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Thesis Summary 

This thesis documents the study of remote sensing data carried out for xLogos. The 

allotted task was to separate regions with water present from other parts of the image. 

Gabor filters were used to create the features. Visualisation, basic classification models 

and features selection were applied and gave promising results on Digital Globe RGB 

and Infrared database. 
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Chapter 1 

Introduction 

1.1 Foreword 

This thesis is the report of research project carried out at Aston University in the Neural 

Computing Research Group from January to September 2005, as part of a Master of 

Science by Research. The goal of this document is to give account of the work done, as 

well as to provide a documentation about this project which uses different techniques 

in image processing and in data classification. 

The project was run in collaboration with a Canadian company called xLogos . The 

goal of the application is to identify regions that are covered by water by analysing 

remote sensing imagery. [Nabney and Fermin, 2004] reports the initial study made on 

this problem last year. Promising results were obtained with different classification 

models using features based on Gabor wavelets. Nevertheless it remained some areas 

of work to carry out in order to better model accuracy. 

The experiments were written in Matlab and largely based on the Netlab toolbox 

developed by the Neural Computing Research Group at Aston. 

1.2 Motivation 

Water is surely the most important resource on Earth. All known forms of life depend 

on water. A considerable part of the ecosystem is based on it and it offers a consid- 

erable biodiversity. Therefore it is essential to catalogue and maintain water areas. 

On the planet, water is continuously moving through the cycle involving evaporation, 

precipitation, and runoff to the sea. So we need a way to settle this non-trivial issue. 

Satellite imagery correctly used provides a cost- and time-efficient tool to perform this 

task. 

10



CHAPTER 1. INTRODUCTION 

1.3. Organisation of the work 

1.3.1 Architecture and Scenario 

The task of identifying and classifying regions of interest in an image can be tackled 

with several different strategies. 

1. Extract regions of interest from the image (i.e. perform an image segmentation) 

typically using edge detection and other computer vision techniques. Compute 

region-based features for each region and then classify them. 

2. Classify each pixel separately but incorporate information about the surrounding 

region by using contextual features (that take account of values from a region 

around the pixel of interest). 

3. Classify each pixel separately, but then use an object model to create coherent 

region classifications. Strictly speaking, this approach should use classifiers based 

just on pixel values, but in practice contextual features can be used. The best 

approach is to use probabilistic classifiers (i.e. ones that generate an approxima- 

tion to the class posterior probability) and use probabilistic models of the regions 

so that the laws of probability can be used to carry out inference. 

The exploratory work of [Nabney and Fermin, 2004] focussed on the second of these 

approaches, using Gabor filters and run-length encoding as features. But Nabney and 

Fermin’s experiments were based on too few images from RGB DigitalGlobe database. 

One image was used to train a model and another one to test it. The generalisation 

performance were subsequently quite poor. This is why this work was extended with 

larger sets from more image data. 

The third approach was also evaluated. The first approach is a computer-vision 

approach, requiring an initial segmentation of the image, and has been considered 

briefly in this project. 

Thus the three main areas of work that this project addresses are: 

e Improvement in features and feature selection. Different parameters of 

the Gabor filter were experimented. The number of features per pixel had to be 

reduced in order to compute more quickly the results and improve the accuracy 

model. Indeed it is important that only the features that prove effective are 

included. We investigated the use of Principal Components Analysis (PCA) as 

feature extractors and combiners and use Automatic Relevance Determination 

(ARD) in order to select the optimal feature sets. 

e Improvement of classifiers. A complete set of experiments to determine the 

optimal model structure needed to be performed. In addition, more work was 

11



CHAPTER 1. INTRODUCTION 

required on data selection to generalise the models. We also investigated unsuper- 

vised classification models. Indeed, such models are potentially more appropriate 

for this application because of the large variability of regions not in the class of 

interest. To train a good supervised model, it is essential to have many examples 

of both classes (i.e. the class of interest and all other possible regions in the im- 

age), which takes a lot of time on the part of the human user, and also requires 

sampling regions appropriately from many images. Hence a ‘novelty detection’ 

approach could give more robust generalisation. 

e Spatial filtering. Averages over neighbouring patches were experimented. 

1.3.2 Thesis outline 

Chapter 2 In this chapter, we describe the different databases provided for this 

project. We focus the research on one of them. A manual data selection is 

made to create the data sets and we talk about the pre-processing applied on 

them. 

Chapter 3 We present here the extraction of the features that were used for the future 

models. HSV colour space, Canny edge detection and Gabor filter are introduced. 

Chapter 4 In this part, we tackle the supervised classification and evaluate the po- 

tential of different models such as the generalised linear regression (GLM), and 

the multi-layer perceptron (MLP). We also use PCA and ARD to choose the 

correct values of the parameters of the Gabor filter. 

Chapter 5 We evaluate here the potential of an unsupervised classification (Gaussian 

mixture models) for classification. This is applied in the following way. A single 

model is trained to approximate the class-conditional probability density of the 

water class. Then a threshold on its output is used to decide if a new vector is 

likely to belong to this class. 

Chapter 6 In this chapter, the third approach is assessed. We try to incorporate 

some spatial information in the model to improve its accuracy. 

Chapter 7 We end the thesis by summarising the work done and providing some 

future direction of research. 
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Chapter 2 

Data sets and Pre-processing 

2.1 Different databases 

Three databases covering small regions were supplied: 

Tunctus visible band; this is from the SPOT satellite at 10 m resolution and is panchro- 

matic (the total intensity across the entire visible spectral band). 

  

Figure 2.1: An example of the Iunctus database. 

DigitalGlobe ; this is from QuickBird satellite. Launched in October 2001, it acquires 

colour images (4 bands - RGB and infrared/IR) with a resolution of 2.44 m 

covering a surface area of 16.5 km x 16.5 km. Our database was composed of 5 

full scenes images of the following locations: 

e Ottawa; 

e Vancouver; 

Boulder, CO; 

Missoula, MT; 

Palm Island, United Arab Emirates. 
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CHAPTER 2. DATA SETS AND PRE-PROCESSING 

  

Figure 2.2: RGB channel of an example Figure 2.3: RGB channel of an example 
of the DigitalGlobe database. of the DigitalGlobe database. 

Known locations of water from manual selection (see Section 2.3) were used to select 

regions in two classes: water and non-water. The water regions were essentially lakes, 

rivers and reservoirs. The non-water regions were chosen to cover a range of terrain, 

including both natural features (such as forest, mountains) and man-made features 

(such as roads, buildings and cultivated areas). 

2.2 Choice of the database 

Because of time constraints, all my efforts were focussed on one database. [Nabney and Fermin 

reports the initial study made on this problem and used visualisation methods to de- 

cide which database was the most suitable to this problem among Iunctus, DigitalGlobe 

RGB and DigitalGlobe IR. The purpose was to see in each database if two classes (wa- 

ter and non-water) are well separable using the provided features. By projecting the 

input data linearly using PCA (see Section 4.3.1) or non-linearly using Neuroscale 

[Bishop, 1995] into a two-dimensional space and colouring each class differently, we 

can see whether a given set of features provides good separation between classes. Nor- 

mally, if a reasonable class separation is impossible in the feature space, the classes will 

overlap heavily in the two-dimensional space. From these methods Nabney and Fermin 

decided that the DigitalGlobe RGB database was most likely to yield good classifica- 

tion models. It was decided subsequently to add the DigitalGlobe IR database as well 

in my study knowing that actually DigitalGlobe RGB and IR databases come from the 

single DigitalGlobe database. 

2.3 Creation of the data sets 

So satellite images from DigitalGlobe were chosen. Each image had 4 channels: the 3 

common RGB channels and an infrared (IR) channel. The database that was supplied 

contained 8 Gb of satellite images from 5 full scenes of different parts of the world. 

These images were partitioned into strips of one thousand rows. They were originally 

14



CHAPTER 2. DATA SETS AND PRE-PROCESSING 

stored in the representation with four 11-bit bands (RGB and Infrared). xLogos created 

a program to partition these images into 1000x500px tiles in order to limit the use of 

memory required for the experiments and to split the RGB channels and the IR one 

in two images. 

We selected manually 51 satellite images that we found interesting and represen- 

tative of the database. Indeed data sets of pixels were required for the experiments 

to train and test classification models. Besides these data had to be labelled to be 

used for supervised learning and to assess the models. However it takes time to label 

each image by hand; that is why the whole database was not considered. Only two 

classes were used: water and non-water. Then for every selected images some areas 

were labelled such as lakes, rivers, fields, roads, mountains, buildings. Thus a lot of 

pixels coming from different textures could be extracted easily. And the more we had 

different types of textures, the more the models would be generalised. The limit in 

this method was that only the regions that we were sure of the class were labelled. 

For example it is difficult to label the border of a river or of a lake visually with a 

good accuracy. So some parts of the images stayed unlabelled and could likely be not 

represented in the next models. 

From this labelled data, three data sets were built: training set to train the model, 

the validation set to select the architecture of the model, and the test set to determine 

the generalisation performance. For each one 17 different satellite images were used. 

Thus taking different parts of regions of the world for each set, we could be sure that 

these sets were independent. However to give the same weight for each class, each data 

set had to be balanced (same number of pixels for each class). So finally we obtained: 

e A balanced training data set of 96 518 pixels from 17 satellite images; 

e A balanced validation data set of 66082 pixels from 17 satellite images; 

e A balanced test data set of 117818 pixels from 17 satellite images. 

2.4 Histogram equalisation 

Before extracting features, some image pre-processing was performed. This consisted of 

histogram equalisation on each image separately in order to produce a more consistent 

distribution of pixel intensities and reduce variability of lighting [Petrou, 1999]. We 

assumed that this processing enhanced the separation between the water and not- 

water classes, particularly because we used, as you will see farther, gray-level images 

to extract the textures. Nevertheless there was an edge-effect since each image was 

processed separately, but we did not notice a decrease of performance. Thus we did 

not experiment without the histogram equalisation. 
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Feature Extraction 

3.1 HSV colour space 

The images from DigitalGlobe are using the classic RGB (Red, Green, Blue) colour 

space to represent the colour of a pixel. We will talk farther in this thesis about 

experiments using an alternative colour space called HSV! for Hue, Saturation and 

Value. This defines a colour space composed of three coordinates: 

e The hue is an angle from 0 to 360 degrees, typically 0 is red, 60 degrees yellow, 

120 degrees green, 180 degrees cyan, 240 degrees blue, and 300 degrees magenta. 

e The saturation typically ranges from 0 to 1 and defines how grey the colour is, 

0 means grey and 1 is the pure primary colour. 

e The value corresponds to the brightness of the colour. 

The HSV colour space is often represented in the most of the softwares as a wheel (See 

Figure 3.1). 

Transformation from RGB to HSV 

A series of formulas make the transformation from RGB colour space to HSV colour 

space easy. Let us define a colour defined by its coordinates in RGB space (R, G, B) 

and in HSV space by (H, S, V). Let Max be the maximum of the (R, G, B) values, 

and Min be the minimum of those values. The formulas can then be written as: 

  0+ 7,2-4,,) x 60, if R= Max 
H = § (2+ 77225) x 60, if G = Max 

4+ 77ES_) x 60, if B= Maz   

1NB: The HSV model was created in 1978 by Alvy Ray Smith, future co-founder of Pizar. 
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CHAPTER 3. FEATURE EXTRACTION 

  

    

  

  

Figure 3.3: An example of a Gabor wavelet function in 1 dimension. 

So, when a function is convolved with a Gabor wavelet, the frequency information 

near the centre of the Gaussian is captured, while frequency far away from the centre 

of the Gaussian has a negligible effect. 

P+yPyP é 
W(z, y, 8, A, ¢, 0, y) = exp (“pF cos (205 a 0) (3.2) 

where = x cos 0+ y sin 0 and y = —a sin@ + y cos 0. The parameters have the 

following interpretations: 

e @ specifies the wavelet orientation in range (0, 7]; 

e A specifies the wavelength of sine wave; 

¢ specifies the phase of the sine wave in range [0, 7]; 

e o specifies the radius of the Gaussian; 

e 7 specifies the aspect ratio of the Gaussian (ratio of major and minor axes). 

  

Figure 3.4: Different orientations and scales of Gabor wavelets were used to analyse 

the textures of the images. 

In fact we can add a sixth parameter which is the size of the Gabor mask. However 

it is completely linked with the radius of the Gaussian o. Indeed we can see on the 

Figure 3.4 that the coefficients too far away from the centre of the mask are drawn in 

21



CHAPTER 4. SUPERVISED CLASSIFICATION 

  

Predicted 
aaa non-water | water | Total 

non-water 46411 12498 | 58909 

water 8659 50250 | 58909 
Total 55070 62748 | 117818 

  

  

            
  

Table 4.5: Confusion matrix for the classification of the test set using the MLP with 

150 hidden nodes and 160 Gabor features. Accuracy of 82.0% 

  

Figure 4.4: The results with the MLP using the 160 Gabor features on an image of 
the test set. The result image is coloured as follows: green pixels for True-Positive 

non-water, red pixels for False-Positive non-water, blue pixels for True-Positive water, 

and magenta pixels for False-Positive water. 

4.3. Feature selection 

To perform it we investigated the use of PCA as extractors and combiners, and ARD 

to select the optimal feature sets. 

4.3.1 Principal Components Analysis 

Principal Components Analysis (PCA) is a technique that can be used for extracting 

structure from high-dimensional data sets. Basically, PCA is a linear transformation 

that chooses a new coordinate system for the data set such that the greatest variance 

by any projection of the data set comes to lie on the first axis (then called the first 

principal component), the second greatest variance on the second axis, and so on. So 

PCA can be used for reducing dimensionality in a data set. Indeed, in general, a 

reduction in the dimensionality of the data set will be accompanied by a loss of some 

information. But in the case of the PCA, by projecting the data set onto the first 
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CHAPTER 4. SUPERVISED CLASSIFICATION 

principal components, the characteristics of the data set that contribute the most to 

its variance will be retained. The principal components are found by diagonalising 

the covariance matrix of the data set [Bishop, 1995]. However there is no general 

technique for deciding how many principal components should be used to represent the 

data adequately. Commonly, we list the principal components in descending order of 

eigenvalues to analyse the participation of each component in the variance of the data 

set. 

ih ]   

  

Figure 4.5: Principal components analysis on the 160 Gabor features (5 scales). 37 

principal components are kept corresponding to 90% of the variance of the training set. 

Results 

PCA was applied on the data training set. Figure 4.5 depicts the plots of the principal 

eigenvalues and shows no significant structure !. So to determine the number of the 

most significant components we chose to keep empirically 90% of the variance of the 

data. Thus we calculated the limit where 90% of the sum of the eigenvalues were 

represented. Thereby 37 principal components were kept. Nevertheless instead of 

computing these features as a linear combination of the Gabor features, it is possible 

to compute them directly by applying a linear combination of the Gabor masks and so 

reduce the time of computation. Afterwards different models using these 37 inputs were 

trained. The performance obtained was a bit lower than previously with the models 

using all the features (see Table 4.6 and Table 4.7). However it was promising since 

we reduce considerably the dimension of the data and even so an accuracy of around 

70% was obtained with GLM. 

1We can see a fast decrease after the 22th feature, but we did not consider this elbow’ because 

the eigenvalues after this limit is still non negligible. 

31



CHAPTER 4. SUPERVISED CLASSIFICATION 

  

  

Model | No hidden nodes | Training set | Validation set 
GLM - 76.8 70.7 
MLP 60 72.6 67.9 

MLP 80 75.0 70.2 

MLP 100 73.3 69.3 
MLP 120 74.5 70.2 
MLP 150 74.7 69.7 
MLP 180 75.6 70.4 

MLP 200 75.8 70.6             
Table 4.6: Classification accuracy on the training and validation sets with the 37 Gabor 
features computed using PCA. GLM was considered here as the most appropriate 

model. 
  

Predicted 

sees non-water | water | Total 

non-water 43808 15101 | 58909 

water 20679 38230 | 58909 
Total 64487 53331 | 117818 

  

  

              

Table 4.7: Confusion matrix for the classification of the test set using a GLM and 37 
Gabor features computed using PCA. Accuracy of 69.6%. 

4.3.2 Automatic Relevance Determination 

Selecting the best input variables is a non-trivial problem. 

The goal of the Automatic Relevance Determination (ARD) is the detection of the 

relevant component of the input vector: this can be achieved by associating one hyper- 

parameter to the group of weights which connects one input unit to all of the units in 

the next layer [MacKay, 1995]. These hyperparameters a; control the size of the groups 

of weights through a prior distribution. The prior is a Gaussian function with 0 mean 

and standard deviation o; = Ja From the values of the hyperparameters it is possible 

to figure out which inputs are more relevant than others. A large hyperparameter value 

means that the weights are constrained near zero, and hence the corresponding input 

is less important [Nabney, 2002]. This naturally prunes irrelevant features in the data. 

In the case under study, the set of hyperparameters is composed by 180 elements, 

one for each input unit (a;, i = 1..180) and one for the bias unit (a9). For the MLP 

used in this work, each one of the a; is controlling 20 weights connecting one input to 

the 20 hidden units. 

During the learning, the hyperparameters are modified using the evidence proce- 

dure; we find their optimal value, subject to some simplifying assumptions about the 

network function to make the analysis tractable. 
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Results 

ARD was applied on the data training set. Figure 4.6 shows the plot of the hyperpa- 

rameters a. We can so conclude according to Figure 4.3 to know the properties of the 

features that the bigger the scale of a feature is, the more irrelevant the feature will 

be. 

Alpha 
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Figure 4.6: Automatic Relevance Determination on the 160 Gabor features (5 scales, 

8 orientations, 2 phases, 2 layers). The bigger the value of alpha, the less relevant the 

corresponding feature is. 

Besides regarding the 32 most relevant inputs we can say that we have approxi- 

mately as many RGB Gabor features as IR Gabor features (respectively 14 and 18 

features). Each direction 6 is well-represented (around 4 features for each). This seems 

actually reasoning because we can assume that the analysed textures are randomly 

oriented and that their variance are not based on only one direction. The influence of 

the phase is also real because the both phases are represented for a same orientation 

and a same frequency/scale (around 14 features for ¢ = 0 and 18 features for ¢ = 7/2). 

Nevertheless for the wavelength A some values seem to play a bigger role than some 

others especially the smallest value. Indeed we have 29 features with A = 4 and a size 

of the Gabor mask = 11 and 3 features with lambda = 2,/2 and size of the Gabor 

mask = 13. The rest of the scales are not represented among these 32 inputs. This 

confirms that the smallest scale makes the variance of the data set increase. As a 

result we decided to only keep the features with the size of the Gabor mask equal to 

11 (lambda = 2/2). 

Then different models were experimented using these 32 Gabor features actually 
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based on a one-scale Gabor filter. The obtained results were better than with the 

previous models using 5 scales (see Table 4.8 and Table 4.9) especially with the MLP. 

So the ARD method seems to have been efficient even if the number of hidden nodes 

required for the MLP is relatively large. 

  

  

Model | No hidden nodes | Training set | Validation set 

GLM - 75.7 72.4 

MLP 20 79.5 79.5 
MLP 60 80.1 81.8 
MLP 80 80.5 81.5 
MLP 100 81.1 82.0 
MLP 120 81.5 82.4 
MLP 150 82.0 82.5 
MLP 180 81.6 82.6 
MLP 200 82.3 83.1             

Table 4.8: Classification accuracy on the training and validation sets with 32 Gabor 
features (1 scale). The MLP with 120 hidden units is chosen, because the performance 

is stable around this value. 

  

Predicted 

anal non-water | water | Total 

non-water 45968 12941 | 58909 

water 7956 50953 | 58909 
Total 53924 63894 | 117818 

  

  

            
  

Table 4.9: Confusion matrix for the classification of the test set using a MLP with 120 
hidden nodes and 32 Gabor features (1 scale). Accuracy of 82.3%. 

However the analysis of Figure 4.6 is not totally finished. Indeed if we concluded 

that the features of the smallest scale were the most relevant, i.e. for a size of the 

Gabor mask equal to 11 (resp. \ = 4), we have also to try value lower than 11 (resp. 

4). This is why we created a different Gabor filter changing the values of the scales to 

fit better the data. Table 4.10 defined these new values. 

  

New frequencies 2 [22 4 4/2 

New sizes of the masks | 5x5 | 7x7 | 11x11 | 13x13 
  

            
  

Table 4.10: New parameters used for the Gabor filter. Only the values of the scale are 
modified. The values for the orientations and the phases are kept. 

Then ARD is applied on the data training set newly processed from the modified 

Gabor filter. The hyperparameters a were plotted, but, this time, it is not as readable 
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as previously. So another method was used to visualise the results. First the features 

were listed in ascending order of a (and so in descending order of relevance). Then to 

emphasize the importance of a scale, we can count the number of features using this 

scale among the first M relevant features. We make this number M vary from 1 to 128 

(the number total of features) and repeat this process for each scale. Finally Figure 

4.7 depicts the importance of each scale among the first relevant features. 
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Figure 4.7: Importance of each scale among the first relevant features. The Y- 

coordinate describes the percentage of features using the scale among the X-coordinate 

relevant features. 

We can notice clearly that the smallest (A = 2) and the biggest mask (\ = 4/2) 

are the most appropriate to classify the data. The other scales seem to have the same 

importance, with a small preference for lambda = 2\/2. As a result we decided to keep 

3 scales with A = 2,2\/2,4\/2 and the corresponding sizes of the mask of 5x5, 7x7, 

13x13. Finally we had 96 features. Different models were trained again and better 

results were obtained with an accuracy around 85% (see Table 4.11 and Table 4.12). 

So it seems that the selected scales suit better to our data set. 

4.4 Combining Gabor features with colour compo- 

nents 

An accuracy around 85% has been reached with the model using the 96 Gabor features 

and the one using the 4 colour components. But one question can be raised: what 
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Model | No hidden nodes | Training set | Validation set 
GLM - 77.6 74.2 
MLP 100 84.3 84.1 

MLP 120 84.2 83.9 
MLP 150 85.0 84.5 
MLP 180 85.4 84.6 
MLP 200 84.9 84.4           
  

Table 4.11: Classification accuracy on the training and validation sets with 96 Gabor 
features (3 scales). The MLP with 150 hidden units is chosen, because the performance 
is stable around this value. 
  

eal Predicted 

non-water | water | Total 
non-water 47546 11333 | 58909 

water 5542 53367 | 58909 

Total 53118 64700 | 117818 

  

  

            
  

Table 4.12: Confusion matrix for the classification of the test set using a MLP with 
150 hidden nodes and 96 Gabor features (3 scales). Accuracy of 85.6%. 

would be the performance of a model using all these features? Thus the purpose of 

this section is to combine the 96 Gabor features from the three-scale Gabor filter with 

the 4 colour components (RGB and infrared). 

4.4.1 Mixing the features 

So a set of GLM and MLP models were created with these 100 features. Table 4.13 

shows reasonable results for the GLM since the accuracy was increased by around 3% 

compared to the GLM using only the colours. 88.5% of the test data were correctly 

classified. Moreover as we can see on Figure 4.10(a), the ROC curve is more convex than 

the one of GLM using only the colour components. This means that the classification 

is less random. So the classification through GLM has been consolidated. 

On the other hand the MLP does not give satisfying results because it is even less 

than the MLPs using only the colours. However we can notice as well on Figure 4.10(b) 

that the ROC curve of the MLP using only the colour components is not convex and 

so its classification can be random. But it is not really surprising. 

Nevertheless it is hard to evaluate these results from the accuracy since the differ- 

ence of percentage is low. This is why the ROC curve is more adequate to compare 

the performance between the GLM and the MLP. Indeed we can see quickly on Figure 

4.9 that the GLM give a best classification than the MLP. 
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Figure 4.8: Results with the MLP using 96 Gabor features (3 scales) on an image of 
the test set. The result image is coloured as follows: green pixels for True-Positive 

non-water, red pixels for False-Positive non-water, blue pixels for True-Positive water, 

and magenta pixels for False-Positive water. 

4.4.2 Committee 

We experimented the use of a committee from these both models. It simply consists 

in a weighted sum of their outputs. A committee with M models can be written in the 

form: 

P(x|C;) = Sar *s(x|C;) (4.5) 

where a; are the weights of the models (which must be positive and sum to one), 

P;(x|C;) the probability of the input vector x to belong to the class C; through the 

  

  

model i. 

Model | No hidden nodes | Training set | Validation set 

GLM - 87.8 88.2 
MLP 50 86.5 85.5 
MLP 60 85.5 84.7 
MLP 80 86.2 85.2 
MLP 100 86.3 85.4 
MLP 120 86.7 85.8 
MLP 150 87.9 86.2 
MLP 180 87.0 85.5 
MLP 200 88.0 86.2             

Table 4.13: Classification accuracy on the training and validation sets with 96 Gabor 
features (3 scales) and the 4 colour components (RGB and infrared). 
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As only two models were integrated in our committee, two weights had to be eval- 

uated. They were determined from the validation set. We made them vary until the 

optimal accuracy of our set was reached. Besides we found a weight of 0.37 for the 

MLP with the Gabor features and so 0.63 for the MLP with the colour components. 

Table 4.14 presents the confusion matrix of the test set. According to Figure 4.9, the 

committee have similar results as GLM. 

  

Predicted 
Es non-water | water | Total 

non-water 52823 6086 | 58909 

water 7899 51010 | 58909 
Total 60722 57096 | 117818 

  

  

              
Table 4.14: Confusion matrix for the classification of the test set using committee of a 
MLP with 150 hidden nodes and the 96 Gabor features (3 scales) and a MLP with 10 
hidden nodes using the 4 colour components (RGB and infrared). Accuracy of 88.1%. 

ROC curve ~ Models using 96 Gabor features (3 scale) and 4 colour components ' —    
  

      

Fala postive rate 

Figure 4.9: ROC curves of the models using the Gabor features and the colour com- 
ponents. The MLP has 150 hidden units. 

4.5 Conclusion 

Thanks to ARD the parameters of the Gabor filter have been improved to suit bet- 

ter to the textures of the DigitalGlobe images. Concerning supervised classification, 

simple models such as the GLM are actually not really convincing when they only 

use the Gabor features. However they perform quite well with all the features. More 

sophisticated techniques such as Bayesian learning for the MLP are more efficient to 

use only the Gabor features than GLM. But the use of the combination colour features 

and Gabor features does not promote the MLP. Nevertheless with the committee the 

results are as efficient as the one with the GLM, though it is more complex. 
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ROC curve - GLM Models Resume OC eure - MUP Models Resume 
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(a) ROC curves of GLMs. (b) ROC curves of the MLPs. 

Figure 4.10: ROC curves of the models using the different set of features. 

  

Figure 4.11: Results with the committee on an image of the test set. The result 

image is coloured as follows: green pixels for True-Positive non-water, red pixels for 
False-Positive non-water, blue pixels for True-Positive water, and magenta pixels for 

False-Positive water. 

39



Chapter 5 

Unsupervised Classification 

Unsupervised classification is investigated in this chapter with the use of Gaussian 

Mixture Models. In this approach a model is trained to fit the water-classed data. As 

the non-water class owns a widest variety of textures than the water class, it seems 

reasonable to focus our study on the water class and establish its density distribution 

rather than on the non-water class. As a result this approach is likely to be of interest 

for our problem because of the wide variability of regions. After setting up a probability 

mapping of the water class, a threshold on its output is used to decode if a new input 

vector is likely to belong to this class. This can be viewed as a ‘novelty detection’ 

approach [Bishop, 1994]: anything that looks new does not belong to the class of 

interest. 

5.1 Density modelling 

Mixture Model is a common model for clustering and density modelling. It consists in 

a linear combination of different components. Here, we consider models in which the 

density function is formed from a finite linear combination of basis functions. A model 

with M components can be written in the form: 

M
z
 

p(x) =D p(xls) PY) (5.1) 
j=l 

where the M functions p(x|j) are the components density functions, with 

+ inf 
iE p(x|j)dx = 1. (5.2) 
—inf 

The probabilities P(j) are the mixing coefficients, which must be positive and sum to 

one. 
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5.1.1 Gaussian Mixture Model 

Because of their probabilistic nature, Gaussian mixtures are in general preferred over 

models. The density components are now Gaussian distributions: 

P(xIj) ~ N (uj, 25) (5.3) 

The finite mixture model will then be expressed by extending Equation 5.1 to: 

P(z|, 3,0) = Yow (;,3) (54) 

where a = {a4,...,a@} are the mixing weights (which must be positive and sum 

to one), M(u;,%;) are the Gaussian density functions, = {/41,..., 4} are the means 

and © = {X,..., Ear} are the covariance matrices. 

5.1.2 Expectation-Maximisation Algorithm 

Assuming that a data set is generated by a certain Gaussian mixture, the task is to 

fit a model to these data, and thus to estimate the parameters of the generating mix- 

ture. The most popular algorithm for training a Gaussian mixture is the Expectation- 

Maximisation (EM) algorithm. The EM algorithm iteratively modifies the Gaussian 

Mixture Model (GMM) parameters, the means j1;, the covariance matrices Dj, and the 

mixing coefficients a; for each components j, to maximise the likelihood of the data 

[Bishop, 1995]. 

5.2 Determination of the number of components 

Finding the "right” number of components for a data set is a difficult task. The 

likelihood of the data will reach a maximum when the number of mixtures will be equal 

to the number of training data, and in this case the model will overfit. This number of 

components should reflect the number of populations in which a pixel can be labelled. 

In our case it should express the number of main textures of the data set in which a pixel 

can be classified. There exist several solutions to determine this number of components 

[Smyth, 1996, Salvador and Chan, 2004]. [Smyth, 1998] proposes a efficient and simple 

solution based on the cross-validation to select a model from a family of candidate 

models. The cross-validated likelihood is used for choosing the number of mixture 

components. 
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Cross validation 

So we decided to use the Cross-Validation method, which selects the number of compo- 

nents by maximising the average likelihood over the training and validation data sets 

simultaneously. A first experiment was launched using the 32 Gabor features processed 

from the one-scale Gabor filter. Only the pixels labelled as water were kept for the 

learning. Indeed the purpose here is to create a model, which fits the water-class data 

distribution. The water-class was preferred since it has certainly less textures than 

the non-water class. Figure 5.1(a) depicts the plot of the negative log-likelihood in 

function of the number of kernels. Actually the curve should go up again when the 

model starts to overfit and we should be able to see a minimum for the validation set 

curve, which would correspond to the appropriate value. But as the training sets are 

relatively large for the training (around 48000 and 33000 pixels simultaneously), it is 

hard to make a model overfit with so few kernels. Nevertheless we can see that it is 

quite stable around 15 kernels. We assumed that the variety of textures of the water is 

reduced and can be modelised with these 15 kernels. Another experiments was made 

using the 96 Gabor features of the three-scale Gabor filter and in this case, 35 kernels 

was likely adequate for the data (see Figure 5.1(b)). 

‘108 Cross-valdated tkethood for choosing the number af kernals          

            

  

(a) GMM using 32 Gabor features from (b) GMM using 96 Gabor features from 

the one-scale Gabor filter. The model with the three-scale Gabor filter. The model 

15 components seems to be a good trade- with 35 components was chosen. 

off between efficiency and complexity. 

Figure 5.1: Determination of the number of components for the GMM of the water class 
using the cross-validation method. These plots represent the negative log-likelihood of 

the data in function of the number of components used. 
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5.3 Determination of the novelty threshold 

Once the probability density functions was modelled, the next step was to fix a thresh- 

old on the output of the model to decide if a pixel is likely to belong to the water class 

(see Figure 5.2). 

  

non 
non-water water 
class lass 

Water class 
            wea 

Figure 5.2: Determination of the threshold to separate the classes (1-D example). 

To decide the value of this parameter, the output of the whole validation set was 

analysed. The histogram in Figure 5.3 bins the outputs into equally spaced containers 

to visualise the output distribution. Thereby we can notice clearly in both case that 

the distributions of the classes overlap each other. However the features of the one- 

scale Gabor filter seem to be the more appropriate for the GMM since the overlap 

of the distributions is even so lesser. On the other hand the GMM using the three- 

scales Gabor filter must give a doubtful classification. So it seems reasonable to prefer 

to trust the GMM using the one-scale Gabor filter rather than the other one. Then 

we had to determine a threshold to decide the class of a pixel from the output. The 

dichotomy method was applied to calculate the threshold which optimise the accuracy 

of the validation set. A lower and a upper thresholds were defined, and then the interval 

between them was divided by 2 keeping the lower and upper thresholds giving the best 

accuracy. This step was restarted until the interval between the 2 thresholds is close 

to zero. Afterwards this threshold was applied on the output of the test set. 

5.4 Results 

Promising results were obtained with an accuracy around 83.0% with the test set with 

GMM using the one-scale Gabor filter (see Table 5.1). However the plot of the ROC 

curve makes the performance of the model easier to analyse (see Figure 5.4). Indeed 

we can clearly notice the poor performance of the model using the 96 Gabor features 

compared to the one using 32 Gabor features. 

Figure 5.5 depicts the ROC curves of the MLP using the features from the three- 

scales Gabor filter and the GMM using the features from the one-scale Gabor filter. 
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(GNM 32 Gabor features - 1 Seale GMM ~ 96 Gabor features - 3 Seales 
    

  

0.04 non-water class                 
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ata probabity (negative lg sal) ‘Data probably (negative og sale) 

(a) GMM using one-scale Gabor filter. The (b) GMM using three-scale Gabor filter. 

separation between the two classes is ac- The overlap between the two classes is too 

ceptable so far. important to hope a accurate classification. 

Figure 5.3: Output distributions of the validation set through the models. On the top 
the histogram represents the output distribution of the water class, and on the bottom 
the one of the non-water class. Y-axis represents the proportion of the pixels which 
are contained in the bin, and which have a posterior probability in the interval of the 

bin. 

We can notice that the water pixels are better classified with the MLP than with the 

GMM, while the non-water pixels are better identified with the GMM. 

  

Predicted 
non-water | water | Total 

non-water 46378 12531 | 58909 

water 7558 21351 | 58909 

Total 53936 63882 | 117818 

Actual   

  

              

Table 5.1: Confusion matrix for the classification of the test set using a Gaussian 
Mixture Model with 15 kernels and 32 Gabor features (1 scale). Accuracy of 83.0%. 

5.5 Conclusion 

The results obtained with the Gaussian Mixture Model are finally disappointing. GMM 

was expected to be more appropriate for our problem since we have a wide variety of 

regions. However the poor performance of the GMM using the 96 Gabor features is 

surprising in the light of the results with the MLP. Indeed it seemed that the three- 

scales Gabor filter could give a good separation of the classes. So it remains some work 

to carry out to improve this unsupervised approach. 
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Figure 5.4: Comparison between the 
GMM using the one-scale Gabor filter 
and the one using the three-scale Gabor 

filter. 
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Figure 5.5: Comparison between the 
performance of the MLP using the 
three-scale Gabor filter and GMM us- 
ing the one-scale Gabor filter.



Chapter 6 

Spatial filtering 

This chapter presents the concise study made to improve the general accuracy of the 

models. The purpose was to provide some spatial context for a pixel-level classifier. 

The processing was applied here on the whole image to make the visualisation of the 

performance of the models easier. 

6.1 Median filtering 

The idea was to experiment the use of median filtering to better the classification. The 

median filter is normally used to reduce noise in an image somewhat like the mean 

filter. However it often does a better job than the mean filter of preserving useful 

detail in the image. Some pixels can be classify, for example, as water though they 

are only surrounded by pixels classified as non-water. Median filtering consists in the 

application of the median over a neighbouring patch to determine the class of a pixel. 

Therefore this technique homogenise the classification by decreasing the number of 

isolated pixels in term of class. We can compare it to a blur processing on the output 

of the analysed image. 

Two size of filters were used: 3x3 and 5x5. Figure 6.1 shows a small amelioration 

of the performance for the GLM and the committee. The committee seems to give 

lightly a best response with an accuracy around 91% for the test set with the optimal 

threshold and the biggest median filter. 

6.2 Conclusion 

As the processing was applied on the whole image, we realised that there were still 

some work to carry out. Indeed some areas were completely misclassified (See Figure 

A.1(g)). The median filtering improved airily the classification for certain image (See 

Figure 6.2). But if a full area is misclassified and only one well-classified pixel among 
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(a) Median filtering on the GLM. (b) Median filtering on the committee. 
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(c) Comparison between the two models af- 

ter the post-processing. 

Figure 6.1: Median filtering applied on the best models. 

  

(a) Application of the committee on an (b) Median filtering on the output of the 

whole image of the test set. committee on an whole image of the test set. 

The size of the filter used here was 5x5. 

Figure 6.2: Light enhancement of the performance due to the median filter. 
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this area, the result will be the opposite of what we want after the median filtering. This 

pixel will be likely misclassified because all its neighbours are originally misclassified. 

So median filtering is an interesting method for our problem, but do not settle the 

large misclassified areas. 
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Conclusion 

7.1 Summary of the work done 

This thesis has given account of the work produced by conducting research on the 

problem of remote sensing data analysis. Below are the main points that have been 

covered in this thesis. 

After choosing the most appropriate database for our problem among Iunctus and 

DigitalGlobe, we picked out different images, which looked representative, and built 

three data sets by classifying different parts of these images. 

Then we tried a first approach, which consisted in the extraction of regions of 

interest from the image. We used different techniques of edge detection such as Canny 

edge detection. We did not obtain an image segmentation that could be exploitable. 

So we decided to focus directly on the second approach. 

We started with an experiment with GLM and MLP models using only the colour 

components (RGB and Infrared). We found that these features gave surprisingly a 

good separation of the two classes. Then we experimented the HSV colour space to 

finally conclude that the RGB colour space was more appropriate for our task. 

Nevertheless the model could not rely on only the colour to detect the regions, which 

are covered by water. This is why we investigated the use of the Gabor filter in order to 

incorporate information about the surrounding region of the pixel of interest. However 

it was not easy to carry out since the parameters of the Gabor filter were not accurately 

fixed, especially the scale. Then, we tried to classify, via different models such as GLM 

and MLP, the pixels from a five-scale Gabor filter and its 160 corresponding Gabor 

features. Promising results were obtained and convinced us to carry on in this way. 

PCA was therefore applied on the 160 Gabor features to reduce the dimensionality 

of the input space, while the most of the variance of the data was maintained. The 

results were correct if we consider the fact that we reduced the number of features from 

160 to 37. Yet the accuracy was lower than the one with the five-scale Gabor filter. So 
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we used ARD to select the optimal features. After several tries, we finally found that 

three smaller scales were adequate to discriminate the different textures. The results 

were satisfying for the MLP unlike the GLM. 

The next step was to combine the 96 Gabor features with the 4 colour components 

into a single model. We first mixed the features and used them all as input. GLM gave a 

unexpected good response, while the MLP did not outperform the accuracy of a model 

using only the colour features. Then we built a committee from the MLP using the 

96 Gabor features and the MLP using the 4 colour components. The performance was 

similar as the previous GLM. So it seems that GLM are here more adequate because 

of its simple structure compared to the committee. 

Afterwards, we investigated the use of the unsupervised classification with the use 

of GMM. It was expected to be more appropriate for our problem since we have a wide 

diversity of regions. But the results were disappointing with a poor performance of the 

GMM using the 96 Gabor features. 

We finally finished our experiment by using the median filtering in order to blur 

the output of a pixel-level classifier by incorporating some spatial context. The results 

were lightly improved. And the committee seems to be, at last, a bit more efficient 

than the GLM. 

Nevertheless, we realised with the classification of whole images that there are still 

some work to carry out, because some areas were completely misclassified. 

7.2 Further work 

Improvement of edge detection The extraction of segments of interest from the 

image can be improved. Some promising results have been done to perform a use- 

ful image segmentation with closed areas [S Wang, 2003, Krupnik and Elder, 2002]. 

Improvement of unsupervised classifiers We did not investigate the potential of 

the Gaussian mixture model using a probability density model for each class. 

Once they are developed, we can combine them with Bayes’ theorem to compute 

the posterior probability of each class (Bishop, 1995]. This approach also has the 

advantage that it can detect if an object does not belong to any class seen in 

training. 

Spatial Inference The incorporation of spatial information, such as typical shape of 

rivers and lakes into the inference of regions based on pixel-level classifiers can 

improve the performance of the models. 

Adaptive detection The techniques that we used can actually be applied to anything 

in a satellite picture, not only to classify water regions. Indeed if we train a model 
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to detect roads, for example, the approach can be similar. 

7.3 Afterword 

This project has been interesting in many aspects, from the involvement of abstract 

theory it involves to its practical detection application. It has given us the opportunity 

to use different areas of expertise such as applied mathematics, statistics, computer 

science and image processing to achieve the presented results. It certainly is a little 

frustrating not to have had enough time to take the project to a complete operational 

state, which was our initial objective, but this is one of the aspects of a research work. 

It is an interesting piece of work, and to conclude this thesis, let us just express our 

hope that further research will be conducted to improve the machine learning approach 

concerning concerning remote sensing data analysis. 
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Additional results 
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APPENDIX A. ADDITIONAL RESULTS 

  

(c) Classification with the MLP us- (d) Classification with the MLP using the 

ing the five-scales Gabor filter. three-scales Gabor filter. 

  

(e) Classification with the committee of the (£) Classification with the GLM using the 

MLP using the three-scales Gabor filter and three-scales Gabor filter and the 4 colour 

the MLP using the 4 colour components. components. 

   
(g) Classification of the whole image with (h) Median filtering on the output of the 

the committee. committee on the whole image. 

Figure A.1: Set of experiments with an image from the test set. 
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(c) Classification with the MLP using the (d) Classification with the MLP using the 

five-scales Gabor filter. three-scales Gabor filter. 

  

  (e) Classification with the committee of the (f) Classification with the GLM using the 

MLP using the three-scales Gabor filter and three-scales Gabor filter and the 4 colour 

the MLP using the 4 colour components. components. 

   
(g) Classification of the whole image with (h) Median filtering on the output of the 

the committee. committee on the whole image. 

Figure A.2: Set of experiments with an image from the test set. 
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Appendix B 

Image classification tool 

We implemented a small tool in Matlab to make the classification of the image easier. 

This application contains the most of the models experimented during the project. 

The user takes an image from the DigitalGlobe database, then selects the model of his 

choice and launch the processing. A new image is created based on the output of the 

image through the model. The pixels classified as water are displayed in blue, while 

the pixels classified as non-water are represented in green colour. The user has the 

possibility to save the image. 

  
Figure B.1: Interface of the demo application. 

55 
| ASTON UNIVERSI1 
| ierary INFORMATION SERVICES



Bibliography 

[Bishop, 1994] Bishop, C. M. (1994). Novelty detection and neural network validation. 

In IEE Proceedings, Special Issue on Applications of Neural Networks, pages 576 

584. Neural Computing Research Group, Department of Computer Science, Aston 

University. 

[Bishop, 1995] Bishop, C. M. (1995). Neural Networks for Pattern Recognition. Oxford 

University Press. 

[Bolme, 2003] Bolme, D. S. (2003). Elastic bunch graph matching. Technical report. 

(Canny, 1986] Canny, J. (1986). A computational approach to edge detection. JEEE 

Trans. Pattern Anal. Mach. Intell., 8(6):679-698. 

[Chen et al., 2004] Chen, L., Lu, G., and Zhang, D. (2004). Effects of different gabor 

filter parameters on image retrieval by texture. In MMM ’04: Proceedings of the 10th 

International Multimedia Modelling Conference, page 273, Washington, DC, USA. 

IEEE Computer Society. 

{Ji et al., 2004] Ji, Y., Chang, K. H., and Hung, C.-C. (2004). Efficient edge detection 

and object segmentation using gabor filters. In Proceedings of 42nd annual Southeast 

regional conference, Huntsville, Alabama. 

[Krupnik and Elder, 2002] Krupnik, A. and Elder, J. H. (2002). Extraction of lakes 

from satellite imagery. In Symposium on Geospatial Theory, Processing and Appli- 

cations. Israel Institute of Technology. 

{Lachiche and Flach, 2003] Lachiche, N. and Flach, P. A. (2003). Improving accuracy 

and cost of two-class and multi-class probabilistic classifiers using roc curves. In 

ICML, pages 416-423. 

{Li Ma, 2002] Li Ma, Yunhong Wang, T. T. (2002). Iris recognition based on multi- 

channel gabor filtering. In Proceedings of the 5th Asian Conference on Computer 

Vision, Melbourne, Australia. National Laboratory of Pattern Recognition, Institute 

of Automation, Chinese Academy of Sciences. 

56



BIBLIOGRAPHY 

[MacKay, 1995] MacKay, D. J. C. (1995). Probable networks and plausible predictions 

- a review of practical bayesian methods for supervised neural networks. Network: 

Computation in Neural Systems. 

[Mallat, 1998] Mallat, S. (1998). A wavelet tour of signal processing. Academic press. 

[Manjunath, 1992] Manjunath, B. S. (1992). Gabor wavelet transform and application 

to problems in early vision. In Proceedings of Twenty-Sizth Asilomar Conference, 

volume 2, pages 796-800. University of California. 

[McCane, 2001] McCane, B. (2001). Edge detection. Technical report, University of 

Otago, Dunedin, New Zealand. 

(Moller, 1993] Moller, M. F. (1993). A scaled conjugate gradient algorithm for fast 

supervised learning. Neural Netw., 6(4):525-533. 

[Nabney, 2002] Nabney, I. T. (2002). NETLAB: algorithms for pattern recognition. 

Springer-Verlag New York, Inc., New York, NY, USA. 

[Nabney and Fermin, 2004] Nabney, I. T. and Fermin, I. (2004). Remote sensing data 

analysis. Technical report, Aston University. 

[Petrou, 1999] Petrou, M. (1999). Image Processing - The Fundamentals. Wiley. 

[S Wang, 2003] S Wang, T Kubota, J. S. (2003). Salient boundary detection using 

ratio contour. In Proceedings of Neural Information Processing Systems Conference. 

University of South Carolina and Purdue University. 

[Salvador and Chan, 2004] Salvador, S. and Chan, P. (2004). Determining the number 

of clusters/segments in hierarchical clustering/segmentation algorithms. In ICTAI 

04: Proceedings of the 16th IEEE International Conference on Tools with Artificial 

Intelligence (ICTAI’04), pages 576-584, Washington, DC, USA. IEEE Computer 

Society. 

[Smyth, 1996] Smyth, P. (1996). Clustering using monte-carlo cross validation. In 

Proceedings of the Second International Conference on Knowledge Discovery and 

Data Mining. University of California. 

(Smyth, 1998] Smyth, P. (1998). Model selection for probabilistic clustering using 

cross-validated likelihood. Statistics and Computing, 10(1):63-72. 

{Sun et al., 2003] Sun, Z., Bebis, G., and Miller, R. (2003). Evolutionary gabor filter 

optimization with application to vehicle detection. In ICDM ’03: Proceedings of the 

Third IEEE International Conference on Data Mining, page 307, Washington, DC, 

USA. IEEE Computer Society. 

57



Index 

Accuracy, 26 scaled conjugate gradient, 26 

ARD, see Automatic Relevance Deter- Sobel operator, 18 

mination Supervised Classification, 23 

Automatic Relevance Determination, 32 “ oe A 
Unsupervised Classification, 40 

Canny edge detection, 18 

Committee, 37 

DigitalGlobe, 13 

EM Algorithm, 41 

Error back-propagation, 24 

Gabor filter, 20, 27 

Gabor wavelet, 20 

Gaussian Mixture Model, 41 

Generalised Linear Model, 23 

GLM, see Generalised Linear Model 

GMM, see Gaussian Mixture Model 

Histogram Equalisation, 15 

HSV colour space, 16, 27 

Hysteresis thresholding, 19 

Tunctus, 13 

Median filtering, 46 

MLP, see Multi-layer perceptron 

Multi-layer perceptron, 23 

Non-maximal suppression, 19 

PCA, see Principal Components Analy- 

sis 

Principal Components Analysis, 30 

Roberts Cross operator, 18 

ROC curve, 26 

58


