
Belief Nets for Mental Health

MATHIEU CHATELAIN

MSc by Research in Pattern Analysis and Neural Networks

“a

ASTON UNIVERSITY

September 2005

This copy of the thesis has been supplied on condition that anyone who
consults it is understood to recognise that its copyright rests with its
author and that no quotation from the thesis and no information derived
from it may be published without proper acknowledgement.

ASTON UNIVERSITY

Belief Nets for Mental Health

MATHIEU CHATELAIN

MSc by Research in Pattern Analysis and Neural Networks, 2005

Thesis Summary

A Bayesian network is a powerful tool for inference; its structure and parameters can be

learnt from data. The objectives of this thesis are first to find the structure associated

with the suicide risk of a patient, to compare this structure with that of the expert
and then to predict the risk itself. In order to do so, we first learn the structure using

algorithms such as K2 or MWST. After having obtained this structure we try to

predict the risk of suicide, with this found structure, on testing data. The results,

which are quite good, will be discussed in this thesis, but the lack of data for training

part has a significant effect.

Keywords: Bayesian Networks, Structure Learning, Mental Health

Acknowledgements

I would like to thank all the people who shared this year with me and helped me
through this:

e My supervisor, Ian Nabney for all his advice and all the time he spent with me.

e My second supervisor, Chris Buckingham for all his advice.

e All the staff of the NCRG who welcome us between them.

This year would not have been the same if some people were not here, I speak about:

e All the frenchies:

— Mathieu Collas alias p0il,

— Boris Dubuisson alias Letisgo,

— Etienne Mallard alias EarthquakeProof,

— Jean Nicolas Turlier alias Ludo.

e Amy Rostron who taught us lots of English and learnt French humour.

e All the PhD students, who were always here to speak and help us.

e Dr Davide Dalimonte who spent time with us and was always enthusiastic.

e Special thanks to my family who have always been by my side even with the

distance between us.

e Another special thanks to Eirini Bazaki for the time and talks we shared together.

Contents

1 Introduction
11 “Mental Health Assessment. 5 Gc .G)s 5. ses oe es eee
T2eInitial’Problem™ 27.0 seen kee roe) «cee eee os re

2 Galatean Risk Screening Tools
DAS Pr jock) Genesis ecstasy creep, 2, pated sgor eee Golins « hss otted theirs elie’

20 Developmentiand PToperticns.yo > eit haere aici tri tecudeits soa the oes

2,2) 18 ihe Galatean Modelic. so ras 3 Gitte © ow even ane oes

2:2.9) sBvolutionrob tne: Looe, sine.) tea sate ile a ses mca ets

DO SME P ro perticn Ob tne HLOOL mbar Weber tte. Fi Shs anes apes ae

3 Structure Learning in Bayesian Networks
Sil paintroduckions. +: wei. aces NOE es Scraes eo Se osc ae eee sees
3,2) 1 Bayesian: Networks fyancitses: seus Wao cas Sc ss Ste es Skoie: s
9°3:. Structure Learningest iiscc 0. Wesson ds LOS feet, sou to gets ae

SG SClieeliivOUUCUION Laem mere etpeil. nM tel Rta Mo Tls ee ts pete hats
33:2 “Markov Equivalent Set. .3 «6 = Gis i Sale ee os

SAo SCOre UNCHON. 6 sue: oli chelomemey GUSNye ois emene amines, s \eeenteus

SAL w Bayes Score. peg cet eile cede! s nus aos eee net tial
OA 2 er 1G COLO aa cont ren eas ot eat et ait Sele. ie eae Pe

3:5) “StructurecWearning Algorithms... pe es i tg) es, wee

De ORS Baan ye re es eel Ue Wetwie teas ions. saetemois a whales
Ee We 21 Ge rare aes cay vestry Weenie Ake eae acPsp Peltomianee’ ya (acy WS pure eeriey us

Sie VWs Lew See elcome tenes Oi ere. at ees a Tee ha

4 Experiments in Structure Learning on Toy Data
Adee s DORCKIDELON ot Ue Remetmelle oo ia i. “ot cakes ia ieee bate suc jomca rece ee of cto

ALO) ResultSicmee ess 1 cis tea) Cl s als als iG inseeen oe hoses tue on ae

5 Experiment on Real Data
Ook DeRcripbion sc t-tare sonseeee Becta lack Sas) «en stte ulemel ere Gace meee.

6:2s, Selectionvof Varinblel™.., eu" eu fi g.n? ciekece ho nats See ute su enemas
5.3) ‘Structure Learning and Prediction’. «. 454 Sac. 6 oes ese ls

A Listing

B Confusion matrices

@

12

12

13

13

13

15

17
17
18
19
19
20
23
23
23
24
24
25
26

29

29

31

43
43
44
45

61

63

List of Figures

La

1.2

2.1
2.2
2.3

3.1
3.2

4.1
4.2
4.3
4.4

4.5

4.6

47

4.8

4.9

4.10

4.11

4.12

4.13

4.14

4.15

5.1
5.2
5.3

5.4

5.5

Hierarchical galatea structure for suicide...-....--.0-- 9

Example of the scale for probability elicitation.-- 10

Mind map of the self neglect part of the domain.............. 14
Final version of the self neglect part of the Galatea. 14
Suicide questionsum GRisw,) es eres aos ot) 2 re ee oes ahah ee ee 16

A simple network and the associated CPD forS. 19

Threelequivalent strictures, \ .oa0 cs ae her oche > es oes 2 21

Bure networks .., 2 Cee al Akers ee rete eee, Meegh t 30
SCONE NELWOLK inc Me sae Be MMR al Se SRE: ce GA eae ern Eeee 6 30

Whird networks > 22 =< carers ae Grn reno Gen he Gave 6 Fe Ave 31
Learned network for the K2 algorithm in good node order for the sprin-

ler Network: whch. od eeteaaae. Ca eS Aeon eee Ce .ncorh ctneele Cem oet Brie 32
Learned network for K2 algorithm in bad node order for the sprinkler
HOGWOLK. ct secre sees eaie ie kee el eda eeons aie s bs) elon ue Sis 33
Learned network for the MWST algorithm for the sprinkler network. . 34

Number of incorrect arcs in function of the number of training data... 35
Learned network for the K2 algorithm in good node order for the second
MEGWOLK. Mer. oe, eden ae el reas Rien Ger (ee ie gens Cum, Sige mans 35
Learned network for the K2 algorithm in bad node order for the bigger

MIGCWOL ie cle aru eee tas SA OM Pate ice NR «ALT y bat Vota CDN: ok st dle Ds 36
Learned network for the MWST algorithm for the bigger network. .. 37

Number of incorrect arcs in function of the number of training data... 38
Learned network for the K2 algorithm in good node order for the tree
TEGWOLK se Loin orale, ce sere were ack ge Uinlelges sas Us bemans fis 39
Learned network for the K2 algorithm in bad node order for the tree
ELWOCKS “cement ep sea’. Meena, haem ition ache ake mea ney Sel als eke 40

Learned network for the MWST algorithm for the tree network..... 40

Number of incorrect arcs in function of the number of training data... 41

Resulting DAG for the complete dataset with the K2 algorithm. .. 47
Resulting DAG for the complete dataset with the MWST algorithm. 47
Resulting DAG for the complete data with the K2 algorithm and
SOME tOrced MINKA tee men csr Cem ee Rh sis cue! Se SEMEN cette oes 50
Resulting DAG for the complete data with the MWST algorithm
@na some forced Tinks, 9) oo «fists eS ets cs eo see eee 51
Resulting DAG for the reduced data with the K2 algorithm..... . 52

LIST OF FIGURES

5.6
5.7

5.8
5.9

5.10

5.11

Resulting DAG for the reduced data with the MWST algorithm... 53
Resulting DAG for the reduced data with the MWST algorithm with
some! forced inks: (\o5 cers) ee seats ee eee er es On tees 54
Resulting DAG for the totally reduced data with the MWST algorithm. 55
Resulting DAG for the totally reduced data with the MWST = algo-
rithmiand forced linker (rests yin sen cys oes cjibecien © ine cia Soe 56

Resulting DAG for the reduced suicide data with the K2 algorithm
and forced links: 70) <)s.50 «56 sha) ems let ss tees eel a) aes seas 57
Resulting DAG for the reduced suicide data with the MWST algo-
TIsHUaLANd forced IOIKS a Mater bets cate. 6. eet Cd cmt. aed on 58

List of Tables

3.1

4.1

4.2

4.3
4.4

4.5

4.6

4.7

4.8
4.9

Bl
B.2
B.3
BA
Bb
B.6

Number of possible DAGs as a function of the number of nodes... . .

Incorrect arcs for K2 algorithm in good node order for the sprinkler
MECWORKAEs Ge eo png. amie nomen ook eehy Galea ergs awa GL eS

Incorrect arc for the K2 algorithm in bad node order for the sprinkler

TIEEWOUKS 26 aofie isin o: oso altho ME, rel ake leche ae heme oaline aie Rime Sees

Incorrect arc for the MWST algorithm for the sprinkler network. . . .
Incorrect arcs for the K2 algorithm in good node order for the bigger

TOEWOTK sheep tis die. Miner oeeWe ste ee si <a sda wee oe aia 7d
Incorrect arcs for the K2 algorithm in bad node order for the bigger
Vena}; « sega RS [ep-o| hay aac gh Oech <eUGl ace ONG Simms fi Seneca e

Incorrect arcs for the MWST algorithm for the bigger network.

Incorrect arcs for the K2 algorithm in good node order for the tree

MOLWOEK yh. MPa) NT Semmes ice iol tests aes diol ate meee Cats

Incorrect arcs for the K2 algorithm in bad node order for the tree network.

Incorrect arcs for the MWST algorithm for the tree network.

Confusion Matrix for the first experiment with the K2 algorithm... .

Confusion Matrix for the first experiment with the MWST algorithm.
Confusion Matrix for the second experiment with the K2 algorithm.
Confusion Matrix for the second experiment with the MWST algorithm.
Confusion Matrix for the third experiment with the K2 algorithm. . .
Confusion Matrix for the third experiment with the MWST algorithm.

20

32

33
33

36

36

37

39
39
40

63
63
64
64
65
65

Chapter 1

Introduction

1.1 Mental Health Assessment

In our modern society, stress and pressure have made mental health problems a burn-
ing issue. That is why some measures are taken to fight this scourge.

According to [5], the National Health Service (NHS), through its New and Emerging
Applications of Technology (NEAT) programme is interested in providing a tool to
help non-specialists, like policemen and social workers, make judgements on the risk
(to self and others) of people who present possible mental health symptoms. Such a

software tool is called a Decision Support System (DSS).

More generally, medical decision support systems are computer programs designed

to improve the clinical process of decision making. Intelligent decision support systems

need artificial intelligent techniques in order to support professionals of health. The
aim of such system is to help people making the best diagnosis and treatment when

they don’t have access to all information or when it is uncertain. Decision support

systems can be active or passive:

e active, when the computer gives advice when it is needed and

e passive, when the professional use it only when they need help.

A decision support system can be judged by its performances (eg. accurate data

and reliable solution purposed by the system) but also by its interface. Indeed, with a
simple user interface, people won’t need a lot of training to use the system.

The Galatean Risk Screening Tool (GRiST), introduced in [2], is a DSS which
asks low level questions. These questions are grouped into 5 different categories and
have been chosen by experts to be as specific as possible. However, answering these

questions does not require an expert judgement. Thus, the required information can

be given accurately by anyone with some understanding of mental health issues. Its

aim is to advise which patients present some risk of mental troubles such as suicide,
self neglect, harm to self and to others.

GRiST is based on a hierarchical tree structure derived from interviews with men-

tal health experts (see further discussion in the next Section). For example, Figure 1.1

CHAPTER 1. INTRODUCTION

extracted from [4], shows the galatea representing knowledge about suicide (see expla-

nation in Sub Section 2.2.1). This tree demonstrates how the risk of suicide can be
explained by a combination of different factors. The leaves of the tree are simple ques-
tions which can be asked by non experts whereas grey ellipses are summative concepts.

For example the node client’s previous attempts is defined by the questions attached

to it: are there any, warnings given and triggers. In a similar way, the representation

for self neglect can be found in [5] and [4].

A key point is that we are dealing with health, so misclassification errors must be

avoided. Some could be seen as more serious than others. For example, diagnosing a

safe patient to be potentially suicidal is less “dangerous” than if a suicidal one is said
to be safe; indeed he will be free to commit suicide. But this misclassification should

not be disregarded; a safe patient diagnosed to be potentially suicidal will have to go

through many interviews and many tests to prove that he is safe, a process that could

be really traumatizing.

In [19], the example of cancer detection is discussed: the application has totally

imbalanced decision costs. Thus in the construction/training process some errors are

more penalized than others, since an error could lead to the death of the patient if a

cancer is not diagnosed in time.

Al

suicidal ideas! difficulty lifestyle affected by
fantasies comusnnicating physical disease,

thoughts and feelings disability, pain

parents/siblings:
attempted or committed

realistic steps taken

known. prevailing

Figure 1.1: Hierarchical galatea structure for suicide.

CHAPTER 1. INTRODUCTION

1.2 Initial Problem

As we have seen, the hierarchical tree structure of Figure 1.1 has been realised through
meetings and interviews with mental health expert. Soon we shall see, in Section 3.2,

that we will represent this knowledge with a Bayesian Network. Such a network does

not only needs links between variables; it also requires some probabilities.

This notion of probabilities is natural for anyone with statistical knowledge but, for
an expert in mental health, it is more difficult to grasp the meaning of the probability

of an event A given an event B. This point explains why representing the Galatea by

a Bayesian network will be difficult and time-consuming a priori. A good discussion

of this problem is contained in [19] where it is explained how it is easier to deal with
a special scale instead of directly with probabilities. Questions had been reformulated

to obtain some conditionally probabilities. Figure 1.2 (extracted from [19]) is an
example of a good approximation of the underlying probabilities and was obtained

from the experts. This shows what question and what scale were needed to obtain
the probability of an invasion given a tumor with a specific shape and length. For

a mathematician, this probability would have been noted P(Invasion|Shape, Length)
but the explanatory text in this figure is needed for domain experts. Then, when they

are asked to provide probabilities, the answers of the experts were much more similar

and the strength they associate to their words fits well the current scale.

i , certain Invasion | Shape, Length(1) (almost) 7%?

probable + 85

: : F ’ ted + 75
Consider a patient with a polypoid oe
oesophageal tumour, the tumour
has a length of less than 5 cm.
How likely is it that this tumour fifty-fity + 50
invades into the lamina propria
(T1) of the wall of the patient's
oesophagus, but not beyond ?

uncertain + 25

improbable+ 15

(almost)
impossible ©

Figure 1.2: Example of the scale for probability elicitation.

This thesis is about mental health risk detection; it aims to predict the risk of sui-

cide of a patient given some information. To do so we will construct a hierarchy among

the variables corresponding to different questions. In fact it will be more than a simple

hierarchy; it will be a Bayesian network which means that a relationship between two

10

CHAPTER 1. INTRODUCTION

variables is defined by the presence of a link between them and a certain probability
of one given the other. We will learn the structure and the probabilities from the
data we have and finally we will try to compare it with the hierarchy of the decision
support system developed by hand. By learning the conditional probabilities among
the variables we will be able to increase the accuracy of the results; indeed we will try

to classify some data.

In the second chapter we will introduce the Galatean Screening Tools and we will
present what already exists on the subject of mental health detection; then in the third
chapter we will explain the mathematical background of the thesis and describe what
a Bayesian network is, and what algorithms to train it, exist. The fourth chapter will
be devoted to experiments on toy data; we will test the different algorithms on small
data sets and finally apply these algorithms on the real data in the last chapter.

11

Chapter 2

Galatean Risk Screening Tools

2.1 Project Genesis

Work on this project began in 1999, when a mapping exercise took place to survey the
risk screening tools then in use across the Surrey Hampshire Borders NHS Trust. At
this time, according to [3], the results showed that some tools were available in a num-
ber of services, but few were used every day. Many professionals knew of the existence

of tools; nevertheless uncertainties remained over their use and their accuracy was not

trusted. Many staff members preferred to use their clinical and professional judgement

to interpret the risk; for this reasons, few tools were in use at that time.

According to [4], the Trust was asked to establish a uniform system for risk screen-
ing in order to incorporate it into the Care Programme Approach. As many of the
patients of the Trust did not show significant risks of suicide or self harm, it was too

time-consuming and impractical to subject them all to full detailed tests. Instead the

Trust wanted a tool that identified ‘high risk’ patients for practitioners working in any

mental health settings. Such a low-level, intuitive data-gathering tool should not re-
quire expert knowledge.

In order to create such a tool, a project was set up with financial support from the
NHS Beacon initiative. It officially commenced in November 1999. The outcome was
GRiST, which can be used by any health care professionals without lengthy train-

ing or specialised clinical expertise capacities. The information profile generated by

GRiST would alert the assessor if needed. In that case, a more detailed risk as-

sessment will be used. GRiSTprovides documented evidence of the decision-making
process in risk assessment. It aims to help practitioners to consider the risk factor

systematically in order to supplement good practice in patient assessment.

12

CHAPTER 2. GALATEAN RISK SCREENING TOOLS

2.2 Development and Properties

2.2.1 The Galatean Model

Buckingham and Adams have argued in [4] that many clinical decisions can be viewed
as classification tasks. The descriptive attributes, called cues, are used to assign pa-
tients to one specific category. This approach to clinical decision making is useful as

it prevents confusion between practitioners from different backgrounds and training.

They can communicate with the same terms rather than losing time and being misun-
derstood just because of differences of terminology.

The Galatean model is a theory of psychological classification based on the pro-

totype model theory ((4]). In a prototype model, classes are represented by a single,

most typical member. This member can be viewed as the class central tendency. For
example, if clinicians use the prototype model’s representation of suicide, they would

take a single member from people having previously attempted suicide. This patient’s

cues will most likely have occurred amongst most of the known members of the suicide-

attempting class; for that reason, the prototype is a hypothetical summary represen-

tation of the class. Actually, no one is likely to possess all of these typical cues. The

prototype is used for comparison with new clients, to determine how similar they are

to it and, therefore, how likely they are to be also a member of the suicide-attempting
class. Another way to say it is, how high a risk of attempting suicide they present.

As explained in [4], for prototypes, the most typical class member which is the

class representation has, by definition, cues with the highest probability of occurrence

within the class, P(cues|Class)maz- The prototypical suicide-attempter would be the

client whose cues are the most frequent values within its class. Instead of representing

the most likely cues amongst all people known to be suicide-committers, the Galatean

model represents cues of people representing the highest risk of becoming a member of

this class. This “perfect” object does not maximize the conditional probability of its

cues given the class; but maximizes the conditional probability of the class given its

cues, P(Class|cues)maz- These class representations are called “galateas” in reference

to Pygmalion’s statue of his perfect woman; their cues are the “perfect” ones, an ex-

ception and not the most typical cues.

GRiSTis a web-based tool so given the answer of the form it will estimates the

risk of the patient by comparing with its existing base. This estimation is given in an

understandable result and also purpose a treatment that should be followed.

2.2.2 Evolution of the Tool

First of all, the hierarchical tree of Figure 1.1 was not easy to construct and has re-

quired many interviews. A first prototype of the tree concerning self neglect can be

seen in Figure 2.1, extracted from [4].

Finally, after lots of work and interviews, this graph has become much easier to

deal with and clearer as well; the final version is shown in Figure 2.2.

13

CHAPTER 2. GALATEAN RISK SCREENING TOOLS

In home
ces

 ength se

Figure 2.1: Mind map of the self neglect part of the domain.

|
access of history of
seve: accidents/falls

seeping problems
aimlessness,
lack of

motivation -

medication’ —_—_abscond/disengage

treatment contact

Figure 2.2: Final version of the self neglect part of the Galatea.

14

CHAPTER 2. GALATEAN RISK SCREENING TOOLS

2.2.3 Properties of the Tool

Another interesting point to notice is that some information is not exact: to quantify

the client’s suicidal ideas or fantasies there is no objective measure without uncertainty

such as, for example, a person’s height or weight. Given this observation, we can better

understand that GRiST does not require ‘yes’ or ‘no’ answers. Most of them are

numbers between 0 and 10.

e 0 means not at all,

e 10 means certainty.

e a special answer ‘don’t know’.

An excerpt from the questionnaire can be found in Figure 2.3, extracted from [3]. In

[19], there is a discussion on how most experts give the same figure on such a scale and

so decrease the uncertainty of probabilities. According to this article, it seems that

people feel much more comfortable with a scale than with only a percentage whose

meaning is really obscure.

The relationship between answers “0” and “don’t know” is really important. Con-

sider, in Figure 2.3, the question “To what extent does the client have a serious inten-

tion to commit suicide?”. For a given patient, some clinicians may assume that as no

references to this question have been expressed, the “zero” extent is justified, whereas

other clinicians will judge that not enough information has been collected during the

interview, so they will mark “don’t know”. According to [3], assessors are prepared

to make a judgement about the importance of an item if it relates to the actual man-

ifestation of the client. Thus they might reasonably formulate an opinion from the

client’s behaviour but not if the issues are linked with historical matters. In this way,

the assessor will more easily give a zero rating to issues about the present state of the

client if there is no evidence to infer them from the interview. They consider “no news”

as “good news” and they would rather give a zero rating than taking no information

as an indicator of ignorance. This behaviour is the desired one in risk assessments,

indeed the “don’t know” answers have to be considered as missing information. Too

much missing information would seriously jeopardize confidence in the assessments. It

also corresponds with common sense; proving the absence of something is not an easy

task. The best way to justify this choice is, given a thorough assessment, to consider a

failure to detect the cue as a good cause for believing it is not present. Finally, there

is a really thin line between non-detection and absence of knowledge; that is why the

relation between “don’t know” and “0” answers, and how clinicians conceptualise it,

needs monitoring.

Another interesting point about GRiST also highlighted in [3], is that some of the

questions are subsidiary ones, that is, they depend upon parent questions. They should

not be answered except if the root question has a particular value. Given this observa-

tion, it is normal to have some missing values in the data. For example, in Figure 2.3

it is obvious that the question “If a plan exists, to what extent have steps been taken

to implement it?” would not need an answer if the previous question “To what extent

does the client have a realistic plan or method in mind?” received a negative answer.

15

CHAPTER 2. GALATEAN RISK SCREENING TOOLS

DK

Have auy parents/siblings ever previously attempted or committed suicide Yes ie No {3} [7]

Has the client made a suicide attempt at any time in his or her life Yes (ia No ial

verylow low medium high very high DK

Afyes, to what extent were there triggers for the attempt(s)0... [01/2/33 See iD

Uf triggers existed, to what extent are they present now [0] 123) 2]

To what extent does the client:

inform/wam others about threatened or actual suicide attempts

express suicidal ideas or fantasies-0cseesecesceseeeseeeeteeeeeee

have a realistic plan or method in mind0.0...0.0.cceecseeeeseeeceseeeeeee

Ifa plan exists, to what extent have steps been taken to implement it.

have a serious intention to commit suicide
Figure 2.3: Suicide questions in GRiST.

In this Chapter we have described a tool developed on the basis of interviews with

experts: the Galatean Risk Screening Tool. Its aim is to help predict risk of mental

problem, such as suicide, without requiring special training or lot of knowledge in

mental health. The thesis objective is, using mathematical theory, to create a software

tool that is also capable of predicting risk and then to compare the attribute hierarchy
of the software with the expert’s one. The following chapter describes the mathematical
background used in this thesis.

16

Chapter 3

Structure Learning in Bayesian

Networks

3.1 Introduction

Over the last few decades, Bayesian belief networks, introduced by Pearl in 1986 [14],

have become an important tool for representing and reasoning with uncertainty. Sys-
tems based on Bayesian networks have been used in many different areas, from medical

diagnosis to computing the prices of shares [17].

Despite these successes, a major obstacle to using Bayesian networks lies in the
difficulty of constructing them in complex domains. Indeed it can be a very time-

consuming and error-prone task to specify a network for a specific problem.

Some recent research have led to methods for learning the structure of Bayesian
networks from data. These new techniques are still evolving but they have been shown

to be remarkably effective for some data-analysis problems [8].

Decision trees, artificial neural networks and expert systems are some techniques

available for data analysis; many other techniques exist to deal with problem such

as density estimation, classification, regression and clustering. So why should we use

Bayesian networks and Bayesian inference? At least three answers emerge from [8].

1. For incomplete data sets, Bayesian networks are more usable than other statistical
techniques, for which missing values have to be estimated. For example, if we

consider a classification problem where two inputs are strongly anti-correlated,

if all the inputs can be measured in every case, supervised learning techniques
will not face any problem. Nevertheless, when one of the inputs is not observed

the results will become dramatically inaccurate. Bayesian networks do not suffer
from such a problem.

2. Bayesian networks can deal with causal relationships. This is useful when we

try to understand completely a problem domain, for example, during exploratory

data analysis. Another interesting point with a causal relationship, is that it

allows one to make predictions in the presence of interventions. For example, a

student may want to know if it is worthwhile to spend more time working in the

17

CHAPTER 3. STRUCTURE LEARNING IN BAYESIAN NETWORKS

library in order to increase his marks. To answer this question, the student has

only to determine whether or not spending time working in the library is a cause
for increased marks, and to what degree. The use of Bayesian networks helps to
answer such questions. In a Bayesian network, arcs are oriented from cause to

effect.

3. Bayesian networks used with Bayesian statistical techniques makes the combi-
nation of domain knowledge and data easier. When we perform a real-world
analysis, an important thing is the prior or domain knowledge, especially when
we have only a small amount of data. A proof of the importance of prior knowl-
edge, is that some expert systems can be built from it. As said before, Bayesian
networks have a causal semantic that makes causal prior knowledge very easy

to encode. Moreover, as we will see further in Section 3.2, Bayesian networks

encode the strength of causal relationships with probabilities.

3.2 Bayesian Networks

All definitions in this chapter are taken from [11].

Definition 1

B= (G,0) is a Bayesian network if G = (X,E) is a Directed Acyclic Graph (DAG)
where the set of nodes represents a set of random variables X = {Xi,...,Xn}, and

if 0; = [P(Xi/Xpax;))] is the matrix containing the conditional probability of node i
given the state of its parents Pa(X;).

When we refer to parents of X; we speak about all the nodes Xj such as there is

an arrow from X; to Xj.

A Bayesian Network for X = {Xi,...,Xn} consists of:

e a network structure, G, that encodes a set of conditional dependencies about

variables in X. Each of its nodes represents a variable of X. A lack of arc joining
X; to X; in G denotes that these two variables are not directly dependant.

e a set 6 of local Conditional Probability Distributions (CPD) associated with
each variable.

Together these components define the joint probability distribution for X , which
is given by:

1
5

P(X) =] P(%i|Pa(X;)). (3.1)
i

Figure 3.1 represents a simple Bayesian network with the conditional probability table
associated to variable S. Here S is a discrete variable; if it were a continuous variable

we would not have a table but a density function. We shall focus on discrete variable
in this thesis.

1

18

CHAPTER 3. STRUCTURE LEARNING IN BAYESIAN NETWORKS

A_B C]PxSU, B,C)
oii 0.95

(4) (8) (©) ia 6 0.95
101 0.20
10 0 0.05
Terie 0.00
0160 0.00

(8) 6. Ou 0.00
00 0 0.00

Figure 3.1: A simple network and the associated CPD for S.

3.3 Structure Learning

3.3.1 Introduction

As we have seen, a Bayesian network is composed of a structure and a set of parameters;

that means that two different networks could have the same structure but different

conditional probability tables. For that reason learning a network from data is a 2 step

process:

1. find the structure;

2. find the parameters.

In this thesis we will focus on structure learning rather than on parameter learning;
indeed we want to compare the structure learnt from the data with the structure given

by the experts.

Basically, there are two main methods to learn structure from data:

¢ constraint-based approach, starting with a fully connected graph, we remove

edges if certain conditional independencies are measured in the data.

e Search-and-score approach (most popular), we perform a search through the

space of possible DAGs, and either return the best one found, or return a sample

of the models found.

An intuitive idea for learning structure is to consider all the possible DAGs, and,

given a scoring function, to mark all these DAGs before finally choosing the best one.
This idea is very good a priori, unfortunately, in [16], Robinson in 1977 has shown that
the number of possible structures for a Bayesian networks of n nodes is given by the
recurrence formula:

r(n) = (-1)1C8 2! Yen — 4) = 0?™., (3.2)
i=1

19

CHAPTER 3. STRUCTURE LEARNING IN BAYESIAN NETWORKS

The number of possible DAGs is super-exponential with respect to the number
of nodes. For that reason “brute-force” is useless since it would be much too time
consuming and thus computationally infeasible for all but the very smallest networks.
To illustrate this, Table 3.1 (extracted from [12]) contains the exact number of possible
DAG for small networks.

25

543

29, 281

1.1 x 10°

7.8 x 10!

oFxe1 O18

L
2
3
4
5
6 3, 781, 503
ie
8
9
10 42x 10"

Table 3.1: Number of possible DAGs as a function of the number of nodes.

In addition to this issue, when we explore the set of possible DAGs, to go from
one DAG to another one we will perform some basic operation; basically we will add,

remove or invert an arc. This set of operations defines the neighborhood of a DAG.
As only one dependence changes each time, to reduce the computation required for the

evaluation of a neighbor’s graph score, it is a good idea to use a sum of local scores.

Definition 2

A score S is said to be decomposable if it can be written as the sum or the product
of functions that depend only on one vertex and its parents. If n is the graph numbers
of vertices, a decomposable score S must be the sum or product of local scores s:

n
S(G) => s(X;, Pa(X;)) or SG = [Is X;, Pa(X;)).

i=1 i=1

3.3.2 Markov Equivalent Set

As we have seen in Section 3.2, there is a unique joint probability function defined by

a Bayesian Networks given by formula 3.1. But the opposite is not true; indeed, using

Bayes’ rules:

P(A,B,C) = P(A)P(B|A)P(C|B)
P(A|B)P(B)P(C|B)

= P(A\B)P(B|C)P(C)

20

CHAPTER 3. STRUCTURE LEARNING IN BAYESIAN NETWORKS

We can see that the structures in Figure 3.2 are associated to the same joint prob-

ability and all give ALC|B (i.e. A is independent of C given B). In other words, given
just the data, it will be impossible for someone to say which one of these three struc-

tures is correct, the one which generated the data. For that reason it is useless to try
all of them.

(a) (b) (©)

Figure 3.2: Three equivalent structures.

Definition 3

Two DAGs are said to be equivalent (denoted =) if they imply the same set of condi-
tional dependencies (i.e. they have the same joint distribution). The Markov equivalent
classes set (named E) is defined as E = A/ = where A is the set of all DAGs.

Basically, the structures in Figure 3.2 are said to be equivalent since they belong
to the same Markov equivalent class. So, given the data we won’t be able to choose

between these structures which means that the scoring function should give us the

same results for all these structures.

Definition 4

A score is said to be equivalent if applied to equivalent DAGs, it gives exactly the

same results.

To sum up, for the moment the space of possible DAGs is reduced; indeed why
should we consider all equivalent graph given that just from the data we will not be
able to differentiate one from the other? This means that we only need to look one
instance of each Markov Class.

We are facing a problem here; our goal is to retrieve a structure in order to compare

it with the hierarchy given by the expert. From the previous paragraph, we know that

from the data we would not be able to differentiate between two equivalent structures,

21

CHAPTER 3. STRUCTURE LEARNING IN BAYESIAN NETWORKS

which means that our task is made more difficult.

The following definition is extracted from [9].

Definition 5

A V-structure in a DAG is an ordered node triple (X;,Xj,X,) such that

e the DAG contains arcs X; + Xj and X, — Xj, and

e there is no edge between X; and Xx.

The structure, A + B < C implies A / C|B which means that if we know the
state of node B, the knowledge of node A has a direct impact on node C whereas in
the three structures of Figure 3.2 this is not the case. In [11], Verma and Perl showed
that two DAGs are equivalent if and only if they have the same skeleton and the same

V-Structures. This allows us to determine in a straightforward way if two networks are

equivalent.

Definition 6

An arc is said to be reversible if its reversal leads to a graph which is equivalent to the
original. The space of Completed-PDAG s (CPDAGs or essential graphs) is defined
as the set of Partially Directed Acyclic Graphs (PDAGs) that have only undirected or

irreversible arcs.

In a later discussion (Chapter 4) we will not compare directly the graph found and
the real one but we will compare their equivalent PDAGs and count as an error each
misplaced or misdirected arc; basically we will count as a single error any of the fol-

lowing:

© one missing arc,

e one extra arc or

© one misdirected arc.

We have already spoken about scoring functions, it is now time to introduce two

classic scores.

22

CHAPTER 3. STRUCTURE LEARNING IN BAYESIAN NETWORKS

3.4 Score function

In this section we will use the following notation:

e the Bayesian Network, B composed of

— the structure G and

— the parameters 0.

D is the dataset containing N examples,

e 9™¥ is the maximum likelihood parameters,

Dim(B) is the network dimension defined in equation 3.7,

e 7; is the size of X; and

pa; is a specific value of the parentsX;.

3.4.1 Bayes’ Score

Introduced in [11], Bayes’ score is an equivalent and decomposable score. It is exactly

the logarithm of the likelihood of the data. Bayes’ score is given by:

BAY (B,D) = log P(D|B). (3.3)

In our case, as we will be looking for the structure and the parameters this score could

be written as in formula 3.4 where 0” represents the maximum likelihood parameters.

BAY (B,D) = log P(D|G, 0"). (3.4)

3.4.2 BIC Score

Introduced in [11] as well, the Bayesian Information Criterion is also decomposable and

equivalent. It comes from principles stated by Schwartz in 1978 and can be expressed

by the formula:

BIC(B,D) = log P(D|B, 6") — ; Dim(B) log N. (3.5)

As we need r; — 1 parameters to describe the conditional probability distribution

P(X;|Pa(X;) = pa;),we need Dim(X;, B) parameters to describe P(X;|Pa(X;)) with:

Dim(X;,B) = (ri—1)qi wheregi= [TI 7. (3.6)
Xj€Pa(X;)

The Bayesian network dimension Dim(B) is defined by:

23

CHAPTER 3. STRUCTURE LEARNING IN BAYESIAN NETWORKS

Dim(B) = > Dim(X,,B). (3.7)
i=l

The BIC score is basically the sum of the likelihood term and a penalty term which
penalizes complex networks. As two equivalent graphs have the same likelihood and
the same complexity, their BIC scores are equivalent.

Using these two basic scores let us now consider some algorithm that can be used
to learn the structure of the network.

3.5 Structure-Learning Algorithms

3.5.1 K2

This algorithm is described in many papers (for example [11] or [12]). Developed by
Cooper and Herskovits in 1992 ([7]), the K2 algorithm is a greedy search algorithm
that works as follows.

1. Initially each node has no parents.

2. Order all the nodes and start step 3 with node 1.

3. Add incrementally those parents whose addition most increases the score of the

resulting structure.

4. When the addition of a single parent does not increase the score, stop adding

parents to the node.

5. Go to step 3 with the next node in the order until all the nodes have been treated.

The fixed order needed by this algorithm, avoids some arcs; indeed if the order is
1—2-—3-4 then node 1 can not have any parents whereas node 4 could have nodes

1, 2, and 3 as parents.

This algorithm belongs to the class of search and score algorithm as defined in sub-
section 3.3.1.

The basic idea of the K2 algorithm is to maximize the structure probability given
the data. In order to do so, we can use the fact that:

PID) "Mer P(Gi,D)

P(G:|D) FP) P(G2,D)

and the following result given by Cooper and Hersovits in 1992 :

CHAPTER 3. STRUCTURE LEARNING IN BAYESIAN NETWORKS

Theorem : If Njj, is the number of data points where X; has the value xj, and

Pa(X;) is instantiated in paz and Njj = yy Nijx then

; Feo ces Doe
P(G,D) = P(G)P(D\G) with P(D|S) = TT I] = TD Nise! — 3.8)

(Nig +75 — 1)! pi é=1 j=l

where P(G) is the prior probability of the structure G.

Equation 3.8 can be viewed as a measure of the quality of the network given the
data and is named the Bayesian measure.

Given a uniform prior on structures, the quality of a node X and its parents can
be evaluated by the local score:

a Gaps
3(Xj, Pa(Xi)) = i (Nj +n- 0)! TL Nie! (3.9)

Cooper and Hersovits have also shown that we can reduce the size of the search
space using a node order. According to this order, a node can be a parent only of a
node which is after it in this order. The search space becomes the subspace of all the
DAGs admitting this order as topological order.

The K2 algorithm tests parent insertion according to this order described pre-
viously. The first node cannot have any parent, and for other nodes, we choose the

parent set that best upgrades the score; that means we add only the parents which
most increase the score.

Heckerman et al. have proved in [9] that the Bayesian measure need not be equiv-

alent and has proposed the BDe score, which is basically the Bayesian measure with
a specific prior on parameters, in order to avoid this. It is also possible to use the
BIC score in the K2 algorithm.

3.5.2 PC

This algorithm, also described in [12] and [11] uses a different approach from the K2 al-
gorithm. Indeed the idea is not to find dependencies but to find independencies.

This algorithm belongs to the class of constraint based algorithm that were defined
in sub-section 3.3.1.

The PC algorithm, which was first developed by Spirtes, Glymour, and Scheines
in 1993 [18], is a faster version of the IC algorithm introduced by Pearl and Verma in
1991 [15]. Basically, it computes many conditional independence tests, and combines
these constraints into a PDAG to represent the whole Markov equivalence class.

This algorithm works as follow:

25

CHAPTER 3. STRUCTURE LEARNING IN BAYESIAN NETWORKS

e First, start with a full connected graph.

e Using a statistical test evaluate whether or not there is a conditional indepen-
dency between two variables.

e If independency has been found remove the corresponding arc.

This algorithm was not used in this research because its results are not accurate; it

is usually to give someone information of independencies among variables rather than

to find a structure.

An interesting point in Figure 1.1 is that the structure given by the expert for
suicide, which is precisely the one the project is focused to retrieve from the data, is a

tree. The following definition is extracted from [1].

Definition 7

A connected undirected graph is a tree if for every pair of nodes there exists a unique

path.

As a tree is a particular case of a DAG the previous algorithms could be used to

retrieve it; the next algorithm is not a DAG learning algorithm but a tree learning
algorithm : The Maximum Weight Spanning Tree.

3.5.3 MWST

This algorithm is not recent and one of its variations has been proposed by Chow and

Liu in 1968. This variation, which has the name of its creators, is fully described in [6]
and also in [11]. This method associates a weight to each edge. The weight could be

either the mutual information between the two variables or the score variation when

one node becomes a parent of the other (see Heckerman et al. in 1994 [9]) or even the
BIC score. When the weight matrix is created, the standard MWST algorithm gives
an undirected tree that can be oriented with the choice of a root.

The main idea of this algorithm is to approximate optimally an n-dimensional

discrete probability distribution by a product of second-order distributions. In this

sub-section we will denote by P(x) the true distribution and by P,(x) the approxi-
mation by the tree. Our goal is to make P,(x) as close as possible to P(x) and it is
precisely from the mutual information that we will characterize this closeness.

Definitions in this section are taken from [6].

26

CHAPTER 3. STRUCTURE LEARNING IN BAYESIAN NETWORKS

Definition 8

The mutual information I(x;,2;) between two variables x; and x; is given by:

I(2;,2;) = >> P(2i, a;) log (Fos) (3.10)

It is well known that J(2;,2;) is non-negative. In the graphical representation of
dependence relations, to every branch of the dependence tree we assign a branch weight

I(a;, xj). Given a dependence tree t, the sum of all branch weights is a useful quantity
for determining the closeness of two trees.

Definition 9

A maximum-weight dependence tree is a dependence tree t such that for allt’ in the set
of all possible dependence tree,

I(ai, 25) = YT (ei, 291).
i=l i=l

M
e

Our goal can now be stated as follows. A tree probability distribution P,(x) is an
optimum approximation to P(x) if and only if its dependence tree t has maximum
weight

Given samples (x1,22 ... tN),

1. Start with an empty structure.

. Compute the mutual information matrix Jj; = I(2;, 7;). 2.

3. Let k defined by the pair (i, j,) such that Jj,;, = max Ij.

4. Put Ii,;, =0.

5, . If the vertex 7% or j, is not in the structure yet and if the addition of the arc

je —> ix does not lead to a cycle then add it.

6. Go back to step 3 until Jj; = 0, V(i,j) or we have already N — 1 arc.

To compute correctly the mutual information you should know entirely the proba-

bility distribution for each pair of variable (e.g. to know P(x, 22) for all value of x;
and x2). In our case we won’t have such knowledge so we will estimate the distribution

from the data statistics by computing the frequency of all cases. Basically we will
count the number of occurrences of each case and divide this number by the total of
numbers observations. Just in order to avoid any problem and division by zero in the

27

CHAPTER 3. STRUCTURE LEARNING IN BAYESIAN NETWORKS

logarithm of formula 3.10, we can put a Dirichlet prior in order to smooth these fre-

quencies. Basically what we will do is to add 1 occurrences for all the possible values,

in other word if there were 3 binary nodes (A,B and C) that mean 2° possibilities and
if we have really observe only 2 cases (first case: {A = 1,B = 1,C = 0}, second case:
{A = 1,B =0,C = 0}), then we will ‘fake’ to have observed 2 + 2° cases the 2 real

cases and the 2° virtual just to make sure that there won’t be any log (aeeises) term

which will corrupt our computation (in our case P(C=1) without the Dirichlet prior
would have been 0).

In this chapter we presented a mathematical way to represent data and the links

between them: a Bayesian network. We have then seen some algorithm to learn the
structure of such a network directly from the data. We will now use this Bayesian
network to retrieve an unknown structure and compare it with the Galatean model

introduced in the first chapter.

28

Chapter 4

Experiments in Structure Learning

on Toy Data

In this chapter we will describe some experiments on toy data, and the next chapter

will deal with real data. Basically all the experiments are similar: from a network

(which is known in this chapter) are generated some data. Given this data, the aim of
the experiment is to compare the structure of networks found with K2 algorithm and

the MWST. All the scores introduced on Chapter3.2 will be used in order to test if

one of them gives better results than the others:

e Bayes’ score,

e BIC score and

e mutual information.

In all the experiments, we have used the useful Bayesian Network Toolbox (BNT)

written by Kevin Murphy and also very well documented in [12]. This toolbox needs

the Matlab program and also the Netlab toolbox.

4.1 Description

We carried out experiments on three different networks.

e The first one, is very small: only 4 nodes and 4 arcs.

e The second network is a 10-node network with many more arcs.

e The third network is a 10-node tree.

The first network, in Figure 4.1, has often be studied; it is the “sprinkler network”.

We can see that the structure is not a tree so the first thing we have to expect is that

29

CHAPTER 4. EXPERIMENTS IN STRUCTURE LEARNING ON TOY DATA

Figure 4.1: First network.

the MWST will not give the correct network, but it will be interesting to see whether
or not the found arcs are correct. Another point to notice is that given there are only

4 nodes, so there are 543 possible structures (according to Table 3.1) and given that all

nodes are binary, the amount of data needed to learn the structure should be relatively
limited.

Figure 4.2: Second network.

This second network, in Figure 4.2, is also not a tree, so again the MWST would

not give a correct network but again we aim to test if the found arc are correct. This

network is far more complicated than the previous one. For that reason, we can expect

that to retrieve the correct structure we will need a lot more data than in the first case.

30

CHAPTER 4. EXPERIMENTS IN STRUCTURE LEARNING ON TOY DATA

Figure 4.3: Third network.

Finally, the third network is a tree (see Figure 4.3) so we expect good results with
the MWST algorithm. There are 10 nodes and 9 edges so it is quite similar to the
structure given by the experts for suicide in Figure 1.1. Thus the results on this struc-

ture will be very useful for the experiment on the true data.

In order to generate the data, as we have fixed the structure and also the conditional

probability tables we can create a dataset for the network. Basically, that means that
we will generate a possible value for each node of the network. In order to determinate

how much training data is needed, we performed many experiments with different sizes

of data set look for the size beyond which the results are constant (i.e. one algorithm

gives always the correct structure).

4.2 Results

In this section we will present tables of the errors using different algorithms and different

scores. To obtain this error, we compute the PDAG associated to the found network,

and count the number of misplaced or misdirected arcs compared to the PDAG derived
from the true network. The algorithm used are:

e K2 algorithm with good and bad node orders and with BIC and Bayes’ score.

e MWST algorithm with BIC score and mutual information.

The good or bad order for the K2 algorithm can be defined because, as we generate the
data from the networks, we know how the nodes were ordered. If we give the K2 algo-
rithm this order we will say it was the good order; whereas if we give the reverse order
we will speak about the bad order.

To add some statistical reliability to these results, multiple seeds have been used
and the computation time is also calculated. We perform each experiment with more
than 100 seeds but we just present here results on 4 seeds chosen because they give the

31

CHAPTER 4. EXPERIMENTS IN STRUCTURE LEARNING ON TOY DATA

best answer (i.e. the resulting structure are found correctly with less data). Indeed
the choice of the seed is important because every time a choice is made “randomly” it
is in fact defined by the seed:

¢ first of all when we generate the data from the network the choice to generate it

is random.

e In the K2 algorithm if the addition of several parents lead to the same maximal
increase of the score the parent is choose randomly.

e Finally in the MWST algorithm if several mutual information has the maximal

value one is chosen randomly.

Sprinkler Network

Consider the found structure and a table containing the number of error (in term of
arc misplaced or misdirected) with K2 algorithm with the correct order.

<>

Gam

Figure 4.4: Learned network for the K2 algorithm in good node order for the sprinkler

network.

Seed 14 49 51 66

BAYE 0 0 0 0

BIC 0 0 0 0

Time (s) | 0.1402 0.1402 0.1402 0.1402

Table 4.1: Incorrect arcs for K2 algorithm in good node order for the sprinkler network.

The first thing to notice is that the found network structure is perfect. We have
used only 50 data point and we can see that for all seeds, the resulting network is

accurate and also found in a very short time.

The next experiment will highlight the importance of the node order in the K2 al-

gorithm; in the following examples the order is exactly the reverse of the correct order.

32

CHAPTER 4. EXPERIMENTS IN STRUCTURE LEARNING ON TOY DATA

Seed 14 49 51 66
BAYE 5 4 4 4
BIC 5 4 4 4
Time (s) | 0.0701 0.0701 0.0701 0.0701

Table 4.2: Incorrect arc for the K2 algorithm in bad node order for the sprinkler
network.

pats Cais *X—C in)

Cats)

Figure 4.5: Learned network for K2 algorithm in bad node order for the sprinkler

network.

As expected, the network is totally wrong: there is one extra arc and all the others

are misdirected. If we train the network with much more data the resulting network is

still the same because of the node order.

Another interesting point is the invariance of the resulting network from the score
used in the learning; indeed we find the same network if we used either BIC score
or Bayes’ score. That point is quite easy to understand: the main difference between

these scores is the penalty term which avoids too complex networks and in this case

the network is really simple so this penalty term is small.

Finally, when we used the MWST algorithm the resulting structure and error were
as follows:

Seed 14 49 51 66
Mutual 2 2 2 2

BIC 2 2 2 2
Time (s) | 0.3405 0.3405 0.3405 0.3405

Table 4.3: Incorrect arc for the MWST algorithm for the sprinkler network.

33

CHAPTER 4. EXPERIMENTS IN STRUCTURE LEARNING ON TOY DATA

st

Coie) St)

<>

Figure 4.6: Learned network for the MWST algorithm for the sprinkler network.

The result should not be a surprise; indeed the original network is not a tree, since,
ignoring the arc orientation there is a cycle that could not be present in a tree. Never-
theless we notice that all the arcs found are correct and whatever the number of data
points used to perform the experiment it is always this final arc between “sprinkler”

and “wet grass” which is missing. That means that the score associated to this arc

must be the smallest, either in mutual information or in BIC score; so it would be

chosen after the others but as the number of arcs is limited in MWST, the algorithm
stops before the addition of this arc.

Another point to notice is that the time for the experiment is greater than with the

K2 algorithm; this observation confirms the results of [6] that for small networks this
algorithm is slower than others.

Note that the number of incorrect arcs is 2 simply because in the BNT toolbox,

when an arc between node A to node B is reversible, in the associated CPDAG there

is an extra arc between node B to node A. All arcs found with the MWST algorithm
are reversible whereas in the true structure there are only 2 reversible arcs.

Finally, Figure 4.7 represents the number of errors as a function of the training

dataset size.

On this graph, we can clearly see that with more than 80 data points, the K2 algo-

rithm gives a constant answer which is the exact network; whereas the MWST algo-
rithm gives its final answer after only 10 training data. Nevertheless, except between

20 and 30 training data the results of the K2 algorithm are better than the MWST.
The average error for the K2_ is 0.88 with a standard deviation of 1.453 whereas for

the MWST algorithm the mean error is 2.16 and the standard deviation is 0.24. This
figure are the same for both scores.

34

CHAPTER 4. EXPERIMENTS IN STRUCTURE LEARNING ON TOY DATA

—bie

5 ~~ nan
~~ ember

 i Lil | 0

[op oaaoaone o w oo DD ODM OO 0 0

(a) K2 (b) MWST

Figure 4.7: Number of incorrect arcs in function of the number of training data.

Second Network

For this experiment, we have used 8100 data points (this number has been found as the

smallest data points needed to have a correct answer with the K2 algorithm) to train
the network. Consider the found structure and the error results with the K2 algorithm
with the correct node order.

Figure 4.8: Learned network for the K2 algorithm in good node order for the second
network.

The graph in Figure 4.8 has been obtained with seed 14 and is perfect. Table 4.4

35

CHAPTER 4. EXPERIMENTS IN STRUCTURE LEARNING ON TOY DATA

Seed 14 49 51 66

BAYE 0 5 0 5
BIC 0 5 0 5
Time (s) | 7.2248 6.9243 7.2448 7.2348

Table 4.4: Incorrect arcs for the K2 algorithm in good node order for the bigger
network.

shows that for different seeds we can have different networks but all are quite close to
the true-one. Once more, there is no difference between the results achieved with the 2

scores. Last but not least, we can notice that this experiment is more time consuming

than the previous one and we have to keep in mind that the nodes are only binary.

Using the same algorithm but with the reverse node order gives totally different

results both for the found structure and for the error.

Figure 4.9: Learned network for the K2 algorithm in bad node order for the bigger
network.

Seed 14 49 51 66
BAYE 43 41 41 43
BIC 43 42 52 43

Time (s) | 7.7956 7.4551 7.8156 7.3950

Table 4.5: Incorrect arcs for the K2 algorithm in bad node order for the bigger network.

36

CHAPTER 4. EXPERIMENTS IN STRUCTURE LEARNING ON TOY DATA

In this experiment, we can see that the importance of the node order in K2 algo-

rithm is even more highlighted than before; the resulting network is far from the true

one and we can also see that the scoring function sometimes makes a difference. For

example, for seed 49 we can see that the BIC score is worse than the Bayes’ score:
as it penalizes complex networks it avoids some arcs which could be reversible and so
not count as error at the end. The time of the experiment is roughly the same as with
good node order.

Finally, when the MWST algorithm is used to discover this network, the results

are as shown in Figure 4.10.

Figure 4.10: Learned network for the MWST algorithm for the bigger network.

Seed 14 49 51 66
Mutual 21 17 21 17

BIC 21 17 21 17

Time (s) | 4.5209 4.0402 4.3807 4.2605
Table 4.6: Incorrect arcs for the MWST algorithm for the bigger network.

As explained in subsection 3.5.3, this algorithm can only find N — 1 arcs given
there are N nodes. That is why the bad results for this network are predictable there

were too many arcs as the true network was not a tree. Arcs in dashed lines are well

directed; the other are misdirected and there is also one arc from 6 to 10 that does not

exist. There is no difference if we used mutual information or BIC score.

37

CHAPTER 4. EXPERIMENTS IN STRUCTURE LEARNING ON TOY DATA

According to [11], a good idea when we do not know the order of the nodes is first
to apply this algorithm and given the dependency, order the nodes. We can see that in
this case the resulting order is really far from the reality, and this is likely to be true

for many complex network.

Finally Figure 4.11 represents the number of errors as a function of the training

dataset size.

 PL i
{yao ao ao a a DPD Ds 0 1m 2D Dam Deo aoD S

(a) K2 (b) MWST

Figure 4.11: Number of incorrect arcs in function of the number of training data.

We can see on this graph that if we want to be sure to have a correct result using the

K2 algorithm we should use more than 8000 training data points; however, with the

Chow Liu algorithm the result are pretty constant, but really bad, whatever the size

of the dataset used in the training process. The mean of error for the K2 algorithm
is 6.11 but it’s standard deviation is really large 3.9 whereas for the MWST it is the
opposite, the mean is large(18.4) but the error bars are really small(1.8).

Tree Network

The experiments done so far are not in favour of the MWST algorithm but with the

last experiment we will see the practical aspect of this algorithm. For this experiment,

we have used 1300 data points to train the network. The resulting error and the found

structure with the K2 algorithm with the correct order for the tree network are shown

in Figure 4.3.

38

CHAPTER 4. EXPERIMENTS IN STRUCTURE LEARNING ON TOY DATA

Seed 14 49 51 66
BAYE 0 0 0 0

BIC 0 0 0 0
Time (s) | 4.3907 5.0116 4.2505 4.3406

Table 4.7: Incorrect arcs for the K2 algorithm in good node order for the tree network.

FO Oe

Figure 4.12: Learned network for the K2 algorithm in good node order for the tree

network.

Once again, if we know the correct order of nodes, the K2 algorithm is accurate
but quite time consuming. Whatever the seed and the scoring function used the results

are almost constant:

e every time the network is accurately found and

e the experiment lasts about 4.5 seconds.

Then if we used the same algorithm but with the reverse order we found two dif-

ferent structures depending on the score used.

Seed 14 49 51 66
BAYE 13 13 11 11
BIC 10 13 11 10
Time (s) | 5.2519 5.2820 5.4222 5.3020

Table 4.8: Incorrect arcs for the K2 algorithm in bad node order for the tree network.

As usual, with a wrong node order, the K2 algorithm loses all its accuracy. All

arcs present are misdirected or should not exist at all. For the first time, we can see a
difference between the resulting structure if we used the Bayes’ score (Figure 4.13 a) or
the BIC score (Figure 4.13 b). Basically there are two extra arc with the BIC score:

39

CHAPTER 4. EXPERIMENTS IN STRUCTURE LEARNING ON TOY DATA

(a) Bayes’ (b) BIC

Figure 4.13: Learned network for the K2 algorithm in bad node order for the tree

network.

between node 2 and node 1 and between node 8 and node 7 .

Finally, when we used the MWST to retrieve this tree here are the resulting error

and the structure we obtain:

OO O70

Figure 4.14: Learned network for the MWST algorithm for the tree network.

Seed 14 49 51 66

Mutual 0 0 0 0

BIC 0 0 0 0
Time (s) | 3.1189 3.3091 3.1890 3.0588

Table 4.9: Incorrect arcs for the MWST algorithm for the tree network.

40

CHAPTER 4. EXPERIMENTS IN STRUCTURE LEARNING ON TOY DATA

The resulting network is perfect and found a little faster than with K2 algorithm
with good node order. Again the seed does not modify the results and the scoring
function used does not seem to interfere either. This result is encouraging for work

on the real data set because the true model should be a tree according to the experts.
Nevertheless, the negative point of this experiment is the amount of data used: 1300
points, which is much more than the dataset we have for the suicide case. Indeed we
have only 308 data points and in addition, not all the nodes are binary but will have
12 possible values: the scale answer from 0 to 10 plus the “don’t know value”.

As for the previous experiments, Figure 4.15 represents the number of errors as a

function of the training data set size.

aT
‘Hy i | hi
: Wh tal Mn Ta

(a) K2 (b) MWST

Figure 4.15: Number of incorrect arcs in function of the number of training data.

Once more we can see that the difference between the score are very small; the
number of training point that should be used to avoid any fear of error is about 1300,
over this number all the algorithms give a correct answer.

On one hand, we can notice a ‘step’ with the K2 algorithm, indeed between 200

and 900 training data the number of error with resulting network is constant: 2. On

the other hand, with the MWST algorithm we notice that the number of errors is less

constant with less than 1000 values but if we train the network with more than 1300
values, the resulting network is exactly the one we are looking for. The mean of error is

41

CHAPTER 4. EXPERIMENTS IN STRUCTURE LEARNING ON TOY DATA

higher in the K2 algorithm(2.3 errors with this algorithm and 2 for the MWST) but

the standard deviation is smaller for the K2 , results are less (2.7 for the MWST and

2.4 for the K2).

From these experiments we can conclude some points:

e The K2 algorithm strongly depends on the order; if the node are ordered correctly
the results are pretty good,but otherwise the results are awful.

e When the correct structure is a tree, MWST becomes more interesting, since

it does not require any knowledge of node ordering and gives almost the same
results as the K2 algorithm even faster.

e The scoring function used does not seem to affect the resulting structure a lot.

42

Chapter 5

Experiment on Real Data

5.1 Description

We are now working with the real data (i.e. data collected from GRiST) we assume
the structure to be a tree and to order the node, we will use the order of the questions
of Figure 2.3.

The dataset consists of 308 anonymised answers of GRiST in an Excel sheet. We
are focused on the suicide sub-domain so we will use only answers associated with

Figure 2.3 and General information. As mentioned earlier, some special answers are

encountered: ‘don’t know’ and the absence of answer; these are represented respec-

tively by 99 and #NUL!.

We performed some preprocessing on this data in order to be able to use the toolbox.

e First of all, we will add 2 to all the data values so the answers will be now scaled
from 1 to 11 for questions 3 to 10 and from 2 to 3 for questions 1 and 2.

e We note that questions number 1 and 2 are in reverse scale: indeed in the ques-

tionnaire 0 (so 2 in our new data sheet) represented ‘YES’ and 2 meant ‘NO’.

We swaped these answers in order to be coherent with the rest of the questions:

low value means unlikely and high value means probably.

e Finally, the toolbox treat #NUL! answer as Nan (e.g. Not a number) and all
the algorithm do not work in the presence of NaNs. In order to deal with this
issue, we considered the absence of an answer as an absence of knowledge. Thus
such values were treated as ‘don’t know’ and we regrouped these values in one

category represented by number 1. We discussed before of the thin line between
‘NO’ and ‘don’t know’ that’s why we have chosen to assign a small value to that
answer.

Another important thing to notice is that for a network with 10 nodes, the result of
the previous Chapter show that to retrieve its structure requires much more than 308
data points if all nodes are binary. Nevertheless, here, nodes which will be associated

43

CHAPTER 5. EXPERIMENT ON REAL DATA

to each question could have between 3 answers for question 1 and 2, and 12 answers

for the others.

From the results in the previous Chapter, we have seen that for sparse networks
(ie. with few links) the differences among the scores are very small even when they
exist. That is why we will use only Bayes’ score for the K2 algorithm and mutual

information when we used the MWST algorithm. We will use the order of the ques-
tions, that means that some links should be present, indeed question 4 should only be

answered if there was an answer to question 3; so there must be a link from node 3 to
node 4, For the same reason there must be a link from node 2 to 3 and from node 8 to 9.

Our first task will be to select among the General settings questions those which

are influencing the risk of suicide. To do so we will use the ARD algorithm.

In all this chapter, when it is not mentioned, the seed used was 14.

5.2 Selection of Variable

The Automatic relevance determination (ARD) algorithm, introduced in [13], is an
algorithm to test the dependencies among variables. This test is done by training a

classification model in a Bayesian framework.

The basic idea in ARD is to give each weight an hyperparameter:

= TM (wil0, a7"),
i

p(w|

where a = a,, is a hyperparameter vector that controls how far away from zero each

weight is allowed to go(it is the inverse of the variance). The hyperparameters a are
trained from the data by maximizing the Bayesian ‘evidence’ p(t\a). The outcome of
this optimization is that many elements of a go to infinity such that w would have only
a few nonzero weights w; . This naturally prunes irrelevant features in the data.

In our case, we wanted to select variables among the General settings and for

that we executed the ARD algorithm looked at the hyperparameters learned. The
hyperparameters characterise the dependencies between the variable and the risk of

suicide of the patient; the larger the hyperparameter alpha, is the less correlated the
variables are. Here are the resulting hyperparameters found:

e For the question ‘Sex’, alpha = 7.24284,

e Question ‘Marital status’ alpha = 0.1703,

e Question ‘Employment status’ alpha = 0.5465,

e Question ‘Accommodation’ alpha = 0.9801,

e Question ‘Household shared with’ alpha = 0.0143.

44

CHAPTER 5. EXPERIMENT ON REAL DATA

So we can conclude from this experiment that the sex of the patient does not highly

influence the risk of suicide but the other variable are really important. So we will now
start the learning process with the question of Figure 2.3 plus four questions of the

General settings:

1. ‘Marital status’,

2. ‘Employment status’,

3. ‘Accommodation’ and

4. ‘Household shared with’.

5.3 Structure Learning and Prediction

The learning process was divided in 2 stages:

1. retrieve the DAG using the algorithms of Chapter 4,

2. once the DAG is found, we learn the parameters of the Bayesian network (i.e.

the conditional probabilities).

The second step will not be detailed,since our forms is on the structure and the

prediction. With the structure found we can try to predict the answer to the last

question of GRiST (which was not shown in Figure 2.3): “In your judgement, to what

extent is the client at risk of suicide?”.

To do so we will perform some inference which means to estimate the probability of
unknown (‘missing’ values) given some observation. We will observe the 9 first nodes,

which means the 9 first answer plus the 4 answer of the general questions and try to
predict the answer to the last question. A common algorithm to perform inference is

the junction tree algorithm.

The junction tree algorithm is well-documented in [10]; the first idea in this algo-
rithm is to work with potentials instead of probabilities. A potential is associated to

a clique instead of a single node. A clique is a set of nodes that are all connected to
each other. The original graph can be represented as a graph of cliques linked by their
common nodes named the separator; such a graph is called a Cluster Tree. The 3 steps

of the algorithm are as follows [1]:

1. Moralization:

add links between parents of a shared child,

2. Triangulation:

avoid loop of more than 3 nodes by adding a link between any two nodes in such

a loop,

3. Construct the Cluster Tree as defined before with the corresponding potentials.

45

CHAPTER 5. EXPERIMENT ON REAL DATA

After that the potentials are updated so that each clique is coherent with every sepa-

rator.

Nevertheless, as explained in [12] sometimes the junction tree algorithm is slow
and may even not work. That is why we will use another engine existing in the BNT
Toolbox: likelihood_weighting_inf_engine which is similar to the junction tree algorithm
but gives better results.

The accuracy of the resulting network will be characterised by the number of cor-

rect predictions on a test dataset.

We started experimenting just with the data without forcing any links in the DAG;

with these DAGs we will select the best seed to use among the 100 first seeds. To do
so we performed the same experiment with all seeds: count how many prediction are
correct. With the seeds found we will re-do the experiment to analyse the results. We
will then perform the same process but with different DAGs: we forced some arcs to

be present.

Then we reduced the number of possible answer to 4 categories (except for the last
question) and performed the same experiments: firstly without forcing any links and

then add some links.

We then reduced the number of possible answers for the risk of suicide to 4 cate-

gories as well.

Finally we tried removing the 4 questions of the General settings to see if the re-
sulting structure and results change a lot.

Experiments

The first experiment has been done with the whole dataset corresponding to Figure

2.3 plus the 4 other questions of General settings.

The resulting DAG are shown in Figure 5.1 for the K2 algorithm and in Figure
5.2 for the MWST algorithm.

What appears on the first DAG is the absence of links between nodes associated
to question 3 and question 4 of the suicide part. Otherwise we can notice that the
other necessary links are found. The node associated to the risk of suicide is a leave in
this DAG, which means that it depends on all nodes before it in the graph. Moreover,
the nodes associated to the general settings are grouped together and only linked to

the rest by one link.

46

CHAPTER 5. EXPERIMENT ON REAL DATA

Sie

Figure 5.1: Resulting DAG for the complete dataset with the K2 algorithm.

2 attempt
Figure 5.2: Resulting DAG for the complete dataset with the MWST algorithm.

47

CHAPTER 5. EXPERIMENT ON REAL DATA

On the second graph, we can highlight the lack of 2 necessary links (2 + 3, 8 > 9).

In this case the nodes associated to the general settings seems more linked to the other

than in the previous graph.

With these two DAGs we have looked for the best seeds among seeds number 1 to

seed number 100. To do so we used this algorithm:

for seed = 1..100

for DAG=1..2

learn the parameters with all the data

for i = 1..308
given the observation of the 13 first question of line i

predict the risk of suicide

if correct

result (seed,j)+= 1
endif

endfor

endfor

endfor

The choice of the seed will implies many change in the results. Basically, for a
fixed seed the random generator is fixed too and will generate the same list of random

number and in the previous chapter we highlighted the points where the algorithms

use random numbers. As our dataset is not large, we perform the training and the test

on the whole dataset.

Once this algorithm has run we just have to look at the maximum of result(:, 1) to
know which seed is the best for DAG associated to the K2 and find the maximum
of result(:, 2) for the MWST.

For the first experiment, with the K2 algorithm:

e the best result was 66 good predictions,

e the worst was 45 good prediction,

e the mean of correct answer is 50.5 with a standard deviation of 9.

For the MWST algorithm:

e the best result was 91 correct answers,

e the worst is 42 good prediction,

e the mean of correct answer is 74.84 with a standard deviation of 10.

48

CHAPTER 5. EXPERIMENT ON REAL DATA

The first thing to notice is that our prediction is really poor; if a network only
predict 2 (ie. no risk) it would have 160 good answer. Nevertheless, let us have a
closer look to the result.

With seed number 66 with the K2 algorithm we obtain 66 correct predictions; the

confusion matrix is shown in Table B.1. Basically, the confusion matrix allows us to

see which prediction was correct:

for each prediction p, associated to the real result r

ConfusionMatrix(r,p)+=1

endfor

So ConfusionMatrix(3, 2) will represent the number of answers which are 3 that have
been misspredicted to be 2. The diagonal of the confusion matrix, that show the cor-
rect predictions is: (9, 25, 1,1,16,3,3,1,2,4,1,0). That mean that only 25 2-answer,

no risk at all, were correctly predicted. We also noticed that we try to predict “don’t
know” answer or the absence of answer so if we remove this case we had 52 correct
predictions over 240 cases.

We also have performed the experiment with seed number 22 over the DAG found
with the MWST algorithm; the confusion matrix is exposed in Table B.2 and if we
remove the “don’t know” answer the result is 67 correct predictions over 240 cases.

The second experiment has been done with the whole data corresponding to Figure
2.3 plus the 4 others question of General settings. In fact we just have forced the link

that we had to, in order to be coherent with the questions(i.e. link 3 — 4 for the

K2 and links 2 > 3 and 8 > 9 for the MWST).

The resulting DAG are shown in Figure 5.3 for the K2 algorithm and in Figure
5.4 for the MWST algorithm.

The only point to notice is that for the second graph, we had to remove one arc:

the one between node 6 and node 1. Indeed if you look at the graph if you keep this
arc we have a cycle :1 + 24+ 3-46-10 the graph is not a DAG anymore.

As in the previous experiment we have tested 100 seeds to find the best one; the

results were:

e for the K2 algorithm, 76 good predictions and

e for the MWST 77 correct predictions.

For the K2 algorithm, the diagonal of the confusion matrix (see Table B.3) is:
(4,32, 5, 1,19, 4, 2,2, 1,3,3,0). The prediction is a little better than before, indeed
without the “don’t know” answer, we have 72 correct predictions over 240 cases.

49

CHAPTER 5. EXPERIMENT ON REAL DATA

House-Share Employment

Sr = > Chee}

Figure 5.3: Resulting DAG for the complete data with the K2 algorithm and some

forced links.

With the MWST algorithm we finally obtain 78 accurate predictions, the diagonal

of the confusion matrix (see Table B.4) is:
(4, 36, 6, 2,11, 7,4, 2,4,2,0,0). 36 “no risk at all” were correctly predicted and we can
see from the second column of the confusion matrix that many predictions are false
because “no risk at all” is predicted very often.

In order to improve the results we tried to reduce the number of possible answer by

grouping answers into 4 categories. Here is the list of the categories we have created

for each question:

e Marital status:

1. Single

2. Married + Cohabiting

3. Divorced + Widowed

4. Other

e Employment status:

1. Full Time

2. Part Time

3. Sickness benefit + Unemployed + Retired

4. Other

50

CHAPTER 5. EXPERIMENT ON REAL DATA

Figure 5.4: Resulting DAG for the complete data with the MWST algorithm and
some forced links.

e Accommodation:

1. Own home

2. Rented home + hotel + Group home

3. Homeless + Warden assisted

4. Other

e Household shared with:

1, Adult children + Spouse/Partner + Parents + Children + Other Relatives

2. Friends

3. Nobody

4. Other

© Question 3 to 9 from the suicide part:

1. Absence : 1

2. very low: 2+3+4+5

3. average: 6+7+8

51

CHAPTER 5. EXPERIMENT ON REAL DATA

4, high 94+10+11412

At first we kept the suicide risk on a 10 scaled answer and then, we also grouped

this question. As before, we first learn the DAGs without forcing any links; the results
can be found in Figure 5.5 for the K2 algorithm and in Figure 5.6 for the MWST al-

gorithm.

House-Share

Figure 5.5: Resulting DAG for the reduced data with the K2 algorithm.

The first thing to notice on the first DAG is the separation between the variables of
general setting and the rest; the node employment is totally isolated. That means that
the K2 algorithm does not find any significant correlations between this variables and

the rest. Another point to notice is that all the links that should be here are present,

so this DAG is coherent with the order of the questions. On the other DAG , all the
links are here as well but some of them are misdirected so we will have to modify them

in the next step.

As usual we first find the best seed and then use that model to make predictions.

For the K2 algorithm, the best result is 74 good prediction, the worst is 45; the

mean of correct predictions is 58 with a standard deviation of 7.

52

CHAPTER 5. EXPERIMENT ON REAL DATA

Figure 5.6: Resulting DAG for the reduced data with the MWST algorithm.

For the MWST algorithm,the best result is 75 accurate answer, the worst is 26;

the mean of correct predictions is 50 with a standard deviation of 8.

For the experiment with theK2 algorithm, the confusion matrix is represented in

Table B.5; its diagonal is: (23, 20, 2,1, 10,6,5,0,4,1,1,1). The final result are 51 good

prediction for the K2 algorithm. The results are so wrong that we will directly force

some links for the MWST.

We did not need to force link for the first graph because we have seen that all links

were present; nevertheless the second DAG is represented in Figure 5.7. The result

was even worse than the previous experiment.

Indeed after having performed a search of the best seed for this DAG we launch

the prediction with seed 70 which was the best but only 58 right prediction and if we

remove the “don’t know” answer the final results become 44 correct over 240 cases

which is the worst result so far. The confusion matrix for this seed are represented in

Table B.6. All these results are worse than before but it can be understood; indeed by

grouping the possible answer we decrease the accuracy of the answer but we kept a 10

scale answer for the prediction so that’s why the next experiment will group the last

question into 4 categories as well.

53

CHAPTER 5. EXPERIMENT ON REAL DATA

Figure 5.7: Resulting DAG for the reduced data with the MWST algorithm with
some forced links.

The resulting DAG for the K2 algorithm is the same as the one in Figure 5.5, for
the MWST the result is in Figure 5.8.

As in the previous experiment some link are misdirected, for example there is a

link between node 4 and node 3 which should be reversed. This orientation could be
understood as an obligation of answer for node 3 where there is an answer to node 4

but we will force them in the other sense in the next experiment.

For the K2 algorithm, the best result is 158 correct predictions, the worst is 115;

the mean of correct predictions is 143 with a standard deviation of 10.

For the MWST algorithm, the best result is 158 correct predictions, the worst is
123; the average is 138 with a standard deviation of 7.

For the experiment with the K2 algorithm, we found this confusion matrix:

20 34 9 5

28 99 32 2

6 20 24 5

4.41. 3 46

54

CHAPTER 5. EXPERIMENT ON REAL DATA

Employment

1 parents
Figure 5.8: Resulting DAG for the totally reduced data with the MWST algorithm.

If we don’t count the “don’t know” answer we have 138 good prediction over 240

cases which is more than half good prediction. This result is still not higher than a
network which only predicts ‘no’, which has 161 correct predictions; but 24 average (of

the 55 average risk) and 16 of the 24 very hight risk have been correctly classified, 3

were classified as ‘average’ and only one is no risk.

With the same seed the MWST gives almost the same result; its confusion matrix

is :
14 40 12 2
34 92 34 1
4 24 22 5
Qa AS bye 15)

The final result for this DAG is 137 good predictions over 240 cases but we can notice

that this time the number of ‘very high risk’ is less than before and 4 are ignored and

classified as ‘no risk’.

Final results with seed number 31 are almost the same (e.g. :135 for the K2 and
140 for the MWST), so we will now perform another experiment where we have

forced links in the correct sense in the MWST resulting DAG. The resulting graph

is represented in Figure 5.9.

55

CHAPTER 5. EXPERIMENT ON REAL DATA

Employment

Figure 5.9: Resulting DAG for the totally reduced data with the MWST algorithm

and forced links.

The best seed associated to this DAG is the 63 where the confusion matrix is :

17 34 12 5

31 110 15 5

6° 922) 21." 6

Owe Ly:

One more time, if we remove the “don’t know” answer from the prediction we have

148 good prediction over 240 cases and if we look closer to the confusion matrix we

can see that the majority of the error are between very low risk and average risk. The

high risk are well predicted only 7 are misclassified and only 1 is detected as ‘no risk’.

Finally, in order to see the benefits of the insertion of the 4 variables of the general

settings we will perform a last experiment without these 4 nodes. We learned the DAGs

with the two algorithms as usual and we directly forced some links. The resulting
graphs are represented in Figure 5.10 for the K2 algorithm and in Figure 5.11 for the

MWST.

56

CHAPTER 5. EXPERIMENT ON REAL DATA

Figure 5.10: Resulting DAG for the reduced suicide data with the K2 algorithm and
forced links.

We found the best seed as usual for the 2 DAGs and performed predictions with
the corresponding networks. We used the best seed for the MWST: seed 51; the

results were worse than before. The final results are only 100 correct predictions for

the K2 algorithm and with the MWST here is the confusion matrix:

20 18 20 9
26 65 54 16
19: ale 2254
36 ei) 4

We have only 91 correct predictions. With the best seed for the DAG associated
to the K2 algorithm the result are even worst for the MWST (e.g. final result: 56

correct predictions). The confusion matrix associated to the K2 DAG is:

18 35 14 0

29 Ill 16 5

Orzo lio

a> a2y Va eis

57

CHAPTER 5. EXPERIMENT ON REAL DATA

Figure 5.11: Resulting DAG for the reduced suicide data with the MWST algorithm

and forced links.

These are close to the results we had with the 4 additional nodes; indeed we obtain

141 good predictions over 240 cases.

What we can conclude from all these experiments is that to have added some extra
nodes gives us better results for the predictions but even with a diminution of the

number of possible answers, prediction is not perfect at all: a network which will always

answer “very low risk” will obtain better results than ours. In term of classification

accuracy, some of our networks were quite accurate on the high risk class, which is

the most important. The high variabilities of the results with different seeds is strong

evidence that the dataset is not large enough to learn Bayesian network structure and
parameters reliably.

58

Conclusion

In the past ten years medicine has modernized a lot and is still evolving. The mental

health part of the medicine is an area where there is a lot of scope for technological

assistance.

The idea to use mathematics and more specifically Bayesian network to help ex-

perts doing prediction has a growing success nowadays; indeed expert systems are used

more and more often in our society.

Given the increasing number of suicides and mental health problems in modern

society it was reasonable to think about an expert system to help predicting risk of

suicide: that is one main target of GRiST and also of that project.

In this thesis, we have used different algorithms to retrieve an unknown structure

from the data. Basically, we have tried the K2 algorithm and the Maximum Weight

Spanning Tree algorithm. Once we had figured out the structure, the next step had

been to predict the answer of the last question of GRiST (i.e. to know how likely the

patient is to commit suicide).

In theory, when someone does not know the node order a good way to find it is

to use the tree given by the MWST algorithm to order the nodes and then apply a

morel general structure learning algorithm. Thanks to some experiments we have seen

that this idea does not in practice every time.

We faced a lot of technical problems because we used algorithms already coded and

not always well documented; understanding why sometimes it suddenly crashed was

not easy.

We tried many different approaches for preprocessing of the data:

e we first started with the original data associated to the suicide part of the ques-

tions of Grist and we add 4 questions selected from the General settings,

e we forced some links to be coherent with the question and

e we regrouped answers into 4 categories.

Given the small amount of data, we were able to construct different structures and

predict with a different accuracies (i.e. from 16.6% to 61.6%) the possibility of suicide

of a patient given a piece of information. Nevertheless, this results should be taken

59

CHAPTER 5. EXPERIMENT ON REAL DATA

with caution; indeed to predict the risk we had to group the possible answers into three

categories so we can predict only if the risk is:

e less than 33% of risk,

e between 33% and 66% and

e more than 66%.

The fourth category was used to regroup the special answer :“don’t know” or the
absence of answer; such answer could not be predicted reliably.

In other word the results are not wrong but suffer from a lack of precision. The final
point to notice is that every error in this domain are important: if a potential suicide~

committer is not “detected” the tool is flawed but if a “safe” patient is suspected to
be suicidal he will have to pass through long and difficult exercise which could led him

to mental disorder.

For sure, a larger dataset will be welcome and it will even be better if all questions
were answered and to remove all the missing data which were really significant on our

little dataset.

60

Appendix A

Listing

Here is the code: to generate the sprinkler network of Figure 4.1.

% SPRINKLERINIT Generates the sprinkler network

clear all; rand(’state’, 14); randn(’state’, 14);

% Number of nodes
N= 4;

% The different nodes
C=1; S=2; R= 3; W= 4;

% The graph
dag = zeros(N,N); dag(C,[S R]) = 1; dag(S,W) = 1; dag(R,W) = 1;

discreteNodes = 1:N;

nodeSizes = 2*ones(1,N); % binary nodes

% label
label = {’cloudy’, ’sprinkler’, ’rain’, ’wetGrass’};

% The network

bnet = mk_bnet (dag, nodeSizes,’names’, label) ;

% The prior
bnet.CPD{C} = tabular_CPD(bnet, C, [0.5, 0.5]); bnet.CPD{S} =

tabular_CPD(bnet, S, [0.5, 0.9 0.5 0.1]); bnet.CPD{R} =

tabular_CPD(bnet, R, [0.8, 0.2 0.2 0.8]); bnet.CPD{W} =

tabular_CPD(bnet, W, [1.0 0.1 0.1 0.01 0.0 0.9 0.9 0.99]);

% Print the network

61

APPENDIX A. LISTING

% coordonate of the nodes
[x,y]= make_layout (dag); draw_graph(dag,label,zeros(1,N), x, y);

62

Appendix B

Confusion matrices

e
c
o
c
o
o
o
o
o
n
o
o
o
o

M
N
H
O
O
N
O
H
O
O
H
S

H
H
O
n
M
A
N
D
O
W
O
S

S
H
N
D
O
D
C
O
O
N
O
N
S

H
H
N
O
N
Y
T
H
A
M
O
O
S

M
M
O
H
T
A
M
N
D
O
O
O

N
A
O
A
N
H
D
M
H
A
M
A
N
D
O
O

D
M

i
n
a
t
S
n
n
w
n
n
n
e
a

N
M
a
A
t
H
o
O
o
N
n
o
n
H
o
o
o

A
N
H
A
H
H
O
N
S
O
H
S
O
S
C
S

R
e
t
o

=

t
o
o
o

o
S

A
S
C
n
H
o
H
O
N
A
H
S
C
S

Table B.1: Confusion Matrix for the first experiment with the K2 algorithm.

h
e

S
C
n
o
C
O
o
O
M
N
S
C
O
N
O
H
S

H
P
O
H
O
M
M
H
A
N
H
N
A
N
T
D
O

M
H
O
O
M
N
H
A
N
H
O
O
S
O

M
M
M
A
M
W
H
A
M
A
H
O
S

N
A
C
O
H
M
Y
N
S
C
H
S
C
S

N
Y
O
H
N
O
N
H
O
N
S
D
S

a
X
N
n
N
n
m
n
o
o
n
n
o
n
n
a

W
O
H
N
O
M
O
H
O
S
D
O
S
C
S

W
O
M
O
H
A
M
N
D
H
O
D
O
S

S
5
N
M
e
t
a
n
n
n
n
c
o
c
o

S
C
N
H
A
W
A
H
O
C
O
O
H
S

Table B.2: Confusion Matrix for the first experiment with the MWST algorithm.

63

APPENDIX B. CONFUSION MATRICES

Table B.3: Confusion Matrix for the second experiment with the K2 algorithm.

c
o
c
o

c
o
c
o

o
o

o
o

H
O
H

O
C
O
H

O
H
H

O
M
S

c
o
c
o
o
n

e
o
n
e
N
n
M
o
S

H
O
S
C
C
O
H
n
H
O
C
O
H
H
O
O

S
O
H
H
M
N
O
N
O
O
O
H

M
w
W
W
H
H
O
N
T
O
H
O
H
S

R
o
H
M
a
t
o
n
n
o
o
e

S
t
o
r

A
r
a
n
n
m
n
n
o
d

M
N
O
n

O
n
n

KR
O
O
C
O
n

R
t
w
o
O
A
N
H
H
O
T
O
H
O
S

a
A
R
e
n
m
F
o
w
n
n
n
s
c
c
s
d

W
R

H
H

O
n

M
M
H

H
O
O
S

Table B.4: Confusion Matrix for the second experiment with the MWST algorithm.

e
c
o
o
c
o
o
c
c
o
e
o
H
o
O
o
O
S

e
o
o
c
o
n
o
O
n
o
O
o
H
O
S

H
a
e

O
o
O
t
N
H
N
O
C
A
N
S

H
A
M
O
O
N
H
A
N
H
T
H
O
O

W
M
H

H
M
O
N
N
D
H
O
S
O

Y
W
H
H
O
M
A
Y
H
O
O
H
S

O
H
H

M
r
O
O
M
O
H
A

S
t
w
H
O
T

N
M

N
M
O
O
O

w
o
n

N
D
C
O
C
O
H
H
O
S
O
O

A
r
R
O
N
M
O
H
O
O
H
S
O
S

P
e
s
t
a

S
o
o
r
m
n
c
o

o
S

Y
H
O
N
K
Y

HF
O
O
H
O
S

64

APPENDIX B. CONFUSION MATRICES

e
o
o
o
c
e
o
c
o
c
c
o
O
n

e
c
o
o
c
o
n
o
o
n
n
H
n
e

m
o
o
o
o
n
t
o
o
n
t
n

nt
oO

S
O
C
H
M
H
A
N
O
Y
M
H
O

w
A
H
A
A
H
O
C
O
H
H
S
O
S

m
o
o
o
n
o
n
n

n
o
o
o

Y
V
W
M
H
N
H
R
O
N
M
O
C
O
O
C
S

o
M
r
n
S
r
a
n
m
n
o
o
n
o
d

O
N
N
H
N
O
H
O
S
D
S
C
O
S

M
I
S
E
N
M
A
N
H
O
S
O
S
C
T
O
S
O

B
g
o
a
r
w
r
S
n
o
n
n
o
c
o
e

Q
Z
t
w
t
m
r
w
o
t
a
n
w
t
o
a
n
H
c
o

Table B.5: Confusion Matrix for the third experiment with the K2 algorithm.

S
H
o
o
s
c
o
o
o
s
c
o
o
s

e
c
e
o
o
c
o
o
o
c
o
N
n
c
o
o
n
o

H
O
C
O
N
N
O
H
O
O
O
O

A
N
H
O
N
R
N
D
O
N
O
S
C
S

A
W
M
A
B
D
A
N
A
H
O
O
S
C
S
O

M
I
R
D
A
N
M
M
O
S
D
C
S
O
O
S

W
O
H
O
M
A
N
O
C
H
O
S
C
S

a
o

N
a
o
m
t
S
w
n
n
m
n
n
o
o

M
N
O
A
N
H
A
N
H
O
H
O
S

D
W
O
H
M
N
N
H
O
H
H
A
M
O
O
S
O

D
o

B
A
r
t
A
n
R
Y
T
H
H
A
N
N
O
N

t
t

aN
S
S
e
S

a
a
l
a
n
e

o
m
c

Table B.6: Confusion Matrix for the third experiment with the MWST algorithm.

65

Bibliography

[1] D. Barber. Probabilistic models. http://www.ncrg.aston.ac.uk/~barberd,
MSc Lecture Notes.

[2] C. D. Buckingham, A. Adams, T. Chan, A. Davis, H. Gage, C. Mace, I. T. Nabney,
and R. Picking. A decision support system for mental-health risk screening and
assessment. 2002.

[3] C. D. Buckingham and T. Chan. Analysis of initial data set gathered by the
galatean risk screening tool, GRiST. July 2003.

[4] C. D. Buckingham, T. Chan, and S. Watson. Developing a mental-health risk-

screening tool. 2002.

[5] S. Brockie A. E. Adams C. D. Buckingham, G. Kearns and I. T. Nabney. Devel-
opping a computer decision support system for mental health risk screening and

assessment. Current perspectives in healthcare computing, pages 189-194, 2004.

[6] C. K. Chow and C. N. Liu. Approximating discrete probability distributions with
dependence trees. JEEE transaction information theory, IT-14(3):462-467, 1968.

[7] G. F. Cooper and E. Herskovits. A Bayesian method for the induction of proba-
bilistic networks from data. Machine Learning, 9(4):309-347, 1992.

[8] D. Heckerman. A tutorial on learning with Bayesian networks. Report MSR-
TR-95-06, Microsoft Research, Redmond, Washington, 1995. Revised June 96.,

1995.

[9] D. Heckerman, D. Geiger, and D. M. Chickering. Learning Bayesian networks:

The combination of knowledge and statistical data. In KDD Workshop, pages

85-96, 1994.

[10] M. I. Jordan. The junction tree algorithm. C5281A/Stat241A: Statistical Learning
Theory, 2004.

[11] P. Leray and O. Francois. BNT structure learning package : Documentation and

experiments. 2004.

[12] K. Murphy. How to use the Bayes net toolbox. http://www.cs.ubc.ca/
~murphyk/Software/BNT/usage .html, 2005.

[13] R. M. Neal. Bayesian Learning for Neural Networks. Springer-Verlag New York,
Inc., Secaucus, NJ, USA, 1996.

66

BIBLIOGRAPHY

[14] J. Pearl. Fusion, propagation, and structuring in belief networks. Artificial Intel-

ligence, 29(3):241-288, 1986.

[15] J. Pearl and T. S. Verma. A theory of inferred causation. In James F. Allen,
Richard Fikes, and Erik Sandewall, editors, KR’91: Principles of Knowledge Rep-

resentation and Reasoning, pages 441-452, San Mateo, California, 1991. Morgan

Kaufmann.

[16] R. W. Robinson. Counting unlabeled acyclic digraphs. Combinatorial Mathemat-
ics, 622:28-43, 1977.

[17] Bayesia SA. Bayesia market simulator. http: //www.bayesia.com/GB/produits/
~bms/MarketSimulator.php, 2001-2005.

[18] P. Spirtes, C. Glymour, and R. Scheines. Causation, prediction and search. Lecture
Notes in Statistics, 81, 1993.

{19] L. C. L. van der Gaag, S. Renooij, C. L. M. Witterman, B. M. P. Aleman, and

B. G. Taal. Probabilities for a probabilistic network: a case study in oesophageal
cancer. Artificial intelligence in medecine, 25(2):123-148, 2002.

STON UNIVERS!

| LIBRARY & INFORMATION ServiC&S
67

Index

Arc reversible, 21

ARD, 42

Bayes’ Score, 22, 31, 34, 37

Bayesian Networks, 17

BIC Score, 23, 31, 34, 37

Chow Liu, 25, 32, 35, 39

Confusion Matrix, 61

Decomposable score, 19

Equivalent DAGs, 20

Equivalent scores, 20

GRIST, 7, 11, 14

K2, 23, 31, 34, 37

Markov Equivalent Set, 19

Mutual information, 26

MWST, 25, 26, 32, 35, 39

PC, 24

Structure Learning, 18

Tree, 25

V-structure, 21

68

