mixture of gaussians. 

E=-) inf"), (ri 

where the gaussians are functions given by: 

    

All the experts as well as the gating network are trained together. The mixture of 

expert networks is trained by minimising the error function simultaneously with 

respect to the weights in all of the expert networks and in the gating network. The key 

of this training is the error function. This function is very much the same than the one 
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of the conditional modelling density network (despite the fact that that network was 

not a mixture of expert network, but for further information see [d]). Mixture of 

experts can lead to improvements with highly heterogeneous training sets.. 

8.6.8 Statistical tests to find the best algorithm in a classification problem 

So far we have not talked of the algorithms that are involved in our learning processes. 

What we want to do here is to find a method which could allow us to test if two 

algorithms applied to the same data set have the same performance. In what follows, 

two statistical methods that answer this question are presented. This methodology 

tackles several problems: randomness and generalisation performance. 

8.6.8.1 Presentation of the problem 

8.6.8.1.1 The central question 

The statistical question that we have to answer is: “given two learning algorithms A 

and B and a large or a small data set S, which algorithm will produce more accurate 

classifiers when trained on the same data set S?” 

The problem that we have to answer is very closely tied to the amount of data we have 

available. If there is a large amount of data, then some of it can be put aside and then 

be used as a test set for evaluating the classifiers. If there is only little data available, 

all this data will have to be used to train the NN. This means that some resampling 

will be needed to perform the statistical analysis. 

8.6.8.1.2 Sources of variation 

To evaluate and to design statistical tests, the first step is to identify the sources of 

variation that must be controlled by each test. There are four important sources of 

variation: 

e Selection of the test data that is used to evaluate the algorithms. This problem is 

particularly pressing for small test data sets. 

¢ Selection of the training data set 

e Internal randomness (when random points are used within an algorithm). 

¢ Random classification error (mislabelled data points). 

A good statistical test should not be fooled by these variations. It should overcome 

them. 

It has to fulfil two main conditions: 
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* it must take into account the size of the test set and the consequences of change in 

this set (because of the test data variation and the possibility of random 

classification error) 

¢ it should execute the learning algorithm several times and measure the variations in 

accuracy of the different classifiers (because of the training data and internal 

randomness). 

Experiments with real data have shown that the two best tests are Mc Nemar's test and 

the 5x2cv paired t test. (see [g]). 

8.6.8.2 The two methods 

8.6.8.2.1 Mc Nemar's test 

To apply McNemar's test, we divide our available sample of data S into a training set 

R and a test set T. We train both algorithms A and B on the training set to obtain 

classifiers fi and G . We then test these two classifiers on the test set. For each data 

point of the test set we record how it was classified and construct the following 

contingency table: 
  

  

Number of data points misclassified by both Number of data points misclassified by 

o, and f,. he but not by f, . 

Number of data points misclassified by Number of data points misclassified by 

fa -but not by f- neither i nor Fic   
  

We will then use the notation 

  

Pon Moy 
    No mh       

where the sum of this four numbers is the total number of examples in the test set T. If 

the two algorithms have the same error rate, we term this hypothesis H 

The test is then based on a test for goodness-of-fit that compares the distribution of 

counts expected under hypothesis H to the observed counts. 

The expected counts under the null hypothesis are: 
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The statistic is then: 

  

(|r =Pro|- 

No + M19 

and is distributed asv* with 1 degree of freedom. It incorporates a continuity 

correction term (to account for the fact that the statistic is discrete whereas the 

xv? distribution is continuous). 

This test involves running the algorithm exactly once and analysing the results. (this 

means the test does not measure training set variations at all). 

8.6.8.2.2 The 5x2cv paired test 

This test requires drawing multiple training sets from the data and running the 

algorithms several times. This permits the test to measure the training set variation 

directly. 

Preliminary: the k-fold cross-validated paired test 

Learning algorithm A and B are trained on training set R and the resulting classifier are 

tested on training set T. 

We divide the sample S into & disjoint sets of equal size T,,...,T,,. We then conduct k 

trials. In each trial, the test set is 7; , and the training set is the union of all of the other 

T,,j#i. 

Let p\? and p\ be the observed proportion of test examples misclassified by 

respectively algorithms A and B during trial i. 

In this test we perform 5 replications of 2 fold cross validation. In each replication, the 

available data is randomly partitioned into two equal sized sets S, and S,. Each 

learning algorithm (A or B) is trained on each set and tested on the other set. This 

produces four error estimates: p‘” and p{? (trained on S, and tested on S,) and p? 

and p§ (trained on S, and tested on S,). 

Subtracting these corresponding errors estimates gives us two estimated differences: 
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i) p'” =p — pg’ and p'” =p,” — pp”. 

From these two differences we compute the estimated variance is 

  

+(p = B) 

Let s7 be the variance computed from the i-th replication, and let p{” be the 

p‘” from the very first of the five replications. 

It can then be proved that under hypothesis H, 

  

has five degrees of freedom. 

8.6.8.3 Results 

Experiments have shown that the 5x2cv test is the most powerful statistical tests for 

the error of type I (detect a difference when no difference exists). This test is also 

satisfying because it assesses the effect of both the choice of training set (by running 

the learning algorithms on several different training sets) and the choice of test set ( by 

measuring the performance on several test sets). 

According to the experiments it is recommended to use either the 5x2cv ttest, for 

situations in which the learning algorithms can be run ten times, or Mc Nemar’s test, 

for situations where the learning algorithm can be run only once. 

These tests can be useful to develop, understand and improve machine learning 

algorithms. 

Since a classification problem is only one particular case of a regression problem, one 

can wonder if this method could not be extended to regression problems. 

8.6.9 Conclusion 

In this data analysis section we first managed to address all the various noise problems 

that can occur. Mixture densities networks are a very powerful technique that can be 

used for noise modelling as well as multivalued function mapping. The quality of the 

data set of the data set was studied in detail and techniques to address the related 

problems were provided. These problems ranged from missing data and time series 

data sets to how to handle large data sets. Finally techniques to obtain an optimal 
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model were presented, including the use of committees of networks which are 

techniques that are more and more used. Now the updated guidelines (that can be 

found in appendix B) cover most of the problems and deficiencies that have to be 

assessed within the current state of the actual NN research. 
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9. A safety case for NN software 
In this section we seek to demonstrate that a safety case can be obtained for NN 

software. This is an indispensable condition for the use of NN software in a safety 

critical environment. 

9.1 The safety case concept 

9.1.1 The safety case as it is seen by LR 

Here are some extracts of [s] which explain the purposes of a safety case and highlight 

the points on which we will have to concentrate. 

“The safety of an operation is about more than hardware integrity. It is about more 

than procedures. It is about the totality of features including equipment and people 

that have a bearing on ‘freedom from harm’ or the safety of an operation. The safety 

case is a document describing those features.” 

“The purpose of the safety case [...] is to provide a clear, comprehensive, convincing 

and defensible argument, supported by calculation and procedure that an installation 

is and will be acceptably safe throughout its life.“ 

“In broad terms the safety case should address the hazards associated with an 

installation and the management of those hazards.” 

A safety integrity level is a probability of failure. This a table of some current safety 

integrity levels as defined in [a]. 

  

  

  

  

    

Safety Integrity Level Probability of Failure to perform function 

on demand 

4 : 10* -10° 

3 10° -10* 

2 107% -107 

1 107 -107   
  

15 

 



The following activities characterise the development of a safety case and this process 

is often referred to as formal safety assessment. 

i 

i)
 

n
n
 
®
 
w
 

establish safety requirements (functions and integrity levels); these may be both 

risk based and deterministic. 

. consider both internal and external hazards, using formal and rigorous hazard 

identification techniques. 

. estimate the frequency or probability of occurrence of each hazard. 

. estimate the risk and compare with criteria. 

. demonstrate ALARP (As Low As Reasonably Practical). 

. identify remedial measures for design, modification or procedure to avoid the 

hazard altogether, to reduce the frequency of occurrence or to mitigate the 

consequences. 

. prepare the detailed description of the installation including information on 

protective systems and measures in place to control and manage risk. 

. prepare a description of the safety management system and ensure that the 

procedures within it are appropriate for the risks identified. 

9.1.2 Scope of the document: 

In the previous list of guidelines, guideline No. 1 is up to the expert of the system in 

which the NN will be since it is completely dependent on the problem. 

No.2, 3 and 4 are typically what we are going to examine in this document: 

e 

. 

e 

In 

to identify the different hazards in our NN software. 

to estimate the probability of occurrence of these hazards. 

to show that they. are low enough to get the required safety integrity level: 

this document we will focus only on the NN specific points. The aspects that are 

common to any software are out of the scope of this document. 
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9.2. Reliability and Computation of the overall failure rate: 

In this safety critical context what we want to do is to compute the probability of 

failure (i.e. failure to perform its design function on demand) of the NN so that a 

safety integrity level can be associated with it. 

9.2.1 Definitions: 

A failure rate is roughly speaking the probability that the Equipment Under Control 

enters into a failure mode without the NN function having detected this failure mode. 

In the NN context this means that the error bars lie entirely into the normal mode 

subspace whereas the true value of the function lies in the failure mode subspace. 

Figure 12.2 
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Figure 27: NN prediction with error bars and failure mode boundary. 

Here we have the predictions of a NN and the error bars of this predictions. The 

line shows the failure mode boundary and we can see that the error bars lie 

within the failure mode space on one spot. This has to be quantified so that the 

probability of failure can be computed. 
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Figure 12.e: failure rate determination (undetected failure modes) 
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Figure 28: Three dimensional plot of NN with error bars and failure modes. 

This is the same figure as the previous one but the third axis has been added to 
show how the problem looks like in higher dimensions. 

9.2.2 Evaluation of the failure rate 

What we would like to compute is the value of the probability of falling into the 

failure zone (i.e. probability of failure) . This probability is given by: 

fre = trqlx)p(x)dV 
v 3 

To compute this integral we are going to use a very powerful method based on the 

Monte-Carlo Theorem. Many classical numerical integration techniques (Trapezium, 

Romberg, etc.) which are very powerful for small number of variables are totally 

unsuitable for integrals as the one we are considering, that is which imply huge 

amounts of variables on complicated spaces. With standard methods, the 

computational cost would be too high. Let us first remind how the simple MC 

integration work. Then we will explain how to use them to compute our own example. 

Let us consider N random points uniformly distributed in a multidimensional volume 

Vv. 

We call these points x,,x,,...,Xy- 
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The basic theorem of Monte-Carlo integration estimates the integral of a function over 

the multidimensional volume V. It is given by: 

Jfdv=vcfoyw eine ee ieee 
7 N 

where < f >is the arithmetic mean over N sample points: 

<f = 4¥ f(x) 

What has to be mentioned is that the bound of the integration is not very rigorous and 

further there’s no guarantee that the error is distributed as a gaussian. The indication 

of the error can thus be approximate (for more details about the Monte-Carlo theorem 

see [p]). 

In the case that we are considering, what we want to do is to evaluate the following 

integral: 

J Plt tealx)p(x)av 
v 

where P(t> trix) is the output of the NN which is modelled by a posterior 

probability and p(x) is a probability density function. 

P(t > tglx) is a gaussian and thus and easy to sample from. 

p(x) is the density of the input space and it will be modelled probably by a mixture 

model.(see [e] ). 
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9.3 Error bars: 

The important conclusion of the last paragraph was that the probability of failure of a 

NN software could be computed. But now what we must question is if we take into 

account all the causes of uncertainty of our problem. In other words do our error bars 

take into account all the uncertainties of the problem? 

So far in [D2] we only mentioned what error bars were in very general way. Here 

some precision will be provided since the failure mode analysis we are going to carry 

out depends on them. They play a key role in the validation of NN applications. This 

is why the assessors have to assess the quality of the error bars as well as the uses to 

which they were put. But first let us recall the different error sources that should be 

taken into account in this failure mode computation. 

9.3.1 Different error sources: 

In every NN application the aim is to get an output as accurate as possible for a new 

input point that is for an input that was not in the training set. That is why we seek for 

an optimal generalisation performance and an optimal training performance. 

The quality of the output for this “new point” (i.e. point that was not in the training 

set) depends mainly on three different causes. 

1. the “novelty” of the new points that is whether this new point lies within the 

domain of validity of the NN and has the same features than the points in the 

training set. 

2. the density of the training data in the region of the new point. 

3. the quality of the training data in the region of the new point (if there is missing 

data, over noisy data, conflicting data). 

There are also other causes that are not in the scope of this document: 

choice of the training data: if it fits the problem we want to solve. 

* the properties of the NN - network topology, training algorithm, degree of training- 

in a sense this is what is usually termed choice of the model. But this is not really a 

problem since in the “Data Analysis” paragraph (see pp14-70) techniques to obtain 

an optimal NN were exposed. The properties of the network are thus as good as 

they can be before that we start computing error bars. 

The first and second points can be addressed with error bar computations. To take into 

account the density of the data in the region of the new point we need an error bound 

80



on the outputs which is based either on the distance of the nearest training point to our 

new point or on a measure of the local training density. This point is obviously linked 

to the first one (if the new point lies in the validity domain of the network). We will 

present some of the methods that exist to assign error bars to the NN outputs. 

For the last point (i.e. “quality of the training data in the region of the new point”) we 

need to precise what kind of problem there is in the data set because the requirements 

are different for each of these problems. 

¢ missing data: (see 8.5.5). 

¢ conflicting data (identical inputs but different outputs): in classification problems 

we can obtain from human experts a probabilistic measure of confidence in each 

point. 

* inaccurate data (mostly noise corrupted): we wish the outputs to include error bars 

which reflect not only the generalisation properties of the network, but also a 

measure of the inherent inaccuracies of the training data points. 

To take into account the errors present in the inputs of a training set, an error bar 

computation method was described in 8.3.8 (“perturbation model”). 

For missing data and conflicting data (generated by a multivalued function) means to 

tackle these problems were described in 8.4 and so these problems can be solved 

before the error bars are computed. 

9.3.2 Methods for error bar computation: 

Now that we have summarised all the sources of error that can affect a NN we will 

present four methods for computing error bars taking into account error causes No. 1 

and No. 2. and we will focus on their advantages and drawbacks. 

9.3.2.1 Method 1: Stacked Generalisation (see [b] and [j]) 

We are going to assign some bounds on the outputs of a NN. Let us consider a 

standard feed-forward NN (net, ) that is trained on a training set L. Once the training 

has been carried out one input pattern L, is removed from the training set L and the 

remaining training points are used to train a second network (net, ). L, has then to be 

applied to net, and it will deviate from the expected value. 

The input pattern L,, together with the vector from L to its nearest neighbour in the 

training set now provide an input pattern , and the deviation (obtained from net, ) 
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provides an output pattern to a third network net,. The full training set for ner, is 

derived by removing each training pattern L, from L and repeating the process. 

When trained, net, can be used as a secondary network to net,. A generalisation 

point presented to net, will produce an output response. The same generalisation 

point, plus its vector to the nearest training point when presented to net, will give as 

its output the error bounds of the primary network netl. 

The main drawback of this methodology is that it requires the storage of the whole 

training set. This is required to calculate the vector from each generalisation point to 

its nearest neighbour in the training set. Obviously, the effort required to find the 

nearest neighbour increases with the dimensionality of the input vector. 

9.3.2.2 Method2: Statistical moments (see [r]) 

We consider i” the pattern of the training set which consists in a set of input variables 

{x}, and one output variable Ye 

A NN is trained on these patterns and computes the mean of Y in terms of the input 

variable y({x},). A second training set can be formed from the same input variables 

2 

y, and output variables (9, -¥({2},)) . A secondary network can now be trained 

with this set. 

This secondary network, when presented with a generalisation point will express the 

variance of the output of the primary network in terms of the input variables. If 

gaussian noise is assumed, an estimate of the 95% confidence interval is 

2*sqrt(variance) on either side of the mean. 

This method can also be used to find higher moments by replacing the squared term 

with a cube or quartic. The fourth moment can be used to differentiate between 

stochasticism due to noise and stochasticism due to multiple values. 

The following steps will have to be followed when training a second network to 

predict the errors made by an existing model: 

¢ Creating a input training set with the same input vectors as the original network. 

¢ Creating a target output training sets consisting of one of the following measures, 

depending on the results one wants to get. 

¢ Training the network on that data. 

¢ If one wants the network to provide confidence levels for new input vectors 

presented to the original network , remembering to re-scale to the original range if 
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the values were scaled up to fall between zero and one for the training of the 

second network. 

9.3.2.3 Method 3: (see [d] and [e]). 

This method is actually used mainly in the bayesian framework. In Appendix B it is 

explained that a bayesian training provides some error bars without requiring further 

computations. 

The distribution of the outputs is given by: 

p(tlx,D)= 

  

This is the variance of the outputs (i.e. an error bar) that this method provides 

automatically. 

9.3.2.4 Method 4: Input Noise: (see 8.3.5) 

This method is actually based on the input noise and it was presented in details on pp 

21-26. It allows to compute the covariance of the outputs due to noise in the inputs. 

This method is very useful to study how an error propagates through the network. 

9.3.3 Reliability of error bars 

All these methods of attributing accountability to real world networks in the form of 

novelty detection and error bar generation are necessary and useful, but all of them 

assume perfect quality training data (that is with no missing points, no overnoisy 

targets, no conflicting data). So far no error bar computation exists that takes all these 

sources of error into account. But since these “training data quality” problems can be 

tackled before the computation of the error bars they are no source of uncertainty 

anymore when the computations are carried out. 

9.4 Conclusion: 

In this section we have shown how some of the requirements of a safety case can be 

fulfilled in a NN application. 
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¢ some of the hazards were identified 

¢ each hazard was taken into account in the study: 

- domain of validity 

~ data density 

- quality of training data 

The novelty of a new point (i.e. its domain of validity) and the data density in its 

region are taken into account in error bar computations. 

In the cases where there is some input noise in the training set, this noise is taken into 

account as well in the error bar computations. 

The other deficiencies in the training set (missing data, multivalued mapping) can be 

tackled with means described in [D8]. 

¢ The probability of failure that was obtained takes into account all the hazard 

sources of the problem. 

¢ A failure rate can thus be assigned to a NN software. 

¢ The quantitative problem of failure is better founded than the estimates associated 

with traditional software. 
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10. Conclusion and Ways ahead 

10.1 Conclusion 
The main purpose of the project was to improve the work that had been carried out 

last year thanks to a close study of the properties of data sets. 

A precise study of the noise that corrupts most of the data sets had first to be done. We 

managed to show how the assumptions on the noise can be checked and how the 

problems due to noise can be tackled. What has to be emphasised is that different 

kinds of noises were examined and a-good analysis of different noise models was 

obtained. A new aspect of noise problems was studied with the noise in the inputs and 

the “perturbation model”. After problems due to the noise the main difficulty that can 

arise are multi-valued mappings functions. We showed how to tackle them. Several 

other deficiencies of the data set were also highlighted and solutions proposed. These 

include the size of the data set, its density or missing data. In this context it was also 

shown how “large” data sets should be handled. Particular attention was paid to time 

series data sets. The final major point that had to be examined in this study of the data 

was the link between the data set and the NN itself, or how to find the best NN for a 

given problem with a given data set. A set of techniques ranging from regularisation 

to the use of committees of NN were proposed to solve this problem. 

It can be said that the improved guidelines obtained thanks to this project allow the 

assessor to point out the major and minor shortcomings that NN software can present. 

In most of the cases he will be able to propose effective solutions to tackle them and 

to decide whether or not the assessed software can be used in a safety critical context. 

In the last part of the project we showed indeed how a safety case can be obtained for 

NN software. Error bars played a key role in this context. 

10.2 Ways ahead 

The actual state of the project makes it possible to carry out a high level NN software 

assessment. Nevertheless a set of points where more work can still be done remain. To 

complete the technology transfer several case studies should still be carried out. 

Here is a set of ideas and topics that could be dealt with in the future. This can be 

completed according to LR comments, remarks, suggestions and priorities. 
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Only the outline of what is yet to be done is given here because if a lot of details are 

provided these might be inaccurate or misleading and eventually be more of an 

obstacle than an asset for future work. 

10.2.1 The perturbation model 

So far we have explained the principle and the purpose of the perturbation model (i.e. 

to compute a covariance matrix of the outputs thanks to the noise in the inputs) but 

many practical details could still be given apart from how the matrix has to be 

computed. 

There are several interesting topics that could be examined and which could result in 

some improved guidelines (note: we are in the context of an MLP). 

10.2.1.1 Relationship between input noise and features of the mapping 
function 

It has been claimed that in a region of the input space where the function being 

learned is fairly flat, input noise will have little effect whereas in regions where that 

function is steep, input noise can degrade generalisation severely. What should be 

done is to verify this claim and to study to a larger extent the perturbation model with 

respect to the aspect of the function to map in its region. 

10.2.1.2 Error bar computation method 

In [D9] we pointed out how important a role the error bars play in the evaluation of 

the probability of failure. Nevertheless so far no real guideline to choose the most 

appropriate error bar computation means has yet been provided. The most efficient 

error bar computation means should be listed and compared more deeply that what has 

been done yet in [D9]. Above all a real guideline which explains how to compute the 

most accurate error bars with respect to the features of the data and/or network error 

should be provided. In this context it should be shown in what situations the 

perturbation model is the best error bar computation means. 

10.2.2 Committees of NN and mixture of experts 

So far in this project committees of NN and mixtures of experts have only been 

presented in a very general way, to show to what use they could be put. Since a lot of 

industrial and real world NN are actually committees, it should maybe be questioned 

if some guidelines peculiar to them could not improve the assessment of this nets. The 

same thing is true for mixtures of experts. Among the committee specific matters that 

could be addressed are: 

86



* cana network which is in a committee be assessed a first time separately or can the 

committees be assessed only globally. Maybe it could be done in both ways? 

* are there some rules about how to group networks in a committee? (number of 

networks, features of the networks, of the committee, the way in which these 

networks are put together, ...). 

¢ how to build the best committee? 

* how to choose best the gating network in a mixture of experts network. 

10.2.3 Complements to the NN safety case 

10.2.3.1 Error bar computations 

As it has already been mentioned in a previous paragraph, what would have to be done 

is a complete list and comparison of error bar computation methods. 

10.2.3.2 Industrial example 

To illustrate the computation of a failure rate it would be interesting to try it on an 

industrial example to show how to carry out the computations described in D9. What 

would have to be done is first to compute error bars and then to compute the failure 

rate integral with a Monte-Carlo method. 

10.2.3.3 Eventual improvement of the failure model 

Improvement of the model of the failure. Is it not an oversimplification to model the 

failure rate by a single value? Could another model be found and the failure rate be 

computed? If yes the computation of the failure rate might have to be slightly 

changed. 

10.2.4 Complement on time series data processing 

So far we provided some methods to detect non stationarity and how to tackle it. 

Methods like detrending or differencing can give very efficient results but in some 

cases they can also result in a loss of information. Other techniques may exist to tackle 

such cases. The time series data pre-processing is thus a topic which needs some 

further investigation. 

10.2.5 Unsupervised learning methods 

So far we have not really concentrated on unsupervised learning techniques. The 

definition was given in [D2] but the particular assessment problems that arise with 

them have not been addressed yet. This is something that should be done. 
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10.2.6 Control 

NN as controllers is a topic that was dealt with in [D10] (deliverable produced by Dr 

Nabney). Further work in that domain is still to be done. 

10.2.7 More cases studies 

Since the case studies are the opportunity where the real technology transfer happens, 

it would be suitable to carry out several of them. Quite a few contacts were made with 

researchers whose projects would be at a suitable stage for assessment next year. 

Could there be some industrial projects as well? 
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12. APPENDIX A 

Introduction 

This document deals with two topics (prior probabilities in classification problems 

and bayesian learning) that were alluded to in [D2] but about which no further details 

were given. A deeper insight into these topics provides interesting information which 

makes some parts of [D8] and [D9] easier to understand. 

12.1 NN to model the posterior probabilities of class 

membership 

In this classification context the NN models the posterior probabilities of class 

membership. When the number of classes is at least three, for each possible class there 

is one output and the activation of the output node corresponds to the posterior 

probability. These probabilities are then used to make the decision. By considering a 

NN as a posterior probability generator we will get a number of interesting and 

powerful results. 

12.1.1 Compensation for different prior probabities 

If we consider the two class classification problem example of a medical system 

having to distinguish between normal tissues (C,) and tumours (C,) on medical X- 

Ray images. 

From medical statistics we might know that the probability of observing a tumour in 

such a tissue is of 1% and so the prior probabilities will be P(C,) = 0.01 and ACy= 

0:99) 

If we pay no particular attention to the choice of our training set we will have one 

tumour for 99 healthy images. If the training is carried out with such a set it will be 

impossible for the net to learn to distinguish between them unless we have a huge 

number of screenings. That means that we prefer to take roughly equal numbers of 

examples from each class to ensure we get a reasonable number of tumours in our 

training set. If we use such a network directly, there will be as many chances for a 

given input vector to be classified as healthy as tumour. This is of course a very poor 

result. But to get the good result, all we have to do is to divide each of the output node 
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by the corresponding prior probability and the system will give the right results. What 

is more is that if the prior probabilities change, there will be no need to train the 

network again. Only a new division by the new prior will have to be done. 

In a word we have increased the numbers of tumours in the training set and 

compensated for the different priors by dividing the outputs by the priors. 

Note: the value of the priors has of course to be as accurate as possible and particular 

attention has to be paid to its collection (see [D3]). 

12.1.2 Importance of the risk minimization 

There still remains one key issue in our problem: the cost of misclassification. In the 

medical example above there is no doubt that there are much more serious 

consequences if we classify an image of a tumour as normal than if we classify a 

normal image as that of a tumour. What we should do is to affect a different cost to 

each of these misclassifications. To do that we can use a loss matrix. 

In the medical screening, these loss matrix values would probably be chosen by hand, 

based on the views of experienced medical staff. 

For other applications, in finance for example, the coefficients can be chosen in a 

more systematic way since the risk can be more easily quantified. 

12.1.3 Rejection Thresholds 

Sometimes when for a given input vector x the largest of the posterior probabilities is 

relatively low, it might be better not to make an automatic decision in the network. 

This is called the reject option. In the medical screening for example, the doubtful 

cases could be classified by an human expert. To detect these doubtful cases, all we 

have to do is to use a rejection threshold which is actually the value of the posterior 

probability under which no classification is made. 

If max, P(C,|x)is above some threshold @ then x is classified; otherwise x is not 

classified and an human operator has to do it. the threshold has to be chosen by a 

human expert. Again no network retraining is needed here. 

12.2 Bayesian techniques 

So far, bayesian techniques are less widespread than the usual techniques involving 

MLPs and RBFs. But since they are very likely to be more and more used, it is 

worthwhile to know their main features and how they work in order to grasp their 
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peculiarities (this has already be done in the appendix of [D2], but here we try to be a 

bit more practical). The assessment techniques in the bayesian framework might differ 

in some respects from MLP and RBF assessment techniques and that is why we need 

to examine them. 

The classical techniques using MLP or RBF are usually based on the minimisation of 

a likelihood error function and attempt to find a single set of values for the network 

weights. The bayesian approach however considers a probability distribution function 

over weight space which represents the relative degree of belief in different values for 

the weight vector. The outputs are probabilities and we will see how this method 

brings about an error bar computation method. 

We are not going to give here too many details of these techniques (see [d] and [1] for 

that) but only an outline of how a bayesian learning comes about. 

12.2.1 Bayesian weight learning: 

In this framework a probability distribution over the weight is considered. 

In the absence of any data the prior distribution is described by p(w) . 

Its expression is: 

1 
So - aE, p(w) Z, (a) exp( w) 

where Z,,(c) is a normalisation factor and Ey, an error function. 

w= (w, a w,) are the adaptative weights of the NN and D=(t, pan e,) is the target 
  

vector of the data. Once the observed data has been taken into account we can use 

Bayes’ theorem to compute the posterior probabilities of the NN. 

p(DI w) p(w) 

Bua p(D) 

where : 

¢ p(D) is a normalisation factor. 

° p(Diw) represents a noise model for targets of the data and corresponds to the 

likelihood. Its expression is: 
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p(Diw) = exp(- BE,) 
I 

Z,(B) 

But since the data set consists of inputs as well as outputs, these inputs have to be 

taken into account in the computation of the posterior probability. Bayes’ theorem can 

thus be re-written like this: 

p(Dlw, z) a(x) 
ae (Diz) 

12.2.2 Computation of network outputs: 

When a new input vector is presented to the NN then the posterior probability can be 

computed very easily. This posterior probability is given by: 

p(tlx, D) = i p(tlx, w) p(wiD)dw 

Some computations bring us easily to the final expression which is: 

His Dyer tae) 

t t 

where 0; is the standard deviation of the predictive distribution. 

It can be interpreted as an error bar on the outputs. The bayesian technique provides 

error bars without further computations being necessary. 

12.2.3. Example of learning algorithm 

In this particular case here we assume that the outputs are gaussian. The main steps of 

the training algorithm are: 

© to choose the initial values for the hyperparameters @ and f and initialise the 

weights in the network using values drawn from the prior distribution. 

¢ To train the network using a non linear algorithm to minimise the total error 

function S(w). 
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S(w) = ¥ {olen — ew? 

= BE, + GE, 

e Every few cycle of training, re-estimate values for @ and B using: 

  and B’*" = 
  

  with y= =e 

The A, being the eigenvalues of the hessian matrix. The computation of the hessian 

matrix and of it eigen value spectrum is thus required 

¢ Repeat steps | to 3 for different random initial choices for the network weights in 

order to find different local minima. (In principle a check should be made in order 

to ensure that the different solutions are not only related by a symmetry 

transformation of the network.) 

Repeat steps 1-4 for a selection of different network models and compare their 

evidence using 

  

1 4 N 1 (2 
Ine(DIH,)=-ay ~ AB 7 We+ Incr In B+ ina 2Ino + Sin 2) +2 i = | 

where M is number of hidden units. 

The final distribution that is obtained for the targets (different from the weights 

p(tlx,D) = tay? osf- ne 

l 
with 07 =>+g"H'g 

B 

This is the variance of the outputs (i.e. error bars) that this method provides 

distribution) is 

  

automatically. 
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12.2.3.1 Computational aspects: 

In the conventional maximum likelihood approaches involving MLPs and RBFs, the 

computational efforts are concerned with optimisation in order to find the minimum of 

an error function. 

By contrast in the bayesian approach most of the computational efforts are concerned 

with integration over multi-dimensional spaces. As long as the outputs (i.e. posterior 

probabilities) are assumed to be gaussians (or approximated by gaussians). These 

integrals can be evaluated analytically. But if we wish to avoid the gaussian 

approximation we need to use efficient numerical integration computation methods. 

But the usual integration methods which can be used efficiently in many cases 

involving only a small number of variable are totally unsuitable here since the 

integrals that are considered often involve integration over spaces of hundreds and 

thousands of variables. 

That is why some random sampling methods have to be used. Such methods are called 

Monte-Carlo methods. A basic explanation of how these methods work has already 

been given on pp 78-79. 
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13. APPENDIX B 

This is an extract of the guidelines (the section which were modified). The modified 
guidelines are those with a +. 

4. DATA ISSUES 

4.1. Principle 

The quality of the data is in general closely related to its origin and the way it 

has been collected. Once the data has been collected, it is to be analysed in order to 

evaluate its quality, since this is a central issue with data-driven models. The 
outcomes of this analysis are to be a key factor in the design phase. 

There are 2 broad categories of types of data: the data sampled from the system to be 

modelled, and the prior knowledge concerning this system (e.g. for classification 

problems, the costs associated with misclassifications represent some prior 

knowledge). Typically dedicating 30-40% of the overall development time to the data 
issues can be considered as normal. 

The data collection process should be understood and clearly documented. The 

data collected should be analysed to determine its qualities and characteristics. Prior 

knowledge should be tested whenever possible. The results of analysis should be 
clearly documented. 

4.2. Criteria 

DATA COLLECTION AND ANALYSIS 

4.2.1. The origin of the data sampled is to be clearly identified and stated in 
the documentation. 

4.2.24 The data is to be shown homogeneous over space (and time). The 

homogeneity over space can be checked with visualisation techniques. If some areas 

of low data density are spotted there are several ways of coping with it. 

a) if there is a lot of data available it should be used so that the data set is 

homogeneous. 

b) if there is no other data available than the heterogeneous data, either some points in 
the regions were the density is the highest can be discarded or the training can be 

carried out knowing that the data is not homogeneous and that this fact will be 
taken into account in the error bar computation. 

c) using a mixture of experts in the region where there is a problem with density. 

a3) The prior knowledge is to be shown to be consistent with the data 
samples collected. 

4.2.4, The degree of control over the data collection is to be stated. For 

example, data collection from physical plants is often constrained by the need to run 
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the plant in a stable fashion, and thus data corresponding to a failure mode may be 
difficult to collect. 

4.2.5. If prior knowledge is used:to collect the data sampled, it is to be clearly 
stated in the documentation and easily traceable. 

4.2.6 If special groups outside the agency are involved in the collection of 

the data, the interface between these various groups must be clearly identified and the 

transmittal of information from one group to another must be done in a controlled 

way. 

DATA ANALYSIS 

4.2.7. Appropriate means are to be used to ensure that a data set 

representative of the problem can be built from the data collected or at least that 
representative tests of the NN function can be carried out. For example, techniques 

such as failure mode analysis, data density modelling, or trace through subsequent 
analysis can be used. 

4.2.8.4 The model used to estimate the data density has to be justified. 
a) If tests have been carried out in order to choose one model instead of another they 

have to be reported. Mixture models should not be forgotten since they often give 

better results than a model obtained with a parametric model or a non parametric 
model. 

b) The model used to estimate the data density is to be stated in the documentation. 

This includes the type of model and the value of the corresponding parameters. 

For example, Gaussian mixture model, number of Gaussians in the mixture, prior, 

mean and variance for each Gaussian. 

4.2.9. The means used to ensure that the data is reliable are to be appropriate. 

For example, means to deal with problems related to outliers, corrupted data and 

missing data. 

4.2.10. "The distribution of the values of every variable (input and output 
variables) are to be studied and documented. For example, this can be used to detect 
possible skewed distributions. 

4.2.11+ It has to be ensured that the noise distribution that has been chosen is 

accurate. 
a) If it was assumed gaussian then at least one of the following methods should be 

used to check the validity of this assumption by testing the model residuals. 

¢ Normal quantile plotting 

¢ Statistical tests to check normality: Kolmogorov-Smirnov test. 

The zero mean has to be checked as well 

e ttest 

b) If it turns out that the chosen model was inaccurate another one has to be chosen 

and the tests have to be carried out again. 

c) If there is some data available about an input noise or if a good model can be found 

to model it, error bars taking this noise into account should be computed using the 

perturbation model formulae. (see [D8]) 
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d) If the noise was non gaussian similar means have to be used to check the validity of 
the assumed distribution. 

4.2.12 If prior knowledge is used during the data analysis stage, it is to be 

clearly stated in the documentation and easily traceable. 

4.2.13. For time series problems, some considerations of likely model order 

are to be provided. For example, by using correlation analysis. 

4.2.14.+ Detection of multivalued mappings. 

a) If the data set comes from a problem where a multivalued mapping would be 

possible, conditional density modelling should be carried out to check whether or 

not this was the case. If yes this solution has to be kept. If no, another solution can 
be sought. 

b) If we know that the problem is an inverse problem (see [D8]) it has to be modelled 

with the class conditional density as explained so that all the branches can be used, 

or if only one branch is required then a single inverse model can be trained. 

42.15.+ Missing data problems have to be addressed as well as possible. Points 

with missing data should not be discarded. Other techniques should be used (see 
[D8]). Missing data problems are to be solved before the error bar computations. 

5. DESIGN, DEVELOPMENT 

5.1. Principle 
Generally, to develop a solution using NN technology, several models (by 

model we mean a Neural Network architecture, that is Multi Layer Perceptron or 
Radial Basis Function NN, with given numbers of layers and nodes) are independently 

trained using a training set. The models and the associated training set are chosen 
during the design phase. These models are then trained by using the training sets 
during the development phase. 

The design should propose a selection of models based on the specification 
and data analysis. Development should use sound methods with particular attention to 

generalisation and all results should be reproducible. 

5.2. Criteria 

DESIGN 

S2a. Design quality plans should describe each of the activities or tasks 

included in the design process. The responsibility for each of these should be 
identified. 

5:22 Any part of the problem that can be tackled easily with conventional 

programming techniques is to be tackled with conventional programming techniques. 

For example, data normalisation. 
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5.2.3. The modularity of the NN function is to be appropriate to the problem. 
For example, for classification problems, the discriminant function is to be distinct 

from the NN unit. 

5.2.4. The functions of the pre and post-processing units are to be described 
unambiguously in the documentation. 

5254 A range of models is to be considered: from simple models (including 
linear models), to more complex ones. The right complexity has to be found with at 
least one of the following techniques: 

¢ with regularisation 

© prediction error criterion 

5.2.6. An unambiguous description of each model architecture considered is 
to be given. 

5.2.7.4 The data set size is to influence the choice of the models to be tried. 

a) for 2-class classification problems, the number of training data points should be at 

least equal to the ratio between the number of weights in the NN and the maximum 
expected misclassification rate, 

b) For some classification problems, though, there is not always the same proportion 

of points in each class so the training has to be carried out 

¢ with discarded or added points (if some are available). 

¢ with prior adjustments and a cost matrix. In such a case, these priors have to 

be chosen with the aid of an expert in the domain of our problem. The same 
care has to be paid to the choice of an eventual rejection threshold. 

5.2.8. Prior knowledge is to be reflected in the model design and its 
incorporation is to be traceable. 

Dao The design is to be traceable to specification and data analysis. 

5.2.10.+ Data selection problems are to have been suitably considered: 

a) when there are not enough data points to have a test set (i.e. less than 100) cross 

validation has to be used. If the number of points is smaller than 30, then a 

bootstrapping method has to be used. 
b) when there are enough points to have a training set usually at least one third of the 

points are in the test set and in order to ensure independence between the different 
data sets, a suitable randomising method is to be used to split the initial data set, 

and is to be documented. 

c) in order to ensure independence between the different data sets, a suitable 

randomising method is to be used to split the initial data set, and is to be 
documented. 

d) dimensionality reduction for “big” (i.e. computationally impossible to deal with) 

data sets: if points have been discarded or if some points have been discarded and 

not others it has to be justified. Means to justify such behaviours are: information 

theory, covariance calculations, PCA, FA, Neural nets with less hidden nodes than 

input nodes. 

e) MLPs trained with p patterns of i elements should not have more than ilog, p 

hidden units. For good generalisation, less have to be used. 

100



S2ulile The different data sets used to develop the solution are to be included 
in the documentation. 

a2 12: Except if it is shown that a sufficiently large quantity of high quality 
data is available (e.g. the PAC learning framework provides a definition of ‘large 
quantity of data’), suitable means are to be used to reduce the dimensionality of the 
problem (e.g. feature extraction, modularity considerations). The means used are to 
be stated in the documentation. 

5.2.13.+ Error bars have to be computed, with an appropriate method, suitably 
justified. The choice of the error bar computation means has to be reported and 
justified. Failure modes can be mentioned and they can be computed as explained in 
[D9]. 

5.2.14. Some means of novelty detection are to be designed. For example, self- 
checking of the inputs or the outputs by using data density modelling. 

2.155 The noise model used is to be appropriate to the problem. 

5.2.16: The design is to be documented and is to be free from ambiguities, 
contradictions and other internal inconsistencies. For example, the structure of each 
NN unit is to be unambiguously described. 

Salih The design is to describe the functions, performance constraints and the 
interfaces and dependencies between modules, other components or sub-assemblies. 

5.2.18. Except if it is shown that the problem to be solved is ‘not difficult’ 
(e.g. low dimensionality and large quantity of high quality data available, or satisfying 
PAC learning criteria) the prior knowledge is to be shown as significantly simplifying 
the NN function development. 

DEVELOPMENT 

5.2.19. If MLPs are used, the training algorithms used are to be specified in the 
documentation. 

5.2.20. If RBFs are used, suitable methods are to be used to determine the 
basis function parameters and the final weight layer. 

3.2.21. The suitability for use and the theoretical correctness of every major 
technique involved in the development of the NN function or incorporated in the NN 
function are be demonstrated and included in the documentation. Although for well 
established techniques a formal proof of the correctness is not required, a list of 

technical references is to be provided. For example, the convergence property of the 
training algorithm, techniques used in the pre-processing unit. 

512225 Suitable techniques are to be used to reduce the problem of bad local 

minima. The techniques used are to be reported in the documentation. For example, 

multiple random weight initialisations, genetic algorithms. 
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52:23. Suitable techniques are to be used to reduce the problem of overfitting. 

The techniques used are to be reported in the documentation. For example, 
regularization, early stopping. 

5.2.24.+ Noise to improve generalisation performance. 

a) A different noise value must be added to each value each time it is used by the 

network. It is not sufficient to simply build a new training set to which noise has 

been added. Noise must be added dynamically during learning. 
b) Adding noise to the training data must preserve the mean value of that data. That is 

to say that the noise must have zero mean. This may be achieved by ensuring that 

the random number generating function produces a value between -n/2 and n/2 

where n is the magnitude of the range over which the noise must fall 

$2.95: The choice of the error function is to be correctly justified. See [D2] for 
the choice of an appropriate solution. 

5.2.26.+ Every random value necessary to reproduce the results is to be 

reported in the! documentation. For example, the random initialisations of the 
weights. Several algorithms can be compared, all of which contain different random 

numbers. Committees or mixture of experts can also be a solution that can lead to 

some improvements with the choices of random initialisation. 

S227: The stopping criteria used for the training processes are to be specified 

in the documentation. For example, the maximum number of iterations. 

5.2.28.+ The choice of the algorithm has to be justified (it can be chosen with 

one of the statistical tests presented in [D8] statistical method). The random number 

generator has to be tested for Markov Chains Monte Carlo types approaches. 

6. MODEL SELECTION, INTEGRATION 

6.1. Principle 

Once the different models have been trained, the best ones are selected by 

using a validation set. The selected models are then integrated in the overall NN 
function. 

Model selection should be based on specification and test results. The 

integration of NN and other systems should be tested and the results of the tests 

documented. 

6.2. Criteria 

MODEL SELECTION 

6.2.1: If a single model is chosen, then it is to be the best model with regard 

to the specification requirements. Furthermore, among equally good models, the one 
with the simplest assumptions is to be selected. 
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6:2:2) If a committee is constituted then the models of this committee are to 

be selected according to both their individual performance with regard to the 
requirements specification and their diversity. 

S230 The performance of each model considered (even if not selected) is to 
be reported. 

INTEGRATION 

6.2.4. All the functions used in the implementation of the NN and in the pre 
and post processing task must be traceable to ensure that it is always the last version 

of these functions that is tested. (e.g. fixed C-code). 

6.2.5. Each unit of the NN function is to be tested separately. 

6.2.6. Any design constraint on the NN function that is individually testable, 

is to be tested. For example: novelty detection system, validity of the error bars 

system. 

627." Test documents are to define the hardware and software configuration 
to be used for testing including test tools. 

6.2.8.* Test results are to be recorded as defined in the relevant test 

specification and in a form that permits verification. 

6.2.9. All interfaces between the NN function and other software components 
are to be tested. 

7. OVERALL NN FUNCTION TEST 

7.1. Principle 
During the testing stage, the requirements specification is used as a reference 

and the NN function is to be shown to comply with this specification. 

The aim of the section is to test the solution that we have chosen in section 6 in order 

to check if it fits the specifications that had been made on the outputs of the NN. 

7.2. Criteria 

TEST PLANNING AND SPECIFICATION 

ele The test cases are to cover every testable requirement of the 

specification. Completion criteria (goals) for tests are to be specified and used for 
evaluating the adequacy of testing. For instance: . 

The testing and validation sets are to be representative of the problem, or a suitable 

technique is to be used to ensure that representative tests can be performed (e.g. by 

modifying the error function to take into account the discrepancies between the true 

data density and the density of the validation or testing set). 
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7.2.2.* The features specified in the user documentation are to be tested. 

Lore Test cases are to be documented, including inputs, expected outputs 

and pass/fail criteria. 

7.2.4. Hypotheses made are to be shown valid or suitably justified. For 
example, sensitivity analysis can be used to evaluate the importance of the different 

hypotheses. 

25. If little data is available, specific techniques are to be used to estimate 

the true performance of NN function. For example, resampling techniques. 

42.6, Tests are to be traceable to the requirements and design. 

Tle Test documents are to define the hardware and software configuration 

to be used for testing including test tools. 

TEST RECORD AND RESULTS 

1.2.8.* The NN software tested is to be identical to the NN software under 

assessment. 

FL" Testing is to be performed in the target operational environment. 
Where this is not possible, testing is to be done in a test environment that has been 

shown to be equivalent, supported by a demonstration of successful operation in the 
target operational environment. 

T.210-* The overall testing pass/fail criteria are to be shown to be 

satisfied. 
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