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Chapter 1 

Introduction 

This study examines the use of matrix momentum terms and natural gradient descent in 

the online learning of neural networks. Its aim is to create a more computationally efficient 

natural gradient descent algorithm for on-line learning. It uses the statistical mechanics 

framework created in [24] to describe the evolution of order parameters for this algorithm 

in two-layer networks within a student-teacher scenario. 

This chapter introduces the tools needed for this work and some of the issues in their 

use, 

1.1 Neural networks 

A neural network is a flexible probabilistic model of an unknown mapping instanced by a 

set of examples. A network has nodes, parameters and activation functions. Nodes receive, 

modify and pass on (propagate) information. Input nodes receive information in the form 

of vectors or individual values from outside. Output nodes modify then pass information 

to the user. Hidden nodes modify and pass information between the input and output 

nodes, and play the main role in processing incoming data in a network. A network’s 

structure (nodes and the layout of links between them) is usually specified by the person 

building the network, but there are some algorithms that can adapt the network structure 

to best represent the data being learnt. 

Each node in a network may have several inputs, either from other nodes or from 

outside the network. The values input to a node are termed its activation; the value output 

from a node is a function of its activations and is termed its activation function. Activation 

functions are specified by the network designer and mostly range from simple summation



of all the inputs to a function of that sum. For nonlinear networks (networks that can 

represent nonlinear functions) and derivative-based learning algorithms, the activation 

function of the hidden nodes must be differentiable, for example tanh or erf fuctions 

(these also squash their outputs into a range between 0 and 1 or -1 and +1). 

Networks also have numerical parameters which are used to control the behaviour of 

a network and are usually the weights on the links between nodes. the weight on a link 

is used to modify any output from one node before it is input to the other. Parameters 

can be modified to improve the performance of a network: this modification is known as 

learning or training. Learning algorithms adapt the parameters of a network so that the 

outputs from it are as close as possible to the outputs given by the system that they are 

modelling given random inputs from the same distribution as the examples. 

Using a network consists of passing information to its input nodes and reading off the 

activations of its output nodes. Although the ability to store examples may be useful, the 

main aspect of using a neural network that we will focus on is generalisation: the ability to 

summarise information and return consistent outputs for inputs that the network has not 

been trained on. This is achieved with a learning algorithm. A learning algorithm adjusts 

the parameters © of a network to fit a set of examples, where each example consists of 

an input vector €“ and the output ¢# that is expected from the network, given that input 

and the system that the network is trying to model(here, jz is an index to the example, as 

are most superscripts used in this document). 

Because networks learn the underlying function that generated a set of examples rather 

than the exact connection between each example’s input and output pair, they are robust: 

able to learn from noisy or incomplete examples. How well a network is able to generalise 

is determined by the user’s choice of network and activation function; tools like cross- 

validation can be used to assess the expected performance. Neural networks are most 

commonly used to model systems which can produce example outputs or input-output 

pairs but whose underlying rules are either unknown or too expensive to model. There 

are several varieties of neural network architectures, for instance multilayer perceptrons 

and radial basis functions: in this document, only the networks known as multilayer 

perceptrons are considered.



1.2 Multilayer perceptrons 

The most commonly-used neural networks are multilayer perceptrons, or MLPs. The 

nodes in an MLP are arranged into layers : an input layer, then one or more hidden layers 

and an output layer, where each layer is fully connected to the next layer in the network. 

Connections between layers can only be directed forwards in the network: for instance, 

connections can be made from a hidden layer to the output layer but connections from the 

output layer back to a hidden layer are not allowed. Although not strictly necessary, the 

same activation function is usually defined for all hidden and output nodes in an MLP. 

Using an MLP consists of activating the input nodes, propagating that input between 

the network’s layers and reading the output from its output nodes. 

The most common MLP has one input layer, one hidden layer and one output layer 

and is known as a two-layer network (the input layer is ignored when counting the number 

of layers in a network). There are some variants of MLPs, for example a soft committee 

network or soft committee machine [4] is a two-layer MLP whose hidden to output weights 

are not allowed to vary, and are usually set to one, and output nodes whose activation 

functions are or are proportional to a simple sum of their input activations. Soft committee 

machines are used as example networks for much of this document and preserve most of 

the characteristics of general two layer networks [20]. Reviews of other MLP variants and 

their learning methods can be found in [5][9]). 

1.2.1 Backpropagation learning 

In the soft committee machines used in this document, the MLP parameters © are re- 

stricted to the input-to-hidden weights J. Before learning occurs, these are set to initial 

values which are usually small and randomly distributed. 

Learning in MLPs is usually done by backpropagation, which works in two stages. 

First, an input €# is propagated (modified and passed on) forward from the input layer to 

the output layer through all the hidden layers of an MLP, to produce a network output 

o(J,é"). This is the forward pass of backpropagation. The network output o(J,€“) 

produced in the forward pass is then compared against the expected output ¢“ for the 

corresponding input €“. This comparison produces a network error €3(€",¢“), which is 

then propagated back from the output units to the input units, to give the local gradient 

6# for each node i. This is the backward pass which gives the algorithm its name. When 

the backward pass through the network is completed, the local gradients 6! (also known 

10



as backpropagation delta functions) are used to adjust the network parameters, and the 

next forward pass can begin. 

The network error €3(€4,¢4) is used in the backward pass of the backpropagation 

error. €3(€“,¢") is a measure for the distance between the actual output o(J,é") and the 

expected output ¢/ of a network with parameters J which has been given the input €’. 

In this document, this distance is taken to be quadratic: 

1 
ex(64s 0") = 5 [o(5,€") — YP (1.1) 

In online learning, the network error for just the latest example (€“, ¢“) is propagated back 

through the network in the backward pass of the algorithm; in batch learning, an average 

over all the available input patterns D = {(€1,¢1)...(€“,¢™)} is used. This means that 

all the examples must be available at every stage of batch learning, but online learning 

can process one example at a time. 

Although the network error is used in this learning algorithm, the generalisation error 

€g(J) is more useful in analysing the performance of a learning algorithm. The generali- 

sation error gives the probability that the network will produce the wrong output for an 

example that it has not been trained on but is drawn from the same distribution or model 

as the training examples; it is defined as the network error averaged over the distribution 

of network inputs: 

€q(J) = (ea(&",6")) ce (1.2) 

1.2.2 Gradient descent 

The errors for different values of the network parameters form an error landscape or 

surface, where each point represents the error for a particular choice of parameters and 

distances between points measure the differences between the errors. 

The error term passed back through the network is not the error at each node, but the 

derivative of the network error with respect to the node’s parameters. This is proportional 

to the derivative of the nodes activation function, which must therefore be differentiable 

for backpropagation to work. 

Most MLP learning algorithms adjust the network parameters J by subtracting a 

fraction 7 of the error gradient Vjes(€", C4) from them: 

Jett = JH — nVyex(64, 6") (1.3) 

ay



where 7) is known as the learning rate. This ensures that, for a general series of examples 

(€4,¢#) and an appropriate value of 7, the learning algorithm will move the network error, 

on average, downhill in the error landscape. 

The learning rate 7 controls the step-size on the error landscape. If it is constant 

throughout learning a network’s parameters, then the learning algorithm will either be 

forced to take small steps and a long time traversing the landscape towards an error 

surface minimum, or larger steps which will overshoot the minimum in the final stages of 

learning. These problems can be avoided (or alleviated) by annealing the learning rate: 

gradually reducing the value of 7 over time. 

1.3. Online learning 

Algorithms where parameter adjustment is done as each new example is presented (rather 

than for all examples at once) are known as on-line learning or pattern learning. Online 

learning is useful when examples are only available serially, the task is nonstationary (the 

function that is being learnt by the network is changing over time) or there is less data, 

space or time available than is needed to process an entire dataset (group of examples) 

simultaneously. This report deals exclusively with online learning. 

1.3.1 Online learning and time-varying data 

For many of the equations shown below, the input data is assumed to be iid: each input 

is uncorrelated with the inputs that went before it. Data for online learning is produced 

sequentially or sampled from datasets too big to be loaded completely into a system. 

If data is sampled with replacement, then it will not be uncorrelated. Many examples 

of real sequential data are from underlying systems whose parameters change over time 

which often means that there are weak correlations between successive inputs, and may 

imply that older data will be of less value to the learning algorithm and might need to be 

forgotten. These factors have not been considered in this report, but may prove significant 

when using real data !. 

‘For example, Heskes and Coolen{11] report on the effects of correlation between inputs to two-layer 
networks, but this has not been considered here 

12



1.4 Neural networks as statistical approximators 

A neural network models the expected value 

(P(CIE I)) ¢6,¢} (1.4) 

of the conditional probability of its outputs ¢ given its inputs €, parameterised by its 

weights J and sometimes also parameterised by its structure. Learning in a network is 

the process of adapting the parameters J to get the mapping from this model as close 

as possible to the underlying rule that generated a set of example input-output pairs 

D = {(é1,¢1)...(€",¢™)}. Given a prior distribution for the data P(D), this can also be 

seen as maximising P(J|D) with respect to J. 

1.5 Neural networks as points in parameter space 

Information geometry is the application of techniques from differential geometry to statis- 

tical models [13] [1]. It represents families of neural networks as manifolds (k-dimensional 

geometric objects which can be mapped onto Euclidean space) in a space (d-dimensional, 

where kjd) whose coordinates are the parameters (weights and biases) of the networks, and 

each individual network is represented by a point on the manifold which corresponds to its 

particular parameters. As an example, a two-layer soft committee network with weights 

J...Jy can be represented as a point on a manifold of soft committee network mappings 

in N-dimensional parameter space, and similar networks with different parameter values 

would be represented by different points on the same manifold. 

The curvatures of the manifolds are described using tensors. A Riemann tensor is 

a matrix which describes the curvature of a surface at a specific point in space. In n- 

dimensional space, the tensor is an n-by-n symmetric matrix: e.g. in four dimensions, this 

is 4-by-4 with 16 elements but only 10 independent components because of its symmetry. 

A complete surface is described by placing tensors at different points on the surface, or by 

parametrising the tensor so that any point on the surface could be described: the resulting 

collection of tensors is known as a vector field, and differential geometry is the study of 

their properties. 

1.5.1 Applying differential geometry to neural networks 

In this representation of a neural network, learning can be seen as moving the point that 

represents a particular network closer to a (perhaps theoretical) set of parameters that 
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generated a set of given input-output examples. This can be a powerful tool for the 

analysis of learning, and it can also be used to create optimal or near-optimal learning 

algorithms. 

Having described learning as moving points closer together in parameter space, we need 

to have a measure of how close two points in that space are in terms of the probability 

distributions realised by them. There are several measures * (for example Kullback-Leibler, 

Hellinger, squared and Euclidean) in statistics for the distance between two distributions 

p and q, but one of the most natural and useful is the Kullback-Leibler distance 

KL(p(e),a(e)) = f ple) tog (2) a (1.5) 
which for two distributions p(¢,£;J) and q(¢,€;J) of network inputs € and outputs ¢ 

parameterised by J is 

KL(pG 65). a(6.69) = f vlGs6:3)t06 (MEE) a,0) (1.6) 
We need to apply this to the parameter-space representation of neural networks. 

In information geometry, the Kullback-Leibler distance between mappings realised by 

two nearby points in a space is known as a metric : if we are measuring small distances in 

parameter space (which is what we expect in online learning) and can ignore higher orders 

of dJ, then equation (1.6) becomes 

KL (p(¢, &; J), p(¢,€; 3 + dJ)) = 5 5aIG(aas (1.7) 

where 

G(J) = (Vs log Py (6, & J) (Vs log Ps(6,€5I)”)4n¢c,¢} (1.8) 

is the metric for this space, and is known as the Fisher information matrix. Gradient 

descent in parameter spaces which use the Kullback-Leibler measure of distance is known 

as natural gradient descent. 

1.6 Second-order learning methods 

Several second order methods have been devised to speed up learning. Examining the first 

few terms of a Taylor expansion of an error €y(€“,¢“) about a point J in weight-space 

gives [5]: 

(6,0) = 960) + F- Dal Ol + 30 - HG - 3) (1.9) 
*these are all defined through delta-divergences [29][30] 
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where 

— [dea(€,¢) ] H= [Bet la (1.10) 

is known as the Hessian matrix and 

dex(E, 
Wes(€,6)|3 = aesl60),, (1.11) 

is the error surface gradient at J. 

Many gradient descent algorithms use the error’s gradient Vyey(£,¢) to calculate where 

to move next in the energy landscape, and ignore any higher-order terms, but an improve- 

ment in their learning speed can be had from using the second-order term (5 —J)TH(i-J) 

too. (Third and higher-order terms aren’t used because they are usually insignificant and 

are more difficult to handle). 

1.6.1 Newton’s method 

The most common second-order network learning method is based on Newton’s method 

for finding the minimum of a function[5]. 

Tf we assume that the local gradient obtained by differentiating the second-order €3(€, ¢) 

estimate (equation 1.9) with respect to (J — J) is zero, then we have 

Wsex(€,0)|3 + H(S — J) =0 (1.12) 

Le: 

J=3-HWa(E,0) (1.13) 

Since we have ignored higher-order terms in the Taylor expansion, this is not an exact 

equation for J, and an iterative procedure must be used (we also focus on online learning 

which requires iterative updates). This gives an update equation for the weights J of 

Jet = J# — nH Wye (E4, 6) (1.14) 

7 is the learning rate as before. 

Learning with Newton’s method converges faster than first-order gradient descent but 

it is very sensitive to rescaling (e.g. normalisation) of inputs, and it needs a lot of pro- 

cessing and system space to create, store and invert the Hessian matrix. In addition, 

employing Newton’s method makes the algorithm converge towards and stabilise on any 

fixed points in the error landscape regardless of whether they are minima or saddlepoints, 

and this may result in suboptimal performance in complex learning dynamics.



1.6.2 Approximating the Hessian 

Accurately calculating the inverse Hessian H~1 used in Newton’s method requires an 

average over all the input data (this is, of course, only available in batch learning), followed 

by a (large) matrix inversion, at every step of the gradient descent algorithm. This can 

take a long time to calculate, and since the inverse Hessian is a very large matrix, it can 

be impractical or impossible to store during calculations. It therefore makes sense to look 

for more efficient Hessian algorithms and reasonable approximations to these matrices. 

One approximation to the Hessian is to use only some of the input data to evaluate 

the Hessian matrix. Where only the latest input is used, this is termed here a single- 

step approximation. The calculations used to create the elements of the Hessian matrix 

can also be approximated : variations of Newton’s method that use this are known as 

pseudo-Newton or quasi-Newton algorithms. Simple approximations to the Hessian in- 

clude diagonal approximations and the Levenberg-Marquardt approximation[5]. Diagonal 

approximations only contain the elements on the diagonal of the Hessian. they are not 

very precise: the off-diagonal elements of the Hessian are significant in many learning 

scenarios, and inverting a diagonal approximation of the Hessian differs significantly from 

the diagonal of its inverse [16]. the Levenberg-Marquardt approximation depends on the 

expansion of the Hessian for a sum-of-squares error €3(€,¢) = Dalen — Cn)? into its 

components: 

Pes (6) _ ya ee oon +X o 
OTi0T, Lar, OT; a 

and ignoring the second term in i equation. This is a reasonable approximation if 

(1.15) 

  

(On — Gn) is small. Other algorithms build up the Hessian iteratively from first-order 

terms: the most common of these are the BFGS (Broyden-Fletcher-Goldfarb-Shanno) and 

the Davidson-Fletcher-Powell procedures. 

Other algorithms include approximations to the inverse Hessian [8], but since the 

Hessian H is often used multiplied by a vector v, it can be more practical to create 

the product Hv directly. Pearlmutter [16] gives an algorithm for doing this efficiently 

and exactly by setting J — J = rv in the Taylor expansion above then taking limits as 

r approaches zero to give a differential operator which can be applied to a network to 

generate Hv. 
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1.7 Matrix Momentum 

Inverting the Hessian in Newton’s method can be avoided by incorporating it into a matrix 

momentum term[15]. 

Momentum is a method used mostly in batch learning to counter the effect of gradient 

descent algorithms oscillating across large gradient changes in one dimension whilst giving 

little effort in a gradually-changing but consistent downward slope in another: this is most. 

apparent when the error surface is a gently-descending valley with steep sides. One way 

to ameliorate this effect is to add a momentum term [22] to the weight update equations, 

which adds a fraction of the previous weight update into the current one. This reduces the 

strength of the oscillation across the surface whilst emphasising the smaller (but consistent) 

movement in the other dimension. Including a momentum term into the update equation 

1.3 in an online learning scenario gives: 

Jett = JH — nVyea(E", 6) + B(I* — J#) (1.16) 

where # is the momentum parameter and is usually set between 0 and 1 (e.g. ref [10] 

suggest § = 0.9) but it may be adaptive in an attempt to speed up network convergence. 

Suggestions for speeding up network convergence also include using a separate 7, for 

each network weight, but using momentum already has this effect. 

A simple momentum term (e.g. @ = constant) is not terribly useful in online learning 

because its effect is merely to rescale the learning rate 7. This is because, for an error 

surface with a gradient which is roughly constant near the current network parameters J” 

(this is the situation that we expect in online learning), using the update equation 1.16 is 

equivalent to using a learning rate of [5] [27] 

Neff = @ 4 B) (1.17) 

If, however, the momentum term / in equation 1.16 is replaced with a matrix 6 = 

I —kH and the learning rate 7 is replaced with n = knq where nq is a scalar learning rate 

which can be annealed (depend on the normalised example index a = 1/N), the update 

equation for the network becomes 

Jett = IY — ka Vacs (E", 6) + (I — kH)(S* — J) (1.18) 

and the effective learning rate is 

Neff = Hn (1.19) 

i,



This is known as matric momentum: it is important because it gives a way of effectively 

premultiplying the gradient by a matrix inverse H~! without having to calculate that 

matrix inverse [15]. Matrix momentum has been used by Orr and Leen(15] with the 

matrix H set to the Hessian to give Newton’s method without inverting the Hessian. 

Note that the constant k is used to balance the contributions from the gradient and 

momentum parts of the update equation, and that the matrix momentum equations above 

are only valid for large values of [18]. 

1.7.1 Balancing gradient descent and matrix momentum 

If we scale both 7 and f by N and introduce a new variable 2 where 

4 = N(J4 — JH) (1.20) 

then we can substitute these into equation 1.16 to get an update equation for J of 

aft at — Deyes(e,¢) + Say ee) 

We can then use equations 1.20 and 1.21 to also get an update equation for 2 of 

OF = BOF — nVuea(E",C) = OY — nVyex(€",6) + (8 -1)0F (1.22) 

where equation 1.21 and equation 1.22 form a coupled pair of equations. 

Using this coupled pair of equations, reference [15], which is restricted to the asymp- 

totic regime, suggests an optimal matrix momentum (6 = I — noH and annealed learning 

rate 7 = 7o/a where no is an initial learning rate. This gives an effective learning rate of 

H-! 

Net = ca ar (1.23) 

which is similar to Newton’s method and does not require inverting the matrix H. 

An alternative scaling of the n, 6 terms was suggested by [17], where 7 and (1— 3) are 

both scaled by NV. To do this, 7 and f are replaced by 

a zy 
B = (1-5) 

n = k/N 

If we now use this scaling and let 7 —+ 00, k > oo with k/y constant, the effective learning 

rate becomes [17] 

nest = k/y (1.24) 
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This holds for 8 =I —kH/N and n = knq/N with large values of k [18], again giving an 

effective learning rate neg of 

Nett = NoH~* (1.25) 

where k balances the contributions of the gradient and momentum terms as before. Note 

that, for effective training, the learning rate 7 should start from a constant e.g. jo, and 

only asymptotically decay as nq « 1/a. These results are equally valid for any matrix, 

including the Fisher information matrix G(J), and this scaling will be used throughout 

the rest of this document. 

1.8 Natural gradient descent 

Natural gradient descent uses the Fisher information matrix as the natural metric in 

parameter space. For gradient descent, the effect of using this metric is to premultiply the 

gradient by the inverse of the Fisher information matrix, changing the update equation 

for online standard gradient descent from equation 1.3 to 

Jet =H F(a) ("Vaca (EO) (1.26) 

Useful features of natural gradient learning are that it is invariant to reparameterisation 

of the model distribution (e.g. scaling the parameters does not change the efficiency of 

the learning algorithm), is asymptotically optimal [2], less prone than Newton’s method 

to trapping in symmetric phases (trapping occurs when the algorithm becomes stable at 

a saddlepoint or local minimum in the error landscape rather than its global minimum) 

and the Fisher matrix G(J) is always positive definite. 

The natural gradient descent algorithm requires the inverse G(J)~1(J“) of the Fisher 

information matrix. Inverting the Fisher matrix can take a long time. Schemes for cal- 

culating this inversion range from exact algorithms like block-wise partitioning and some 

data preprocessing to facilitate the calculation [28] to diagonal approximations [2] [21]. 

In general, these algorithms can be computationally expensive to calculate and calcu- 

lating the average <> over all inputs in the Fisher matrix also requires knowledge of all 

input data: this may not be sensible or practical for many cases of on-line learning (which 

is based on the premise that data is not all available at the same time). This document 

concentrates on the first problem: the second is addressed in [25]. 
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1.8.1 The Fisher information matrix 

The loss function L of a network is defined [28] as the negative log-likelihood function 

L(E,¢;5) = —log p(E,¢;J) = — log p(¢|g; J) + log p(é) (1.27) 

where p(£, ¢; J) is the joint probability density function of the network inputs € and outputs 

¢ parameterised by its weights J. 

The Fisher information matrix G(J) of a network is defined from L as 

G(J) = [Giaxs] (1.28) 

where a and # are input node indices (1 < i,k < N), i and k are hidden node indices 

(1 <i,k < K) and [.] is a block matrix whose elements are 

(eee Plog p(C1é J) ) 
{64} 

aL aL 
) = adi ad, ae) 

Gree (= wie 
faskB  \ AI; OT / (c,63 

where <>y¢,¢} is an average over the output distribution ¢, followed by an average over 

the input distribution €. 

1.8.2 Matrix momentum for natural gradient descent (MM-NGD) 

Matrix momentum is valid for any matrix. If we use the Fisher information matrix, we 

have a learning algorithm that is equivalent to natural gradient descent without inverting 

the Fisher information matrix. 

The update equations for a matrix momentum form of natural gradient descent (from 

now on, abbreviated to MM-NGD) with 7 and @ scaled by the input size N are 

cee It — Avyes(€,0) + Far (1.30) 

att = BO! —nVaex(E,6) (1.31) 
_ kG) p = 1-550) (1.32) 
_ Fa n = (1.33) 

where Q! = N(J# —J#"), nq is a scalar learning rate which can be annealed (depend on 

the value of a = p/N, the normalised example index), and G(J) is the Fisher information 

matrix. 

When 7 is significantly larger than (, the learning is dominated by the gradient and 

is expected to be very similar to gradient descent. When @ is significantly larger than 

n, then learning is dominated by the momentum terms and can be expected to depend 
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largely on the value of the Fisher information matrix. The next chapter takes this as a 

starting point, and analyses the effects of varying the parameters of MM-NGD learning 

for soft committee networks. 
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Chapter 2 

Analysis of MM-NGD for online 

learning 

This chapter introduces the tools used to analyse the behaviour of a network’s parameters 

and output errors during learning. It gives examples of this and equations for learning in 

a type of MLP known as a soft committee machine. 

2.1 Statistical mechanics analysis of online learning 

Statistical mechanics seeks, in general, to describe a system of many interacting particles 

(in this case, network parameters) in terms of a smaller number of order parameters. 

These can be used to describe the system only if it is self-averaging : if the parameters 

for each individual particle are identical (or very similar to) the average parameters for all 

the particles. In the discussion that follows, all the order parameters have very sharply 

peaked distributions with small variance, so only their mean values will be analysed. 

It is difficult to reduce the number of parameters studied if we are looking at an 

individual network, but if we assume that the outputs in the ’correct’ input-output ex- 

amples given to a learning algorithm are generated by feeding the inputs into another 

network, then we can describe the learning algorithm in terms of the difference between 

this ’teacher’ network and the ’student’ network which is learning from the examples. A 

covariance matrix can be formed between the student and teacher activations. This con- 

tains the overlaps Qix = Ji-Jx, Rin = Ji-Bn, Tam = Bn: Bm between the two networks : 

each of these overlaps can be used as an order parameter for online learning [24][4]. Note 

that the teacher network does not have to produce perfect outputs: it may include some 
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noise p on its output, and that the teacher network does not have to exist: it is merely a 

construction to give us a better insight into how a network is learning. 

2.1.1 Evolution of order parameters 

To derive differential equations to describe the evolution of order parameters, we need to 

use a continuous time variable a. Since ju is discrete, a is constructed by setting a = p/N, 

which in the thermodynamic limit of N —> co becomes continuous. 

Equations for the evolution of network order parameters, derived from the simple 

weight update equation given above are provided in [24]. 

2.1.2 Evolution of generalisation error 

The generalisation error €g(J) =< €3(£,¢) >,¢} of the student network can be described 

wholly in terms of Q, R and T. Unlike J, the evolution of Q, R and T over time (or 

over presented input patterns) can be described deterministically for large values of N: 

the derivatives of the overlaps form a coupled and closed differential equation. In this 

case, the reduction in number of variables is considerable: since much of the maths in, 

for example, [24] assumes an infinite input size N, the order parameters also have the 

advantage of being finite. 

Evolution of the generalisation error €g(J) for a network has a characteristic shape: 

the error will initially drop rapidly, then sit on a plateau until it continues to drop again. 

The plateau is where the network is close to an unstable fixed point of the error landscape 

where the network weights have become symmetric : this fixed point is unstable and 

eventually the symmetry will be broken and the learning algorithm will continue towards 

an asymptotic stable fixed point. Both the length of the plateau and the rate at which the 

error drops after it are determined by the system size and the learning rate 7 : a larger 

value of 7 will reduce the plateau length but will take much longer to run if 7-annealing 

is used. 

2.2 Example networks 

To illustrate the efficiency and behaviour of different gradient descent learning algorithms, 

the dynamics of their order parameters and generalisation error have been calculated for 

a specific type of network. The example networks used in this section are soft committee 

machines with erf hidden unit activations. 
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Soft committee machines are used as examples here because they can model a wide 

range of functions (in fact, they are universal approximators if node biases are included 

[26]). A soft committee machine is a two-layer network with positive, unit-strength cou- 

plings from its hidden units to a single output unit[4]. The activation function for hidden 

units must be differentiable: the erf (error) function is used here because its integral is 

not too complicated. 

Each network has a fixed number N of input nodes, one output node and weights on 

the connections between the input and hidden layer which are labelled J = {Ji}i<icx in 

the student network and B = {Bn}i<n<m in the teacher network, and Jj = (Jit,.-,Jin) 

is the vector of input-to-hidden weights for the i-th hidden node in the student network. 

Note that the number of hidden nodes in the student network K does not have to equal 

the number of hidden nodes in the teacher network M. 

An input pattern is €” = (€/,...,€4,) where 4 is the current input. The pattern output 

by the teacher network in response to é/ is (4; training example pz is therefore the input- 

output pair (€“, ¢#). The activation of the hidden units given an input pattern €/ is 

x; = J; -€". Similarly, the activation of hidden units in the teacher network given €" is 

Yn =B,,- +. The output from a student network is 

K 

o(J,£) = >> 9(xi) (2.1) 
é=1 

where g(x;) is the activation function of hidden unit Jj. 

2.2.1 Input data 

For this analysis, inputs must be i.i.d. samples from a Gaussian variable N(0,1). Input 

units € are also assumed to be uncorrelated (ie ; is uncorrelated with €;, i # j) with zero 

mean and unit variance (although this is not true for many examples of real data), and 

the maths assumes an infinite input size N, although the analysis is still effective for finite 

N 3). 

2.2.2 Activation functions 

Although the input-to-hidden activation function g(x;) is only restricted to being differen- 

tiable, the erf function, or more specifically g(x) = erf(x/V2) = Tato e~”/2dt has been 

used in this section. 
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2.2.3 Generalisation error 

The generalisation error of a soft committee network with erf hidden unit activations and 

normalised inputs has been calculated in [24] in terms of the order parameters: 

1 , Qik ) ; ( Tam ) 
€(J) = — > eee aeieeeen et > ete 

a(3) 7 iE aresin ( T+QiV1+Qik/ tm T+TrnV1+Timm 

5 Rin 
+ Paes (eae rte)| a) 

2.3 Analysis of gradient descent algorithms 

It is instructive when looking at the evolution of order parameters for natural gradient 

descent to have something to compare its speed and complexity against. The obvious 

candidates are gradient descent (already analysed in [24]) and the matrix momentum 

form of Newton’s method (second-order, fast and analysed in [19][17]). The calculations 

used are similar for the various learning algorithms, and are shown for natural gradient 

descent in appendix (B). 

For the purposes of analysis, it is assumed that all data is generated by another soft 

committee machine: to avoid confusion, this is called the ’teacher’ network and the network 

that is being adapted is its ’student’. Although the student and teacher networks have 

the same structure and inputs, they do not necessarily have the same number of hidden 

nodes. For all forms of learning algorithm shown here, the network error is assumed to be 

quadratic and the error gradient Vjez(€", ¢“) is therefore 

an tf a r 
Mert) =, | (x (Bn - €") — )>9(5; ©) =—de# (2.3) 

* n=7 jak 

where 
M K 

6H = gi (Ji - &") (x 9(Bn - &") — Y)9(3; 0) (2.4) 
n=1 j=l 

is the backpropagation delta function. 

2.3.1 Gradient descent 

Saad and Solla [24] develop update equations for a soft committee network using gradient 

descent. The update for a student hidden unit J; in a soft committee network using this 

learning algorithm, the learning rate 7 scaled by the input size N and a quadratic error 

function €3(€,¢) as given in equation 1.1 is [24]: 

gett = ey ote (2.5)



The order parameters for gradient descent are the overlaps between the student and 

teacher weight vectors J and B: these are Qj, = Jj-Jx, Rin = Jij-Byn and Tam = Bn-Bm. 

Since the teacher network is constant, T does not evolve and its derivative Ta is zero. 

The update equations for the other order parameters Q and R are: 

  

dQi AO = (Oixn) + Buri) +17 (6d) 
dRin _ . 
da = 188m) 

2.3.2 Matrix momentum version of Newton’s method 

For matrix momentum, it is convenient to define a new variable 2! = N(J} — i. 

The order parameters are now the overlaps between J, B and Q, ie. Q, R, T and 

Cix = 2;- 2%, Din = 2; -By and Ey, = J; -Qy. Unlike the overlaps between J and B, 

the overlaps with 2 do not appear to have a direct physical meaning. 

With J and © both being updated simultaneously, it is important that contributions 

towards updating the same quantity occur on the same time scale. This is achieved by 

scaling both 7 and . For the Newton’s method calculations, it is sufficient to scale both 

n and 1— by N (ie. 6 = 1—7/N) as described in [14]. For the J, 2 updates given 

in equations 1.21 and 1.22 with 6 =I— an n= ae and a soft committee machine (i.e. 

Wea (xi", C4) = —o#€"), the order parameter evolutions are [18]: 

  

  

  

  

d i 

ie = BetEn 

dC, Ton = Bla (Size + 5421) + Ke (8:54) — FY 1(CimDem + ChmDimn) 
™ 

=k YO (aij Cay + ang Cig + iy Bjx + bey Bji) 
i 

aDix = oe ny an da = Brta (in) — ky) (ay Djnct by Ryn) —b Cin Tam, 
¥ m 

dBi, 
Ta = Cik + rte (5uxi) — k 0 (ang Bij + bejQij) — BD ChmBim 

ai m 

where 

de, (J) 4g = (1+6,;)—2 ai (1+ 6ij) OQ: 

0 €,(J) 
by = (146; 1+ 6%)E + yas ij ( ig) a 1k) ne on 2E0, 5Q,0Rin 
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2.3.3. MM-NGD with the full Fisher information matrix 

As with the matrix momentum version of Newton’s method, the order parameters for 

MM-NGD are the overlaps between the variables J, B and 2: Qi, = Ji: Ix, Rin = Ji-Bn 

Tam = Ba-Bas Ca = 2; Ok, Din = 1; By and Ex = J;-Q5. 

Since this is a toy problem, with the input distribution and the model both known, we 

can actually calculate the Fisher information matrix directly. For a soft committee network 

and a quadratic error function €3(€,¢3), the exact calculation for the Fisher information 

matrix given in equation (1.29) reduces to 

1_/ dex(€,¢3) Aes (E, 63) 
Gia i = [Gia,ra] = lz a, (362) Oia Op a) | ne 

where i, k are indices over the hidden units, a, 3 are indices over the input elements and 

o?, is the variance of the teacher output noise p. This is a matrix consisting of K x K 

blocks which each contain N x N values. Further manipulation of this equation (this is 

given in appendix C) gives 

Gu = ay <AulO) >1o (2.7) 
where Ajx is 

2 

pe TV Ak 

I is the identity matrix and 

Ai   

  

[= 5+ Qu)SaF + (1+ QWHIF - QulGIE + HI7)] 28) 

Ak = (1+ Qii)(1 + Qex) — (2.9) 

For J, 2 update equations 1.30 and 1.31, with 6 = 7-5 and n = Me the equations 

of motion for the order parameters are: 

  

  

di 5 

sO = Ey t+ By 
(2:10) 

aR 

acy 2k — y - ((14+Q5,)ExjExi + (14+ Qu) Ej Eiji 

—Qx;(BjjExi+ExjE;i) | 
2k = ys a7 lOe ((1+Qjj)EigEix + (1+ Qi) BjjEjx 
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95 eae + kn (Bez: + Size) + Kn? (65k) (2.12) 

  

  

dDin 
asa a oa Tx Pin A; > ((1+.Qj;)BiyRin + (14+Qii)BjjRjn 

ee + kn (bin) (2.13) 

dBix _ og. 
Ta Cix 

Dp a a [Ey - Ay (I+ Qs) By Qi + (14+ Qin) Bij Qi; 
3 

Qh; (Bjj Qe +ExjQis)] + kn (5xxi) (2.14) 

The calculations for these are given in appendix B. 

There is a more compact form of these equations. If the update equations for C, D 

and E are written as 

  

  

  

dC; Tor = TROT Y Aeg Mj — bY (Asg 5)? Mp + bm (Se2e + Size) + Kn? (6i5x)(2.15) 
a d 

dD,, 

Ta = L(A: 9;)"Bn + kn (iyn) (2.16) 
a 

dE, 

a Cig — IT D> Ans 5 + kn (54xi) (2.17) 
i 

then the sum }°;; Ajj can be calculated from 

ina pe 1 (14 Qjj)BijJi + (1+ Qi)BjjJj — Qy(E iJi +EiJ;))| j ages . j VaR DG) G4 a pIIS I AI IIN sgVJ 

(2.18) 

  

By 

and substituted in. 

2.3.4 MM-NGD with single-input Fisher information 

When the network being analysed is very large, it may not be possible or practical to calcu- 

late the full Fisher information matrix for each input to it. A single-input approximation 

to the Fisher information matrix which only uses one example is 

1 
Gik = = Ain() (2.19) 

om 

where A;,(€) is defined as before. The update equations for this have been calculated by 

Scarpetta [25] and are 

d % 

“Oi = Ex+Exi (2.20) 

dR, Fe = Din (2.21) 
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dCi, 
  

  

  

ik = Knut — $i)24 + (Made — $4)2) + PU(nadi ~ $5) (Made — $4)) (2-22) 

Pin = (radi — b¥0) (2.28) 

ox = Cizx +k((nadk — bi)Xi) (2.24) 

where 6; = g!(xi) ¥) 2j9'(x)) 
j 

Although the behaviour of MM-NGD with single-input Fisher information matrix ap- 

proximations is important for predicting the behaviour of MM-NGD learning when it is 

difficult to evaluate the Fisher information matrix, its analysis does not form part of this 

report: preliminary results and discussion of this topic can be found in [25]. 
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Chapter 3 

Numerical results 

This chapter shows some of the characteristics of the order parameter and generalisation 

error evolutions calculated in the last chapter, calculated for soft committee networks with 

two-hidden-unit student networks, two-hidden-unit teacher networks and erf activation 

functions. Emphasis has been placed on the behaviour of generalisation error over time 

for several values of the learning parameters 7 and k and teacher network noise on. 

3.1 Learning parameters 

The training parameters of the MM-NGD learning algorithm are the learning rate 7 and 

the parameter k, representing the balance between gradient descent and momentum. The 

noise variance of the teacher network outputs is termed o?,. Other variables that can be 

adjusted are the numbers of teacher and student hidden nodes, and whether the learning 

rate 7 is annealed (gradually reduced over time). 

Another factor that affects the learning algorithm outputs, if we have noise on our 

inputs, is the point at which learning rate annealing is started. It should be noted that 

all times are described in terms of a, and that the interplay between the values of a and 

the number of datasteps used for each stage of learning is also significant to the efficiency 

of the learning algorithm. 

3.2 Initial conditions 

All order parameters are initially zero or sampled from Gaussian distributions: 

Qik ~ N(0,0.5),i =k; Qix ~ N(0,0.001),i #& 

30



Rin ~ N(0,0.001) 

Cx ~ N(0,0.001),i =k; Cp =0,i ¢ k 

Dn = 0 

Ex. = 0 

Tram = tint, r= mM; Tram =0,n xm 

where the teacher covariance matrix is set to the same values as Tym and tinit is set 

to 1 if there is no teacher noise o?,, and 0.5 for a teacher noise of 0.01. All the order 

parameter derivatives were initially set to zero. With these initial values, the networks 

were initially symmetric. The same random seed was used for each algorithm so that 

when their generalisation errors are compared in this chapter, their initial conditions are 

identical. 

3.3 Phases of learning 

In these output plots, the generalisation errors follow a characteristic curve in time. First, 

an initial phase where the generalisation error drops rapidly to a value. Then, a symmetric 

phase where the generalisation error stays at that value for some time (this is known as the 

symmetric plateau), then a drop to an asymptotic phase during which the error reduces 

gradually. In the plots, the initial and symmetric phases are shown for €, against a; the 

asymptotic phases are shown on a log-log scale. 

3.4 Comparing standard, natural and MM-NGD learning 

algorithms 

Figure 3.1 shows the expected generalisation errors of optimal (with respect to the learning 

rate) standard gradient descent (23], optimal natural gradient descent and MM-NGD 

gradient descent algorithms, with the optimal learning rate (7 = 0.144855) for the example 

network and k = 10 in the MM-NGD algorithm (note that @ is written as alpha in these 

graphs). 

The natural gradient descent algorithm reaches a plateau less quickly that the standard 

gradient descent algorithm as it reweighs the gradient in all directions reducing the strong 

difference between gradients in standard gradient descent which drives the system very 

quickly towards the symmetric fixed point. The plateau height for the standard gradient 
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Figure 3.1: MM-NGD vs NGD and optimal gradient descent 

descent is much higher than the natural gradient plateau: this occurs because although 

gradient descent moves quickly towards a minimum in the most significant gradient di- 

rection, it does not move much in the other gradient directions and will therefore be at a 

higher level in those smaller directions when it reaches the symmetric phase. 

The difference between the MM-NGD and natural gradient plateaux is discussed in 

the next section. 

3.4.1 MM-NGD without teacher noise 

Figure 3.2 shows the symmetric-phase performance of natural gradient descent algorithms 

on a two-hidden-unit network (K = M = 2) when there is no noise on the teacher network 

outputs (o?, = 0). In this plot, all algorithms have a learning rate of 7 = 0.15. The solid 

line is the generalisation error of the natural gradient descent (NGD) algorithm, and the 

dotted lines (from right to left) are MM-NGD with k set to 0.5, 1.4, 2.1 and 10. 

As the value of k is reduced, the length of the plateau in the MM-NGD error curve 

approaches the plateau length of the NGD curve. Experiments with larger values of k (up 

to K=100) show that the MM-NGD curve approaches the NGD curve without reaching 

it, and with diminishing returns for larger values. Since the number of datapoints needed 
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Figure 3.2: Symmetric phase behaviour of MM-NGD (teacher noise=0) 

to calculate these error curves increases with k and k = 20 is not visibly very different 

from k = 50 or k = 100, none of the plots shown here use a larger value than 20 for k. 

If MM-NGD and NGD are equivalent for large values of k, then the curve for large 

k should be very similar to that for NGD. This is not the case: although the plateaux 

lengths are similar, the MM-NGD and NGD algorithms have different plateau heights. It 

is not certain why this should be the case: the plateau height should be determined by 

the 7? terms in the order parameter update equations but experiments with these terms 

have proved inconclusive. 

3.4.2 MM-NGD with teacher noise 

Figure 3.3 shows the asymptotic behaviour of NGD and MM-NGD with teacher noise 

variance set to 02, = 0.01, the teacher covariance matrix T set to 0.5 on their diagonals 

(Tinn = 5mn0-5 where bmn is the Kronecker delta). The upper dotted line is the (theoret- 

ical) optimal gradient descent bound: gradient descent learning is much worse than this, 

and outputs from this algorithm have not been shown. 

The lower dotted line is the Cramer-Rao lower bound: this shows a theoretical limit 
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Figure 3.3: Asymptotic behaviour of MM-NGD for noisy teacher (o?, = 0.01) 

on the speed at which all algorithms can learn, and is defined as 

1 me 
v> we) iu (3.1) 

where G(J) is the Fisher information matrix and M is the number of examples available. 

Since natural gradient descent algorithms are asymptotically optimal, they should be 

expected to approach the Cramer-Rao bound: this is seen in the plots, where the lower 

solid line is the generalisation error for NGD, and the other learning curves are for MM- 

NGD and (from top to bottom) k = 0.3, 0.7, 1.4 and 10. 

3.5 Varying other parameters 

The results shown in this chapter have all been for optimal or near-optimal values of 

the learning rate 7 and different values of the momentum balance parameter k. This 

reflects our interest in the momentum parameters and the fact that the behaviour of 

generalisation error with different values of 7 has been well studied elsewhere. However, 

before this algorithm is applied to real data, it is interesting and perhaps prudent to note 

what happens to the generalisation error evolution when we vary 7: since online learning 

is sensitive to parameter settings, this might provide some clues to what might be amiss 
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Figure 3.4: Generalisation error evolution for various 7 values 

with them. 

Figure 3.4 shows the behaviour of mm-ngd generalisation error for several values of 7 

(n = 0.01, 0.02, 0.04, 0.07, 0.15 and 7 = 0.73, 0.7, 0.6, 0.5, 0.3: note that 7 is written as 

eta in the graphs) with k = 8, o2,=0.01, and tinit = 1. For decreasing values of 7 below the 

optimum value 7 = 0.144885 (n = 0.15 is used as an approximation to this in figure 3.4), 

the initial phase before a plateau is reached is longer, and the symmetric plateau height 

increases until the initial phase and symmetric plateau appear to be part of one smooth 

curve. For increasing values of 7 above the optimum value, the initial phase decreases in 

time, and the symmetric plateau height increases until at about 7 = 0.5, learning is not 

possible. 

Also of interest is the behaviour of generalisation error with different combinations of 

values of 7 and k, but this has not been studied here. 
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Chapter 4 

Using MM-NGD on real data 

The matrix momentum form of natural gradient descent works well with toy examples, 

but its potential value is in its application to real data. To this end, the datasets used for 

matrix momentum with standard gradient descent have also been tried with MM-NGD. 

The networks used here are multilayer perceptrons with linear hidden to output con- 

nections and tanh hidden-layer activation functions. The learning algorithm used was 

online learning, using sampling of the input data with replacement. Code was written in 

both Matlab (to fit into the Netlab framework) and C++. 

4.1 MM-NGD for MLPs 

The parameter update equation 1.30 with 6 = I— BSE) and n = ok was used here. This 

gives a parameter update equation of 

k ~ oft! = of — Evee(é,c) + €- “SE o4 - of) (41) 
where © is the set of network parameters {Jjj,bj,@j0,Co} for a multilayer perceptron 

with input-to-hidden weights J;;, hidden unit biases bj, hidden-to-output weights aj. and 

output unit bias c, for 1 <i < N,1<j< K,1<0<W, N is the number of input 

nodes, K the number of hidden nodes, and W the number of output nodes. Note that 

the notation is changed slightly since we are no longer just updating the input-to-hidden 

layer weights J. 
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4.1.1 Calculating the Fisher information matrix 

The empirical Fisher information matrix G(©) for a multilayer perceptron with parame- 

ters ©, network output a, expected output ¢ and a loss function for the network of 

1 2 L((I6I) = (0-6) (42) 
is G(©) = A(O), where 

st 
OL OL OL OL OL OL OL OL 

00) (|i dag Be] [Bae Toe Bel gy 
The components of A(@) are calculated in appendix C and are 

  

  

  

ade 
ae = hod Tgnet + wet (4.4) 

a = aoo'( Tiel + bf) (4.5) 

Fa = AL Ya (46) 

a = oko (4.7) 

where o is an index over output nodes, i is an index over input nodes, j is an index over 

hidden nodes, g(x) is the hidden-layer activation function for the network and g'(z) is 

its derivative, 5;; (double index) is the Kronecker delta function, d is an index over the 

examples that are available to calculate the Fisher information matrix with, and 4 indexes 

the current input example. 

4.1.2 Approximating the Fisher information matrix 

The Fisher information matrix is calculated by averaging over all the input data. One 

approximation for the matrix is to only calculate it for a single input (usually the current 

input). The equations for each input can be reduced for special cases of the input distri- 

bution, but, unlike the Hessian matrix, no other approximation or simplifications appear 

to have been developed. 

4.2 Small datasets : the Iris dataset 

MM-NGD was run on some small datasets to check for obvious errors and test the effects 

of varying the learning parameters 7 and k before a large dataset with long learning-times 

was used (some variations of om were also tried). 
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One dataset chosen was Fisher’s iris plants database [6] from the UCI repository[12], 

because it is well known, easily available and fairly small. The iris dataset consists of four : 

measurements and a classification for 50 examples of each of three different classes of iris 

plant, with no missing data values. 

The network architecture used is four input units, five hidden units and one output 

unit. This does not seem to be the optimal architecture for the problem (better results were 

obtained with seven or eight hidden units) but provides a network with just 31 parameters 

to study. The Fisher information for the Iris network and all other small (less than 1000 

parameters) networks was calculated in full from all the examples in the dataset. 
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Figure 4.1: Iris data, nq = 0.16, various k 

Figure 4.1 shows generalisation errors €, for the iris data with a learning rate jq = 0.16, 

for gradient descent (solid line) and mmngd with k = 0.1 (dash-dotted line), k = 0.25 

(dashed line), k = 0.5 (dotted line). Here, the values of €, for mmngd either drop to a 

roughly constant value of about 0.1 which is below the gradient descent curve and remain 

near that value (k = 0.1, k = 0.5) or continue to drop to lower values (k = 0.25). After 

presentation of most of the dataset, €y for the gradient descent algorithm is a roughly 

constant value of 0.1. Another features to note is that the initial descent to €g = 0.1 is 

faster for increasing values of k. The behaviour of mmngd with k = 0.5 may be explained 

by the fact that the algorithm is becoming unstable at this point: for values of k = 1 and 

above (not shown on this plot), €g drops rapidly for the first few datapoints then rises 

again and settles on a value near €g = 0.33. There does not appear to be a symmetric 

plateau: there are slight kinks in each of the mmngd plots at €, values between 0.25 and 
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0.35, but they are not significant enough to draw any conclusions. 

4.3 Medium-sized datasets : wine classification 

The wine recognition dataset is taken from the UCI repository(12]. It contains the quan- 

tities of 13 chemical constituents for three types of wine. There are 178 examples and no 

missing data. 

The network architecture used is 13 input units, 13 hidden units and 1 output unit, 

which gives 196 network parameters. 

04   
  

\ \ \ — gradient descent 
3 \ \ =-=-+ — mmngd, k=0.1 

‘ \ ‘ —--  — mmngd, k=0.25 
0.35) ‘ —-—- — mmngd; k=0.5 

mmngd, k=1       

    on   

  

Figure 4.2: Wine data, varying k 

Figure 4.2 shows €g for gradient descent (solid line) and mmngd with k = 0.1 (rightmost 

dot-dashed line), k = 0.25 (dashed line), k = 0.5 (leftmost dot-dashed line), k = 1 (dotted 

line). For values of k above k = 1, €, is very similar to the k = 1 line, with increasing 

jitter around it until k = 2, where the algorithm breaks down and €, diverges to infinity. 

For all the lines shown, €g drops rapidly to a value (€, = 0.27, datapoint=3 for gradient 

descent), then drops at a slower rate to a second value (€, = 0.19, datapoint 14 of gradient 

descent) and finally drops to a value near ¢g = 0.11, and stays near ¢g = 0.11 for the 

rest of training. This appears to be some form of plateau, but the behaviour with k is 

not as expected: the plateau height increases with increasing values of k and, although 

the plateau is reached at earlier times (datapoints) for larger values k, it is always left at 

approximately the same time. 
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4.3.1 varying 7,3 definitions 

  

  
k=0.1, algorithm 
k=0.1, algorithm 4 
k=0.5, algorithm 4) 
k=0.5, algorithm 4 

  

      

      

  

Figure 4.3: Comparing MM-NGD algorithms 

Two equations for 7 and # that both appear to give an equivalent learning rate of 

G(©)“"nq are 
  — 7 kG), _ kta 

B=I- Wael = GN (4.8) 

and 
i kG(®) ek 

Ca Nn’ N a) 

These have very different learning behaviours. Figure 4.3 shows generalisation errors for 

the wine dataset with mm-ngd learning and these two 7, 9 equations and mq set to 0.13. 

The four lines shown are k set to 0.1 with equations 4.8 (solid line); k set to 0.1 with 

equations 4.9 (dashed line); & set to 0.5 with equations 4.8 (dot-dashed line); k set to 

0.5 with equations 4.9 (dotted line, just visible at left of plot). It is seen that while 

the generalisation errors for learning using the first algorithm (equations 4.8 behave as 

predicted in chapter 3, the behaviour is very different for the second algorithm (equations 

4.9) and, for larger values of k, the generalisation error diverges (this is not shown in figure 

4.3 since the divergence is rapid and not on the same scale). It is easy to confuse these two 

sets of 3, 7 equations: all other mm-ngd plots in this document use the first set (equations 

4.8). 
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4.4 Large datasets : speech (phoneme classification) data 

MM-NGD as also run on a large dataset to check for practical problems with scale, learning 

times and resources. 

The database used is taken from [14]. It consists of 9000 71-element vectors in a training 

set and 1000 71-element vectors in a test set, where each vector contains a phoneme class 

label (1 to 39) and 70 perceptual linear predictive (PLP) coefficients. 

The network architecture used in [14] was a standard fully connected feedforward 

network with 70 input nodes + 1 bias, 70 hidden nodes + 1 bias and 39 output nodes. 

This has also been used here. 

4.4.1 Large Fisher information matrices 

The first problem encountered was one of size: for reasonably large networks, the Fisher 

information matrix can be larger than the available computer memory. In the speech data 

example, there are just under 8000 parameters (weights and biases) in the network, giving 

a Fisher matrix with 8000 x 8000 elements, which was impossible ! to store. Storage space 

can be reduced slightly by calculating half (the upper or lower triangle) of the matrix, 

but 8000 x 4000 is still large, so the Fisher matrix was created implicitly by storing the 

multiplication (I — sete)" ) (gp — Jit’) instead of the Fisher matrix. 

One question arising from this treatment of the Fisher matrix for large networks is 

whether a scheme similar to Pearlmutter’s algorithm [16] for fast multiplication of the 

Hessian by a vector could be devised. Examination of [16] suggests that this might be 

possible, but it has not been attempted here. 

4.4.2 Slow learning times 

The next problem was speed: although the learning algorithm ran reasonably quickly in 

single-step mode (only calculating the Fisher information of the last input seen rather than 

all inputs), it took a very long time to run if the full Fisher matrix was calculated. Results 

from this dataset have not been shown here because it was impractical to do enough runs 

of the algorithm to be confident that the algorithm was working or to show the effects of 

adjusting the learning parameters k, nq. 

1000 x 8000 x 64 bits = 4 Gbytes is not practical in any normal computer system 
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Chapter 5 

Conclusions 

Natural gradient descent learning is algorithmically more efficient than (will reach a small 

value of €, faster than) standard gradient descent but is computationally expensive because 

of the average over all input data and large matrix inversion in its calculation. Matrix 

momentum can be used to invert the Fisher information matrix used in natural gradient 

descent, to give a matrix momentum form of natural gradient descent (MM-NGD). 

MM-NGD is computationally more efficient (needs less computer operations to cal- 

culate) than natural gradient descent and algorithmically more efficient than standard 

gradient descent algorithms. Natural gradient descent is asymptotically statistically ef- 

ficient (its generalisation error curve converges close to the Cramer-Rao lower bound on 

the algorithmic efficiency of learning algorithms) when it uses an exact Fisher information 

matrix: MM-NGD’s generalisation error plots converge close but not exactly to the corre- 

sponding natural gradient for large values of the momentum-gradient balancing constant 

k. It is not known why this is not an exact match, but it may not be significant as we 

are more concerned with the symmetric plateau length and asymptotic behaviour of the 

algorithm. 

MM-NGD with exact calculations for the Fisher information matrix has been used with 

real data. It has been found to be computationally very slow for large datasets, spending 

most of its computation time in the calculation of the Fisher information matrix. No exact 

algorithms to reduce this caculation time have been found, although it may be possible to 

adapt fast algorithms for calculating the Hessian matrix to this task. It was also impossible 

for our (and most current) computer systems to store the Fisher information matrix for 

the large (8000 parameter) network that was used, forcing the algorithm to calculate the 

Fisher information matrix implicitly instead. 
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5.1 Possible extensions to this work 

This work has raised many questions about MM-NGD and natural gradient descent with 

real-world data. 

One of the problems with running MM-NGD on large datasets was the long time that 

the algorithm took. It would seem sensible that to reduce the training time for large 

datasets, an algorithm similar to Pearlmutter’s algorithm for Hessian matrix calculation 

be found for the Fisher information matrix. Other possibilities are approximations to the 

Fisher information matrix and single-input or few-input calculations of it. 
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Appendix A 

Variables and notation 

The appendices to this report contain mathematical proofs and notes that support the 

main report but would interrupt its flow if included. Where possible, all variables and 

notation are standardised and follow the notation used in [24]. This section contains a list 

of those variables and an explanation of notation where it is deemed necessary. 
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A.1 Variables 
  

Network inputs 
  

M 
be 

D={EC),-0(E™.C™)} 

Number of example input-output patterns 

index over example set 

example set 

  

  

Of = {Jij,bj, ajo; Co} 

Eh input pattern po 

é input data, consisting of all input patterns 

ce expected output pattern js 

GC expected output for output node n, input €# 

On variance of noise on input-output example pairs 

Multilayer perceptrons 
N number of input nodes 
K number of hidden nodes 

Ww number of output nodes 
a: input-to-hidden weights 

b; bias on hidden node 7 

g(x) activation function of hidden nodes 

xf activation of hidden node i for input €# 

ajo hidden-to-output weights for hidden node j, 

output node o 

oo bias on output node o 

on(J,€") network output for output node n and input €# 

network parameters for i‘ input node, 

z'* input pattern 
  

Soft committee networks 
  

N 

g(2) 

xf = Jig 
o(J,€4) = DK o(xf) 

number of input nodes 
number of hidden nodes 
input-to-hidden weights, and the only network 

parameters 

activation function of hidden nodes 

(usually er f (x;/V2)) 
activation of hidden node i for input €” 

network output for input ¢# 
  

Soft committee “teacher” networks 
  

M 
B 
yh = BAcce 

p~ N(0,om) 
4 = DM oly?) +     number of hidden nodes in teacher network 

input-to-hidden weights in teacher network 

activation of hidden node n in teacher network 

output noise in teacher network 

output of teacher network 

and expected output of student network 
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Error functions 

ex (E4, C4) error function for example , and network 

parameters J 

ex(&", C4) = $[o(JS, &) — C4? quadratic error function 
€g(J) = (ex (E4, 6") se} generalisation error 

Learning parameters 

a= Normalised pattern index, used as time variable 

n learning rate 

No initial learning rate 

Na learning rate at timestep a 

NefE effective learning rate 
B momentum parameter 
2 momentum variable 
of © for pattern jz, hidden variable 7 

ap momentum parameter used to rescale 1 — 8 

k Balance between gradient descent and 

momentum terms 

oe backpropagation delta for hidden node t 

Wex(e#, cH) gradient at J 

H= feat Hessian matrix 

G(O), G(T ie [Giana] Fisher information matrix 

Gia,kp = oir zh (fis yc) element of Fisher information matrix 

Giz block of Fisher information matrix 

A(J) Matrix whose elements are proportional to G’s 

Ane block of A(J) 
| Used in the calculation of Aix 

P(¢|E; J) Probability of output ¢ given input € 
L(é,¢|J) Loss function for input €, output ¢ 

KL(p(z), q(z)) Kullback-Leibler distance between distributions 
p and q, parameterised by x 

Sab Kronecker delta 

Order parameters 

Qik = Gixk) = Ji Ie order parameters 
Rin = (*i¥n) = J 
Tam = (Yn¥m) = Bn- Bm 
Gait Diagonal values for Thm 

Cig = 25+ Q% 
Din = 9+ Bn 
Fix = Si % 
  

  
A.2 Notation 

The notation in this document is fairly simple. Notations that the reader may not be 

familiar with are (A);gy denoting an average of A over variable € and [A] denoting a 
block matrix. Occasionally an Einstein summation convention where A;B; is shorthand 

for }>; A;B; might creep into the calculations but this should be noted when it is used. 
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Appendix B 

Analysis of MM-NGD for soft 

committee machines 

This appendix contains the workings needed to create the update equations for the order 

parameters of matrix momentum for natural gradient descent. The order parameters are 

Qi, = IF I;, Rin = J? Bn, Tam = BEBm, Din = 27 Bn, By = IPN; and Cy = NF N,. 
The update equations used here are for MM-NGD with 7 and f scaled by the input size 
N. Assumptions made are that the input size N is infinite and that the inputs are taken 

from a normal distribution so that (ee) aN 

Expanding out the update equations for J and © given in equations 1.30, 1.31 with 

an error gradient of Vyes(&#, (4) = —d#E4, we get 

k wt+l yey BT sueu Ee J J + git +[¥(0- WAG) 9]. 

1 k = ps gen + 5 bu — AG) 
J 

kn 1 1 
= gt yi" + yut+o (a2) 

of = oar 

= Nar + Marte 4 t wt ae Ne aur — yeh) 

1 i 1 1 — = ne hae ee - LAS oF) 

ott +e nop er — zy agar 
j 

where 2; = J?€, yn = BRE, 4% = OF E and 

  

U = 51+ Qu IF + (1+ QTE -— QulIE+HI7))] — (B) 

One term that crops up frequently in the update equations is the sum }); Ajj9;. 
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Expanding it out gives 

2 1 
DE) = el = ae + (14+ Qu)IjIF — Qi(IiIF +IjI7) JO. 

j - 

  

= a TEI 5 B(OH Q)Bud + (14+ Qis)E4jJ; — Qi (BjjJi+BijJ;))] 

Using these definitions, the equations of motion for the order parameters are: 

Qutt = getiTgyt 
i 

1 ki a 1 = (a? +5 2 Faetert + 707 +0( mm) (at + hore + 5m +0(2)) 

= T+ TEM + Horst +0() 

= = Q4 +5 [si70, 4.0734] +0 

  

  

  

“0 = JTO, +975, = Ex + Eni 

Re = ape Tayt 
= (7 + hater? + xo + o(xz)) Bn 

= Jf7B,+ WB, + o( x2) 

Bin = 9,3, — Di, 

pit! = ob tpt 

= e a xd (Asan)? + ove) B 

= DA- Ey tsa? By + End 
j 

Pin = —k >> (AyQ;)7 Bn + kn (6iyn) 
d 

= HED Feel 5 (U4 QBS + 4A) Ba, 

—Qi; (EjjJi+EijJ;) )| yB, + kn (5iyn) 

= -*(2 x Jum = wy (+O) E,jRin + (1+ Qis) ER, 

—Qi; (EjjRin + EigRjn) )]) + kn (Sign) 

BR = seat 

= (x + Phapeet 4 Lop +0(x2)) (= = 2) ALO! + ste) 
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dBix 
da 

+d 
Cie 

  

Le 
k 1 1 

TET OH — Gott ARM + Eat nage + Hime + o( xa) 
j 

1 Ent yy (are, = RSET SS AG OF + waite 
i 

OO, — kIT x AgjQ; + kn (xxi) 

w— KaT(2 [9; - A (+O) Bade + (14+ Qkx) By5J; Eas Te 
Qh; (BjjJe+EnjJs))]) + bn (5ecs) 

a(2 x 7s ij = (14+Q5;) ExjQiz + (1+ Qex) Byj Qi; 

—Qij (Ejj Qik +Exj Qi) )]) + kn (542%) 

  

w+1T putt ote 

(nj Tb (4g) any? ae jste”) (=- a eis WL Abs of + ne) 

dj 

k k YT OK — ONT SD ALG + OT nde — > (4g 08)7 OF + = Knope ag 
2 d 

# 1 
+ ya Ore op eH + o( x2) 

Cht+= ae Ae - rl (AM OH)? OF + kndta! + kndltzlt + era 
ay a) 

+0( 2) 

= kOT SD Aaj Qs — BY (Aig M5)? Oe + key (uz + ize) + KP? (5i5x) 
j 7 

-107 (2 _[0; Sean Ends 0am) E gd; ‘7 7 ; VaG ‘5 ag JI kis k Ak ag"9 

Qh; (EijIe+ExjJ;))]) 
2 1 1 rn (=> Tm | = qj (A+ Qn) Budi +04 Qi) Ey54; 

5 dD 

iP. 

Qj (EjjJi+EiyI;))]) Qe + kn Onz4 + 5izn) + Wn? (6:54) 
2 1 1 

= ke > TG [es a eh (14+.Q);) ExjExi + (1+ Que) Ey, By 
j J J 

ae (EjjEui+ExjEji) 

-ko x 7 (0+Qjj) ByEu + (14+ Qis) BjjEje 

= Qi; (Bj Ein +EijEje) J + km (5q21 + 6ize) + Kn? (6:5) 
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Appendix C 

The Fisher information matrix 

The Fisher information matrix is used in natural gradient descent, but it is also used in information 

theory and in the calculation of the Cramer-Rao bound Tr(G~'(J)) on a network’s performance 

(the Cramer-Rao bound gives a minimum distance between the network’s estimates of a parameter 

value and the true parameter value. Tr(A) is the trace of matrix A. 

This chapter gives some notes on the maths used to calculate the Fisher information matrix 

for a soft committee network and multilayer perceptron. These calculations are taken/ based on 

Magnus Rattray’s notes and [2]. 

C.1 Exact Fisher information matrix for a soft committee 

network 

The Fisher information matrix for a neural network is given as G(J) = [Gia,xg], where Giana is 

Ginny = (Seale Beep), — _ 1. (BixG.6) KEG) (en 
= Jia OTia {ome} HN Win Tes / ey 

It is useful because it is invariant to re-parameterisations of the input space €. 

To derive the Fisher matrix for neural networks, we first take the log of py (¢m,€) as defined 

in [18]: 

  Ps m8) = ae 
a : 

[é = SS 9 (= 1é)| /20, + consts (C.3) 
int Va 

Substituting this into the above definition of Gio,xg gives: 

1/8 = 8 = ; oun de (iso fEs)| se le-EelEm]) 

2 202, 
a (- (Gn = os or) (02) 

—log ps (6m §) 
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which, since g2— [Gm - DKs 9 (Hp Inés) ] = ~ 209" (Ey Iivér) [lm — Dr 9 (E, Iinés)], 
becomes 

; 
K 

Gieas = a (‘sto (Sane) a (Saue1) E =r (= sn8)| ) (C5) 
e q a j=l 

this reduces to 

1 , Gia,ka = ye (aba 9' (xi) 9'(%4)) fey (C.6) 

If g(x) = erf(x/V2), we get (moving into matrix notation): 

Gu = (VTE) 9 (OEE) f083 46 (C.7) 
ate)? (Te)? 

= 7 (Zee SE) (c8) 
a. {é} 

=- 12 dE -heT [4ST +d] e eT 224/22) 4 Poste € (C9) 
Cae [any® 6 

12 1 T ete ance ee (C.10) 
2,7 (any ¢ 

where f dé =[], f dq is a nest of integrals over déa, Aix =I +J5;J7 +I5,JF is a scalar and €4£3 

is an N x N matrix. 

[7] theorem 10.5.1 states that, 

I 

co poo peo mess 
G if i: up (2'Ac+a2'a+ ao) e~ Bete b+b0) dy dara...drn 

00 J-co Sco 
Lan/Ipi-H/2e(/¥B-1>-t [ (AB“!) - Ba + 1yB> ABS +209 

which is 

Q i 

co p00 co. - 
if 4 if (a! Az) e~(?'B*) dey dao...drn 

rl? [tr (AB~)] 

for a = ap = b= bo = 0. 

We can get Gia,xg into this form if we multiply it top and bottom by |Aj,|| and modify 

Exby: 

Giang = ee ee ViAil  o-eraneg er 
on o2. Nia ee 

ms (2m)™ |Ag!| 

fats = €TArgé 

Ne = Siad;p 
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Ven" iazl |An'| 
Gia,ka 

a Tony ag? 
ae a 3 [er (Ana (Ae) *)] 

From [18]: G(J) = A(J)/o2,, where A(J) = [Aig] is 

  

An = aE [-x -— — (Cl + Que) IST + (1+ Qu) ITZ -— Qe (IIE +3.37))| (C.11) 

JT 

ata i f oe) cs 

An = (14+ Qi) (1+ Qee) — Q% (C.13) 

C.2 Exact Fisher information matrix for a multilayer per- 

ceptron 

The loss function of a neural network can be defined as 

IAI J) = sor = ge - 6? (c.14) i 203, Zon . 

where p = (a — ¢) is the teacher error, o?, is the model noise, ¢ is the expected output of the 

network and ¢ = 091<o<w is the output from the network, calculated as 

ot =o tHajo + Co (C.15) 
a 

Here, 4 = 2()); &f Ji; +4) is the activation function of hidden unit j for input datapoint p, with 

derivative alk : 

The elements of the Fisher Matrix are constructed from the partial derivatives of the loss 

function with respect to the network parameters. These are: 

  

  

  

  

oLine p 
Be ag tte 
aLiue p a 

aor = ar ot 

BL aa 
Boh aaa 
TE Dy, 

= 0 
ack o2, 

where L1#4 is the loss function for output unit 0, datapoint » and example d, Jj; is the weight 

between input unit i and hidden unit j, 6; is the bias on hidden unit j, ajo is the (constant) 

weight between hidden unit j and output unit 0, cx is the bias on output unit k and 4;; (double 
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index) is the Kronecker delta function. Note that there are now two indices over datapoints : 1, 

which indexes the example (datapoint) being processed by the learning algorithm, and d, one of 

the input-output example pairs that the Fisher information matrix is being created from. 

Since the Fisher matrix is an average over A where 6; is any of the parameters {Jj;, aij, bi}, 

and each element of the matrix contains p? ~ N(0,02,), this can be simplified [28] to G(J) = 

zr A(J) where the elements of A(J) are constructed from 

  

  

  

alg? ' a = ahah (C.16) 

Lr ar = oti (C.17) 

fae = Bb (C.18) 

ae a Ou (C.19) 

where LS4(CI6;J) = F(0- 0? 

The matrix A(J) is created from an average over outputs and examples of these partial derivatives, 

+ ac=( OL OL OL | [2 aL aL |) (0.20) 

{6,6} 

and is 

AF’ 9b;” Bajo’ Deo} | IIij’ 8b;’ Bajo’ co 
If J, b, a, c, x and x’ have already been calculated, then A(J) can be calculated in (2+) x M x 

W x P? x D+2 flops (floating point operations) where N is the number of network input nodes, M 

is the number of hidden nodes, W is the number of output nodes, P= NxM+M+MxW+W 

is the total number of parameters and D is the number of patterns used to calculate the Fisher 

information matrix. For the speech data with a 70-70-39 network architecture (N = 70, M = 70, 

and W = 39), this is between 2.07 x 10!” flops (for D = 9000) and 2.3 x 10! (for D = 1). 

C.2.1 Reducing the calculation time 

The number of flops used in calculating A(J) can be reduced by calculating the average of the 

second partial derivatives of the loss function directly for each pair of network parameters rather 

than multiplying together two sets of first derivatives then taking the average of the resulting 

matrix. 

For the network described above, the second partial derivatives of the loss function with respect 

to the network parameters averaged over outputs and examples are: 

ase 1 1 
(sett) (3 Des) ata” (7 Yatat, (C21) 

99S ER 1 od d ° 

or Lye run (1 Halt (ane = 25" a, WL Goth (C.22) 

I 

55



  

Lys Hy, w Stem (ange) = ajax (C.23) 

) = sk (C.24) 

  ) ( xs a) aia (% SS ct) (C.25) 
oO d 

ar Lua 1 ; (siti, ) = (5=¢) ai abaje (C.26) 

) s 
d 

  

  

  

  

(abe rane (3 a) wi! ae (C.27) 

(areas) ee (C28) 

\aaee), 2 (C.29) 

(ee). = ate (C.30) 

This operation uses 

(D+W +5)N?M? + (5W +5)NM? + (3W +3)M?+3WNM+4WM+W (C.31) 

flops. For the 70-70-39 speech data network, this is between 10!! flops (for D = 9000) and 10° 

flops (for D = 1). If the entire dataset is used to calculate the Fisher information matrix, then 

most of that effort (for the example given, this is 99.9 %) is in the calculation of (seb) e 

precalculating 7, édeg can reduce this from (D + W + 4)N?M? to D + (W +4)N?M?, giving 

an A(J) calculation of 10° flops for both D = 9000 and D = 1 (for D = 1, this reduction is 

insignificant). Precalculating ),a4,af, reduces the expected number of flops to calculate A(J) 

again to 

D+5N?M? + (4W +5)NM? + (2W +3)M?+3WNM +4WM +2W (C.32) 

flops. This is 108 flops for the speech data example with D = 9000 or D = 1. A summary table of 

the predicted flops to calculate A(J) for the 70-70-39 speech data network and the percentage of 
ha 

that total which is used to calculate the ( mee 7 ) term is given in table C.1. 
aj OY Bx lod 

Further reductions in running time can be had from precalculating the sum >, €4 but anything 

beyond this is either expensive in storage space or insignificant: further improvements in calculation 

times must be algorithmic. 
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D=1 D = 9000 

no precalculations 1.15 10° flops,93.93% | 2.17 10!!flops,99.97% 

precalculate 14 €4é4 1.12 10° flops,93.8% | 1.12x10° flops, 93.8% 

  

  

  
precalculate 04 eded and }, a ako 1.76108 flops,68.1% | 1.76108 flops,68.1% 
          first derivative-based algorithm 2.30 x 10 flops 2.07 x 10!" flops   
  

Table C.1: Speech network calculation times (in flops) and dominant calculation sizes (%) 
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