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Thesis Summary 

We present a new approach for parameter estimation in the binary image restoration problem. Within 
the Bayesian context, we outline the basic conceptual principles of image restoration as well as evalu- 
ating some of the more common Monte Carlo techniques such as the Gibbs and Metropolis algorithms, 
and the much less well known Swendsen-Wang algorithm. We mainly concentrate on two key issues. 
First, we focus on the quality of restored images with respect to the choice of two restoration param- 

eters that are generally not known. Second, we consider the difficulty in dealing with uncertainty in 
the restoration parameters. We compute the most likely parameters by maximising the distribution of 
the noisy image with respect to these parameters. This “evidence” procedure, developed by Gull and 
MacKay, is a computationally intractable problem. Rather than to resort to uncontrollable Monte 

Carlo methods to address this issue, we propose to rigorously approximate the evidence by using 
variational methods which have recently been developed in graphical models problems. 

Keywords: Image restoration, Monte Carlo techniques, Recursive node-elimination, Decimation, 
Evidence, Thermodynamic integration, Mean field approximation
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Chapter 1 

Introduction 

1.1. Background 

The field of image restoration is continually evolving and highlights some key problems in modern 

science. Since Geman and Geman [2] introduced the use of stochastic models and adopted the Bayesian 

approach, there has been considerable interest in this area due to its evident practical and theoretical 

importance. The potential application of automatic image restoration algorithms is wide, ranging 

from medical image enhancement to cleaning up of noisy video images. 

The objective of image restoration consists of finding an estimate of an original image from an 

imperfect version of that image. The image is regarded as an array of sites or pixels, each having a 

particular value representing the intensity or the colour. In this thesis, the images will be binary, i.e. 

black and white. The principles of image restoration require two different types of models. The first 

one involves the process by which an assumed true, “clean” image is degraded into the corrupted, 

“noisy” observed image. This noise model is defined by some assumed known statistical conditional 

distribution. The second model expresses prior knowledge about the characteristics of the underlying 

true image. It supposes that a pixel value depends only on its neighbours such that pixels close 

together tend to have similar colour. The formalism of this model stems from the analogy with the 

Ising model in statistical mechanics [2]. The Ising model is a simple model of a magnetic system which 

consists of a lattice of locally interacting binary spin variables. Many of the techniques we use were 

pioneered in the attempt to understand the macroscopic properties of such interacting spin systems. 

There are several methods of restoring corrupted images and nearly all of them can be traced back 

to the seminal papers by Geman and Geman [2] and Besag [3]. Most of them resort to the Bayesian 

framework and Monte Carlo methods (mainly Gibbs and Metropolis) to explore stochastic models. The 

first method, proposed by Geman and Geman [2], outlined the main principles of image restoration and 

served as a basis for much work related to this field. This method aims at computing the maximum 

a posteriori (MAP) estimate of the underlying image given the degraded observations. In other 

words, it consists of finding an image which maximises the posterior distribution for reconstructed
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images using a stochastic relaxation algorithm referred to as simulated annealing. Besag [3] proposed 

another method called Iterated Conditional Modes (ICM) to find the MAP estimate. This method has 

proved to be much faster and less computation-intensive than simulated annealing. Dubes and Jain 

[6] compared these two methods and stated that they both yield the same quality of reconstructed 

images. Another attempt [5] to evaluate the MAP estimate is to resort to applying the Ford-Fulkerson 

algorithm which uses graph theory to maximise the logarithm of the posterior distribution for restored 

images. However, the surge of activity in Markov Chain Monte Carlo techniques allows realisations 

from the posterior distribution to be generated and the restored image to be obtained over the average 

of these realisations. In a Bayesian sense, the posterior average over restored images is the ideal 

estimate of the true image. The development and the use of powerful sampling algorithms such as 

the Swendsen-Wang algorithm, which, contrary to the single site algorithms like Gibbs or Metropolis, 

update large like coloured patches in the image at the same time, have greatly facilitated a Bayesian 

treatment of image restoration [12]. 

Irrespective of the sampling strategy chosen to tackle the image restoration, the quality of any 

reconstructed image depends heavily on prior knowledge, both in regard to form and parametrisation. 

The problem of prior parameter estimation is unquestionably the core and challenging problem in 

image treatment and has been studied extensively over the last few years. The difficulty in dealing 

with uncertainty in the restoration parameters is due to the intractable partition function of the 

posterior distribution for restored images. The parameters have then often been chosen on merely 

an ad hoc basis. Some early work concentrated on using maximum likelihood estimation in the 

context of Besag’s “coding scheme” which turns out to be unreliable due to the complexity of the 

distribution of corrupted data [2]. Most of the recent image restoration work addresses this issue 

by assuming that a set of uncorrupted images is available which can be analysed in an attempt 

to find the parameters correctly, but little is known of the convergence properties of this method 

[3]. The iterative expectation-maximisation (EM) algorithm is now being applied [19] and involves 

simultaneous analysis of both the underlying image and the prior parameters. However, there is no 

guarantee that such a re-estimation method converges to a global maximum of the parameters and the 

reconstruction simultaneously. Moreover, it is unlikely to find the global maximum and, in general, the 

results depend on the initial choice of parameters [8]. Pryce and Bruce [8] explored another approach 

expressed in the “evidence” framework developed by Gull in statistical physics problems and later 

by MacKay in the context of neural network model selection. The computation of the most likely 

restoration parameters, by maximising the evidence, is an intractable problem. Typically the evidence 

calculation involves approximations using Monte Carlo methods, although this is not satisfactory as 

such approximations are essentially uncontrolled. However, the effectiveness of this method is limited 

by the quality of the forms of the priors [8], but this approach holds out interesting possibilities in 

calculating restoration parameters (if the prior beliefs about the noise and image generation process 

are not well matched to reality, estimates of the restoration parameters can be suboptimal). 

In this thesis, following the work carried out by Pryce and Bruce [8], we propose an alternative
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approach for evaluating the evidence by borrowing variational methods that have recently been de- 

veloped in the graphical models literature. Our aim is to calculate rigorous approximations of the 

evidence based on consistent lower and upper bounds which are computed using the recursive-node 

elimination technique devised by Jaakkola and Jordan [16] and decimation techniques as advocated 

by Saul and Jordan [10], Riiger, Weinberger and Wittchen [17], Nijman and Kappen [18]. The effec- 

tiveness of this approach relies however on the way the bounds are calculated, the processing time 

necessary to obtain them and, most importantly, the ability of combining these two methods. 

This project aims at restoring degraded binary images and is organised in five chapters. In Chapter 

1, we outline the principles of image restoration and develop an evidence framework that enables us to 

estimate the restoration parameters. In Chapter 2, the main purpose is to provide a general insight of 

the quality of restored images with respect to the choice of parameters and to develop some aspects that 

can be used as a basis for further study and research in Chapter 5. To achieve this objective, we use 

Monte Carlo methods, especially the Gibbs sampling, Metropolis and Swendsen-Wang algorithms. We 

will show the differences between them, their strengths and weaknesses concerning their computational 

power: we argue that the Swendsen-Wang algorithm is much faster than single pixel update schemes 

but can be disadvantageous in restoring the fine details of the images. In Chapter 3, we focus on the 

recursive node-elimination scheme for rigorously bounding the evidence from both below and above. 

Chapter 4 outlines the method of removing the pixels in the image so that the computation of the 

evidence is in time polynomial in the number of remaining pixels and no longer in exponential time. 

In Chapter 5, we consider the question of how best to choose the parameters in order to obtain an 

optimal restored image. We will show that the evidence approach does not provide reliable restoration 

parameters when the prior assumptions about the noise and image generation process are not well 

matched to reality. 

We have developed a new bounding approach for approximating normalising constants which are 

otherwise computationally intractable in large densely networks. A naive method to compute them 

is to sum over all the possible configuration states, but then the time complexity is exponential 

in a number of states. Work in the past has resorted to uncontrollable Monte Carlo techniques to 

approximate them. In this thesis, we have applied variational methods to estimate them in a controlled 

manner and we hope that this will remain an active research field for the future. 

1.2 Bayesian formulation of the image reconstruction 

1.2.1 Definition of the problem 

In this section we review the techniques of Bayesian image restoration whereby the parameters con- 

trolling the quality of the reconstruction process are assumed known. The more general case of dealing 

with uncertainty in the restoration parameters is the main emphasis of this thesis and is outlined in 

Section 1.3. 

We consider the restoration of a degraded binary (0/1) image D described by a set of n pixels 

10



  

CHAPTER 1. INTRODUCTION 

{D,...,Dn} where n = m x m and m is the size of the square image. The objective is to obtain a 

restored image S defined by a set of n pixels {51,...,5,} which must look similar to the true image 

T, with T = {T;,..., Tp}. Figure 1.1 shows the 32 x 32 true, noisy and restored images. 

  

25         

  

Figure 1.1: True image T (left), noisy image D, restored image S 

By using Bayes’ theorem, the probability of getting the restored image given the corrupted one is 

identified as [2 identified as [2] PINE = 

TO a 
where P(D|S) is the noise likelihood distribution which stands for the corruption (image degradation) 

P(S|D) = 

process and P(S) is the prior distribution of uncorrupted images. In order that (1.1) represents a 

distribution, the denominator of the right-hand side is defined as follows 

P(D) = > P(D|S)P(S) (1.2) 
Ss 

We will see in Section 1.3 that this normalising constant will play an important role as it depends on 

some implicit parameters which determine the quality of reconstructed images. 

1.2.2 Restoring binary images 

Let us now define the forms of the prior P(S) and the corruption phenomenon P(D|S) that together 

specify the process by which the degraded image will be restored. 

Consider first the noise likelihood function P(D|S). We start by considering that the noisy image 

is generated by flipping each of its pixels with respect to the one in the true image with probability 

q, which we may think of as expressing some “noise level” [8]. The probability of observing a noisy 

pixel, D;, given an uncorrupted pixel, S;, is then 

P (Dj|Si) = (1— q)I[D; = Si] + a1 [Di # Si] 

where 
1 ify is true 

ml = { 
0 otherwise 

For convenience, we define « such that 

wie
 e- 

  ce (1.3) wh
 e 

11
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so that, by using D;, 5; € {0,1}, we obtain 

Pips) = eA = Sf 
(Di|5i) = =a lr 

We assume that the pixels are drawn independently from this distribution, so that the noise likelihood 

function follows as [3] 

P(D|S) = zis {FL O-sy'} (1.4) 

where Z)(«) is determined by the normalising condition 

Z(m) = (1+ e74)" - Doo {-FDw- sy} (1.5) 

Now consider the prior distribution of uncorrupted images P(S). The concept of a Markov random 

field, at least in regard to image analysis, is that the conditional distribution of an individual pixel 

depends only on a neighboured set, much smaller than the image itself. For simplicity, we take the 

neighbourhood set to contain only the nearest four neighbours of any given pixel (in the interior of 

the image). In other words, if N’ represents the set of vertical and horizontal neighbours of S;, as 

shown in Figure 1.2, then 

P(Sil{5j,5 #45 =1,...,n}) = P (Sil {5;,5; € NY) 

  

Figure 1.2: Illustration of the neighbourhood configuration. The dotted nodes are not considered as 
the neighbours of the black one which is connected to its vertical and horizontal neighbours 

Referring to the Ising model, Geman and Geman [2] and Besag [3] showed that the above condi- 

tional probability establishes a model that takes into account the pairwise interactions between pixels. 

Basically, it enables us to have some knowledge according to which some pairs of pixels, at neighbour- 

ing sites i and j, tend to have the same colour. The pairwise interaction model can then be written 

in the form [3] 

PS) = exp? 8) I[S; = 1.6 O=7H { Eis (1.6) 
where By denotes a sum over all pairs of vertical and horizontal neighbouring sites on the pixel 

lattice. The prior P(S) is called the Markov random field prior [2, 3]. 

The normalisation factor for this distribution is 

2,(8) = ee {Ens=si i} (1.7) 
ij 

12
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Equations (1.1), (1.4) and (1.6) together define the posterior distribution for restored images 

PID)= Zager { FEO -sh-+eT 1s =sih (1.8) 
inj 

where the partition function Z, is given by 

2, (1,2) =D exp {-$21-s"+0 E18 <s)) (1.9) 
s i ig 

Equation (1.8) contains two terms which model the tendency of images to contain large black or large 

white areas. The term controlled by « (« > 0) represents the binding of the restored configuration 

S to the noisy one D. The term depending on f (f > 0) controls the degree of correlation between 

neighbouring pixels and hence the smoothness of the reconstruction. Essentially @ quantifies the belief 

that the restored image could encompass large homogeneous clusters. The quality of the reconstructed 

image relies on the competition between these two restoration parameters. The primary aim of this 

thesis is to address the problem of finding the right values for « and ( so that the optimal reconstructed 

image is obtained. As an integral part of the solution to this problem, and also to actually perform 

image restoration, we will need to compute with the posterior P(S|D) in (1.8) for fixed values of « 

and . This in itself is a highly non-trivial problem to which we devote the following chapter. The 

task of finding the optimal « and @ will be examined in Chapter 5. 

1.3. The Bayesian framework for restoration parameters 

Throughout this project, our objective is to estimate the parameters implicit in the noise likelihood 

function P(D|S, x) in (1.4) and in the Markov random field prior P(S|) in (1.6). The key technique 

to computing these parameters takes the form of maximising the likelihood P(D|«, 8) in (1.2) and 

determining the effective parameter prior P(x, 3). 

Within the Bayesian context, the correct posterior distribution P(S|D) is obtained by averaging 

the conditional posterior distribution P(S|D, «,@) over the parameter posterior P(«, 3|D) 

P(S|D) = J [Ps 01D)aea9 

= ff [ P0sin.8,D)P(,a\D)anap (1.10) 

Note that, in the previous section, we have simply assumed that P(x, 3|D) = 6(«,«°)6(9, 6°) for 

chosen values of x° and 6°, where 6 is the delta function. The central aim is to deal with P(x, B|D). 

Let us now suppose that the posterior probability distribution P(s, 4|D) in (1.10) is sharply peaked 
around their most probable values kyp and Syp. Then (1.10) can be written [9] 

I P(SID) = P(SIkur,Awe,D) | f P(x, A|D)dnd9 
P(S|kmp, Gup, D) (1.11) iH} 

13
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In order to find kyzp and Byyp, we evaluate the posterior distribution of « and @. This is given by 

P(«, 1D) = “Soy (1.12) 

which requires a choice for the prior P(*,@). We have some prior beliefs about P(«) and P(@) 

for we believe there exists an interval of parameter values that lead to reasonable restored images. 

We shall discuss more formally how to choose these priors later. Since the denominator in (1.12) is 

independent of « and f, we see that the maximum-posterior values (MAP) for these parameters are 

found by maximising the product of the likelihood term P(D|k, 8) and the prior P(x, @). The term 

P(D\x, 8) is called the evidence! for « and f. 

Note that the Bayesian technique for the image restoration problem proceeds in two levels. The 

first one consists of determining the probability of restored images and the second one involves the 

distribution of parameter values. The evidence P(D|x, 3) at this level is given by the denominator in 

Bayes’ theorem (1.1) from the previous level. 

Retaining the form (1.2), and making the dependences on « and explicit, we can write 

P(D\x, 8) = > P(DIS,«)P(S|8) 
Ss 

Appealing back to the expressions (1.4) and (1.6), we find that 

_ exp {—§ 0 ,(D; — S;)?} XP (exe Si = si}} P(DIs, 8) = x PI) ee 

Using the formula (1.9), we can then write 

Z,(k, 8) 
4(*)Z,(B) 

The evidence relies on the normalising constants Z, and Z, whose exact computation is intractable 

P(D\k, 8) = (1.13) 

because it requires summing over a set S of m? pixels and consequently involyes 2”° calculations, 

where m is the size of the image. Therefore, the idea is to approximate it by using recent methods 

[10, 11, 16, 17, 18] we shall see in Chapters 3 and 4. Note, however, that Z; can be computed exactly 

in (1.5). 

In the next chapter, we use Monte Carlo techniques such as the Gibbs sampling, Metropolis and 

Swendsen-Wang algorithms to focus on the quality of restored images with respect to the restoration 

parameters. Chapters 3 and 4 outline the methods of bounding the evidence from both above and 

below. In Chapter 5, we consider the question of how best to choose the parameters in order to obtain 

an optimal restored image. 

' The notion of evidence was developed by Gull for estimating free energies in the statistical mechanics context. In 
the image restoration problem, the task of calculating the evidence for different parameter choices is analogous to that 
of estimating free energies [8]. 

14



Chapter 2 

Markov chain Monte Carlo 

techniques 

In this chapter we focus on the quality of restored images with respect to the choice of two restoration 

parameters « and §. In order to perform image restoration, we resort to Monte Carlo methods, in 

particular the Gibbs and Metropolis algorithms and also the much less well known Swendsen-Wang 

algorithm. We will compare their empirical performance in yielding restored images as well as their 

computational power. 

2.1 Why Monte Carlo methods 

For fixed values of « and , the optimal reconstructed image in a Bayesian framework is obtained by 

averaging the restored images over the posterior distribution defined in (1.8) 

(S) = 2 P(s|D)s (2.1) 
s 

However, evaluating this average exactly turns out to be an intractable problem because it is NP- 

complete! [1] to calculate the partition function in (1.9). Many exact methods, which can be used 

successfully for a small number of variables, are unsuitable for our problem which involves m x m 

pixel variables, where m is the size of the image we are considering. Therefore, we resort instead to 

Markov chain Monte Carlo techniques for estimating the corresponding average directly. 

Historically, Markov chain Monte Carlo (MCMC) methods were first. developed for performing 

calculations in statistical physics. As recognised by Geman and Geman [2], they are also useful for 

image restoration problems and have been extensively applied in this context. In our problem, in order 

to obtain the posterior average image, we use MCMC methods to sample from the distribution defined 

in (1.8) because they provide an easily realisable way of implementing this sampling. Basically, the 

1 There are an exponential number of pixel configurations to sum over.
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idea is as follows: consider evaluating a sum in a n-dimensional space 

Y=)OF(«)p(x) 
= 

where x is a n-dimensional vector, p(x) represents some distribution and F(x) some function. Note 

that, in the case of continuous variables, we integrate the above expression instead of summing it. 

Monte Carlo methods then approximate this equation with the finite sum 

iz 
ere i) 

where {x;,i = 1,..., L} represents a sample of vectors generated from the probability p(x). The main 
  

difficulty is to generate a sequence of vectors from the required distribution p(x). In order to achieve 

this, we shall set up a Markov chain? whose invariant distribution is the required distribution p(x). 

2.2 The Gibbs sampling algorithm 

This algorithm is one of the simplest amid the MCMC techniques and has been advocated by Geman 

and Geman [2] in the context of Bayesian image analysis. It is widely applied to problems where the 

variables have conditional distributions of a parametric form that can easily be sampled from, which 

is the case in our problem. 

The theoretical aspect is as follows [7]: suppose we wish to sample from the joint distribution for 

X ={X,...,Xn} given by P(x1,...,¢n), where X; may be either continuous or discrete. The Gibbs 

sampler does this by repeatedly replacing each component X; with a value picked from its distribution 

P («;| {xj : j # i}) conditional on the current values of all other components. The procedure for 

generating state X(‘+)) at time t+ 1 from X at time t can be expressed as follows 

Pick 2{'*)) from the conditional distribution for X; given 2", x, ...,04. 

Pick 2{'*”) from the conditional distribution for X2 given 2{'t?), 2, ..., 2. 

(t+1) Pick 2{'*» from the conditional distribution for X; given 2{*)),..., (#2), 2)... 2(0, 
pttD Pick zit) from the conditional distribution for Xq given 2('F), 269, ..., (+). 

Note that the new value for X;_) is used immediately when picking the next value for X;. 

Before using this algorithm to tackle the image restoration problem, for convenience we translate 

the binary (0/1) image into a (—1/1) image since the form of the conditional distribution with the 

(—1/1) model will be simpler to use than the one with the (0/1) model. 

?In the theory of Markov chains, for a series of random variables X(°),...,X("), the conditional distribution of 
X("+1) depends only on X("). More formally, 

-n}) = P (a(r#0)|2(>)) P(am4)) {2,251 
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Retaining the formula (1.8), by expanding it and by noticing that for S; = {0,1}, $; = {0,1}, 
I[S; = Sj] = 1+25;5; — S; — Sj, we get 

P(S|D) x exp WE (D? +S? — 2D;S;) + 8 > (1+ 25;5; — Si - s)\ 
i inj 

As Dj,S; € {0,1}, then D? = Dj, and likewise $? = S;, therefore 

inj 
P(S|D) « exp {-# SY 2D; + 25; - 4D;:8;) + ET e+455; —25)— asp} 

i 

P(S|D) « oo -s5rgy 

AEE NSE seeeN eS, inj 

aan 

exp {-$3 (-1 42D; +25; — 4D;S;) + ey (14+45;5; — 25; — asp} 
i inj 

P(S|D) « wo Fen Hess 8705 -ye@s,-»| 
inj 

Finally, let $; — 2S; —1 and Dj — 2D; —1, Vi=1...n. Then from now, S; and D; take on values 

—1 and +1 and we obtain a new form for the distribution P(S|D) which we simply denote by Q(S). 

Thus 

Qs) xonf 0s 458 (2.2) 

Now, let us return to our restoration problem. Starting with the noisy image, we first select the 

values for the pixels S;. An obvious choice [7] is to independently set each node to —1 or +1 with 

equal probability. We then proceed through the various pixels repeatedly in some predefined order. 

For example, we can start with the first pixel in the top left-hand corner of the image and end up with 

the one in the bottom right-hand corner. When a node S; is visited, a new value for it is chosen from 

the conditional distribution defined by other nodes. This conditional distribution is derived from the 

canonical distribution in (2.2) as follows 

    

  

Q(Si,--- in) 
Ween eGo onuae) 

exp {4D;8i te 8s; Diss 

If we choose +1 for S; and set the other 5; to their current values, then the conditional distribution 

Q(Si{S; 25 FB) 

    

is 

fay kK Q(S = {55 #9) =0 (o.+0%5) (23) 
where o(z) = 1/(1+exp(—z)). Since each pixel has only at most four neighbours, the above probability 

can easily be computed in time that is independent of the total number of nodes. The choice for S; at 
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the next state can then be made by drawing a random number uniformly from the interval (0, 1] and 

setting S; to +1 if this number is less than the calculated probability in (2.3), and to —1 otherwise 

7). 

2.3 The Metropolis algorithm 

The Metropolis algorithm was first proposed by Metropolis, Rosenbluth and Teller in 1953 and has 

been widely used in statistical physics problems. It shares many of the characteristics of the Gibbs 

sampling method, but it is more generally applicable to a wide range of problems, because it avoids 

any need to sample from difficult distributions. Indeed, the Gibbs algorithm can be shown to be 

equivalent to a suitably chosen Metropolis procedure. 

The principle can be described as follows [7]: suppose we wish to sample from the joint distribution 

for X = {X,...,Xn} given by P(x1,...,@n), where X; may be either continuous or discrete. The 

Metropolis algorithm does this by repeatedly considering randomly generated changes to the compo- 

nents of X, accepting or rejecting these changes based on how they affect the probability of the state. 

The procedure for generating a new state X’ from the old state X is 

Select a candidate state, X*, in which all the components other than the i’th element are the 

same as the ones in X, while x} is picked randomly from a proposal distribution which may 

depend on X, given the probabilities R; (X, x7). 

© Accept this candidate state with probability A (X, X*) otherwise, reject it, and retain the current 

state which will be considered as a new state. In detail, this can be done by generating a random 

number, r, from the uniform distribution on [0, 1], and then setting the next state as follows 

, X* ifr < A(X, X* xaf (x) 
X otherwise 

The probabilities for the proposal distribution, R; (X, x), must, of course, be non-negative and must 

satisfy )>,, Rx (X,2~) = 1. The acceptance probability, A(X, X*), can have various forms, the most 

common of which is defined as the Metropolis acceptance 

A(X, X') = min (1, Q(X°)/Q(X)) (2.4) 

where Q(X) is the canonical distribution. 

Now, let us apply this algorithm to the problem of image restoration. It seems natural to treat 

each node as a separate component. Usually, the proposal distribution [7] for a change to node i is 

Re (s, st) =6 (-si,s!) where S represents the set of pixels {S1,...,5,} or the image at time t and 

S' is the image at time t +1. This means that the candidate state S’ is always obtained by flipping 

node # to its opposite value while the other nodes of S’ (except node i) remain the same as the ones 

in the old state, ie. S; = —S; and Vj # i,S; = S;. The probability of accepting S’ is found from
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equations (2.4) and (2.2). Let us first compute Q(S')/Q(S). 

no {Fos + BE ss = (;205+4580)} 
inj i 

exp {2s (se 4 srs) 
ing 

Thus the acceptance probability is 

A(S, S') = min (se {8 (;0+0y5) \) (2.5) 
tof; 

Starting with the noisy image, we update all the pixels from the top left-hand corner of the image to 

QS')/Q(S) 

the bottom right-hand corner. Since each pixel has only at most four neighbours, the above probability 

can easily be computed in time that is independent of the total number of nodes. 

2.4 Simulated Annealing 

The core problem for Markov chain sampling methods in general is to generate a sample of vectors 

representative of their distribution. Indeed, consider an example of a system of continuous variables 

with a distribution represented in Figure 2.1: if the sampling takes place in the regions of relatively low 

probability or small volume, then the convergence movement through the state space is hampered by 

this small volume. Therefore, the objective is to sample preferentially regions where the distribution is 

large. As it stands, such a task is hard to achieve. It is nevertheless possible that a more sophisticated 

algorithm like the simulated annealing method increases the chance of reaching regions that contain 

relevant samples in order to gain confidence in the accuracy of the results. It suffices to introduce an 

additional variational parameter T generally referred to as temperature [7]. For the Gibbs sampling 

algorithm, this is achieved by modifying the conditional distribution (2.3) to give 

p(Si = 115; asn-e( (Joys) r) (2.6) 
inj 

For the Metropolis algorithm, by modifying the acceptance probability (2.5), we have 

A(S,S') = min (10 8 (so iB xs) rt) (2.7) 

When T is bigger than 1, the system can explore the state space much more freely, and can readily 

escape from local minima. Simulated annealing involves starting with a large value for T (T = 3 in 

our problem) and then gradually reducing its value during the course of the simulation, giving the 

system a much better chance to settle into a region of high probability. 

In the context of image restoration, the application of the simulated annealing method takes a long 

time to reach low values of the temperature T which implies a strong dependence between neighbouring 
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Figure 2.1: Sampling regions of high or low probability 

pixels, giving rise to large homogeneous clusters. The main reason is that it does the sampling by 

systematically updating each pixel locally. Moreover, the major drawback of this method is that it 

may lead to some bad results because it is incapable of sampling the regions of high probability or, 

in other words, it cannot escape the local minima representing these results and therefore can spend 

a long time in the neighbourhood of the latter. 

2.5 The Swendsen-Wang algorithm 

Swendsen and Wang [4] devised a specialised algorithm that is a spectacular improvement on the 

previous methods for simulating Ising models near the point of a phase transition, when large clusters 

of identical pixels are present. So far we have chosen to update each pixel locally by using the Gibbs 

and Metropolis algorithms and therefore it may take a long time to explore configurations in this 

situation. The Swendsen-Wang (S-W) algorithm uses auriliary bond variables to provide a simple 

means of updating large clusters of identical nodes at the same time and it really speeds up the 

restoration process especially when large like coloured patches are present. 

The general idea is as follows: we wish to sample from the distribution of interest p(x) over the 

state variable x. We introduce an auxiliary variable u and define its conditional distribution p(u|z), 

obtaining the joint distribution p(z,u) = p(x)p(ulx). Any scheme for sampling from p(x, u) will 

therefore solve the original problem simply by ignoring the u components of the (x, u) samples. The 

following algorithm is due to Edwards and Sokal [7, 12]. 

Assume that p(x) can be written in the form 

n 

P(x) & po(x) TT bx(2) 
k=l 

where each of the factors by (x) is bounded and po(z) is a distribution called an external field. Edwards 
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and Sokal express this model by using auxiliary variables u1,..., tn and the conditional distribution 

1 
= — < < 2.8 v(wle) = TT gprs me < be) (28) 

where 
1 if0 <u, < h(x) 

0 otherwise 
Given x, the components of u are independent, with each u;, having a uniform distribution over the 

10 <u <bxe)] = { 

interval (0, b,(z)]. Using Bayes’ theorem, the distribution of x given w is then 

P(z|u) x p(ule)p(x) 

~ vo(2) [Tbx(2) 10 < ue < bk(z)] 
6 7 ) 

«pol ells <u < by(2)] (2.9) 

In order to sample from the joint distribution p(«,u), we can employ Gibbs sampling, alternately 

choosing new values for the auxiliary variables ux, given the current x using (2.8), and updating x 

given the current ux using (2.9), so that the realizations z!,x?,... are distributed according to p(x). 

Now consider again tackling the image analysis problem. As ee let S be an image defined by 

a set of nodes {5},...,5,} where we revert to the {0,1} representation. Appealing back to equation 

(1.8), we denote P(S|D) by p(S) so that 

pS) « vo {- 5 Di- sy} xen aSo118=si} 
ies inj 

« vo {-£20.- Si) rh. Tox (rts = S;]} 
ies inj 

The external field po is identified as 

po(S) = {$0 = sy} 
ies 

From (2.8), each bond tj; between nodes i and j has the probability 

p(uij|S) = exp {A [Si = Sj]} 1[0 < wi < exp {81 [Si = S;]}] (2.10) 

and using (2.9), we obtain 

  
p(S|u) x or {-§ Yo (Di - Si) » x T] [0 < wy < exp (41 [5; = S,]}) (2.11) 

ies inj 

From (2.10), given the current image S, we generate bond variables uj; uniformly over the interval 

[0, e415=55]]. For two adjacent matching pixels, S; and S;, we choose to place the bond ujj with the 

probability p(uij > 1|S; = S;). From (2.10), we find that 

P(uiz > USs= Sj) = 1—p(uiz < 1S; = 5;) 

1—exp(—/) 
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In other words, Gibbs sampling for the u;; consists of bonding like coloured neighbours, S; and Sj, 

with probability 1 —e~° and omitting bonds between neighbours that differ in value. Thus the bond 

variable u partitions S into like coloured clusters and strengthens the dependence between identical 

neighbouring pixels, while completely removing it from other like coloured neighbours. Using (2.11), 

we update each cluster C by assigning the new colour k € {0,1} to the pixels of C with probability 

{12} 
exp {~$ Diec (Di = &)”} 

exp {-$ Diec D?} + exp {-$ Dieo (Di - 1)" 
Updating u essentially grows clusters, and updating S colours the clusters. Figure 2.2 [12] illustrates 

p(k € {0,1})= (2.12) 

the S-W algorithm on an 8 x 8 lattice. 

    

  

  
  

  

  

1. Current image S 2. Given S, update bond variables u 3. Given u, update S 
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Figure 2.2: Illustration of the Swendsen-Wang algorithm 

1. Initial image S and Markov random field graph for p(S). 

© - The bond variables u are generated uniformly over the interval [0, e%(5=5:]], given the current image 

S. If uj; > 1 then S; and S; are bonded (marked by the thick lines). Note that this means that some 

adjacent identically coloured pixels will not be bonded. In fact, the probability of a bond between like 

coloured pixels is 1 — e~®. These constraints partition the image into clusters of like coloured pixels. 

3. Given the bond variables u, 5 is now an image of independent clusters. Each cluster is recoloured black 

or white with the probability defined in (2.12). Equation (2.12), which expresses the probability that a 

cluster is coloured black (k = 0) for instance, makes intuitive sense: if we examine the corresponding 

cluster in the original noisy image, then the probability that we would colour this cluster black is high, 
if the majority of pixels in this cluster are black. 
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2.6 Experimental results 

2.6.1 Comparison of restored images 

Having described the Gibbs, Metropolis and Swendsen-Wang algorithms, we test their empirical per- 

formance in yielding restored images as well as their computational power. Figure 2.3 shows the 

original and the degraded images generated with a “true” noise level ¢ = 0.2 which may differ from 

the assumed noise level q defined in (1.3). Figures 2.4 and 2.5 indicate the reconstructed images using 

the Swendsen-Wang algorithm and simulated annealing for the Gibbs and Metropolis algorithms for 

a same amount of the CPU time® ¢, t = 50 and ¢ = 130 seconds respectively. 

The restored image is obtained as follows: we generate N image samples for an equivalent amount 

of CPU time t and we average over the last half of these images. The reconstructed image is then the 

binary thresholded version of this mean image. 

Figure 2.4 shows that, for t = 50 seconds, the images restored by the S-W algorithm look similar 

to the original ones. Moreover, S-W yields cleaner restored images than the Gibbs and Metropolis 

algorithms. For Gibbs and Metropolis, we note some remaining small black patches near the edges 

of the restored images which look almost regular. These small black islands do not totally vanish 

for t = 130 seconds, although the images restored by the three algorithms look most similar to the 

original ones, as shown in Figure 2.5. We find that the S-W algorithm is a much faster sampling 

method than the Gibbs and Metropolis algorithms. It gives almost the same relevant restored images 

for t = 50 seconds as it does for t = 130 seconds. Indeed, it proves to be at least an order of magnitude 

more efficient at moving quickly through the state space by means of auxiliary bond variables that 

update large clusters of identical pixels at the same time near the point of the phase transition. It is 

exactly in this phase transition where S-W is most effective and single site update algorithms are least 

efficient. Indeed, Gibbs and Metropolis update each pixel locally and consequently it takes a long 

time to explore configurations in this situation. That is the reason why Gibbs and Metropolis yield 

more regular and smoother images for t = 130 seconds than they do for t = 50 seconds. However, for 

t = 130 seconds, we note that the Metropolis algorithm does not restore the small details of the image 

while Gibbs sampling does. Maybe a change of the acceptance probability could restore these small 

details. For example, we can use the Boltzmann acceptance function? which makes the Metropolis 

algorithm identical to Gibbs sampling, assuming that candidate states are selected by flipping only the 

value of one component. However, we note that the tendency of the S-W algorithm to bind together 

and flip large like coloured clusters at the same time can be disadvantageous in restoring the fine 

details of the image. Perhaps a hybrid approach in which a sequence of S-W updates followed by a 

sequence of Gibbs updates would yield a good quality of restored images. 

*The CPU time means the time in seconds that has been used by the MATLAB process to run some operation since 
MATLAB started. The machine used is Silicon Graphics Challenge L (64 bit). 

4For two states X and X’, the Boltzmann acceptance function, A(X, X'), is Q(X')/(Q(X) + Q(X’)), where Q is 
the canonical distribution. It has been shown that the Boltzmann and the Metropolis acceptance functions are neither 

inferior nor superior to each other in all contexts [7]. 
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Figure 2.3: True images (left) and corrupted images generated with a “true” noise level ¢ = 0.2 which 
may differ from the assumed noise level ¢ 
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Figure 2.4: Images restored by simulated annealing (Gibbs (left), Metropolis (centre)) and the 
Swendsen-Wang algorithm (right) for a same amount of CPU time t = 50 seconds. The restoration 
parameters 7 and x (corresponding to the noise level q) are: in row (a): « = 2.4 (q = 0.23),8 = 0.58; 
in row (b): « = 2.4 (q = 0.28),3 = 0.59; in row (c): « = 2.0 (q = 0.27), = 0.59; in row (d): x = 2.4 
(q = 0.23), = 0.57; in row(e): « = 1.9 (q = 0.28), = 0.61. The temperature T' used for simulated 
annealing is equal to 3 for all the images 
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Figure 2.5: Images restored by simulated annealing (Gibbs (left), Metropolis (centre)) and the 
Swendsen-Wang algorithm (right) for an equivalent amount of CPU time t = 130 seconds. The 
restoration parameters # and « (corresponding to the noise level q) are: in row (a): « = 2.4 
(q = 0.23),8 = 0.58; in row (b): « = 2.4 (q = 0.23), = 0.59; in row (c): « = 2.0 (q = 0.27), = 0.59; 
in row (d): « = 2.4 (q = 0.23),8 = 0.57; in row(e): « = 1.9 (q = 0.28),8 = 0.61. The temperature T 
used for simulated annealing is equal to 3 for all the images 
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In contrast to the single site update algorithms, the S-W algorithm can cause major configuration 

changes for a small amount of CPU time especially when large patches are present. This is due to the 

fact that it can remove the strong dependence between like coloured clusters while it strengthens the 

dependence between neighbouring nodes within a cluster, thus enabling the update of the whole cluster 

at the same time. Figure 2.6 shows five successive realizations from the S-W and Gibbs algorithms 

after an equivalent amount of CPU time t (5 seconds), for increasing t, for « = 0.1 and 8 = 0.5. We 

note that the images alter drastically in the case of S-W whereas there is nearly no modification for 

Gibbs. 

Gibbs sampling 

    
Figure 2.6: Successive images from the Gibbs (above) and Swendsen-Wang algorithms after an equiv- 
alent amount of CPU time t (5 seconds), for increasing t, for k = 0.1, = 0.5 

We can illustrate the image modifications after each CPU second by using the normalised Hamming 

distance criterion which states that, for a set of images {S@),...,5(")}, the distance between S@+1) 

and St) is 
   [sev — 90] 

zr ny SGD — se] 

Figure 2.7 plots the normalised Hamming distances for two series of the above images in Figure 2.6 

Hd 

  

for a same amount of CPU time. The nearly constant curve for the Gibbs algorithm demonstrates 

that Gibbs sampling, in this case, is much slower than S-W sampling. 

2.6.2 Influence of « and 3 

So far we have assumed that the true image is known so that it is possible to estimate the relevant 

prior parameters « and # which control the quality of the restoration. In practice this is not the case 

and it is therefore necessary to select reliable parameter ranges which give reasonable reconstructions. 

Our aim is to explore now the sensitivity of restored images to different parameter choices. We recall 

27



CHAPTER 2. MARKOV CHAIN MONTE CARLO TECHNIQUES 

0.045   
— Gibbs sampling 
|-~ Swendsen-Wang   2   

  

5 

  

pol
mal

lee
d 

Ha
mm
in
g 

da
ta
no
n 

§ 
8 

8 
|       

25 3 35 4 
(CPU time (seconds) 

Figure 2.7: Comparison of normalised Hamming distances for the images in Figure 2.6 from the Gibbs 
and Swendsen-Wang algorithms. The nearly constant curve for the Gibbs algorithm shows that Gibbs 
sampling is much slower than S-W sampling 

that « controls the binding of the restored configuration to the noisy one and controls how strong a 

tendency there is for neighbouring pixels to be the same. We are mainly interested in the behaviour 

of the images when small or large values of either « or are used. Basically, this approach enables us 

to have some helpful insights about prior knowledge for « and § that permits improved restorations. 

We shall return to this more formally in Chapter 5. 

Let us first examine (. We consider a set of five values {0.15, 0.25, 0.35, 0.95, 1.2} and we assign 

the value 2.4 to & corresponding to a noise level q = 0.23. We restore the second image in row (b) in 

Figure 2.3. 

  

               

  

Figure 2.8: Restored images for x = 2.4 and for different values of 9: = 0.15 for the first image 

from the left, 3 = 0.25 for the second image, @ = 0.35 for the third one, # = 0.95 for the fourth one, 
@ =1.2 for the fifth one 

Figure 2.8 shows that, for small values (0.15, 0.25), we obtain speckled images while we get a 

regular patchy configuration for 9 = 0.35. Large values (0.95, 1.2) favour images with large single 

coloured patches: we note that the large black islands are not cleaned up. 

Let us now examine x. Figure 2.9 shows the reconstructed images for « = {3.80, 3.03, 1.51, 0.81} 
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which correspond to the values of the noise level ¢ = {0.13, 0.18, 0.32,0.40}. The value of f is fixed 

at 0.6. 

  

        

  

Figure 2.9: Restored images for @ = 0.6 and for different values of q: q = 0.13 for the first image from 
the left, q = 0.18 for the second image, q = 0.32 for the third one, g = 0.40 for the fourth one 

Figure 2.9 shows that, for q = {0.13,0.18}, the images are speckled while for ¢ = {0.32, 0.40}, 

there are no more black islands. By using q = {0.13,0.18}, we consider restoring images that are 

not really degraded so that some black islands are not regarded as noisy and hence are not cleaned 

up. Conversely, for large values of q = {0.32, 0.40}, we consider restoring very degraded images and 

consequently all black patches are cleaned up. Therefore, the images are likely to contain large black 

and white regions. However, if the original image has some black patches, then we have to discard 

overly large values of g. Note that the shape of the restored images does not alter enormously with 

respect to different values of q for an appropriate while it exhibits drastic changes when ( takes 

extreme values, as shown in Figure 2.8. Therefore, it turns out to be necessary to take account of 

2 much more than x for it has a stronger influence on the image treatment. For further study and 

research, we will limit « in the interval [1.0,3.0] and # in the range [0.15, 0.95]. 

2.6.3 Restoration of very noisy images 

It turns out to be much harder to restore images that are more degraded than the ones in Figure 2.3. 

As we might expect, noisier images lead to non-regular restorations with large patches of black and 

white, as shown in Figure 2.10 where the images have a noise level equal to 0.3 and are restored using 

the S-W algorithm. 

2.7 Discussion 

As an integral part of this project, we have evaluated some Monte Carlo techniques, in particular the 

Gibbs and Metropolis algorithms. It is also our aim to evaluate the much less well known Swendsen 

Wang algorithm which has been shown to be faster than the two single site update algorithms for 

sampling the kinds of distribution typical in image restoration problems. However, we have found that 

the tendency of the S-W method to update large clusters of identical pixels can be disadvantageous 
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Figure 2.10: Restoration of degraded images with a noise level equal to 0.3. The restoration parameters 
3 and k ( corresponding to the noise level q) are: in column (a): « = 1.2 (q = 0.35), = 0.58; in 
column (b): « = 1.16 (q = 0.36),@ = 0.6;in column (c): « = 1.32 (q = 0.34), = 0.63; in column (d): 

= 1.2 (q¢ = 0.35), = 0.58;in column (d): « = 1.0 (q = 0.38),8 = 0.63; 

in restoring the fine details of the image. Perhaps a hybrid approach in which a sequence of S-W 

updates followed by a sequence of Gibbs or Metropolis updates would yield better restored images. 

We have found that the prior parameters « and @ have a strong influence on the quality of restored 

images. We have tried several values for these two parameters and have determined relevant parameter 

ranges. The simulation process enables us to draw two concluding remarks. The first one is that @ 

has a stronger influence and exerts more effects than « in analysing the restorations. For small or 

large values of (, the images are modified more drastically than they are for extreme values of x. 

The second remark is that small values of 9 (9 < 0.25) yield speckled restorations while very large 

values (/3 > 0.95) lead to patchy images, with large single coloured patches. We have also found that 

small values of the noise level q (q < 0.18) or large values of « (« > 0.3) favour speckled images 

while large values of q (q > 0.32) or small values of « (« < 1.5) lead to large single coloured regions. 

This last conclusion is very important for the subsequent study in Chapter 5 because it lends insight 

to determining suitable priors for these parameters. In effect, all restored images depend strongly 

on the priors over « and # which govern the efficiency of the restoration scheme. However, dealing 

with uncertainty in these two parameters poses some additional problems and can be addressed by 

some techniques which have recently been developed for approximating large probabilistic networks 

[10, 11, 16, 17, 18}. 
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Chapter 3 

Bounding techniques 

Throughout this project, the key technique to computing estimates for « and f is the problem of 

calculating the evidence P(D|x, 9) defined in (1.13). However, even for a 32 x 32 image, computing 

this evidence exactly is intractable because it requires summing over a set S of all nodes, which means 

we have to take into account 2323? possible pixel configurations. We therefore apply some other 

efficient methods which have recently been developed for approximating large probabilistic networks, 

as we shall see in this chapter and in the next chapter. This chapter deals essentially with the problem 

of bounding from both above and below the evidence P(D|«, 9) and therefore the partition functions 

Z,(@) and Z,(«, @) defined in (1.7) and (1.9). Note that, from (1.5), Z(«) can be computed exactly. 

If we consider Z(G) and Z,(«,) as the lower bounds, Zp(8) and Z,(x,) as the upper bounds of 

Z(G) and Z,(n, 8) respectively, then from (1.13), the lower bound P(D|x, 2) of P(D|k, 9) is 

  

Zr(K; 8) 

POE Fe 
(3.1) 

Likewise, the upper bound P(D|«, 2) of P(D|k, 9) is 

Sey ce 
P(D\k, 8) = File )Zp(B) (3.2) 

Before attempting to bound the evidence, we begin by reducing the expressions of the two partition 

functions Z, and Z, defined in (1.7) and (1.9) to the Boltzmann machine form whose properties enable 

us to tackle our problem more easily. 

3.1 Boltzmann machines 

A Boltzmann machine distribution with binary (0/1) variables S = {5},...,S,}, where n =m xm 

and m is the size of the image, is defined as follows 

Pa(Slh, J) = p> Bn(Slh, J) ae a) 
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where fh is a n-dimensional vector called the bias vector and J a n x n symmetric matrix which is 

referred to as the connection matrix between the pixels. The Boltzmann factor B, has the form 

Bn(S|h, 00 | Sm Si+5 LS sss} 
j= 

The partition function Z, normalises the distribution 

Zn(h, J) = D> Ba(SIh, J) (33) 
Ss 

3.1.1 Transformation of the partition function of the distribution for re- 

stored images 

The partition function Z, of the distribution for restored images in (1.9) can be written in the form 

(3.3) 

(k, 8) = VC,Zn(h(«, 8), J(B)) 

where /C, is a constant. 

We reduce the following expression 

B,(S|x, 8) -o0 ene SP +B MS: = 5; i 
i=1 inj 

to the Boltzmann machines form 

a 
Bn(Slh, J) = VC, exp { S> hiSi + i Jij SiS; (3.4) 

jt aiges 

By noting that I[S; = $;] = 1+ 25;S; — S; — S; and S} = Sj, we can write 

B, ll 

inj 
no { $3 0f-20.8 + +57) +B >> (14 25;5; — s-5)| 

  

oo {sSon8-538- BY (Sit 5) +2855; \ 
ini iy 

co | Fn +0} (3.5) 
inj 

By identifying the constant, the linear and the quadratic terms from (3.4) and (3.5), we obtain 

wo -$dor+05 1} (3.6) 
inj 

dehest «> DS: - 7s BY (Si +53) (3.7) 
i inj 

; Ese Jig 315} 2B) SiS; (3.8) 
j=l fay 

VG 
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Now, let us compute ));_,; (Sj + $j). As im j means the node S; corresponding to the index j is the 

nearest vertical or horizontal neighbour of the node S;, there are therefore three different cases for the 

position of S; in the image: 

¢ 5; has two neighbours 

  

V4 5) =45 4+ 055+ YD (+5) (3.9) 
Bj inj oj ti iti 

¢ S; has three neighbours 

  

YG t $)) =654+ 05+ YD (G45) (3.10) 
hej Say lef Fiji 

e S; has four neighbours 

  

YS +5) =85 + 55+ Yo (+55) (3.11) 
Ij inj Mai Fig Ai 

Thus, from (3.7), (3.9), (3.10) and (3.11), the structure of the h vector is 

« (D; — $) —48, if 5; has two neighbours 

hy = ¢ «(Di — 3) — 68, if S; has three neighbours (3.12) 

«(D; — 4) — 88, if 5; has four neighbours 

Let us now compute });.,; 5;S;. For any position of any pixel in the lattice, we find that 

Yo ss;= 3S ¥ij SiS; 
taj i,j=l 
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with 
1, if S; is a neighbour of S; 

= i 
0, otherwise 

Therefore, from (3.8), the structure of the J matrix is 

43, if S; is a neighbour of S; 
Ij = (3.13) 

0, — otherwise 

3.1.2 Transformation of the partition function of the Markov random field 

prior 

Likewise, the partition function of the Markov random field prior in (1.7) can be reduced to the form 

(3.3) 
2p(B) = VCpZn(h(8), J(B)) 

with 

VG, = exp pE 1 

joj 
As before, the structure of the h vector is 

—48, when S; has two neighbours 

hy = 4 —63, when S; has three neighbours (3.14) 

—88, when S; has four neighbours 

and the structure of the J matrix is 

4B, if S; is a neighbour of S; 

ee {a otherwise 
Note that the connection matrix J for Z, and Z is symmetric and all its elements have the same 

value. 

We have therefore shown that the calculation of P(D|x,) defined in (1.13) can be reduced to 

finding the partition function Z,(h, J). As the image is regarded as a non-trivially connected graph, 

the task of computing Z,(h, J) exactly is not feasible. Therefore, the only way of efficiently estimating 

it is to use approximate methods in conjunction with exact calculations whenever possible. The 

technique known as recursive node-elimination [16] aims at obtaining variational bounds that allow a 

recursive formula of the form 

Zp(h, J) 2 C(h, I)Zn—1 (i, J) (3.15) 

This formula has three main advantages. First, several nodes at the same time can be removed by 

merely transforming the model parameters h and J. Second, the approximations involved in the 

elimination should yield at each recursive step upper and lower bounds which are optimised in order 

to be as tight as possible. Note that it is necessary to have rigorous upper and lower bounds in 

order to be able to know approximately where the exact result lies. Finally, and most importantly, 

if the remaining and simplified partition function Z,—1 (3,4) permits the use of exact methods or 

decimation techniques, then a considerable gain in accuracy and rigorous estimates of confidence 

should be obtained. 
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3.2 Recursive node-elimination 

3.2.1 The lower bound 

The first approach for the lower bound recursion is developed by Jaakkola and Jordan [16]. Consider 

eliminating the pixel S; 

Zn(h,J) = > Ba(SIh, J) 
Ss 

=D BIg) 
S\Sk Sk 

= DY (1+ eht2s4455) B,(5\Selb, J) (3.16) 
S\Sk 

Let 2 be 

taht >) IS; (3.17) 
j 

‘The lower bound methodology then consists of bounding the negative logarithm of the term of 1 +e”. 

Consider the function g(x) = —log(1 +e”), we can write [15] 

-s( SS ) 
me {0,1} 

m1 _ ¢\l-m em -te( Dye 6) mcr) 
me {0,1} 

g(x) 

where € is in [0, 1]. As —log(x) is a convex function and as Dmefor} €" (1 — €)'-™ = 1, we can then 

apply Jensen’s inequality 

me 
gz) < - (1-6) log = 

ae err) 

= —€x+€log€é + (1—€)log(1 —€) (3.18) 

= —f&«—H(€) 

where H(.) is the binary entropy function, H(€) = —€ log € — (1 — €) log(1 — €). Therefore, it follows 

from the above equation that 

tH) <1 per (3.19) 

Performing the optimisation over € gives €* = e”/(1+ 7) and leads to an equality instead of a 

bound. We can use optimisation algorithms such as the scaled conjugate gradient method or the 

simplex search routine! to optimise € in order to tighten the bound. The geometry of the bound when 

€ is kept fixed for all a is illustrated in Figure 3.1. The value of x for which € is optimal is the point 

where the bound is exact. The solid curve represents 1 +e” and the dashed curve plots e§*+4(®) for 

a fixed € = e®7/ (1+ e%7). 

+ ¥ihe scaled conjugate gradient method generally yields better results than the simplex search routine but needs to 
take into account gradient information (which is complicated to program in our problem) while the simplex technique 
does not.
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38   
|— the curve 1+2xp(x) 

416} ~ the lower bound     

  

      

Figure 3.1: Geometry of the lower bound 

From (3.19), there exist variational parameters €; in [0, 1] such that (3.16) can be written 

Zq(h,J) > Sy et E sss )}+MO BR,  (S\Si|h, J) 
S\Se 

feu tH(Ex) SP Bes (S\Selh, 7) 

S\Sk 

= ket) Zz (4,7) (3.20) 

The bias vector h is transformed to hj = hj-+€eJxy, which means that only the biases of the neighbours 
of the deleted nodes are modified. However, the structure of the connection matrix J is unchanged. 

This amounts to saying that if a node is removed in the image, then the structure of J for the (n—1) 

remaining other nodes is the same as the one for n nodes. In other words, there is no additional 

connection between the pixels adjacent to the eliminated one, as illustrated in Figure 3.2. Thus, 

graphically, the operation translates into merely suppressing the node. 

However, each node elimination involves an additional bound and therefore the approximation 

of Z, becomes more and more inaccurate as the nodes are removed. It is desirable to apply the 

recursion only to the extent that the remaining and simplified graph permits the use of exact methods 

or decimation techniques. Consequently, the problem is transformed to that of finding the pixels whose 

suppression would render the rest of the graph tractable. Figure 3.2 [16] shows that the elimination 

of the dotted nodes reveals a chain graph whose structure of the connection matrix permits fast and 

exact methods, as we shall see in Chapter 4. 

For a 32x32 image, we will see in Chapter 4 that removing 325 pixels among 1024 yields a tractable 

subgraph. This means that we have to optimise a 325-dimensional vector € introduced in (3.20), which 

will certainly take a long time. We will see in Section 3.2.2 that, with 75 nodes deleted on a total 

number of 256, it takes about an hour to get the relevant lower bound if we use the simplex search 
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Figure 3.2: Enforcing tractable networks 

routine. Moreover, the optimisation procedure does not always lead successfully to the desired result. 

Indeed, one of the main difficulties which still remains is the tendency for such search algorithms to 

spend a long time in the neighbourhood of poor local minima and failing to discover good minima 

which make a much more significant contribution to improving the accuracy of the bound. Thus, 

potentially, a large number of steps are needed before obtaining good result. 

3.2.2 Alternative interpretation of the lower bound 

As the computational effort seems prohibitive, we examine a similar method which reduces the opti- 

misation required. The above methodology of the lower bound is actually equivalent to searching for 

the tangent of the curve f(x) = log(1 + e*) that allows to approximate f(x) accurately in the region 

x = hy + D>; Jej Sj. A simplified idea is to find a tangent point 2* that is close to x and is as follows: 

although « cannot be known because S; takes two possible values 0 or 1, it is easy to bound it by 

he St Seto Ij (3.21) 
a 

Moreover, f(x) is a convex function of x and since any tangent line for a convex function always 

remains below the function, it also serves as a lower bound. This can be illustrated in Figure 3.3, 

where we assume that the eliminated node S; has four neighbours: from (3.13) and (3.21), we have 

hy <@ < hy + 168, then we consider hy = x (D; — $) — 8 in (3.12), and we take for demonstration 

D; =1, ® = 2 and # = 0.85. The solid curve stands for log(1 +e”) and the dashed curve plots the 

tangent at 2* = 3. 

By taking the tangent to the curve at x*, we can therefore write 

  ia) > FEO e—2)+ se") 
en . aa = Taree TL Fee 

By denoting \ = e*” / (1+ *") and H(A) = —Alog(A) —(1—A) log(1—), we get an expression which 

is similar to (3.19) 

ee) ete? (3.22) 
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  as oa 2 rr 

m a 

  

      

Figure 3.3: Illustration of the tangent bound 

From (3.22), there exist variational parameters A; such that 

IV
 Znlh, J) > Sy ered s4s8s)+4O%) B, _, (S\5, Ih, J) 

S\Sx 

= dtbetHOs) S~ Ba (s\selh, 7) 
S\Sz 

= tn) gz (i, J) (3.23) 

where the bias vector h is modified and is transformed to h; = hj +AxJej and the structure of the J 

matrix remains unchanged as it does in the previous section. We note that this method is equivalent 

to the one described in Section 3.2.1: we need also to optimise the \ vector in (3.23) so as to have a 

rigorous bound. Nevertheless, we have to stress that, in contrary to the previous method where the 

€ vector in (3.20) does not give a clue of what would be its optimal value, this method enables us 

to understand better the way of finding the relevant A vector because the latter is a function of the 

tangent point 2* which has to be close to x, otherwise the accuracy of the bound is compromised. For 

instance, as shown in Figure 3.3, the gap between the curve and the tangent line is important if the 

value of x is less than 0. 

Our main concern as we have seen is to avoid optimisation over large dimensional spaces. We 

therefore resort to searching for a suboptimal solution in a lower dimensional space of variational 

parameters. Indeed, we choose to find the best one-dimensional optimal parameter set that gives the 

lower bound in order to reduce the computation time. 

We have tested? the accuracy of the lower bounds on the partition function Zp, in the case of 

16 nodes, where 4 nodes are removed, and in the case of 256 nodes, where 75 nodes are suppressed, 

for two different approaches: the first. approach involves optimisation over a y-dimensional space of 

2 All the results in this section are calculated on the partition function Zn of the distribution for restored images, in 
the case of the noisy image presented in row (b) in Figure 2.3. 
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variational parameters, where y is the number of nodes removed and the second approach involves 

optimisation over a one-dimensional space of variational parameters. For 16 nodes, it is quite fast 

to calculate the exact value. The small number of nodes is chosen to facilitate comparisons with 

the exact result. Figure 3.4 plots the estimates of the log-lower bounds obtained using these two 

approaches with respect to @ and for x = 1.4. Figure 3.5 plots, for 16 nodes, the log-exact value and 

the log-lower bound estimates obtained using the second approach with respect to @ and for a fixed 

value of « = 1.4. 

16 nodes 256 nodes 
10 140 =     
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Figure 3.4: Comparison between the log-lower bound estimates (solid curve) using the first approach 
and the log-lower bound estimates (dashed curve) using the second approach for 16 and 256 nodes. 
The first approach involves optimisation over a y-dimensional space of variational parameters, where y 
is the number of eliminated nodes. For 16 nodes: y = 4; for 256 nodes: y = 75. The second approach 
involves optimisation over a one-dimensional space of variational parameters. The value of x is 1.4. 
The mean error (averaged over # = 0.15..0.95) is about 0.053 for 16 nodes and the mean absolute 
error is about 1.25 for 256 nodes 

Figure 3.4 reveals, in the case of 16 nodes, where we remove 4 nodes, how the small error (= 0.053) 

(averaged over @ = 0.15..0.95) between the log-lower bound estimates enables us to trust the second 

approach which presents a good approximation to the log-exact value. Indeed, the mean error between 

the log-lower bound and the log-exact value is about 0.55, as shown in Figure 3.5. In the case of 256 

nodes, we have removed 75 nodes and therefore we have optimised a 75-dimensional vector € introduced 

in (3.20). The bound calculated using the second approach also yields a good approximation compared 

to the one obtained using the first approach due to the small absolute error (~ 1.25) in the estimates 

of the log-lower bounds. However, Figure 3.4 shows that the first approach yields some worse lower 

bound estimates than those obtained by the second approach. The main reason as we have seen is 

that the presence of local minima hinders the search for good minima or simply that the number of 

iterations required during the optimisation process for having the relevant results is not sufficient. We 

have set the number of iterations to 7000 and it has taken more than an hour to obtain an acceptable 
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Figure 3.5: Comparison, for 16 nodes, between the log-exact value and the log-lower bound obtained 
by the second approach involving optimisation over a one-dimensional space of variational parameters. 
The value of « is 1.4. The mean error is about 0.55 

lower bound whereas it has taken about one minute to get the lower bound using the second approach. 

The approach involving optimisation over a one-dimensional space of variational parameters en- 

ables us to obtain a rigorous lower bound on the partition function whose value cannot be calculated 

exactly. 

3.2.3. The upper bound 

There are some techniques for obtaining an accurate and rigorous upper bound on the partition 

function Z,, defined in (3.3). One of these [16] is to bound f(x) = log (1 + e*) by a parabolic function, 

where x = hy + >>, Jyj. To derive the quadratic upper bound we can write j Oki 

f(a) = log e*/? + log (e*? te */?) (3.24) 

Now, ¢(x) = log (e~7/? + e*/?) is a symmetric function of z and also a concave function of z?. Any 

tangent line for a concave function always remains above the function and so it also serves as an upper 

bound. Therefore we can bound ¢(«) by the tangents of ¢(,/w) (due to the concavity in x”). Thus 

$(z) IA
 PAL (0? — w) + (Va) 

n(w)x? — F(n, w) (3.25) 

where 

06(Vw) 
dw 

n(w)w ~ 6(Vu) a S
s
 

<
=
 

"
o
u
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The desired result follows the change of variables: w = xj. From (3.25), we note that the bound is 

exact whenever 2, = x. Therefore, it follows from (3.24) and (3.25) that 

F(a) <5 + n(ex)e? — F(a, 2%) (3.26) 
The geometry of the quadratic upper bound when 2; is kept fixed for all « is illustrated in Figure 3.6, 

where we assume that the eliminated node S, has four neighbours: from (3.13) and (3.21), we have 

hy <x < hy + 169, then we consider hy = « (D; — $) — 8( in (3.12), and we take for demonstration 

D; = 1, ® = 2 and # = 0.85. The solid curve stands for log(1+ e”) and the dashed curve plots 

2/2+n(ax)x? — F(n, 2x) for a fixed zy = 1. 

4 
the cuve (eon seme) {he upper bound 

    
  

  

Figure 3.6: Geometry of the quadratic upper bound 

From (3.26), there exist variational parameters x, such that (3.16) can be written 

Zn(h,J) << Y> et/?tnles)e?—Flnes)B,_ (S\Se|h, J) 
S\Se 

= ehu/2tn(eahe-F(nen) (i, j) (3.27) 

where the bias vector h is transformed to 

- Jai hy = hy + 2hun(ze)dej + 2 + nen) Ji 

and the connection matrix J is transformed to 

Jig = Jig + (te) Jie Inj (3.28) 

fori # j # k. It means that the nodes S; and S; adjacent to the eliminated node S; become connected. 

In other words, if Jj, #0 and J,; #0 then Ji; #0 after the recursion. 

The main drawback of this method is that it leads unavoidably to the structural changes of the 

pixel graph after each recursion in such a way that the remaining subgraph becomes densely connected 
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so that the use of exact methods for computing the partition function Z, is prohibitive, as illustrated 

in Figure 3.7. A naive idea consists of removing a very large number of nodes, but then the bound 

will certainly be poor and moreover, it is not possible to avoid the optimisation process which we have 

seen takes a long time and does not successfully give a good result in a high dimensional space. 

  

Figure 3.7: Graphical modifications following the recursive quadratic method. The nodes adjacent to 
the eliminated dotted node become connected: the resulting configuration is more complicated than 
the initial one 

An alternative method [16], which yields less accurate upper bounds than the previous method but 

preserves the structure of the connection matrix, is to use an application of Jensen’s inequality due 

to the convexity of the function f(x) = log (1 +e”), where x = hy + )); JxjSj. The idea is as follows: 

let fi(u) = f(u+ he), where u= >; JgjSj and note that f,(u) has the same convexity properties as 

. For any convex function f, then we have (by Jensen’s inequalit; quality 

fie (=4.5) =p (x08) 
7 i Pe 

Luke (2) IA
   

As S; € {0,1}, we can write 

fe (2) = |p (2) - 20] 5, + 20 
From (3.29) and (3.30), we have 

F(x) < ho + AyS; 
i 

hy = ay [r (#2 i mn) i | 
and ho = f(hx). #j are variational parameters such that 

pea 
i 

where 

From (3.31), (3.32), (3.33), the upper bound of the partition function in (3.16) can be written 

Zn(h,J) < Sy eet Es'sSsB, 1 (S\Si|h,J) 
S\Sk 

= eehegaey (3,7) 
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The bias vector is transformed to hj = hj + hj while the connection matrix J remains unchanged. 

However, the main drawback of this method is that it is very computation-intensive because of a huge 

number of variational parameters pj that need to be optimised. Indeed, the number of variational 

parameters is the total number of neighbours of the deleted nodes. As the main objective is to remove 

enough nodes so as to be able to apply exact techniques, the computational effort is then prohibitive. 

We will see in Chapter 4 that, for 32 x 32 image, removing 325 pixels among 1024 leads to a tractable 

subgraph: this means that we have to optimise a 1275-dimensional vector yz introduced in (3.33). 

We prefer to examine another method that involves no optimisation procedure and preserves the 

structure of the connection matrix. This is achieved by taking account of the convexity of the function 

f() in the interval [fn he t+ Dj | , then a trivial way is to bound it directly by a line going through 

Ay and hit Jj, as illustrated in Figure 3.8, where we assume that the eliminated node S; has four 

neighbours: from (3.13) and (3.21), we have hy < « < hy +16Q, then we consider hy = « (D; — $)—88 

in (3.12), and we take for demonstration D; = 1, « = 2 and #@ = 0.85. The solid curve stands for 

log (1+ e*) and the dashed curve plots the line going through hy and h; + 16(. 

  

ecm avert) 

    

  

  

Figure 3.8: Geometry of the linear upper bound 

Thus, we can write 

f(z) <cxt+d 

where 

ow fle + 2p Jas) = F (he) 
De Jey 

and 

_ £ (he + Dp Jes) = F (he) 
d= f(hx) Se he 
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Hence, the upper bound of the partition in (3.16) can be written 

An(h,J) < Yo etFEsIs5i)t4pB, 4 (S\Sp|h, J) 
S\Sk 

= etdz, | (4,J) (3.35) 

where the bias vector is transformed to hj = hj + cJij and the structure of the J matrix remains 

unchanged. 

Figure 3.8 suggests that this upper bound methodology may yield bad results due to the large gap 

between the curve and the line if ¢ = hy + >», Jij5j is not close to the two extreme limits hy, and 

he ay) Jx;. Another idea is to attempt to partition the curve in several parts and to bound them by 

a line. Unfortunately, this cannot be achieved because it is not possible to determine the value of 2. 

However, the greater @, the more inaccurate the upper bound is, the smaller , the tighter the upper 

bound. Figure 3.9 shows the configuration of the upper bounds for two values of # = {0.85, 0.35}, 

D; = 1, ® = 2.0 for the case hy = « (Dj — $) — 88. 

  
— tocar otto) ‘he upper bound for P05 

the uper bound fr BeOS 4) 
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Figure 3.9: Configurations of the upper bound for different values of 3, for x = 1.4 

We have tested the accuracy of the upper bounds on the partition function Z,, in the case of 16 

nodes, where 4 nodes are removed, and in the case of 256 nodes, where 75 nodes are suppressed. The 

case of 16 nodes is again chosen in order to facilitate comparisons between the upper bound and the 

exact value of the partition function. Figure 3.10 plots the log-lower bound and the log-upper bound 

estimates as a function of @ for x = 1.4. We note that the mean error between the log-lower bound 

and the log-upper bound estimates is about 35 in the case of 256 nodes and about 2.2 in the case of 

16 nodes. 

In a high dimensional space, it is unlikely that we get a good approximation of the partition 

function, so it would be interesting to know precisely whether the exact value is closer to the lower 
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bound or to the upper bound. We consider the case of 16 nodes where we plot the difference between 

the log-lower, the log-upper bounds and the log-exact value with respect to 8, for x = 1.4. Figure 

3.11 enables us to state that, provided we optimise the lower bound accurately, then the exact value is 

closer to the lower bound than to the upper bound. This result can be expected for the upper bound 

technique requires no optimisation®. 
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Figure 3.10: Comparison between the log-upper bound and the log-lower bound estimates for « = 1.4 
in the case of 16 nodes (left), where 4 nodes are removed and in the case of 256 nodes, where 75 nodes 

are suppressed. The mean error between the log-lower bound and the log-upper bound estimates is 
about 2.2 for 16 nodes and about 35 for 256 nodes 

  

  

      

Figure 3.11: Difference in the log-lower, log-upper bounds with the log-exact value for 16 nodes 

°We explored a method which consists of removing the connections between the nodes instead of the nodes. Unfor- 
tunately, our attempt to find a consistent upper bound technique was unsuccessful. 
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Chapter 4 

Decimation 

So far we have developed a recursive node-elimination method for efficiently approximating the in- 

tractable partition function Z,, defined in (3.3). The main objective is not to remove all nodes in the 

image, otherwise the bounds will be poor, rather enough to be able to apply exact methods. The 

exact method we consider here is referred to as a decimation technique, which consists of transforming 

complex networks into reduced ones without changing their properties. In other words, within the 

context of Boltzmann machines, the simpler networks retain the same Boltzmann distribution as the 

complicated ones. The main advantage of the decimation technique [10, 11, 17, 18] is that it permits 

exact calculations in polynomial computation time in the number of pixels and not in exponential time 

(we remember that, in general, computing the partition function of a Boltzmann machine requires 

summing over a set S of m? nodes and consequently involves 2” calculations, where m is the size of 

the image). 

4.1 Decimation of one node connected to two nodes 

The idea [10, 11] about decimation can be illustrated by this following rule. Consider three nodes 

connected in series, as shown in Figure 4.1. On the left hand side, the extreme pixels S3 and S4 are 

connected with the rest of the image. Though they have no links between them, they have an effective 

interaction mediated by the intermediate node S;. The combination of the two connections J;3 and 

Jha in series leads to a single equivalent connection J34 and the biases hg and hq are modified to give 

the new ones rs and hy : in this case the pixel S; is said to be “decimated”. 

An expression for Jews hy and hi, can be obtained by requiring that the nodes S3 and S4 in both 

graphs obey the same Boltzmann distribution. Thus 

ehsSathiSithsSstJis$1SstJa5iSa — \/GehsSsthySatIgu535o (4.1) 

$1={0,1} 

where VC is a constant, independent of S3 and Sq. 
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Figure 4.1: Combining connections in series: the graph on the right is obtained by decimating out $1. 
The black node represents the bias 

By enumerating the possible values of $3 = {0,1}, we obtain the constraints 

ehaSs 4 chitheSetIuSa _  /GehiSa 

ehsthaSs 4 chsthithsSsthistiuuSs —  V/GehsthiSetJsSe 

For the possible values of S4 = {0,1}, we have 

l¢eh = VO 

eh pelsthitts = VGers 

eM petithte 2 Gel 

ehstha 4 chothithetistha = /Gehsthi tu 

Finally, from these equations, we obtain 

VO = 1+e™ 
; Lebiths 

hg = h3+log ——>— : EG 
, L+elstiu 

hg = hatlo 4 4 S Ve 

5 L4ehithisthis 
Ju = lor VG ne 

(1+ eb tis) (1 + ef tJia) 

Note that the decimation technique can be applied if the node to be decimated has an effective 

interaction with the other nodes, or in other words, is connected to at least one node. 

In the problem of image restoration, the challenge is how to eliminate the pixels so that the 

configuration of the resulting reduced image permits the use of the decimation technique. The aim 

consists then of removing the smallest possible number of nodes in order to rigorously bound the 

partition function in such a way that it is easy to implement the decimation operations. This first 

rule alone, in conjunction with the recursive methods, does not suffice to yield a good approximation 

of the desired quantity and we need three more rules so as to be able to decimate out a large number 

of nodes remaining in the reduced image. 
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4.2 Decimation of one node connected to one node 

In this rule, we decimate a node which is only connected to one node, as shown in Figure 4.2. Note 

that, henceforth, for more clarity on the figures, the biases are not presented any longer. 

  

Figure 4.2: Decimation of one node 

In order for the two systems to obey the same Boltzmann distribution, the following equations 

must hold 

Si et SithaSa+hsSo+Ji2SiSatJis$iS9 — \/GeghiSithySatJi2S1S2 (4.2) 

Ss={0,1} 

By enumerating the possible values for S; = {0,1} and S_ = {0,1}, we find 

V6 = 1+e* 
: Lf ehsths 

hy = hy +1 1 1 + log al 

hy = ho 

Sig = dia 

Note that the connection J;z and the bias hz are not modified, only the bias for S; alters. 

4.3. Decimation of two nodes 

Depicted in Figure 4.3, this rule involves decimating out two nodes, first Sz and then $j. 

a oO) 

Figure 4.3: Decimation of two nodes 

As before, the two systems are required to obey the same Boltzmann distribution 

» edifar St Diag JusS1 8s \/Gehs Sothy SatJy4SaSe (4.3) 

S251 
This decimation is a two-step process. First, we decimate So. 
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Gi elt Sithy Soth SstJiy51 534,451 54 

By enumerating the possible values for 5; 

constraints 

vo 

Ay 

  

decimation i, 
nae OO) 

s 3 Ss 1 Ss 4 

edhe MSAD fe Js S155 

So={0,1} 

eh SithsSsthaSs+JisS1S3t+Jia5i Sa 

f eb SithathsSs+haSs+JiaSit+Jis $1 $9+Jia 5154 

= {0,1}, S3 = {0,1} and S4 = {0, 1}, we get these following 

1+el 
1 hatdia 

Re log eee 

  

hg 

hg 

Ais 

dia 

Now, we sum over Sj in order to have the desired decimation rule. Using the decimation rule (4.1), 

we obtain 

ve (1+e) (+e 
ae 2) 

1+eh 
F Lt eh + emits (1 4 ehatha) 

1+e' +eh (1+ ehh) 
3 Lets + ehtius (1 4 catia) 

hg = hstlog 

hy = hatlog 

Jes = log 

1+ eh2 + eh (1+ eh2t4i2) 
[1-+er +h (14 chet4i2)] [1 42 4 eh tustus (1 4 hata) 
  [I+ eh + eh tis (1 + eft 4izy] [1 + ef2 4 obits (1 + eh ria) 

4.4 Decimation of three nodes 

This rule involves decimating out three nodes, first Ss, then S2 and finally S,, as shown in Figure 4.4. 

In order for the two systems to obey the same Boltzmann distribution, the following equations must 

hold 

ye eter StL hag IusS1 Sit Jos SoSstJas549s — 1G, \/Cy/Cgehs Ssh Sat Iau SS 

Ss,S2,51 
(44) 
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S, 

Jia 

Ss; iy NG: 

830 OS, vars 

x e. 
35 45 o 

s 5 

  

Figure 4.4: Decimation of three nodes 

This decimation is a three-step process. First, we start summing over S;. Using the decimation 

tule (4.1), we know that the decimation of S; does not affect neither the biases hy and hz nor the 

connections Jj2, Jj3 and Jj4. However, the biases hg and ha change and a new connection appears 

between S3 and Sq. 

Sy S, 

Jia Jia 

Ss, S| 

yf uw y/ Nb 
Ss — 830-——oO5, Sai) Ors 3 

r, 

NEZr e 

Ss 5 

These networks are required to have the same Boltzmann distribution 

So ebier MSt Ele Iii S1SitJssS3SotJasSaS5 — Gy eDiiar MSithySo+h Sst Dhan TiiS1Sit-Jy459S¢ 

Ss 

We obtain the following expressions for the constant /C1, the new biases hy, hj, and the new connec- 

tion J34 

VO, = 1+e% (4.5) 

hy = hg + log 2 (4.6) 

he ha + log 2 (4.7) 
1+ ehstJas+Jas 

Jy, = log JE (LF ehst¥es) (1 + eho tiasy (8) 

Now, let us decimate the node Sy 
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S, 

Jia 8, 

Si Oo. 
yf Nu — yf Nu 

S;0——__ 8, ~ $30°>—o 

Tyg Jyq S4 

The two systems are required to obey the same Boltzmann distribution 

y= eDfe MSithySothy Set D bg MiS1 Sit Jy S054 — [Ezeh S24Rs904h, Sa4Jis51$94Jis 15st Jog 53S 

Sa 

Using the decimation rule (4.2), we know that the bias of S; will alter, the other biases and connections 

will remain unchanged. Thus the constant /C2 and the new bias for S; are 

VCz = 1+e" (4.9) 
L4ehethe 

en, + log (4.10) 

We decimate S; in order to get the desired decimation rule 

Ne, = 
Oo 3 » 

Jyq 

  

In order for the two systems to obey the same Boltzmann distribution, the following equations 

must hold 

Ye ehiSithsS4M St lisSiS34 JSS I, 595 3 Cgehs S3thy Sat Jy,59Ss 

Si 

By taking into account the possible values for $3 = {0,1} and S4 = {0,1}, we obtain 

VGs = 1+em (4.11) 
a ' Lt etiths 

hg sas hg log — ee 4.12 3 3 s Wes ( ) 

Z i 14 chitin 
ho = hgh 4.13 4 tls TG; (4.13) 

Lehitdistyi 
Jeg = Jot ae 

(ets) (rp ern) (4.14) 

Finally, we have : 

from (4.8); VOi =1+e% 

from (4.9), VGz=1+e" 

Le hatdia 

from (4.10) and (4.11), VC3= 1+ ae 
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from (4.6), (4.10) and (4.12) 

1+ ehstiss VCp + etithe (1 + chat tia) 
Se hy = hg + log TOSS 

  

from (4.7), (4.10) and (4.13) 

a LetstJas [Cz + eta (1 4 ch2tyi2) 
i hes 168 4 4 S ie, s or JC3 

from (4.8), (4.10) and (4.14) 

1 + ehstJostJas 
Jy = log. V Ci Gy pier asy Lp eke FTuny 

VO + ebitisthis (1 4 ehotta) 
+ log VCsVC2 (JGa + esis (14 hatin) (Op + eh tlus (14 eh tna)) 
  

4.5 Heuristic node-removal scheme 

For the recursive node-elimination and decimation methods to be useful in practice, it is necessary to 

find a way of removing the nodes such that the densely connected configuration of the original image 

is reduced to a simple subgraph which can be decimated using the above rules. The partition function 

of the simplified graph can then be found in polynomial time. Before proposing a method for pruning 

the nodes, we adopt a simple numbering of pixels by assigning the sequence number 7 = i+ m(j — 1) 

to the pixel (7, 7) where the image is considered as a square array of pixels {(i, j),1 < i,j < m} and 

m is the size of the image. With this scheme counting the nodes column by column from node 1 to 

node n = m?, starting in the upper left, we then use the following heuristic to prune a 32 x 32 image, 

as shown in Figure 4.5 

1. For the columns c = {2,5,8, 11, 14, 17,20, 23,26, 29}, we suppress the nodes number m(c — 1) + 

2t + 1, where t = 0,...,15 for even columns and t = 1,...,15 for odd columns. 

2. For the columns c = {3, 6,9, 12, 15, 18, 21, 24, 27, 30}, we eliminate the nodes number m(c—1)+2t, 

where t = 1,..., 15 for odd columns and t = 1,..., 16 for even columns. 

3. for the column ¢ = 32, we remove the nodes number m * (ce — 1)+ 2¢+1, witht =1,...,15 

The black nodes represent those which are eliminated after the recursive procedure, the dotted 

lines symbolise the links removed between the deleted nodes and theirs neighbours and the white 

nodes are those which remain in the image. The number of suppressed nodes is 325 for a total number 

of 1024. This heuristic is fast and very straightforward to implement: we apply the rules (4.3) and 

(4.4) so as to turn the reduced grid into a chain graph for which we eventually compute the partition 

function by using rule (4.2). 

We believe that this heuristic is almost optimal in the sense that we have attempted to discover 

other schemes but have wound up finding that the number of eliminated nodes is always greater 

than 325, which is less than one third of the total number of nodes (1024). Nijman and Kappen [18] 
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11 12 1415 17 18 20 21 

  
Figure 4.5: Resulting configuration of the image after the recursive procedure. The black nodes 
represent the eliminated ones, the dotted lines symbolise the links removed between the deleted nodes 

and theirs neighbours and the white pixels are those which remain in the image. The figures on the 
top number the columns of the grid. The decimation rules (4.3) and (4.4) are applied in order to 
obtain a chain graph for which the partition function is calculated using the rule (4.2) 
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propose, for a 12 by 12 grid, another heuristic that leads to removing from 46 to 48 nodes, which 

represents about one third of the total number of nodes. Throughout this project, the main question 

concerns the way the nodes have to be suppressed in order to approximate the partition function 

accurately. We have faced two approaches: the first one aims at removing the smallest number of 

nodes, and the second one consists of taking account of the importance of the positions of the pixels 

we choose to eliminate. This second approach is quite hard to achieve. We have seen so far that, 

although the connection matrix remains unchanged, the bias vector is modified after each recursion, 

and consequently, we have to select the “right” nodes to remove. In other words, if we want to 

maximise the lower bound, then from (3.23), we delete the nodes which have the largest biases, and 

conversely, if we want to minimise the upper bound, then from (3.35), we eliminate those which have 

the smallest biases. Nijman and Kappen [18] have attempted to investigate the way of suppressing the 

right nodes but have not proved whether this leads to a good approximation of the partition function. 

Furthermore, such a scheme would be quite intricate to program and our main purpose is to eliminate 

the smallest set of pixels in such a way that the decimation operations are easy and fast to implement. 

Nevertheless, only the combination of these two approaches is likely to yield a good approximation of 

the partition function and this issue is left for future study. 
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Parameter estimation 

So far we have seen that restored images depend strongly on the prior parameters & and # which 

control the quality of the restoration scheme. We have also assumed that the corrupted image is 

generated from the original one which, in reality, we do not know and consequently we may have little 

idea of appropriate values for x and 3. Thus the problem of parameter estimation turns out to be 

fundamental to image reconstruction and has been extensively studied over the last few years. 

5.1 Estimation using bounding techniques 

We have seen in Chapter 1 that the key technique to computing these parameters takes the form of 

maximising the product of the evidence P(D|x, 8) and the prior P(«,/). As we may have little idea of 

suitable values for these parameters, we would choose P(x, ?) to be insensitive to the values of « and 

8. In other words, we would consider a prior which in some sense gives equal probability to all possible 

values. The approach to determining « and # then amounts to maximising the evidence which we have 

seen can be approximated using the recursive node-elimination and decimation methods presented in 

Chapters 3 and 4. Having determined the lower bound in (3.1) and the upper bound in (3.2) of the 

evidence, we can plot the bounded log-evidence! versus « and 3, with « ranging from 1.0 to 3.0 and 

8 ranging from 0.15 to 0.95, as shown in Figure 5.1. This choice of parameter ranges stems from the 

results in Chapter 2. 

Unfortunately, Figure 5.1 shows that the maximum of the evidence cannot be determined and thus 

we cannot estimate the MAP values for « and @ given a flat prior. The large gap between the lower 

and upper bounds stems from the inaccuracy of the upper bound methodology presented in Section 

3.2.3. We have seen that a tight upper bound is much more difficult to achieve and we have resorted 

to a trivial linear upper bound that involves no optimisation. This is potentially the reason for the 

difficulty in estimating the restoration parameters based on the bounded evidence. 

ln this chapter, we deal with the noisy image presented in row (b) in Figure 2.3 in Chapter 2. 
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Figure 5.1: The bounded log-P(D|, 3) with respect to « and 3 

5.2 Estimation using thermodynamic integration methods and 

mean field approximations 

We have developed a method for analytically bounding the evidence P(D|x,3). We now present a 

different. method [8] based on Monte Carlo techniques for approximating P(D|x, 8). Appealing back 

to the formula (1.13), the evidence is 

P(D|k, 8) = 

  

it can also be written 

® Alog P(D\k, 3) 
log P(D\|«, 8) = [ d3 + log P(D\K, 0) 

Jo ap 
® Alog Z,(K, 3) ® Alog Zi(«) = eee ge | ee) 

oi as fF ap 

  

+ log P(D\r, 0) 
B Doe 7 B Dor 7 [ Alog ZB) yy _ [ Alog Zp(8) 4, 

if aB Jo op 
+ log Z,(«, 0) — log Zi(«) — log Zp(0) 

Retaining the forms (1.5), (1.7), (1.9) and noting that Z,(«,0) = Zi(x), we obtain 

B 
log P(D|x, 8) = [ (S18 = si) — log Zp(3) (5.1) 

a P(S|D,«,8) inj 
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where (.)ps1p,.,) Means averaging with respect to the distribution P(S|D, x, 8) defined in (1.8). 
Computing the one-dimensional integral 1(8) = £ dp (Eny NG Sil) oan exactly turns 

out to be intractable, we therefore resort to using Monte Carlo methods to sample from P(S|D, «, 8) 

over a range of values of @. In particular, we use the Swendsen-Wang algorithm to compute this 

integral for @ = {0.15, 0.25, 0.35, 0.45, 0.55, 0.65, 0.75, 0.85, 0.95}. We numerically compute I(8) by 

splitting the interval (0, ...,0.95] into 95 equally spaced points. For each point, we generate six image 

samples for which we estimate }0;; 1 [S; = S;] we average to obtain (Ses IS; = Sj). We then 

perform trapezoidal integration to obtain I(). 

Consider now the logarithm of the partition function Z,(@) in (5.1). There are two methods for 

computing it. The first one is to use the same idea as the one which has enabled us to calculate 

log P(D|x, 8). It consists of integrating log Zp() over 3 

8 

tog %(8) = ff P80 49 + 105 29(0) 
B 

= dB( > 1[S: = Sj] + log Zp(0) (5.2) 

: oy P(SIA) 
where ()pcsiay means averaging with respect to the distribution P(S|) defined in (1.6). Again we use 

the same technique which has enabled us to evaluate the integral in (5.1). Figure 5.2 plots log Z)((2) 

as well as its lower and upper bounds. 

  

— tower a pri t 2,8) ‘ === _Beyaes tg, amid by legraton Zz 
    

      

  

Figure 5.2: The log-Zp(@) obtained by thermodynamic integration methods (dashed curve) with 
respect to its lower and upper bounds (solid curves) 

We note that the values of log Z)(@) are no longer accurate when (3 is greater than 0.55. We have 

performed this calculation several times but have wound up finding the same inaccurate results. The 

main reason for which these results obtained by Monte Carlo techniques are inaccurate is that it may 

be difficult to generate a sequence of vectors representative of the distribution P(S|@). It is probably 
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the reason for which Pryce and Bruce [8], who appealed to thermodynamic integration methods for 

computing the same kind of partition functions as Z)(), resorted to mean field approximations to 

calculate Z,(@). 

Adopting the idea of mean field approximations proposed by Pryce and Bruce [8], we prefer to 

use another mean field approach which is equivalent to Pryce and Bruce’s approach but is easier to 

apply. Developed in the graphical models context, this mean field approach [13, 14] is equivalent 

to the recursive node-elimination methodology if all the nodes are removed. Indeed, consider the 

Boltzmann form for the Markov random field prior P(S) defined in (1.6), P(S) = B(S)/Z, where 

2Zp(8) = 5 B(S) and the Boltzmann factor B(S) is 

x A 
B(S) = exp {s hiSi + 5 ye wuss} 

i=l ij=l 

For any approximating distribution Q(S), we can form the lower bound [13, 14] 

logZ = log} > B(S) 
s 

B(S) log > Q(S) 8 La) AS) 

» Q(S) log a (5.3)   IV
 

where the last line follows from Jensen’s inequality. Note that the difference between the left and 

right-hand side of (5.3) is the Kullback-Leibler divergence 

KL(QIIP) = 32 Q(5) log ae (5.4) 
s 

  

The bound in (5.3) is valid for any probability distribution Q(S). Consider the factorized distribution 

[14] 
n 

Q(S) = T] 97 a - 65)" (5.5) 
i=l 

in which the nodes S; appear as independent Bernoulli variables with adjustable means 0;. A mean 

field approximation is obtained by substituting the factorized distribution in (5.5) for the Boltzmann 

distribution P(S). The best approximation of (5.5) is found by choosing the mean values, {9ihi<iens 

that minimise the Kullback-Leibler divergence, KL(Q||P). This is equivalent to minimising the gap 

between log Z, and the lower bound obtained from mean field theory. From (5.3) and (5.5), the mean 

field lower bound is 

1 Laur = >> hid; + Ff YS 455910; — D> (6; log 6; + (1 — 6;) log(1 — 6,)] (5.6) 
i ij a 

As we remember that the connection matrix J is symmetric, we obtain the following mean field 

equation by setting the gradient of (5.6) equal to zero 

0:=0 Go (5.7) 
i
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where o(.) is the sigmoid function, o(z) = 1/(1+ e~*). The mean field bound Lyyp is then obtained 

by iterating the mean field equations in (5.7). However, a tight bound is hard to achieve because we 

have to optimise a m?-dimensional vector @ introduced in (5.6), where m is the size of the image. We 

have seen previously that optimising in a high dimensional space does not always lead to accurate 

results and that the amount of computational effort is beyond our current means. In fact, the mean 

field approach is equivalent to the recursive node-elimination technique: each lower bound recursion 

is a mean field approximation of the eliminated node. Indeed, consider the Boltzmann form for the 

prior P(S) defined in (1.6), we can write 

P(S1,.-+,Sn) = P (Sel {53,5 # k}) P(S1,-.-,Se—-1, Sets +++ Sn) 

where P (S;| {S;,j # k}) is the conditional probability distribution for a node S, 

exp (AgSe + 0; Jey SeSj 
PO eee oe eu) 

1+ exp (+d; a) 

A mean field approximation is obtained by replacing P (S,| {S;,j # &}) (which may be quite difficult 

to compute) by a distribution Qx (Sz) (which may be much simpler). We can choose Q; (Sx) to be 

Qk (Sz) = Of (1 — O)'-* 

We then minimise the Kullback-Leibler divergence KL (Qx (Sk) ||P (Se {5;,5 4 k})) 

Qk (Sk) 
LO (S08 SITS, 5 FA) KL (Qi (Se) ||P (Sel {55,5 # &})) 

4; log Oe + (1 — 0) log(1 — Ox) — (« Ea E45) 
J 

+ log (1 + elet Ey 7) 

This amounts to minimising the difference between the left and right-hand side of the following 

equation 

log (1+ e™*E 45) > 0, (+2205) = 01 log0, —(1—O)log(1- 4) (5.8) 
J 

Equation (5.8) is equivalent to (3.18). Thus we have shown that the lower bound recursion is basically 

the mean field approximation of each node removed. 

Let us now return to our problem. We have seen in Chapter 3 that each recursive node elimination 

translates into an additional bound and consequently the approximation of the bound deteriorates 

with the number of such recursions. We therefore believe that the mean field bound for Zp, could be 

worse than the lower bound we have calculated by only suppressing 325 nodes. However, provided 

we set the parameters 6; to values which make the mean field bound as accurate as possible, we can 

choose the mean field bound to be the lower bound of Z,. 
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Figure 

  

5.3 shows the log-evidence P(D|x, 8) as a function of « and 3, computed using the expression 

in (5.1). ‘The evidence maximum corresponds to « ~ 3.0 and 3 ~ 0.35. Figure 5.4 shows that the 

log-evidence is between its lower and upper bounds. Note that this is practically an important piece 

of information as it enables us to be more confidant that the Monte Carlo estimate of the evidence is 

accurate, and highlights an important potential of the bounding techniques. 

450. 

500 

-550. 

~600. 

   
Figure 5.3: The log-P(D|x, 3) as a function of « and 8, computed using thermodynamic integration 
methods and mean field approximations, for two different views. The evidence maximum corresponds 
to Kk ~ 3.0 and 3 ~ 0.35 

     

    
Figure 5.4: The log-P(D|x, 8) obtained by thermodynamic integration methods and mean field ap- 
proximations (coloured surface) with respect to its lower and upper bounds (white surfaces) 
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5.3 Prior determination 

We have estimated the restoration parameters by considering that the prior P(«, @) gives equal prob- 

ability to the values of x and 9. We now consider the influence of P(x, 2) on the reconstructions. 

Consider first the prior P(@). Higdon [12] estimates the parameter ranges by computing for 

different values of @ the expected energy (V(S)) = sae I[S; 

random field prior P(S|9) defined in (1.6), where S is an uncorrupted image 

  

S]) with respect to the Markov 

(V(S)) = 0 YO TIS; = 5] P(SIB) (5.9) 
S inj 

The aim is to determine the parameter range for which the mean energy (V(S)) becomes maximal 

and stable. In other words, we have to determine the values of @ which are near the critical region 

where (V(S)) varies drastically. The intuitive meaning of (V(S)) is that the image contains large 

single coloured patches when (V(S)) is stable and maximal. Conversely, in the critical region, where 

(V(S)) is unstable, we have a patchy image with speckles. It is only near the critical region that we 

have large regular patches of black and white. Thus any regular image will favour @ near the critical 

region. 

Computing (5.9) is not possible explicitly and therefore requires Monte Carlo samples be obtained 

from the prior P(S|/9) over a set of values of 3. We use the Swendsen-Wang algorithm so as to compute 

(V(S)) for 22 values of @ in the range [0.15,0.95]. For each value, we generate eight image samples 

for which we compute the energies we then average to obtain the expected energy. 
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Figure 5.5: The expected energy (V(S)) with respect to 3. The curve changes drastically in the critical 
region [0.25, 0.50] where the energy is unstable. It becomes maximal and stable from 0.5 where regular 
images are likely to be obtained 

Figure 5.5 shows a steep slope in the range [0.25, 0.50]. It is exactly in this critical region that the 

images are very sensitive to small changes in 3. The energy is only stable from 0.5, which means that 
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regular and smooth realisations are likely to occur. Besides, this confirms the results in Chapter 2 

where we have seen that small values of 9 lead to speckled restorations. We therefore need to specify 

a prior that favours the values of near the critical region and disregards small values and those 

which lie in the critical region. Moreover, we wish to discard overly large values (@ > 0.9) because the 

results in Chapter 2 suggest that the images are patchy with large single coloured patches. Thus we 

choose a gamma distribution? 7(@,a,) which favours regular and smooth realisations around 0.62. 

Figure 5.6 plots the gamma distribution for a = 373 and \ = 1.689e — 3. 
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Figure 5.6: The gamma distribution +(@,q, A) for 8 (left), with a = 373 and A = 1.689e — 3. The 
gamma distribution 7(«,a,A) for « (right), with a = 540 and \ = 0.0042. (3, a, A) favours regular 
and smooth realisations around 0.62 and 7(«,@, ) favours regular images around 2.3 (corresponding 
to a noise level q = 0.24 

Let us tackle now the prior P(x) for the parameter «. The results in Chapter 2 show that « exerts 

less effect on the image restoration than 9. A choice of a uniform distribution for P(x) means however 

that each value of « has an equal probability on the restorations, which is not the case. Let us embody 

the qualitative assumptions about P(x) in terms of noise level q defined in (1.3). We believe that, 

in practice, we do not restore images which are very noisy or a little degraded. In other words, the 

degraded images may have a noise level ranging from 0.18 to 0.30 (we have seen in Chapter 2 that 

it is hard to restore noisy images with q = 0.30). Assume we deal with noisy images having a noise 

level from 0.18 to 0.30. In Chapter 2, we have seen that small values of the noise level q (q < 0.18) 

lead to speckled restorations. The main reason is that, by using small values of q, we consider that we 

are restoring images that are not really degraded so that some speckles are not regarded as noisy and 

hence are not cleaned up. Conversely, for large values of q (q > 0.3), we consider that we are restoring 

?The gamma distribution is defined as follows: for x € [a,8], a and \ two real numbers, 
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very degraded images. Consequently, all black patches are cleaned up and restored images are likely 

to contain large black and white regions. However, if the original image has some small patches, then 
overly large values of q are not suitable for the restoration of this kind of image. ‘Therefore, regular 
realisations tend to occur in the range (0.18, 0.30] for q or [1.6,3.0] for «. Thus we choose P(sc) to be 

a gamma distribution 7(«,a, A) which favours regular and smooth images around « = 2.3, as shown 

  

in Figure 5.6. 

We have seen in Chapter 1 that the most probable values for « and 3 are found by maximising 

the posterior distribution P(x, 3[D) defined in (1.12) or the product of the evidence P(D|x, 3) and 

the priors P() and P(). Figure 5.7, which plots the bounded log-posterior P(, 3|D) with respect 

to ® and 3, shows that, unfortunately, it is not possible to determine the parameter ranges where 

P(x, 3|D) is maximal because the large gap between the bounds makes the estimation of the peak 

impossible. 
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Figure 5.7: The bounded log-posterior P(#, 3|D) as a function of « and 3 8 8 

Figure 5.8 plots log P(x, 3|D) as a function of « and 3, computed using thermodynamic integration 8! F Ss I Ss y 8! 

methods and mean field approximations. The maximum occurs for « ~ 2.4 and @ ~ 0.55, as shown 

  

a in Figure 5.9. Comparison with Figure 5.3 shows that the most probable values have shifted when 
the prior P(x, 8) is taken into account. Figure 5.10 shows that the restored image is speckled when 

  

3.0, 8=0.. 

  

5. This is not surprising since we have seen that large values of « and small values of 3 

  

lead to speckled restorations. However, the image is regular and rather smooth when « = 2.4, 8 = 0 
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In fact, we have seen that regular and smooth images are likely to occur when ? is near the critical 

region and « around 2.3. When we have determined the priors P(«) and P(j), we have favoured 

consistent images for 3 around 0.62 and & around 2.3. We therefore believe that regular and smooth 

images (restored from the noisy image presented in row (b) in Figure 2.3) occur for 3 in the range 

(0.55, 0.62] and & ~ 2.4 corresponding to a noise level q ~ 0.23. Note that, in Chapter 2, we have 

obtained a relevant restored image for « = 2.4 and 3 = 0.59. 
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Figure 5.8: The log-posterior P(x, 3|D) as a function of « and 2, computed using thermodynamic 
integration methods and mean field approximations, for two different views. The maximum occurs 
for KY 2.4 and 8 ~ 0.55 
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Figure 5.9: This shows the log-posterior P(#,8|D) as a function of « for 3 = 0.55 (left), and the 
log-posterior P(x, 8|D) as a function of @ for « = 2.4 (right) 

  

               
st ! ef es 

Figure 5.10: The original image (first from the left), the restored image (second) for « = 3.0, 8 = 0.35 
when P(x, /) is disregarded, the restored image (third) for « = 2.4, = 0.55 when P(x, 9) is taken 
into account, the restored image (fourth) obtained in Chapter 2 for « = 2.4, = 0.59 
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5.4 Comments 

The first remark is that the parameter priors have a strong influence on the image restoration process. 

The information supplied by the evidence does not provide reliable restoration parameters when the 

prior assumptions about the noise and image generation process are poor. Indeed, when the parameter 

priors are supposed to exert no effect on the reconstructions, the evidence optimal parameters lead to 

speckled images, but if they are well matched to reality, consistent images should be obtained. 

The second remark is that the bounding techniques do not enable us to determine the restoration 

parameters. The main reason stems essentially from inaccurate estimates of the upper bound. Indeed, 

we have resorted to a linear method which involves no optimisation since a consistent upper bound 

proves to be difficult to achieve. Accurate variational recursive node elimination techniques do not 

work well as the structure of the pixel graph becomes more complicated with each recursion. This has 

a detrimental effect on our ability to use exact methods to compute the evidence on the remaining 

subgraph. 
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Conclusion 

This project has dealt with the problem of restoring images in a Bayesian framework, in which 

prior beliefs about the underlying clean image generation process and the noise or corruption process 

are explicitly assumed. The quality of the resulting restored image depends on the particular prior 

restoration parameters that are chosen and, typically, these will not be known. It is important, 

therefore, to have a methodology capable of dealing with this parameter uncertainty. Again, this can 

be framed within the Bayesian formalism, and requires the computation of normalising constants, or 

the evidence for some particular restoration parameters. 

Unfortunately, the computation of the most likely restoration parameters, by maximising the 

evidence, is a computationally intractable problem. If this were to be computed in a naive way 

by simply summing over all the possible image configuration states, then the time complexity of 

calculating the evidence is exponential in the number of pixels in the image. The main emphasis 

of this project was to develop and apply novel techniques to be able to estimate this evidence in a 

controlled manner. Typically, work in the past has used Monte Carlo techniques to approximate this 

quantity, although this is not highly satisfactory as such approximations are essentially uncontrolled. 

That is, there is no guarantee that the Monte Carlo estimate of the parameter evidence will be in any 

way close to the true value. 

As an integral part of this project, we have evaluated some of the more common Monte Carlo 

techniques, in particular the Gibbs and Metropolis algorithms. It was also our aim to evaluate 

the much less well known Swendsen Wang algorithm which has been shown to be a spectacular 

improvement on previous algorithms in the statistical physics of Ising models - closely related to the 

image restoration problem. We have found that the S-W method tends to be a much faster sampling 

procedure than the two single site update algorithms that we have examined. Indeed, it proves to be 

at least an order of magnitude more efficient at moving quickly through the state space. However, we 

have also found that the tendency of the S-W algorithm to bind together and flip clusters of identical 

pixels can be disadvantageous in restoring the fine details of the image. Perhaps a hybrid approach 

in which a sequence of SW updates followed by a sequence of Gibbs updates would provide a useful 
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compromise between efficiency and thoroughness of sampling. 

Recently, within the graphical models community, analytic techniques have been applied to solving 

problems involving the computation of normalising constants. It has been the central aim of this 

project to see if similar techniques could bear fruit in the image restoration problem. The aim was, 

rather than to resort to uncontrollable Monte Carlo methods, to rigorously bound the evidence from 

both above and below. Clearly this is not a trivial problem and it can be shown that even bounding 

the evidence to a desired accuracy is NP-complete [1]. However, we have successfully implemented a 

recursive node elimination scheme that preserves both upper and lower bounds on the evidence. The 

node elimination scheme aims to reduce the pixel graph into a subgraph for which the evidence can be 

calculated in time polynomial in the number of remaining pixels. For each node removed, the lower 

bound introduces an extra variational parameter so that, for large images, obtaining the best lower 

bound potentially involves optimisation over a large dimensional space (of the order of 300 for an 

image of 32 by 32 pixels). Whilst this is, in principle, an attractive method, we have found that this 

amount of computational effort is beyond our current means and we have resorted to searching for 

a suboptimal solution in a lower dimensional space of variational parameters. Indeed, for simplicity, 

we have chosen to find the best one-dimensional optimal parameter set that gives a lower bound. 

There is little difficulty for the user to decide, beforehand, roughly the computational effort that is 

affordable, and then to search for a suboptimal solution for the lower bound that is consistent with 

these computational requirements. 

A tight upper bound proves to be much more difficult to achieve. Variational recursive node 

elimination techniques do not work well in this case as the structure of the pixel graph changes with 

each recursion. This has a detrimental effect on our ability to find an exact algorithm to compute 

the evidence on the remaining subgraph. We therefore resorted to a trivial linear upper bound that, 

involves no optimisation. This is potentially the reason for the later difficulty in estimating the best 

restoration parameters based on the bounded evidence, since a poor upper bound will make estimating 

a peak in the evidence impossible. In principle, it is possible that a different approach to bounding 

the evidence from above which avoids this trivial linear bound could be found. Indeed, a combination 

of exact and approximate methods may be the way forward. One reason for this is that mean field 

bounds are expected to work best when the pixel graph is densely connected. For our lower bound, 

which is essentially a type of mean field bound, the graph is not particularly densely connected, so 

that there may be improvements possible from more sophisticated bounding techniques. For the upper 

bound, however, using a variational node elimination technique would increase the connectivity of the 

remaining subgraph. It should therefore be the case that approximating the remaining evidence on 

the densely connected subgraph will be well suited to a mean field analysis. The study of such hybrid 

methods could therefore be very fruitful. 

In conclusion, parameter estimation is a hard problem. However, we have shown that the applica- 

tion of bounding techniques to the problem of dealing with uncertainty in the parameters controlling 

Bayesian image restoration is feasible. A combination of exact and approximate techniques may be 
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the best. way forward since exact bounds from both above and below have proved to be difficult to 

implement and computationally expensive. Nevertheless, we believe that such bounding approaches 

are a great improvement of previous estimates based solely on Monte Carlo techniques, and we expect 

that this will remain an active research area for some time to come. 
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