
A Critical Comparison of ICA 

Algorithms 

PIERRE CLAPIER 

MSc (by Research) in Pattern Analysis and Neural Networks 

ASTON UNIVERSITY 

September 2001 

This copy of the thesis has been supplied on condition that anyone who 
consults it is understood to recognise that its copyright rests with its 
author and that no quotation from the thesis and no information derived 
from it may be published without proper acknowledgement.



ASTON UNIVERSITY 

A Critical Comparison of ICA 
Algorithms 

PIERRE CLAPIER 

MSc (by Research) in Pattern Analysis and Neural Networks, 2001 

Thesis Summary 

Independent component analysis (ICA), is a statistical method for transforming a 
multi-dimensional random vector into components that are statistically as indepen- 

dent from each other as possible. Recently, in a paper by H. Attias [1], a model called 

independent factor analysis trained by an Expectation Maximisation (EM) algorithm 
has been proposed which seems to supersede all earlier work, since it can cope with 

arbitrary source distributions and non-square mixing matrices. In this thesis we will 

first explain what ICA is, what are the different ways to solve the ICA problem and 

present some algorithms with a special highlight on IFA. Then we will propose some 

methods to reduce the dimensionality and to estimate the noise using PCA and Factor 

Analysis (FA) tools. Finally we will compare FastICA [13] and IFA, present a method 

to solve the ICA problem in the case of many sensors and significant noise, then apply 

this method on a concrete problem: MEG analysis. 

Keywords: Independent Component Analysis, blind separation of signals, entropic 
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Chapter 1 

Introduction 

A central problem in neural network research, as well as in statistics, is to find 

a suitable representation of the data. Let us denote by x an m-dimensional random 

variable; the problem is then to find a linear transformation, so that the n-dimensional 

transform s = (51, 59, $3,-.., 8m)? defined by 

s= Wx (1.1) 

has some desirable properties. 

Several principles and methods have been developed to find a suitable linear trans- 

formation. These include principal component analysis (PCA), factor analysis and 

projection pursuit. 

Recently, a particular method for finding a linear transformation, called indepen- 

dent component analysis (ICA), has gained wide-spread attention. As the name im- 

plies, the basic goal is to find a transformation in which the components s; are statis- 

tically as independent from each other as possible. ICA can be applied for example 

to blind source separation (BSS), in which the observed values of x correspond to a 

realization of an m-dimensional discrete-time signal x(¢),¢ = 1,2,...,7 . Then the 

components s;(t) are called source signals.



CHAPTER 1. INTRODUCTION 

Basically, ICA was developed to deal with problems that are closely related to 

the cocktail-party problem. Imagine that you are in a room where two people are 

speaking simultaneously. There are two microphones in different locations. They give 

two recorded time signals x(t) and x(t), with t the time index. Each of these recorded 

signals is a weighted sum of the speech signals emitted by the two speakers, s;(t) and 

S9(t). This correspond to the linear system: 

21(t) = ans; + ai252 

q(t) = ans; + a2280, (1.2) 

where @11, @12, @2; and ag2 are some parameters that depend on the distances of the 

microphones from the speaker. 

So we chose a problem which correspond to this cocktail-party model and has the 

characteristics of many ICA problems. We concentrate on the application of ICA to 

MEG analysis. This is typical to many practical problems in that the data have sensor 

noise, m is large and we believe that n < m. 

In order to reduce the dimension of the sensors, past studies have just used the 

largest few eigenvalues during the whitening stage (see appendix A.2). However, it’s 

often difficult to find a principled estimate of the number of sources only taking into 

account eigenvalues of the sensor data. Moreover in the MEG problem, many signals 

we are interested in may have small eigenvalues. 

So we need methods to: 

e determine the number of underlying source components, 

e reduce the dimensionality of the signals without using only largest: eigenvalues, 

e separate the signals in a reasonable time. 

10



CHAPTER 1. INTRODUCTION 

Furthermore, the whole recovery of the sources process, should reduce the noise. 

In this paper we first review the theory and methods for ICA (chapter 2), in chapter 

3 we describe the model and the learning rules of Independent Factor Analysis [1] and 

in chapter 4 we discuss some important questions for the application of ICA to MEG 

analysis: how to estimate the number of sources? is it possible to use IFA when we 

face large number of sources? which pre-whitening shall we use for FastICA? 

‘Then in chapter 5 we propose a method to perform ICA when n is large and the 

sensor noise significant, to apply it to MEG analysis in chapter 5.3. 

11



Chapter 2 

Independent component analysis 

2.1 Definitions of linear independent component 

analysis 

Definition 1 (Noisy ICA model) ICA of a random vector x consists of estimating the 

following generative model for the data: 

x=As+n (2.1) 

where the latent variables (components) ; in the vector s = (81,82, 83,-..;8n)’ are 

assumed to be independent. The matrix A is a constant m xn “mizing” matrix, and 

7 is a m-dimensional random noise vector. 

x is known as the vector of sensors and s the vector of sources. This model is used 

in the algorithm of H. Attias ({1] and [2]), but many of the earlier papers consider a 

noise-free model 

x= As, (2.2) 

Two key issues of ICA are the definition of a measure of independence and the 

design of algorithms to find the change of basis (or separating matrix) A optimising 

this measure. 

12



CHAPTER 2. INDEPENDENT COMPONENT ANALYSIS 

2.2 Identifiability of the ICA model 

The identifiability of the noise-free model as been discussed in [8] and can be assured 

e all the independent components s;, with the possible exception of one component, 

must be non-Gaussian (see appendix B), 

e the number of observed linear mixtures m is at least as large as the number of 

independent components n, i.e., m > n, 

e the matrix A must be of full column rank. 

Usually it’s also assumed that x and s are centred. Moreover, as we can only 

determine the columns of A up to a multiplicative constant, for mathematical con- 

venience, one usually defines that the independent components s; have unit variance. 

This makes the independent components unique, up to a multiplicative sign (which 

may be different for each component). 

Furthermore, we should notice that the definitions of ICA given above imply no 

ordering of the independent components, which is in contrast to PCA. 

Finally, some algorithms require square mixing matrices, n = m (it’s the case of 

the FastICA algorithm ({13] and section 2.4.2)). For n = m, once we get the mixing 

matrix A, we can compute its inverse, W and obtain the independent components: 

B= Wx, (2.3) 

W is the unmixing matrix. 

Mixing in realistic situations, however, generally includes noise and different num- 

bers of sources and sensors. As the noise level increases, the performance of such 

a model deteriorates and the separation quality decreases. More importantly, many 

situations like MEG analysis have a relatively small number of sources but many sen- 

13



CHAPTER 2. INDEPENDENT COMPONENT ANALYSIS 

sors, the square mixing matrix assumption is not realistic. Hence if we use FastICA or 

JADE, we will need methods to reduce the dimensionality of the data before separating 

them with these algorithms. 

2.3 Measures of independence 

2.3.1 Introduction 

Estimation of the independent component analysis model is usually performed by 

formulating an objective function and then maximising or minimising it. Often such a 

function is called a contrast function, but some authors reserve this term for a certain 

class of objective functions [8]; the terms loss function or cost function are also used. 

2.3.2 Measures of non-Gaussianity 

The central limit theorem states that the distribution of a sum of independent 

random variables with a finite mean and variance tends toward a Gaussian distribution 

as the number of variables increases. Thus a sum of two independent random variables 

usually has a distribution that is closer to Gaussian than either of the two original 

random variables. 

For simplicity let us assume that all the independent components have identical 

distributions. To estimate one of the independent components, we consider a linear 

combination of the «; ; let us denote this by y = w’ x, where w is a vector to be deter- 

mined. If w was one of the rows of the unmixing matrix W, this linear combination 

would equal one of the independent components s;. 

Now let z = A?w. Then we have y = w’x = w’ As = z's. y is thus a linear 

combination of the s;. Since a sum of even two independent random variables is more 

Gaussian than the original variables, z7s is more Gaussian than any of the s; and 

becomes least Gaussian when it in fact equals one of the s;. In this case obviously, 

only one of the elements z; of z is non-zero (note that the s; here are assumed to have 

14



CHAPTER 2. INDEPENDENT COMPONENT ANALYSIS 

identical distributions). 

Therefore, we could take as w a vector that maximises the non-Gaussianity of 

w’x. Such a vector would necessary correspond to a z which has only one non-zero 

component. This means w?x = 27s equals one of the independent components. 

To find several independent components, we need to find all the maxima (2n as 

the independent components can be estimated only up to a multiplicative constant). 

This can be performed as the independent components are uncorrelated, we constrain 

the search to the space that gives estimates uncorrelated with the previous one. This 

corresponds to orthogonalisation in a suitable space which is done during the whitening 

stage (cf appendix A.2). 

It is interesting to show the link between projection pursuit and this approach to 

solve the ICA model. Projection pursuit [16, 15, 25, 21] is a technique developed in 

statistics for finding “interesting” projections of the multidimensional data. In basic 

(1-D) projection pursuit, we try to find the directions such that the projections of 

the data in those directions have interesting distributions, i.e. display some structure. 

It has been argued by Huber [25] and by Jones and Sibson [21] that the Gaussian 

distribution is the least interesting one and that the most interesting directions are 

those that show the least Gaussian distribution. This is what we do to estimate the 

ICA model. 

Kurtosis 

A classical measure of non-Gaussianity is kurtosis (the fourth order cumulant): 

kurt(y) = E{y*} — 3(E{y?})?. (2.4) 

Actually, when we assume that y is of unit variance, the right-hand side simplifies to 

E{y*} — 3. 

Random variables that have a negative kurtosis are called sub-Gaussian, and those 

15



CHAPTER 2. INDEPENDENT COMPONENT ANALYSIS 

with positive kurtosis are called super-Gaussian. The Gaussian have zero kurtosis (see 

figure 2.1). 

  

  

Figure 2.1: The density of the Laplace distribution which is a typical super-Gaussian 
distribution and the Gaussian distribution in dotted line . 

The main problem is that kurtosis is very sensitive to outliers and is therefore not 

a robust measure of non-Gaussianity. 

Entropy and Negentropy 

The entropy of a random variable can be interpreted as the degree of information 

that observation of the variable gives. Entropy H can be generalised for continuous 

random variables and vectors (differential entropy): 

H(y) = - [1 log f(y)dy. (2.5) 

where y is a random vector with density f(y). 

A fundamental result of information theory is that a Gaussian variable has the 

largest entropy among all random variables of equal variance [9]. Thus with entropy it 

is possible to construct measures of non-Gaussianity; the FastICA (see section 2.4.2) 

algorithm defines negentropy that is zero for a Gaussian variable and always nonnega- 

16



CHAPTER 2. INDEPENDENT COMPONENT ANALYSIS 

tive: 

J(y) = H(Ygauss) — H(y), (2.6) 

where Ygauss iS a Gaussian random variable with the same covariance matrix as y. 

This is computationally very difficult to obtain, so in the scientific literature we can 

see approximations for a random variable, of the form: 

Ja(y) = |Ey{G)} — E,{G)}P, (2.7) 

where G is a sufficiently smooth function, v a standardised Gaussian random variable, y 

is assumed to be normalised to unit variance, and the exponent p = 1 or 2 typically. The 

choice of G depends on the statistical properties of the estimator, and the knowledge 

of the components. 

2.3.3 Minimisation of mutual information 

Another approach to ICA estimation is minimisation of mutual information. We 

define the mutual information I between m scalar random variables, y;,i = 1,...,m as 

follows: 

11, ¥2,-++1¥m) = >> H(yi) — Hy). (2.8) 
i=l 

An important property of mutual information [9, 26] is that we have for an invertible 

linear transformation y = Wx : 

T(y1, Ya,- ++) Yn) = So H(y) — H(x) — log | det W]. (2.9) 
i=1 

Then, if the y; are uncorrelated and of unit, variance, this implies that E{yy’} =I 

which gives det W (when E{yy7} = I) is constant as: 

det I = 1 = (det W E{xx7}W7*) = (det W) (det(E{xx"})) (det W"). 

17



CHAPTER 2. INDEPENDENT COMPONENT ANALYSIS 

Moreover for y; of unit variance, entropy and negentropy differ only by a constant and 

the sign. We obtain: 

U(¥1,Y2)+++5Yn) =C — D> I(yi), (2.10) 
1 

where C is a constant that does not depend on W. 

Since mutual information is the natural information-theoretic measure of the in- 

dependence of random variables, we can use it as the criterion for finding an ICA 

transform. In this approach we define the ICA of a random vector x as an invertible 

transformation, where the unmixing matrix W (s = Wx) is determined so that the 

mutual information of the transformed components s; is minimised. 

Tt was shown in [32] that ICA estimation by minimisation of mutual information is 

equivalent to maximising the sum of non-Gaussianities of the estimates, when the esti- 

mates are constrained to be uncorrelated. So we can use the simpler form of Eq(2.10) 

instead of Eq(2.9) when the constraint of uncorrelatedness is satisfied. Thus the for- 

mulation of ICA as mutual information optimisation gives an other justification of the 

idea of finding maximally non-Gaussian directions discussed in section 2.3.2. 

2.3.4 Maximum Likelihood Estimation and Infomax Principle 

A very popular approach for determining the ICA model is maximum likelihood 

estimation, which is closely connected to the infomax principle. 

It is possible to formulate directly the likelihood in the noise-free ICA model 

and then estimate the model by a maximum likelihood method. Denoting by W = 

(W1,We,...,Wn)’ the unmixing matrix such as s = Wx, the log-likelihood takes the 

form (see [10]): 
Tn 

L= >) ologfi(wi? x(t) + T log | det W| (2.11) 
i 1 

where the f; are the density functions of the s; (here assumed to be known), and the 

18



CHAPTER 2. INDEPENDENT COMPONENT ANALYSIS 

x(t), t = 1,...,T are the realizations of x. One can maximises the likelihood using 

gradient descent or Expectation Maximisation (EM) algorithms. 

Another related function was derived from a neural network viewpoint. This was 

based on maximising the output entropy (or information flow) of a neural network with 

non-linear outputs. Assume that x is the input to the neural network whose outputs 

are of the form g;(w;x), where g; are some non-linear scalar functions, and the w; are 

the weight vectors of the neurons. One then wants to maximise the output entropy: 

Ly = H(gi(wi"x), ---,8n(Wn’x)). (2.12) 

If the g; are well chosen, this framework also supports estimation of the ICA model. 

Indeed, it was proved [4][27] that the principle of network entropy maximisation, or 

“infomax”, is equivalent to maximum likelihood estimation. This equivalence requires 

that the g; used are chosen as the cumulative distribution functions corresponding to 

the densities fj, i-e., gi'(.) = fi(.). 

The problem with maximum likelihood estimation is that the densities f; must be 

estimated correctly. They need not be estimated with any great precision: in fact it is 

enough to estimate whether they are sub- or super-Gaussian. But if the information 

on the nature of the independent components is not correct , ML estimation will give 

completely wrong results. 

In contrast, using reasonable measures of non-Gaussianity with algorithms based 

on Entropy, this problem does not usually arise. 

However, people have introduced more flexible density models that support max- 

imum likelihood estimation with little or no prior knowledge of the densities ({1] and 

{7]), some other models are quite successful. 

19



CHAPTER 2. INDEPENDENT COMPONENT ANALYSIS 

2.4 Algorithms to find the change of basis 

In the scientific literature, it was shown that the basic choice of the ICA method 

seems to reduce to two questions. First the choice between estimating all the inde- 

pendent components at the same time (multi-unit), and estimating only a subset of 

them, possibly one-by-one (one-unit). Most ICA research has concentrated on the first 

option, but in practice, it seems that the second option is very often more interesting, 

due to computational considerations. Second, one has the choice between on-line algo- 

rithms and batch-mode (or block) algorithms. Again, most research has concentrated 

on the former option, although in many applications, the latter option seems to be 

preferable, again for computational reasons. 

In the on-line case, most algorithms use stochastic gradient methods. In the case 

where all the independent components are estimated at the same time, the most popular 

algorithm is natural gradient ascent or the likelihood, or related contrast functions, like 

infomax. 

In the one-unit case, straightforward stochastic gradient methods give on-line algo- 

rithms that maximise negentropy or its approximations. 

In the case where the computations are made in batch-mode, much more efficient 

algorithms are available (FastICA [13], tensor based methods [8] [6]). 

One more choice is possible between data-based and statistic-based techniques. In 

the data-based option, successive linear transformations are applied to the data set 

until the contrast function is optimised. The alternative is to summarise the data set 

by a smaller set of “statistics” which are computed once and for all from the data 

set. The algorithm then estimates a separating matrix as a function of these statistics 

without accessing the data (this option is the one used in the JADE algorithm). 

We now discuss the three most commonly used and provided ICA algorithms: 

JADE, FastICA and IFA. 

20



CHAPTER 2. INDEPENDENT COMPONENT ANALYSIS 

2.4.1 JADE algorithm (JF. Cardoso) 

JADE [5] (Joint Approximate Diagonalization of Eigen-matrices) is a 4th-order 

statistic-based algorithm which can be summarised as: 

1. Initialisation. Estimate a whitening matrix W and set z = Wx = WAs. 

2. Form statistics. Estimate a set {Q?} of cumulant matrices of z (i 

  

ey 

3. Optimise an orthogonal contrast. Find the rotation matrix V such that the 

cumulant matrices are “as diagonal as possible” i.e., solve 

V =arg min Y;, Off (V7Q?V). 

4. Separate. Estimate A as A = VW and/or estimate the components § = A~!x = 

V"z. 

Off(F) is defined as the sum of the squares of the non-diagonal elements, 

on(F) 2 0 (fis)?, (2.13) 
fj 

and for any n x n matrix Mj, the cumulant matrices are defined by: 

or= uAU' A= Diag(kurt(s;)ui7Mjuy, ..., kurt(s;,)un?Mjun) (2.14) 

with U = WA = (u,..., Un). 

The 4th-order techniques described in [5] are not adaptive to the distribution of the 

sources (we don’t need to know the source distribution) but the main problem is that 

they have potential sensitivity to outliers (see [5]). Moreover JADE is impractical for a 

large number of components as the estimation of the cumulant matrices is proportional 

ton x n. 

21



CHAPTER. 2. INDEPENDENT COMPONENT ANALYSIS 

2.4.2 FastICA algorithm (A. Hyvarinen) 

In many practical situations, we don’t need on-line algorithms whose convergence is 

often slow. FastICA is a batch algorithm based on a fixed point iteration [13]. At first 

the contrast function was kurtosis and later it was generalised for other contrast func- 

tions. For the pre-processed data (see appendix A), the one-unit FastICA algorithm 

has the following form: 

w(k) = E{x g(w(k — 1)7x)} — E{e’(w(k — 1)7x)}w(k — 1), (2.15) 

where the weight vector w is also normalised to unit length after every iteration, and 

the function g is the derivative of the function G used in the general contrast function 

Eq(2.7). 

Instead of using every data point immediately for learning, FastICA uses sample 

averages computed over larger samples of the data. The convergence speed of the fixed 

point algorithm is clearly superior to the usual algorithms. Moreover FastICA can be 

used both to optimise one-unit and multi-unit contrast functions which is rather slow, 

using the following iterative algorithm: 

1. Let W = W/,/|| WCW? || 

Repeat 2. until convergence : (2.16) 

2. Let W = sw = swow"w 

where C = E{xx?}. 

The most commonly used version of the FastICA algorithm is the one-unit algo- 

rithm as it is much faster than many ICA algorithm. Therefore we will only talk about 

the one-unit FastICA algorithm in the following sections. 

From this point, the reader must be aware that FastICA provides a fast and fairly 

accurate algorithm to perform ICA, but: 
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CHAPTER 2. INDEPENDENT COMPONENT ANALYSIS 

1. the mixing matrix must be square, it implies that we previously reduced the 

dimensionality of the data, 

2. it doesn’t estimate the density model which means that to recover the sources 

we only use the unmixing matrix on the sensors, it won’t reduce the noise, 

3. the algorithm is supervised as we have to choose the contrast function, some 

functions fit to super-Gaussian source distribution, other to sub-Gaussian dis- 

tribution. However, there is a general purpose contrast function when we don’t 

know the source densities. 

2.4.3 Independent Factor Analysis method 

(H. Attias) 

Independent factor analysis (IFA) [2] is a two-step procedure where each source is 

described by a mixture of Gaussians. In the first step, the source densities, mixing 

matrix and noise covariance are estimated from the observed data by maximum like- 

lihood. For this purpose we use an expectation-maximisation (EM) algorithm, which 

performs unsupervised learning of an associated probabilistic model of the mixture. In 

the second step, the sources are reconstructed from the observed data by an optimal 

non-linear estimator. 

Though, if we model each source with a mixture of n; Gaussians, for each step of the 

EM algorithm, we have to compute []/_; m; components, therefore when the number 

of sensors increases the algorithm becomes intractable. A variational approximation is 

derived for this case. 

I seems that this algorithm is superior to ICA because: 

e it models noisy data and non square mixing matrix, 

© it gives a framework for PCA, factor analysis (FA) and ICA since it reduces to 

FA when the sources become Gaussian, and to an EM algorithm for PCA in the 
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zero-noise limit (see section 4.1.1), 

e it can learn arbitrary source densities from the data. 

That’s why we decided to compare this method with a more “classical” algorithm: 

FastICA, in order to check whether this algorithm is as appealing as it seems to be. 

The next chapter describes the algorithm in more detail. 
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Chapter 3 

Independent Factor Analysis 

3.1 The Generative model 

In the noisy case, we’ve seen that the generative model is: 

x=As+ (3.1) 

We model the sources s; as m independent random variables with arbitrary distribution 

p(s;|0;), where the individual i-th source density is parameterised by the parameter 6;. 

The noise 7 is assumed to be Gaussian with zero mean and full covariance matrix A, 

allowing correlations between sensors. Hence 

p(n) = G(n, A) (3.2) 

with G(x — ju, ©) = | det(27¥)|-!/? exp[—(x — x)" O-1(x — )/2]. We denote the inde- 

pendent factor (IF) parameters collectively by 

=(A,A,8). (3.3) 
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The resulting model sensor density is 

p(x, 2) = J apex) (s) (s) = [ e26~as,a)[To(8) . (3.4) 

3.1.1 Source Model 

We need to choose a parametric form for p(s;), which 

is sufficiently general to model arbitrary source densities, 

allows the integral in Eq(3.4) to be performed analytically. 

These conditions can be satisfied by using a mixture of Gaussian (MOG) model, so 

P(si{i) => Wig G(Si = Hig: Visas)» 9% = (Wisgss Migs Ysa bs (3.5) 

where q; runs over the n; Gaussians of source 7. For this mixture to be normalised, the 

mixing proportions for each source should be positive and sum up to unity: > a Mig = 

is 

Viewed in m-dimensional space, the joint source density p(s) formed by the product 

of the one-dimensional MOG’s (3.5) is itself a MOG. Its collective hidden states 

a= (a1,---,%n) (3.6) 

consist of all possible combinations of the individual source states g;. Each state q 

corresponds to an m-dimensional Gaussian density whose mixing proportions wq, mean 

/4q and diagonal covariance matrix Vq are determined by those of the constituent source 

states, 

m 

a= [wie =the tmens Ba = (thgis-+stimam)» Va = diaglt1,o5-++1Yman): 
(3.7) 
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Hence we have 

p(s|0) = | [ (sil) = S> waG(s — Hq, Va), (3.8) 
isl a 

where the Gaussians factorize, G(s — jug, Vq) = []; 9(si — Mig, Vig,), and the sum over 

collective states q represents summing over all the individual source states, 7 

Ee ee 

q 

3.1.2 Sensor Model 

With the generative model in Eq(3.1) combined with the source model Eq(3.8) and 

the noise model Eq(3.2), we deduce that 

p(x|s) = G(x — As, A). (3.9) 

It is important to emphasise that the IF generative model is probabilistic, it de- 

scribes the distribution of the unobserved sources and observed sensor signals rather 

than the actual signals s and x. This model is fully described by the joint density of 

the state q, the sources s and the observed data x, 

p(a; 8, x|) = p(q) p(sla) p(x|s), (3.10) 

it follows that 

p(xl) = oh asp(a) pla tas) = 0 w(t), (3.11) 

where, thanks to the Gaussian forms, the integral over the sources can be performed 

analytically to yield 

p(xla) = G(x — Apa, AVaA? + A). (3.12) 
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3.2 Learning the IF model 

We choose the Kullback-Leibler (KL) distance as an error function to measure the 

difference between our model sensor density p(x|{2) Eq(3.11) and the observed density 

p°(x) 
p°(x) 
P(x|S2) 

where the operator E performs averaging over the observed x. 

  Eo) = [ &v"e0 ee = — Blog p(x|0)] — Hye (3.13) 

The error Eq(3.13) consists of two terms: the first is the negative log-likelihood 

of the sensors given the model parameters Q; the second Ho, the sensor entropy is 

independent of 2. Thus minimising € is equivalent to maximising the likelihood of the 

data with respect to the model. 

A straightforward way to minimise the error Eq(3.13) would be to use the gradient- 

descent method where, starting from random values, the parameters are incremented 

at each iteration by a small step in the direction of the gradient 0€ /OQ. However, this 

results in rather slow learning. Instead we shall employ the expectation-maximisation 

approach to develop an efficient algorithm for learning the IF model. 

We implement the EM algorithm by noting that, in addition to the likelihood of 

the observed sensor data Eq(3.13), one may consider the likelihood of the complete 

data, composed of both the observed data and the missing data, i.e., the unobserved 

source signals and states. Each iteration then consists of two steps: 

(E) Calculate the expected value of the complete-data likelihood, given the observed 

data and the current model: F(!,Q) 

(M) Minimise F(Q',Q) with respect to Q to obtain the new parameters. 

It was proved in [2] that the new parameters obtained from the M-step satisfy 

£(Q) < F(M,Q) < FO’) = (0, (3.14) 

showing that the current EM step dces not increase the error. 

28



CHAPTER 3. INDEPENDENT FACTOR ANALYSIS 

We obtain the learning rules in terms of the old parameters (' for the mixing matrix 

and noise covariance: 

> 1 Ex(s"|x)(E(ss?|x))~?, 

Exx’ — Ex(s"|x)A’, (3.15) 

whereas the rules for the source MOG parameters are 

ss Pla) 
(Ry = ee 

P(ail) ' 
ee Enis) _ 

ie Rename, 
Wig, = Ep(ailx)- (3.16) 

Where (s|x) is an x 1 vector denoting the conditional mean of the sources given the 

sensors; the n x n matrix (ss”|x) is the source covariance conditioned on the sensors. 

E performs averaging over the observed x. 

In addition, we maintain the variance of each source at unity by performing the 

following scaling transformation at each iteration. 

a ny 

oj= YS wij (Via; + Hjq;) — On W3,a5Fi.aj) > 
% % (3.17) 
Hina3 Yin5 

Hj,q3 > evans = ae Aig > Aijo;- 
5 9 

    

3.3 Recovering the sources 

We now have all the IF parameters, we can reconstruct the sources, but a perfect 

reconstruction is only possible when there is no noise (A = 0), and the mixing matrix 

is invertible. Then, the estimated sources are § = (A7 A)~!ATx. 

However, generally, an estimate of the sources must be made. In the following, we 

discuss two of them: least mean squares (LMS) and maximum a-posteriori probability 
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(MAP). Both are non-linear functions of the data, but each satisfies a different optimal- 

ity criterion. For Gaussian sources, they both reduce to the same estimator of ordinary 

Factor Analysis (FA), but for non-Gaussian sources, LMS and MAP estimators differ 

and neither has an a priori advantage over the other. 

3.3.1 LMS Estimator 

The least mean square estimator minimises E(8—s)? and is equal to the conditional 

mean of the sources given the observed sensors, 

BMS) = (Gale) = if Mapai 0). (3.18) 

This is equal to 

'M5(x) = 5 plalx)(Agx +P), (3.19) 
q 

where Ag —SgAPA@ ba 0aVq (fq, andog = (ALAM As Va) -) 

3.3.2 MAP Estimator 

The maximum a-posteriori (MAP) estimator finds the sources values that maximise 

the source posterior density p(s|x) . For a given observation x, maximising the posterior 

is equivalent to maximising the joint density p(s,x) or its logarithm 

gMAP (x) = arg max|log p(x|s) + a log(s;)]. (3.20) 
at 

A simple way to compute this estimator is iterate the method of gradient ascent, 

for each data vector x, with 

68 = nATA7!(x — A8) — 1 4(8), (3.21) 
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where 7) is the learning rate and 

Blog psi - Bfa ore == pu a (3.22) 
onda, = Ving, 

A good initialisation is given by the pseudo inverse relation §(x) = (A7A)~!ATx. 
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Chapter 4 

Towards a Practical ICA Approach 

To perform ICA on MEG data (which are the real world data we use in section 

5.3), we must first estimate the number of sources. Then we can use IFA or FastICA 

to recover the sources. The issues we shall address in this chapter are: 

1. Determine the number of sources of the MEG data. This is important first 

step, if n is overestimated, we may have source signals that will over fit the 

real sources, the sources may be badly recovered and we will have some additive 

signals, mixture of the original sources. If n is underestimated some source signals 

won't obviously be recovered. 

2. The choice of the ICA algorithm when we face many sources: FastICA or IFA? 

3. The pre-processing of the data that we shall use when we face sensor noise. 

4.1 Choosing the number of sources 

4.1.1 Introduction 

A simple way to encode input patterns is to suppose that each input can be well- 

approximated by a linear combination of component vectors, where the amplitudes of 

the vector are modulated to match the input. For a given training set, the most appro- 

priate set of component vectors will depend on how we expect the modulation levels 
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to behave and how we measure the distance between the input and its approxima- 

tion. These effects can be captured by a generative model that specifies a distribution 

p(s) over modulation levels s = (s1,...,8n)? and a distribution p(x|s) over sensors 

x = (21,..-,m)" given the modulation levels. The linear combination is given by 

E[x|s] = As (4.1) 

where each column of A is a component vector. A is an x m matrix. 

In a maximum likelihood approach, PCA, FA and ICA can be viewed as maximum 

likelihood estimate of such a model, where we assume that the appropriate modulation 

levels (the sources in the ICA case) are independent and the overall sensor noise is 

given by the sum of the individual sensor noises. 

If we choose 

p(si) = G(si,1), p(ejls) = G(@j — Ays, Aj), (4.2) 

where Aj; is the j row of A and A; is the 7" element of the diagonal noise 

covariance matrix A, then, ifn =m and A = 0 , maximum likelihood estimate of A 

gives PCA, if n < m and all the Aj are the same then it performs probabilistic PCA 

(PPCA) and if n < m and the A; can have different values, it performs FA. 

In the case of ICA, the sources can have any distribution, usually there is no noise 

and A is square (n = m). In the literature we find the term of probabilistic ICA 

(PICA) in [31] when the Gaussian noise covariance matrix is isotropic and n < m or 

IFA [1] when this matrix is a full one and n < m. 

We need a fast and simple technique for deciding the number of sources. As the 

PCA and FA models are very close to the ICA model (though the sources are assumed 

Gaussians in PCA and FA and they must be non-Gaussian in ICA), we may use PCA 

and FA tools to approximate the noise and the number of sources provided that the 

assumption about the source densities doesn’t weaken the estimates too much. 
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4.1.2 Recovering the noise with FA 

Why are we interested in recovering the noise level? 

We will see that this noise can be interpreted as a reconstruction error which is a 

function of n, so it can help us to choose the number of sources of the data (see section 

4.1.3) . Moreover if we have an estimate of n, we can build some synthetic data with 

the same noise to see how confident we can be with this estimate. Finally it will tell us 

whether it’s necessary to use ICA tools which take into account the noise, since they 

are often slow and may not converge when the noise level is small (for example IFA 

and most of the algorithms using an Expectation Maximisation algorithm to optimise 

the model). 

In order to benchmark the estimation of the noise with FA, we will use 4 sources 

(figures 4.1 and 4.2) with variance equal to 1, mixed into 8 sensors (with variance 

set to 1) and with different levels of noise. We fixed T = 1600 because most of our 

MEG dataset uses this number of observations. Moreover FA needs sufficiently many 

examples for the noise model to converge (usually more than 500 is sufficient if the 

noise is not too large). Finally, we know the following limitation for FA [33]: 

ns 

N
i
e
 

(2m +1—V8m + 1) (4.3) 

To perform the factor analysis, we use the Expectation Maximisation algorithm for 

FA described in [11]. The recovered noise covariance matrix is diagonal so we want to 

see how well uncorrelated Gaussian noise with zero mean is estimated. 
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Figure 4.2: The saw-tooth and the Gaussian sources
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For a really low noise level 

Aaiag = [0.001 0.002 0.003 0.004 0.005 0.001 0.002 0.003)” 

= Agiag = [0.0010 0.0011 0.0036 0.0036 0.0051 0.0012 0.0016 0.0033)”, 

where Agiag is the diagonal of A and Adiag is the estimated Adiag. 

In the same way, for larger noise levels 

Aaiag = [0.01 0.02 0.03 0.04 0.05 0.01 0.02 0.03)” 

2 Aaiag = (0.0018 0.0206 0.0252 0.0380 0.0480 0.0166 0.0192 0.0338]", 

Maing = (0.1 0.2 0.3 0.4 0.5 0.1 0.2 0.3]? 

— Aaiag = [0.0989 0.2031 0.2135 0.3732 0.5033 0.0886 0.2005 0.3634)”. 

And even for a noise with variance close to the signal variance, we get: 

Adiag = [1 0.9 1 0.9 0.8 10.9 0.8] 

=F Aaiag = [1.1431 0.8195 0.4555 1.0445 0.8314 0.9885 0.7203 0.8274]”. 

We can conclude that using FA on mixtures of independent sources can give a good 

approximation of uncorrelated Gaussian sensor noise. However as n, m and T’ can 

change its accuracy (if n is close to m or if T is not large enough), one can suggest 

when we face a real ICA problem to check this estimator on synthetic data with the 

same n, m and T as in the problem. 

4.1.3 Using the recovered noise in order to reduce the 

dimensionality 

What happens if the mixing matrix is non square i.e. n # m and we don’t know n? 

Usually people use the eigenvalues of the covariance matrix and cut the dimensionality 

where the eigenvalues become too small (meanwhile they try to keep the maximum of 
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information about the data, they reduce the dimension of the data). However when 

the data are noisy, this method can give completely a wrong estimate of n. 

On the other hand with FA we obtain an estimate of the noise covariance matrix. 

Then if we sum the diagonal terms of the noise covariance matrix recovered by FA, for 

each dimension we have the overall sensor noise which can be interpreted as a recon- 

struction error. When the number of sources is underestimated, the recovered overall 

sensor noise is larger than the real one, as it should explain the large reconstruction 

error (we can’t recover the sensors as well as with the right n since the sources are 

independent), this overall sensor noise will decrease until it equals to n and then it 

should become stationary as the reconstruction shouldn’t be better with more sources. 

Therefore, we can choose the dimension n to be the point at which this reconstruction 

error becomes stationary, we will modestly call this method the Clapier criterion. 

We illustrate this approach using 15 sources created by 15 mixtures of 3 Gaussians 

(each one with random centres, variances) mixed into 25 sensors. Sensor noise is added 

and we will compare this method to eigenvalue analysis (see figures 4.3, 4.4 and 4.5). 

We emphasize that the statistics of the sources are not Gaussian. 

One of the problem with using eigenvalues is that the corner of the curve on realistic 

data often occurs for too small values of n, even if the underlying number of sources 

is larger. That’s why, one can prefer to use the Clapier criterion to estimate n, as its 

corner is closer to n. However, both methods are quite subjective and require visual 

inspection of the graphs. We would rather use an estimator which optimise a certain 

cost function, in order to make the decision of the number of sources automatic. 

4.1.4 A PCA tool to estimate n 

Following this idea of taking PCA or FA tools in ICA, one may want to use one tool 

from PCA which has been proven computationally efficient and accurate to estimate 
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Figure 4.3: choice of dimensionality: 15 sources, 25 sensors, an isotropic sensor noise 

with variance = 0.1; on the left, the Clapier criterion, on the right, eigenvalues of the 

noise covariance matrix of the sources. 

    

  

                    

  

  '° = 16 Oweainn 8 Es Eo 

  

Figure 4.4: choice of dimensionality: 15 sources, 25 sensors, an isotropic sensor noise 

with variance = 0.3; on the left, the Clapier criterion, on the right, eigenvalues the 
noise covariance matrix of the sources. 
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Figure 4.5: choice of dimensionality: 15 sources, 25 sensors, an isotropic sensor noise 

with variance = 0.6; on the left, the Clapier criterion, on the right, eigenvalues of the 

noise covariance matrix of the sources. 

38



CHAPTER 4. TOWARDS A PRACTICAL ICA APPROACH 

nin ICA. 

In [23], P. Minka introduced an estimator which is a Laplace approximation of the 

probability of the sensors given n in a Bayesian probabilistic PCA model. In PCA, it 

provides a simple and fast criterion for choosing the dimensionality: 

be -T/2 
p(x|n) © p(U) (11 s) HTOm—m)/2 (Qn) O+M)/2 [FT | 2p—n/2 (4.4) 

j=l 

where 1; are the eigenvalues of the sensors in a descending order, r = mn —n(n+1)/2 

and 
n my 

=9-% = —(n-stD/2 4 — Sans , p(U) =2 [1t(m §+1)/2)n (= (4.5) 

ae 
Bel=[] WG =t 9G i= hy seene -, 0) (4.6) 

i=1 j=i+1 

It has been also discussed in [31] that it is a fast and accurate criterion in comparison 

with other PCA and ICA criterion applied to ICA (see figure 4.6). However this 

criterion doesn’t seem to be accurate when m is large (see table 4.2). 
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Figure 4.6: Choice of dimensionality using the Laplace approximation introduced in 

[31]: the graph correspond to the values of the Laplace approximation applied on 8 
mixtures of the 4 signals described in figures 4.1 and 4.2 for different number of sources 

n. The maximum correspond to the right number of underlying dimensions, n = 4. 

The problem comes from the sensor signals with small eigenvalues (smaller than 

39



CHAPTER 4. TOWARDS A PRACTICAL ICA APPROACH 

the noise level), they take too much importance. One way to solve this problem is to 

include only those eigenvalues greater than the variance of the largest sensor noise, as it 

seems difficult to recover signals with a smaller variance than the noise. In this section 

we will show that the following method improves this criterion when we suppose that 

n satisfies Eq(4.3). 

1. centre the sensors and set their variance to 1, 

2. compute the eigenvalues of the sensors and let 1 be the vector of the eigenvalues 

in a decreasing order, 

3. do FA on the sensors with n the number of sources satisfying Eq(4.3) and let a 

be the largest value of the noise covariance matrix, 

4. set the elements of 1 that are less than a to 0, let d be the number of elements of 

1 that are greater than 0, and apply Eq(4.4) for n = {1,...,d} using the new 1, 

on
 choose n that maximises Eq(4.4). 

‘To compare the two algorithms, we take sources created by mixture of 3 Gaussians, 

we mix them, set their variance to 1 and add different level of noise (see tables 4.1 and 

4,2). 

The old method gives completely inaccurate results, but our proposed modification 

seems to work quite well and to be robust to noise. 

4.2 IFA versus FastICA 

If FastICA does well when the noise is small, we expect from IFA that it will recover 

a better signal when the noise increases, thanks to the non-linear estimators (see section 

3.3). Moreover, IFA doesn’t use the highest eigenvalues of the sensors to reduce the 

dimensionality, which is one of our criteria. 
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Mixing matrix 997-7 gor] ol 03 
5 x 25 5.40.52 | 5.60.96 5.60.7 5.20.42 
12% 25, 11D tg 99 | 9125 | 11-9oas, || 11 Bye 
18 x 25 189 189 17.50.71 | 15.6).42 

10 90) 11 tors | 10:7en | Leen < |) 1S; ce 
50 x 90 50 50 500 500 

75 x 90 750 750 73.41.08 | 68.2215 

10 x 150 12.1o.sg | 12.53.94 | 12.51.07 | 11.80.92 

20 x 150 20.40.52 | 21.29.92 | 20.6o.7 20.6.7 

80 x 150 80o 80o 800 80o 

130 x 150 1309 1309 126.9;.29 | 116.72,99     

Table 4.1: Estimation of n with the Laplace approximation introduced by P. Minka 
[23], using only the eigenvalues greater than the variance of the greatest sensor noise 

estimated by FA. Each experiment has been run 10 times, we give the mean and the 
standard deviation of the criterion over these experiments. We notice that when n is 

close to m, the estimator is not robust to noise. 

  

2 
  

  

aa _ o 

Mixing matrix "997 [0.01 | 0.1 [03 
5 x 25 DO y | Daal or 
12 x 25 1a 2ielees a9 
18 x 25 20 | 19 | 21 | 19 
10 x 90 50 | 55 | 38 | 34 
50 x 90 54) | 54150 |) 55 
75 x 90 (Seer | Toe\y 76 
20 x 150 106 | 130 | 27 | 33 
80 x 150 141 | 80 | 86 | 80 
130 x 150 130 | 132 | 130 | 130               

Table 4.2: Estimation of n with the Laplace approximation introduced by P. Minka 

[23]. We ran the experiment only once since the results were very inaccurate. We just 

want to show how the modification of the algorithm improve the criterion (see table 
4.1). 
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4.2.1 Toy experiments 

In this experiment we used a 8 x 4 mixing matrix, the sources are as shown in figures 

4.1 and 4.2, T = 5000 the sources had variance set to 1, and we added an isotropic 

sensor noise of variance 0.1. We recovered the sources in figure 4.7 after 5000 iterations 

of the EM algorithm (each source was modelled by a mixture of 2 Gaussians), using 

the LMS estimator (MAP was equivalent): 

  

  

  

  

  

      

Figure 4.7: The sources of figures 4.1 and 4.2 with T = 5000, have been mixed with 

a 8 x 4 mixing matrix and the sensor noise has a variance of 0.1. We recovered the 

sources with IFA. 

‘The recovered noise covariance matrix is: 

0.0982 0.0003 —0.0022 0.0008 —0.0005 0.0012 0.0002 0.0033 

0.0003 0.0974 —0.00019 —0.0004 0.0009 —0.0011 —0.0025 0.0032 

—0.0022 —0.0019 0.1016 —0.0020 0.0017 0.0004 —0.0017 —0.0003 

0.0008 —0.0004 —0.0020 0.1002 0.0001 —0.0001 —0.0010 0.0014 

—0.0005 0.0009 0.0017 0.0001 0.1008 —0.0006 —0.0001 —0.0022 

0.0012 —0.0011 0.0004 —0.0001 —0.0006 —0.1010 0.0007 —0.0006 

0.0002 —0.0025 —0.0017 —0.0010 —0.0001 0.0007 0.0998 —0.0010 

0.0033 0.0032 —0.0003 0.0014 —0.0022 —0.0006 —0.0010 0.1026 
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In order to measure the mixing matrix convergence, we use 

J=(A"A) ATA’ = ATAY, (4.7) 

where A® is the original mixing matrix and At the pseudo-inverse of A. We note that 

for the correct estimate A = A°, J becomes the unit matrix I. Thus we plot the 

element of J and we should observe the diagonal elements converging towards 1 and 

the others converging towards 0 since the sources had unit variance. 

‘
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Figure 4.8: We recovered the signals with IFA and we observe the mixing matrix 
convergence toward the original. We observe that the diagonal elements are converging 

towards 1 and the others towards 0. 

To observe the convergence of the estimated noise covariance matrix A towards 

the true one A°, we use the Kullback-Leibler (KL) distance (Cover and Thomas 1991) 

between the corresponding noise densities (figure 4.9) 

Gu, A2) 1 
G(u,A) 2 
  K,= [ dugtu, 2°) log ASAP . = 518 | det A~1A°|. (4.8) 

And then to observe the convergence of the error Eq(3.13), at each iteration we 

compute the part of the error which depends on the IF parameters: —E[log(p(x|Q)] 

(figure 4.10). 

We see that all the IF parameters are converging, but we have to compare this 
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Figure 4.9: Noise covariance matrix convergence in IFA 
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Figure 4.10: Evolution of the error in IFA computed from the part of Eq(3.13) which 
depend on the IF parameters 

result with the sources recovered by FastICA (figure 4.11). We note that the sine wave 

recovered by IFA is a little bit more regular than with FastICA, but the difference 

between the two recovered sources is not very large. 

Moreover, we have to be aware that this experiment took two days of computation 

with IFA and less than 2 minutes with FastICA!. We can guess that for 10 sources 

modelled by mixture of 2 Gaussians, it will last 128 days (2 x 2!°/2*) for the same 

number of EM steps. The computational cost doesn’t seem worth the small difference 

in the results. 

'On a UltraSPARC 5: 400 MHz UltraSPARC Ili processor 
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Figure 4.11: Recovered sources with FastICA: compare with those recovered by IFA 

figure 4.7. We reduced the dimension pre-whitening the data with PCA and keeping 

the 4 first signals with the largest eigenvalues. 

4.2.2 Remarks concerning IFA 

In further experiments we noticed that using IFA gives good results when the noise 

level is sufficient (the number of EM steps before convergence of the parameters in- 

creases when the sensor noise decreases, see figure 4.12) but: 

e the noise covariance matrix convergence needs a large data set (greater than 2000 

examples), 

e and the most important point is that it becomes intractable when the number 

of sources is large. In the process of the EM algorithm or any gradient descent 

algorithms, it is necessary to calculate the conditional distribution over all the 

configurations of the source states. If we represent each source by n; Gaussians, 

we have []'"_, n; posterior computed other all the combination of source state at 

each EM step. 

Improved initialisation of the parameters that decreases the number of EM steps, 

and thus the computational time, doesn’t solve the problem which is still intractable 

for large number of sources. 
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Figure 4.12: Convergence of the mixing matrix with an isotropic sensor noise of variance 

0.1 on the left and 0.01 on the right: the sensors are generated by the sources of figures 

4.1 and 4.2, and mixed by a 8 x 4 mixing matrix, finally sensor noise is added. We show 

the convergence of the mixing matrix using the elements of matrix J (see Eq(4.7)). We 
notice on the first 1200 steps of IFA the data with high sensor noise converge better 
than the one with low sensor noise. A noise free IFA algorithm was derived in [2] for 
the case with low sensor noise. 

One solution is proposed in [2] with a variational approximation of IFA and a 

data-independent approximation of the variational approximation (see appendix C). 

The data-independent approximation gave results worse than FastICA on the ex- 

periment of section 4.2.1 (some of the recovered sources did not converge toward the 

original sources) and was still computationally demanding in comparison with FastICA. 

‘The variational approximation doesn’t seem to be worth to use in our case as it is 

very intensive, at each EM step, we have to Bair a linear system with )7/__, n; unknown 

until convergence of the variational parameters, for each data point (see appendix C). 

ICA methods based on a Bayesian framework have been recently introduced [3], 

{20], [28], [24]. In [3] and [28] a prior has been added over the variances in the mix- 

ing matrix which aims to determine the number of underlying components n, which 

is known as Auto Relevance Determination (ARD) [22]. These models are theoreti- 

cally interesting, (in [28] they take the flexible source model of IFA [2]), however they 

remain either computationally intensive or at least they don’t help us to choose the 

46



CHAPTER 4. TOWARDS A PRACTICAL ICA APPROACH 

dimensionality, since the ARD is really sensitive to sensor noise. 

For all these reasons, we decided to use FastICA as the ICA algorithm to separate 

our data. 

4.3 Choice of whitening method 

4.3.1 Introduction 

In FastICA and many other ICA algorithms [5], [8], we often first pre-process the 

data to make it uncorrelated (see appendix A.2). This is often done by PCA, however 

in many real world problems, we have to face sensor noise; thus it’s natural to think 

about using FA instead, and this approach has been discussed in [14]. Moreover, pre- 

whitening the data with an EM algorithm for FA [11] will allow us to reduce the 

dimensionality without using only those sensors with the largest eigenvalues. 

After centring the sensors, we estimate the following FA model: 

x=Arafte (4.9) 

where Ara is a m x n matrix, f is normally distributed f ~ N(0,In), € is normally 

distributed « ~ N(0,%), © is diagonal and f and ¢ are mutually independent. 

Let Wra be the pseudo inverse of Aya, then we now want to separate z with 

FastICA: 

z= Wrax, (4.10) 

and z is sphered data. The pseudo-inverse is not unique, so we choose the one which 

minimise the expected norm E[(x — Araz)’=~'(x — Apaz)]|, which is the difference 

between x and the reconstructed observation Agaz measured with =~!. It was shown 
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in [30] that it corresponds to: 

Wra = (Ara”"'Apa) Apa’. (4.11) 

This also helps to reduce the sensor noise when we reconstruct the data from indepen- 

dent components (see [14]). 

4.3.2 Toy experiments 

In this toy experiment we mixed a low frequency sine wave, high frequency sine wave 

and a Gaussian (figure 4.13) with a 10 x 3 mixing matrix and we added an isotropic 

sensor noise of variance 0.1. 
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Figure 4.13: The sources: a low frequency sine wave, a high frequency sine wave and 

a Gaussian 

The recovered sources with FastICA pre-processed by FA and PCA are shown in 

figure 4.14, the high frequency sine wave is more regular and the low one is less noisy 

using FA. 

However, often we need a large noise to observe a difference between FA and PCA 

as a preprocessing of ICA, and FA is constrained by Eq(4.3). Most of the time, when 

the noise is not that large, we can use PCA to pre-whiten the data. 
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Figure 4.14: FastICA on 10 mixtures of the sources (figure 4.13), on the left pre-whiten 
by FA, on the right PCA. 
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Chapter 5 

A solution to solve the ICA 

problem 

5.1 The proposed method 

On the basis of the analysis of chapter 4 we propose the following method to apply 

ICA in the noisy case when n is supposed to satisfy Eq(4.3). 

1. Centre x. 

2. Determine the number of sources using a PCA method: the corrected Laplace 

approximation from P. Minka introduced in section 4.1.4 or if the noise is too 

large and this estimator is biased, use the Clapier criterion (see 4.1.3). 

3. Whiten the data using an EM algorithm for Factor Analysis: it will whiten the 

sensors and give an estimate of the noise. 

4. Separate the signals with FastICA. 

5.2 Application to cricket songs 

One major issue in bioacoustic recognition of animal sounds is to perform species 

counting. For example, cricket songs differ greatly between species, so we hope to be 
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able to count the number of species from a single recording. It is known that the 

distribution of the cricket song is super-Gaussian. We emphasize that the song of each 

specie of cricket is independent from any other specie of cricket, that’s why we expect 

to recover the song of each specie and not of each cricket. In this section we propose 

a modus operandi to perform the separation process. 

1. Record the songs of the crickets using directional microphones, each one oriented 

in a specific direction (see figure 5.1). 

2. Perform the method described in section 5.1 on the recorded signals to obtain 

the number of sources (number of cricket species), and the sources (the original 

song of each species). 

Each coefficient in the mixing matrix will depend on how far the crickets from the 

same species are from a given microphone, how loud they are singing, and how many 

there are. 

  

Figure 5.1: Modus operandi: in order to record the mixture of the crickets songs, we 

take directional microphones which are all situated at the same point but oriented in 

different directions. We must take enough microphones (m) in order that the number 

of species n satisfies Eq(4.3). 

   

  

To demonstrate the feasibility of this approach, we modelled the recorded signals 

by mixing songs from 4 different species of crickets with a 10 x 4 mixing matrix and 
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added noise with variance 0.1. 
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Figure 5.2: Original cricket songs: the sources 

Applying the method of section 5.1, we obtained n = 4 and the following recovered 
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Figure 5.3: The sources in figure 5.2 have been mixed with a 10 x 4 mixing matrix, we 
added a sensor noise with variance 0.1 and tried to recover the sources estimating first 

n with the method proposed in section 4.1.4, then pre-whitening the sensors with FA 

and then separating the signals with FastICA. 

This results are encouraging to apply the method of section 5.1 to real world data, 

for example, MEG. 
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5.3. Application to single- and multi-channel MEG 

Tn this section, we performed ICA using FastICA 2.1, the non-linear function was 

“pow3”: g(u) = u® (as it gave good results on toy experiments) and the approach 

“deflation” (which correspond to the one-unit version of FastICA). 

5.3.1 Multi channel MEG 

Introduction 

When using a magnetoencephalographic (MEG) recording, as a research or clini- 

cal tool, the investigator faces the problem of extracting the essential features of the 

neuromagnetic signals in the presence of artifacts. Actually, the signals contains a lot 

of environmental noise. We can categorize the noise into two major categories, one is 

called the artifacts and the other is the sensory noise. The artifacts include all the 

source signals we are not interested in: the noise from electric power supply, the earth 

magnetism, breathing and the brain activity. The amplitude of the sensor noise may 

be higher than that of the brain signals, and the artifacts may look like pathological 

signals. Since the sources of the brain activity are assumed to be localised on different 

points and that the signal spread linearly in the brain, recently researchers have tried 

to apply ICA to MEG signals ((14, 17]) to solve these problems. 

In this section we will use test data which consists of multi-channel MEG data 

recorded at the Wellcome Trust Laboratory for MEG studies at Aston University, on 

the 151 channel Omega MEG system (CTF Systems Inc.). The data is down-sampled 

to a suitable rate of 200 samples/sec and mean corrected in the rows and columns. 

‘The example used here consists of over 6 seconds of 150 channel MEG data collected 

from the cortex of a young girl with a known tumour in the right temporal region of 

the brain. In the presence of the tumour it is expected that slow-wave theta activity 

(~5Hz) should be measured over the right temporal region of the scalp. 
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Results 

The first, task is to estimate the number of sources n. The criterion given in section 

4.1.4 gives n = 42. To check the robustness of this criterion we added some sensor 

noise and tried again to find the number of sources (table 5.3.1). When we add a 

small level of noise, the estimate remains identical and for larger noise it gives a lower 

estimate which depends on the level of noise. This encourages us to think that 42 is a 

good estimate of the number of sources which appear to be possible on the graph of 

the eigenvalues and on the Clapier criterion (figure 5.4) as it belongs to the range of 

values where both curves are making a corner . 

  

2 

  

  

oa 

Experiment # T9997] 0.01 [04 [03 
Fi 40a n43 ale27aleae 
#2 43 | 42 | 28 | 22 
#3 39 | 39 | 29 | 23 
#4 42 | 41 | 28 | 22               

Table 5.1: Estimation of the number of underlying components of the 150 channel 

MEG: we add different level of sensor noise to the MEG data and then try to recover n. 
With low level of noise, the criterion still gives n ~ 42, and when the noise increases, 

the estimated n decreases. Therefore, 42 seems to be a good approximation of the 

number of sources since the criterion remains unchanged for a low level of noise. 

Given the number of sources we now want to recover the supposedly independent 

underlying sources. We can compare the results of FastICA pre-whitened by FA and by 

PCA; they are not that different (see appendix D.1). The results are a little bit better 

(heartbeat smoother, 50 Hz more regular) with PCA pre-processing; this is due to the 

low level of sensor noise. The noise matrix from FA had mean 0.0035 and variance 

7.6e — 5 on the centred and sphered MEG data taking 133 sources in order to satisfy 

Eq(4.3). The EM algorithm doesn’t converge very well for such a low level of noise. 

Moreover, since we know that the EM algorithm often underestimates the level of 

noise, the criterion may be affected and give a too large estimate of the number of 
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Figure 5.4: On the left, the Clapier criterion (see section 4.1.3) on the MEG, on the 
right the eigenvalues. We can notice that the number of sources (n = 42) recovered by 

the corrected Laplace approximation of section 4.1.4 belongs to the range of possible 

n. 

sources as it could take into account too many irrelevant eigenvalues (those with a 

variance smaller than the variance of the noise). 

In fact, if we look at figure D.5 in appendix D.1 we notice that for n = 24 the 

heartbeat and the 50 Hz signals are still well recovered, that may let us think that the 

right number of sources is less than 42. When we go further, we can notice that the 

heartbeat is no longer well recovered for smaller number of sources (n < 20), which 

tell us that nm must be greater than 20. 

Performing ICA on the sensors doesn’t recover the 5Hz signal expected from the 

tumour, we must look at other techniques to recover the sources. Another way to 

perform ICA on MEG data is to apply it on single-channel MEG using an embedding 

matrix, which has been shown to be able to isolate components from single-channel 

data in [17].
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5.3.2 Single channel MEG 

Introduction 

From a single channel MEG signal (2(t)) one can construct a series of delay vectors, 

where the state of the system at time t, X(t), is given by: 

X(t) = [2(¢— 7), z(t — 27), ...,2(¢ — (m— 1)7)] (5.1) 

where 7 is the lag and m is the number of lags or the embedding dimension. If we 

denote by T the number of delay vectors, once we have define appropriate values for 

m and 7 (cf [17], m = 90 and r = 1 in this section), we can represent the embedding 

matrix 

Lt a Tt4Nr 

Lepr Tepar +++ Lt4(N41)r eo (5.2) 

Tep(m-1)r  Ut+mr +++ Lt4(m+N-1)r 

in a convenient spanning basis provided by ICA. We assume that the m row vectors of 

X are linearly generated by n independent vectors. However in [17], the choice of the 

n independent components of interest was made by hand from m independent compo- 

nents recovered by FastICA. In this section we propose to use the criterion proposed 

in section 4.1.4 to make a first analysis of the m components in order to reduce them 

to the estimated n. 

Once the independent components have been obtained, we project. them back to 

the measurement space of those components such that: 

¥? = a:87; (5.3) 

sth where s; is the 7” independent component (i = 1,...,m), a; the corresponding column 
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of the mixing matrix A and Y‘ the resulting matrix representing the source s; in X. 

From Y' it’s now possible to extract the time series y;(t) by averaging the rows of Y*, 

in order to unembed the time series: 

De keys (5.4) 
Mm 

for t = 1,...,7 where Yieee-1) is the element of Y* indexed by row k and column 

t+k—1. 

Results 

Using the previous method to find the components of a single channel, we must 

be aware that we will recover many similar components displaced one from the other, 

this is due to the way we construct the embedding matrix. But at the end they will 

correspond to the same signal in the measurement space. That’s why we have more 

sources than the original number of sources using this method. This will be illustrated 

in the next section. 

Toy experiment: 

In this experiment we mixed the 3 signals in figure 4.14 (a low frequency sine wave, a 

high frequney sine wave and a Gaussian) in order to obtain the single signal in figure 

5.5. The Gaussian represents the added sensor noise and will has a small variance of 

0.01. 

‘Then we tried to recover the components of the embedding matrix constructed with 

the same parameters as in section 5.3.2 with n = 2 (see figure 5.6) which is the right 

number of sources and n = 3 (see figure 5.7) which gives better reconstruction of the 

sources when we put the embedding components in the measurement space: figure 5.8. 

57



CHAPTER 5. A SOLUTION TO SOLVE THE ICA PROBLEM 

  

Va
lu

e 

      

200 400 800 4000 12001400 ‘600 
Number of observations 

Figure 5.5: The single signal generated by a mixture of 3 sources of figure 4.14, the 

Gaussian represents the sensor noise and has a small variance. 
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Figure 5.6: The components of the embedding matrix of the single signal with n = 

2. We notice that the low frequency sine wave is noisy, that’s why we prefer the 

components of figure 5.7 where this component is smoother.
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Figure 5.7: The components of the embedding matrix of the single signal with n = 3. 

We notice that there are two components representing the high frequency sine wave. 

They are not identical as there is a little lag (a quarter of the period of the sine wave: 

the two components are independent, which won’t be the case if the lag was an half of 
the period of this signal since they would be the same signal up to the sign) between 

the two signals, but in the measurement space, they reduce to the same signal (see 

figure 5.8). 
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Figure 5.8: The three components of the embedding matrix in the measurement space. 

We've taken the three components in figure 5.7 to construct three matrices Y; and 

average each one as in equation Eq(5.4) to get the three sources of the embedding 

matrix in the measurement space. We had to use three sources for the embedding 

matrix in order to recover the two sources of the single signal. 

59



CHAPTER 5. A SOLUTION TO SOLVE THE ICA PROBLEM 

The conclusion of this toy experiment is that we may need more components to 

explain the embedding matrix of the single channel MEG than the real number of 

underlying components, 

Single channel-MEG: 

We are interested in a single channel MEG recorded from over the right temporal lobe 

of a child with a known tumour in the right temporal lobe (figure 5.9). 

oe ‘Single channel MEG recorded trom over th right tempor fb 

1000} 

g 
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Figure 5.9: Single-channel MEG recorded from over the right temporal lobe of a child 
with a known tumour in the right temporal lobe. 

We used the criterion of section 4.1.4 and estimated the number of underlying 

components of the embedding matrix of the single channel to be 31. Then we obtained 

31 components (using FastICA pre-whitened by PCA as the noise level is really low) 

of the embedding matrix that we projected back to the measurement space. Many of 

them correspond to the same signal (see appendix D.2), the MCG activity, the theta 

band activity or the alpha band activity. We also recovered the base-line shift (see 

figure 5.10). 

Therefore, reducing the dimension of the embedding matrix with the corrected 

Laplace approximation, we still manage to recover all the interesting components given 

in [17], this must be a good estimate of the number of sources (of the embedding matrix) 

since when we reduce the dimension to 25, the MCG activity disappear. 

60



CHAPTER 5. A SOLUTION TO SOLVE THE ICA PROBLEM 

200 “400 800 800 7000 1200 1400 
  

Ve
s 8 5 g g a 3 5 

  

      
  

~o 200 400 600 800 1000 1200 1400 
5 

HPA pal haya beta 

= 0 20 a0 0002001400 00. 00 
[Number of cbsaervations 

Figure 5.10: The four components of interest of the embedding matrix in the measure- 

ment space: from up to down, the global shape of the single-channel MEG, the MCG 

activity (heartbeat), the alpha band activity and the theta band activity (see figure 
5.11) , which we assume generated by the tumour. 
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Figure 5.11: The frequencies of the recovered alpha band and theta band activity 
correspond respectively to 7-8 Hz and 3Hz. 

61



Chapter 6 

Conclusion 

The starting point of this thesis was the article from H. Attias [2] introducing a new 

method to perform Independent Component Analysis: Independent Factor Analysis. 

This algorithm can cope with arbitrary source densities, noise and non-square mixing 

matrix. Then we wanted to compare this algorithm on a concrete problem, with a 

more “conventional” algorithm, FastICA [13] which has been proven fast and accurate, 

but which doesn’t take into account the noise and for which the mixing matrix must 

be square. 

The concrete problem, chosen to evaluate algorithms for ICA is the extraction of 

sources from MEG data, since it has been a really trendy topic in the biosignal analysis 

community in the past few years ([18], [19], [29] and [12]). In this problem, we face a 

large number of sensors, the underlying number of components is suppose to be much 

less than the number of sensors and there is sensor noise. After showing that this 

problem can’t be solved in a reasonable time by IFA, we looked for methods which 

estimate the number of sources, so that we can reduce the dimension of the sensors 

keeping the maximum of information before separating the signals with FastICA. 

Since ICA and PCA models are similar, we tried to use methods which have been 

proven efficient for the PCA problem on ICA. On synthetic data, we showed that the 

method introduced by P. Minka in [23] to estimate the number of sources in PCA, if 

we choose the eigenvalues carefully, gives an accurate and relatively fast criterion in 
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the ICA case. Moreover we introduced an algorithm interpreting the recovered sensor 

noise for a given number of sources as a reconstruction error, which helps in practice 

in cutting down the dimensionality. 

In order to reduce the dimensionality once we have the estimated number of sources, 

we proposed to use Factor Analysis which gives a better whitening of the data when 

we face non-isotropic noise or non-Gaussian sources. Finally we applied these tools to 

a MEG dataset to check the validity of this approach on a concrete problem. 

As the MEG data had very few sensor noise, the pre-whitening by FA instead of 

PCA wasn’t necessary. However the corrected Laplace approximation (section 4.1.4) 

gave a good estimate of the number of sources, a bit overestimated in the multi-channel 

case. This could be due to the underestimation of the sensor noise by the EM algorithm 

for FA on our data. 

We said that it was impossible to use IFA when we face many sources for computa- 

tional reasons. However it may be interesting in order to reduce the computational time 

at each EM step to freeze some parameters (the source densities or the noise model) or 

to derive an IFA algorithm where the noise covariance matrix will be a diagonal matrix 

or an isotropic matrix and not a full one as we don’t really need such a complicated 

noise model. We suggest to initialize the parameters using FastICA for the mixing 

matrix, FA for the noise covariance matrix and finally the k-means algorithm and/or 

an EM algorithm to estimate the parameters of the sources (the parameters of each 

mixture of Gaussian) from the sources recovered by FastICA. 

A key issue of Independent Component Analysis is the estimation of the number 

of sources, future work may be oriented toward solutions robust to noise and to large 

number of sensors. It may be interesting to derive the Laplace approximation of P. 

Minka for the ICA case, where the sources are not Gaussian. 
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Appendix A 

Preprocessing for ICA 

A.1 Centring 

The first preprocessing that ICA algorithms use is centring x, ie. subtracting 

its mean vector m = E{x}. This preprocessing is made solely to simplify the ICA 

algorithms, it does not mean that the mean could not be estimated. After estimating 

the mixing matrix A with centred data, we can complete the estimate by adding the 

mean vector of s back to the centred estimates of s. The mean vector of s is given by 

Atm. 

A.2 Whitening 

Another useful preprocessing strategy in ICA is to first whiten the observed vari- 

ables. This means that before the application of the ICA algorithm (after centring), 

we transform the observed vector x linearly so that we obtain a new vector X which is 

white (its components are uncorrelated and their variances equal unity): 

E{xx7} =I (A.1) 

 



APPENDIX A. PREPROCESSING FOR ICA 

The whitening transformation is always possible. The utility of whitening resides in 

the fact that the new mixing matrix (x = As) is orthogonal, so instead of having to 

estimate n? parameters that are elements of the original matrix A, we only need to 

estimate the new orthogonal mixing matrix A with n(n —1)/2 degrees of freedom. 

It may also be useful to reduce the dimension of the data at the same time as we 

do the whitening. Usually we look at the eigenvalues d; of E{xx"} and discard those 

that are too small, as is often done in the statistical technique of PCA. This has often 

the effect of reducing noise. Moreover, dimension reduction prevents over-learning. 
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Appendix B 

Why the sources must be 

non-Gaussian? 

The main restriction to ICA is that the independent components must be non- 

Gaussian, this the difference with PCA or FA where the sources are supposed to be 

Gaussian. One visual way to understand that is to assume that the mixing matrix is 

orthogonal and the s; are Gaussian. Therefore if we take a and a (x = (a,...,@m)*), 

they are Gaussian, uncorrelated and of unit variance. Their joint density is given by: 

_ ai +p >): (B.1) 1 
p(@1, 22) = aq OP 

The distribution of this function (see figure B.1) shows that the density is completely 

symmetric. Then, it doesn’t give any information on the directions of the columns of 

the mixing matrix A, A can’t be estimated. 

More rigorously, one can show that the distribution of any orthogonal transforma- 

tion of the gaussian (2), v2) has exactly the same distribution as (#1, x2) and x, and 

vy are independent. Thus, in the case of Gaussian sources, we can only estimate the 

ICA model up to an orthogonal transformation, A is not identifiable. Actually if just 

one of the sources is Gaussian, the ICA model can be estimated. 

69



APPENDIX B. WHY THE SOURCES MUST BE NON-GAUSSIAN? 

  

  

    
  

Figure B.1: The multivariate distribution of two independent Gaussian variables. 
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Appendix C 

The Factorized Variational 

Approximation 

In the factorized variational approximation, we assume that even when conditioned 

on a data vector, the sources are independent. The approximate source density is 

defined as follows. Given a data vector x, the source x; at state g; is described by 

a Gaussian with a x-independent mean #4, and variance €;,,, weighted by a mixing 

proportion #;,,. The posterior is defined by the product: 

p'(a,s|x,7) = = TPs GL: — Vias() Gach Te = {hing Pia Sia}- (C.1) 

The variances ,4, will turn out to be x-independent. Eq(C.1) implies a MOG form for 

the posterior of s;: 

DI (silss7) = 3 rig ()G(s: — Yi 2s Sie): (C2) 
gal 

which is in complete analogy with its prior in Eq(3.5). 

The factorized posterior Eq(C.1) is advantageous since it facilities performing in 

the E-step calculations in polynomial time. Once the variational parameters T= {7;} 

have been determined, the data-conditioned mean of the sources, required for the EM



APPENDIX C. THE FACTORIZED VARIATIONAL APPROXIMATION 

learning rules Eq(3.15) are 

(silx) = De sigan 
Gl 

(six) = So wig(Wha + G.ai)s 
q=l 

(sisjzilx) = So atiatinlian (C.3) 
UY 

where those required for the rules Eq(3.16) are given by 

(gx) = ig, (Sila. x) = Vig (Sila: x) = Veg, + Scare (C.4) 

We find the estimate of 7 by iteration. First we define the n x n matrix A by 

A= ATA. (C5) 

From this matrix we update the variances & 4,: 

ae (C6) 
495 

big, = (An +   

The means 4,4, and mixing proportions j, are obtained by iterating the following 

mean-field equations for each data vector x: 

nj 
Zz 1 a Higgs 

MD As tastiest Zia = (ATA'x), +4, (C.7) 
etek igi Yagi 

1 f 1 He 
log Kig, = log wig, + 5 (tose2, + es) ay (108 Up, + tia) + Zi; (C.8) 

is sn 

where the z; are the Lagrange multipliers that enforce the normalisation conditions 

2, kia: = 1. To solve these equations we first initialise Ki, = Wig, Eq(C.7) is a 

linear (0, 7;) x (32,7) system and can be solved for 74, using standard methods. 
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APPENDIX C. THE FACTORIZED VARIATIONAL APPROXIMATION 

The new #9, are then obtained form Eq(C.8) via 

e%.a; 

a. ate at 
(C.9) 

These values are substituted back into Eq(C.7) and the procedure is repeated until 

convergence. 

Data-independent approximation. A simpler approximation results from set- 

ting Kig,(x) = wig; for all data vectors x. The means yj, can then be obtained from 

Eq(C.7) in a single iteration for all data vectors at once, since this equation becomes 

linear in x. 
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Appendix D 

Recovering the underlying 

components of MEG 

D.1 Multi-channel MEG 

On the 150 channel MEG described in section 5.3.1, we pre-processed the data 

with FA taking 42 sources (estimation given by the corrected Laplace approximation 

described in section 4.1.4) and then applied FastICA to separate the signals (see figures 

D.1 and D.2). 

Next we pre-processed the data with PCA taking the first 42 signals corresponding 

to the highest eigenvalues and applied Fastica (see figures D.3 and D.4). 

D.2 Single-channel MEG 

See figure D.6. 
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Figure D.1: FastICA pre-processed by FA on the 150 channel MEG data described in 

5.3.1 with 42 sources: first 21 components.
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Figure D.2: FastICA pre-processed by FA on the 150 channel MEG data described in 

5.3.1 with 42 sources: last 21 components. 
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Figure D.3: FastICA pre-processed by PCA on the 150 channel MEG data described 

in 5.3.1 with 42 sources: first 21 components. 
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Figure D.4: FastICA pre-processed by PCA on the 150 channel MEG data described 

in 5.3.1 with 42 sources: last 21 components. 
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Figure D.5: FastICA pre-processed by PCA on the 150 channel MEG data described 

in 5.3.1 with 24 source. 
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Figure D.6: The independent components of the embedding matrix of the single- 

channel MBG in the measurement space. We can notice that many signals corresponds 

to the ECG activity, this is due to the way we construct the embedding matrix, its 

components may be identical up to a displacement of the signal, but they reduce to 

the same signal in the measurement space.



Appendix E 

Notation 

PCA: Principal Component Analysis 

ICA: Independent Component Analysis 

FA: Factor Analysis 

IFA: Independent Factor Analysis 

Variables and constants: 

i: General-purpose index, also: imaginary unit 

m: Dimension of the observed data (sensors) 

n: Dimension of the transformed component vector (sources) 

T: Number of observations of the sources 

All the vectors are printed in boldface lowercase letters, 

x: Observed data, sensors, an m-dimensional random vector 

s: n-dimensional random vector of transformed components s; 

n: m-dimensional random noise vector 

w: m-dimensional constant vector 

y: m-dimensional general-purpose random vector 

All the matrices are printed in boldface uppercase letters, 
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APPENDIX E. NOTATION 

A: The constant m x n mixing matrix in the ICA model 

W: The constant n x m unmixing matrix in the ICA model 

Functions: 

E{.}: Mathematical expectation 

f(.): A probability density function 

f,(.): Marginal probability density function 

g(.): A scalar non-linear function 

H(.): Differential entropy 

I(.): Mutual information 

J(.): Negentropy 

Jg(.): Generalized contrast function 

kurt(.): Kurtosis, or fourth-order cumulant 
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