
COMPUTATIONALLY EFFICIENT NATURAL

GRADIENT DESCENT

SARA-JAYNE FARMER

Master of Science by Research

in

Pattern Analysis and Neural Networks

ASTON UNIVERSITY

September 1998

This copy of the thesis has been supplied on condition that anyone who consults
it is understood to recognise that its copyright rests with its author and that no
quotation from the thesis and no information derived from it may be published
without proper acknowledgement.

1 [| ASTONUNIVERCITY

LIBRARY & INFOR),

ASTON UNIVERSITY

Computationally efficient natural

gradient descent

SARA-JAYNE FARMER

Master of Science by Research

in

Pattern Analysis and Neural Networks, 1998

This study examines the use of matrix momentum terms with the aim of creating a more

computationally efficient natural gradient descent algorithm for on-line learning. It uses
the statistical mechanics framework created by Saad and Solla to describe the evolution of

order parameters for this algorithm in a two-layer student-teacher scenario, and compares
this with results from matrix-momentum natural gradient learning of real datasets.

Acknowledgements

Thanks go to Magnus Rattray and David Saad for supervision, guidance and several
patient explanations of strange matrix indices: any good stuff in this thesis is inevitably
theirs. Thanks also go to Genny Orr for providing the phoneme classification dataset used
in chapter 4.

Contents

1 Introduction

Ded NOTRE NELWOLKS ir sic UeR eas eee Ros capi es: ahs Ses Sts) Sse, Peace s) ©
He Sell aver percep EOUse, wee nti. ne. 18s cles re ete ee er iste eat ey ja dorieey +

124) -Backpropagation lesining > <2. - ee ee in A eS = as

V2 eee Gr rarlient CesCenk: mememe re). + cieelsl «tw lisavee eres, (eal osha «
1.3. Online learning

1.3.1 Online learning and time-varying data . .
1.4 Neural networks as statistical approximators

1.5 Neural networks as points in parameter space
1.5.1 Applying differential geometry to neural networks

1.6 Second-order learning methods
1.6.1 Newton’s method... .
1.6.2 Approximating the Hessian .

dare MARINO IVLOMION EMI. 4c Fa 1o cole earls, ple Sua We oSGale alan sis reets ude eee Wo
1.7.1 Balancing gradient descent and matrix momentum

1.8 Natural gradient descent

1.8.1 The Fisher information matrix

2 Analysis of MM-NGD for online learning

2.1 Statistical mechanics analysis of online learning.
21-1 Byvolution ‘of order parameters). ..6....6 ese eeu ee ewes
2.1.2 Evolution of generalisation error... 2.2... 10 ee ee ee ee

2.2 Example networks

2.2.1 Input data

2.2.2 Activation functions
2.2.3 Generalisation error

2.3 Analysis of gradient descent algorithms5--
2.3.1 Gradient descent

2.3.3 MM-NGD with the full Fisher information matrix Pets
2.3.4 MM-NGD with single-input Fisher information

3 Numerical results

Oe BLeATINE DAPHIMetet sina. comeeter en lear Giiclel Suemege eho ie nos wie aya

3.2 — Initial conditions| ais-se. ta eal eerie sumer Ake] + das FS ee Sie © & ough

Siar Phases/of learning: 22 524 4s Gi we cele

3.4 Comparing standard, natural and MM-NGD learning algorithms

3.4.1 MM-NGD without teacher noise eran
3.4.2 MM-NGD with teacher noise .. 266-6 t ses ee ee ee eee

CONTENTS

3-5. eVarying other parameters, Aces eee ke He eeeE. ul GE Geet

4 Using MM-NGD on real data
A IMIVENGD Sor MGS iis. team ewemewen 010. “aya m aRatonees ania Se vex»

4.1.1 Calculating the Fisher information matrix.

4.1.2 Approximating the Fisher information matrix

4.2 Small datasets : the Iris dataset
4.3 Medium-sized datasets : wine classification

4.3.1 varying 7,(definitions

4.4 Large datasets : speech (phoneme classification) data.

44.1 Large Fisher information matrices-00-0205

Wao Slow learning timesiss. 5 cues eats oie ee ae ee

5 Conclusions
el BPoesible extensions:to) thisawork twee, 5 + salt ects s (cence: ete kemsnnl one

A Variables and notation
A.1 Variables
A.2 Notation...

B Analysis of MM-NGD for soft committee machines

The Fisher information matrix

C.1 Exact Fisher information matrix for a soft committee network.

C.2 Exact Fisher information matrix for a multilayer perceptron.

G.2.17 Reducing the calculation time <. . 66. s apne bee ae BG ee

List of Figures

3.1
3.2

3.3
3.4

41

4.2

43

MM-NGD vs NGD and optimal gradient descent-...-.-.--.+-0-2-5

Symmetric phase behaviour of MM-NGD (teacher noise=0)

Asymptotic behaviour of MM-NGD for noisy teacher (07, = 0.01) . .
Generalisation error evolution for various 7 values-.-

Tris datas ny — ONO, Various ke) us cre ns) eansccs Glee ss salen se se he lta

Wine data, varying k sule tes

Comparing MM-NGD algorithms, <1. 205 52 6 cS te de Sw ws Se ols

List of Tables

C.1 Speech network calculation times (in flops) and dominant calculation sizes
(i) es PA CN NE POI ERE ef cota y ig

Chapter 1

Introduction

This study examines the use of matrix momentum terms and natural gradient descent in

the online learning of neural networks. Its aim is to create a more computationally efficient

natural gradient descent algorithm for on-line learning. It uses the statistical mechanics

framework created in [24] to describe the evolution of order parameters for this algorithm

in two-layer networks within a student-teacher scenario.

This chapter introduces the tools needed for this work and some of the issues in their

use,

1.1 Neural networks

A neural network is a flexible probabilistic model of an unknown mapping instanced by a

set of examples. A network has nodes, parameters and activation functions. Nodes receive,

modify and pass on (propagate) information. Input nodes receive information in the form

of vectors or individual values from outside. Output nodes modify then pass information

to the user. Hidden nodes modify and pass information between the input and output

nodes, and play the main role in processing incoming data in a network. A network’s

structure (nodes and the layout of links between them) is usually specified by the person

building the network, but there are some algorithms that can adapt the network structure

to best represent the data being learnt.

Each node in a network may have several inputs, either from other nodes or from

outside the network. The values input to a node are termed its activation; the value output

from a node is a function of its activations and is termed its activation function. Activation

functions are specified by the network designer and mostly range from simple summation

of all the inputs to a function of that sum. For nonlinear networks (networks that can

represent nonlinear functions) and derivative-based learning algorithms, the activation

function of the hidden nodes must be differentiable, for example tanh or erf fuctions

(these also squash their outputs into a range between 0 and 1 or -1 and +1).

Networks also have numerical parameters which are used to control the behaviour of

a network and are usually the weights on the links between nodes. the weight on a link

is used to modify any output from one node before it is input to the other. Parameters

can be modified to improve the performance of a network: this modification is known as

learning or training. Learning algorithms adapt the parameters of a network so that the

outputs from it are as close as possible to the outputs given by the system that they are

modelling given random inputs from the same distribution as the examples.

Using a network consists of passing information to its input nodes and reading off the

activations of its output nodes. Although the ability to store examples may be useful, the

main aspect of using a neural network that we will focus on is generalisation: the ability to

summarise information and return consistent outputs for inputs that the network has not

been trained on. This is achieved with a learning algorithm. A learning algorithm adjusts

the parameters © of a network to fit a set of examples, where each example consists of

an input vector €“ and the output ¢# that is expected from the network, given that input

and the system that the network is trying to model(here, jz is an index to the example, as

are most superscripts used in this document).

Because networks learn the underlying function that generated a set of examples rather

than the exact connection between each example’s input and output pair, they are robust:

able to learn from noisy or incomplete examples. How well a network is able to generalise

is determined by the user’s choice of network and activation function; tools like cross-

validation can be used to assess the expected performance. Neural networks are most

commonly used to model systems which can produce example outputs or input-output

pairs but whose underlying rules are either unknown or too expensive to model. There

are several varieties of neural network architectures, for instance multilayer perceptrons

and radial basis functions: in this document, only the networks known as multilayer

perceptrons are considered.

1.2 Multilayer perceptrons

The most commonly-used neural networks are multilayer perceptrons, or MLPs. The

nodes in an MLP are arranged into layers : an input layer, then one or more hidden layers

and an output layer, where each layer is fully connected to the next layer in the network.

Connections between layers can only be directed forwards in the network: for instance,

connections can be made from a hidden layer to the output layer but connections from the

output layer back to a hidden layer are not allowed. Although not strictly necessary, the

same activation function is usually defined for all hidden and output nodes in an MLP.

Using an MLP consists of activating the input nodes, propagating that input between

the network’s layers and reading the output from its output nodes.

The most common MLP has one input layer, one hidden layer and one output layer

and is known as a two-layer network (the input layer is ignored when counting the number

of layers in a network). There are some variants of MLPs, for example a soft committee

network or soft committee machine [4] is a two-layer MLP whose hidden to output weights

are not allowed to vary, and are usually set to one, and output nodes whose activation

functions are or are proportional to a simple sum of their input activations. Soft committee

machines are used as example networks for much of this document and preserve most of

the characteristics of general two layer networks [20]. Reviews of other MLP variants and

their learning methods can be found in [5][9]).

1.2.1 Backpropagation learning

In the soft committee machines used in this document, the MLP parameters © are re-

stricted to the input-to-hidden weights J. Before learning occurs, these are set to initial

values which are usually small and randomly distributed.

Learning in MLPs is usually done by backpropagation, which works in two stages.

First, an input €# is propagated (modified and passed on) forward from the input layer to

the output layer through all the hidden layers of an MLP, to produce a network output

o(J,é"). This is the forward pass of backpropagation. The network output o(J,€“)

produced in the forward pass is then compared against the expected output ¢“ for the

corresponding input €“. This comparison produces a network error €3(€",¢“), which is

then propagated back from the output units to the input units, to give the local gradient

6# for each node i. This is the backward pass which gives the algorithm its name. When

the backward pass through the network is completed, the local gradients 6! (also known

10

as backpropagation delta functions) are used to adjust the network parameters, and the

next forward pass can begin.

The network error €3(€4,¢4) is used in the backward pass of the backpropagation

error. €3(€“,¢") is a measure for the distance between the actual output o(J,é") and the

expected output ¢/ of a network with parameters J which has been given the input €’.

In this document, this distance is taken to be quadratic:

1
ex(64s 0") = 5 [o(5,€") — YP (1.1)

In online learning, the network error for just the latest example (€“, ¢“) is propagated back

through the network in the backward pass of the algorithm; in batch learning, an average

over all the available input patterns D = {(€1,¢1)...(€“,¢™)} is used. This means that

all the examples must be available at every stage of batch learning, but online learning

can process one example at a time.

Although the network error is used in this learning algorithm, the generalisation error

€g(J) is more useful in analysing the performance of a learning algorithm. The generali-

sation error gives the probability that the network will produce the wrong output for an

example that it has not been trained on but is drawn from the same distribution or model

as the training examples; it is defined as the network error averaged over the distribution

of network inputs:

€q(J) = (ea(&",6")) ce (1.2)

1.2.2 Gradient descent

The errors for different values of the network parameters form an error landscape or

surface, where each point represents the error for a particular choice of parameters and

distances between points measure the differences between the errors.

The error term passed back through the network is not the error at each node, but the

derivative of the network error with respect to the node’s parameters. This is proportional

to the derivative of the nodes activation function, which must therefore be differentiable

for backpropagation to work.

Most MLP learning algorithms adjust the network parameters J by subtracting a

fraction 7 of the error gradient Vjes(€", C4) from them:

Jett = JH — nVyex(64, 6") (1.3)

ay

where 7) is known as the learning rate. This ensures that, for a general series of examples

(€4,¢#) and an appropriate value of 7, the learning algorithm will move the network error,

on average, downhill in the error landscape.

The learning rate 7 controls the step-size on the error landscape. If it is constant

throughout learning a network’s parameters, then the learning algorithm will either be

forced to take small steps and a long time traversing the landscape towards an error

surface minimum, or larger steps which will overshoot the minimum in the final stages of

learning. These problems can be avoided (or alleviated) by annealing the learning rate:

gradually reducing the value of 7 over time.

1.3. Online learning

Algorithms where parameter adjustment is done as each new example is presented (rather

than for all examples at once) are known as on-line learning or pattern learning. Online

learning is useful when examples are only available serially, the task is nonstationary (the

function that is being learnt by the network is changing over time) or there is less data,

space or time available than is needed to process an entire dataset (group of examples)

simultaneously. This report deals exclusively with online learning.

1.3.1 Online learning and time-varying data

For many of the equations shown below, the input data is assumed to be iid: each input

is uncorrelated with the inputs that went before it. Data for online learning is produced

sequentially or sampled from datasets too big to be loaded completely into a system.

If data is sampled with replacement, then it will not be uncorrelated. Many examples

of real sequential data are from underlying systems whose parameters change over time

which often means that there are weak correlations between successive inputs, and may

imply that older data will be of less value to the learning algorithm and might need to be

forgotten. These factors have not been considered in this report, but may prove significant

when using real data !.

‘For example, Heskes and Coolen{11] report on the effects of correlation between inputs to two-layer
networks, but this has not been considered here

12

1.4 Neural networks as statistical approximators

A neural network models the expected value

(P(CIE I)) ¢6,¢} (1.4)

of the conditional probability of its outputs ¢ given its inputs €, parameterised by its

weights J and sometimes also parameterised by its structure. Learning in a network is

the process of adapting the parameters J to get the mapping from this model as close

as possible to the underlying rule that generated a set of example input-output pairs

D = {(é1,¢1)...(€",¢™)}. Given a prior distribution for the data P(D), this can also be

seen as maximising P(J|D) with respect to J.

1.5 Neural networks as points in parameter space

Information geometry is the application of techniques from differential geometry to statis-

tical models [13] [1]. It represents families of neural networks as manifolds (k-dimensional

geometric objects which can be mapped onto Euclidean space) in a space (d-dimensional,

where kjd) whose coordinates are the parameters (weights and biases) of the networks, and

each individual network is represented by a point on the manifold which corresponds to its

particular parameters. As an example, a two-layer soft committee network with weights

J...Jy can be represented as a point on a manifold of soft committee network mappings

in N-dimensional parameter space, and similar networks with different parameter values

would be represented by different points on the same manifold.

The curvatures of the manifolds are described using tensors. A Riemann tensor is

a matrix which describes the curvature of a surface at a specific point in space. In n-

dimensional space, the tensor is an n-by-n symmetric matrix: e.g. in four dimensions, this

is 4-by-4 with 16 elements but only 10 independent components because of its symmetry.

A complete surface is described by placing tensors at different points on the surface, or by

parametrising the tensor so that any point on the surface could be described: the resulting

collection of tensors is known as a vector field, and differential geometry is the study of

their properties.

1.5.1 Applying differential geometry to neural networks

In this representation of a neural network, learning can be seen as moving the point that

represents a particular network closer to a (perhaps theoretical) set of parameters that

13

generated a set of given input-output examples. This can be a powerful tool for the

analysis of learning, and it can also be used to create optimal or near-optimal learning

algorithms.

Having described learning as moving points closer together in parameter space, we need

to have a measure of how close two points in that space are in terms of the probability

distributions realised by them. There are several measures * (for example Kullback-Leibler,

Hellinger, squared and Euclidean) in statistics for the distance between two distributions

p and q, but one of the most natural and useful is the Kullback-Leibler distance

KL(p(e),a(e)) = f ple) tog (2) a (1.5)
which for two distributions p(¢,£;J) and q(¢,€;J) of network inputs € and outputs ¢

parameterised by J is

KL(pG 65). a(6.69) = f vlGs6:3)t06 (MEE) a,0) (1.6)
We need to apply this to the parameter-space representation of neural networks.

In information geometry, the Kullback-Leibler distance between mappings realised by

two nearby points in a space is known as a metric : if we are measuring small distances in

parameter space (which is what we expect in online learning) and can ignore higher orders

of dJ, then equation (1.6) becomes

KL (p(¢, &; J), p(¢,€; 3 + dJ)) = 5 5aIG(aas (1.7)

where

G(J) = (Vs log Py (6, & J) (Vs log Ps(6,€5I)”)4n¢c,¢} (1.8)

is the metric for this space, and is known as the Fisher information matrix. Gradient

descent in parameter spaces which use the Kullback-Leibler measure of distance is known

as natural gradient descent.

1.6 Second-order learning methods

Several second order methods have been devised to speed up learning. Examining the first

few terms of a Taylor expansion of an error €y(€“,¢“) about a point J in weight-space

gives [5]:

(6,0) = 960) + F- Dal Ol + 30 - HG - 3) (1.9)
*these are all defined through delta-divergences [29][30]

14

where

— [dea(€,¢)] H= [Bet la (1.10)

is known as the Hessian matrix and

dex(E,
Wes(€,6)|3 = aesl60),, (1.11)

is the error surface gradient at J.

Many gradient descent algorithms use the error’s gradient Vyey(£,¢) to calculate where

to move next in the energy landscape, and ignore any higher-order terms, but an improve-

ment in their learning speed can be had from using the second-order term (5 —J)TH(i-J)

too. (Third and higher-order terms aren’t used because they are usually insignificant and

are more difficult to handle).

1.6.1 Newton’s method

The most common second-order network learning method is based on Newton’s method

for finding the minimum of a function[5].

Tf we assume that the local gradient obtained by differentiating the second-order €3(€, ¢)

estimate (equation 1.9) with respect to (J — J) is zero, then we have

Wsex(€,0)|3 + H(S — J) =0 (1.12)

Le:

J=3-HWa(E,0) (1.13)

Since we have ignored higher-order terms in the Taylor expansion, this is not an exact

equation for J, and an iterative procedure must be used (we also focus on online learning

which requires iterative updates). This gives an update equation for the weights J of

Jet = J# — nH Wye (E4, 6) (1.14)

7 is the learning rate as before.

Learning with Newton’s method converges faster than first-order gradient descent but

it is very sensitive to rescaling (e.g. normalisation) of inputs, and it needs a lot of pro-

cessing and system space to create, store and invert the Hessian matrix. In addition,

employing Newton’s method makes the algorithm converge towards and stabilise on any

fixed points in the error landscape regardless of whether they are minima or saddlepoints,

and this may result in suboptimal performance in complex learning dynamics.

1.6.2 Approximating the Hessian

Accurately calculating the inverse Hessian H~1 used in Newton’s method requires an

average over all the input data (this is, of course, only available in batch learning), followed

by a (large) matrix inversion, at every step of the gradient descent algorithm. This can

take a long time to calculate, and since the inverse Hessian is a very large matrix, it can

be impractical or impossible to store during calculations. It therefore makes sense to look

for more efficient Hessian algorithms and reasonable approximations to these matrices.

One approximation to the Hessian is to use only some of the input data to evaluate

the Hessian matrix. Where only the latest input is used, this is termed here a single-

step approximation. The calculations used to create the elements of the Hessian matrix

can also be approximated : variations of Newton’s method that use this are known as

pseudo-Newton or quasi-Newton algorithms. Simple approximations to the Hessian in-

clude diagonal approximations and the Levenberg-Marquardt approximation[5]. Diagonal

approximations only contain the elements on the diagonal of the Hessian. they are not

very precise: the off-diagonal elements of the Hessian are significant in many learning

scenarios, and inverting a diagonal approximation of the Hessian differs significantly from

the diagonal of its inverse [16]. the Levenberg-Marquardt approximation depends on the

expansion of the Hessian for a sum-of-squares error €3(€,¢) = Dalen — Cn)? into its

components:

Pes (6) _ ya ee oon +X o
OTi0T, Lar, OT; a

and ignoring the second term in i equation. This is a reasonable approximation if

(1.15)

(On — Gn) is small. Other algorithms build up the Hessian iteratively from first-order

terms: the most common of these are the BFGS (Broyden-Fletcher-Goldfarb-Shanno) and

the Davidson-Fletcher-Powell procedures.

Other algorithms include approximations to the inverse Hessian [8], but since the

Hessian H is often used multiplied by a vector v, it can be more practical to create

the product Hv directly. Pearlmutter [16] gives an algorithm for doing this efficiently

and exactly by setting J — J = rv in the Taylor expansion above then taking limits as

r approaches zero to give a differential operator which can be applied to a network to

generate Hv.

16

1.7 Matrix Momentum

Inverting the Hessian in Newton’s method can be avoided by incorporating it into a matrix

momentum term[15].

Momentum is a method used mostly in batch learning to counter the effect of gradient

descent algorithms oscillating across large gradient changes in one dimension whilst giving

little effort in a gradually-changing but consistent downward slope in another: this is most.

apparent when the error surface is a gently-descending valley with steep sides. One way

to ameliorate this effect is to add a momentum term [22] to the weight update equations,

which adds a fraction of the previous weight update into the current one. This reduces the

strength of the oscillation across the surface whilst emphasising the smaller (but consistent)

movement in the other dimension. Including a momentum term into the update equation

1.3 in an online learning scenario gives:

Jett = JH — nVyea(E", 6) + B(I* — J#) (1.16)

where # is the momentum parameter and is usually set between 0 and 1 (e.g. ref [10]

suggest § = 0.9) but it may be adaptive in an attempt to speed up network convergence.

Suggestions for speeding up network convergence also include using a separate 7, for

each network weight, but using momentum already has this effect.

A simple momentum term (e.g. @ = constant) is not terribly useful in online learning

because its effect is merely to rescale the learning rate 7. This is because, for an error

surface with a gradient which is roughly constant near the current network parameters J”

(this is the situation that we expect in online learning), using the update equation 1.16 is

equivalent to using a learning rate of [5] [27]

Neff = @ 4 B) (1.17)

If, however, the momentum term / in equation 1.16 is replaced with a matrix 6 =

I —kH and the learning rate 7 is replaced with n = knq where nq is a scalar learning rate

which can be annealed (depend on the normalised example index a = 1/N), the update

equation for the network becomes

Jett = IY — ka Vacs (E", 6) + (I — kH)(S* — J) (1.18)

and the effective learning rate is

Neff = Hn (1.19)

i,

This is known as matric momentum: it is important because it gives a way of effectively

premultiplying the gradient by a matrix inverse H~! without having to calculate that

matrix inverse [15]. Matrix momentum has been used by Orr and Leen(15] with the

matrix H set to the Hessian to give Newton’s method without inverting the Hessian.

Note that the constant k is used to balance the contributions from the gradient and

momentum parts of the update equation, and that the matrix momentum equations above

are only valid for large values of [18].

1.7.1 Balancing gradient descent and matrix momentum

If we scale both 7 and f by N and introduce a new variable 2 where

4 = N(J4 — JH) (1.20)

then we can substitute these into equation 1.16 to get an update equation for J of

aft at — Deyes(e,¢) + Say ee)

We can then use equations 1.20 and 1.21 to also get an update equation for 2 of

OF = BOF — nVuea(E",C) = OY — nVyex(€",6) + (8 -1)0F (1.22)

where equation 1.21 and equation 1.22 form a coupled pair of equations.

Using this coupled pair of equations, reference [15], which is restricted to the asymp-

totic regime, suggests an optimal matrix momentum (6 = I — noH and annealed learning

rate 7 = 7o/a where no is an initial learning rate. This gives an effective learning rate of

H-!

Net = ca ar (1.23)

which is similar to Newton’s method and does not require inverting the matrix H.

An alternative scaling of the n, 6 terms was suggested by [17], where 7 and (1— 3) are

both scaled by NV. To do this, 7 and f are replaced by

a zy
B = (1-5)

n = k/N

If we now use this scaling and let 7 —+ 00, k > oo with k/y constant, the effective learning

rate becomes [17]

nest = k/y (1.24)

18

This holds for 8 =I —kH/N and n = knq/N with large values of k [18], again giving an

effective learning rate neg of

Nett = NoH~* (1.25)

where k balances the contributions of the gradient and momentum terms as before. Note

that, for effective training, the learning rate 7 should start from a constant e.g. jo, and

only asymptotically decay as nq « 1/a. These results are equally valid for any matrix,

including the Fisher information matrix G(J), and this scaling will be used throughout

the rest of this document.

1.8 Natural gradient descent

Natural gradient descent uses the Fisher information matrix as the natural metric in

parameter space. For gradient descent, the effect of using this metric is to premultiply the

gradient by the inverse of the Fisher information matrix, changing the update equation

for online standard gradient descent from equation 1.3 to

Jet =H F(a) ("Vaca (EO) (1.26)

Useful features of natural gradient learning are that it is invariant to reparameterisation

of the model distribution (e.g. scaling the parameters does not change the efficiency of

the learning algorithm), is asymptotically optimal [2], less prone than Newton’s method

to trapping in symmetric phases (trapping occurs when the algorithm becomes stable at

a saddlepoint or local minimum in the error landscape rather than its global minimum)

and the Fisher matrix G(J) is always positive definite.

The natural gradient descent algorithm requires the inverse G(J)~1(J“) of the Fisher

information matrix. Inverting the Fisher matrix can take a long time. Schemes for cal-

culating this inversion range from exact algorithms like block-wise partitioning and some

data preprocessing to facilitate the calculation [28] to diagonal approximations [2] [21].

In general, these algorithms can be computationally expensive to calculate and calcu-

lating the average <> over all inputs in the Fisher matrix also requires knowledge of all

input data: this may not be sensible or practical for many cases of on-line learning (which

is based on the premise that data is not all available at the same time). This document

concentrates on the first problem: the second is addressed in [25].

19

1.8.1 The Fisher information matrix

The loss function L of a network is defined [28] as the negative log-likelihood function

L(E,¢;5) = —log p(E,¢;J) = — log p(¢|g; J) + log p(é) (1.27)

where p(£, ¢; J) is the joint probability density function of the network inputs € and outputs

¢ parameterised by its weights J.

The Fisher information matrix G(J) of a network is defined from L as

G(J) = [Giaxs] (1.28)

where a and # are input node indices (1 < i,k < N), i and k are hidden node indices

(1 <i,k < K) and [.] is a block matrix whose elements are

(eee Plog p(C1é J))
{64}

aL aL
) = adi ad, ae)

Gree (= wie
faskB \ AI; OT / (c,63

where <>y¢,¢} is an average over the output distribution ¢, followed by an average over

the input distribution €.

1.8.2 Matrix momentum for natural gradient descent (MM-NGD)

Matrix momentum is valid for any matrix. If we use the Fisher information matrix, we

have a learning algorithm that is equivalent to natural gradient descent without inverting

the Fisher information matrix.

The update equations for a matrix momentum form of natural gradient descent (from

now on, abbreviated to MM-NGD) with 7 and @ scaled by the input size N are

cee It — Avyes(€,0) + Far (1.30)

att = BO! —nVaex(E,6) (1.31)
_ kG) p = 1-550) (1.32)
_ Fa n = (1.33)

where Q! = N(J# —J#"), nq is a scalar learning rate which can be annealed (depend on

the value of a = p/N, the normalised example index), and G(J) is the Fisher information

matrix.

When 7 is significantly larger than (, the learning is dominated by the gradient and

is expected to be very similar to gradient descent. When @ is significantly larger than

n, then learning is dominated by the momentum terms and can be expected to depend

20

largely on the value of the Fisher information matrix. The next chapter takes this as a

starting point, and analyses the effects of varying the parameters of MM-NGD learning

for soft committee networks.

21

Chapter 2

Analysis of MM-NGD for online

learning

This chapter introduces the tools used to analyse the behaviour of a network’s parameters

and output errors during learning. It gives examples of this and equations for learning in

a type of MLP known as a soft committee machine.

2.1 Statistical mechanics analysis of online learning

Statistical mechanics seeks, in general, to describe a system of many interacting particles

(in this case, network parameters) in terms of a smaller number of order parameters.

These can be used to describe the system only if it is self-averaging : if the parameters

for each individual particle are identical (or very similar to) the average parameters for all

the particles. In the discussion that follows, all the order parameters have very sharply

peaked distributions with small variance, so only their mean values will be analysed.

It is difficult to reduce the number of parameters studied if we are looking at an

individual network, but if we assume that the outputs in the ’correct’ input-output ex-

amples given to a learning algorithm are generated by feeding the inputs into another

network, then we can describe the learning algorithm in terms of the difference between

this ’teacher’ network and the ’student’ network which is learning from the examples. A

covariance matrix can be formed between the student and teacher activations. This con-

tains the overlaps Qix = Ji-Jx, Rin = Ji-Bn, Tam = Bn: Bm between the two networks :

each of these overlaps can be used as an order parameter for online learning [24][4]. Note

that the teacher network does not have to produce perfect outputs: it may include some

22

noise p on its output, and that the teacher network does not have to exist: it is merely a

construction to give us a better insight into how a network is learning.

2.1.1 Evolution of order parameters

To derive differential equations to describe the evolution of order parameters, we need to

use a continuous time variable a. Since ju is discrete, a is constructed by setting a = p/N,

which in the thermodynamic limit of N —> co becomes continuous.

Equations for the evolution of network order parameters, derived from the simple

weight update equation given above are provided in [24].

2.1.2 Evolution of generalisation error

The generalisation error €g(J) =< €3(£,¢) >,¢} of the student network can be described

wholly in terms of Q, R and T. Unlike J, the evolution of Q, R and T over time (or

over presented input patterns) can be described deterministically for large values of N:

the derivatives of the overlaps form a coupled and closed differential equation. In this

case, the reduction in number of variables is considerable: since much of the maths in,

for example, [24] assumes an infinite input size N, the order parameters also have the

advantage of being finite.

Evolution of the generalisation error €g(J) for a network has a characteristic shape:

the error will initially drop rapidly, then sit on a plateau until it continues to drop again.

The plateau is where the network is close to an unstable fixed point of the error landscape

where the network weights have become symmetric : this fixed point is unstable and

eventually the symmetry will be broken and the learning algorithm will continue towards

an asymptotic stable fixed point. Both the length of the plateau and the rate at which the

error drops after it are determined by the system size and the learning rate 7 : a larger

value of 7 will reduce the plateau length but will take much longer to run if 7-annealing

is used.

2.2 Example networks

To illustrate the efficiency and behaviour of different gradient descent learning algorithms,

the dynamics of their order parameters and generalisation error have been calculated for

a specific type of network. The example networks used in this section are soft committee

machines with erf hidden unit activations.

23

Soft committee machines are used as examples here because they can model a wide

range of functions (in fact, they are universal approximators if node biases are included

[26]). A soft committee machine is a two-layer network with positive, unit-strength cou-

plings from its hidden units to a single output unit[4]. The activation function for hidden

units must be differentiable: the erf (error) function is used here because its integral is

not too complicated.

Each network has a fixed number N of input nodes, one output node and weights on

the connections between the input and hidden layer which are labelled J = {Ji}i<icx in

the student network and B = {Bn}i<n<m in the teacher network, and Jj = (Jit,.-,Jin)

is the vector of input-to-hidden weights for the i-th hidden node in the student network.

Note that the number of hidden nodes in the student network K does not have to equal

the number of hidden nodes in the teacher network M.

An input pattern is €” = (€/,...,€4,) where 4 is the current input. The pattern output

by the teacher network in response to é/ is (4; training example pz is therefore the input-

output pair (€“, ¢#). The activation of the hidden units given an input pattern €/ is

x; = J; -€". Similarly, the activation of hidden units in the teacher network given €" is

Yn =B,,- +. The output from a student network is

K

o(J,£) = >> 9(xi) (2.1)
é=1

where g(x;) is the activation function of hidden unit Jj.

2.2.1 Input data

For this analysis, inputs must be i.i.d. samples from a Gaussian variable N(0,1). Input

units € are also assumed to be uncorrelated (ie ; is uncorrelated with €;, i # j) with zero

mean and unit variance (although this is not true for many examples of real data), and

the maths assumes an infinite input size N, although the analysis is still effective for finite

N 3).

2.2.2 Activation functions

Although the input-to-hidden activation function g(x;) is only restricted to being differen-

tiable, the erf function, or more specifically g(x) = erf(x/V2) = Tato e~”/2dt has been

used in this section.

24

2.2.3 Generalisation error

The generalisation error of a soft committee network with erf hidden unit activations and

normalised inputs has been calculated in [24] in terms of the order parameters:

1 , Qik) ; (Tam)
€(J) = — > eee aeieeeen et > ete

a(3) 7 iE aresin (T+QiV1+Qik/ tm T+TrnV1+Timm

5 Rin
+ Paes (eae rte)| a)

2.3 Analysis of gradient descent algorithms

It is instructive when looking at the evolution of order parameters for natural gradient

descent to have something to compare its speed and complexity against. The obvious

candidates are gradient descent (already analysed in [24]) and the matrix momentum

form of Newton’s method (second-order, fast and analysed in [19][17]). The calculations

used are similar for the various learning algorithms, and are shown for natural gradient

descent in appendix (B).

For the purposes of analysis, it is assumed that all data is generated by another soft

committee machine: to avoid confusion, this is called the ’teacher’ network and the network

that is being adapted is its ’student’. Although the student and teacher networks have

the same structure and inputs, they do not necessarily have the same number of hidden

nodes. For all forms of learning algorithm shown here, the network error is assumed to be

quadratic and the error gradient Vjez(€", ¢“) is therefore

an tf a r
Mert) =, | (x (Bn - €") —)>9(5; ©) =—de# (2.3)

* n=7 jak

where
M K

6H = gi (Ji - &") (x 9(Bn - &") — Y)9(3; 0) (2.4)
n=1 j=l

is the backpropagation delta function.

2.3.1 Gradient descent

Saad and Solla [24] develop update equations for a soft committee network using gradient

descent. The update for a student hidden unit J; in a soft committee network using this

learning algorithm, the learning rate 7 scaled by the input size N and a quadratic error

function €3(€,¢) as given in equation 1.1 is [24]:

gett = ey ote (2.5)

The order parameters for gradient descent are the overlaps between the student and

teacher weight vectors J and B: these are Qj, = Jj-Jx, Rin = Jij-Byn and Tam = Bn-Bm.

Since the teacher network is constant, T does not evolve and its derivative Ta is zero.

The update equations for the other order parameters Q and R are:

dQi AO = (Oixn) + Buri) +17 (6d)
dRin _ .
da = 188m)

2.3.2 Matrix momentum version of Newton’s method

For matrix momentum, it is convenient to define a new variable 2! = N(J} — i.

The order parameters are now the overlaps between J, B and Q, ie. Q, R, T and

Cix = 2;- 2%, Din = 2; -By and Ey, = J; -Qy. Unlike the overlaps between J and B,

the overlaps with 2 do not appear to have a direct physical meaning.

With J and © both being updated simultaneously, it is important that contributions

towards updating the same quantity occur on the same time scale. This is achieved by

scaling both 7 and . For the Newton’s method calculations, it is sufficient to scale both

n and 1— by N (ie. 6 = 1—7/N) as described in [14]. For the J, 2 updates given

in equations 1.21 and 1.22 with 6 =I— an n= ae and a soft committee machine (i.e.

Wea (xi", C4) = —o#€"), the order parameter evolutions are [18]:

d i

ie = BetEn

dC, Ton = Bla (Size + 5421) + Ke (8:54) — FY 1(CimDem + ChmDimn)
™

=k YO (aij Cay + ang Cig + iy Bjx + bey Bji)
i

aDix = oe ny an da = Brta (in) — ky) (ay Djnct by Ryn) —b Cin Tam,
¥ m

dBi,
Ta = Cik + rte (5uxi) — k 0 (ang Bij + bejQij) — BD ChmBim

ai m

where

de, (J) 4g = (1+6,;)—2 ai (1+ 6ij) OQ:

0 €,(J)
by = (146; 1+ 6%)E + yas ij (ig) a 1k) ne on 2E0, 5Q,0Rin

26

Cin = Yat En
(J) Ss pee

fe ae Yds ORinORiem km

2.3.3. MM-NGD with the full Fisher information matrix

As with the matrix momentum version of Newton’s method, the order parameters for

MM-NGD are the overlaps between the variables J, B and 2: Qi, = Ji: Ix, Rin = Ji-Bn

Tam = Ba-Bas Ca = 2; Ok, Din = 1; By and Ex = J;-Q5.

Since this is a toy problem, with the input distribution and the model both known, we

can actually calculate the Fisher information matrix directly. For a soft committee network

and a quadratic error function €3(€,¢3), the exact calculation for the Fisher information

matrix given in equation (1.29) reduces to

1_/ dex(€,¢3) Aes (E, 63)
Gia i = [Gia,ra] = lz a, (362) Oia Op a) | ne

where i, k are indices over the hidden units, a, 3 are indices over the input elements and

o?, is the variance of the teacher output noise p. This is a matrix consisting of K x K

blocks which each contain N x N values. Further manipulation of this equation (this is

given in appendix C) gives

Gu = ay <AulO) >1o (2.7)
where Ajx is

2

pe TV Ak

I is the identity matrix and

Ai

[= 5+ Qu)SaF + (1+ QWHIF - QulGIE + HI7)] 28)

Ak = (1+ Qii)(1 + Qex) — (2.9)

For J, 2 update equations 1.30 and 1.31, with 6 = 7-5 and n = Me the equations

of motion for the order parameters are:

di 5

sO = Ey t+ By
(2:10)

aR

acy 2k — y - ((14+Q5,)ExjExi + (14+ Qu) Ej Eiji

—Qx;(BjjExi+ExjE;i) |
2k = ys a7 lOe ((1+Qjj)EigEix + (1+ Qi) BjjEjx

27

95 eae + kn (Bez: + Size) + Kn? (65k) (2.12)

dDin
asa a oa Tx Pin A; > ((1+.Qj;)BiyRin + (14+Qii)BjjRjn

ee + kn (bin) (2.13)

dBix _ og.
Ta Cix

Dp a a [Ey - Ay (I+ Qs) By Qi + (14+ Qin) Bij Qi;
3

Qh; (Bjj Qe +ExjQis)] + kn (5xxi) (2.14)

The calculations for these are given in appendix B.

There is a more compact form of these equations. If the update equations for C, D

and E are written as

dC; Tor = TROT Y Aeg Mj — bY (Asg 5)? Mp + bm (Se2e + Size) + Kn? (6i5x)(2.15)
a d

dD,,

Ta = L(A: 9;)"Bn + kn (iyn) (2.16)
a

dE,

a Cig — IT D> Ans 5 + kn (54xi) (2.17)
i

then the sum }°;; Ajj can be calculated from

ina pe 1 (14 Qjj)BijJi + (1+ Qi)BjjJj — Qy(E iJi +EiJ;))| j ages . j VaR DG) G4 a pIIS I AI IIN sgVJ

(2.18)

By

and substituted in.

2.3.4 MM-NGD with single-input Fisher information

When the network being analysed is very large, it may not be possible or practical to calcu-

late the full Fisher information matrix for each input to it. A single-input approximation

to the Fisher information matrix which only uses one example is

1
Gik = = Ain() (2.19)

om

where A;,(€) is defined as before. The update equations for this have been calculated by

Scarpetta [25] and are

d %

“Oi = Ex+Exi (2.20)

dR, Fe = Din (2.21)

28

dCi,

ik = Knut — $i)24 + (Made — $4)2) + PU(nadi ~ $5) (Made — $4)) (2-22)

Pin = (radi — b¥0) (2.28)

ox = Cizx +k((nadk — bi)Xi) (2.24)

where 6; = g!(xi) ¥) 2j9'(x))
j

Although the behaviour of MM-NGD with single-input Fisher information matrix ap-

proximations is important for predicting the behaviour of MM-NGD learning when it is

difficult to evaluate the Fisher information matrix, its analysis does not form part of this

report: preliminary results and discussion of this topic can be found in [25].

29

Chapter 3

Numerical results

This chapter shows some of the characteristics of the order parameter and generalisation

error evolutions calculated in the last chapter, calculated for soft committee networks with

two-hidden-unit student networks, two-hidden-unit teacher networks and erf activation

functions. Emphasis has been placed on the behaviour of generalisation error over time

for several values of the learning parameters 7 and k and teacher network noise on.

3.1 Learning parameters

The training parameters of the MM-NGD learning algorithm are the learning rate 7 and

the parameter k, representing the balance between gradient descent and momentum. The

noise variance of the teacher network outputs is termed o?,. Other variables that can be

adjusted are the numbers of teacher and student hidden nodes, and whether the learning

rate 7 is annealed (gradually reduced over time).

Another factor that affects the learning algorithm outputs, if we have noise on our

inputs, is the point at which learning rate annealing is started. It should be noted that

all times are described in terms of a, and that the interplay between the values of a and

the number of datasteps used for each stage of learning is also significant to the efficiency

of the learning algorithm.

3.2 Initial conditions

All order parameters are initially zero or sampled from Gaussian distributions:

Qik ~ N(0,0.5),i =k; Qix ~ N(0,0.001),i #&

30

Rin ~ N(0,0.001)

Cx ~ N(0,0.001),i =k; Cp =0,i ¢ k

Dn = 0

Ex. = 0

Tram = tint, r= mM; Tram =0,n xm

where the teacher covariance matrix is set to the same values as Tym and tinit is set

to 1 if there is no teacher noise o?,, and 0.5 for a teacher noise of 0.01. All the order

parameter derivatives were initially set to zero. With these initial values, the networks

were initially symmetric. The same random seed was used for each algorithm so that

when their generalisation errors are compared in this chapter, their initial conditions are

identical.

3.3 Phases of learning

In these output plots, the generalisation errors follow a characteristic curve in time. First,

an initial phase where the generalisation error drops rapidly to a value. Then, a symmetric

phase where the generalisation error stays at that value for some time (this is known as the

symmetric plateau), then a drop to an asymptotic phase during which the error reduces

gradually. In the plots, the initial and symmetric phases are shown for €, against a; the

asymptotic phases are shown on a log-log scale.

3.4 Comparing standard, natural and MM-NGD learning

algorithms

Figure 3.1 shows the expected generalisation errors of optimal (with respect to the learning

rate) standard gradient descent (23], optimal natural gradient descent and MM-NGD

gradient descent algorithms, with the optimal learning rate (7 = 0.144855) for the example

network and k = 10 in the MM-NGD algorithm (note that @ is written as alpha in these

graphs).

The natural gradient descent algorithm reaches a plateau less quickly that the standard

gradient descent algorithm as it reweighs the gradient in all directions reducing the strong

difference between gradients in standard gradient descent which drives the system very

quickly towards the symmetric fixed point. The plateau height for the standard gradient

31

tee grad desc
ngd

aS ngd-mm (k = 10

gen
era

lis
ati

on
err

or

alpha

Figure 3.1: MM-NGD vs NGD and optimal gradient descent

descent is much higher than the natural gradient plateau: this occurs because although

gradient descent moves quickly towards a minimum in the most significant gradient di-

rection, it does not move much in the other gradient directions and will therefore be at a

higher level in those smaller directions when it reaches the symmetric phase.

The difference between the MM-NGD and natural gradient plateaux is discussed in

the next section.

3.4.1 MM-NGD without teacher noise

Figure 3.2 shows the symmetric-phase performance of natural gradient descent algorithms

on a two-hidden-unit network (K = M = 2) when there is no noise on the teacher network

outputs (o?, = 0). In this plot, all algorithms have a learning rate of 7 = 0.15. The solid

line is the generalisation error of the natural gradient descent (NGD) algorithm, and the

dotted lines (from right to left) are MM-NGD with k set to 0.5, 1.4, 2.1 and 10.

As the value of k is reduced, the length of the plateau in the MM-NGD error curve

approaches the plateau length of the NGD curve. Experiments with larger values of k (up

to K=100) show that the MM-NGD curve approaches the NGD curve without reaching

it, and with diminishing returns for larger values. Since the number of datapoints needed

32

0.05 r 1

0.04 : 4

$0.03} 4
5

=
3,0.02+ 4

XN * 0.01 + es 4
XN ». Mies

XN ~~
\ .

0 100 150 200
alpha

Figure 3.2: Symmetric phase behaviour of MM-NGD (teacher noise=0)

to calculate these error curves increases with k and k = 20 is not visibly very different

from k = 50 or k = 100, none of the plots shown here use a larger value than 20 for k.

If MM-NGD and NGD are equivalent for large values of k, then the curve for large

k should be very similar to that for NGD. This is not the case: although the plateaux

lengths are similar, the MM-NGD and NGD algorithms have different plateau heights. It

is not certain why this should be the case: the plateau height should be determined by

the 7? terms in the order parameter update equations but experiments with these terms

have proved inconclusive.

3.4.2 MM-NGD with teacher noise

Figure 3.3 shows the asymptotic behaviour of NGD and MM-NGD with teacher noise

variance set to 02, = 0.01, the teacher covariance matrix T set to 0.5 on their diagonals

(Tinn = 5mn0-5 where bmn is the Kronecker delta). The upper dotted line is the (theoret-

ical) optimal gradient descent bound: gradient descent learning is much worse than this,

and outputs from this algorithm have not been shown.

The lower dotted line is the Cramer-Rao lower bound: this shows a theoretical limit

33

Jog10(alpha)

Figure 3.3: Asymptotic behaviour of MM-NGD for noisy teacher (o?, = 0.01)

on the speed at which all algorithms can learn, and is defined as

1 me
v> we) iu (3.1)

where G(J) is the Fisher information matrix and M is the number of examples available.

Since natural gradient descent algorithms are asymptotically optimal, they should be

expected to approach the Cramer-Rao bound: this is seen in the plots, where the lower

solid line is the generalisation error for NGD, and the other learning curves are for MM-

NGD and (from top to bottom) k = 0.3, 0.7, 1.4 and 10.

3.5 Varying other parameters

The results shown in this chapter have all been for optimal or near-optimal values of

the learning rate 7 and different values of the momentum balance parameter k. This

reflects our interest in the momentum parameters and the fact that the behaviour of

generalisation error with different values of 7 has been well studied elsewhere. However,

before this algorithm is applied to real data, it is interesting and perhaps prudent to note

what happens to the generalisation error evolution when we vary 7: since online learning

is sensitive to parameter settings, this might provide some clues to what might be amiss

34

0.15;

--- eta=0.01|] 0.4
--- eta=0.02 a

eta=0.04 Fe:
--- eta=0.07

04 — eta=0.15}1 03) -<

(a) Smaller than optimal 7 values (b) Larger than optimal 7 values

Figure 3.4: Generalisation error evolution for various 7 values

with them.

Figure 3.4 shows the behaviour of mm-ngd generalisation error for several values of 7

(n = 0.01, 0.02, 0.04, 0.07, 0.15 and 7 = 0.73, 0.7, 0.6, 0.5, 0.3: note that 7 is written as

eta in the graphs) with k = 8, o2,=0.01, and tinit = 1. For decreasing values of 7 below the

optimum value 7 = 0.144885 (n = 0.15 is used as an approximation to this in figure 3.4),

the initial phase before a plateau is reached is longer, and the symmetric plateau height

increases until the initial phase and symmetric plateau appear to be part of one smooth

curve. For increasing values of 7 above the optimum value, the initial phase decreases in

time, and the symmetric plateau height increases until at about 7 = 0.5, learning is not

possible.

Also of interest is the behaviour of generalisation error with different combinations of

values of 7 and k, but this has not been studied here.

35

Chapter 4

Using MM-NGD on real data

The matrix momentum form of natural gradient descent works well with toy examples,

but its potential value is in its application to real data. To this end, the datasets used for

matrix momentum with standard gradient descent have also been tried with MM-NGD.

The networks used here are multilayer perceptrons with linear hidden to output con-

nections and tanh hidden-layer activation functions. The learning algorithm used was

online learning, using sampling of the input data with replacement. Code was written in

both Matlab (to fit into the Netlab framework) and C++.

4.1 MM-NGD for MLPs

The parameter update equation 1.30 with 6 = I— BSE) and n = ok was used here. This

gives a parameter update equation of

k ~ oft! = of — Evee(é,c) + €- “SE o4 - of) (41)
where © is the set of network parameters {Jjj,bj,@j0,Co} for a multilayer perceptron

with input-to-hidden weights J;;, hidden unit biases bj, hidden-to-output weights aj. and

output unit bias c, for 1 <i < N,1<j< K,1<0<W, N is the number of input

nodes, K the number of hidden nodes, and W the number of output nodes. Note that

the notation is changed slightly since we are no longer just updating the input-to-hidden

layer weights J.

36

4.1.1 Calculating the Fisher information matrix

The empirical Fisher information matrix G(©) for a multilayer perceptron with parame-

ters ©, network output a, expected output ¢ and a loss function for the network of

1 2 L((I6I) = (0-6) (42)
is G(©) = A(O), where

st
OL OL OL OL OL OL OL OL

00) (|i dag Be] [Bae Toe Bel gy
The components of A(@) are calculated in appendix C and are

ade
ae = hod Tgnet + wet (4.4)

a = aoo'(Tiel + bf) (4.5)

Fa = AL Ya (46)

a = oko (4.7)

where o is an index over output nodes, i is an index over input nodes, j is an index over

hidden nodes, g(x) is the hidden-layer activation function for the network and g'(z) is

its derivative, 5;; (double index) is the Kronecker delta function, d is an index over the

examples that are available to calculate the Fisher information matrix with, and 4 indexes

the current input example.

4.1.2 Approximating the Fisher information matrix

The Fisher information matrix is calculated by averaging over all the input data. One

approximation for the matrix is to only calculate it for a single input (usually the current

input). The equations for each input can be reduced for special cases of the input distri-

bution, but, unlike the Hessian matrix, no other approximation or simplifications appear

to have been developed.

4.2 Small datasets : the Iris dataset

MM-NGD was run on some small datasets to check for obvious errors and test the effects

of varying the learning parameters 7 and k before a large dataset with long learning-times

was used (some variations of om were also tried).

37

One dataset chosen was Fisher’s iris plants database [6] from the UCI repository[12],

because it is well known, easily available and fairly small. The iris dataset consists of four :

measurements and a classification for 50 examples of each of three different classes of iris

plant, with no missing data values.

The network architecture used is four input units, five hidden units and one output

unit. This does not seem to be the optimal architecture for the problem (better results were

obtained with seven or eight hidden units) but provides a network with just 31 parameters

to study. The Fisher information for the Iris network and all other small (less than 1000

parameters) networks was calculated in full from all the examples in the dataset.

 j
j gradient descent
; =---> mmngd, k=0.4

I —-- — mmngd'k-0.25
i) mmngd,k=0.5

i
i
y
4;
3
}

06

 7150
datapoint

Figure 4.1: Iris data, nq = 0.16, various k

Figure 4.1 shows generalisation errors €, for the iris data with a learning rate jq = 0.16,

for gradient descent (solid line) and mmngd with k = 0.1 (dash-dotted line), k = 0.25

(dashed line), k = 0.5 (dotted line). Here, the values of €, for mmngd either drop to a

roughly constant value of about 0.1 which is below the gradient descent curve and remain

near that value (k = 0.1, k = 0.5) or continue to drop to lower values (k = 0.25). After

presentation of most of the dataset, €y for the gradient descent algorithm is a roughly

constant value of 0.1. Another features to note is that the initial descent to €g = 0.1 is

faster for increasing values of k. The behaviour of mmngd with k = 0.5 may be explained

by the fact that the algorithm is becoming unstable at this point: for values of k = 1 and

above (not shown on this plot), €g drops rapidly for the first few datapoints then rises

again and settles on a value near €g = 0.33. There does not appear to be a symmetric

plateau: there are slight kinks in each of the mmngd plots at €, values between 0.25 and

38

0.35, but they are not significant enough to draw any conclusions.

4.3 Medium-sized datasets : wine classification

The wine recognition dataset is taken from the UCI repository(12]. It contains the quan-

tities of 13 chemical constituents for three types of wine. There are 178 examples and no

missing data.

The network architecture used is 13 input units, 13 hidden units and 1 output unit,

which gives 196 network parameters.

04

\ \ \ — gradient descent
3 \ \ =-=-+ — mmngd, k=0.1

‘ \ ‘ —-- — mmngd, k=0.25
0.35) ‘ —-—- — mmngd; k=0.5

mmngd, k=1

 on

Figure 4.2: Wine data, varying k

Figure 4.2 shows €g for gradient descent (solid line) and mmngd with k = 0.1 (rightmost

dot-dashed line), k = 0.25 (dashed line), k = 0.5 (leftmost dot-dashed line), k = 1 (dotted

line). For values of k above k = 1, €, is very similar to the k = 1 line, with increasing

jitter around it until k = 2, where the algorithm breaks down and €, diverges to infinity.

For all the lines shown, €g drops rapidly to a value (€, = 0.27, datapoint=3 for gradient

descent), then drops at a slower rate to a second value (€, = 0.19, datapoint 14 of gradient

descent) and finally drops to a value near ¢g = 0.11, and stays near ¢g = 0.11 for the

rest of training. This appears to be some form of plateau, but the behaviour with k is

not as expected: the plateau height increases with increasing values of k and, although

the plateau is reached at earlier times (datapoints) for larger values k, it is always left at

approximately the same time.

39

4.3.1 varying 7,3 definitions

k=0.1, algorithm
k=0.1, algorithm 4
k=0.5, algorithm 4)
k=0.5, algorithm 4

Figure 4.3: Comparing MM-NGD algorithms

Two equations for 7 and # that both appear to give an equivalent learning rate of

G(©)“"nq are
 — 7 kG), _ kta

B=I- Wael = GN (4.8)

and
i kG(®) ek

Ca Nn’ N a)

These have very different learning behaviours. Figure 4.3 shows generalisation errors for

the wine dataset with mm-ngd learning and these two 7, 9 equations and mq set to 0.13.

The four lines shown are k set to 0.1 with equations 4.8 (solid line); k set to 0.1 with

equations 4.9 (dashed line); & set to 0.5 with equations 4.8 (dot-dashed line); k set to

0.5 with equations 4.9 (dotted line, just visible at left of plot). It is seen that while

the generalisation errors for learning using the first algorithm (equations 4.8 behave as

predicted in chapter 3, the behaviour is very different for the second algorithm (equations

4.9) and, for larger values of k, the generalisation error diverges (this is not shown in figure

4.3 since the divergence is rapid and not on the same scale). It is easy to confuse these two

sets of 3, 7 equations: all other mm-ngd plots in this document use the first set (equations

4.8).

40

4.4 Large datasets : speech (phoneme classification) data

MM-NGD as also run on a large dataset to check for practical problems with scale, learning

times and resources.

The database used is taken from [14]. It consists of 9000 71-element vectors in a training

set and 1000 71-element vectors in a test set, where each vector contains a phoneme class

label (1 to 39) and 70 perceptual linear predictive (PLP) coefficients.

The network architecture used in [14] was a standard fully connected feedforward

network with 70 input nodes + 1 bias, 70 hidden nodes + 1 bias and 39 output nodes.

This has also been used here.

4.4.1 Large Fisher information matrices

The first problem encountered was one of size: for reasonably large networks, the Fisher

information matrix can be larger than the available computer memory. In the speech data

example, there are just under 8000 parameters (weights and biases) in the network, giving

a Fisher matrix with 8000 x 8000 elements, which was impossible ! to store. Storage space

can be reduced slightly by calculating half (the upper or lower triangle) of the matrix,

but 8000 x 4000 is still large, so the Fisher matrix was created implicitly by storing the

multiplication (I — sete)") (gp — Jit’) instead of the Fisher matrix.

One question arising from this treatment of the Fisher matrix for large networks is

whether a scheme similar to Pearlmutter’s algorithm [16] for fast multiplication of the

Hessian by a vector could be devised. Examination of [16] suggests that this might be

possible, but it has not been attempted here.

4.4.2 Slow learning times

The next problem was speed: although the learning algorithm ran reasonably quickly in

single-step mode (only calculating the Fisher information of the last input seen rather than

all inputs), it took a very long time to run if the full Fisher matrix was calculated. Results

from this dataset have not been shown here because it was impractical to do enough runs

of the algorithm to be confident that the algorithm was working or to show the effects of

adjusting the learning parameters k, nq.

1000 x 8000 x 64 bits = 4 Gbytes is not practical in any normal computer system

41

Chapter 5

Conclusions

Natural gradient descent learning is algorithmically more efficient than (will reach a small

value of €, faster than) standard gradient descent but is computationally expensive because

of the average over all input data and large matrix inversion in its calculation. Matrix

momentum can be used to invert the Fisher information matrix used in natural gradient

descent, to give a matrix momentum form of natural gradient descent (MM-NGD).

MM-NGD is computationally more efficient (needs less computer operations to cal-

culate) than natural gradient descent and algorithmically more efficient than standard

gradient descent algorithms. Natural gradient descent is asymptotically statistically ef-

ficient (its generalisation error curve converges close to the Cramer-Rao lower bound on

the algorithmic efficiency of learning algorithms) when it uses an exact Fisher information

matrix: MM-NGD’s generalisation error plots converge close but not exactly to the corre-

sponding natural gradient for large values of the momentum-gradient balancing constant

k. It is not known why this is not an exact match, but it may not be significant as we

are more concerned with the symmetric plateau length and asymptotic behaviour of the

algorithm.

MM-NGD with exact calculations for the Fisher information matrix has been used with

real data. It has been found to be computationally very slow for large datasets, spending

most of its computation time in the calculation of the Fisher information matrix. No exact

algorithms to reduce this caculation time have been found, although it may be possible to

adapt fast algorithms for calculating the Hessian matrix to this task. It was also impossible

for our (and most current) computer systems to store the Fisher information matrix for

the large (8000 parameter) network that was used, forcing the algorithm to calculate the

Fisher information matrix implicitly instead.

42

5.1 Possible extensions to this work

This work has raised many questions about MM-NGD and natural gradient descent with

real-world data.

One of the problems with running MM-NGD on large datasets was the long time that

the algorithm took. It would seem sensible that to reduce the training time for large

datasets, an algorithm similar to Pearlmutter’s algorithm for Hessian matrix calculation

be found for the Fisher information matrix. Other possibilities are approximations to the

Fisher information matrix and single-input or few-input calculations of it.

43

Bibliography

1]

[2]

[3]

[4

(6

7

8]

9]

{10}

(41)

{12]

{13]

(14)

[15

S-I Amari. Differential-geometrical methods in statistics. Number 28 in Lecture notes

in statistics. Springer-Verlag, Berlin, 1985.

S-I Amari. Natural gradient works efficiently in learning. Neural Computation,

10:251-276, 1998.

D Barber, D Saad, and P Sollich. Finite-size effects in on-line learning of multilayer
neural networks. Europhysics Lett., 34(2):151-156, 1996.

M Biehl and H Schwarze. Learning by online gradient descent. J. Phys. A, 28(643),

1995.

C.M Bishop. Neural Networks for Pattern Recognition. Oxford University Press,

1995.

R.A Fisher. The use of multiple measurements in taxonomic problems. Annual
Eugenics, 7(I1):179-188, 1936. also in Contributions to Mathematical Statistics (John

Wiley, NY, 1950).

F.A Graybill. Introduction to matrices with applications in statistics. Wadsworth
Publishing Co Inc, Belmont, California, 1969.

B Hassibi and D.G Stork. Second order derivatives for network pruning: optimal brain

surgeon. In C.L Giles, S.J Hanson, and J.D Cowan, editors, Advances in Neural

Information Processing Systems (NIPS) 5, pages 164-171, San Mateo, California,
1993. Morgan Kaufmann.

S Haykin. Neural networks a comprehensive foundation. Prentice Hall, 1994.

J Hertz, A Krogh, and R.G Palmer. Introduction to the theory of neural networks.

Addison-Wesley, 1991.

Tom Heskes and Jeroen Coolen. Learning in two-layered networks with correlated

examples. J. Phys. A, 30(14):4983-4992, 1997.

C.J Merz and P.M Murphy. UCI repository of machine learning databases, 1998.

M.K Murray and J.W Rice. Differential geometry and statistics. Number 48 in

Monographs on Statistics and Applied Probability. Chapman and Hall, London, 1993.

G.B Orr. Dynamics and algorithms for stochastic search. PhD thesis, Oregon Grad-

uate Institute of Science and Technology, 1995.

G.B Orr and T.K Leen. Using curvature information for fast stochastic search. In

M.C Mozer, M.I Jordan, and T Petsche, editors, Advances in Neural Information

Processing Systems (NIPS) 9, pages 606-612, Cambridge MA, 1996. MIT Press.

44

BIBLIOGRAPHY

[16]

[17]

[18]

(19]

(20)

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

B.A Pearlmutter. Fast exact multiplication by the Hessian. Neural Computation,

1994.

A Prugel-Bennett. On-line learning with momentum. Unpublished report, Nordita,

Denmark, 1996.

M Rattray and D Saad. Incorporating curvature information into on-line learning. In

D Saad, editor, Online learning in Neural Networks, Isaac Newton Institute, Cam-

bridge, UK, 17-21 November 1997.

M Rattray and D Saad. The dynamics of matrix momentum. In ICANN, 1998.

P Riegler and M Biehl. On-line backpropagation in two-layered neural networks. J.

Phys. A, 28(20):L507—L513, 1995.

J.J Rissanen. Fisher information and stochastic complexity. IEEE Trans. Inf. Theory,

42(1):40-47, 1996.

D.E Rumelhart, G.E Hinton, and R.J Williams. Learning internal representations

by error propagation. In D.E Rumelhart and J.L McClelland, editors, Parallel Dis-

tributed Processing: Explorations in the Microstructure of Cognition, volume I, Cam-

bridge, MA, 1986. MIT Press.

D Saad and M Rattray. Globally optimal parameters for on-line learning in multilayer

neural networks. Phys. Rev. Lett., 79(13):2578-2580, 29 September 1997.

D Saad and S.A Solla. On-line learning in soft committee machines. Phys. Rev. E,

52(4225), 1995.

S Scarpetta, S-J Farmer, M Rattray, and D Saad. Natural gradient matrix momen-

tum. Submitted, 1998.

A.H.L West, D Saad, and I.T Nabney. The learning dynamics of a universal ap-
proximator. In M.C Mozer, M.I Jordan, and T Petsche, editors, Advances in Neural

Information Processing Systems (NIPS) 9, pages 288-294, Cambridge MA, 1996. MIT

Press.

W Wiegerinck, A Komoda, and T Heskes. Stochastic dynamics of learning with
momentum in neural networks. J Phys A, 27(4425), 1994.

H.H Yang and S-I Amari. Natural gradient descent for training multi-layer percep-

trons. IEEE Trans. Neural Networks, 1997.

H Zhu. Bayesian geometric theory of learning algorithms. In Intl. Conf. Neural
Networks(ICNN’97), volume 2, pages 1041-1044, 1997.

H Zhu and R Rohwer. Information geometry, Bayesian inference, ideal estimates and

error decomposition. Technical Report SFI 98-06-044, Santa Fe Institute, 1998.

45

Appendix A

Variables and notation

The appendices to this report contain mathematical proofs and notes that support the

main report but would interrupt its flow if included. Where possible, all variables and

notation are standardised and follow the notation used in [24]. This section contains a list

of those variables and an explanation of notation where it is deemed necessary.

46

A.1 Variables

Network inputs

M
be

D={EC),-0(E™.C™)}

Number of example input-output patterns

index over example set

example set

Of = {Jij,bj, ajo; Co}

Eh input pattern po

é input data, consisting of all input patterns

ce expected output pattern js

GC expected output for output node n, input €#

On variance of noise on input-output example pairs

Multilayer perceptrons
N number of input nodes
K number of hidden nodes

Ww number of output nodes
a: input-to-hidden weights

b; bias on hidden node 7

g(x) activation function of hidden nodes

xf activation of hidden node i for input €#

ajo hidden-to-output weights for hidden node j,

output node o

oo bias on output node o

on(J,€") network output for output node n and input €#

network parameters for i‘ input node,

z'* input pattern

Soft committee networks

N

g(2)

xf = Jig
o(J,€4) = DK o(xf)

number of input nodes
number of hidden nodes
input-to-hidden weights, and the only network

parameters

activation function of hidden nodes

(usually er f (x;/V2))
activation of hidden node i for input €”

network output for input ¢#

Soft committee “teacher” networks

M
B
yh = BAcce

p~ N(0,om)
4 = DM oly?) + number of hidden nodes in teacher network

input-to-hidden weights in teacher network

activation of hidden node n in teacher network

output noise in teacher network

output of teacher network

and expected output of student network

47

Error functions

ex (E4, C4) error function for example , and network

parameters J

ex(&", C4) = $[o(JS, &) — C4? quadratic error function
€g(J) = (ex (E4, 6") se} generalisation error

Learning parameters

a= Normalised pattern index, used as time variable

n learning rate

No initial learning rate

Na learning rate at timestep a

NefE effective learning rate
B momentum parameter
2 momentum variable
of © for pattern jz, hidden variable 7

ap momentum parameter used to rescale 1 — 8

k Balance between gradient descent and

momentum terms

oe backpropagation delta for hidden node t

Wex(e#, cH) gradient at J

H= feat Hessian matrix

G(O), G(T ie [Giana] Fisher information matrix

Gia,kp = oir zh (fis yc) element of Fisher information matrix

Giz block of Fisher information matrix

A(J) Matrix whose elements are proportional to G’s

Ane block of A(J)
| Used in the calculation of Aix

P(¢|E; J) Probability of output ¢ given input €
L(é,¢|J) Loss function for input €, output ¢

KL(p(z), q(z)) Kullback-Leibler distance between distributions
p and q, parameterised by x

Sab Kronecker delta

Order parameters

Qik = Gixk) = Ji Ie order parameters
Rin = (*i¥n) = J
Tam = (Yn¥m) = Bn- Bm
Gait Diagonal values for Thm

Cig = 25+ Q%
Din = 9+ Bn
Fix = Si %

A.2 Notation

The notation in this document is fairly simple. Notations that the reader may not be

familiar with are (A);gy denoting an average of A over variable € and [A] denoting a
block matrix. Occasionally an Einstein summation convention where A;B; is shorthand

for }>; A;B; might creep into the calculations but this should be noted when it is used.

48

Appendix B

Analysis of MM-NGD for soft

committee machines

This appendix contains the workings needed to create the update equations for the order

parameters of matrix momentum for natural gradient descent. The order parameters are

Qi, = IF I;, Rin = J? Bn, Tam = BEBm, Din = 27 Bn, By = IPN; and Cy = NF N,.
The update equations used here are for MM-NGD with 7 and f scaled by the input size
N. Assumptions made are that the input size N is infinite and that the inputs are taken

from a normal distribution so that (ee) aN

Expanding out the update equations for J and © given in equations 1.30, 1.31 with

an error gradient of Vyes(&#, (4) = —d#E4, we get

k wt+l yey BT sueu Ee J J + git +[¥(0- WAG) 9].

1 k = ps gen + 5 bu — AG)
J

kn 1 1
= gt yi" + yut+o (a2)

of = oar

= Nar + Marte 4 t wt ae Ne aur — yeh)

1 i 1 1 — = ne hae ee - LAS oF)

ott +e nop er — zy agar
j

where 2; = J?€, yn = BRE, 4% = OF E and

U = 51+ Qu IF + (1+ QTE -— QulIE+HI7))] — (B)

One term that crops up frequently in the update equations is the sum }); Ajj9;.

49

Expanding it out gives

2 1
DE) = el = ae + (14+ Qu)IjIF — Qi(IiIF +IjI7) JO.

j -

= a TEI 5 B(OH Q)Bud + (14+ Qis)E4jJ; — Qi (BjjJi+BijJ;))]

Using these definitions, the equations of motion for the order parameters are:

Qutt = getiTgyt
i

1 ki a 1 = (a? +5 2 Faetert + 707 +0(mm) (at + hore + 5m +0(2))

= T+ TEM + Horst +0()

= = Q4 +5 [si70, 4.0734] +0

“0 = JTO, +975, = Ex + Eni

Re = ape Tayt
= (7 + hater? + xo + o(xz)) Bn

= Jf7B,+ WB, + o(x2)

Bin = 9,3, — Di,

pit! = ob tpt

= e a xd (Asan)? + ove) B

= DA- Ey tsa? By + End
j

Pin = —k >> (AyQ;)7 Bn + kn (6iyn)
d

= HED Feel 5 (U4 QBS + 4A) Ba,

—Qi; (EjjJi+EijJ;))| yB, + kn (5iyn)

= -*(2 x Jum = wy (+O) E,jRin + (1+ Qis) ER,

—Qi; (EjjRin + EigRjn))]) + kn (Sign)

BR = seat

= (x + Phapeet 4 Lop +0(x2)) (= = 2) ALO! + ste)

50

dBix
da

+d
Cie

Le
k 1 1

TET OH — Gott ARM + Eat nage + Hime + o(xa)
j

1 Ent yy (are, = RSET SS AG OF + waite
i

OO, — kIT x AgjQ; + kn (xxi)

w— KaT(2 [9; - A (+O) Bade + (14+ Qkx) By5J; Eas Te
Qh; (BjjJe+EnjJs))]) + bn (5ecs)

a(2 x 7s ij = (14+Q5;) ExjQiz + (1+ Qex) Byj Qi;

—Qij (Ejj Qik +Exj Qi))]) + kn (542%)

w+1T putt ote

(nj Tb (4g) any? ae jste”) (=- a eis WL Abs of + ne)

dj

k k YT OK — ONT SD ALG + OT nde — > (4g 08)7 OF + = Knope ag
2 d

1
+ ya Ore op eH + o(x2)

Cht+= ae Ae - rl (AM OH)? OF + kndta! + kndltzlt + era
ay a)

+0(2)

= kOT SD Aaj Qs — BY (Aig M5)? Oe + key (uz + ize) + KP? (5i5x)
j 7

-107 (2 _[0; Sean Ends 0am) E gd; ‘7 7 ; VaG ‘5 ag JI kis k Ak ag"9

Qh; (EijIe+ExjJ;))])
2 1 1 rn (=> Tm | = qj (A+ Qn) Budi +04 Qi) Ey54;

5 dD

iP.

Qj (EjjJi+EiyI;))]) Qe + kn Onz4 + 5izn) + Wn? (6:54)
2 1 1

= ke > TG [es a eh (14+.Q);) ExjExi + (1+ Que) Ey, By
j J J

ae (EjjEui+ExjEji)

-ko x 7 (0+Qjj) ByEu + (14+ Qis) BjjEje

= Qi; (Bj Ein +EijEje) J + km (5q21 + 6ize) + Kn? (6:5)

51

Appendix C

The Fisher information matrix

The Fisher information matrix is used in natural gradient descent, but it is also used in information

theory and in the calculation of the Cramer-Rao bound Tr(G~'(J)) on a network’s performance

(the Cramer-Rao bound gives a minimum distance between the network’s estimates of a parameter

value and the true parameter value. Tr(A) is the trace of matrix A.

This chapter gives some notes on the maths used to calculate the Fisher information matrix

for a soft committee network and multilayer perceptron. These calculations are taken/ based on

Magnus Rattray’s notes and [2].

C.1 Exact Fisher information matrix for a soft committee

network

The Fisher information matrix for a neural network is given as G(J) = [Gia,xg], where Giana is

Ginny = (Seale Beep), — _ 1. (BixG.6) KEG) (en
= Jia OTia {ome} HN Win Tes / ey

It is useful because it is invariant to re-parameterisations of the input space €.

To derive the Fisher matrix for neural networks, we first take the log of py (¢m,€) as defined

in [18]:

 Ps m8) = ae
a :

[é = SS 9 (= 1é)| /20, + consts (C.3)
int Va

Substituting this into the above definition of Gio,xg gives:

1/8 = 8 = ; oun de (iso fEs)| se le-EelEm])

2 202,
a (- (Gn = os or) (02)

—log ps (6m §)

52

which, since g2— [Gm - DKs 9 (Hp Inés)] = ~ 209" (Ey Iivér) [lm — Dr 9 (E, Iinés)],
becomes

;
K

Gieas = a (‘sto (Sane) a (Saue1) E =r (= sn8)|) (C5)
e q a j=l

this reduces to

1 , Gia,ka = ye (aba 9' (xi) 9'(%4)) fey (C.6)

If g(x) = erf(x/V2), we get (moving into matrix notation):

Gu = (VTE) 9 (OEE) f083 46 (C.7)
ate)? (Te)?

= 7 (Zee SE) (c8)
a. {é}

=- 12 dE -heT [4ST +d] e eT 224/22) 4 Poste € (C9)
Cae [any® 6

12 1 T ete ance ee (C.10)
2,7 (any ¢

where f dé =[], f dq is a nest of integrals over déa, Aix =I +J5;J7 +I5,JF is a scalar and €4£3

is an N x N matrix.

[7] theorem 10.5.1 states that,

I

co poo peo mess
G if i: up (2'Ac+a2'a+ ao) e~ Bete b+b0) dy dara...drn

00 J-co Sco
Lan/Ipi-H/2e(/¥B-1>-t [(AB“!) - Ba + 1yB> ABS +209

which is

Q i

co p00 co. -
if 4 if (a! Az) e~(?'B*) dey dao...drn

rl? [tr (AB~)]

for a = ap = b= bo = 0.

We can get Gia,xg into this form if we multiply it top and bottom by |Aj,|| and modify

Exby:

Giang = ee ee ViAil o-eraneg er
on o2. Nia ee

ms (2m)™ |Ag!|

fats = €TArgé

Ne = Siad;p

53

Ven" iazl |An'|
Gia,ka

a Tony ag?
ae a 3 [er (Ana (Ae) *)]

From [18]: G(J) = A(J)/o2,, where A(J) = [Aig] is

An = aE [-x -— — (Cl + Que) IST + (1+ Qu) ITZ -— Qe (IIE +3.37))| (C.11)

JT

ata i f oe) cs

An = (14+ Qi) (1+ Qee) — Q% (C.13)

C.2 Exact Fisher information matrix for a multilayer per-

ceptron

The loss function of a neural network can be defined as

IAI J) = sor = ge - 6? (c.14) i 203, Zon .

where p = (a — ¢) is the teacher error, o?, is the model noise, ¢ is the expected output of the

network and ¢ = 091<o<w is the output from the network, calculated as

ot =o tHajo + Co (C.15)
a

Here, 4 = 2()); &f Ji; +4) is the activation function of hidden unit j for input datapoint p, with

derivative alk :

The elements of the Fisher Matrix are constructed from the partial derivatives of the loss

function with respect to the network parameters. These are:

oLine p
Be ag tte
aLiue p a

aor = ar ot

BL aa
Boh aaa
TE Dy,

= 0
ack o2,

where L1#4 is the loss function for output unit 0, datapoint » and example d, Jj; is the weight

between input unit i and hidden unit j, 6; is the bias on hidden unit j, ajo is the (constant)

weight between hidden unit j and output unit 0, cx is the bias on output unit k and 4;; (double

54

index) is the Kronecker delta function. Note that there are now two indices over datapoints : 1,

which indexes the example (datapoint) being processed by the learning algorithm, and d, one of

the input-output example pairs that the Fisher information matrix is being created from.

Since the Fisher matrix is an average over A where 6; is any of the parameters {Jj;, aij, bi},

and each element of the matrix contains p? ~ N(0,02,), this can be simplified [28] to G(J) =

zr A(J) where the elements of A(J) are constructed from

alg? ' a = ahah (C.16)

Lr ar = oti (C.17)

fae = Bb (C.18)

ae a Ou (C.19)

where LS4(CI6;J) = F(0- 0?

The matrix A(J) is created from an average over outputs and examples of these partial derivatives,

+ ac=(OL OL OL | [2 aL aL |) (0.20)

{6,6}

and is

AF’ 9b;” Bajo’ Deo} | IIij’ 8b;’ Bajo’ co
If J, b, a, c, x and x’ have already been calculated, then A(J) can be calculated in (2+) x M x

W x P? x D+2 flops (floating point operations) where N is the number of network input nodes, M

is the number of hidden nodes, W is the number of output nodes, P= NxM+M+MxW+W

is the total number of parameters and D is the number of patterns used to calculate the Fisher

information matrix. For the speech data with a 70-70-39 network architecture (N = 70, M = 70,

and W = 39), this is between 2.07 x 10!” flops (for D = 9000) and 2.3 x 10! (for D = 1).

C.2.1 Reducing the calculation time

The number of flops used in calculating A(J) can be reduced by calculating the average of the

second partial derivatives of the loss function directly for each pair of network parameters rather

than multiplying together two sets of first derivatives then taking the average of the resulting

matrix.

For the network described above, the second partial derivatives of the loss function with respect

to the network parameters averaged over outputs and examples are:

ase 1 1
(sett) (3 Des) ata” (7 Yatat, (C21)

99S ER 1 od d °

or Lye run (1 Halt (ane = 25" a, WL Goth (C.22)

I

55

Lys Hy, w Stem (ange) = ajax (C.23)

) = sk (C.24)

) (xs a) aia (% SS ct) (C.25)
oO d

ar Lua 1 ; (siti,) = (5=¢) ai abaje (C.26)

) s
d

(abe rane (3 a) wi! ae (C.27)

(areas) ee (C28)

\aaee), 2 (C.29)

(ee). = ate (C.30)

This operation uses

(D+W +5)N?M? + (5W +5)NM? + (3W +3)M?+3WNM+4WM+W (C.31)

flops. For the 70-70-39 speech data network, this is between 10!! flops (for D = 9000) and 10°

flops (for D = 1). If the entire dataset is used to calculate the Fisher information matrix, then

most of that effort (for the example given, this is 99.9 %) is in the calculation of (seb) e

precalculating 7, édeg can reduce this from (D + W + 4)N?M? to D + (W +4)N?M?, giving

an A(J) calculation of 10° flops for both D = 9000 and D = 1 (for D = 1, this reduction is

insignificant). Precalculating),a4,af, reduces the expected number of flops to calculate A(J)

again to

D+5N?M? + (4W +5)NM? + (2W +3)M?+3WNM +4WM +2W (C.32)

flops. This is 108 flops for the speech data example with D = 9000 or D = 1. A summary table of

the predicted flops to calculate A(J) for the 70-70-39 speech data network and the percentage of
ha

that total which is used to calculate the (mee 7) term is given in table C.1.
aj OY Bx lod

Further reductions in running time can be had from precalculating the sum >, €4 but anything

beyond this is either expensive in storage space or insignificant: further improvements in calculation

times must be algorithmic.

56

D=1 D = 9000

no precalculations 1.15 10° flops,93.93% | 2.17 10!!flops,99.97%

precalculate 14 €4é4 1.12 10° flops,93.8% | 1.12x10° flops, 93.8%

precalculate 04 eded and }, a ako 1.76108 flops,68.1% | 1.76108 flops,68.1%
 first derivative-based algorithm 2.30 x 10 flops 2.07 x 10!" flops

Table C.1: Speech network calculation times (in flops) and dominant calculation sizes (%)

57 LIBRARY TION SETVICES

