
A probabilistic spellchecker

OLIVIER DUPIN

MSc by Research in Pattern Analysis and Neural Networks

ASTON UNIVERSITY

September 2000

This copy of the thesis has been supplied on condition that anyone who
consults it is understood to recognise that its copyright rests with its
author and that no quotation from the thesis and no information derived
from it may be published without proper acknowledgement.

Acknowledgements

First of all, I would like to thank my supervisor, David Barber, for his help, his patience

and his time. Thanks to Kevin Murphy for his helpful hidden Markov models toolbox

and to all the Neural Computing Research Group.

ASTON UNIVERSITY

A probabilistic spellchecker

OLIVIER DUPIN

MSc by Research in Pattern Analysis and Neural Networks, 2000

Thesis Summary

This thesis studies graphical Models applied to the correction of words. More par-

ticularly, hidden Markov models and Markov chains will be used in order to build a

probabilistic spellchecker. Several ways to cluster words will be introduced: the batch

K-Means clustering algorithm with a specific distance measure and the Expectation-

Maximization algorithm in order to learn a mixture of Markov chains. Moreover, a

solution for dealing with the suffixes and prefixes will be presented.

Keywords: hidden Markov models, Markov chains. Mixture of models for clustering,

batch K-Means clustering algorithm, Expectation-Maximization algorithm.

Spellchecking

Contents

1 Introduction 7

del (Whe eoalsiot the project 292. ate stn. Gos ts we t

Tob) PEhe mam anibuionse. «a lesan aio: ont sebee i 3S © eee t

dole2 ree ibe corruption: processes’asu)* . 6. a). osee Gr le! Bea 8

1.2 Ispell, the reference spellchecker-005 0.0 see vues 8

1.3 The English language and the keyboard. . 9
14 The data 10

1.5 Overview 11

2 The Probabilistic Approach 12

DOME OAUCHON I nea) eta als A gh eee ee ee 12

2D addensMarkov models. 2 i.e sh ries od os OY Gone to in das 12

22 LEG OULLVACTIGCgemenvat <0. mnie tall Migrate ease URS Ita an Oe 16

2.2.2 Problems with the hidden Markov model. 1

mousing a simple Markovecheiic a) oes vue ue ee: eee pen ec + 18

3 Clustering the words of the dictionary 20

Bull Wie need. CO.chistersGa taser, cant orth. ean eee ae cle: Stes 20

3.2 The frequency vector representation... . 20

3.2.1 Definition of a distance measure . . 21

3.3 The batch K-Means clustering algorithm . 22

3.4 Clustering experiments 23

4 Results and comparisons 25

4.1 Spellchecking Algorithm: ProbSpell ... 2... 62-25-2502 055- 25

a2) Vests and Testis. so. cwaspas <tc navies 2 Osds ey eee ee 27

4.2.1) Basic corruption-resulis® sewers .c.08 eee te ak | 27

143 iy CONC USIOURNE ace heer Mc geet Somme Bote Mead 0) cs Raita 0 i herein CI 33,

5 Dealing with suffixes and prefixes 34

5.1 Three Approaches for dealing with suffixes 35

5.1.0 Vector translation’. . 20... 35

5.1.2 Deletion of the suffix ..j..... - 35

5.1.3 A Markov chain for the suffix er o6.

5:2_ ‘West iof these three:solutions £3) .0.02 $6... Me Fee Ge eee 36

CONTENTS

6 Mixture of Markov models for clustering
Glee slngroducbioti 4 3° ita ce 5 Aen: y Ors Alon “le Sages @ @ «as ee

6.2 Clustering with a mixture of models

6:3 Application\io the: data .. fy) cnets viet ns ees ce

GSI Possiblersolutions§ « Biesc\ eis: @4,s15 eee be ua eae ee

Gt COnchisionis Gein 2 1: AWW Rwes © Geri: yes ts hl «SON, ee 5

7 Conclusions

A Main hidden Markov models algorithms

A.1 The Forwards-Backwards algorithm
A.2 The EM algorithm

40

40

41

43

45

46

47

50

50

51

List of Figures

Ae

Zell

22

2.3

3.1

3.2

4.1

4.2

4.3

4.4

on

6.1

The Qwerty keyboards, the notion of levels for the letter J

Eidden’ Markov Models 7... 0. oi Bee Spode ae Ee ay iter ek
Parameters of the models (Confusion, transition and prior) for “television”
Parameters of the Markov model (transition and prior) for “television”

Position of the keys on a orthogonal plan . .

Selection of candidate vectors

Algorithm of ProbSpell: the individual steps 1-7 are explained in the text.

Basic tests of ProbSpell

Comparison of the three approaches and Ispell.

Parameters of the Markov models of two first clusters

on

List of Tables

ou

4.1

4.2

4.3

oon

W
e

Format of the dictionary and the affixes

ormat of the affixdiges=. ecm an 5 uta sis -< x ecels aes

The feature of the word ’television’50-50-

Whe datarsetof simpleicorruptions #2. 7 90-208 Sa is

Examples of words, simple corruptions and likely corrections

Examples of words, corruption with two transpositions and two mishits

anc PREMHCOrrectiOns Joniuys muse ee oes ut ese oe oker che aes ss ce.

The deletion of letter for the observation “supsenidmg”

The data set of observations with suffix.-.....-++::5

Two clusters from the mixture and one obtained with the K-means al-

Por thts wre: as 5) Pec pamela seals ket aw ee evesticn me i Oh aie

Chapter 1

Introduction

1.1. The goals of the project

1.1.1 The main ambitions

Spelling correction has been a topic of interest for a long time. However, many

spellchecking systems that we have encountered are based on a deterministic appli-

cation of a small set of rules. Whilst this can work well in words which contain only

minor spelling errors, the approach typically fails for more severe corruptions. With a

probabilistic framework, however given a rough spelling of an English word, and know-

ing some features of the language, it should be possible to determine the miost likely

correct word that the user wanted to type, even for severely corrupted words.

The reasons for miss-spellings are numerous. We can observe 5 principal kinds of
errors:

1. The typing error which is basically an error coming from the speed of typing and

also from the ignorance of the architecture of the keyboard. For instance, the
word “cgke” could be written instead of “cake”. These are the spelling errors

and result in words that cannot be found in a dictionary.

2. Lack of knowledge of the correct spelling of a word often results in an observa-
tion that is not in the dictionary. Typical for these class of errors is to confuse

sequences of letters that have roughly similar sounds. For example, the word

“roufly” could be written instead of “roughly”. Such errors will not be especially

considered in this thesis.

3. Correcting spelling errors which come from a confusion of correct: words is an

other issue. Two typical examples of such words are “their” and “there” or

“quiet” and “quite”. This type of error is not considered here.

4. We could also consider the grammatical errors which need a grammatical con-

text to be corrected (e.g. “among” and “between”). Again. this is not considered

in this thesis.

5. Finally, errors that cross word boundaries (e.g. “maybe” and “may be”). Such

errors are not dealt with here.

CHAPTER, 1. INTRODUCTION

When both the corrupted word and the correct one are in the dictionary as in

(3), (4) and (5) above, the correction and even the detection of such iistakes are

more complicated than for a normal spelling error. Moreover, Peterson has shown
that up to 15% of spelling errors that result from elementary typographical error -

insertion, deletion and transposition of characters - yield another valid word in the

language [12]. This issue has been partially solved with methods dealing with lexical

disambiguation and context-sensitive spelling correction: words trigams [11]. Bayesian

classifier, decision lists [15] or a Winnow-based approach [7].
As far as this thesis is concerned, we deal solely with typing errors which give a

corrupted word not in the language. Other sources of miss-spelling 3, 4 and 5 will not
be considered. We aim to create an algorithm which can find the correct word even
if the corruption observed is far from the correct one. A typical application of such

software would be for a user trying to type a word very quickly as a clumsy typist.

1.1.2 The corruption processes

Let us now present more precisely the corruption processes considered. The entities of

a corruption process are:

1. j4 (word, position, char): Character insertion

tn (‘cake‘, 4,‘r‘) = ‘cakre'

2. ji2(word, position): Character deletion

fin(‘cake‘, 3) = ‘cae‘

3. ji3(word, position): Transposition of two characters

b3(‘cake‘, 4) = ‘caek*

4. j14(word, position, char): Corruption of a character

pi4(‘cake’, 3,'0') = ‘caoe‘

With a composition of these elementary processes, it is possible to find a function f

which provides the correct word given the corruption. One main idea of the approach

we take is that the structure of the keyboard is linked to the first and the last elemen-

tary processes. Indeed, these four elementary corruption processes are precisely those

considered in other well established spell checking systems, in particular Ispell.

1.2 Ispell, the reference spellchecker

Ispell is the spellchecker of Unix. It will be the reference of comparison for our approach.

This spellchecker is determir It does not use any contextual information and

deals only with spelling errors. Very briefly, we explain how it works and examine its
strengths and weaknesses.

CHAPTER 1. INTRODUCTION

 Ispell defines some flags which symbolise suffixes and prefi: The dictionary is a

text file containing a list of words (c.f. table 1.1). Each word has an associated list
of fla, For instance, the word “play” has the flags DGRSZ which means that the

words “played”, “playing”, “player”, “plays” and “players” also exist. Ispell considers

the same corruption processes mentioned above in section 1.1.2. Given an observation

O, Ispell first tries to correct the root of the word (N.B. the roots are words of the

dictionary). To do that it generates candidate words M; which result from only one

of the few basic corruption processes jz1,... , jg. After that, Ispell checks which of the

candidate words M; are in the dictionary. For instance, given the corrupted observation

“plya” , Ispell generates a list of candidate words using the corruption j4;: “aplya”,

“pwlya” (Character insertion)..., “ya”, “pya” (Character deletion)... “lpya”, “play”

(Transposition)..., “olya”, “pkya” (Corruption of one letter)... . Since one of these

generated candidates is a word in the dictionary, Ispell will propose “play”. For a

word with a suffix, the procedure is roughly the same except that Ispell first tries to

identify the correct flags (suffix/prefix) and then selects in the dictionary the correct

(word, flag) couple.

Thanks to using an efficient hash table, the major strength of Ispell is speed. How-
ever. being deterministic and considering so few corruption processes, its spellchecking

can be disappointing. For instance, the composition of, at least, two processes (dif-

ferent from the identity, function), will never manage to be corrected. For example,

(‘teelvisiom’ = jt4((13(‘televisiom, 4), 10,'m')) will not be corrected by Ispell. More-
over. given an observation of a word with a suffix, if both the suffix and the root are

affected by one of the corruption processes considered before, Ispell is lost and won't

propose any correction.

Observing the limits of such a spellchecker, the main target of this work is to apply

a probabilistic framework in order to deal with corrupted words.

faking the previous example, reading the sequence “teelvisiom”, most people would

immediately recognise the correct word ’television’. The question is why? This is a

rather difficult, question to answer, but nevertheless important since humans seem to be

superior at spellchecking than Ispell. Looking at any simple letter to letter transition

in “tee n”, it is not clear what the correct word could be. However, over all, it is

clear that the only plausible correct word is “television”.

One might think therefore that one could correct words by learning the most likely

letter to letter transitions in the dictionary, which would alert one to rare combina-

tions. That inay help to detect errors but is useless for the corrections of mistake.

On the other hand, learning the letter to letter transition for each word - i.e. having

a Markov model for each word of the dictionary - should help. We hope that the

probability Pr(‘te iom’'|'television’) is higher than for the other correct words. e.g.
om’ |'telescope'). This is the central idea behind our approach to build a

probab model for each word in the dictionary. In order to do so, we need to take

into account one of the most fundamental sources of errors: the keyboard

1.3 The English language and the keyboard

When a user wants to type a word, she first thinks about it and then types a sequences

of keys on the keyboard. The structure of the keyboard is very important for the actual

CHAPTER 1. INTRODUCTION

word typed.

Figure 1.1: The Qwerty keyboards, the notion of levels for the letter J

Examining the Qwerty keyboard figure 1.1 and given that the user wanted to type

a J’, it is possible that the real letter typed is in the neighbourhood of ’J’. We can

define a notion of level of mistyping for this letter: Ni(J) = {U,I, K,M,N,H} is
the first neighbourhood of the letter considered (the letters in bold face around ’J’),

N,(J) = {O, L, B,G,Y} is the second one and so on. It is probable that, wanting to

type the letter J, the user presses the key J. However, by mistake, she presses a key of

the set N, or N2, with a higher probability for the first case than for the second one.

This leads naturally to a probabilistic description of the corruption process j14,

Pr(letter typed\intended letter).

1.4 The data

Our spellchecking system is based on exactly the same dictionary as used Ispell. Each

word in the dictionary has an associated set: of flags describing possible prefixes/suffixes

that can be attached to the root word (cf. table 1.1).

Format of the dictionary

late/DPRTY
dirty/DGPRST
gray/DGPRSTY
small/PRT
aggregate/DGNPSVXY
create/ADGNSVX
imply /DGNSX
cross/DGJRSYZ
convey /DGRSZ

Table 1.1: Format of the dictionary and the affixes

In total, the dictionary contains 26 057 root words and 36 kinds of affixes (suf-

fix/prefix). As you can see in table 1.2, the suffix or prefix can depend on the two last

letters of the word and on the flag: for instance, the verb “imply” has the flag D. Since

the two last letters of the root word are “ly”, we obtain the word with suffix doing

10

CHAPTER 1. INTRODUCTION

Format of the flags Examples
flag T:

E > ST As in late > latest #

(“AEIOU]Y > -Y,IEST | # As in dirty > dirtiest

(AEIOU]Y > EST # As in gray > grayest

(-EY] > EST As in small > smallest

flag D:

E >D # As in create > created

["AETOU]Y >-Y, IED # As in imply > implied
[°EY] >ED # As in cross > crossed

CAEIOU]Y >ED # As in convey > conveyed

Table 1.2: Format of the affix flags

-Y, IED, which means that the ‘y’ is deleted and “ied” is added. Others examples are

given in the table 1.2. The complete number of words that the Ispell thus understands

is 64429. The words we consider are formed from a vocabulary of 26 characters, the

alphabet (no capital letters, no dash).

1.5 Overview

In chapter 2, the main idea of our Bayesian approach will be explained: probabilistic

models will be introduced in order to build a spelichecking system. Chapter 3 will

demonstrate the necessity of clustering words. Then. chapter 4 shows some results and
comparisons with Ispell. Correction of words formed by addition of suffixes and prefixes

will not be considered till chapter 5. In chapter 5, three strategies will be studied to

partially solve the correction of words with affixes. Finally. chapter 6 proposes the use

of mixture of Markov model in order to cluster words.

cha

Chapter 2

The Probabilistic Approach

2.1 Introduction

Imagine that a user wanted to write a correct word C but actually typed M by mistake.

A way to correct this mistake would be to compute the probability Pr(C;|:) for all

the correct words C; of the dictionary, C; € A. In our probabilistic framework. the

most likely correct word, given the corrupted word .V is

C = Argmazc,ca(Pr(C;|M)) (2.1)

Thanks to Bayes’ rule, we can associate the posterior probability of a word C; to the

likelihood Pr(M|C;) and prior Pr(C;),

Pr(G,|M) a Pr(M|C;) « Pr(C;) (2.2)

Throughout we assume that the probability Pr(C;) is uniform, so that the likelihood
Pr(M|C;) determines the suitability of a candidate dictionary word.

Computing the probability Pr(./|C;) is therefore the main issue of this thesis
However, the real value of this probability is rather difficult to estimate. A possible

solution used by Bell Labs for correcting typing errors is a system of tables of error

probabilities derived from a corpus of millions of words of typewritten text ((3],[9]).
The tables give for example the probabilities of substitution of two letters, or the

probability for a ‘p’ being inserted after an ‘m’. In theory, we could store many

millions of corruptions and correct words with an associated value in respect. of the

complexity of the corruption processes. However, if we do not want to use giga bytes

of hard disk and do not want to be limited by the complexity of the corruption process,

this idea is not feasible. An alternative is to find a specific model of the corruption
processes.

2.2 Hidden Markov models

The probability Pr(M|C;) can be written as:

Pr(MICi) = >> Pr(M, SIC.)
s

II >> Pr(M|S,C,) * Pr(S|C;) (2.3)
s

12

CHAPTER 2. THE PROBABILISTIC APPROACH

We assume that the corrupted words are generated by a hidden Markov model in which

the hidden states correspond to S. In order to develop our model, we introduce the

notion of words which could be obtained from corruptions of the correct word, uding

iption process fy. An instance of a word which could be generated by

combinations of the processes //, /12, 43 is denoted by S. If we interpret S as the result

of the elementary processes 4). {4g and jig, then it is clear that Pr(M|S) is the keys-

corruption process: it accounts for corruption process jig and Pr(S|C) accounts for

combinations of 11, /42, 43. Thus we have assumed that the probability Pr(A71|S,C;) is

equal to Pr(|S). In addition, we assume that Pr(M|S) is independent across letters,

that is Pr(M|S) =]; Pr(mj|s;). So, equation 2.3 leads to:

the character cor

Pr(M|Ci) = DTI, Pr(mls;) * Pr(S|C;) (2.4)

For a word of length L, characters, assuming that the probability Pr(5|C;) follows

a Markov distribution, Pr(S|C) = Pr(si|Ci) * [[ZS(Pr(selse1,Ci)), equation 2.4
gives:

Pr(M|C;) = Vs{I],(Pr¢

The result is equivalent to modelling each correct word of the dictionary with a hidden

Markov model, which we now describe more formally.

|33)) * Pr(si|Ci) * T1kS. Pr(selse1,Ci)} (2.5)

Hidden Markoy models are stochastic graphical models derived from Markov chains,

(see [13], [5]). A stationary HMM is described by

1. A hidden state transition probability distribution A, where

a; = Pr(S;|S;)

2. A confusion matrix B, which describes the probability to generate an observed

state Y, dependent on a hidden state S,

Dix = Pr(Yi|S;)

3. An initial state distribution 7, where

nt; = Pr(S;)

A HMM is depicted in figure 2.1 where the upper layer of nodes are the hidden variables,

and the lower the observations.

The intuition behind using a Hidden Markoy model for spellchecking is that the

hidden state transitions should be able to describe roughly the structure of letter to

letter transitions, including possible corruption processes j1;, /l2, /3. The hidden to

output process can model the corruption process linked to the architecture of the

keyboard (j04).
Both the observation and the hidden states of the model are 26 letters of the

alphabet. The joint probability of the sequence observation Y = Y,.¥,...,¥pr and

hidden state sequence is given by

13

CHAPTER 2. THE PROBABILISTIC APPROACH

Figure 2.1: Hidden Markov Model

Pr(S,Y|O) = Pr(¥4|$1)Pr($1)Pr(S2|51)Pr(¥|S2)Pr(S3|S2)Pr(i3

3) *

_

[] Pr silSi-Pr(%
i=4

) (2.6)

The probability of an observation sequence, Pr(Y|©) can be computed using the For-

wards Backwards algorithm (appendix A.1).

To apply HMMs to spellchecking, we could generate training data using an assumed

corruption process, and train the model using the standard EM algorithm (Appendix

A.2). However, since we have specified the corruption process as (j1,, /2, 43, {4), We can

set the HMM parameters according to the corruption process directly, A difficulty with

this approach is assessing the suitability of the assumed corruption process. However,

since we do not have any training data of real (correct word, corrupted) word pairs,

we have no principled way to optimise the procedure.

A word is a sequence of states, for example “television” = [20 5 12 5 229199 15 14)).

The Confusion Matrix

By definition, this 26 x 26 matrix is given by:

Bi, j) = Pr(¥j|Si)

Given the interpretation that the confusion matrix represents the corruption process

fia. this probability depends only on the structure of the keyboard. We assume that

the probability of getting the same observation as the current hidden state is equal to

0.7. That means that the values of the diagonal of B are (0.7. The notion of keyboard

neighbourhood defined in section 1.3 is now used to set the other values of the confusion

matrix: we assume that the probability of typing a letter in the neighbourhood N, (set

of the nearest neighbours) is 0.25. The possibility of typing a letter outside the first

14

CHAPTER 2. THE PROBABILISTIC APPROACH

neighbourhood is 0.05.

0.7 ify=¢

ne 0.25 ea CNG
Bii,j) = 4 Grama if j € M(i)

0.05,

26 — (card(Ni(i)+1)) otherwise

where denominators ensure normalisation)), B(i,j) = 1. The matrix is represented
in figure 2.2.a.

Seean RE. a “Tranton mati or <olovision>
ee

ks

0.5 ie

10) jos

m
bs

a

Z|
K |

| is
Ta po ap

(a) (b) pe
97

aI oz

. 2 ts

()

Figure 2.2: Parameters of the models (Confusion, transition and prior) for “television”

The Prior

Given a particular correct word C, we require the probability distribution of initial

states. We assume that the probability that the initial state is equal to the first letter

of the word is 0.7, ie. Pr(S; = C;|@) = 0.7. Considering only the processes 11, jg and
3, it is possible that the first state could be the second letter of the word (the case

when the first letter has been deleted or swapped with the second one). To account

for this, we set Pr(S,; = C2|0) = 0.1. To include a small probability to have any of

15

CHAPTER 2. THE PROBABILISTIC APPROACH

Oe
the st

therefo:

s at the first node, we add to each case of the prior the value There are

three possibilities: the first state can be the first letter or the second letter of

the correct word (with probabilities 0.7 and 0.1 respectively) or any other letter with

probability 0.2.

The Transition Matrix

How can we compute the transition probability Pr(S,|S;)? One way to do this is to take
the distinct letters occurring in the word and store for each of them the previous letter
and the two following. Assuming Cy» follows C;, we add 20 to A(C,.C2). However, to

account for the possibility that these two characters could be swapped, we add 5 to

A(C2,C). In the same way, the characters C2 can be either deleted or swapped with

the character C3, and we add 5 to A(C,,C3). Considering the corruption process /i,,

a letter can be inserted between C, and C2 which we model by adding 5 to A(C4,:).

Finally, we add 1 to all entries in A to avoid null values in that matrix, and normalise

A so that

26

Vi € [1,26] S> A(i,j) =1.
j=l

Perhaps, the best way to explain the algorithin which computes the transition

probability is to show an example. The correct word “television” gives the sequence

of states [20 5 12 5 229199 15 14]. We define the structure shown in table 2.1 which
contains the set of the distinct states (Ds), the sets of the two following letters (F's,
and F's) and the set of the previous letters (Ps).

Algorithm

For 1 <i < length(Ds) ,

A(Ds;, F'sy;) = A(Ds;, F'sy;) + 20

A(Ds;, F's2;) = A(Ds;, Fs2;) + 5

A(Ps;, Ds;) = A(Ps;, Ds;) +5
End

A=A+1

A = Normalisation(A)

You can observe the transition matrix of this example in figure 2.2.b.

2.2.1 Sanity check

We denote a hidden Markov model built on a word C as O(C). We can check that this
model is potentially reasonable with an example:

Construction of the models:

Model, : O(‘ fritillary‘)
Models : O(‘titillate‘)

Let’s take a corruption of the first word:

16

CHAPTER 2, THE PROBABILISTIC APPROACH

Ds| Fs, | Fsq| Ps

20 5 12

5 | 12,22) 5,9 | 20 12

12 5 22 5

22 9 19 5

9 | 19,15 | 9,14 | 22,19

19 9 15 9

15] 14 9

14 1 a

Table 2.1: The feature of the word ’television’.

That word is represented by the sequence of states Wo =

[20 5 12 5 229 199 15 14]. D, is the set of the distinct states

in the word W. The second column gives the set of the following

states for each distinct state (for instance, 5 follows 20 and the
states 12 and 22 follow the state 5 ...). The third column gives the
states following two letters after the state in D,, e.g. ‘I’ (12) follows

two steps after ‘t’ (20). Finally, the last column gives the previous
states of D,.

M = ‘rrtulilary’ = 13(3(a(pa(‘ fritillary’, 1,°r‘),3,‘u‘), 7), 4)

We can compute the probabilities based on the HMMs as previously described:

Pr(M|Model;) = 3.6911 * 10-1
Pr(M|Modely) = 1.5369 « 10-2

This is reasonable since, ‘fritillary’ is clearly a more suitable correct. word than

‘titillate’ for the miss-spelt word ‘rrtulilary’.

2.2.2 Problems with the hidden Markov model

Doing some tests with the hidden Markov models, we noticed some weaknesses. Con-

sider the following example, where @(C) is the model for the word ‘television’. For

this observation, we have:

= 21669410

= 1.9259« 107%

6.1090 * 107°

1.0424 + 107!”

Pr(‘television‘|O(C)

Pr(‘televosion‘|O(C)

(C)
(C)

Pr(‘televsiion‘|O(C

Pr(‘televwision‘|O(C

Here, the probability of having a substitution of one letter by another in the neigh-

bourhood is 11.2 times less than the probability of having the right word. The prob-

ability of having a single transposition is 35.3 times lower. The problem here is that

the probability for transposition is rather too low. Consider the insertion of an extra

letter: the fourth calculation of the example demonstrates that the addition of a letter
in the middle of the word gives a probability 220 times less important! One of the

Ly,

CHAPTER 2. THE PROBABILISTIC APPROACH

reasons is that the confusion matrix affects the computation of the probability when

the length of the observation differs from that of the correct, word.

A way to try to solve this problem is to incorporate all the corruption processes in

the Markov model. We therefore considered an even simpler model, a Markov chain.

An other important weakness in the construction of the Hidden Markov model

becomes apparent when we examine the transition matrix in figure 2.2 more closely:

When the same letter occurs twice in a dictionary word, the first letter to letter tran-

sition is modified by the second because, in the current model, a state is defined as a

letter. For instance, when the model for “tel n” is built, the sequence “ev” changes

the probability to have a ‘I’ after an ‘e’. A possible way to deal with that problem is to

make the distinction between the two ‘e’s of “television” assigning two different states

to the first and the second ‘e’. This approach has not been tried because of a lack of
time.

2.3 Using a simple Markov chain

A Markov chain can be considered as a hidden Markov model with an identity confusion

matrix. So, contrary to before, the letter to letter transitions should take into account

all the four elementary corruption processes. Given a correct word C, we want to

compute the prior and the transition matrix of our model.

The Prior

We initialise the prior to the null vector and do the following :

m(i) +0.6 ifi=C (1)
as mi) + Sawen #t¢N(C) (2)

m(i) + 0.05 if7 C2 AG)
a (i) + 98 vi (4)

Doing this for all state 7, we assume that the probability that the initial state is equal

to the first letter of the word is 0.6 + 0.15/26 (lines (1) and (4)). The first letter of
the word can be substituted with a neighbour with the probability 0.2 (line 2). The

deletion and the transposition of letters are considered in line (3): we assess that the

initial state is the second letter of the word at 0.05. The fourth line considers the

character insertion and ensures that none of the values of the prior are zero.

The Transition matrix

Given the sequence of states (C;, Cj, Cj+2) in the correct word, in addition to the pro-

cedure given for the HMM transition matrix, we put weight on Ane) .C41 (corruption

of the first letter by juz), on Ac..R(Cury (corruption of the second letter by 3). You

can monitor this matrix and the prior in figure 2.3 for the example ’television’. If we

compare the transition matrix obtained with that of figure 2.2.b, we can see that the

transition matrix in figure 2.3.a is less diagonally dominant.

Note that none of the values in the prior and the transition matrix are zero. Hence,

every observation is possible given such a model. Again, we consider the model for

18

CHAPTER 2. THE PROBABILISTIC APPROACH

ore

ors

los

loz

lo

(b)

Figure 2.3: Parameters of the Markov model (transition and prior) for “television”

‘television’, and the likelihood of the same typical corruptions:

Pr(‘television‘|O(C)) = 2.1569 * 10-°

Pr(‘televosion‘|O(C)) = 5.8137 « 107!

Pr(‘televsiion'|O(C)) = 6.7400 * 10-'°

Pr(‘televwision‘|@(C)) 1.0424 « 1071

The four elementary corruption processes have more reasonable relative probabilities:

the transposition of two letters and the corruption of one have quite similar values.
Moreover, the addition of an extra letter is less likely, but still 20 times smaller than

the correct word.
We therefore decided to use a simple Markov chain for each word in preference to a

hidden Markov model. Further tests demonstrated that the separation of the process

4 to obtain an hidden Markov model is less useful than the simple Markov chain which
considers all the corruptions processes at the same level. Henceforth, throughout the
thesis, O(C’)) denotes the Markov chain derived from the word C.

19

Chapter 3

Clustering the words of the

dictionary

3.1 The need to cluster data

With a dictionary of around 26 000 words, computing a model for each word takes

too long. One approach would be to build the 26000 models off-line. and compute the

likelihood of the corrupted word for each of the 26000 words. This requires a large

amount of storage space, and the process of compiling the likelihood for all the words

in the dictionary is also prohibitively slow. With current computational constraints,

the number of Markoy models that can be built on the fly is around 200. For this

reason, we need to rapidly select a small number of candidate words - no more than

200. A Markov model for each of these candidate words can be built and the likelihood

of the observed word calculated. The procedure to select a small set of candidate words

must ensure that

1. the selection does not take too much time

2. the selection is accurate enough to contain the “correct” word

A further useful requirement is that words with similar Markov structure but with

different lengths (e.g.’prefer’ and ‘preferential’) are separated in the selection procedure.

‘The reason for this is that two words can have exactly the same Markov structure. but

differ significantly in length.

One approach to this issue is to cluster the dictionary using the batch K-Means

clustering algorithm, using a vector representation of a word.

3.2 The frequency vector representation

The ideal representation of the word for a spellchecking system would be a represen-

tation which is invariant with respect to the elementary corruption processes 41, /42,

fiz and jig. A corrupted word and the correct associated ideally have the same rep-

resentation because, in that case we would be sure to find the right cluster given the

corrupted word. Although we will not manage to make a fully invariant representation,
transposition and keyboard miss-hits (43 and ju4) can be dealt with to some extent.

20

CHAPTER 3. CLUSTERING THE WORDS OF THE DICTIONARY

One way to make a representation invariant with respect to the transposirious

to use a letter frequency representation. This is a 26 dimensional vector in which e

dimension contains the number of occurrences of that letter in the word. or example:

ss
abbrevi

 =(220020001000000001010100006)

since ‘abbreviate’ contains two ‘a’s, two ‘b’s, none ‘c’s, etc.

3.2.1 Definition of a distance measure

In order to perform clustering, we need a distance measure between frequency vectors.

A first thought would be to take the Euclidean distance. However, a way to take the

corruption process 14 into account is to choose a distance measure which depends on

keyboard distances. For instance, the distance between the two unary vectors @ and

@ ought to be lower than the distance between @ and f because. as you can see in

figure 1.1 showing the Qwerty keyboard, z € Nj (‘a’) and f € N3(‘a’).

We found two natural ways to build such a distance measure: use a covariance

function, or build it by hand. The Euclidean distance between uv! and vu? is (uv! —
v*)?. Our distance will correspond to a generalisation of the Euclidean distance, the

Mahalanobis distance defined by (v' — v?)’T(u! — v?), where T is a positive definite
matrix. Our two approaches find suitable positive definite matrices [.

An automatic construction

The idea is to represent each key of the keyboard as a point in a 2-dimensional space,

as in figure 3.1. Functions that automatically generate positive definite matrices are

known as covariance functions ([4]). One choice is

Tae tee)? ii =

where X" is the point associated with the letter S;. The parameter \ sets the length

scale on the keyboard.

A handmade distance measure

Another approach to constructing a suitable distance is to begin with the identity

matrix, which provides the Euclidean distance, and modify it in order to obtain the

right distance between two unary vectors. Actually, keeping l’s on the diagonal of

this matrix, the distance between the unary vectors @ and u only depends on the

coefficient [,,. If Pj; is null, the distance between these two vectors is equal to 2,

as if the distance were Euclidean. If Pj is equal to 0.5, the distance will be 1. We

therefore set a value in the interval [0,0.5] according to the level of neighbourhood.

The maximum number of levels of neighbourhood is 9 - for instance. Q € No(P). Our

definition of [;; is therefore:

5; € N,(Si), Ti; = 0.5 — 0.05(p — 1)

Given the matrix I, we can easily show that the distance measure obtained satisfies:

S; €N,(S;), d(S;,5;) =1+0.1(p — 1)

21

CHAPTER 3. CLUSTERING THE WORDS OF THE DICTION?

Representation ofthe key to computa 9 diatanc

Figure 3.1: Position of the keys on a orthogonal plan

The distance varies from 1 (d(Q, A)) to 1.8 (d(Q,P)) and is in accordance with
the real distance between the keys of the keyboard. Experiments using these two

approaches showed that the handmade approach was slightly favourable over the co-
variance function, and we therefore decided to adopt this as the distance neasure used

throughout.

3.3. The batch K-Means clustering algorithm

There are 24 960 distinct frequency vectors in the dataset’, the goal is to find a set of R

centres, Iy,... , Mp, which reflects the distribution of this points v", n = 1,... , 24960.

The idea of the algorithm is to find a partition of the data points which minimises

the sum-of-squares clustering function given by

R
Hie SOE Norm(v" =K)

j=l nj

where K;, j =1,...,R is given by

k="
qT ne]

where N; is the number of point v" belonging to the cluster centre Kj.

To initialise the algorithm, we assign the data points randomly. We compute then

the mean vectors of each cluster centre and update the membership of each data by

minimising (Norm(v" — Kj));. This changes the memberships of clusters K;. The

iteration of these two steps decreases J, and we stop when this reduction becomes
insignificant

‘This is lower than the number of words in the dictionary (26057) since more than one word can

have the same frequency representation.

22

CHAPTER 3. CLUSTERING THE WORDS OF THE DICTIONARY

1. Initialisation:

For 1 <i < 24960 ,

vi assigned randomly to cluster j

2. Iteration:

While |.J — Joia| > 0.0001

K Nj DineK; v .

v' is assigned to that Kj with least Norm(v' — Kj)
R i J = Vjn1 Dnex, Norm(v'! — Kj)

3.4 Clustering experiments

We ran the K-means algorithm using the distance measure defined in section 3.2.1. In

order to have on average 400 vectors in each cluster, we set the number of clusters R

equal to 80.

Given an observation G: we find a set of candidates by finding the closest cluster

centre from O and then the closest vectors within this cluster.

Due to the possible corruptions, it is likely that the distance between the frequency

vector Oot the corrupted observation and the correct frequency vector C’ is large. and

these two vectors might well be in different clusters. If this occurs, we will have no

chance to correct the spelling error with the probabilistic approach described in chapter

2. In addition we need to limit the number of candidates to 200 because of the time of

computation of the parameters of the Markov model. Two strategies could be adopted:

either choose the 200 closest candidate vectors from the closest cluster centre, or choose

the closest candidate vectors from the P closest cluster centres, (/\, o,... , Xp). This

second option allows for the possibility that the corruption process was severe enough to

put the correct frequency vector and the observed frequency vector in different clusters.

Indeed, after experimentation with corrupted words, we found that, verv often, this

solution is preferable to selecting only vectors in the nearest single cluster.

Figure 3.2 shows the general procedure: given an observation vector O, we first

select. the closest cluster centres, (IX), 2, K3, 4) in the figure, and then select the

closest vectors in each of them.?

 ? An alternative is to directly look for the closest ve
computing 24960 distances takes too much time.

ors without considering the centres. However,

23

CHAPTER 3.

Figure 3.2:

CLUSTERING THE WORDS OF THE DICTIONARY

6 Ke
“ o

: ® ®
at

re
5] Ms @ ®

% %o °
® Ky

4 ° + .
° 8 :

es

Selection of candidate vectors.

This 2 dimensional example shows 4 clusters centres

(4), Ko, K3,K4) (red stars in the figure) and the selection of

10 closest vectors in Ky, 6 in K2, 3 in K3, and 1 in Ky (these

points are surrounded with red diamonds).

24

Chapter 4

Results and comparisons

4.1 Spellchecking Algorithm: ProbSpell

With the 80 clusters that the K-Means algorithm provides the probabilistic model, we

have now all the tools to propose a practical way to correct words. At this stage, we

do not deal with words formed from root words by addition of prefixes and suffixes.

This will be dealt with in chapter 5. The algorithm is divided into two parts: the first

is to select a set of candidates with the 80 cluster centres and then to use the Markov

structure of the words to select the most probable. We call this algorithm “ProbSpell”.

The correction of an observation is divided into 7 steps (see figure 4.1):

Step 1: We first compute the frequency vector representation of the given ob-

servation.

Step 2: We compare that vector with the 80 cluster centres obtained with the

K-Means algorithm.

Step 3: We select the P closest cluster centres from our data vector. In the

diagram 4.1, P is equal to 4.

Step 4: A list of vectors are assigned to these P clusters. In the p' cluster, we

select the Q, closest vectors.

Step 5: We now have P lists of vectors, each element in this list representing a

set! of candidate words.

Step 6: For each word, we compute a Markov chain as explained in section 2.3.

Step 7: Finally, we calculate the probability Pr(observation|©,) for all candi-

date models ©;. The most likely correction is given by the word associated to

the model ©,,, which maximises the likelihood. Along with the most likely word,

a ranking of the next probable words is given, this is called the ‘level’ of returned

corrections,

ice more than one word can have the same frequency vector, given a vector, we obtain a set of

CHAPTER 4. RESULTS AND COMPARISONS

Steps

Observation

|

Vector(26 x 1)

©

Fes (Kia eRe. Bag)

Clustering System} |Cluster: A] |Cluster: Ky Cluster: Kp} \Cluster: Ky,

| | I |

 m
e

Ae
)

Vector: vi |Vector: vi \Vector: Ve |Vector: vi

> > Pi =
Vector: V/| |Vector: Vj \Vector: Vz} |Vector: Vi

&

Words: C7] Words: C} (Words: Cj} |Words: OC}

Words: C?| |Words: C7} Words: C7} |Words: C7}

Words: C7] |Words: C4, (Words: Cj,| |Words: Cf,
Graphical Models
pe ere)

Model: ©}| |Model: 6} Model: ©},) |Model: O}

Model: 7} |Model: 0% Model: ©7} |Model: OF!

Model: ©7| |Model: 67, Model: Of) [Model: 04)

 @
Argmaxe, Pr(Observation|O,

Figure 4.1: Algorithm of ProbSpell: the individual steps 1-7 are explained in the text.

26

CHAPTER 4. RESULTS AND COMPARISONS

4.2 Tests and results

Since we do not have a data set of mistakes typed by users, we artificially create test
sets. We randomly choose words in the dictionary and apply to them a corruption
function. We will then be able to check both the clustering approach, which provides a

set of candidates, and the probabilistic approach which determines the most probable
correct word. The results underline the importance of the length of the correct: words.
For this reason, we decided to separate the results according to word lengths.

In order to show that the algorithm is more or less coherent, we focus on the
elementary corruption processes (j;)\<i<4 and begin by analysing simple corruptions:

one deletion, or one addition or the transposition of a letter and/or whe corruption

of one character. Subsequently, we consider more complicated compositions of these

corruption processes.

4.2.1 Basic corruption results

The goal of this test is to measure the efficiency of the clustering idea and of the

probabilistic models. We consider 10 randomly chosen words of length 4, 5, ..., 10

and for each of them all the corruptions given by a single application of (1;),<i<4 and

the composition of j1g and jug (see table 4.1). Therefore, given a dictionary word. the

test set contains corruptions obtained by deleting any letter of the dictionary word,

and swapping any two adjacent letters after substituting any letter with one in its first

neighbourhood.

Length of words 4 a 6 a 8 9 10 | Total

Number of words 10 10 10 10 10 10 10 70

Number of corruptions | 2054 | 2740 | 3460 | 4352 | 5208 | 6199 | 9779 | 33792

Table 4.1; The data set of simple corruptions

In the experiments, we defined the model as follows:

e P=4: the number of clusters centres selected

© (Q1, Q2, Qs, Qi) = (50, 40, 30, 20): the number of vectors selected in each cluster

¢ Number of corrections: 3 and 10 (called also the level)

A small set of example words, corresponding corruptions and likely Corrections, is

given in table 4.2. For each length of word, we compute the percentage of success

of the clustering approach (i.e. when the correct word is assigned to one of the 4

cluster centres found in step 3 of the main algorithm) and the overall percentage of

success of ProbSpell when the level is 3 and when the level is 10. We consider a

corruption corrected when the word which generated it appears in the list returned by

the algorithm. Figure 4.2 shows these percentages.

Since the search of the right cluster is cr | (otherwise, we have no chance to

find the right word), we first focus on the clustering performance. The percentage of

success of clustering is reasonable for the words of length 4, 5, 6, 8, and 10 (higher than

27

CHAPTER 4, RESULTS AND COMPARISONS

Corruption | Word Corruption | Corrections | Probabilities
Hy flowery flowrery flowery 0.8944 « 107"

forgery 0.0456 *« 107

fernery 0.0434 « 107"

hound hounmd hound 0.6094 * 107°

bound 0.0682 * 107°

bounds 0.0667 *« 10~°

prior pritor prodigy 0.3482 * 10-°

profit 0.3408 * 10~°
parrot, 0.2004 * 10-°

[2 introduce introuce intrude 0.1003 * 10-*

inventor 0.0766 * 10-°
investor 0.0202 « 10-°

fortune forune fortune 0.1139 «10-7
functor 0.0094 * 10-7
foundry 0.0071 « 10-7

drench drenh drench 0.5641 « 10-7

dean 0.1047 « 10-7

dreg 0.0988 « 10-7
[3 Ofey existence exitsemce existence 0.1439 « 10-8

execute 0.0251 « 10-*
executor 0.0120 *« 107

malfunction | malufnetoon | malfunction 0.8816 * 10-7

nonfunctional | 0.0596 » 10-1
mispronounce | 0.0180» 107™

shoemaker | shoemjaer shoemaker 0.2929 « 10-*

shoemake 0.0981 « 10-*
shirtmake 0.0147 « 10-*

Table 4.2: Examples of words, simple corruptions and likely correc-
tions

For a corruption process and a dictionary word given, the third col-

umn presents an exaniple of corruption. The fourth column displays

the level 3 corrections returned by ProbSpell with the associated

probabili

88%). The performance is slightly worse for length 7 words (82%). A likely reason for

this is that length seven words are most numerous in the dictionary, and distinguishing

between them is correspondingly difficult. The limitation of the cluster search is that

some kinds of corruptions, especially deletion and insertion, move the observation far

away from the correct cluster. For short words, the situation is not so severe since they

are less numerous, so that length is almost enough to determine the correct. cluster
centre.

The percentage of success as a function of the length of the words is rather interest-

ing. The longer the word is, the more information we have of its Markov structure. One

or two corruptions will not radically affect too much this structure. For this reason,

28

CHAPTER 4. RESULTS AND COMPARISONS

Analysis of the basis performances of ProbSpell

100 T T T T T T T

70

Pe
rc
en
ta
ge
 o

f
su
cc
es
s

20+ Clustering | +
Level =3

t0b Level = 109 |

8 9 10

4 5 6 iz
Length of the words

Figure 4.2: Basic tests of ProbSpell

the success for words longer than 8 is high: all of them are higher than 80% and the

average per word is 92.06%. Moreover, we can notice that, for these types of words,
returning 3 or 10 corrections gives roughly equal performance. This demonstrates that

the models capture the structure of the words.

Unfortunately, the percentage of success decreases as the length of the word de-

creases. This phenomenon is understandable for 4 character letters (48.39% with 3
corrections and 72.69% with 10). With a transposition and a corruption of a letter,

the observation can lose its Markov structure and can even be much closer to another

word. For example, for the observation ‘taut‘ = j14(j3(‘that', 2, ‘u‘),3), we obtain the
values:

Pr(‘taut‘|O(‘tail')) = 1.3178 « 10~*

Pr(‘taut‘|O(‘taint‘)) = 1.2858 * 1074
Pr(‘taut‘|O(‘tag‘)) = 8.5700 * 10~°

Pr(‘taut‘|O(‘that')) = 4.3208 * 10~°

This demonstrates that for short words it is feasible that the corruption process gener-

ates a corruption closer to a word in the dictionary different from the “correct” word.
E.g. ‘tail’ is more likely than ‘that’.

29

CHAPTER 4. RESULTS AND COMPARISONS

Comparison with Ispell on combined transition/mishit

These partial results are encouraging. But what happens when the corruption pro-
cesses are more complicated? This section describes more complicated tests and a

direct. comparison with Ispell. As before, we present the results for different lengths

of the correct, word. We define a corruption complexity using the processes iz and [14,

representing the number of transpositions and the number of keyboard corruptions.

Given a correct word C, we raudomly select » positions (uot necessarily distinct) and

swap these letters with the previous ones. Similarly, we randomly select nm: letters and

apply a nearest neighbourhood corruption. For each word length. we took 50 observa-

tions for each complexity (n,m) and each correct word. We then ran ProbSpell with

the parameters P = 6 and (Qi, Q2,Q3, Q4, Q5,Qe) = (50, 40,30, 20, 10.5) and also

computed the success of Ispell. The results are shown in figure 4.3

The first remark about these results is that Ispell is always less accurate than

ProbSpell. That is not really a surprise: Ispell is deterministic and only considers the

elementary processes, without combination of these process Therefore, the percent-

age of success for a complexity higher than (1,1) should be zero. However, since the

choice of the letters corrupted and of the letters swapped is random, it can happen

that the corruption process obtained is equivalent to a simpler process. For this rea-

son, Ispell sometimes manages to correct an observation. This argument explains why

very often, for two transpositions and a keyboard corruption, Ispell increases its rate

of success: two flips can lead to the identity.

Let us have a look more carefully at ProbSpell’s results. For long words, Prob-

Spell works well. The first cliagrams in figure 4.3 show that, even if the complexity

reaches (3.3) or (2,4), the percentage of success is higher than 65%. ‘To understand

the power of the spellchecking, consider the following example of an observation with

3 transpositions and 3 keyboard corruptions:

O = ‘mipelments finl‘

= pts (H3 (fe (Ma (pea (t04 (“implementation', 10.‘s‘), 11,‘f*), 13, ‘U). 2), 5), 14)

For that example, ProbSpell maximises the probability Pr(O|O(C)) when C is

“implementation”, returning the correct result. Capturing the Markov structure for

long words, ProbSpell has more than 77% of success when less than 4 corruption

proc s ave used (ie. for the complexities (n,m);4m<4). The results are still good

when the observations have 7 characters.

Unfortunately, for short words, the success goes down: the corruptions applied are

too complicated and either the frequency vector is far away from the correct one (and

so the correction is lost during the first step of the algorithm) or the Markov structure

of the observation is too different to the correct one (and so, the probability given the

model associated to the correct word is too low).

A Few examples of corrupted words and the likely correct words given by ProbSpell

are presented in table 4.3.

Deletion and insertion of letters

At this point we consider the performance of ProbSpell for observations generated by

corruption processes f1; and flg. This means that, generally, au observation and the

30

CHAPTER 4. RESULTS AND COMPARISONS

Length > 9 beagnes

S
t
s
)
 a
s
e

x 8 Pe
rc

en
ta

ge
 o

f
su
cc
es
s

oa
8

8)
8

Pe
rc
en
ta
ge
 o

f
su

cc
es

s
8

3 8

1.1.2.1 1.22.2 1.33.13.22.34.13.32.4 a1 24 1.2 22 1.3

Complexity of the corruption process Complexity of the corruption process

Length = 8 Length = 7
400

s
8

Pe
rc
en
ta
ge
 o

f
su
cc
es
s

yw
R
e

o
8

8
8

Pe
rc
en
ta
ge
 o

f
su
cc
es
s

&
8

100

2 s

i (ot 12 22 138 i Si 12 0ee2 as
Complexity of the corruption process Complexity of the corruption process

Length = 6 Length = 5
400

80

60

Pe
rc
en
ta
ge

of

su

cc
es

s

Pe
rc
en
ta
ge

of
su

cc
es

s

oo
Bo

tS
38

20s

20

100

80

60

40

Pe
rc
en
ta
ge
 o

f
su

cc
es

s

Ww 21 1.2 2.2 1.3 V1 2.1 42 2.2 1.3

Complexity of the corruption process Complexity of the corruption process

Length = 4

ProbSpell

 Ispell
 r

Til eed ne 82. a's
Complexity of the corruption process

Figure 4.3: Comparison with Ispell on combined transposition/mishit.

The corruption complexity is the number of transpositions and the

number of mishits. These elementary processes are randomly ap-

plied to the correct word in order to obtain a test set. These results

are for a level of 10.

31

CHAPTER 4. RESULTS AND COMPARISONS

Word Corruption | Corrections Probability |
shameless haxmepess hammerless 0.7777 * 10"

harmless 0.5129 * 10"

harassment 0.4242 * 107"

coverable cvsodable coverable 0.3828 * 107

crossable 0.2601 * 10°

catchable 0.0841 * 10°
sensibility essnibuloty | sensibility 0.1039 « 10"!

feasibility 0.0708 « 10-7

syllabicity 0.0047 « 10-"

elast rlasticyjt elasticity 0:3392 «1071?

elativity 0.2524 « 10-7
relativist 0.0325 « 107”

incredulous inrcdeuokus | incredulous 0.2432 + 10-1"

incestuous 0.0947 « 10-7!
industrious 0.0424 « 10-T

misconstrue | miscsonrdue | misconstrue 0.3061 « 10-1!

misspecified 0.0112 « 10-™
mischievous 0.0070 « 10-1!

muemonically | jneomnicakyl | mnemonically | 0.2300 « 10-

mimetically 0.0198 « 10-7

incommunicado | 0.0079 * 10-™
backdrop gcakdrpk backdrop 0.1899 *« 10~

glacier 0.1520 * 107"

grosbeak 0.1240 « 107
balloon valoono balloon 0.2894 * 107

gallon 0.0720 * 10
ballyhoo 0.0691 * 10-°

Table 4.3: Examples of words, corruption with two transpositions and

two mishits and likely corrections.

correct, word do not have the same length. As before, results will be compared with

Ispell.

The data set is composed of 10 random words of each length (4 till 10). We take

300 observations for each correct word. Deletion of a single letter and a corruption of

a single letter is first considered, In a second test, we add a random letter and corrupt

another. As before, we obtain the percentage of correction of ProbSpel! and Ispell.

The results are shown in figure 4.4.

The first, comment is that. once again, ProbSpell performs better than Ispell: this is

not, a surprise because the corruption process considered are too complicated for Ispell.

Moreover, the percentages for ProbSpell generally grow with the length of the words

and reach a maximum of 95.87% (for the deletions) and 95.97% (for the additions)
for the longest wi Note that the results for deletions are worse than those of the

additions (except for words of length 8). As pointed out in section 2.2.2, the Markov

model overvalues deletion because the length of the observation is shorter. ‘Therefore,

32

CHAPTER 4. RESULTS AND COMPARISONS

we can expect better results for deletion. A limitation of the clustering approach is

that addition and especially deletion of letter can provoke a miss-classification within

the 80 cluster centres.

Analysis of performances of ProbSpell with deletion and addition

100,

Probspell (1 del., 1 corr.)
90 Ispell (1 del., 1 corr.)

ProbSpell (1 add., 1 corr.
Ispell (1 add., 1 corr.)

70

60

Pe
rc

en
ta

ge
 o

f
su

cc
es

s

8

Length of the words

Figure 4.4: Test with deletions and additions of letters with a level of 10.

In conclusion, when the length of the observation and the length of the correct word

are different, ProbSpell performs less well. The limitation of the clustering idea ob-

served before on simple corruptions are again put in evidence with corruption processes

Hy and fiz.

4.3 Conclusion

For long words, both the clustering and the Markov models work well, to the extent

that even quite severe corruptions can be corrected. For short words, the clustering

approach is satisfying because of the relative small number of short words in the dic-

tionary. However, the Markov model is less effective. The performance of ProbSpell is

encouraging, far exceeding the performance of Ispell in corruptions involving a combi-

nation of the elementary corruption processes. However, the performance of Ispell is

superior to that of ProbSpell, provided that only the very simplest corruptions are con-

sidered. This suggests that combining the two approaches - using Ispell to generate a

set of candidate words for the ProbSpell algorithm or used exclusively for short. words,

could provide a powerful spellchecking system, able to deal very accurately with minor
and more severe corruptions.

33

Chapter 5

Dealing with suffixes and prefixes

Being able to deal with suffixes and prefixes is an important aspect of any spellchecking

system since their inclusion greatly expands the number of words in the dictionary.

Associated to each word in the dictionary, there is an affix flag describing how to form

another word. For example, in the case of the word ‘dirty’, several flags exist, one of

which is described by:

e Name of the flag: T

e Last letter of the dictionary word: Y

© Set of the penultimate letters of the dictionary word: Qy —(A, E,/,O0,U) (which

means every character except ‘a’, ‘e’, i’, ‘0’, ‘u’)

e List of letters deleted: Y

List of letters added (end or beginning): JEST

This flag thus describes how to form the word ‘dirtiest’ from the dictionary word

‘dirty’. New words are formed by paring the dictionary word ‘dirty’ down to ‘dirt’

and then adding a set of letters. Generally, the letters deleted and added to obtain

the word with the suffix depend on the final and penultimate letters of the dictionary

word. Let us consider how we could correct a corruption of the word “multiplication

which is actually the dictionary word “multiply” where the ‘y’ is deleted and ‘ication’
added. The corruption process can affect both the beginning of the word and the suffix

and moreover. a swap may mix up the root with the suffix. For instance, instead of

“nvultiplication”, the observation could be “multipiclgtion” (2 swaps and 1 keyboard

corruption). To deal with such a mistake, given the observation, we need to find the

dictionary word “ ly” and the suffix and then build a Markov chain model for

the word ‘multiplication’. In the rest of this chapter, we principally consider suffixes

since prefixes are less numerous (only three kinds: RE-, UN-, IN-) and pose exactly

the same kinds of problem.

We consider three solutions. each of which can be integrated with the work done in

chapter 4. The first idea is to use translated cluster centres, the second is to find the

most likely dictionary word, and the final option is to build a Markov chain to guess

which suffixes are most probable.

34

CHAPTER 5. DEALING WITH SUFFIXES AND PREFIXES

5.1 Three Approaches for dealing with suffixes

5.1.1 Vector translation

To explain the idea, we take an example of corruption of the correct. word C = “dirtiest”.

Given. for instance, the observation O = “dortiets”, the goal is to select J¥,,, the cluster

centre of the dictionary word |V = “dirty” associated with the suffix “est”. In order

to do that, we can run through the set of suffixes, and for each one, delete these suffix

letters from the observation, and add any letters required to obtain a word. E.g. for

the suffix flag 7, we would delete an ‘i’, ‘e’, ‘s’ and ‘t’ from the frequency vector

representation of the word and add ‘y’. This is equivalent to translating the vector

centres and the vector representation of the dictionary words. Finally, we hope that

both the distances d(O, Ky, — ‘y' + ‘iest') and d(O, W — ‘y' + “iest’) are small enough

to identify the correct cluster.

In doing this, when looking for the closest cluster centres, we «lo not care about

the position of the letters added by the suffix. It is possible that, for instance. the

letters ‘i’, ‘e’, ‘s’ and ‘t‘ occur in an observation without the suffix: for instance, the

observation “«isaeter” could be typed instead of “disaster” (the key ‘e’ is a neighbour

of ‘r’). Considering the suffix flag 7, after deleting the letters ‘iest’ and adding the
letter ‘y’, the vector representation of the result “daery” is the same as that of the

dictionary word “ready”. So, in that case, it is likely that the closest centre is going to

be those of the dictionary word “ready” associated to the suffix flag T. This problem

is especially evident when the suffix considered is short (e.g. addition of a single letter,

‘s’). Nevertheless, if we manage to select the correct cluster with the right suffix, the

Markov structure provides a good way to select the most probable word in the list.

5.1.2 Deietion of the suffix

Let us say that the observation is a word with a suffix. The goal is to find, without any

knowledge about the suffix flag used. the correct dictionary word which could generate

the observation. Ignoring the number of letters added by the flag, we are going to
delete one letter after another from the end of the observation and with each deletion,

use ProbSpell to return the best corrections. The suffix flags associated to cach word

of the list of she corrections provide a list of candidate words. A Markov model for

each of them and the maximisation of the probability Pr(Observation ©,) provide a

list of corrections with suffixes. A detailed example is shown in table 5.1.

Two main problems are raised with this approach: first, the number of deletions

is unknown so, in order to consider all suffixes, we need to clelete till a one-letter

observation. Moreover, that means that ProbSpell is called as many times as the

length of the observation typed, which is quite time consuming.

35

CHAPTER. 5. DEALING WITH SUFFIXES AND PREFIXES

5.1.3 A Markov chain for the suffix

In total, there are 35 suffix flags in the database, each representing a distinct sequence

of letters added at the end of the root. The idea here is to find first a list of likely suffixes

and then apply the approach of section 5.1.1, but considering only the translation linked

to the likely suffixes found. How can we find the most likely suffixes? In order to do

this, we run through the set of suffixes and for each one substitute the last letters of the

observation for the suffix. We then build a Markov chain with that sequence of letters

and compute the probability Pr(Observation|O(suffix;) where suffix; is the observation

altered by substituting the suffix. These values give an estimation of the likelihood of
the suffix. For example, given the observation “supsenidmg”, the substitution of the last

letters for each suffix provides alist of words: “supsenided” for the suffix ‘ed”, “supseni-

ing” for “ing”, “supsication” for “ication”, etc. A Markov chain is built for each of

them and then used to compute the probabilities Pr(“supsenidmg“|O(“supsenided*)),

Pr(“supsenidmg“|O(“supseniing“)), etc. Once we have identified a list of likely suf-
fixes, we apply the approach of section 5.1.1, translating the cluster centres appropri-

ately to find the dictionary word generating the observation.

5.2 Test of these three solutions

In order to measure and compare the performances of each of these ideas. we need
a data set. We considered five complexities of corruption processes and randomly

selected 50 dictionary words with suffix flags, see table 5.2. One of these flags is

randomly chosen and then 20 corruptions are computed according to the complexity

of the process considered. There are therefore 1000 observations for each complexity.

We compared Ispell, vector translation, the deletion of letters. and the Markov

modelling approach described before. Figure 5.1 displays the percentage of success

for these four approaches. Analysing the behaviour of Ispell, we first remark that the

deterministic approach is perfect for one transposition or one key corruption: Ispell

reaches hundred percent for these two complexities. However, as soon as the corruption

process is more complicated, the success of Ispell decreases rapidly: less than 20% for

one transposition and one key corruption and less than 3% afterwards. Now, let us

consider the results for the three suffix ideas for ProbSpell. Regardless of complexity,

it seems that deletion of the suffix described in section 5.1.2 is the most effective: for

elementary corruption processes jz and jig, the rates are over 85% and even when the

complexity is (2,2), 50% of the corruptions are solved. The determination of the most

likely suffixes described in section 5.1.3 gives interesting results and improves the initial

idea described in section 5.1.1.

36

CHAPTER 5. DEALING WITH SUFFIXES AND PREFIXES

Observations | Dictionary words found | Words derived | Probability
supseniding semipublic semipublic 1.5102 %10-44

suspecting suspecting 3.0709 « 107"

unsuspecting 1.5311 + 107"
supersonic supersonic 2.0195 « 10-7

supersonics 1.7143 ¥ 10-7
semidrying semidrying 1.8610 « 10-7

supremacist supremacist * 1.4098 » 10-7
surpassing surpassing d0352107 7

surpassingly 9.8727 « 10-¥
supsenidm semipublic semipublic 1.5102 «10-"

surmise surmise Oi55% 10-—

surmised 2.9059 « 10-7
surmising 9.6577 « 10-3
surmiscier 9.6577 « 10-
surmises 7.1593 « 10-7

suspend suspend 2.2019 « 10-7
suspended 1.5592'* 1077
suspending Drs2ieioc
suspender 1.6536 + 10-7
suspends 1.5164 « 10-7
suspenders 1.5022 107

supersonic supersonic 2.0195 « 10-”

supersonics 1.7143 + 10-

euphemism euphemism 7.6959 = 10-™

euphemisms 5.0045 + 10-8

stupendous stupendous 8.6142 « 10-8

stupendousness 6.0848 « 10-8

stupendously 5.6507 « 10-
supsenid suspense suspense 2.1336 « 107?

suspension 155sie10-2
suspenses 1.6811 + 1077
suspensive 1.6294 « 107"

suspensions 13675 #10-

supersonic supersonic 2.0195 = 10-?
supersonics 1.7143 + 10-

supernova supernova 2.2169 « 10-7
supernovas 2.0278 « 10-

surmise surmise 9.7155 +10-"
surmised 2.9059 « 10-™
surmising Oey

334e 107
surmises 7.1593 * 10-7

supposed supposed 2.8062 * 10-7

supposedly gas!

snipped snipped e102

37

CHAPTER 5. DEALING WITH SUFFIXES AND PREFIXES

Observations | Dictionary words found | Words derived | Probability

supseni suppose suppose 3.1859 * 10-"?

supposed 2.8062 * 107!
supposing 4.2814 « 1077

supposier 2.5624 « 10-7

supposes 2.3078 « 10-*

suspense suspense 2.1336 « 10-”
suspension 1.5531 + 107!
suspenses 1.6811 * 10-7
suspensive 1.6294 « 10-?
suspensions 1.3675 * 10-™

shipped shipped 3.4552 « 107-7
snippet snippet 1.9470 « 10-7
snipper snipper 1.9470 * 10-?

snippers 2.3455 « 10-7
snipped snipped 2.3455 « 107?

supsen suspense suspense 2.1336 « 10-™

suspension 5531 210-2
suspenses 1.6811 * 10-7
suspensive 1.6294 + 10-?
suspensions 1.3675 + 10-7

stipend stipend 1.1268 » 10-7

stipends 7.5839 « 10-3
sensual sensual 5.5019 « 10-8

sensually 3.9736 « 10-8
superb superb 8.5038 « 10-8

superbness 6.7389 « 10-3
superbly 6.9632 « 107%

spurn spur 9.0207 « 10-8
spurned 2.9974 « 10-8
spurning 1.0520 + 10-"
spurner 2.2461 « 10-"
spurns 5.4893 «10773

Table 5.1 The deletion of letter for the observation “supsenidmg”.

Given the observation “supsenidmg’ typed by the user (instead

of “suspending”), ProbSpell is first run over that observation in

order to find the most probable dictionary words. This is also

done with the previous observation without the last letter (second

line), then without the two last letters (third line) and so on. The
second column shows the 6 corrections proposed by ProbSpell for

each corruption. The third column is the list of words derived

from the dictionary words found according the suffix flags the dic-

tionary words have. Finally, the computation of the probability

Pr(“supsenidmg"|®,) for all model ©, associated to eaca words
derived provided the most likely correct, word. We remark that, in

that example, the correct word “suspending” has the highest value.

2.7321 * 107". ‘The 5 highest probabilities are highlighted.

38

CHAPTER 5. DEALING WITH SUFFIXES AND PREFIXES

Number of words 50 | 50 | 50 | 50 | 50
Number of corruptions 20 | 20 | 20 | 20 | 20

Number of swaps IO) S| F252

Number of key corruptions | 0 | 1 | 1 | 1 | 2

Table 5.2: The data set of observations with suffix

Analysis of the performance of the three approaches dealing with suffixes

100 T T T T

Ispell
Col Vector translation} }

Deletion suffix
80 Model suffix

70

60

50

40

Pe
rc

en
ta

ge
 o

f
su
cc
es
s

30

1.0 o4 14 12 22

Complexity of the corruption process

Figure 5.1: Comparison of the three approaches and Ispell

39

Chapter 6

Mixture of Markov models for

clustering

6.1 Introduction

The algorithni proposed in the section 4.1 to correct spelling errors works quite well:

given an observation, the clustering scheme rapidly provides a list of candidates, and the

probabilistic model usually manages to select the correct word amongst the candidates.

However, if the correct word is not identified by the clustering procedure, the method

fails. regardless of the subsequent probabilistic approach. The experiments in chapter

4 demonstrate that the weakness of the current method is primarily in the clustering
procedure - provided the correct cluster is identified, it is rare to fail to find the correct

word. The reason, presumably. that the clustering fails. is that it does not take into

account enough of the corruption processes, particularly deletion and insertion. Indeed,

the artificial distance measure can lead to some problems of miss-classification: with the

current algorithm, a corruption of a correct word could roughly keep its original Markov

structure and at the same time lose its frequency vector representation characteristics.

This occurs, for example, when the observation has many letters removed from the

end of the correct word. This suggests that a method of clustering, based on the same

principles as the Markov model approach, should be more appropriate. One possibility

is to replace the distance measure based on the keyboard by a probabilistic measure

based on the Markov structure of words. That is, we could attempt to cluster words

based on their similarity in terms of their letter to letter transitions sich that all

members of particular cluster would have a similar Markov structure. Each cluster is

governed by « Markov model with parameter ©, (the initial state probabilities and

the transition matrix). This model provides a probabilistic generative model for the

sequences of that group. In the following section, the EM algorithm applied to the

clustering problem is fully detailed.

40

CHAPTER 6. MIXTURE OF MARKOV MODELS FOR CLUSTERING

6.2 Clustering with a mixture of models

In general, a probabilistic interpretation of any clustering procedure is that it is mix-

ture model. For example, the K-means algorithm is a deterministic version of Gaussian

mixture models. This suggests that we can cluster data based on their Markov similar-

ity, by simply using a mixture of Markov models ({2],[14]). In chapter 2, we associate
to a word of the dictionary a Markov chain, which represents the letter to letter tran-

sition of the original word, incorporating the elementary corruptions. Since we want

to include the corruption processes in the clustering, a first idea is to build a Markov

chain for each word of the dictionary. We can interpret this as a mixture model, with

26057 components. To cluster these models, we could try to fit this set of models with

a mixture model with a greatly reduced number of components.

Formally, the problem is written as:

e p%(a): the original given model (a 26057 component mixture model)

e p(x): the mixture of models we will use to fit to p9(x)

Di)= Devt a@\k)p(k)

p(s) ave the raixture coefficients and p(x|k) the k** mixture model. corresponding to
the k'" cluster. The KL divergence between the original and the mixture distributions
can be used in order to fit the mixture model:

KL(p) (x), p(x)) = $2 p(2) log(p%(2)) ~Le) (x) log(p™ (a)) (6.1)

where.

The goal is to find the parameters of the distribution p™ which mininise this KL

divergence. Since, p™ only appears in the second term of equation 6.1, we need to

maximise the energy 2,

E Le 2) log(p" (x)) (6.2)

(logp" "(z))ps, (6.3)

with respect to the parameters of p'. We introduce an arbitrary distribution q(k|x)

and consider the KL divergence between q(k|x) and p(k|zx):

KL (q(k\a:), p(k|x)) SY alka) log g(a) — ye q(k|a) log p(k\az) (6.4)

= alka) log a(kla) — J alka) log ERP) 6.5)
& k =

> 0 (6.6)
Isolating the term log p™(x) in equation 6.5, the inequality 6.6 provides an lower bound

on the log likelihood given by

logp'(a) > ~ dial k|x) log q(k|x) + da ka) log p(alk)

+ ow k\a) log p(k (6.7)

41

CHAPTER 6. MIXTURE OF MARKOV MODELS FOR CLUSTERING

Equations 6.3 and 6.7 leads to an lower bound on the energy

B > ~S (a (kx) log q(klx))yo +S (u(x) log p(\h))
k k

+ S(a(E|))po log p(k) (6.8)
k

We assume that the distribution q(k|x) is fixed. The parameters of the mixture of

models we want to fit appear in the second and the third term in equation 6.8: the prior

and the transition matrix of cluster k in the terms log p(2|k) and the mixture coefficients

in the term logp(k). Let us first consider the optimisation of the coraponents. We

introduce the distribution g(k) given by

Gk) = (a(k|x)) po

The third terin of equation 6.8 can be written as

Yo ak) log n(k) = K LT) = $2 G(r) log Gh) (6.9)
k k

Therefore, we obtain immediately the optimal choice of the mixture coniponents given

by:

rk) = ak)
(a(klz)) (6.10)

Let us focus now on the second term of equation 6.8 which can be written as:

DL al&lz) log n(alk))yo = YO SS a(klz)p*(x) log plw|k) (6.11)
k ko

So origin) log p(a|k:) (6.12)
Ez

R

where

r(x|k)) x q(te|x)p"(x) (6.13)

In addition, since the particular cluster centre k follows a Markoy distribution, we can

write p(a|k) as:

p(alk) = le Wee (6.14)
i ij

where the prior 7; and transition matrix ajj are the parameters QO, of cluster k. d;(x)

is the count of initial state i in x. Similarly, fjj(x) is the count of transitions i > 7 in

ace Our goal is to maximise equation 6.12 with respect to the cluster paraineters,

let us consider now the Lagrangian function with the Lagrange multipliers A; and 8

associated to the normalisation constraints of the parameters:

L(x, x}, 8) = 9) r(elk) log(p(alk)) — S>WCS ay — 1) - BOQ m= 1) G.15)
L } i e

CHAPTER 6. MIXTURE OF MARKOV MODELS FOR CLUSTERING

Substituting equation 6.14 in equation 6.15, we obtain

L(Gx, N}.8) = Dy Dir elk)ai(e) low me + Dy (alk) fila) log ess!
Dn AQ ay — 1) — B(a 71) (6.16)

The conditions for 6.16 to be stationary with respect to the parameter @,. A, and B

give the following equations

OL : . ae =08 ajax di r(zlk)fig(a) with , OVE (6.17)

aL | ene : a i aa Oe mad, r(alk)di(z) with >» i=1 (6.18)

So, given the distribution q(k|s:), for a sample drawn from p%(2:), the computation of

the average frequency of transition i — j, weighted by q(k - (g(k|:2) fig) pa, and
normalised provides the optimal transition matrices. This update of the parameters

ensures the upper bound computed in equation 6.8 is maximised with respect of the

parameters. Asserting q(k|z) = p(k|z), defines a closed set of equations that are
guaranteed to decrease the KL divergence bound between the models p’ aud p”. This

is in fact an EM algorithm in which the E step is given by q(k|x) = p(k|x) and the M
step is given by equations 6.10, 6.17 and 6.18. We remark that the mixture components
(equation 6.10) are the expected average proportion of the sample drawn from p9 in

each cluster.

In order to compute the optimal parameters, we need to take a sample from the

distribution p’. In other words, for each Markov model associated to a dictionary word,

a set of samplvs is necessary for the computation of the optimal mixture model param-

eters. This would be a very costly procedure. Indeed, rather than fitting our model

p' to samples from model p’, it would seem more appropriate to replace the Markov

model mixture p? by p9(a) = Some 6(@ — x”)) where x” are examples of corrupted

words from the dictionary. In that case, the E step and M step become

E step p(k|z) = (6.19)

M step p(k) = nthe") (6.20)

DP lz”)d (a ke ata 3.2

ot VP p(k”) a
St vlkl2”) fis (”) a ene see 5.22

we p(k") v7

6.3 Application to the data

Instead of applying the algorithm described in section 6.2 over all the words of the

dictionary, we will take a simple data set composed of 1000 randomly chosen dictionary

43

CHAPTER 6. MIX

JRE OF MARKOV MODELS FOR CLUSTERING

words. Moreover, this current section will not consider any kind of corruption, each

observation being a dictionary word. The experiment consists of fitting of a mixture of

10 Markov models to the 1000 words. In addition, the K-means algorithm described in

section 3.3 is run in order to compare the two approaches. The 10 mixture coefficients

found after 20 iterations are between 0.0749 and 0.1138. Since these probabilities

represent the proportions of data in each cluster, the 1000 data are evenly distributed

between the clusters. Let us consider the two first clusters which contains 75 and 90

words. Figure 6.1 shows the transition matrices and the priors of these clusters. In

table 6.1 we have selected a few words from each of these two clusters, and also a few

words from the first cluster found by the K means approach.

Transition matrix of cluster 1

los

5 oe

407
10 |

08

os jos
15

oa

os
20

o2

0.1
25

0 0 6 10 15 20 25
‘Transition matro of cluster 2

09
5 oa

07 f ow
10]

oe ow

los
15 low

oa

os loca
20

ae sl oon

01
zs ce

0 0 5 10 15 20 25

Figure 6.1: Parameters of the Markov models of two first clusters

Observing the transition matrix of cluster 1, we note that a few transitions are

equal to 1 (e.g. Pr(‘a‘|‘w‘), Pr(‘e‘|‘j*), Pr(‘e'|‘k‘), Pr(‘u‘|‘q‘), Pr(‘y‘|‘x‘), Pr(‘s‘|‘y‘),
Pr(‘i‘|‘z‘)). However, observing the words classified in that first cluster, it is difficult

to distinguish the features of the cluster except for rare sequences of letters such as

‘wa’ or ‘cy’. That cluster is therefore mainly characterised by these rare combinations

and by the prior: for instance, cluster one has the highest prior probability for the

44

CHAPTER 6. MIXTURE OF MARKOV MODELS FOR CLUSTERING

letter ‘p’ (ai (‘p') = 15) whereas none of words beginning with that letter is in

cluster two. Reciprocally, the prior of cluster two has highest values for the letters ‘c’

(m2("p') = 0.1969) and ‘s” (72(‘p*) = 0.1448) whereas these values are very low for the

first cluster. [In comparison with the K means clustering approach described in chapter

Cluster model 1 | Cluster model 2 | Cluster 1 (K-means)
Number of words 75 90 57

Examples ‘placebo’ ‘chimpanzee’ ‘market place’

‘servile’ ‘chip’ ‘transterral’

‘plane’ ‘chit? ‘irreplaceible’

‘plate’ ‘stereo’ ‘naccurate’

‘nirvana™ ‘stood’ ‘heartbreak’

‘plug’ ‘round’ ‘supernatant,

“pluperfect’ ‘storeroom’ ‘lawbreaking’
L ‘federate’ ‘chickadee’ ‘fluctuate’

Table 6.1: Two clusters from the mixture and one obtained with the K-means algorithm

3 based on the on the frequency of letters in the word, we observe that the length of

the words do not play as strong a role in the Markov clustering process. Even if the

interpretation of the Markov clusters is rather difficult, very rare combinations clearly

have too much importance in the computation of the parameters of the mixture. If a

corruption of a word were to affect a rare letter combination, it. is quite possible that
the observation and its associated dictionary word would not be in the same cluster.

In clustering the words, we really need to incorporate the elementary corruption

processes. A way to do that is to apply the approach described in section 6.2, generating

a list of corruptions for each dictionary word. However, in order to train accurately the

mixture model, we would need a very large number of corruptions for each dictionary

word. With current, computational resources, this approach is not. feasible.

6.3.1 Possible solutions

We can propose possible methods which can provide a way to cluster dictionary words

according to their Markov structure and the elementary corruption process, without

generating a huge list of corruptions. One method would be to fit the mixture model

with respect to the correct letter to letter transition of the training set. It is possible to

take into account the corruption process jy by adding the confusion matrix computed

in section 2.2 to obtain a mixture of HMMs. This is rather limited since it does

not consider the deletion and the transposition of letters. However, it is possible to

improve this hy adjusting by hand the letter to letter probabilities of

after training. These adjustments would consist of adding weights according to the

probable sequences as we did in chapter 2 when we built Markov models for each

dictionary word. Because of a lack of time, this last idea has not been testecl.

CHAPTER 6. MIXTURE OF MARKOV MODELS FOR. CLUSTERING

6.4 Conclusion

Clustering models requires samples from the models. There is little benefit in doing

this over simply taking examples of corrupted words.

Computationally, this could be very expensive, since we would require a great, many

samples to encode accurately the corruption processes. We did not have sufficient time

to fully explore a possible solution to this problem, which could be based on training

the mixture models on uncorrupted data, and adjusting a posteriori the parameters of

the mixture model to account for the corruption processes.

At this stage, therefore, it remains unclear whether or not clustering based on a
Markov structure would lead to an improvement over the K means approach.

46

Chapter 7

Conclusions

Spellchecking is a difficult problem. The reason for this difficulty is that there is

potentially a very large number of corruptions for any word, so that anv deterministic

approach will rapidly run into computational difficulties in dealing with all but the

simplest corruptions. For this reason we considered a probabilistic approach. Our

approach is based on the idea that the Markov letter to letter transition structure of

both the correct word and the corrupted word should be sufficiently similar in order to

be able to identify the correct word. Our experiments bear out the uscfulness of this

approach, particularly for long words. For short words, the Markov structure can be

quite severely affected by even a modest corruption process. The clustering procedure

that we used to rapidly identify a set of candidate words is largely successful, but

constitutes the major contribution to the percentage of error. It seems to us, therefore,

those better clustering procedures, similar to the mixture of Markov imodels, may

provide, ultimately, a more satisfactory approach.

A source of difficulty is prefixes and suffixes. We have introduced threc approaches

for dealing with this issue. All of them used the Markov framework to firstly identify

either the suffix added or the root of the observation. However, the results of these three

approaches demonstrate a clear reduction of percentage performance in comparison

with the correction of non-suffix/prefix dictionary words. Even simple corruptions

can make the task harder since they can affect both the root and the suffix. In that

case it becomes difficult to even detect the current suffix. An alternative would be to

simply apply ProbSpell with a dictionary of 60000 words containing all the words of

English language, including suffixes and prefixes. Computational resources currently

have prevented us from pursuing this approach. We can also think of using a second
order Markov model to describe a word. This would provide a way to distinguish the

deletion of a letter and the transposition of two letters. It could also be interesting to

consider more parameters to correct spelling errors such as the neighbourhood extended

with associated probab s. the frequency or the speed of typing.

In conclusion, spellchecking is an old but relevant problem which can indisputably

be improved by using probabilistic framework. However, this improveme at is liniited

by the complexity of the corruption processes. When it becomes too complicated so

that the observation and the intended dictionary word have little in con:mon, we need

to consider a whole sentence and a grammar to have a chance to guess the correct
word.

Bibliography

{1

(10)

(1)

[12]

C.M. Bishop. Neural Networks for Pattern Recognition. Oxtord University Press,

1995.

I. Cadez. S$. Gaffney, and P. Smyth. A generalist probabilistic framework for

clustering individuals. Technical report, Department of Information and Computer

Science, University of California, Irvine, March 2000.

K. W. Church and W. A. Gale. Probability scoring for spelling correction. In

Statistics and Computing, volume 1, pages 93-103. 1991.

N.A.C. Cressie. Statistics for Spatial Data. Wiley, New York, 1993.

R. Dugad and U.B. Desai. A tutorial on hidden markov models. Technical re-

port, Signal Processing and Artificial Neural Networks Laboratory, Department

of Electrical Engineering, Indian Institute of Technology, Bombay, May 1996.

Z. Ghahramani. Learning dynamic bayesian networks. In C.L. Giles and M. Gori,

editors, Adaptive Processing of Temporal Information. Springer-Verlag, October

1997.

A. R. Golding and D. Roth. A winnow-based approach to context-sensitive cor-

rection. Natural Language Learning, 1999.

Michael |. Jordan, Zoubin Ghahramani, Tomini S. Jaakkola, and Lawrence K.

Saul. Learning Graphical Models, chapter An introduction to variational methods

for graphical models, pages 105-162. Kluwer Academic Publishers, 1998.

Mark D. Kernighan, Kenneth W. Church, and William A. Gale. A spelling correc-

tion program based on a noisy channel model. In Hans Karlgren, editor, COLING-

90 13th International Conference of Computational Linguistics, volume 2, pages

205-210, Helsinki University, 1990.

S. P. Lloyd. Least squares quantization in pcm. JEEE Trans

Theory, pages 129-137, 1982.

ictions on Information

Eric Mays, Fred J. Damerau, and Robert L. Mercer. Context based spelling

correction. Information Processing and Management. 27(5):517-522, 1991.

James L. Peterson. A note on indetected typing errors. Cominunicutions of the

ACM, 29(7):633-637, July 1986.

48

BIBLIOGRAPHY

{13] L. R. Rabiner and B, H, Juang. An introduction to hidden markov models. [EEE

ASSP Mag., pages 4-16. June 1986.

{14] Padhraic Sinyth. Clustering sequences with hidden markov models. Technical

report, Information and Computer Scinece, University of California, Irvine.

[15] David Yarowsky. Decision lists for lexical ambiguity resolution: Application to

accent restoration in spanish and french. In Las Cruces, editor, Proceedings of

the d Annual Meeting of the Association for Coinputational Linguistics. pages

88-95, 1994.

49

Appendix A

Main hidden Markov models

algorithms

T = length of the sequence of observations

N = number of states

M = number of possible observations

Q) = hd (finite set of possible states)

Qo = VN,..,Vu (finite set of possible observations)

S, = random variable denoting the state at time t (state variable)

O; = random variable denoting the observation at time t (output variable)

o = O,,...,Op (sequence of actual observations)

m = Pr(q =5i)

Ay = Pr(tsi = Sjln = S:)

BO.) = Pr(Vy =O; at tla = S;)

A.1 The Forwards-Backwards algorithm

Goal: To compute Pr(a|O)

1. Definitions

ay(j) = Pr(O, = y1,--» Or = Ye St = GIO)

Bit) = Pr(Oiga = Yess... Or = yrlSi = qs, 9)
2. Algorithin

a - the backward coeflicients

ay (7) = m(i) * b;(01)

angi(9) = [My an (8)aig)bj(or4)

b - the forward coefficients:

Br(i) =1
Bilt) = ies aig; (0141) Br+1 (9)

APPENDINX .\. MAIN HIDDEN MARKOV MODELS ALGORITHMS

¢ - Computation of Pr(o|O):

P(o|®) = DE, er (i)

A.2 The EM algorithm

Goal: adjust © to maximise Pr(O|®)

¢(O) = log)> P(Y, X|@)
x

‘To maximise the log likelihood, the idea is to introduce a arbitrary distribution Q

defined over the hidden variables, we can find out a lower bound of the likelihood:

log FAP) = log 3 20%) ae (A.1)

> 44 IO (42)

= Saw)log P(Y, X|®) — ya)log Q(X) (A.3)

= HQ. ©) (A.4)

The lower bound at the line (2.9) is obtained thanks to Jensen’s inequality. The bound

can be used to find the maximum likelihood parameter estimation. The Expectation-

Maximization algorithm is the iteration of two steps: the Expectation step (E step)

is the Maximisation of «(Q, 9) with respect to distributions Q holding © fixed, and
the Maximization step (M step) is the maximisation of «(Q,©) with respuct to the

parameters where Q is fixed. Starting from initial parameter Oy:

E step: Qi41 = Argmazg 6(Q, Ox)

M step: 0,41 = Argmaze K(Qe41, 9)

The difference between «(Q,©) and the likelihood £(Q) is the Kullback-Leibler (KL)
divergence between Q(X) ard result that the KL divergence

is minimised when ()(X) = P(X|Y,9). So, the M step becomes Qy41 = P(X|Y, Ox).
Since the bound becomes an equality («(Qi+1, 0%) = £(@)), the M step is the compu-
tation of :

 Argmate S> P(X|¥, x) P(X, ¥|0)
Xx

because the expression }>. Q log Q does not depend on O

That algorithm uses the Forwards-Backwards algorithm in order to compute the

coefficients as and /s. Let us introduce a variable &(i, 7), the probability of being in

state S; at time t and states S; at t+1, given the model and the observation sequence.

We can write the variable according to the definitions of the backwards and forwards

APPENDIX A. MAIN HIDDEN MARKOV MODELS ALGORITIIMS

variables:

out) Aij Bi (Ory) Bis V)
Pr(O|9)

an M1 u(t) Aig Bj (Ors) Bear (/)

But, we have the probability of being in state Sj at time ¢ given by:

y(t) = Pr(S; at t|O)
N

= So eiieg)
j=l

1. Interpretations

1 e y(t

we ei
2. Algorithm

a - the initialisation of the parameters:

m(z) follows a uniform distribution over the states
Aj; follows a uniform distribution over the states j given tlie state i

B;(0;) follows a uniform distribution over the observation states i

b - repeat till the critical point is reached:
E step: computation of (i) and &(i, /)

M step: update of the parameter of the model

expected number of transitions from S;

i,j): expected number of transition form S; to 5}

T-1 k
ae heel. story, Vt()

By(k) = ys
© Be a(t)

on

he
)

