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Thesis Summary 

This thesis studies graphical Models applied to the correction of words. More par- 

ticularly, hidden Markov models and Markov chains will be used in order to build a 

probabilistic spellchecker. Several ways to cluster words will be introduced: the batch 

K-Means clustering algorithm with a specific distance measure and the Expectation- 

Maximization algorithm in order to learn a mixture of Markov chains. Moreover, a 

solution for dealing with the suffixes and prefixes will be presented. 
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Chapter 1 

Introduction 

1.1. The goals of the project 

1.1.1 The main ambitions 

Spelling correction has been a topic of interest for a long time. However, many 

spellchecking systems that we have encountered are based on a deterministic appli- 

cation of a small set of rules. Whilst this can work well in words which contain only 

minor spelling errors, the approach typically fails for more severe corruptions. With a 

probabilistic framework, however given a rough spelling of an English word, and know- 

ing some features of the language, it should be possible to determine the miost likely 

correct word that the user wanted to type, even for severely corrupted words. 

The reasons for miss-spellings are numerous. We can observe 5 principal kinds of 
errors: 

1. The typing error which is basically an error coming from the speed of typing and 

also from the ignorance of the architecture of the keyboard. For instance, the 
word “cgke” could be written instead of “cake”. These are the spelling errors 

and result in words that cannot be found in a dictionary. 

2. Lack of knowledge of the correct spelling of a word often results in an observa- 
tion that is not in the dictionary. Typical for these class of errors is to confuse 

sequences of letters that have roughly similar sounds. For example, the word 

“roufly” could be written instead of “roughly”. Such errors will not be especially 

considered in this thesis. 

3. Correcting spelling errors which come from a confusion of correct: words is an 

other issue. Two typical examples of such words are “their” and “there” or 

“quiet” and “quite”. This type of error is not considered here. 

  

   

  

4. We could also consider the grammatical errors which need a grammatical con- 

text to be corrected (e.g. “among” and “between”). Again. this is not considered 

in this thesis. 

5. Finally, errors that cross word boundaries (e.g. “maybe” and “may be”). Such 

errors are not dealt with here.
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When both the corrupted word and the correct one are in the dictionary as in 

(3), (4) and (5) above, the correction and even the detection of such iistakes are 

more complicated than for a normal spelling error. Moreover, Peterson has shown 
that up to 15% of spelling errors that result from elementary typographical error - 

insertion, deletion and transposition of characters - yield another valid word in the 

language [12]. This issue has been partially solved with methods dealing with lexical 

disambiguation and context-sensitive spelling correction: words trigams [11]. Bayesian 

classifier, decision lists [15] or a Winnow-based approach [7]. 
As far as this thesis is concerned, we deal solely with typing errors which give a 

corrupted word not in the language. Other sources of miss-spelling 3, 4 and 5 will not 
be considered. We aim to create an algorithm which can find the correct word even 
if the corruption observed is far from the correct one. A typical application of such 

software would be for a user trying to type a word very quickly as a clumsy typist. 

    

1.1.2 The corruption processes 

Let us now present more precisely the corruption processes considered. The entities of 

a corruption process are: 

1. j4 (word, position, char): Character insertion 

tn (‘cake‘, 4,‘r‘) = ‘cakre' 

2. ji2(word, position): Character deletion 

fin(‘cake‘, 3) = ‘cae‘ 

3. ji3(word, position): Transposition of two characters 

b3(‘cake‘, 4) = ‘caek* 

4. j14(word, position, char): Corruption of a character 

pi4(‘cake’, 3,'0') = ‘caoe‘ 

With a composition of these elementary processes, it is possible to find a function f 

which provides the correct word given the corruption. One main idea of the approach 

we take is that the structure of the keyboard is linked to the first and the last elemen- 

tary processes. Indeed, these four elementary corruption processes are precisely those 

considered in other well established spell checking systems, in particular Ispell. 

  

1.2 Ispell, the reference spellchecker 

Ispell is the spellchecker of Unix. It will be the reference of comparison for our approach. 

This spellchecker is determir It does not use any contextual information and 

deals only with spelling errors. Very briefly, we explain how it works and examine its 
strengths and weaknesses. 
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  Ispell defines some flags which symbolise suffixes and prefi: The dictionary is a 

text file containing a list of words (c.f. table 1.1). Each word has an associated list 
of fla, For instance, the word “play” has the flags DGRSZ which means that the 

words “played”, “playing”, “player”, “plays” and “players” also exist. Ispell considers 

the same corruption processes mentioned above in section 1.1.2. Given an observation 

O, Ispell first tries to correct the root of the word (N.B. the roots are words of the 

dictionary). To do that it generates candidate words M; which result from only one 

of the few basic corruption processes jz1,... , jg. After that, Ispell checks which of the 

candidate words M; are in the dictionary. For instance, given the corrupted observation 

“plya” , Ispell generates a list of candidate words using the corruption j4;: “aplya”, 

“pwlya” (Character insertion)..., “ya”, “pya” (Character deletion)... “lpya”, “play” 

(Transposition)..., “olya”, “pkya” (Corruption of one letter)... . Since one of these 

generated candidates is a word in the dictionary, Ispell will propose “play”. For a 

word with a suffix, the procedure is roughly the same except that Ispell first tries to 

identify the correct flags (suffix/prefix) and then selects in the dictionary the correct 

(word, flag) couple. 

Thanks to using an efficient hash table, the major strength of Ispell is speed. How- 
ever. being deterministic and considering so few corruption processes, its spellchecking 

can be disappointing. For instance, the composition of, at least, two processes (dif- 

ferent from the identity, function), will never manage to be corrected. For example, 

(‘teelvisiom’ = jt4((13(‘televisiom, 4), 10,'m')) will not be corrected by Ispell. More- 
over. given an observation of a word with a suffix, if both the suffix and the root are 

affected by one of the corruption processes considered before, Ispell is lost and won't 

propose any correction. 

Observing the limits of such a spellchecker, the main target of this work is to apply 

a probabilistic framework in order to deal with corrupted words. 

faking the previous example, reading the sequence “teelvisiom”, most people would 

immediately recognise the correct word ’television’. The question is why? This is a 

rather difficult, question to answer, but nevertheless important since humans seem to be 

superior at spellchecking than Ispell. Looking at any simple letter to letter transition 

in “tee n”, it is not clear what the correct word could be. However, over all, it is 

clear that the only plausible correct word is “television”. 

One might think therefore that one could correct words by learning the most likely 

letter to letter transitions in the dictionary, which would alert one to rare combina- 

tions. That inay help to detect errors but is useless for the corrections of mistake. 

On the other hand, learning the letter to letter transition for each word - i.e. having 

a Markov model for each word of the dictionary - should help. We hope that the 

probability Pr(‘te iom’'|'television’) is higher than for the other correct words. e.g. 
om’ |'telescope'). This is the central idea behind our approach to build a 

probab model for each word in the dictionary. In order to do so, we need to take 

into account one of the most fundamental sources of errors: the keyboard 

    

        

   

      

   

1.3 The English language and the keyboard 

When a user wants to type a word, she first thinks about it and then types a sequences 

of keys on the keyboard. The structure of the keyboard is very important for the actual
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word typed. 

  

      

  

Figure 1.1: The Qwerty keyboards, the notion of levels for the letter J 

Examining the Qwerty keyboard figure 1.1 and given that the user wanted to type 

a J’, it is possible that the real letter typed is in the neighbourhood of ’J’. We can 

define a notion of level of mistyping for this letter: Ni(J) = {U,I, K,M,N,H} is 
the first neighbourhood of the letter considered (the letters in bold face around ’J’), 

N,(J) = {O, L, B,G,Y} is the second one and so on. It is probable that, wanting to 

type the letter J, the user presses the key J. However, by mistake, she presses a key of 

the set N, or N2, with a higher probability for the first case than for the second one. 

This leads naturally to a probabilistic description of the corruption process j14, 

Pr(letter typed\intended letter). 

1.4 The data 

Our spellchecking system is based on exactly the same dictionary as used Ispell. Each 

word in the dictionary has an associated set: of flags describing possible prefixes/suffixes 

that can be attached to the root word (cf. table 1.1). 

  

  

Format of the dictionary 

late/DPRTY 
dirty/DGPRST 
gray/DGPRSTY 
small/PRT 
aggregate/DGNPSVXY 
create/ADGNSVX 
imply /DGNSX 
cross/DGJRSYZ 
convey /DGRSZ 

  

    
  

Table 1.1: Format of the dictionary and the affixes 

In total, the dictionary contains 26 057 root words and 36 kinds of affixes (suf- 

fix/prefix). As you can see in table 1.2, the suffix or prefix can depend on the two last 

letters of the word and on the flag: for instance, the verb “imply” has the flag D. Since 

the two last letters of the root word are “ly”, we obtain the word with suffix doing 

10
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Format of the flags Examples 
flag T: 

E > ST As in late > latest # 

(“AEIOU]Y > -Y,IEST | # As in dirty > dirtiest 

(AEIOU]Y > EST # As in gray > grayest 

# 

      
(-EY] > EST As in small > smallest 

flag D: 

E >D # As in create > created 

["AETOU]Y >-Y, IED # As in imply > implied 
[°EY] >ED # As in cross > crossed 

CAEIOU]Y >ED # As in convey > conveyed 
  

Table 1.2: Format of the affix flags 

-Y, IED, which means that the ‘y’ is deleted and “ied” is added. Others examples are 

given in the table 1.2. The complete number of words that the Ispell thus understands 

is 64429. The words we consider are formed from a vocabulary of 26 characters, the 

alphabet (no capital letters, no dash). 

1.5 Overview 

In chapter 2, the main idea of our Bayesian approach will be explained: probabilistic 

models will be introduced in order to build a spelichecking system. Chapter 3 will 

demonstrate the necessity of clustering words. Then. chapter 4 shows some results and 
comparisons with Ispell. Correction of words formed by addition of suffixes and prefixes 

will not be considered till chapter 5. In chapter 5, three strategies will be studied to 

partially solve the correction of words with affixes. Finally. chapter 6 proposes the use 

of mixture of Markov model in order to cluster words. 

cha



Chapter 2 

The Probabilistic Approach 

2.1 Introduction 

Imagine that a user wanted to write a correct word C but actually typed M by mistake. 

A way to correct this mistake would be to compute the probability Pr(C;|:) for all 

the correct words C; of the dictionary, C; € A. In our probabilistic framework. the 

most likely correct word, given the corrupted word .V is 

C = Argmazc,ca(Pr(C;|M)) (2.1) 

  

Thanks to Bayes’ rule, we can associate the posterior probability of a word C; to the 

likelihood Pr(M|C;) and prior Pr(C;), 

Pr(G,|M) a Pr(M|C;) « Pr(C;) (2.2) 

Throughout we assume that the probability Pr(C;) is uniform, so that the likelihood 
Pr(M|C;) determines the suitability of a candidate dictionary word. 

Computing the probability Pr(./|C;) is therefore the main issue of this thesis 
However, the real value of this probability is rather difficult to estimate. A possible 

solution used by Bell Labs for correcting typing errors is a system of tables of error 

probabilities derived from a corpus of millions of words of typewritten text ((3],[9]). 
The tables give for example the probabilities of substitution of two letters, or the 

probability for a ‘p’ being inserted after an ‘m’. In theory, we could store many 

millions of corruptions and correct words with an associated value in respect. of the 

complexity of the corruption processes. However, if we do not want to use giga bytes 

of hard disk and do not want to be limited by the complexity of the corruption process, 

this idea is not feasible. An alternative is to find a specific model of the corruption 
processes. 

  

2.2 Hidden Markov models 

The probability Pr(M|C;) can be written as: 

Pr(MICi) = >> Pr(M, SIC.) 
s 

  

II >> Pr(M|S,C,) * Pr(S|C;) (2.3) 
s 

12
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We assume that the corrupted words are generated by a hidden Markov model in which 

the hidden states correspond to S. In order to develop our model, we introduce the 

notion of words which could be obtained from corruptions of the correct word, uding 

iption process fy. An instance of a word which could be generated by 

combinations of the processes //, /12, 43 is denoted by S. If we interpret S as the result 

of the elementary processes 4). {4g and jig, then it is clear that Pr(M|S) is the keys- 

corruption process: it accounts for corruption process jig and Pr(S|C) accounts for 

combinations of 11, /42, 43. Thus we have assumed that the probability Pr(A71|S,C;) is 

equal to Pr( |S). In addition, we assume that Pr(M|S) is independent across letters, 

that is Pr(M|S) =]; Pr(mj|s;). So, equation 2.3 leads to: 

    

  

the character cor 

Pr(M|Ci) = DTI, Pr(mls;) * Pr(S|C;) (2.4) 

For a word of length L, characters, assuming that the probability Pr(5|C;) follows 

a Markov distribution, Pr(S|C) = Pr(si|Ci) * [[ZS(Pr(selse1,Ci)), equation 2.4 
gives: 

Pr(M|C;) = Vs{I],(Pr¢ 

The result is equivalent to modelling each correct word of the dictionary with a hidden 

Markov model, which we now describe more formally. 

|33)) * Pr(si|Ci) * T1kS. Pr(selse1,Ci)} (2.5) 

  

Hidden Markoy models are stochastic graphical models derived from Markov chains, 

(see [13], [5]). A stationary HMM is described by 

1. A hidden state transition probability distribution A, where 

a; = Pr(S;|S;) 

2. A confusion matrix B, which describes the probability to generate an observed 

state Y, dependent on a hidden state S, 

Dix = Pr(Yi|S;) 

3. An initial state distribution 7, where 

nt; = Pr(S;) 

A HMM is depicted in figure 2.1 where the upper layer of nodes are the hidden variables, 

and the lower the observations. 

The intuition behind using a Hidden Markoy model for spellchecking is that the 

hidden state transitions should be able to describe roughly the structure of letter to 

letter transitions, including possible corruption processes j1;, /l2, /3. The hidden to 

output process can model the corruption process linked to the architecture of the 

keyboard (j04). 
Both the observation and the hidden states of the model are 26 letters of the 

alphabet. The joint probability of the sequence observation Y = Y,.¥,...,¥pr and 

hidden state sequence is given by 

    

13
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Figure 2.1: Hidden Markov Model 

Pr(S,Y|O) = Pr(¥4|$1)Pr($1)Pr(S2|51)Pr(¥|S2)Pr(S3|S2)Pr(i3 
  
3) * 

_ 

[] Pr silSi-Pr(% 
i=4 

  ) (2.6) 

The probability of an observation sequence, Pr(Y|©) can be computed using the For- 

wards Backwards algorithm (appendix A.1). 

To apply HMMs to spellchecking, we could generate training data using an assumed 

corruption process, and train the model using the standard EM algorithm (Appendix 

A.2). However, since we have specified the corruption process as (j1,, /2, 43, {4), We can 

set the HMM parameters according to the corruption process directly, A difficulty with 

this approach is assessing the suitability of the assumed corruption process. However, 

since we do not have any training data of real (correct word, corrupted) word pairs, 

we have no principled way to optimise the procedure. 

A word is a sequence of states, for example “television” = [20 5 12 5 229199 15 14)). 

  

The Confusion Matrix 

By definition, this 26 x 26 matrix is given by: 

Bi, j) = Pr(¥j|Si) 

Given the interpretation that the confusion matrix represents the corruption process 

fia. this probability depends only on the structure of the keyboard. We assume that 

the probability of getting the same observation as the current hidden state is equal to 

0.7. That means that the values of the diagonal of B are (0.7. The notion of keyboard 

neighbourhood defined in section 1.3 is now used to set the other values of the confusion 

matrix: we assume that the probability of typing a letter in the neighbourhood N, (set 

of the nearest neighbours) is 0.25. The possibility of typing a letter outside the first 

14
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neighbourhood is 0.05. 

0.7 ify=¢ 

ne 0.25 ea CNG 
Bii,j) = 4 Grama if j € M(i) 

0.05, 

26 — (card(Ni(i)+1)) otherwise 

where denominators ensure normalisation )), B(i,j) = 1. The matrix is represented 
in figure 2.2.a. 

Seean RE. a “Tranton mati or <olovision> 
ee 

ks 

0.5 ie 

10) jos 

m 
bs 

a 

Z| 
K | 

| is 
Ta po ap 

(a) (b) pe 
97 

aI oz 

. 2 ts 

() 

Figure 2.2: Parameters of the models (Confusion, transition and prior) for “television” 

   
   
      

    

   

  

    

The Prior 

Given a particular correct word C, we require the probability distribution of initial 

states. We assume that the probability that the initial state is equal to the first letter 

of the word is 0.7, ie. Pr(S; = C;|@) = 0.7. Considering only the processes 11, jg and 
3, it is possible that the first state could be the second letter of the word (the case 

when the first letter has been deleted or swapped with the second one). To account 

for this, we set Pr(S,; = C2|0) = 0.1. To include a small probability to have any of 

15



CHAPTER 2. THE PROBABILISTIC APPROACH 

Oe 
the st 

therefo: 
     

  

s at the first node, we add to each case of the prior the value There are 

three possibilities: the first state can be the first letter or the second letter of 

the correct word (with probabilities 0.7 and 0.1 respectively) or any other letter with 

probability 0.2. 

    

The Transition Matrix 

How can we compute the transition probability Pr(S,|S;)? One way to do this is to take 
the distinct letters occurring in the word and store for each of them the previous letter 
and the two following. Assuming Cy» follows C;, we add 20 to A(C,.C2). However, to 

account for the possibility that these two characters could be swapped, we add 5 to 

A(C2,C). In the same way, the characters C2 can be either deleted or swapped with 

the character C3, and we add 5 to A(C,,C3). Considering the corruption process /i,, 

a letter can be inserted between C, and C2 which we model by adding 5 to A(C4,:). 

Finally, we add 1 to all entries in A to avoid null values in that matrix, and normalise 

A so that 

26 

Vi € [1,26] S> A(i,j) =1. 
j=l 

Perhaps, the best way to explain the algorithin which computes the transition 

probability is to show an example. The correct word “television” gives the sequence 

of states [20 5 12 5 229199 15 14]. We define the structure shown in table 2.1 which 
contains the set of the distinct states (Ds), the sets of the two following letters (F's, 
and F's) and the set of the previous letters (Ps). 

Algorithm 

For 1 <i < length(Ds) , 

A(Ds;, F'sy;) = A(Ds;, F'sy;) + 20 

A(Ds;, F's2;) = A(Ds;, Fs2;) + 5 

A(Ps;, Ds;) = A(Ps;, Ds;) +5 
End 

A=A+1 

A = Normalisation(A) 

You can observe the transition matrix of this example in figure 2.2.b. 

2.2.1 Sanity check 

We denote a hidden Markov model built on a word C as O(C). We can check that this 
model is potentially reasonable with an example: 

Construction of the models: 

Model, : O(‘ fritillary‘) 
Models : O(‘titillate‘) 

Let’s take a corruption of the first word: 

16
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Ds| Fs, | Fsq| Ps 
  

20 5 12 

5 | 12,22) 5,9 | 20 12 

12 5 22 5 

22 9 19 5 

9 | 19,15 | 9,14 | 22,19 

19 9 15 9 

15] 14 9 

14 1       a 

      
Table 2.1: The feature of the word ’television’. 

That word is represented by the sequence of states Wo = 

[20 5 12 5 229 199 15 14]. D, is the set of the distinct states 

in the word W. The second column gives the set of the following 

states for each distinct state (for instance, 5 follows 20 and the 
states 12 and 22 follow the state 5 ...). The third column gives the 
states following two letters after the state in D,, e.g. ‘I’ (12) follows 

two steps after ‘t’ (20). Finally, the last column gives the previous 
states of D,. 

M = ‘rrtulilary’ = 13(3(a(pa(‘ fritillary’, 1,°r‘),3,‘u‘), 7), 4) 

We can compute the probabilities based on the HMMs as previously described: 

Pr(M|Model;) = 3.6911 * 10-1 
Pr(M|Modely) = 1.5369 « 10-2 

  

This is reasonable since, ‘fritillary’ is clearly a more suitable correct. word than 

‘titillate’ for the miss-spelt word ‘rrtulilary’. 

2.2.2 Problems with the hidden Markov model 

Doing some tests with the hidden Markov models, we noticed some weaknesses. Con- 

sider the following example, where @(C) is the model for the word ‘television’. For 

this observation, we have: 

= 21669410 

= 1.9259« 107% 

6.1090 * 107° 

1.0424 + 107!” 

Pr(‘television‘|O(C) 

Pr(‘televosion‘|O(C) 

(C) 
(C) 

Pr(‘televsiion‘|O(C 

Pr(‘televwision‘|O(C 

Here, the probability of having a substitution of one letter by another in the neigh- 

bourhood is 11.2 times less than the probability of having the right word. The prob- 

ability of having a single transposition is 35.3 times lower. The problem here is that 

the probability for transposition is rather too low. Consider the insertion of an extra 

letter: the fourth calculation of the example demonstrates that the addition of a letter 
in the middle of the word gives a probability 220 times less important! One of the 

Ly,
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reasons is that the confusion matrix affects the computation of the probability when 

the length of the observation differs from that of the correct, word. 

A way to try to solve this problem is to incorporate all the corruption processes in 

the Markov model. We therefore considered an even simpler model, a Markov chain. 

An other important weakness in the construction of the Hidden Markov model 

becomes apparent when we examine the transition matrix in figure 2.2 more closely: 

When the same letter occurs twice in a dictionary word, the first letter to letter tran- 

sition is modified by the second because, in the current model, a state is defined as a 

letter. For instance, when the model for “tel n” is built, the sequence “ev” changes 

the probability to have a ‘I’ after an ‘e’. A possible way to deal with that problem is to 

make the distinction between the two ‘e’s of “television” assigning two different states 

to the first and the second ‘e’. This approach has not been tried because of a lack of 
time. 

  

    

    

2.3 Using a simple Markov chain 

A Markov chain can be considered as a hidden Markov model with an identity confusion 

matrix. So, contrary to before, the letter to letter transitions should take into account 

all the four elementary corruption processes. Given a correct word C, we want to 

compute the prior and the transition matrix of our model. 

The Prior 

We initialise the prior to the null vector and do the following : 

m(i) +0.6 ifi=C (1) 
as mi) + Sawen #t¢N(C) (2) 

m(i) + 0.05 if7 C2 AG) 
a (i) + 98 vi (4) 

Doing this for all state 7, we assume that the probability that the initial state is equal 

to the first letter of the word is 0.6 + 0.15/26 (lines (1) and (4)). The first letter of 
the word can be substituted with a neighbour with the probability 0.2 (line 2). The 

deletion and the transposition of letters are considered in line (3): we assess that the 

initial state is the second letter of the word at 0.05. The fourth line considers the 

character insertion and ensures that none of the values of the prior are zero. 

The Transition matrix 

Given the sequence of states (C;, Cj, Cj+2) in the correct word, in addition to the pro- 

cedure given for the HMM transition matrix, we put weight on Ane) .C41 (corruption 

of the first letter by juz), on Ac..R(Cury (corruption of the second letter by 3). You 

can monitor this matrix and the prior in figure 2.3 for the example ’television’. If we 

compare the transition matrix obtained with that of figure 2.2.b, we can see that the 

transition matrix in figure 2.3.a is less diagonally dominant. 

Note that none of the values in the prior and the transition matrix are zero. Hence, 

every observation is possible given such a model. Again, we consider the model for 
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ore 
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los 
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(b) 

Figure 2.3: Parameters of the Markov model (transition and prior) for “television” 

  

‘television’, and the likelihood of the same typical corruptions: 

Pr(‘television‘|O(C)) = 2.1569 * 10-° 

Pr(‘televosion‘|O(C)) = 5.8137 « 107! 

Pr(‘televsiion'|O(C)) = 6.7400 * 10-'° 

Pr(‘televwision‘|@(C)) 1.0424 « 1071 

The four elementary corruption processes have more reasonable relative probabilities: 

the transposition of two letters and the corruption of one have quite similar values. 
Moreover, the addition of an extra letter is less likely, but still 20 times smaller than 

the correct word. 
We therefore decided to use a simple Markov chain for each word in preference to a 

hidden Markov model. Further tests demonstrated that the separation of the process 

4 to obtain an hidden Markov model is less useful than the simple Markov chain which 
considers all the corruptions processes at the same level. Henceforth, throughout the 
thesis, O(C’)) denotes the Markov chain derived from the word C. 
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Chapter 3 

Clustering the words of the 

dictionary 

3.1 The need to cluster data 

With a dictionary of around 26 000 words, computing a model for each word takes 

too long. One approach would be to build the 26000 models off-line. and compute the 

likelihood of the corrupted word for each of the 26000 words. This requires a large 

amount of storage space, and the process of compiling the likelihood for all the words 

in the dictionary is also prohibitively slow. With current computational constraints, 

the number of Markoy models that can be built on the fly is around 200. For this 

reason, we need to rapidly select a small number of candidate words - no more than 

200. A Markov model for each of these candidate words can be built and the likelihood 

of the observed word calculated. The procedure to select a small set of candidate words 

must ensure that 

  

1. the selection does not take too much time 

2. the selection is accurate enough to contain the “correct” word 

A further useful requirement is that words with similar Markov structure but with 

different lengths (e.g.’prefer’ and ‘preferential’) are separated in the selection procedure. 

‘The reason for this is that two words can have exactly the same Markov structure. but 

differ significantly in length. 

One approach to this issue is to cluster the dictionary using the batch K-Means 

clustering algorithm, using a vector representation of a word. 

3.2 The frequency vector representation 

The ideal representation of the word for a spellchecking system would be a represen- 

tation which is invariant with respect to the elementary corruption processes 41, /42, 

fiz and jig. A corrupted word and the correct associated ideally have the same rep- 

resentation because, in that case we would be sure to find the right cluster given the 

corrupted word. Although we will not manage to make a fully invariant representation, 
transposition and keyboard miss-hits (43 and ju4) can be dealt with to some extent. 
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One way to make a representation invariant with respect to the transposirious 

to use a letter frequency representation. This is a 26 dimensional vector in which e 

dimension contains the number of occurrences of that letter in the word. or example: 

ss 
abbrevi 

   

  =(220020001000000001010100006) 

since ‘abbreviate’ contains two ‘a’s, two ‘b’s, none ‘c’s, etc. 

3.2.1 Definition of a distance measure 

In order to perform clustering, we need a distance measure between frequency vectors. 

A first thought would be to take the Euclidean distance. However, a way to take the 

corruption process 14 into account is to choose a distance measure which depends on 

keyboard distances. For instance, the distance between the two unary vectors @ and 

@ ought to be lower than the distance between @ and f because. as you can see in 

figure 1.1 showing the Qwerty keyboard, z € Nj (‘a’) and f € N3(‘a’). 

We found two natural ways to build such a distance measure: use a covariance 

function, or build it by hand. The Euclidean distance between uv! and vu? is (uv! — 
v*)?. Our distance will correspond to a generalisation of the Euclidean distance, the 

Mahalanobis distance defined by (v' — v?)’T(u! — v?), where T is a positive definite 
matrix. Our two approaches find suitable positive definite matrices [. 

    

An automatic construction 

The idea is to represent each key of the keyboard as a point in a 2-dimensional space, 

as in figure 3.1. Functions that automatically generate positive definite matrices are 

known as covariance functions ([4]). One choice is 

Tae tee)? ii = 

where X" is the point associated with the letter S;. The parameter \ sets the length 

scale on the keyboard. 

A handmade distance measure 

Another approach to constructing a suitable distance is to begin with the identity 

matrix, which provides the Euclidean distance, and modify it in order to obtain the 

right distance between two unary vectors. Actually, keeping l’s on the diagonal of 

this matrix, the distance between the unary vectors @ and u only depends on the 

coefficient [,,. If Pj; is null, the distance between these two vectors is equal to 2, 

as if the distance were Euclidean. If Pj is equal to 0.5, the distance will be 1. We 

therefore set a value in the interval [0,0.5] according to the level of neighbourhood. 

The maximum number of levels of neighbourhood is 9 - for instance. Q € No(P). Our 

definition of [;; is therefore: 

  

5; € N,(Si), Ti; = 0.5 — 0.05(p — 1) 

Given the matrix I, we can easily show that the distance measure obtained satisfies: 

S; €N,(S;), d(S;,5;) =1+0.1(p — 1) 
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Representation ofthe key to computa 9 diatanc 
  

  

  

Figure 3.1: Position of the keys on a orthogonal plan 

The distance varies from 1 (d(Q, A)) to 1.8 (d(Q,P)) and is in accordance with 
the real distance between the keys of the keyboard. Experiments using these two 

approaches showed that the handmade approach was slightly favourable over the co- 
variance function, and we therefore decided to adopt this as the distance neasure used 

throughout. 

3.3. The batch K-Means clustering algorithm 

There are 24 960 distinct frequency vectors in the dataset’, the goal is to find a set of R 

centres, Iy,... , Mp, which reflects the distribution of this points v", n = 1,... , 24960. 

The idea of the algorithm is to find a partition of the data points which minimises 

the sum-of-squares clustering function given by 

R 
Hie SOE Norm(v" =K) 

j=l nj 

where K;, j =1,...,R is given by 

k=" 
qT ne] 

where N; is the number of point v" belonging to the cluster centre Kj. 

To initialise the algorithm, we assign the data points randomly. We compute then 

the mean vectors of each cluster centre and update the membership of each data by 

minimising (Norm(v" — Kj));. This changes the memberships of clusters K;. The 

iteration of these two steps decreases J, and we stop when this reduction becomes 
insignificant 

‘This is lower than the number of words in the dictionary (26057) since more than one word can 

have the same frequency representation. 
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1. Initialisation: 

For 1 <i < 24960 , 

vi assigned randomly to cluster j 

2. Iteration: 

While |.J — Joia| > 0.0001 

K Nj DineK; v . 

v' is assigned to that Kj with least Norm(v' — Kj) 
R i J = Vjn1 Dnex, Norm(v'! — Kj) 

  

3.4 Clustering experiments 

We ran the K-means algorithm using the distance measure defined in section 3.2.1. In 

order to have on average 400 vectors in each cluster, we set the number of clusters R 

equal to 80. 

Given an observation G: we find a set of candidates by finding the closest cluster 

centre from O and then the closest vectors within this cluster. 

Due to the possible corruptions, it is likely that the distance between the frequency 

vector Oot the corrupted observation and the correct frequency vector C’ is large. and 

these two vectors might well be in different clusters. If this occurs, we will have no 

chance to correct the spelling error with the probabilistic approach described in chapter 

2. In addition we need to limit the number of candidates to 200 because of the time of 

computation of the parameters of the Markov model. Two strategies could be adopted: 

either choose the 200 closest candidate vectors from the closest cluster centre, or choose 

the closest candidate vectors from the P closest cluster centres, (/\, o,... , Xp). This 

second option allows for the possibility that the corruption process was severe enough to 

put the correct frequency vector and the observed frequency vector in different clusters. 

Indeed, after experimentation with corrupted words, we found that, verv often, this 

solution is preferable to selecting only vectors in the nearest single cluster. 

Figure 3.2 shows the general procedure: given an observation vector O, we first 

select. the closest cluster centres, (IX), 2, K3, 4) in the figure, and then select the 

closest vectors in each of them.? 

  ? An alternative is to directly look for the closest ve 
computing 24960 distances takes too much time. 

ors without considering the centres. However, 
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CHAPTER 3. 

Figure 3.2: 

CLUSTERING THE WORDS OF THE DICTIONARY 
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Selection of candidate vectors. 

This 2 dimensional example shows 4 clusters centres 

(4), Ko, K3,K4) (red stars in the figure) and the selection of 

10 closest vectors in Ky, 6 in K2, 3 in K3, and 1 in Ky (these 

points are surrounded with red diamonds). 
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Chapter 4 

Results and comparisons 

4.1 Spellchecking Algorithm: ProbSpell 

With the 80 clusters that the K-Means algorithm provides the probabilistic model, we 

have now all the tools to propose a practical way to correct words. At this stage, we 

do not deal with words formed from root words by addition of prefixes and suffixes. 

This will be dealt with in chapter 5. The algorithm is divided into two parts: the first 

is to select a set of candidates with the 80 cluster centres and then to use the Markov 

structure of the words to select the most probable. We call this algorithm “ProbSpell”. 

The correction of an observation is divided into 7 steps (see figure 4.1): 

  

Step 1: We first compute the frequency vector representation of the given ob- 

servation. 

Step 2: We compare that vector with the 80 cluster centres obtained with the 

K-Means algorithm. 

Step 3: We select the P closest cluster centres from our data vector. In the 

diagram 4.1, P is equal to 4. 

Step 4: A list of vectors are assigned to these P clusters. In the p' cluster, we 

select the Q, closest vectors. 

Step 5: We now have P lists of vectors, each element in this list representing a 

set! of candidate words. 

Step 6: For each word, we compute a Markov chain as explained in section 2.3. 

Step 7: Finally, we calculate the probability Pr(observation|©,) for all candi- 

date models ©;. The most likely correction is given by the word associated to 

the model ©,,, which maximises the likelihood. Along with the most likely word, 

a ranking of the next probable words is given, this is called the ‘level’ of returned 

corrections, 

  

ice more than one word can have the same frequency vector, given a vector, we obtain a set of
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Steps 

Observation 

| 

Vector(26 x 1) 

  

©   

      

  

    
Fes (Kia eRe. Bag) 

    

  

Clustering System} |Cluster: A] |Cluster: Ky Cluster: Kp} \Cluster: Ky, 

| | I | 
              

  m
e
 

Ae
) 

  

Vector: vi |Vector: vi \Vector: Ve |Vector: vi 

> > Pi = 
Vector: V/| |Vector: Vj \Vector: Vz} |Vector: Vi 
  

  

&   

          

Words: C7] Words: C} (Words: Cj} |Words: OC} 

Words: C?| |Words: C7} Words: C7} |Words: C7} 

Words: C7] |Words: C4, (Words: Cj,| |Words: Cf, 
Graphical Models 
pe ere )   

  

Model: ©}| |Model: 6} Model: ©},) |Model: O} 

Model: 7} |Model: 0% Model: ©7} |Model: OF! 

Model: ©7| |Model: 67, Model: Of) [Model: 04)                     

  @ 
Argmaxe, Pr(Observation|O,       

Figure 4.1: Algorithm of ProbSpell: the individual steps 1-7 are explained in the text. 
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4.2 Tests and results 

Since we do not have a data set of mistakes typed by users, we artificially create test 
sets. We randomly choose words in the dictionary and apply to them a corruption 
function. We will then be able to check both the clustering approach, which provides a 

set of candidates, and the probabilistic approach which determines the most probable 
correct word. The results underline the importance of the length of the correct: words. 
For this reason, we decided to separate the results according to word lengths. 

In order to show that the algorithm is more or less coherent, we focus on the 
elementary corruption processes (j;)\<i<4 and begin by analysing simple corruptions: 

one deletion, or one addition or the transposition of a letter and/or whe corruption 

of one character. Subsequently, we consider more complicated compositions of these 

corruption processes. 

4.2.1 Basic corruption results 

The goal of this test is to measure the efficiency of the clustering idea and of the 

probabilistic models. We consider 10 randomly chosen words of length 4, 5, ..., 10 

and for each of them all the corruptions given by a single application of (1;),<i<4 and 

the composition of j1g and jug (see table 4.1). Therefore, given a dictionary word. the 

test set contains corruptions obtained by deleting any letter of the dictionary word, 

and swapping any two adjacent letters after substituting any letter with one in its first 

neighbourhood. 

  

Length of words 4 a 6 a 8 9 10 | Total 

Number of words 10 10 10 10 10 10 10 70 

Number of corruptions | 2054 | 2740 | 3460 | 4352 | 5208 | 6199 | 9779 | 33792 

  

  

                      

Table 4.1; The data set of simple corruptions 

In the experiments, we defined the model as follows: 

e P=4: the number of clusters centres selected 

© (Q1, Q2, Qs, Qi) = (50, 40, 30, 20): the number of vectors selected in each cluster 

¢ Number of corrections: 3 and 10 (called also the level) 

A small set of example words, corresponding corruptions and likely Corrections, is 

given in table 4.2. For each length of word, we compute the percentage of success 

of the clustering approach (i.e. when the correct word is assigned to one of the 4 

cluster centres found in step 3 of the main algorithm) and the overall percentage of 

success of ProbSpell when the level is 3 and when the level is 10. We consider a 

corruption corrected when the word which generated it appears in the list returned by 

the algorithm. Figure 4.2 shows these percentages. 

Since the search of the right cluster is cr | (otherwise, we have no chance to 

find the right word), we first focus on the clustering performance. The percentage of 

success of clustering is reasonable for the words of length 4, 5, 6, 8, and 10 (higher than 
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Corruption | Word Corruption | Corrections | Probabilities 
Hy flowery flowrery flowery 0.8944 « 107" 

forgery 0.0456 *« 107 

fernery 0.0434 « 107" 

hound hounmd hound 0.6094 * 107° 

bound 0.0682 * 107° 

bounds 0.0667 *« 10~° 

prior pritor prodigy 0.3482 * 10-° 

profit 0.3408 * 10~° 
parrot, 0.2004 * 10-° 

[2 introduce introuce intrude 0.1003 * 10-* 

inventor 0.0766 * 10-° 
investor 0.0202 « 10-° 

fortune forune fortune 0.1139 «10-7 
functor 0.0094 * 10-7 
foundry 0.0071 « 10-7 

drench drenh drench 0.5641 « 10-7 

dean 0.1047 « 10-7 

dreg 0.0988 « 10-7 
[3 Ofey existence exitsemce existence 0.1439 « 10-8 

execute 0.0251 « 10-* 
executor 0.0120 *« 107 

malfunction | malufnetoon | malfunction 0.8816 * 10-7 

nonfunctional | 0.0596 » 10-1 
mispronounce | 0.0180» 107™ 

shoemaker | shoemjaer shoemaker 0.2929 « 10-* 

shoemake 0.0981 « 10-* 
shirtmake 0.0147 « 10-* 

  

Table 4.2: Examples of words, simple corruptions and likely correc- 
tions 

For a corruption process and a dictionary word given, the third col- 

umn presents an exaniple of corruption. The fourth column displays 

the level 3 corrections returned by ProbSpell with the associated 

probabili 

  

  

  

88%). The performance is slightly worse for length 7 words (82%). A likely reason for 

this is that length seven words are most numerous in the dictionary, and distinguishing 

between them is correspondingly difficult. The limitation of the cluster search is that 

some kinds of corruptions, especially deletion and insertion, move the observation far 

away from the correct cluster. For short words, the situation is not so severe since they 

are less numerous, so that length is almost enough to determine the correct. cluster 
centre. 

The percentage of success as a function of the length of the words is rather interest- 

ing. The longer the word is, the more information we have of its Markov structure. One 

or two corruptions will not radically affect too much this structure. For this reason, 
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Analysis of the basis performances of ProbSpell 
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4 5 6 iz 
Length of the words 

Figure 4.2: Basic tests of ProbSpell 

the success for words longer than 8 is high: all of them are higher than 80% and the 

average per word is 92.06%. Moreover, we can notice that, for these types of words, 
returning 3 or 10 corrections gives roughly equal performance. This demonstrates that 

the models capture the structure of the words. 

Unfortunately, the percentage of success decreases as the length of the word de- 

creases. This phenomenon is understandable for 4 character letters (48.39% with 3 
corrections and 72.69% with 10). With a transposition and a corruption of a letter, 

the observation can lose its Markov structure and can even be much closer to another 

word. For example, for the observation ‘taut‘ = j14(j3(‘that', 2, ‘u‘),3), we obtain the 
values: 

Pr(‘taut‘|O(‘tail')) = 1.3178 « 10~* 

Pr(‘taut‘|O(‘taint‘)) = 1.2858 * 1074 
Pr(‘taut‘|O(‘tag‘)) = 8.5700 * 10~° 

Pr(‘taut‘|O(‘that')) = 4.3208 * 10~° 

This demonstrates that for short words it is feasible that the corruption process gener- 

ates a corruption closer to a word in the dictionary different from the “correct” word. 
E.g. ‘tail’ is more likely than ‘that’. 
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Comparison with Ispell on combined transition/mishit 

These partial results are encouraging. But what happens when the corruption pro- 
cesses are more complicated? This section describes more complicated tests and a 

direct. comparison with Ispell. As before, we present the results for different lengths 

of the correct, word. We define a corruption complexity using the processes iz and [14, 

representing the number of transpositions and the number of keyboard corruptions. 

Given a correct word C, we raudomly select » positions (uot necessarily distinct) and 

swap these letters with the previous ones. Similarly, we randomly select nm: letters and 

apply a nearest neighbourhood corruption. For each word length. we took 50 observa- 

tions for each complexity (n,m) and each correct word. We then ran ProbSpell with 

the parameters P = 6 and (Qi, Q2,Q3, Q4, Q5,Qe) = (50, 40,30, 20, 10.5) and also 

computed the success of Ispell. The results are shown in figure 4.3 

The first remark about these results is that Ispell is always less accurate than 

ProbSpell. That is not really a surprise: Ispell is deterministic and only considers the 

elementary processes, without combination of these process Therefore, the percent- 

age of success for a complexity higher than (1,1) should be zero. However, since the 

choice of the letters corrupted and of the letters swapped is random, it can happen 

that the corruption process obtained is equivalent to a simpler process. For this rea- 

son, Ispell sometimes manages to correct an observation. This argument explains why 

very often, for two transpositions and a keyboard corruption, Ispell increases its rate 

of success: two flips can lead to the identity. 

Let us have a look more carefully at ProbSpell’s results. For long words, Prob- 

Spell works well. The first cliagrams in figure 4.3 show that, even if the complexity 

reaches (3.3) or (2,4), the percentage of success is higher than 65%. ‘To understand 

the power of the spellchecking, consider the following example of an observation with 

3 transpositions and 3 keyboard corruptions: 

    

    

   

    

   

  

O = ‘mipelments finl‘ 

= pts (H3 (fe (Ma (pea (t04 (“implementation', 10.‘s‘), 11,‘f*), 13, ‘U). 2), 5), 14) 

  

For that example, ProbSpell maximises the probability Pr(O|O(C)) when C is 

“implementation”, returning the correct result. Capturing the Markov structure for 

long words, ProbSpell has more than 77% of success when less than 4 corruption 

proc s ave used (ie. for the complexities (n,m);4m<4). The results are still good 

when the observations have 7 characters. 

  

Unfortunately, for short words, the success goes down: the corruptions applied are 

too complicated and either the frequency vector is far away from the correct one (and 

so the correction is lost during the first step of the algorithm) or the Markov structure 

of the observation is too different to the correct one (and so, the probability given the 

model associated to the correct word is too low). 

A Few examples of corrupted words and the likely correct words given by ProbSpell 

are presented in table 4.3. 

  

  

  

Deletion and insertion of letters 

At this point we consider the performance of ProbSpell for observations generated by 

corruption processes f1; and flg. This means that, generally, au observation and the 
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Figure 4.3: Comparison with Ispell on combined transposition/mishit. 

The corruption complexity is the number of transpositions and the 

number of mishits. These elementary processes are randomly ap- 

plied to the correct word in order to obtain a test set. These results 

are for a level of 10. 
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Word Corruption | Corrections Probability | 
shameless haxmepess hammerless 0.7777 * 10" 

harmless 0.5129 * 10" 

harassment 0.4242 * 107" 

coverable cvsodable coverable 0.3828 * 107 

crossable 0.2601 * 10° 

catchable 0.0841 * 10° 
sensibility essnibuloty | sensibility 0.1039 « 10"! 

feasibility 0.0708 « 10-7 

syllabicity 0.0047 « 10-" 

elast rlasticyjt elasticity 0:3392 «1071? 

elativity 0.2524 « 10-7 
relativist 0.0325 « 107” 

incredulous inrcdeuokus | incredulous 0.2432 + 10-1" 

incestuous 0.0947 « 10-7! 
industrious 0.0424 « 10-T 

misconstrue | miscsonrdue | misconstrue 0.3061 « 10-1! 

misspecified 0.0112 « 10-™ 
mischievous 0.0070 « 10-1! 

muemonically | jneomnicakyl | mnemonically | 0.2300 « 10- 

mimetically 0.0198 « 10-7 

incommunicado | 0.0079 * 10-™ 
backdrop gcakdrpk backdrop 0.1899 *« 10~ 

glacier 0.1520 * 107" 

grosbeak 0.1240 « 107 
balloon valoono balloon 0.2894 * 107 

gallon 0.0720 * 10 
ballyhoo 0.0691 * 10-°         
  

Table 4.3: Examples of words, corruption with two transpositions and 

two mishits and likely corrections. 

correct, word do not have the same length. As before, results will be compared with 

Ispell. 

The data set is composed of 10 random words of each length (4 till 10). We take 

300 observations for each correct word. Deletion of a single letter and a corruption of 

a single letter is first considered, In a second test, we add a random letter and corrupt 

another. As before, we obtain the percentage of correction of ProbSpel! and Ispell. 

The results are shown in figure 4.4. 

The first, comment is that. once again, ProbSpell performs better than Ispell: this is 

not, a surprise because the corruption process considered are too complicated for Ispell. 

Moreover, the percentages for ProbSpell generally grow with the length of the words 

and reach a maximum of 95.87% (for the deletions) and 95.97% (for the additions) 
for the longest wi Note that the results for deletions are worse than those of the 

additions (except for words of length 8). As pointed out in section 2.2.2, the Markov 

model overvalues deletion because the length of the observation is shorter. ‘Therefore, 
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we can expect better results for deletion. A limitation of the clustering approach is 

that addition and especially deletion of letter can provoke a miss-classification within 

the 80 cluster centres. 

Analysis of performances of ProbSpell with deletion and addition    
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Figure 4.4: Test with deletions and additions of letters with a level of 10. 

In conclusion, when the length of the observation and the length of the correct word 

are different, ProbSpell performs less well. The limitation of the clustering idea ob- 

served before on simple corruptions are again put in evidence with corruption processes 

Hy and fiz. 

4.3 Conclusion 

For long words, both the clustering and the Markov models work well, to the extent 

that even quite severe corruptions can be corrected. For short words, the clustering 

approach is satisfying because of the relative small number of short words in the dic- 

tionary. However, the Markov model is less effective. The performance of ProbSpell is 

encouraging, far exceeding the performance of Ispell in corruptions involving a combi- 

nation of the elementary corruption processes. However, the performance of Ispell is 

superior to that of ProbSpell, provided that only the very simplest corruptions are con- 

sidered. This suggests that combining the two approaches - using Ispell to generate a 

set of candidate words for the ProbSpell algorithm or used exclusively for short. words, 

could provide a powerful spellchecking system, able to deal very accurately with minor 
and more severe corruptions. 
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Chapter 5 

Dealing with suffixes and prefixes 

Being able to deal with suffixes and prefixes is an important aspect of any spellchecking 

system since their inclusion greatly expands the number of words in the dictionary. 

Associated to each word in the dictionary, there is an affix flag describing how to form 

another word. For example, in the case of the word ‘dirty’, several flags exist, one of 

which is described by: 

    

e Name of the flag: T 

e Last letter of the dictionary word: Y 

© Set of the penultimate letters of the dictionary word: Qy —(A, E,/,O0,U) (which 

means every character except ‘a’, ‘e’, i’, ‘0’, ‘u’)    

e List of letters deleted: Y 

List of letters added (end or beginning): JEST 

This flag thus describes how to form the word ‘dirtiest’ from the dictionary word 

‘dirty’. New words are formed by paring the dictionary word ‘dirty’ down to ‘dirt’ 

and then adding a set of letters. Generally, the letters deleted and added to obtain 

the word with the suffix depend on the final and penultimate letters of the dictionary 

word. Let us consider how we could correct a corruption of the word “multiplication 

which is actually the dictionary word “multiply” where the ‘y’ is deleted and ‘ication’ 
added. The corruption process can affect both the beginning of the word and the suffix 

and moreover. a swap may mix up the root with the suffix. For instance, instead of 

“nvultiplication”, the observation could be “multipiclgtion” (2 swaps and 1 keyboard 

corruption). To deal with such a mistake, given the observation, we need to find the 

dictionary word “ ly” and the suffix and then build a Markov chain model for 

the word ‘multiplication’. In the rest of this chapter, we principally consider suffixes 

since prefixes are less numerous (only three kinds: RE-, UN-, IN-) and pose exactly 

the same kinds of problem. 

We consider three solutions. each of which can be integrated with the work done in 

chapter 4. The first idea is to use translated cluster centres, the second is to find the 

most likely dictionary word, and the final option is to build a Markov chain to guess 

which suffixes are most probable. 
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5.1 Three Approaches for dealing with suffixes 

5.1.1 Vector translation 

To explain the idea, we take an example of corruption of the correct. word C = “dirtiest”. 

Given. for instance, the observation O = “dortiets”, the goal is to select J¥,,, the cluster 

centre of the dictionary word |V = “dirty” associated with the suffix “est”. In order 

to do that, we can run through the set of suffixes, and for each one, delete these suffix 

letters from the observation, and add any letters required to obtain a word. E.g. for 

the suffix flag 7, we would delete an ‘i’, ‘e’, ‘s’ and ‘t’ from the frequency vector 

representation of the word and add ‘y’. This is equivalent to translating the vector 

centres and the vector representation of the dictionary words. Finally, we hope that 

both the distances d(O, Ky, — ‘y' + ‘iest') and d(O, W — ‘y' + “iest’) are small enough 

to identify the correct cluster. 

In doing this, when looking for the closest cluster centres, we «lo not care about 

the position of the letters added by the suffix. It is possible that, for instance. the 

letters ‘i’, ‘e’, ‘s’ and ‘t‘ occur in an observation without the suffix: for instance, the 

observation “«isaeter” could be typed instead of “disaster” (the key ‘e’ is a neighbour 

of ‘r’). Considering the suffix flag 7, after deleting the letters ‘iest’ and adding the 
letter ‘y’, the vector representation of the result “daery” is the same as that of the 

dictionary word “ready”. So, in that case, it is likely that the closest centre is going to 

be those of the dictionary word “ready” associated to the suffix flag T. This problem 

is especially evident when the suffix considered is short (e.g. addition of a single letter, 

‘s’). Nevertheless, if we manage to select the correct cluster with the right suffix, the 

Markov structure provides a good way to select the most probable word in the list. 

   

  

    

  

5.1.2 Deietion of the suffix 

Let us say that the observation is a word with a suffix. The goal is to find, without any 

knowledge about the suffix flag used. the correct dictionary word which could generate 

the observation. Ignoring the number of letters added by the flag, we are going to 
delete one letter after another from the end of the observation and with each deletion, 

use ProbSpell to return the best corrections. The suffix flags associated to cach word 

of the list of she corrections provide a list of candidate words. A Markov model for 

each of them and the maximisation of the probability Pr(Observation ©,) provide a 

list of corrections with suffixes. A detailed example is shown in table 5.1. 

Two main problems are raised with this approach: first, the number of deletions 

is unknown so, in order to consider all suffixes, we need to clelete till a one-letter 

observation. Moreover, that means that ProbSpell is called as many times as the 

length of the observation typed, which is quite time consuming. 
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5.1.3 A Markov chain for the suffix 

In total, there are 35 suffix flags in the database, each representing a distinct sequence 

of letters added at the end of the root. The idea here is to find first a list of likely suffixes 

and then apply the approach of section 5.1.1, but considering only the translation linked 

to the likely suffixes found. How can we find the most likely suffixes? In order to do 

this, we run through the set of suffixes and for each one substitute the last letters of the 

observation for the suffix. We then build a Markov chain with that sequence of letters 

and compute the probability Pr(Observation|O(suffix;) where suffix; is the observation 

altered by substituting the suffix. These values give an estimation of the likelihood of 
the suffix. For example, given the observation “supsenidmg”, the substitution of the last 

letters for each suffix provides alist of words: “supsenided” for the suffix ‘ed”, “supseni- 

ing” for “ing”, “supsication” for “ication”, etc. A Markov chain is built for each of 

them and then used to compute the probabilities Pr(“supsenidmg“|O(“supsenided*)), 

Pr(“supsenidmg“|O(“supseniing“)), etc. Once we have identified a list of likely suf- 
fixes, we apply the approach of section 5.1.1, translating the cluster centres appropri- 

ately to find the dictionary word generating the observation. 

   
    

  

5.2 Test of these three solutions 

In order to measure and compare the performances of each of these ideas. we need 
a data set. We considered five complexities of corruption processes and randomly 

selected 50 dictionary words with suffix flags, see table 5.2. One of these flags is 

randomly chosen and then 20 corruptions are computed according to the complexity 

of the process considered. There are therefore 1000 observations for each complexity. 

We compared Ispell, vector translation, the deletion of letters. and the Markov 

modelling approach described before. Figure 5.1 displays the percentage of success 

for these four approaches. Analysing the behaviour of Ispell, we first remark that the 

deterministic approach is perfect for one transposition or one key corruption: Ispell 

reaches hundred percent for these two complexities. However, as soon as the corruption 

process is more complicated, the success of Ispell decreases rapidly: less than 20% for 

one transposition and one key corruption and less than 3% afterwards. Now, let us 

consider the results for the three suffix ideas for ProbSpell. Regardless of complexity, 

it seems that deletion of the suffix described in section 5.1.2 is the most effective: for 

elementary corruption processes jz and jig, the rates are over 85% and even when the 

complexity is (2,2), 50% of the corruptions are solved. The determination of the most 

likely suffixes described in section 5.1.3 gives interesting results and improves the initial 

idea described in section 5.1.1. 

    

    

36



CHAPTER 5. DEALING WITH SUFFIXES AND PREFIXES 

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  
  

  

  

  

  

  

  

  

  

  

  

  

  

    

  
  

  

  

        

Observations | Dictionary words found | Words derived | Probability 
supseniding semipublic semipublic 1.5102 %10-44 

suspecting suspecting 3.0709 « 107" 

unsuspecting 1.5311 + 107" 
supersonic supersonic 2.0195 « 10-7 

supersonics 1.7143 ¥ 10-7 
semidrying semidrying 1.8610 « 10-7 

supremacist supremacist * 1.4098 » 10-7 
surpassing surpassing d0352107 7 

surpassingly 9.8727 « 10-¥ 
supsenidm semipublic semipublic 1.5102 «10-" 

surmise surmise Oi55% 10-— 

surmised 2.9059 « 10-7 
surmising 9.6577 « 10-3 
surmiscier 9.6577 « 10- 
surmises 7.1593 « 10-7 

suspend suspend 2.2019 « 10-7 
suspended 1.5592'* 1077 
suspending Drs2ieioc 
suspender 1.6536 + 10-7 
suspends 1.5164 « 10-7 
suspenders 1.5022 107 

supersonic supersonic 2.0195 « 10-” 

supersonics 1.7143 + 10- 

euphemism euphemism 7.6959 = 10-™ 

euphemisms 5.0045 + 10-8 

stupendous stupendous 8.6142 « 10-8 

stupendousness 6.0848 « 10-8 

stupendously 5.6507 « 10- 
supsenid suspense suspense 2.1336 « 107? 

suspension 155sie10-2 
suspenses 1.6811 + 1077 
suspensive 1.6294 « 107" 

suspensions 13675 #10- 

supersonic supersonic 2.0195 = 10-? 
supersonics 1.7143 + 10- 

supernova supernova 2.2169 « 10-7 
supernovas 2.0278 « 10- 

surmise surmise 9.7155 +10-" 
surmised 2.9059 « 10-™ 
surmising Oey 

334e 107 
surmises 7.1593 * 10-7 

supposed supposed 2.8062 * 10-7 

supposedly gas! 

snipped snipped e102 
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Observations | Dictionary words found | Words derived | Probability 

supseni suppose suppose 3.1859 * 10-"? 

supposed 2.8062 * 107! 
supposing 4.2814 « 1077 

supposier 2.5624 « 10-7 

supposes 2.3078 « 10-* 

suspense suspense 2.1336 « 10-” 
suspension 1.5531 + 107! 
suspenses 1.6811 * 10-7 
suspensive 1.6294 « 10-? 
suspensions 1.3675 * 10-™ 

shipped shipped 3.4552 « 107-7 
snippet snippet 1.9470 « 10-7 
snipper snipper 1.9470 * 10-? 

snippers 2.3455 « 10-7 
snipped snipped 2.3455 « 107? 

supsen suspense suspense 2.1336 « 10-™ 

suspension 5531 210-2 
suspenses 1.6811 * 10-7 
suspensive 1.6294 + 10-? 
suspensions 1.3675 + 10-7 

stipend stipend 1.1268 » 10-7 

stipends 7.5839 « 10-3 
sensual sensual 5.5019 « 10-8 

sensually 3.9736 « 10-8 
superb superb 8.5038 « 10-8 

superbness 6.7389 « 10-3 
superbly 6.9632 « 107% 

spurn spur 9.0207 « 10-8 
spurned 2.9974 « 10-8 
spurning 1.0520 + 10-" 
spurner 2.2461 « 10-" 
spurns 5.4893 «10773         

Table 5.1 The deletion of letter for the observation “supsenidmg”. 

Given the observation “supsenidmg’ typed by the user (instead 

of “suspending”), ProbSpell is first run over that observation in 

order to find the most probable dictionary words. This is also 

done with the previous observation without the last letter (second 

line), then without the two last letters (third line) and so on. The 
second column shows the 6 corrections proposed by ProbSpell for 

each corruption. The third column is the list of words derived 

from the dictionary words found according the suffix flags the dic- 

tionary words have. Finally, the computation of the probability 

Pr(“supsenidmg"|®,) for all model ©, associated to eaca words 
derived provided the most likely correct, word. We remark that, in 

that example, the correct word “suspending” has the highest value. 

2.7321 * 107". ‘The 5 highest probabilities are highlighted. 
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Number of words 50 | 50 | 50 | 50 | 50 
Number of corruptions 20 | 20 | 20 | 20 | 20 

Number of swaps IO) S| F252 

Number of key corruptions | 0 | 1 | 1 | 1 | 2               
  

Table 5.2: The data set of observations with suffix 

Analysis of the performance of the three approaches dealing with suffixes 
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Figure 5.1: Comparison of the three approaches and Ispell 
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Chapter 6 

Mixture of Markov models for 

clustering 

6.1 Introduction 

The algorithni proposed in the section 4.1 to correct spelling errors works quite well: 

given an observation, the clustering scheme rapidly provides a list of candidates, and the 

probabilistic model usually manages to select the correct word amongst the candidates. 

However, if the correct word is not identified by the clustering procedure, the method 

fails. regardless of the subsequent probabilistic approach. The experiments in chapter 

4 demonstrate that the weakness of the current method is primarily in the clustering 
procedure - provided the correct cluster is identified, it is rare to fail to find the correct 

word. The reason, presumably. that the clustering fails. is that it does not take into 

account enough of the corruption processes, particularly deletion and insertion. Indeed, 

the artificial distance measure can lead to some problems of miss-classification: with the 

current algorithm, a corruption of a correct word could roughly keep its original Markov 

structure and at the same time lose its frequency vector representation characteristics. 

This occurs, for example, when the observation has many letters removed from the 

end of the correct word. This suggests that a method of clustering, based on the same 

principles as the Markov model approach, should be more appropriate. One possibility 

is to replace the distance measure based on the keyboard by a probabilistic measure 

based on the Markov structure of words. That is, we could attempt to cluster words 

based on their similarity in terms of their letter to letter transitions sich that all 

members of particular cluster would have a similar Markov structure. Each cluster is 

governed by « Markov model with parameter ©, (the initial state probabilities and 

the transition matrix). This model provides a probabilistic generative model for the 

sequences of that group. In the following section, the EM algorithm applied to the 

clustering problem is fully detailed. 
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6.2 Clustering with a mixture of models 

In general, a probabilistic interpretation of any clustering procedure is that it is mix- 

ture model. For example, the K-means algorithm is a deterministic version of Gaussian 

mixture models. This suggests that we can cluster data based on their Markov similar- 

ity, by simply using a mixture of Markov models ({2],[14]). In chapter 2, we associate 
to a word of the dictionary a Markov chain, which represents the letter to letter tran- 

sition of the original word, incorporating the elementary corruptions. Since we want 

to include the corruption processes in the clustering, a first idea is to build a Markov 

chain for each word of the dictionary. We can interpret this as a mixture model, with 

26057 components. To cluster these models, we could try to fit this set of models with 

a mixture model with a greatly reduced number of components. 

Formally, the problem is written as: 

e p%(a): the original given model (a 26057 component mixture model) 

  

e p(x): the mixture of models we will use to fit to p9(x) 

Di )= Devt a@\k)p(k) 

p(s) ave the raixture coefficients and p(x|k) the k** mixture model. corresponding to 
the k'" cluster. The KL divergence between the original and the mixture distributions 
can be used in order to fit the mixture model: 

KL(p) (x), p(x) ) = $2 p(2) log(p%(2)) ~Le) (x) log(p™ (a)) (6.1) 

where. 

The goal is to find the parameters of the distribution p™ which mininise this KL 

divergence. Since, p™ only appears in the second term of equation 6.1, we need to 

maximise the energy 2, 

E Le 2) log(p" (x)) (6.2) 

(logp" "(z))ps, (6.3) 

with respect to the parameters of p'. We introduce an arbitrary distribution q(k|x) 

and consider the KL divergence between q(k|x) and p(k|zx): 

KL (q(k\a:), p(k|x)) SY alka) log g(a) — ye q(k|a) log p(k\az) (6.4) 

  

= alka) log a(kla) — J alka) log ERP) 6.5) 
& k = 

> 0 (6.6) 
Isolating the term log p™(x) in equation 6.5, the inequality 6.6 provides an lower bound 

on the log likelihood given by 

logp'(a) > ~ dial k|x) log q(k|x) + da ka) log p( alk) 

+ ow k\a) log p(k (6.7) 
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Equations 6.3 and 6.7 leads to an lower bound on the energy 

B > ~S (a (kx) log q(klx))yo +S (u(x) log p(\h)) 
k k 

+ S(a(E|))po log p(k) (6.8) 
k 

   

We assume that the distribution q(k|x) is fixed. The parameters of the mixture of 

models we want to fit appear in the second and the third term in equation 6.8: the prior 

and the transition matrix of cluster k in the terms log p(2|k) and the mixture coefficients 

in the term logp(k). Let us first consider the optimisation of the coraponents. We 

introduce the distribution g(k) given by 

Gk) = (a(k|x)) po 

The third terin of equation 6.8 can be written as 

Yo ak) log n(k) = K LT ) = $2 G(r) log Gh) (6.9) 
k k 

   

Therefore, we obtain immediately the optimal choice of the mixture coniponents given 

by: 

rk) = ak) 
(a(klz)) (6.10) 

Let us focus now on the second term of equation 6.8 which can be written as: 

DL al&lz) log n(alk))yo = YO SS a(klz)p*(x) log plw|k) (6.11) 
k ko 

So origin) log p(a|k:) (6.12) 
Ez 

R 

where 

r(x|k)) x q(te|x)p"(x) (6.13) 

In addition, since the particular cluster centre k follows a Markoy distribution, we can 

write p(a|k) as: 

p(alk) = le Wee (6.14) 
i ij 

where the prior 7; and transition matrix ajj are the parameters QO, of cluster k. d;(x) 

is the count of initial state i in x. Similarly, fjj(x) is the count of transitions i > 7 in 

ace Our goal is to maximise equation 6.12 with respect to the cluster paraineters, 

let us consider now the Lagrangian function with the Lagrange multipliers A; and 8 

associated to the normalisation constraints of the parameters: 

L(x, x}, 8) = 9) r(elk) log(p(alk)) — S>WCS ay — 1) - BOQ m= 1) G.15) 
L } i e 
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Substituting equation 6.14 in equation 6.15, we obtain 

L(Gx, N}.8) = Dy Dir elk)ai(e) low me + Dy (alk) fila) log ess! 
Dn AQ ay — 1) — B( a 71) (6.16) 

The conditions for 6.16 to be stationary with respect to the parameter @,. A, and B 

give the following equations 

  

OL : . ae =08 ajax di r(zlk)fig(a) with , OVE (6.17) 

aL | ene : a i aa Oe mad, r(alk)di(z) with >» i=1 (6.18) 

So, given the distribution q(k|s:), for a sample drawn from p%(2:), the computation of 

the average frequency of transition i — j, weighted by q(k - (g(k|:2) fig) pa, and 
normalised provides the optimal transition matrices. This update of the parameters 

ensures the upper bound computed in equation 6.8 is maximised with respect of the 

parameters. Asserting q(k|z) = p(k|z), defines a closed set of equations that are 
guaranteed to decrease the KL divergence bound between the models p’ aud p”. This 

is in fact an EM algorithm in which the E step is given by q(k|x) = p(k|x) and the M 
step is given by equations 6.10, 6.17 and 6.18. We remark that the mixture components 
(equation 6.10) are the expected average proportion of the sample drawn from p9 in 

each cluster. 

In order to compute the optimal parameters, we need to take a sample from the 

distribution p’. In other words, for each Markov model associated to a dictionary word, 

a set of samplvs is necessary for the computation of the optimal mixture model param- 

eters. This would be a very costly procedure. Indeed, rather than fitting our model 

p' to samples from model p’, it would seem more appropriate to replace the Markov 

model mixture p? by p9(a) = Some 6(@ — x”)) where x” are examples of corrupted 

words from the dictionary. In that case, the E step and M step become 

  

   

      

E step p(k|z) = (6.19) 

M step p(k) = nthe") (6.20) 

DP lz”)d (a ke ata 3.2 

ot VP p(k”) a 
St vlkl2”) fis (”) a ene see 5.22 

we p(k") v7 

6.3 Application to the data 

Instead of applying the algorithm described in section 6.2 over all the words of the 

dictionary, we will take a simple data set composed of 1000 randomly chosen dictionary 
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words. Moreover, this current section will not consider any kind of corruption, each 

observation being a dictionary word. The experiment consists of fitting of a mixture of 

10 Markov models to the 1000 words. In addition, the K-means algorithm described in 

section 3.3 is run in order to compare the two approaches. The 10 mixture coefficients 

found after 20 iterations are between 0.0749 and 0.1138. Since these probabilities 

represent the proportions of data in each cluster, the 1000 data are evenly distributed 

between the clusters. Let us consider the two first clusters which contains 75 and 90 

words. Figure 6.1 shows the transition matrices and the priors of these clusters. In 

table 6.1 we have selected a few words from each of these two clusters, and also a few 

words from the first cluster found by the K means approach. 

    

Transition matrix of cluster 1       
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Figure 6.1: Parameters of the Markov models of two first clusters 

Observing the transition matrix of cluster 1, we note that a few transitions are 

equal to 1 (e.g. Pr(‘a‘|‘w‘), Pr(‘e‘|‘j*), Pr(‘e'|‘k‘), Pr(‘u‘|‘q‘), Pr(‘y‘|‘x‘), Pr(‘s‘|‘y‘), 
Pr(‘i‘|‘z‘)). However, observing the words classified in that first cluster, it is difficult 

to distinguish the features of the cluster except for rare sequences of letters such as 

‘wa’ or ‘cy’. That cluster is therefore mainly characterised by these rare combinations 

and by the prior: for instance, cluster one has the highest prior probability for the 

  

  

  

44



CHAPTER 6. MIXTURE OF MARKOV MODELS FOR CLUSTERING 

  

letter ‘p’ (ai (‘p') = 15) whereas none of words beginning with that letter is in 

cluster two. Reciprocally, the prior of cluster two has highest values for the letters ‘c’ 

(m2("p') = 0.1969) and ‘s” (72(‘p*) = 0.1448) whereas these values are very low for the 

first cluster. [In comparison with the K means clustering approach described in chapter 

  

  

  

  

  

Cluster model 1 | Cluster model 2 | Cluster 1 (K-means) 
Number of words 75 90 57 

Examples ‘placebo’ ‘chimpanzee’ ‘market place’ 

‘servile’ ‘chip’ ‘transterral’ 

‘plane’ ‘chit? ‘irreplaceible’ 

‘plate’ ‘stereo’ ‘naccurate’ 

‘nirvana™ ‘stood’ ‘heartbreak’ 

‘plug’ ‘round’ ‘supernatant, 

“pluperfect’ ‘storeroom’ ‘lawbreaking’ 
L ‘federate’ ‘chickadee’ ‘fluctuate’           

Table 6.1: Two clusters from the mixture and one obtained with the K-means algorithm 

3 based on the on the frequency of letters in the word, we observe that the length of 

the words do not play as strong a role in the Markov clustering process. Even if the 

interpretation of the Markov clusters is rather difficult, very rare combinations clearly 

have too much importance in the computation of the parameters of the mixture. If a 

corruption of a word were to affect a rare letter combination, it. is quite possible that 
the observation and its associated dictionary word would not be in the same cluster. 

In clustering the words, we really need to incorporate the elementary corruption 

processes. A way to do that is to apply the approach described in section 6.2, generating 

a list of corruptions for each dictionary word. However, in order to train accurately the 

mixture model, we would need a very large number of corruptions for each dictionary 

word. With current, computational resources, this approach is not. feasible. 

  

6.3.1 Possible solutions 

We can propose possible methods which can provide a way to cluster dictionary words 

according to their Markov structure and the elementary corruption process, without 

generating a huge list of corruptions. One method would be to fit the mixture model 

with respect to the correct letter to letter transition of the training set. It is possible to 

take into account the corruption process jy by adding the confusion matrix computed 

in section 2.2 to obtain a mixture of HMMs. This is rather limited since it does 

not consider the deletion and the transposition of letters. However, it is possible to 

improve this hy adjusting by hand the letter to letter probabilities of 

after training. These adjustments would consist of adding weights according to the 

probable sequences as we did in chapter 2 when we built Markov models for each 

dictionary word. Because of a lack of time, this last idea has not been testecl. 
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6.4 Conclusion 

Clustering models requires samples from the models. There is little benefit in doing 

this over simply taking examples of corrupted words. 

Computationally, this could be very expensive, since we would require a great, many 

samples to encode accurately the corruption processes. We did not have sufficient time 

to fully explore a possible solution to this problem, which could be based on training 

the mixture models on uncorrupted data, and adjusting a posteriori the parameters of 

the mixture model to account for the corruption processes. 

At this stage, therefore, it remains unclear whether or not clustering based on a 
Markov structure would lead to an improvement over the K means approach. 
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Chapter 7 

Conclusions 

Spellchecking is a difficult problem. The reason for this difficulty is that there is 

potentially a very large number of corruptions for any word, so that anv deterministic 

approach will rapidly run into computational difficulties in dealing with all but the 

simplest corruptions. For this reason we considered a probabilistic approach. Our 

approach is based on the idea that the Markov letter to letter transition structure of 

both the correct word and the corrupted word should be sufficiently similar in order to 

be able to identify the correct word. Our experiments bear out the uscfulness of this 

approach, particularly for long words. For short words, the Markov structure can be 

quite severely affected by even a modest corruption process. The clustering procedure 

that we used to rapidly identify a set of candidate words is largely successful, but 

constitutes the major contribution to the percentage of error. It seems to us, therefore, 

those better clustering procedures, similar to the mixture of Markov imodels, may 

provide, ultimately, a more satisfactory approach. 

A source of difficulty is prefixes and suffixes. We have introduced threc approaches 

for dealing with this issue. All of them used the Markov framework to firstly identify 

either the suffix added or the root of the observation. However, the results of these three 

approaches demonstrate a clear reduction of percentage performance in comparison 

with the correction of non-suffix/prefix dictionary words. Even simple corruptions 

can make the task harder since they can affect both the root and the suffix. In that 

case it becomes difficult to even detect the current suffix. An alternative would be to 

simply apply ProbSpell with a dictionary of 60000 words containing all the words of 

English language, including suffixes and prefixes. Computational resources currently 

have prevented us from pursuing this approach. We can also think of using a second 
order Markov model to describe a word. This would provide a way to distinguish the 

deletion of a letter and the transposition of two letters. It could also be interesting to 

consider more parameters to correct spelling errors such as the neighbourhood extended 

with associated probab s. the frequency or the speed of typing. 

In conclusion, spellchecking is an old but relevant problem which can indisputably 

be improved by using probabilistic framework. However, this improveme at is liniited 

by the complexity of the corruption processes. When it becomes too complicated so 

that the observation and the intended dictionary word have little in con:mon, we need 

to consider a whole sentence and a grammar to have a chance to guess the correct 
word. 
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Appendix A 

Main hidden Markov models 

algorithms 

  

T = length of the sequence of observations 

N = number of states 

M = number of possible observations 

Q) = hd (finite set of possible states) 

Qo = VN,..,Vu (finite set of possible observations) 

S, = random variable denoting the state at time t (state variable) 

O; = random variable denoting the observation at time t (output variable) 

o = O,,...,Op (sequence of actual observations) 

m = Pr(q =5i) 

Ay = Pr(tsi = Sjln = S:) 

BO.) = Pr(Vy =O; at tla = S;) 

A.1 The Forwards-Backwards algorithm 
  

Goal: To compute Pr(a|O) 
      

1. Definitions 

ay(j) = Pr(O, = y1,--» Or = Ye St = GIO) 

Bit) = Pr(Oiga = Yess... Or = yrlSi = qs, 9) 
2. Algorithin 

a - the backward coeflicients 

ay (7) = m(i) * b;(01) 

angi(9) = [My an (8)aig)bj(or4) 

b - the forward coefficients: 

Br(i) =1 
Bilt) = ies aig; (0141) Br+1 (9)
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¢ - Computation of Pr(o|O): 

P(o|®) = DE, er (i) 

A.2 The EM algorithm 

Goal: adjust © to maximise Pr(O|®) 
  

  
  

¢(O) = log )> P(Y, X|@) 
x 

‘To maximise the log likelihood, the idea is to introduce a arbitrary distribution Q 

defined over the hidden variables, we can find out a lower bound of the likelihood: 

log FAP) = log 3 20%) ae (A.1) 

> 44 IO (42) 

= Saw )log P(Y, X|®) — ya )log Q(X) (A.3) 

= HQ. ©) (A.4) 

The lower bound at the line (2.9) is obtained thanks to Jensen’s inequality. The bound 

can be used to find the maximum likelihood parameter estimation. The Expectation- 

Maximization algorithm is the iteration of two steps: the Expectation step (E step) 

is the Maximisation of «(Q, 9) with respect to distributions Q holding © fixed, and 
the Maximization step (M step) is the maximisation of «(Q,©) with respuct to the 

parameters where Q is fixed. Starting from initial parameter Oy: 

E step: Qi41 = Argmazg 6(Q, Ox) 

M step: 0,41 = Argmaze K(Qe41, 9) 

  

The difference between «(Q,©) and the likelihood £(Q) is the Kullback-Leibler (KL) 
divergence between Q(X) ard result that the KL divergence 

is minimised when ()(X) = P(X|Y,9). So, the M step becomes Qy41 = P(X|Y, Ox). 
Since the bound becomes an equality («(Qi+1, 0%) = £(@)), the M step is the compu- 
tation of : 

                      

      Argmate S> P(X|¥, x) P(X, ¥|0) 
Xx 

because the expression }>. Q log Q does not depend on O 

That algorithm uses the Forwards-Backwards algorithm in order to compute the 

coefficients as and /s. Let us introduce a variable &(i, 7), the probability of being in 

state S; at time t and states S; at t+1, given the model and the observation sequence. 

We can write the variable according to the definitions of the backwards and forwards 
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variables: 

out) Aij Bi (Ory) Bis V) 
Pr(O|9) 

an M1 u(t) Aig Bj (Ors) Bear (/) 

But, we have the probability of being in state Sj at time ¢ given by: 

y(t) = Pr(S; at t|O) 
N 

= So eiieg) 
j=l 

1. Interpretations 

1 e y(t 

we ei 
2. Algorithm 

a - the initialisation of the parameters: 

m(z) follows a uniform distribution over the states 
Aj; follows a uniform distribution over the states j given tlie state i 

B;(0;) follows a uniform distribution over the observation states i 

b - repeat till the critical point is reached: 
E step: computation of (i) and &(i, /) 

M step: update of the parameter of the model 

  

    
expected number of transitions from S; 

i,j): expected number of transition form S; to 5} 

  

T-1 k 
ae heel. story, Vt() 

By(k) = ys 
© Be a(t) 

on
 

he
)


