
Belief revision and small loops in

Gallager-type error-correcting

codes

MICHAEL DOUBEZ

Master of Sciences by Research in Pattern Analysis and Neural

Networks

fq

ASTON UNIVERSITY

September 2000

This copy of the thesis has been supplied on condition that anyone who
consults it is understood to recognise that its copyright rests with its
author and that no quotation from the thesis and no information derived
from it may be published without proper acknowledgement.

ASTON UNIVERSITY

Belief revision and small loops in

Gallager-type error-correcting

codes

MICHAEL DOUBEZ

Master of Sciences by Research in Pattern Analysis and Neural

Networks, 2000

Thesis Summary

Gallager-type error-correcting codes are low density parity check codes (LDPC) which
may in specific case nearly saturate Shannon’s bound. They are based on the con-
struction of two very sparse matrices, various structures of which have been studied
in recent years. We will mainly focus here on constructions that have recently been
studied by Kanter and Saad. The aim of this project is to examine the performance of
two different decoding LDPC algorithms, belief propagation and belief revision within

this framework, as well as that of different coding methods (MN vs. Gallager codes).
We will also look at the effect of removing small loops in the matrices on the code’s
performance.

Keywords: MN code, Cascading codes, Gallager code, Belief Revision,

Belief Propagation, Small loop

Acknowledgements

I would like to thanks Dr. David Saad for his help throughout this thesis and his

patient reading of the various drafts.
I am also grateful to Renato Vincente who gave me references, documentations and

help when the need arose.

A lot of thanks to David J.C. MacKay, reader in natural philosophy at the univer-

sity of Cambridge for his web site http://131.111.48.24/mackay/ on which I made

extensive use of the resources and papers available.

Finally, I am grateful to Nicolas Brodu for his useful reading and critics of this
thesis and for cheering me up during the whole year.

Contents

1 Introduction 6
1.1 Communication over a noisy channel 6

1.1.1 Enrror-correcting codes Ts

WA2 Winesricodes 23, oe aes oe 9

1.2 Gallager-type error correcting codes . aye. 10)

iL 2a Gallager COCR 5. ea kage Me SPER I Mee <2 10

12-2 WUMIN codes) en aes, Mw ame pe ae ive I enews 10

1:3) MIN codes-«\ Cascading codes! 13 Gs 245 oe sa oc ea ee. 11
ABA” Uherconstinction (of matricesen sas. etc fete x ays ag

13.2 MN construction, 2. «0 4.7. ll
1.3.3 Cascading construction 12

2 Belief propagation versus belief revision 14

Orly “Uhedecoding process fa. wytscek ssa as ei eae Sines ee 14

2.1.1 Sum-product/min-sum algorithm 15
2.1.2 The theoretical differences between belief revision and belief prop-

QEOUONM Er eats Soha sUe) ceric ered ae TATE? yee Li

Dios “EXPetiatiOusme wl casei c is Annee eee 6 see, eae ae ae 18

2.2, Amplementation of the simulations . 2.2.7. <a... 656% oe ees x 18

2.2.1 Generation of random vectors... 6. pe ee 19

Dro ee Ou utsieas tay com ie, oe eee ee holler Same EY,” le 19

2.2.3 Implementation of the belief update method . . . 20

2 SeeOUNUlaOns! a. wens Fl ene te geet oe 22

234) Performance =. 0 yrek Ses Goal Rear Neder UP 2D

23:2) MOONVEnxenCe SPC wmthes. |. Au AMEN S So Gl. cheat hele 23

2i9 38 DOVETEDICUIVe a lata, sad we A omce ise as Wo ehewhes Sern a 24

24 interpretationyor thie resiltaye «mas 6 cee ests 8s ya ean ees 24

3 The effect of small loops on the performances 26

Orie one eect io Pemallnicapst tote | cu) SOMtoma lee sats met” eden M5 | op 26

3.1.1 ‘The'location of small loops: 22... 6s... . 68. ee 25

3.1.2 The number of small loops .. 5.2... 4.245% 27

3.2 Controlling the number of small loops... 28

3.2.1 Generating matrices without small loops... . . cane, EDS

3:22 “Adding smallkloops 0. a ¢ se fae <a es het bes ee 31

3.2.3 Evaluating the number of influencing loops... 31

3:8), OUT AT ONS Me wees oe. a ye eee dese, het Hig ehee, M y 32

CONTENTS

ow

S
0
0
.
 >

3.3.1 Removing small loops

3.3.2 Adding small loops... 2... 22.2 e ee ees

3.3.3 The number of small loops.

3.4 Interpretation of the results

3.4.1 Removing small loops

$4.2 Addingsmall loops ©. . 6)... ee ewe ee ee on
3.4.3 The number of small loops.

Gallager versus MN configurations

4.1 The differences between Gallager and MN configuration
AO MONI CONS Me, On cone Mee Tete he opratetacred sec OE, 0

4.2.1 Result for Gallager configuration
4.2.2 Results for MN configuration

4.2.3 Distance to Shannon’s bound

4.3 Interpretation

Conclusion

Notations used

General definitions

The binary symmetric channel

Algorithms
OM chetipdate More ope 2 os, ed Om, Be nal hts ee

D.2 Algorithm to compute the distance between two nodes
D.3 Approximation of the number of loops

Simulation results

E.1 Standard deviation for belief revision vs. belief propagation

E.2 Standard deviation for the removal of small loops

E.3 Standard deviation for the removal of small loops

Properties of matrices used

F.1 Cascading code Rate 1/3, length 1000
F.2 Codes N = 3296, M = 10002, R ~ 1/3

Chapter 1

Introduction

In the information driven modern world, we rely more and more on reliable trans-
mission and storage of data. Whether on a CD-ROM or in the various methods of
telecommunication, the data may be corrupted by noise from the environment: static
electricity in the atmosphere, dust on a sensitive surface and so on.

As our needs increase we get closer to the current technology whether in terms of
telecommunication bandwidth or in terms of storage capacity. So that the data should
not only be stored or transmitted reliably but also efficiently.

In this thesis, we concentrate on the binary case and all equations employ the
modulo 2 arithmetic. The work presented here may easily be extended to include
different channels and code/message representation.

1.1 Communication over a noisy channel

In 1948, Shannon examined the question of achieving error-free communication in a
noisy channel. For a channel of additive noise, the problem is sketched in Figure 1.1.

 a

s Channel Decoder E>

fn

Figure 1.1: Diagram of a general error-correcting system. A source message s is encoded
to a message t transmitted through a noisy channel which adds some noise n to the
code word. The received message r is then decoded to recover an estimate of the
original message § or declare an error if the recovery process fails.

 Source ¥ Encoder

When encoding a source message s to a transmitted message t also known as code-
word, redundancy is introduced to compensate for the noise added during transmission.
The code rate R is the ratio between the actual information transmitted and the code
word length M which in the case of unbiased messages is R = N/M.

Shannon proved that for any channel of capacity C, there exists a rate R for which
codes capable of achieving perfect retrieval exist, but the proof he provided was non-
constructive [1], meaning that we know such a code exists but we don’t know how

CHAPTER 1. INTRODUCTION

to achieve it. The theoretically achievable rate R is equal to the channel capacity C
defined in the case of the binary symmetric channel by Equation (1.1).

C =1- Ff) (1.1)
Hp(p) = —p + loge(p) — (1 — p) - loge(1 — p) (1.2)

with f, being the flip rate (or noise density)

In the case of biased messages of density f, in a binary symmetric channel, the

actual error free code rate achievable R, is R, = N - H2(fs)/M. In the same way, if a

certain amount of bit error py is allowed then the code rate achieving Shannon’s bound

R, takes the general form:

N - Ho(fs)
M -(1— H2(p5))

A plot of the error free code rate achievable defined by the Equation 1.3 is presented
in Figure 1.2 for N/M equals to 1/3, 1/4, 1/5

R= (1.3)

‘Shannon bound reads

Figure 1.2: Shannon’s bound for a binary symmetric channel and some parameter.

(a) Shannon’s bound for unbiased messages. (b) Shannon’s bound for highly biased
messages (f, = 0.1).

A code which saturates Shannon’s bound represents the most efficient way of trans-
mitting data as the length of the messages transmitted is then the smallest achievable
to retrieve perfectly the data up to the given noise level fgyannon:

1.1.1. Error-correcting codes

Error-correcting codes aim at encoding the messages such that after corruption, we are

able to retrieve the original message. This is achieved by adding redundancy to the

data (creating correlations between the message bits). Then, the encoded messages

are able to bear theoretically corruption up to the noise level related to the channel’s

capacity. In practice, it is very hard to find such a coding scheme that will saturate
Shannon’s bound.

CHAPTER 1. INTRODUCTION

The general principle of error correcting code is to map with an injective function the
messages onto codewords of higher length/dimensionality. Therefore, the transmitted

message have a bigger distance between them such that corruption by noise could be
tolerated. The transmitted message are called codewords because they do not span
the entire space and a message is a codeword if and only it has an antecedent in the
space of the source messages by the function of mapping(by the encoding process).

The decoded message is related as the closest uncorrupted codeword to the corrupted
version. This is illustrated in Figure 1.3.

Source messages s Transmitted message t

SH et tt
Encoding

Noisy transmission

 Retrieved message t Received message r

Figure 1.3: Illustration of the error-correcting process in term of distance between

codewords. The source messages are mapped to a space of higher dimensionality thus
increasing the distance between them. During the transmission, some noise is added.
The retrieved message is the the nearest codeword to the received corrupted codeword.

Independently of the method used, we still have residual decoding errors that can
be represented in different ways :

percentage of failure the percentage of messages for which the decoding process
declared a failure. In the case of iterative decoding, that happens when the
decoding process reaches the maximal allowed number of iterations. In the case
of Figure 1.3, that happens when the decoding process could not determine the
nearest codeword to the corrupted one.

block error(BER) The probability that the decoded message differs from the original

one while the decoding process didn’t declare a failure. In the case of Figure 1.3,

that happens when the decoding process is wrong in determining the transmitted
codeword.

bit error(p,) The probability that a decoded message bit differs from that of the
source message in case the decoding process didn’t declare a failure. In the case
of Figure 1.3, that happens when the decoding process is wrong in determining

the transmitted codeword and the difference is measured in terms of overlap
between the retrieved message and the transmitted one.

CHAPTER 1. INTRODUCTION

total bit error(tpb) The probability that a decoded message bit differs from that of
the source message whether or not the decoding process declared a failure.

The different performance measures will be more relevant to specific tasks.
We will be interested in the bit error if the transmitted data is insensitive to errors

in a small fraction of the bits, for instance in transmitting multimedia data where a
few pixel changed in a picture or a glitch in sound will not be significant. And we will
be more interested in block error if the message must be decoded perfectly like in the
transmission of a program or test data values. The percentage of failure indicates the
percentage of messages that can be recovered successfully to some degree. Having low
error rate is meaningless if the percentage of decoded messages is low (especially in
storing information where retransmission is impossible). The total bit error indicates
the difference between the original message and the solution suggested by the decoding

algorithm. It informs us on whether or not the algorithm was close to the desired
solution. It is important if we want to use the data even in the case of a failure in the
decoding process.

1.1.2 Linear codes

In the case of linear codes, the message s is encoded into a transmitted message t by

a linear transformation via a binary generator matrix G:

t=G's (1.4)

Then, in the cases studied, the received message is r = t +n = G-s +n, corrupted by
an M dimensional binary vectorn.

We introduce the parity-check matrix H such that H -G? = 0. Then, the problem
of estimating the vectors s and n from r = G"-s+n can be transformed by finding the
syndrome vector z= H-r = H-G?-s+H-r=H-n and finding the most probable
noise vector estimate fi such that

z=H-n (1.5)

For instance, a classical example is the (7,4) Hamming code where 7 and 4 are
respectively the codeword and the source message length. For a specific realization:

0.0 50
0100
070) 120 HoT CLO C

@a=0 0-0 1 Ss me! 0
Out ast Pete) 0/70) 2

Tete Ont
1710

We can easily verify that H.G? = 0 and the encoding/decoding process in a specific
scenario are described as follow:
encoding: s = (1,0,1,1) = t=iG" ss — (1, 0sih 1.0, 0)

corrupting: n= (0,0,0,1,0,0,0) + r=t+n=(1,0,1,0,1,0,0)

decoding: z=H-r = 2=1(151,0

CHAPTER 1. INTRODUCTION

Therefore, since z equals the fourth column of H, the noise corrupted the fourth
bit and then ¢ = (1,0,1,1,1,0,0) and § = (1,0, 1,1).

This example is very simple due to the small message length. In addition, this code
can correct only one bit flip. To correct more than a single bit flip with linear codes, we
need to increase the codeword length and, for an arbitrary number of bit, flip, there is
then no clear practical decoding because as the number of unit elements in the parity
check matrix increases, the number of combination to decode from the syndrome vector

increases exponentially. This decoding problem is unfortunately NP-hard but we can
still obtain an approximated solution by belief revision or belief propagation that will
be presented in Chapter 2.

1.2 Gallager-type error correcting codes

Gallager’s low-density parity-check code were introduced by Gallager in 1962 [2]. Sev-
eral variations have been considered over the years; we will concentrate here on the
two main variations, the original Gallager code and the MN code.

1.2.1 Gallager codes

Gallager codes are basically linear codes based on the construction of a very sparse
(see Appendix B) parity-check matrix H = [A|B] where H is a (M —N) x M matrix
composed of two sub-matrix : an (M — N) x N random sparse matrix A and an
(M — N) x (M —N) invertible random sparse matrix B. Then, the generator matrix
G is constructed as G = [Iy|(B~'A)"]. It is easy to verify that H-G" = 0.

So, the encoding/decoding procedure is as follow: a source message s is encoded
to a transmitted message t by the Equation (1.6). Some noise n is added to t during
transmission and the message r is received (Equation (1.7)). Then we compute the
syndrome vector z that gives us a relation between z, H and n in Equation (1.8).

t=G"-s (1.6)

r=G"-s+n (1.7)

z=H-(G?.s+n)=H-n (1.8)

The success of convolutional codes, the computational limitations of the time and
the fact that Gallager had no efficient decoding algorithm to carry out the decoding
process made these codes all but disappear until MacKay and Neal rediscovered them
in 1995 while introducing the MN codes [7].

1.2.2 MN code

Basically, MN code is an instance of Gallager codes but instead of taking the generator
matrix G = [Iy|(B~'A)?], one uses G? = [B~!A]. The decoding procedure is a bit
different as well because we don’t have the property H-G? = 0. The encoding and
transmission are kin to Gallager’s in Equation (1.9) but the syndrome vector computed

10

CHAPTER 1. INTRODUCTION

in Equation (1.10) as a different form.

t= BAe >r=B'A-sin (1.9)
z2=B-(B'A-s+n)=A-s+B-n => z=[A|B)- [s\n] (1.10)

During the decoding process, we not only retrieve the noise vector n but also the

source vector s itself from the syndrome vector z. MN codes use a linear transformation

but are not linear codes [7].

1.3. MN codes - Cascading codes

In this thesis, we determine the construction of a parity check matrix as the way the unit

elements are distributed in it. We will make a distinction between the configuration
which we define as the process by which the messages are encoded and decoded (i.e.
the Gallager vs. MN configuration) and the code construction which we define as the

use of specific matrices in a specific configuration. For instance, cascading codes differ

from MN codes by the construction of the parity check matrix and the MN code differs

from Gallager code by its configuration.

Deciding on the configuration leaves the problem of designing a good matrix con-

struction for it is open.

1.3.1 The construction of matrices

Designing a successful construction, having in mind the decoding process of the form
H-x =z calls for a trade off [11]. On the one hand, the less unit elements there are in
a row of the matrix, the more informative they are in the decoding process as there are

less possibilities such that z; = jeu/Higy=1} x; in the system H-x =z. On the other

hand, the more units there are in a column, the more reliable the decoding process is

because it has more votes from the check nodes and the contribution of a single wrong
message is therefore less critical.

1.3.2. MN construction

In MN constructions, the parity-check matrix is filled by putting C units element per

column! and having a number of ones per row as uniforming as possible. In this way,

each decoded bit has the same contribution from the syndrome vector. It is a good

idea to have an odd number of one per column in order to force a decision (otherwise,

the votes could be even) and usually, MacKay suggests C = 3 as in Figure 1.4 for rate
L/Se

The principal difficulty to build these codes is to ensure the invertibility of the sub-

matrix B (in H = [A|B]). MacKay usually generates the submatrices independently:
B is generated randomly and some row and column are deleted to make it: invertible,

then A is generated with the right dimensions to fit with B.

It is to note that these MN codes are based on a regular construction meaning that

the number of unit element per row and per column is uniform. Recent studies have

shown that irregular construction have better performance [6].

‘on average but as uniforming as possible

1

CHAPTER 1. INTRODUCTION

4

=

Figure 1.4: MN parity check matrix construction; example for C = 3. The source

message length is N, M is the transmitted message length. The dotted line represent

the separation between the two submatrix A and B that compose the parity check

matrix H = [A|B]. Arrows with a number stand for the number of unit element per
row/column.

1.3.3 Cascading construction

The cascading code is an instance of the MN codes but the construction of the matrix

is different, based of insights gained from statistical physics [4]. It is an irregular

construction of several submatrices which have the property of a fixed K unit elements

per row and C units per column in the submatrix A of the parity check matrix H =
[A|B] and L unit per row in the submatrix B. The placement of the unit elements
in B is systematic: if L = 2 then B(i,7j) = d(é,j) + 6(i,7 — 5) otherwise if L = 1
B(i,j) = 6(i,j). An example of construction for the rate 1/3 is presented in Figure
1.5.

Figure 1.5: Cascading parity check matrix construction [4] example for rate 1/3. An
arrow with a number corresponds to the number of unit elements in a row/column in
the specified sub-matrices. Dotted lines correspond to the limits of the sub-matrices.
Full lines correspond to lines of unit elements, N is the source message length, M is
the transmitted message length (=3N in this case).

12

CHAPTER 1. INTRODUCTION

The first submatrix (KK = 1, L = 2) is present to break the symmetry at the
beginning of the decoding process in the case of unbiased messages. If there was more

than one unit element per row in all the rows of the (Mx N) submatrix A, the algorithm

would heavily depend on its initial conditions as there is no prior preference for the

message bits. This will be explained in detail in the next chapter.

The construction used in the various codes rates [4] are given in the table 1.1.

rate R A kK B L

1/3 N x Ni{1 N x 3N/2
3N/4 x N|3/3N/4 x 3N|2
5N/4_ x N|3]5N/4 x 3N]} 1

1/4 |3N/f2 x N|1/|3N/72 x 4N[2
N/2) x N |S ||P N/2) x 41; | 2
2N~ x ON | 38 2N x 4N/1

1/5 ON GER aay | 3N x 5N | 2
2N x N| 3 2N x 5N/1

Table 1.1: Constructions of cascading codes for different code rates

Example of construction:

On Figurel.6, we can see on the left hand side the denser part of the parity check

matrix. The upper third (K = 1) is clearly less dense than the other lower part
(L = 3). On the right hand side, we have the systematic submatrix composed of first

a bidiagonal and then a diagonal.

° 2000 4000 6000 '3000 70000 12000

nz = 30174

Figure 1.6: Cascading parity check matrix construction [4] example for rate 1/3. The
values on the axis correspond to the number of row/column. A dot is drawn each time

a unit element is present in the parity check matrix

13

Chapter 2

Belief propagation versus belief
revision

In the first section of this chapter, I present the general decoding process used and
emphasise the differences between belief propagation and belief revision. I will also
present the motivations underlying this study and the expectations based on previous
work related to the comparison between belief propagation and belief revision. Then,
in the second section, we will deal with the actual implementation of the decoding
process. The third section will present the simulations undertaken, the result of which
will be interpreted in the final section.

2.1 The decoding process

Our task here is to infer the source message s given the received message r with the
relation r = G"?-s+n. We have seen in the introduction that in the case of MN and
Gallager configuration, this can be transformed to finding the most probable vector x
such that H.x = z where x may represent the noise vector or both the signal and noise
vectors, depending on the configuration used. Finding the most probable estimate is
an NP-hard problem because of the form of the posterior P(x|z) = P(z|x) - P(x) /P(z)
where P(z|x) takes the value 1 if H.x = z and 0 otherwise; so to find x with the
maximal posterior probability, we must go through all possible representation of x
(2N+™" possibilities in case of MN configuration).

In this case, we assume that the prior probability distribution of x is factorizable
(P(x) = J]; P(a;)). Given the observed syndrome vector z we consider the problem
onto a Bayesian network which in in the case of this system is a bipartite graph as
shown in Figure 2.1. We then use an iterative probabilistic algorithm known as belief
update to infer an approximated solution.

We could use directely the recieved message r given that r = G?-s +n and then
P(t|s) = TI, ed —e;)!~8(8) where t;(s) is the jth bit of the transmitted vector
t=G"-s and e; = fy if rj =0 and 1— f,, otherwise. But in this case, the matrix G?
would be dense and the decoding process slower.

In a factor graph, the belief update procedure is called sum-product in the case of
belief propagation and min-sum in the case of belief revision (because usually used on

14

CHAPTER 2. BELIEF PROPAGATION VERSUS BELIEF REVISION

x

% Z, Di, 9 BS ce DT EN.

a 1 ele Cede
si : 1iOn rt OL) 0,
ie Z; ou 1 1 2%

toe des On tal Or aes
Xv Za 0 1 1 ie

x a

Figure 2.1: Correspondence between the parity-check matrix and the factorgraph. ver-

tices correspond to the unit elements of the parity-check matrix. The rows correspond

to the nodes 2;,<;< of the graph, the column to the nodes Licjen

the log of the probability, otherwise called max-product) [5]. Normally, such algorithms
are not expected to work due the presence of loops in the graph however empirically

it seems to be useful in providing the correct bit estimate.

2.1.1 Sum-product/min-sum algorithm

Belief update is a message passing algorithm. At each step, we estimate the posterior

probabilities P(x;|z) of each of the bits x; of x given z under the constraint z = H-x.
At each step, nodes send messages to all the other nodes to which they are connected.

Given the messages it received each node «; estimates his probability value and send

it to all the nodes it is connected to. As stated in Figure 2.2, at each iteration, first

(horizontal step) the nodes «; send a message qj; to the node z; which will then (vertical
step) send back messages rj; giving the probability of the value of the node xj given

the probability value of the other nodes participating in the check 2.

Basically, we iterate the message passing algorithm until a vector x verifying H-x =

z has been found (successful convergence) or a maximal number of iteration has been
reached (declaration of a failure).

To simplify the notations, we will denote L(i) the indexes of all unit elements in
row i and C(j) the indexes of the unit elements in the column j. For each unit element

of coordinate (i,j) in the parity check matrix, we define the following conditional
probabilities.

re, = P(z\2; =) (2:1)

a; = P(a; = blzrecyi) (2.2)

The message r?, defined in Equation (2.1) provides the probability that the check node
z; send to his parent node a; and is the probability of having the actual value of z;

given x; = b. The message a; defined in Equation (2.2) provides the probability that

x; = b given the check nodes zjec()\i-
We will denote the prior P(x; = b) as p} and the pseudo-posterior P(x; = bjz) as q?.

15

CHAPTER 2. BELIEF PROPAGATION VERSUS BELIEF REVISION

vy 2m a; 2;

Vij

25 fi ZA

(a) ee C)
Figure 2.2: The message passing process. The arrows show the causal relationships:
the state of z; is determine by the sum of the incoming x;; (a)At the horizontal step,
we compute the messages going from x to the check node 2; (b) At vertical step, we
compute the messages going to the source/noise node x, of the graph from the check
vector z. (c) The message going from a node 2; to a node 2; is denoted 1;;, the opposite
message is denoted qi;

We will now describe in detail an iteration of belief update. The only algorithmic
difference between belief revision and belief propagation occurs at the horizontal step.

Initialisation step

This step sets the initial value of the decoded message. A good practice is to set a; to
the prior value i.e. for all (i,j) such that H(i, j) = 1, we set q}, = pt.

Formally, we should set them to probability 1/2 but we will see in section 2.2.3 that
it has no consequence on the algorithm.

Horizontal step

In this step, we update for each row (check bit z;) the values rh.
relation:

P(zi|a;=b)= >> P(zilx)P(x|2; = b) (2.3)
X:nj=b

Theory provides the

In the case of belief propagation, we sum over all the possible configurations of
{xjex(i)\j} such that Lyre ty = % given xj = b. This is performed by Equation
(2.4).

h= SO Paley =o,2yrimeenoy) [ab (2.4)
29 /FELO\G HELO)

In the case of belief revision, we compute the configuration of {xje1i\j} such that
the probability of Dyer xj = % given x; = b is maximized. We can see in Equation
(2.5) that the sum of Equation (2.4) has been replaced by a max function.

ry = 1, max P(zile;=b,tren@y) [] ay 2) x /FEL(i)\G
ay [i EL(i)\j

with a; = ar as a normalization constant.
ytny

16

CHAPTER 2. BELIEF PROPAGATION VERSUS BELIEF REVISION

Vertical step

In this step, we will compute for each column (bit to decode «;) the values a; and the

pseudo-posterior values qh. Bayes rule gives us the relation:

P(x; = dlzvecyy\i) x P(aj = b) - P(zvecyile; = 6) (2.6)

which under the assumption of factorizability of the elements z; becomes:

P(x; = blzvrecyyi) x P(aj =) [] Plel2; =0) (2.7)
VEC()\i

Therefore, we can compute for all (7,7) such that H(i,j) = 1 the messages going
from 2; to 7; :

b » »
Gig = GP Il Ty (2.8)

VEC()\

where aj; = aaa is a normalization constant. And if we don’t exclude i from the
ng 4

product, we can compute the pseudo posterior:

b a = Bo} T] (2.9)
i€C(j)

where aj = Pat is again a normalization constant.

Decoding step

Me use the pseudo posterior gd to create an estimated vector X such that #; = 0 if

ges 0.5 and 1 otherwise. Having H -X = z defines a solution but it doesn’t necessarily

Tene that it is the solution that maximize the posterior P(x|z); we therefore continue
to run the algorithm until the vector stabilize for a certain number of iteration. Since we

are only interested in decoding the original message we can relax the halting criterion

into obtaining stability for the bits representing the source message estimate

2.1.2 The theoretical differences between belief revision and

belief propagation

Belief propagation is also called the maximum marginal (MM) assignment because it
computes Vi, max,, P(;|z) whereas belief revision is called the maximum a posteri-
ori (MAP) assignment because it computes maxx P(x|z). This is processed at the
horizontal step while computing the modified term rj;.

Idea of proof: Under the assumption of polytree architecture, nodes with only one

parent or one child are bound to exist. This means the value messages send correspond
to the true probability and all the nodes in the graph will recursively take the true value
(this is related to the bucket algorithm). In the same way, the function evaluated at

the horizontal step becomes true for all nodes ie. for belief propagation, we marginalize

the nodes (we compute P(x;|z)) and for belief revision we maximize P(x|z).

Ly,

CHAPTER 2. BELIEF PROPAGATION VERSUS BELIEF REVISION

Normally, belief revision should be what we are looking for because of maximizing
the posterior P(x|z). However, if we are not interested in decoding the message per-
fectly (block error) but only increasing the overlap between the original message and
the decoded one (bit error) then belief propagation performs better.

Another way to put it is that belief propagation evaluates the loss function extract-
ing the ratio of incorrectly decoded bit:

Lyelief propagation er v1 Oj (2.10)

whereas belief revision evaluates the loss function extracting whether the message was
correctly decoded or not:

Lpelief revision (*¥) = 1 — [1 eer (2.11)
j

A loss function provides a measure for the distance between the original message
x and the recovered message X. We can write the loss function as a function of the
parameters (source message s, noise message n, parity check matrix H) that minimize
the expected loss E[L].

E(L) =< L(x,%) >xnz (2.12)

where < f(0,Y,2) >2yz= Lnyzf(2,y,2)°P(x,y,z). Dynamically, a loss function
can be assimilated to a cost function we try to minimize.

2.1.3 Expectations

Due to the differences in loss functions, we expect belief revision to perform better
than belief propagation in term of the block error obtained because belief revision will
minimize the expected loss E[Lyolief revision! While belief propagation will minimize
the expected loss E[Lyelieg propagation] resulting in an improved bit error.

E|Lpelief revision = Sy (1 — 6(x; &(z, H)) P(x, 2) (2.18)
X\Z,H

E\Lyelief propagation] = ra P(x, 4) Xo leicil (z, H)) (2.14)
Na, HH

Weiss carried out the same kind of experiment, comparing belief propagation and
belief revision decoding performance, in the case of convolutional codes [14][12] and
ended up with a significant improvement in block error. Our hope is for a similar result
in the case of Gallager-type error correcting codes.

2.2 Implementation of the simulations

In order to carry out the computation, we first generate a sparse parity check matrix H
at random according to a specific construction (in this case, the cascading connectivity

18

CHAPTER 2. BELIEF PROPAGATION VERSUS BELIEF REVISION

construction). Then for each trial, we generate a random source message s, a random
noise message n and we compute the syndrome vector z with the Equation (2.15) or
(2.16).

z= H -(s|n] in the case of MN configuration (2.15)

z=H-{n) in the case of Gallager configuration (2.16)

Then we use the syndrome vector and the appropriate priors for each bit (depending on

whether it belongs to the noise or to the source message) to decode and try to retrieve
the source vector.

2.2.1 Generation of random vectors

We generate random vectors such that they correspond to the prior probability p!
of having a unit element at a specific bit of the message. If we iterate on the bits

independently, deciding each time at a random number, we will introduce variance

in the number of unit elements per vector. Instead, we compute the number of unit

elements that should appear in the vector and place them at random. Then, we refer

to the probability f defined by the number of unit elements in the vector divided by
the length of the message. We are then sure that the prior used in the decoding process

is accurate and does not introduce variance in the results.

In order to make relevant comparisons, the generation of source and noise vectors

uses distinct random number generator. Each is reinitialized between each simulation

at the same value such that, for a certain source message length, the same source

messages are always used and, for a certain transmitted message length, at the same

noise level, the noise vectors are also the same between different simulations.

In the case of MN code, we generate the source message s of probability f,, the
noise vector n of probability f, and compute z = H - {s|n] providing the priors Vj €
{1, N], P(«;) = fs and Vj € [N, N + M], P(x;) = fn. In the case of Gallager code, we
only generate n and compute z = H - n providing the prior Vj, p(x;) = fn.

2.2.2 Outputs

The output provided by each trial is as follow:

e a boolean value expressing if the decoder has converged or not with which we
can compute the percentage of converging trial.

e the overlap between the original and the decoded message which allows to com-

pute the total bit error. With the help of the convergence indicator, we can
compute the bit and block errors.

e the number of iterations required for convergence gives statistics on the conver-

gence speed. If the message has not converged, this value is equal to the maximum
number of iterations.

Then those data are processed in order to obtain statistics on the performances of
the code.

19

CHAPTER 2. BELIEF PROPAGATION VERSUS BELIEF REVISION

2.2.3 Implementation of the belief update method

The vertical step is straightforward to compute but for the horizontal step, in the
equations

r= So Plailay = b, teers) (Dla
ry /j'EL(i)\j a /j'EL()\5

ri =a; max Plait; = = b, Teex(a\;) II ay

piers 2 /'EL(i)\j

we have to realize that P(z,|aj = b, tper()\j) takes only two values:

Lif Dpenw 23" = %
0 otherwise.

So in fact, we compute the sum (or the max) of J], 1 /sL(i)\j ay such that Viren) ty =
i

2. It can be represented by a Markov chain with the qj; as transition probabilities
and the partial sum z; + ey Xj, as states:

Figure 2.3: Markov chain equivalent to the horizontal step.

And the algorithm is as follows for all rows i and unit element of index j. We will
note r?,(v) the value of r?, at the step v of the Markov chain.

Initialisation

The initial gene of the Markov ae starts with the value of z;: if z; = 0 then

r{(0) = 1 and rj,(0) = 0 otherwise r,(0) = 0 and r},(0) = 1. This is trivial since at
this point, the partial sum takes the value of z; which is given.

Markov chain omitting j

All j, € {H(i, j,) = 1} different from j are part of the Markov chain. For each of
them we iterate with the equations 2.17 and 2.18 for belief propagation or with 2.19
and 2.20 for belief revision.

reel) =F i(¥)- thi tr) ie (2:17)

rv +1) = rp): this +7 i(Y) i, (2.18)
5 ey Sas vi) ° Gi, ri(v) ° Gy.) (2.19)

riy(v +1) =max(r; ii(¥) Gi Ty(Y) + 5.) (2.20)

Then, r} ; is equal to the last value 75) (Ymar) of the Markov chain. In the case of
belief Pevisiont we need to renormalize re by r= = 72. (Vmazx)/(r?; (maz) +1ij(Umaz)): To

20

CHAPTER 2. BELIEF PROPAGATION VERSUS BELIEF REVISION

make the computation easier, we compute dri; = rf; — rj, and dqij = a}; — qj; instead
of computing re, and q. The probability p can be recovered from dp by

poe etoD

p=

And the formulas become:

e for belief propagation:

dry(v + 1) = dOryy(v) - bgizs,

e for belief revision:

lorig(v) + Saiz, | = lSris(v) = Sain, | +2» drig(v) - aig, i mu B zi 5
ral +1) 2+ |Brg(0) — Sau] + lors) + Saux

The advantage of using the dp representation is for reducing the storage required

and for reducing the complexity in the horizontal step.

Initial values

In the implementation, I set the initial values of the q;; to the prior p;. In fact, we
could have set them to 0.5 but then the first horizontal step would have set the Ti, to

0.5 and the first vertical step would have set: the q,; to the prior p;. So, by initializing

the qi;, we only gain an iteration and it has no influence on the algorithm.

If in cascading code, the number of unit element per row in the submatrix A of the
parity check matrix H=[A|B] was always greater than 1, then, the algorithm wouldn’t
evolute in the case of unbiased messages (prior for a source message bit equals to 0.5).
Because, at the horizontal step, we would always have a 6q;; equals to 0 so that all Ori

would be set to 0. Then, at the horizontal step, the g;j would be reset to their prior
which is 0.5 for unbiased messages.

This is the reason why the submatrix of A that have only one element per row is
said to break the symmetry in the case of unbiased messages in Section 1.3.3. But it
has recently been shown in [16] and [15] that by introducing a weak bias on the prior
(ie. we don’t set the initial values to exactly 0.5 but a slightly different value), the
algorithm evoluates.

Numerical considerations

The convergence of the algorithm is not guaranteed in this case thus I arbitrarily
bounded the number of iterations to 200. And since we are inter tested only in the
convergence of the source vector bits, I stop when the algorithm has decoded the same
source vector bits for 10 iterations.

One should note that due to the numerical approximations and perhaps the small
loops', the probabilities computed can actually reach 0 or 1. Following the example of

MacKay in [7], in order to avoid that, I bounded the probabilities between 10~!° and
1—107"° (or respectively the values of dq and dr, between —1 + 10~!° and 1 — 107?°).

‘which create some over-confident probabilities. see Chapter 3

21

CHAPTER 2. BELIEF PROPAGATION VERSUS BELIEF REVISION

2.3 Simulations

In order to compare the performances between belief revision and belief propagation,
I have generated a parity check matrix at random respecting the construction of cas-
cading codes the details of which are in F.1.

2.3.1 Performance

The following simulations results are based on 10000 trials of biased and unbiased
messages of length N = 1000. The same parity check matrix has been used for the
different simulations.

a

i 10 = 10

S 4o ey 7a 4
2 10 ty _ 10
E ty s
€ = o
G 4.0 ta Ke gn
2 10 + 3 10

2 oO ao

210" +8 10" S :
S + 0

ES 3

10° A 10°
0.05 04 0.15 0.2 0.25 0.05 04 0.15 0.2 0.25

Noise level Noise level

2 10° 10° & S 3
2
2107 10°
= a §
Boy i =
$10 af + 5 10"
§ ge g

5 “8 . e “8 5 10 pe @ 10

6

aie 10°
0.05 O41 0.15 0.2 0.25 0.05 0.4 0.15 0.2 0.25

Noise level Noise level

Figure 2.4: Results of comparison between belief propagation and belief revision for

cascading code of R = 1/3, N = 1000
: Belief propagation, f,=0.5 *: Belief revision, f, = 0.5

QO: Belief propagation, f,; = 0.1 +: Belief revision, f, = 0.1

In Figure 2.4 we can see that there is a great difference between the cases of unbiased
and biased messages (f, = 0.5 and f, = 0.1 respectively).

In the case of biased messages, belief revision performs much better regarding both

block and bit error; the total bit error is slightly worse, meaning that when belief

22

CHAPTER 2. BELIEF PROPAGATION VERSUS BELIEF REVISION

revision declares a failure, it is a bit farther from the original message than belief
propagation.

In the case of unbiased messages, belief revision and belief propagation are of equiv-
alent performance when belief revision converges.

In both case, belief revision has a worse percentage of convergent cases that renders
it impracticable for unbiased messages above noise level 0.12 in this case.

The standard deviation of the bit and total bit errors are in Appendix E.1, they
follow the same line has their respective mean: belief revision has a smaller bit error
standard deviation in the case of biased messages and an equivalent one in the case

of unbiased messages; belief revision has a higher total bit error standard deviation in

the case of biased messages and an higher one in the case of unbiased messages; .

2.3.2 Convergence speed

We measure the number of iterations needed for the algorithm to converge, examining
their applicability

BP, fs=0.1 BR, fs=0.1

a ° a i

i a by a

100 ° Ss

a oS a 3

a

Nu
mb

er

of
it
er
at
io
ns

to

co
nv
er
ge

~ a

N
u
m
b
e
r

of

it

er
at

io
ns

to

c
o
n
v
e
r
g
e

~
a

a

 ° °

0 0.05 0.1 0.15 0.2 0.25 0 0.05 0.1 0.15 0.2 0.25
Noise level Noise level

BP, fs=0.5 BR, fs=0.5
@ 150 © 150 = ®
2 125 2 125
° Q 8 8
2 100 2 100
o 2
S S
eg 75 3 75

£ g
5 (50 5 (50

3 3 2 25 2 25
= S

Zz Zz ° °
0 0.05 O01 0.15 0.2 0.05 0.1 0.15 0.2

Noise level Noise level

°

Figure 2.5: Convergence speed of the simulations

In Figure 2.5, we see that belief revision requires more iterations than belief prop-

agation to converge in the case of biased messages. In the case of unbiased messages,

23

CHAPTER 2. BELIEF PROPAGATION VERSUS BELIEF REVISION

the algorithm converges more quickly but less often. This is suspicious and could mean
that the algorithm converges very quickly in a few cases but needs a lot of iteration
otherwise. So, in the case of unbiased messages, the poor rate of convergence could be
due to the limit we imposed on the number of iteration (200). In order to see if this is
the case, we present the curves of the evolving overlaps in Figure 2.6.

2.3.3 Overlap curve

The overlap curve monitors the distance of the current estimate from the original
message at iteration 7 expressed by the Equation (2.21).

N
2

m= alta = Daf peop) (2.21)
=1

When m; = —1 the decoded message is a mirror image of the original message,
while m; = 1 means that we have a perfect estimate. In between, the overlap m;
measures how far from the original message is the decoded message at iteration ie We
note that in the case of unbiased messages, the initial overlap is mp = —1+2-4=0.

In Figure 2.6, I carried out a simulation of 10000 trials reporting the Greriap curve
on non converging cases in the case of belief revision with unbiased messages at: noise
level fn = 0.11 (P(converging) = 41,57%). Therefore, we have 4157 overlap curves of
non converging cases.

We can see in figure (2.6) that the poor convergence rate of belief revision for
unbiased messages is not due to the limitation on the number of iterations since most
of the curves end up around 0.2.

2.4 Interpretation of the results

The poor convergence rate of belief revision is certainly due to local minima. In Iba’s
paper [3], belief revision is called a zero temperature optimizer and belief propagation
is called a temperature one optimizer. This means that the fact that belief revision
estimate the loss function 1—[] d.,,¢, makes the energy landscape more rugged whereas
belief propagation may have a smoother energy landscape.

The issue here is not which methods gives eventually the best result but which
has the best dynamical properties. Therefore, belief revision leads to finding a more
tortuous path to the global minima and decrease the rate of convergence. This is
supported by Figure 2.5 where the number of iteration needed to converge is greater
both in mean and in variance for biased messages. The bias on the source messages
makes the energy landscape smoother but belief revision still needs more iterations.

Belief propagation has a higher risk of ending up in a local minima as we saw for
unbiased messages on the overlap curve. In the remainder of the project, we will use
belief propagation because it leads to better performances for unbiased messages and
a better rate of convergence in general. In the case of biased messages, it is probably
better to use belief revision if we want perfect decoding but the price to pay for it is a
longer decoding process and a poor convergence probability.

24

CHAPTER 2. BELIEF PROPAGATION VERSUS BELIEF REVISION

250

Heration

Figure 2.6: Overlap for the decoding process that failed to converge: 4157 curves over
10000 trials for unbiased messages at noise level f, = 0.11 for cascading code R = 1/3,
N = 1000.

no

Chapter 3

The effect of small loops on the

performances

The sum-product algorithm provides an exact solution when applied to a Bayesian

network without loops. However, empirically, one observes that belief update provides
a good approximation in the occurrence of loops in the graph. The probabilities may
not be at the exact value but provide a approximation sufficiently good for making a
successful Bayesian estimation of the decoded message.

3.1 The effect of small loops

The problem in belief update of loopy networks is that as it is based on a message

passing algorithm, the same message will pass the same nodes again and again, arti-

ficially increasing their probability and thus their confidence in the related Bayesian
decision. This problem is especially apparent with small loops (length 4) because the
same message passes more often. Thus, if the nodes belonging to a small loop support
the wrong decision and the input coming from nodes external to the loop is no suffi-
ciently strong as shown in Figure 3.1, this may result in an erroneous estimate and a
source of block error.

Otherz 7 Otez

Otherx y ge Obher x e-

ty ty

Figure 3.1: A small loop in the factor graph (shown in the left hand side). That means
that the messages will continue to contribute to the same nodes indefinitely as shown
in the right hand side of the figure; messages pass more often by the same nodes and
if the external correlation is not sufficient enough to overcome the overconfidence in
posterior created by the small loop, the nodes of the small loop may not converge to
the right decoding.

In his experiment, MacKay observed the presence of a flooring effect in the block

26

CHAPTER 3. THE EFFECT OF SMALL LOOPS ON THE PERFORMANCES

error and attributed it to the presence of small loops in the graph because he also

observed a significant improvement when he removed those small loops.

We also expect that, at low noise level, small loops will deteriorate the percentage

of convergence [13].

3.1.1 The location of small loops

In cascading constructions, there are several ways in which small loops can appear in

the parity check matrix H = [A|B]. In particular, a small loop may have different
effects on the performance depending on the submatrix it is located in. A specific

construction is reminded in table 3.1.

submatrix A | submatrix B

SM1 SM4
K=1 =)
SM2 SM5
K=3 ip)
SM3 SM6
es L=1

Table 3.1: Construction of cascading code for rate 1/3. We identify the submatrices

SM1,..., SM6 and indicate the property of the various submatrices: K is the number

of unit elements per row with uniform repartition per column. L is the number of

unit elements per row with the pattern B(i, j) = 6(i, j) in the case L=1 and B(i, j) =
5(é, 7) + 6(é, 7 — 5) in the case L = 2

From table 3.1, there is different way in which the loops can appear in the parity

check matrix:

e case 1: all the nodes of a small loops are in SM2 or SM3 or both because K > 2

and so two row can have an overlap greater than or equal to 2.

¢ case 2: part of the nodes of the loop in submatrix A and part in B; for instance

between SM2 and SM65 if in SM2 we have SM2(i,j) = SM2(i+5,j) =1.

© case 3: some small loops with a unit each in {SM1, SM2, SM4, SM5} or {SM2,

SM3, SM5, SM6}.

Case 1 is certainly the most probable in random constructions but we will also study

the case 2. We will not consider case 3 since it can only contribute a very limited

number of loops and has very small probability.

3.1.2. The number of small loops

Small loops are maybe a source of bit error if they contribute strongly toward a wrong

estimate and the messages coming from nodes external to the loops are insufficient to
make the bits flip back. On the other hand, if he small loops converges to the correct:

estimate, the probability should converge quickly to 0 or 1. In this case, supposing ,,

and xj, are in such a small loop converging to the values b;,, bj, respectively:

27

CHAPTER 3. THE EFFECT OF SMALL LOOPS ON THE PERFORMANCES

e At the horizontal step
jee

Ti = Vey /serwy Pla
becomes

735 = Loy lat eneo\ ian aiad P (alts = 0, 5, = bins The = bias THeMC)\ Gr e)) Tey /rerca\s
which is equivalent to setting the nodes x,, and 2j, to fixed values in this row.

tj = b, Teer(i)\;) es ON Gy

e At the vertical step

In Q small sO two probabilities rb rb ,0 Therefore, in the orale gd = =

op) Thy vec(g)\i Tig there is meceeaaelly @ one probability equal to 0 setting q?, = 0.

e In the end, it is like setting the two nodes x;, and x;, in the graph to fixed values.

Thus, the algorithm converges more quickly (in the hypothesis it converges) because
there are less cases to consider. An other way to put it is that the nodes in small loops,

having high probability, will decrease the complexity of solving the related probabilities

of the nodes to which they are connected. Therefore we can expect that increasing the
number of small loops will reduce the number of iterations needed for the algorithm to
converge.

3.2 Controlling the number of small loops

In order to remove small loops, MacKay first randomly generates a sparse matrix and

then deletes the lines and columns responsible for the presence of a small loops [7].
We found this method unsatisfactory in the case of cascading code due to the complex

constraints of the construction.

3.2.1 Generating matrices without small loops

The problem is to keep the construction of the matrix (number of unit elements in
each row and column and in each submatrix) and build it such that the loops are big.
In cascading codes, since the submatrix B if bidiagonal, it is not responsible for any
loops so we can allow ourself to keep it as is.

Therefore, we have to avoid creating small loops within A and between A and B.
A simple solution is to forbid, during the construction, some sites in each row in order

to avoid small loops as described in the following algorithm.

For each submatrix of A, we store the number of unit elements in each row and each
column. For each element to add in each row, we compute the distance (as defined
later) from the node z; corresponding to the row to all other nodes x; that are in the

submatrix. Then, we order the nodes first by distance (looking for loops as large as

possible) and then, for the nodes of the same distance, we sort them by the number

of existing units in the correct column, giving priority to nodes with a low number
of existing elements. This heuristic making is aimed at keeping the nodes with the
maximum distance and the maximum of flexibility. This is also to avoid being blocked
at the end of the construction by having to put more than one node in a row and
having only one possibly choice for the column. Then, we select x; at random from
. possible choices we have defined and connect it to the current, nae z; (marking a

1 at the indices (i,j) in the parity-check matrix).

28

CHAPTER 3. THE EFFECT OF SMALL LOOPS ON THE PERFORMANCES

A side effect of this method is that we not only eventually remove the loops of
length 4 but the remaining loops have very large lengths, this effect increases with the
size of the system.

Distance between two nodes

We will call distance between two nodes the minimum length of path connecting them.
In order to compute it, we use an iterative algorithm. We start from a node and

store all the nodes adjacent to this node. Those become the nodes of distance 1 from
the starting node. The non marked nodes adjacent to the nodes previously stored
becomes the nodes of distance 2. We continue until the target node appears in the list
of stored nodes or until there are no more nodes unmarked connected to the marked
ones. Examining this list we can find the distance between nodes. In case the algorithm
ends without returning the target node, there is no path between the nodes and we set
the relevant distance to infinity.

iA oo a
aie . is Ne at

ee . istance infinity
. iteration/distance 0

|
ee

iteration/distan
ce 1

1 iteration/distan
ce

2

: ae

\

Figure 3.2: Distance between a node and the other nodes in the graph. The circles
represents the steps of the greedy algorithm and incidentally the distance to the nodes
within them.

To compute the distance between a node and all the others, the complexity of the

algorithm increases linearly with the number of rows plus the number of columns of the

corresponding matrix. For a matlab-like description of the algorithm, see Appendix
D2.

Construction of a sparse matrix without small loops - an example

At iteration 7 of the algorithm, we have the parity check matrix in Table 3.2

We compute the distance from z; to the nodes {11,..,2 : W, > 0} and order them

first by loop length and then by the number of links remaining to be added.

So we select at random between «3 and 24; let’s take x3 and connect it to z; (the

changes are noted in bold fonts) in Table 3.4

29

CHAPTER 3. THE EFFECT OF SMALL LOOPS ON THE PERFORMANCES

Dy 8g Gs ly 0s: |. pew |) We

2 Ui Ones 0l 005.0) 0 0

tale) 0 OO) A Oe ees 0 0

qs Dae One OMe 0s OF 5 0 3

WaALOt ign 22 3a 0

Table 3.2: Parity check matrix with large loops. Iteration i, W, is the number of
remaining unit elements to add in each row; W, is the remaining number of unit
elements to add in each column in the submatrix relative to row i

nodess|igs 22 ty Testy «2. ap

Cistancel sisi Octo S5e" Spe o
WwW. 220 2 eS On ee Wine

Table 3.3: The nodes are sorted first by distance and then by remaining number of
unit elements to add in the relative column

Di 02 03. Ta Ee ee Ev | We

Zien OS 20- AOm Oa 0 0

1G) eel f Ue ails OQ Manaee 0 0

07 0 at 0 0 Re 0 2

Weal0 3 SIE 208 0

Table 3.4: Parity check matrix with large loops. Iteration i. A one has been at index
(1,3) creating a loop of length 12. W, and W, are decreased accordingly.

30

CHAPTER 3. THE EFFECT OF SMALL LOOPS ON THE PERFORMANCES

We iterate until there is no more elements to add in the row i. We also iterate for

all row of the submatrix and for all the submatrices.

One should note that he values of number of element to add per column in a

submatrix is computed beforehand such that the repartition is as uniform as possible

within the submatrix and the global submatrix A.

3.2.2 Adding small loops

If we want to add a certain number of small loops to a submatrix, we just insert them

at random such that a node participates in only one small loops and decrease by 2 the

weight of the rows and columns concerned. Then we apply the same algorithm as for

creating a code with large loops in order to maximise loop lengths and minimize the

effect of loops of small lengths (6 and 8).
The problem with adding small loops arbitrarily is that we can inadvertently create

small loops with the submatrix B of the parity check matrix H = [A|B]. So we need

to control that only the number of small loops we added appears in the graph.

3.2.3 Evaluating the number of influencing loops

Computing the number of small loops in a graph is easily done: we just need to

compare every row of the parity check matrix to all other rows and:small loops occur

when two row have an overlap greater or equal to 2. But MacKay observed a significant

improvement when removing the loops of length 4 and 6 although the effect became

less clear with the removal of loops of higher length. Therefore, it would be interesting

to know their number.

The method used for counting the number of small loops become rapidly non prac-

ticable because, for higher loop length, in order to count all the loops of length J, we

need to compare all arrangements of //2 rows of the parity check matrix and the com-

plexity is then on the order of cy = M!/((1/2)!- (M —1/2)!). Counting all the loops
in a graph is very difficult, and in this case, not very informative since we are mostly

interested in the loops of length 4 and 6 and marginally of loops of higher length.

Graph theory provides us the notion of base of loops: the set of loops from which

all loops of a graph can be constructed from by union, difference and intersection. But

there is no practical algorithm to obtain the base of loops of minimal length and we
could miss some small loops.

Instead, we will concentrate on the loops of minimal length that contribute sig-

nificantly in the artificial increase of their probability value. The following algorithm

provides the exact number of loops of length 4 but only a lower bound for the loops of

higher length.

Counting loops ;

To count loops, we compute the distance between a node and all the other nodes it is

connected to without taking into account the direct links (except one).

Then we have contribution of this link to the loops in the graph. We iterate this

for all nodes and note down the contribution of the links to loops. Since we are in a

bipartite graph, we can avoid double counting the contribution of each link by applying

31

CHAPTER 3. THE EFFECT OF SMALL LOOPS ON THE PERFORMANCES

this algorithm only to one part of the nodes (x or z). for each loop of length 1, | links
contribute to this loop. Therefore, by dividing by | the number of contributions c of
links to the loops of length /, we obtain the number n, of distinct loops of length / in
the graph (n; = ¢/I).

This algorithm gives a lower bound of the number of loops of length |. An example
of how this algorithm can be used is provided in Figure 3.3.

Xo 22

23, 1

x3 ZA

20. Ba

Original graph

Zo,d=5 % (b) %o, d= 5 20 () coa= 7

Figure 3.3: Iterations for the contribution of a node to loops in a factor graph. (a)
we remove all the links (dashed) from zp except the one to zo. Then we compute the

distance between z) and {22,73}. We know that this link participates in a loop of

length 6 with x2 and a loop of length 8 with x3. We iterate on the links from 2 in (b)
and (c). We then iterate on all the node z of the graph to obtain the contribution of
each link in (d). Eventually, we find 4/4 = 1 loop of length 4, 6/6 = 1 loop of length
6 and 2/8 = 1/4 loop of length 8.

In Figure 3.3, we end up with 1/4 loop of length 8 because the loop of length 8 in

this case is composed of loops of smaller length and isn’t detected by the algorithm.

This is the reason why this algorithm provides only a lower bound.

For a matrix M x N of density p, the complexity of this algorithm is of the order

pNM(N + M). It takes a few minutes for a 3000 x 4000 matrix with 11000 unit
elements, in C++ on an DS20 Compaq machine. A matlab-like algorithm is provided

in Appendix D.3.

3.3 Simulations

3.3.1 Removing small loops

In order to see the effect of removing small loops, I have generate a cascading code

which I define as the original construction meaning that it is the random construction

where we do not control the number of small loops or where they happen to be. We

32

CHAPTER 3. THE EFFECT OF SMALL LOOPS ON THE PERFORMANCES

observed the presence of 26 small loops in the original construction (see Appendix F.1,

*Original matrix’ for details on the repartition of loops) Then I generate a matrix which

has the same construction but no small loops.

Performance

The simulation results in Figure 3.4 are based on biased and unbiased messages of
length N = 1000 and the construction of two matrices corresponding to cascading codes
of rate 1/3. Each point represent an average on 10000 trials with belief propagation.

10° 10°
3
3 o 5 2 10 10 3 g a
E a £
5 0 a os .0 510 - $10 & g 2
é a 2
8 at ie
5 10 2 10

ee o
Ca

10° 10° -
0.05 0.1 0.15 0.2 0.25 0.05 041 0.15 0.2 0.25

Noise level Noise level

210° 10°
S g
A
2107 107

5 £ 5
Dicey a
810 5 10
5 3 8 6
= e
oor 10°
2
o

249° foie
0.05 O41 0.15 0.2 0.25 0.05 0.1 0.15 0.2 0.25

Noise level Noise level

Figure 3.4: Impact of 26 small loops on the performance of cascading code R = 1/3,
N = 1000

©: Original matrix, f,=0.5 »*: Large loops, f, = 0.5

O: Original matrix, f,=0.1 +: Large loops, f, = 0.1

full line: f; = 0.5 dotted line: f, = 0.1

We can see on Figure 3.4 that a code without small loops performs better in block

and bit errors at low noise level in mean and in variance (see Appendix E.2). There

is a very slight improvement in the percentage of convergence in the case of unbiased

messages which is clearer in the case of unbiased messages. A higher noise level, there

is little difference whether we remove loops or not.

33

CHAPTER 3. THE EFFECT OF SMALL LOOPS ON THE PERFORMANCES

Convergence time

From the same simulations, we examine the effect. of small loops on the speed of
convergence.

Original matrix, fs=0.1 Large loop length, fs=0.1
@ 100 @ 100
ey 2
ea = 80
8 8
2 2
2 60 2 60
5 5
© ®
5 40 & 40
6 6

2 20 i@ 20

E 5
2 9 a)

0.05 0.1 0.15 0.2 0.25 0 0.05 0.1 0.15 0.2 0.25
Noise level Noise level

Original matrix, fs=0.5 Large loop length, fs=0.5
@ 150 o 150
> 2
g g = 125 e 125
8 8
2 100 2 100
2 a . 2
S pat 3 75 3 75

2 2 2 £
S 50 5 50

2 3 = 25, = 25
=] 3
oa0 =le0

0 0.05 On 0.15 0.2 0 0.05 0.1 0.15 0.2
Noise level Noise level

Figure 3.5: Impact of 26 small loops on convergence speed for cascading code R = 1/3;
N=1000. The curve corresponds to the mean of number of iteration and the bars to
the standard deviation

In Figure 3.5, removing small loops improve slightly the mean convergence speed
and the standard deviation becomes slightly smaller.

3.3.2 Adding small loops

To evaluate the effect. of adding small loops, I artificially added the same number of
small loops (26) as in the original matrix in the submatrix of my choice such that a node
is never part of two small loops. The other connections are made in order to respect,
the connectivity and increase other loops length as much as possible as described in
Section 3.2.1. We follow the convention and the cases considered of Section 3.1.1

34

CHAPTER 3. THE EFFECT OF SMALL LOOPS ON THE PERFORMANCES

Performance

The simulation results in Figure 3.6 are based on biased and unbiased messages of
length N = 1000 and the construction of four matrices corresponding to cascading
codes of rate 1/3: one with large loops, the others with 26 small loops representing the
cases identified in Section 3.1.1. Each point represent an average on 10000 trials with

belief propagation.

10°

%
no
n

co
nv
er
ge
nt

me

ss
ag

es

3

%
Bl
oc
k

er
ro

r

3

10 # 10

9°
10° 10° :
0.05 0.4 0.15 0.2 0.25 0.05 0. 0.15 0.2 0.25

Noise level Noise level

10° 10°

10° 10°

To
ta

l
bi

t
er

ro
r

3

“E
e

 bi
t

er
ro

r
on

co
nv
er
ge
nt

m
e
s
s
a
g
e
s

3

10° 10° a 4
e

10° 10°
0.05 O04 0.15 0.2 0.25 0.05 0.1 0.15 0.2 0.25

Noise level Noise level

Figure 3.6: Effect of placement of 26 small loops for cascading code R = 1/3, N=1000
+: Large loops *: 26 small loops between SM2 and SM3
©: 26 small loops in SM2 O: 26 small loops in SM3

full line: f; = 0.5 dotted line: f, = 0.1

In the Figure 3.6, the values of percentage of block error and percentage of non-

convergent messages bellow 0.1% and the values of bit error bellow 10-® should be
ignored because the trials have been carried out on 10000 messages and we reach the

simulations precision. In this regard, we can see that placing small loops in SM2 or

SMB has relatively small influence compared to the effect. of placing small loops between

SM2 and SM5. We could have the impression that small loops in SM2 leads to better

performances than adding them in SM3 but other constructions of the same matrices

with different seeds have shown that it isn’t a characteristic result.

35

CHAPTER 3. THE EFFECT OF SMALL LOOPS ON THE PERFORMANCES

Convergence time

The convergence time curves corresponding to the previous simulations are presented
in Figure 3.7.

Large loops 26 loops in SM3

a i a So

ny a by a

100 3 8

a So a 3

i) a nD a it il

Nu
mb

er

of

it

er
at

io
ns

to

co
nv
er
ge

x a

N
u
m
b
e
r

of

it

er
at

io
ns

to

c
o
n
v
e
r
g
e

a

 ° °

0 0.05 0.1 0.15 0.2 0.25 0 0.05 0.1 0.15 0.2 0.25

Noise level Noise level

26 loops in SM2 26 loops between SM2 and SM5

@ 150 @ 150 & 2
2 125 2 125
8 8
2 100 2 100

2 2
S = S 78 ‘e 75

S S
5 50 s 50

8 8 2 25 = 25
SI S
2 Zz

° °

° 0.05 0.1 0.15 0.2 0.25 0 0.05 0.1 0.15 0.2 0.25
Noise level Noise level

Figure 3.7: Effect on the convergence time of 26 small loops placement for cascading
code R = 1/3, N = 1000 unbiased messages. full line: f, = 0.5. dotted line: f, = 0.1

In the Figure 3.7, we can see that the placement of small loops in themselves has

very little influence on the speed of convergence.

3.3.3. The number of small loops.

We artificially build the successive parity check matrix such that SM3 contains an

increasing number of small loops and such that the other loops have high length.

36

CHAPTER 3. THE EFFECT OF SMALL LOOPS ON THE PERFORMANCES

Performance

The following simulations use matrices that have 100, 200 and 400 small loops in SM3.
We carried out the computations for biased and unbiased messages of length 1000 and
R=1/3.

2

10 10

& 8
ip 8 1 8 10 s _ 10 %

E é g
= 6
510° f 10° #
g a *§ 5 s - 3 510° @ 10" >

©

10 - 10° oe
0.05 0.4 0.15 0.2 0.25 0.05 0.4 0.15 0.2 0.25

Noise level Noise level

40° 10°

-2

5

To
ta

l
bi
t

er
ro

r

3 bi
t

er
ro

r
on

co

nv
er

ge
nt

me
ss
ag
es

3

10° go” 10°

10° 10°
0.05 0.4 0.15 0.2 0.25 0.05 0.1 0.15 0.2 0.25

Noise level Noise level

Figure 3.8: Effect of number of small loops in SM3 for cascading code R = 1/3, N=1000
o: Large loops, f, = 0.5 *: 100 small loops in SM3, f, = 0.5

x: 200 small loops in SM3, f;=0.5 ©: 400 small loops in SM3, f, = 0.5
full line: f, = 0.5 dotted line: f, = 0.1

In Figure 3.8, the can see that although the presence of small loops deteriorate the

performances at low noise level, there is no clear effect with the increase of their number.

In terms of bit and total bit errors standard deviations, in Figure E.3 (Appendix E.3),

there is the effect that an increasing number of small loops decrease the variance in bit

error and increase the one in total bit error.

In the case of unbiased messages, at higher noise level, the percentage of convergence

decrease whereas the block and bit error decrease with the addition of small loops. This

is more easily seen in Figure 3.9 where we only include high noise levels.

37

CHAPTER 3. THE EFFECT OF SMALL LOOPS ON THE PERFORMANCES

2 2

10 10
2 & &
os a
3 ert
E ¢ 10
= @

1 x 210 3

2 a0
8 3 10
rs 6 2
x 4

10: 107"
0.15 0.155 0.16 0.165 0.17 0.15 0.155 0.16 0.165 0.17

Noise level Noise level

10° 10° & S 3
3
Ee

. 1 = 10° § 10
§ 5

g 2
S £
a0 10°
&
s
3
5 io? 10°

0.15 0155 0.16 0.165 0.17 0.15 0.155 = 0.16 0.165 0.17
Noise level Noise level

Figure 3.9: Effect of number of small loops in SM3 at high noise level for cascading
code R = 1/3, N=1000

o: Large loops, f, = 0.5 «*: 100 small loops in SM3, f, = 0.5
x: 200 small loops in SM3, f,;=0.5 ©: 400 small loops in SM3, f, = 0.5

full line: f, = 0.5 dotted line: f, = 0.1

In Figure 3.9, we can see the transition between low noise level and high noise level:
in terms of bit and block error, the graph without loop used to performs better and
around noise level f, = 0.155 the codes with an increasing number of loops performs
increasingly better. This is balanced by a decrease in the percentage of converging
cases for the codes with loops.

38

CHAPTER 3. THE EFFECT OF SMALL LOOPS ON THE PERFORMANCES

Convergence time

The convergence time curves corresponding to the previous simulations are presented
in Figure 3.10.

Large loops 100 small loops

i 3 6 n 3S 3S

<I a = a

150

125

a i)

 a

2
a

&

a 3 a So

| ail tS all

Nu
mb
er

of

it
er
at
io
ns

to

co

nv
er

ge

Ss 8

Nu
mb
er

of

it

er
at

io
ns

to

co

nv
er

ge

Ss s

25 + 25

0 0
0 0.05 O41 0.15 0.2 0.25 0 0.05 0.1 0.15 0.2 0.25

Noise level Noise level

200 small loops 400 small loops
@ 200 @ 200
> 2 8 175 8 175

é
& 150 8 150

2 125 @ 125
§ §
3 100 3 100

2 75 2 75
6 6
5 50 5 50

: ; il 5°25 — 25 rt
2 6 2 6

0 0.05 0.1 0.15 0.2 0.25 0 0.05 0.1 0.15 0.2 0.25
Noise level Noise level

Figure 3.10: Effect on the convergence time of the number of small loops in the last
submatrix for cascading code R = 1/3, N=1000

From Figure 3.10, we see that the convergence time increases slightly with an in-
creasing number of small loops.

3.4 Interpretation of the results

3.4.1 Removing small loops

The results generally confirm our expectations. A code with large loops improves the

performances in all respects at low noise levels: the percentage of converging cases is

slightly higher, there is a significant improvement of the block error, bit error and total

bit error. There is no significant change in the speed of convergence but it can be due

to the relatively small number of small loops present in the original code.

39

CHAPTER 3. THE EFFECT OF SMALL LOOPS ON THE PERFORMANCES

The improvement is not only due to the removal of small loops but also to the fact
that we have very large loops. This can be explained by the fact that a message pass
less often by the same nodes so that the influence of the loops is reduced. Also, the
fact that the length of the loops is of the same order (mainly, loops of length 10 from
Appendix F.1) has the consequence that the messages are equally double counted,
therefore the belief update approximation is more accurate than with a large range
of loop lengths. This idea has been formalized by the notion of unwrapped network.
The principle is that when a message comes back to a node it has already visited, we
duplicate the network from this node [14]. Thus we trade a loopy network to an infinite
polytree where belief update is exact. With a small range of loop length, each node is
duplicated an equal amount of time and they have all the same contribution (this is
the notion of balanced unwrapped network).

At high noise level, there is no effect from the small loops because as the noise level

increase, more and more errors are due to the corruption and the errors due to small
loops become irrelevant.

3.4.2 Adding small loops

Placing small loops in SM2 or SM3 has very little influence on the code whether in

terms of performance or in terms of convergence speed.

In contrast, placing small loops between SM2 and SM5, leads to a degradation in

performance. This is understandable since the part of the loop in SM5 has only a link
to a loop to evaluate it pseudo posterior value (L = 2). So the probability values of
the small loops can only be flipped by the part in SM2 which becomes harder than if
all the part of the small loop could be flipped by the contribution of their column as
it is the case when we add small loops to SM2 and SM3.

3.4.3 The number of small loops.

In the cases observed, the main influence of increasing the number of small loops is
an increase in the bit and block errors variance at low noise level and a decrease in
the mean bit and block errors at high noise level in parallel with a lower probability of
converging cases.

Therefore, at high noise level, increasing the number of small loops can improve
block and bit error. A possible explanation is that while increasing the number of
small loops, we increase the correlation between the message estimate bits. Therefore,
it is harder to have convergence with a few erroneous bit. This explain the increase
in bit error variance and the poorer rate of converging messages. As a side effect, this
improve the block and bit errors.

The degradation in the speed of convergence at higher noise level doesn’t support
the intuition of Section 3.1.2.

40

Chapter 4

Gallager versus MN configurations

The issue in this chapter is to determine which configuration is more likely to achieve

Shannon’s bound. In the first section, we highlight the theoretical difference between

the two configuration. In the second part, we carry out simulations based on two con-

struction: MacKay’s and cascading (see Section 1.3 for the details of the construction).

Finally, we try to determine which configuration has achieved the better performance
in terms of approaching Shannon’s bound.

4.1 The differences between Gallager and MN con-

figuration

Although the two configurations seem similar, the claim [9] is that to achieve Shannon’s
bound using Gallager’s configuration, the number of unit elements per row K should

go to infinity. When the actual transition is computed with different K, Gallager

configurations goes increasingly closer to Shannon’s bound as shown in Figure 4.1

whereas in theory, MN codes need only K > 3 element per row to saturate Shannon’s

bound in the case of unbiased messages.

— Shannon’s bound

-~K=1

-K=2
---K=3
---K=4

 noise Tevel :

Figure 4.1: Illustration of bounds for Gallager configurations of different K values

41

CHAPTER 4. GALLAGER VERSUS MN CONFIGURATIONS

In this regard, MN configuration should approach Shannon’s bound better than
Gallager’s configuration.

Basically, the cascading constructions were first designed for MN configurations,

however the same construction can be used in the Gallager’s configuration. The issue
is now if the performances are better when we plug the constructions prepared originally

for the MN configuration in a Gallager configuration system as observed by MacKay
in his experiments [8].

4.2 Simulations

In order to make a comparison, I have taken a matrix check matrix provided on

MacKay’s web site. However, if we use the same matrix for MN and Gallager con-
figurations, the rate won’t be the same: for a matrix M x (N + M), the rate for MN

is R = N/M and for Gallager is R = N/(N + M) ie. a rate 1/3 in MN is a rate 1/4
in Gallager. So, in the simulations, we will measure the distance to Shannon’s bound

achieved in order to carry out the comparison.

4.2.1 Result for Gallager configuration

Using the two matrix, we carry out the simulation in a Gallager configuration until the

limit of the code has been reached.

Performance

The following results are based on unbiased messages of length N = 3296 for MN

construction and Gallager construction R ~ 1/4, over 10000 trials.
We can see in Figure 4.2, that while the MN construction has perfect: performances

at the beginning, at one point the percentage of convergent message increase and

decrease suddenly. At the same time, the block error rises to 100% and stays that way.

In contrast, cascading constructions continues farther and eventually presents the same
behavior.

The residual block and bit errors for cascading construction are probably due to

finite size effects and will resemble a step function with the increase in system size. We

can note that all loops of length six or bellow have been removed in the MN construction

while we have kept the original construction for the cascading construction, therefore,
we can suppose that this effect would disappear with the removal of small loops as done
in Chapter 3. We didn’t remove the small loops in cascading construction because the
goal is not to design an optimal code but to compare the typical performances.

42

CHAPTER 4. GALLAGER VERSUS MN CONFIGURATIONS

%
no

n
co
nv
er
ge
nt

m
e
s
s
a
g
e
s

3

%
Bl

oc
k

er
ro

r

3.

0.12 0.14 0.16 0.18 0.2 0.22 0.12 014 O16 0.18 0.2 0.22
Noise level Noise level

2 10 10 3 S 8
3
¢ 107 10°
= § 5 £ ® =
S107 510°
§ 3 8 ©
© e
2 40- 10°
ie
o

so 10°
012 014 016 018 02 0.22 0.12 014 016 018 02 0.22

Noise level Noise level

Figure 4.2: Results for Gallager’s configuration, source message length=3296, trans-

mitted message length=13298, unbiased messages.

O: Cascading construction +: MN Construction

43

CHAPTER 4. GALLAGER VERSUS MN CONFIGURATIONS

Convergence time

The following converging time curves correspond to the previous Gallager configuration
simulations.

Cascading construction
200 T T T T T T T

a a 1

co
nv
er
ge

150--

iy &

100

a
n

o
a

ea
l

& 7 Nu
mb
er

of
it

er
at

io
ns

to

L
0.06 0.08 0.1 0.12 0.14 0.16 0.18 0.2 0.22

Noise level

20

° &

MN construction
200 T T T T T T T T

175 : a

150

125

100}-

 N
u
m
b
e
r

of

it

er
at

io
ns

to

co
nv
er
ge

0 L L 1 1 1 L 1 1
0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18 0.2 0.22

Noise level

Figure 4.3: Speed of convergence for the Gallager configuration, a comparison between
MN and cascading codes.

In terms of the convergence time in Figure 4.3, we show that for the MN construc-
tion the number of iterations needed to converge increases up to one point and then
decreases when all messages are incorrectly decoded (BER = 1). For the cascading
construction, we see that 200 iterations are not sufficient to converge at high noise
levels. We could expect that the percentage of convergent messages would increase if
we increased the number of iteration allowed but it doesn’t matter since around half of
the messages are decoded correctly at that noise level which is the critical noise level.

4.2.2 Results for MN configuration

We use the same matrices used in the previous Gallager configuration simulations but:
in MN configuration.

44

CHAPTER 4. GALLAGER VERSUS MN CONFIGURATIONS

Performance

The following simulators results are based on unbiased messages of length N = 3296

for MN and Cascading codes R = 1/3, over 10000 trials.

 3 3

2 3 >
3 1 & 10 10 3 ~
E 8
S o
510° S 10°
o 2

ao

8 x
= 10" 107
2
2

10° 10°78
0.4 0.12 0.14 © 0.16 0.18 0.1 0.12 0.14 0.16 0.18

Noise level Noise level

2 10° 10°
2
3 2 -2 -
2 10 __ 10
€ e 5 E
S 2 8 10" 310°

FS 3
8 2 iS
Re 10° 5
6

a 10°
0.4 0.12 0.14 016 0.18 0.4 0.12 0.14 0.16 0.18

Noise level Noise level

Figure 4.4: Results for MN configuration, source message length=3296, transmitted

message length=10002, unbiased messages, R ~ 1/3

O: Cascading construction +: MN Construction

In Figure 4.4, we have approximately the same sub figures as in Gallager configu-

ration except that the decrease in percentage of converging cases doesn’t appear.

45

CHAPTER 4. GALLAGER VERSUS MN CONFIGURATIONS

Convergence time

The following converging time curves correspond to the previous MN configuration
simulations.

Cascading construction
200 T T T T T

175 a

150;

125-

100

 je

2 o

a i) T

n a T Nu
mb
er

of

it

er
at

io
ns

to

co
nv
:

~ a T

L L L ! L
0.08 01 0.12 0.14 0.16 0.18

Noise level

S
o

S & so Fa
le

D

MN construction
200 T T T T T

x a T 1

150}

ny a T

y
a
n

a
o
a

te
e

el

 Nu
mb
er

of
it

er
at

io
ns

to

co
nv

er
ge

Ss 8 T

1 1 L 1 1
0.06 0.08 0.1 0.12 0.14 0.16 0.18

Noise level

2 g

Figure 4.5: Results on the convergence speed for MN configuration

In Figure 4.5, in contrast with the Gallager configuration, the convergence doesn’t
decrease after a time. This has to be put in relation with the fact that the is no decrease
in percentage of converging cases.

4.2.3 Distance to Shannon’s bound

In order to compute the distance to Shannon’s bound, we have to determine the noise

level in which the code reaches its limit.

Choice of criterion for determining the limit of the code

A good criterion to use is the noise level at which the block error equals 50%. If there

were no finite size effects or small loops, that degrade the block error rate at small noise

levels, the block error curve would have been a step function; the increase in error from

46

CHAPTER 4. GALLAGER VERSUS MN CONFIGURATIONS

0 to 100% occurring at the limit of the code. Otherwise, the curve takes a smoother
shape as illustrated in Figure 4.6.

—Infinite messages

noise level

Figure 4.6: Illustration of the finite size effects on the block error. The solid line rep-

resents the infinite limit one and the dotted line show the degradation in performance

as the message size decrease.

For instance, we can see on the figures 4.4 and 4.2 that the value of block error at

50% correspond to the noise level at which the change in block error, bit error and total
bit error is the sharpest and also where the percentage of converging cases reaches it

maximum in the Gallager configuration.

Limits of the simulation codes

From the simulations carried out previously, we choose some values near 50% noise

level reported table 4.1.

Configuration | Construction |} noise level 1 noise level 2 noise level 3

Gallager MN fn = 0.166 fn = 0-168 if, =ON7
BER =6.18% | BER=51.81% | BER = 93.88%

CC Fa = 0195 fn = 0.1975 fa=02
BER =7.13% | BER = 69.70% | BER = 98.67%

MN MN ff#=012% fa = 048

BER = 11.04% BER = 83.06%
CC fn = 0.165 fn = 0.1675

BER = 21.97% BER = 72.57%

Table 4.1: Values of block error used to interpolate the value of the noise level achieved.

noise level 1 and noise level 3 are the values used to interpolate; noise level 2 gives an

idea of the value of the noise value f, at 50% block error when the simulations happened
to be near it.

AT

CHAPTER 4. GALLAGER VERSUS MN CONFIGURATIONS

From these values, we interpolate the values of noise level for which a block error of

50% should be reached. We can see from the graphs 4.2 and 4.4 that this points are in

sharp increase nearly linear zones thus a linear interpolation is sufficient to determine

the noise level achieved f, (from the values of table 4.1, we can afford a precision at
10~ for the value of f,).

Distance to Shannon’s bound

In order to make the relevant comparisons between the different rates, we will compute

the ratio mes (fshannon being Shannon’s bound for the corresponding code).
This ratio measures the fraction of information corrected by the code relatively to the
quantity it corrects at Shannon’s bound.

Configuration | Shannon’s bound |} Construction | f, ratio

Gallager R=0.2479 MN fc = 0.1658 || 0.87

Finannon = 0.2156 || CC Ff, = 0.1963 || 0.95
MN R= 0.3295 MN fi, = 0.1289 |] 0.83

detannon = 01756 ||'CC fc = 0.1664 || 0.97

Table 4.2: Distance to Shannon’s bound

We can see that cascading construction can achieve more information correction in

MN configuration than in Gallager’s. In contrast, MN construction corrects more bit

flips in case of Gallager’s configuration.

4.3 Interpretation

Gallager configuration

In the case of the MN construction, the sudden rise in percentage of non convergent

message in Gallager configuration is due to the fact that we bounded the number of

iterations. The decrease in percentage of non convergent messages is easily explained
by the appearance of a local minima [10]. We can see that the same effect starts to
appear at the highest value of the simulation for the cascading construction.

At one point, a second large local minima appears. The noise level at which the
block error is equal to 50% corresponds to the point where the minima of perfect:
decoding is perfectly balanced by the emerging local.

Distance to Shannon’s bound

The MN construction performs better with a Gallager configuration than a MN con-
figuration which is consistent with MacKay’s observation. The improvement is on the
order of 4% in terms of fraction of information corrected relatively to the quantity it
can correct, at Shannon’s bound.

In contrast, the CC construction performs slightly better (2%) in a MN configura-
tion which is consistent with the theory. We can not conclude on whether Gallager or
MN configuration is more likely to saturate Shannon’s bound but in the cases studied,
it depends on the construction of the matrix chosen.

48

Chapter 5

Conclusion

In this thesis, we carried out an empirical study on the comparison between belief

revision and belief propagation in the specific case of cascading code. We eventually

have found that belief revision is unpracticable in the case of unbiased messages and

that the similarity of its performance in terms of block error and bit error with belief

propagation makes belief propagation a better choice for practical decoding. In the

case of biased messages, it may be worthwhile using belief revision to reduce the bit
error but at the cost of slower decoding and a poorer percentage of converging cases.
We have shown that this is not due to the limitations on the number of iterations

but, intuitively, due to the ruggedness of the probability distribution belief revision

evaluates.

Concerning the effect of small loops on the code’s performances we have the unsur-

prising result that building a code with large loop lengths improves the performances

in all respects and in the case of cascading codes, small loops deteriorate somewhat

the bit and block error at low noise but not as much as we would have expected. The

most surprising is that the number of small loops, increasing the correlation between

the source message estimate, improves the bit and block errors at high noise level at

the cost of a poorer probability of convergence. Small loops’ contribution to the dete-
rioration of the performance is marginal; even in the case of 400 small loops (ie. 80%
of the nodes participate in a small loop), the performances are better than the original
code in all respects.

It would be interesting to study the relation between the performances and the

heterogeneity in loops rather than simply their number. In the unwrapped network

framework, a wide range of loops of different length would create an unbalanced net-

work and some messages contribute more to the posterior than other thus maybe
deteriorating the performances.

In the comparison between the Gallager and MN configuration we have results in
accordance with the theory ie. MN configuration generally performs better (in this
thesis in the cases of Cascading codes) but it is likely to depend on the construction of

the matrix: MacKay’s construction performs better in the Gallager configuration.

49

Bibliography

[1] T.M. Cover and Joy A. Thomas. Elements of Information Theory. John Wiley &
Sons, Inc., N. Y., 1991.

[2] R. G. Gallager. Low density parity check codes. IRE Trans. Info. Theory, IT-
8:21-28, Jan 1962.

{3] Y. Iba. The Nishimori line and baysesian statistics. Journal of Physics A, 32:3875-

3888, 1999.

{4] I. Kanter and D. Saad. Error-correcting codes that nearly saturate shannon’s
bound. Physical Review Letters, 83-13:2660-63, 1999.

[5] F. R. Kschischang, B. J. Frey, and H. Loeliger. Factor graphs and the sum-product
algorithm. Submitted to IEEE Transactions on Information Theory, July 1998,

1998.

{6] A. Shokrollahi M. Luby, M. Mitzenmacher and D. Spielman. Improved LDPCC

using irregular graphs and belief propagation. SRC Technical Note, digital, 1998.

{7] D. J. C. MacKay. Good error correcting codes based on very sparse matrices. To
be submitted to IEEE transactions on Information Theory, 1996.

[8] D.J.C. MacKay. Relationships between sparse graph codes. 2000.

[9] R. Vincente, D. Saad and Y. Kabashima. Error-correcting code on a cactus: a
solvable model. to appear in Europhysics Letters, 2000.

[10] R. Vincente, D. Saad and Y. Kabashima. Statistical physics of irregular low-
density parity-check codes. to appear in Journal of Physics A, 2000.

[11] A. Shokrollahi T. Richardson and R. Urbanke. Design of provably good low-density

parity-check codes. Bell Labs, Lucent Technologies, 1999.

[12] Y. Weiss. Belief propagation and revision in networks with loops. MIT AI Memo
1616 (CBCL Paper 155)., 1997.

[13] Y. Weiss. Loopy belief propagation for approximate inference: an empirical study.

Laskey K.B. and Prade H. (editors) Proceedings of the Fifteenth Conference on

Uncertainty in Artificial Intelligence, Morgan Kaufmann Publishers, San Fran-
cisco, 1999.

BIBLIOGRAPHY

{14] Y. Weiss. Correctness of local probability propagation in graphical models with
loops. Neural Computation, 12:1-41, 2000.

(15) D. Saad Y. Kabashima, T. Murayama and R. Vicente. The statistical physics of
regular low-density parity-check error-correcting codes. Phys. Rev. Lett., 62, 2000.

[16] T. Murayama Y. Kabashima and D. Saad. Cryptographical properties of Ising

spin systems. Phys. Rev. Lett., 84, 2000.

51

Appendix A

Notations used

Symbol Meaning Type

(ee) Cascading Connectivity code

MN MacKay-Neal code

N length of source message Integer

M length of transmitted message Integer

R rate of the code Real

A Binary entropy function (see Equation (1.2)) Real
K number of unit element per row in submatrices of CC Integer

Cc number of unit element in submatrices of CC Integer

L number of ones per row in the bidiagonal part of CC Integer

s source message Binary vector

t transmitted message Binary vector

r received message Binary vector

Zz syndrome vector Binary vector

8 decoded message Binary vector

Ki any vector (n in case of Gallager code [s|n] in case of MN code) Binary vector
Po bit error Real

BER _ block error Real

52

Appendix B

General definitions

In this thesis, we refer to the messages s, t, x etc as vectors over the finite field {0, 1}.

A binary variable is termed as a bit.

Weight-density

We call weight w(x) of a vector, the number of unit element present in vector x. If |
is the length of the vector, we define the density f, of the vector x by:

w(x)

I
 fr =

In the same way, if H is a M x N binary matrix, the weight w(H) of the matrix is
equal to the number of unit elements in the matrix. The density p of the matrix H is

equal to:

 Swe)
PNM

Sparseness

A matrix is said to be very sparse if the density goes to zero when the dimensions of

the matrix go to infinity.

Appendix C

The binary symmetric channel

The Binary symmetric channel (BSC) is a symmetric corruption channel. When a
vector is transmitted through this channel, each bit of the transmitted vector has a
probability p,, of being flipped.

The capacity of the binary symmetric channel is

Casc = 1+ (1 — pn)loga(1 — Pn) + Pnloge(Pn)

 a1 8s 030808 08
— Pn ctostovar prota on

0 0
(a) (b)

Figure C.1: The binary symmetric channel: (a) probability transition diagram for each
bit transmitted through the channel; (b)Capacity of the binary symmetric channel as

a function of the noise density

For the simulation, we don’t compute the bit flips one by one because it introduces

variance in the noise’, and therefore variance in the results (see Section 2.2.1). Thus
we usually refer to the noise density f, which is equal to the number of bit flipped

divided by the length of the message.

'heing like a Bernoulli process

Appendix D

Algorithms

D.1_ Belief update

In algorithm description language, an iteration of the belief update algorithm is:

LNA %VNV%
% Horizontal step %
LVVVNV%%%%%
for all (i,j) such that H(i,j) =1

%Initialisation of the Markov chain
org =1-—3

%The Markov chain itself
for all 7’ # j such that H(i, 7’) =1

if method==BP

Orig = Orgy - Ogi

else %if method==BR.
or [Brig +8 =18rij ~ Saige | 42-9745 Bq

iy Boris Sa, FOr; F845]
end;

end;

end;

LNNV%%%%M%
% Vertical step %
LN%%%%%%0%

for all (i,j) such that H(i,j) =1

qt, = »; Trecgyil + at

Gis = Pj Teeeyys US ori,

end;
Qi -4 bay = ny 43

LLVNVNA%%%%
% Decoding step %
LNUAKVLN%LN%

on

a

for all (i,j) such that H(i,j) =1

9g a v Hicew Tt on

G =P; Tice 1 — ori
end;

9_gi aQ-4 bq; = Ea
Gi ara

APPENDIX D. ALGORITHMS

for all 7

if dq; <=0, ¢) =0
else ¢;=1
end;

end;

D.2. Algorithm to compute the distance between

two nodes

In matlab/algorithm description language, the algorithm is:

function distance=computeDistance (graph ,node_begin,node_end)

% graph is a representation of the graph corresponding

% to the parity check matrix

7, node_begin and node_end identify the two nodes

%, we want the distance between

% distance return the distance between node_begin and node_end or

h Inf if there is no path between them

distance=0;

mark (node_begin) ; % The function ’mark’ marks the parameter node

level=] ; % Nodes at distance ’distance-1’ of node_begin
nextlevel=[node_begin]; % Nodes at distance ’distance’ of node_begin

% While node_end is not reached and the is still nodes

while (node_end not in nextlevel) and (nextlevel~=[])

distance=distancet1;

level=nextlevel;

nextlevel=[];

for all nodes n in graph connected to the nodes in level

if not marked(n)
mark(n) ;

nextlevel=[nextlevel n];

end;

end;

end;

%, Trap the case ’no path between node_begin and node_end’

if node_end not in nextlevel

distance=Inf;

end;

APPENDIX D. ALGORITHMS

If we want the distance of the node xdebut to all other nodes, we just mark them

with the distance until nextlevel is empty. The node not marked are the nodes for

which there is no path between the two and they are at distance infinity.

D.3 Approximation of the number of loops

function loop=computeLoop(graph)

% graph is a representation of the graph corresponding

h to the parity check matrix

loop=infinite array of 0; %will be used to sum the

%contributions of the links
%to the various loop lengths

for all nodes z in graph

for all nodes x to which z is connected

remove the links from z to all other nodes except x in graph;

dz=compute distance from z to nodes formerly connected to z;

loop (dz+1)=loop(dz+1)+1;

end;

end;

wWe divide by the length of loops to retrieve the number of loop

for all index i of loop such that loop(i)~=0
loop(i)=loop(i)/i;

end;

Appendix E

Simulation results

E.1 Standard deviation for belief revision vs. belief

propagation

Lincluded this graph, because intuitively, we can think that belief revision also decrease

the variance in bit error since it strives for a perfect decoding.

Figure E.1 present the bit and total bit errors standard deviation of the simulation

carried out in Section 2.3 for the comparison between belief revision and belief propa-

gation. For reminder, the simulations results are based on 10000 trials of biased and
unbiased messages of length N = 1000, using cascading code.

We can see on Figure E.1 that belief revision a a smaller bit error standard deviation

in the case of biased messages and an equivalent one in the case of unbiased messages.

In terms of bit error’s standard deviation belief revision performs as well as belief

propagation for biased messages but worse for unbiased messages.

58

APPENDIX E. SIMULATION RESULTS

10 : 1 1 10' 1 r

10"F 1 10" :

2 is a

2107 a 10°} 4
s <
s g $
8 3
2 3 5 2 $ 2
6 10°5 310°, |
o s

n

10“; | 10" |

10° ! i ' 10° : 1 i
0.05 O41 0.15 0.2 0.25 0.05 0.4 0.15 0.2 0.25

Noise level Noise level

Figure E.1: Standard deviation results of comparison between belief propagation and

belief revision for cascading code of R = 1/3, N = 1000
©: Belief propagation, f,=0.5 *: Belief revision, f, = 0.5

QO: Belief propagation, f, =0.1 +: Belief revision, f, = 0.1

59

APPENDIX E. SIMULATION RESULTS

E.2 Standard deviation for the removal of small

loops

Figure E.2 present the bit and total bit errors standard deviation of the simulation

carried out in Section 3.3.1 for the comparison between a loopy graph and a graph
with large loops. For reminder, the simulations results are based on 10000 trials of

biased and unbiased messages of length N = 1000, using cascading code.

10° : 1 10° : - 1

10" 4 10'F |

2
a =
e107 $ 10° 4

: 5
3 s 3 $
P 3
5 2 3 2
§ 10°F | 310° |
a s

on

10° | 10% |

o° 1 10° 1 4 1

0.05 0.4 0.15 0.2 0.25 0.05 0.4 0.15 0.2 0.25
Noise level Noise level

Figure E.2: Impact of 26 small loops on the bit and total bit errors standard deviations
of cascading code R = 1/3, N = 1000

®: Original matrix, f,=0.5 *: Large loops, f, = 0.5

O: Original matrix, f,=0.1 +: Large loops, f, = 0.1

full line: f, = 0.5 dotted line: f, = 0.1

In terms of bit and total bir errors standard deviations, in Figure E.2, removing

small loops reduce the variance of both bit and total bit errors

60

APPENDIX E. SIMULATION RESULTS

E.3 Standard deviation for the removal of small
loops

Figure E.3 present the bit and total bit errors standard deviation of the simulation

carried out in Section 3.3.3 for the effect of the number of small loops study. For
reminder, the simulations results are based on 10000 trials of biased and unbiased

messages of length N = 1000, using cascading code.

0 0

10 10'
2 a

8 g
c 2 gs <
g g

2 3 S
2 &
5 2

ce s

Xo s
10° 10°

0.05 O41 0.15 0.2 0.25 0.05 0.1 0.15 0.2 0.25
Noise level Noise level

10° 10"

‘ 9 a
s 2 come i § 10

£10 ; .
sg s S 2
$ 10"
2 * 3 an
310" 3 g 9g © 4 a ¥ 2 10 x.
a S S * : cs 6

e * n or’, ct

10° 10° .
0.05 04 0.15 02 0.25 0.05 04 0.15 0.2 0.25

Noise level Noise level

Figure E.3: Effect of number of small loops in SM3 on bit and total bit errors standard

deviation for cascading code R = 1/3, N=1000
o: Large loops, f, = 0.5 obi

x: 200 small loops in SM3, f,=0.5 9:

full line: f, = 0.5

100 small loops in SM3, f, = 0.5

400 small loops in SM3, f,
dotted line: f, = 0.1

In terms of bit and total bir errors standard deviations, in Figure E.3, an increasing

number of small loops decrease the variance in bit error and increase the one in total
bit error.

61

Appendix F

Properties of matrices used

F.1 Cascading code Rate 1/3, length 1000

In order to check the implementation of the parity check matrix construction, I compute

the number of unit element per row K and per column C in the submatrix A of

H = [A|B] generated.
The figures in Table F.1 were computed by a software in order to verify the confor-

mity of the actual construction of the matrices generated.

submatrix column 1 - 1000 | column 1001 - 4000 | Entire submatrix

row 1 - 1000 100% K=1 100% L=2 100% K + L=3

100% C=1
row 1001 - 1750 100% K=3 100% L=2 100% K + L=5

75% C=2
25% C=3

row 1751 - 3000 100% K=3 100% L=1 100% K + L=4

25% C=3

75% C=4
Entire submatrix 33.33% K=1 41.66% L=1

66.66% K=3 58.33% L=2
100% C=7

Table F.1: Properties of cascading code R = 1/3, message length N = 1000.

The original matrix is the matrix generated with the only constraint being that it

should respect the construction of cascading code. This properties are kept when we
modify the loops properties in Table F.2.

62

APPENDIX F. PROPERTIES OF MATRICES USED

4 6 8 10 12 14 | total

Original construction 26 231 1274 1390 221 18) 3160

Without small loops 0 0 15 2451 305 14 | 2785

With 26 small loops in SM2 26 it 8 2427 316 18 | 2796

With 26 small loops in SM3 26 0 34 2381 339 17 | 2797

With 26 small loops in SM2 and SM5 | 26 0 17 2424 313 14] 2794

100 small loops in SM3 100 1 21 2352 344 20 | 2838

200 small loops in SM3 200 0 33 2263 378 19 | 2893

400 small loops in last submatrix 400 0 12 2163 429 29 | 2993

Table F.2: Loop information for the different constructions N = 1000, R = 1/3

F.2 Codes N = 3296, M = 10002, Rx 1/3

The matrix corresponding to MacKay’s construction comes from MacKay’s site: http://131. 1

The Cascading construction matrix has beeen generated without removing the small

loops.

Loop length 4 6 8 10 12 14 | total

MacKay’s construction | 0 0 643 2619 9116 4216 | 16597

Cascading construction | 37 248 1899 5146 1938 261] 9529

Table F.3: Loop information for the different constructions N = 3296, R = 1/3

