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Thesis Summary 

A Bayesian network is a powerful tool for inference; its structure and parameters can be 

learnt from data. The objectives of this thesis are first to find the structure associated 

with the suicide risk of a patient, to compare this structure with that of the expert 
and then to predict the risk itself. In order to do so, we first learn the structure using 

algorithms such as K2 or MWST. After having obtained this structure we try to 

predict the risk of suicide, with this found structure, on testing data. The results, 

which are quite good, will be discussed in this thesis, but the lack of data for training 

part has a significant effect. 
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Chapter 1 

Introduction 

1.1 Mental Health Assessment 

In our modern society, stress and pressure have made mental health problems a burn- 
ing issue. That is why some measures are taken to fight this scourge. 

According to [5], the National Health Service (NHS), through its New and Emerging 
Applications of Technology (NEAT) programme is interested in providing a tool to 
help non-specialists, like policemen and social workers, make judgements on the risk 
(to self and others) of people who present possible mental health symptoms. Such a 

software tool is called a Decision Support System (DSS). 

More generally, medical decision support systems are computer programs designed 

to improve the clinical process of decision making. Intelligent decision support systems 

need artificial intelligent techniques in order to support professionals of health. The 
aim of such system is to help people making the best diagnosis and treatment when 

they don’t have access to all information or when it is uncertain. Decision support 

systems can be active or passive: 

e active, when the computer gives advice when it is needed and 

e passive, when the professional use it only when they need help. 

A decision support system can be judged by its performances (eg. accurate data 

and reliable solution purposed by the system) but also by its interface. Indeed, with a 
simple user interface, people won’t need a lot of training to use the system. 

The Galatean Risk Screening Tool (GRiST), introduced in [2], is a DSS which 
asks low level questions. These questions are grouped into 5 different categories and 
have been chosen by experts to be as specific as possible. However, answering these 

questions does not require an expert judgement. Thus, the required information can 

be given accurately by anyone with some understanding of mental health issues. Its 

aim is to advise which patients present some risk of mental troubles such as suicide, 
self neglect, harm to self and to others. 

GRiST is based on a hierarchical tree structure derived from interviews with men- 

tal health experts (see further discussion in the next Section). For example, Figure 1.1
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extracted from [4], shows the galatea representing knowledge about suicide (see expla- 

nation in Sub Section 2.2.1). This tree demonstrates how the risk of suicide can be 
explained by a combination of different factors. The leaves of the tree are simple ques- 
tions which can be asked by non experts whereas grey ellipses are summative concepts. 

For example the node client’s previous attempts is defined by the questions attached 

to it: are there any, warnings given and triggers. In a similar way, the representation 

for self neglect can be found in [5] and [4]. 

A key point is that we are dealing with health, so misclassification errors must be 

avoided. Some could be seen as more serious than others. For example, diagnosing a 

safe patient to be potentially suicidal is less “dangerous” than if a suicidal one is said 
to be safe; indeed he will be free to commit suicide. But this misclassification should 

not be disregarded; a safe patient diagnosed to be potentially suicidal will have to go 

through many interviews and many tests to prove that he is safe, a process that could 

be really traumatizing. 

In [19], the example of cancer detection is discussed: the application has totally 

imbalanced decision costs. Thus in the construction/training process some errors are 

more penalized than others, since an error could lead to the death of the patient if a 

cancer is not diagnosed in time. 

  

Al 

    
    

suicidal ideas! difficulty lifestyle affected by 
fantasies comusnnicating physical disease, 

thoughts and feelings disability, pain 

  

parents/siblings: 
attempted or committed 

realistic steps taken 

known. prevailing 

Figure 1.1: Hierarchical galatea structure for suicide.
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1.2 Initial Problem 

As we have seen, the hierarchical tree structure of Figure 1.1 has been realised through 
meetings and interviews with mental health expert. Soon we shall see, in Section 3.2, 

that we will represent this knowledge with a Bayesian Network. Such a network does 

not only needs links between variables; it also requires some probabilities. 

This notion of probabilities is natural for anyone with statistical knowledge but, for 
an expert in mental health, it is more difficult to grasp the meaning of the probability 

of an event A given an event B. This point explains why representing the Galatea by 

a Bayesian network will be difficult and time-consuming a priori. A good discussion 

of this problem is contained in [19] where it is explained how it is easier to deal with 
a special scale instead of directly with probabilities. Questions had been reformulated 

to obtain some conditionally probabilities. Figure 1.2 (extracted from [19] ) is an 
example of a good approximation of the underlying probabilities and was obtained 

from the experts. This shows what question and what scale were needed to obtain 
the probability of an invasion given a tumor with a specific shape and length. For 

a mathematician, this probability would have been noted P(Invasion|Shape, Length) 
but the explanatory text in this figure is needed for domain experts. Then, when they 

are asked to provide probabilities, the answers of the experts were much more similar 

and the strength they associate to their words fits well the current scale. 

  

i , certain Invasion | Shape, Length(1) (almost) 7%? 

probable + 85 

: : F ’ ted + 75 
Consider a patient with a polypoid oe 
oesophageal tumour, the tumour 
has a length of less than 5 cm. 
How likely is it that this tumour fifty-fity + 50 
invades into the lamina propria 
(T1) of the wall of the patient's 
oesophagus, but not beyond ? 

uncertain + 25 

improbable+ 15 

(almost) 
impossible ©       

Figure 1.2: Example of the scale for probability elicitation. 

This thesis is about mental health risk detection; it aims to predict the risk of sui- 

cide of a patient given some information. To do so we will construct a hierarchy among 

the variables corresponding to different questions. In fact it will be more than a simple 

hierarchy; it will be a Bayesian network which means that a relationship between two 

10
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variables is defined by the presence of a link between them and a certain probability 
of one given the other. We will learn the structure and the probabilities from the 
data we have and finally we will try to compare it with the hierarchy of the decision 
support system developed by hand. By learning the conditional probabilities among 
the variables we will be able to increase the accuracy of the results; indeed we will try 

to classify some data. 

In the second chapter we will introduce the Galatean Screening Tools and we will 
present what already exists on the subject of mental health detection; then in the third 
chapter we will explain the mathematical background of the thesis and describe what 
a Bayesian network is, and what algorithms to train it, exist. The fourth chapter will 
be devoted to experiments on toy data; we will test the different algorithms on small 
data sets and finally apply these algorithms on the real data in the last chapter. 

11



Chapter 2 

Galatean Risk Screening Tools 

2.1 Project Genesis 

Work on this project began in 1999, when a mapping exercise took place to survey the 
risk screening tools then in use across the Surrey Hampshire Borders NHS Trust. At 
this time, according to [3], the results showed that some tools were available in a num- 
ber of services, but few were used every day. Many professionals knew of the existence 

of tools; nevertheless uncertainties remained over their use and their accuracy was not 

trusted. Many staff members preferred to use their clinical and professional judgement 

to interpret the risk; for this reasons, few tools were in use at that time. 

According to [4], the Trust was asked to establish a uniform system for risk screen- 
ing in order to incorporate it into the Care Programme Approach. As many of the 
patients of the Trust did not show significant risks of suicide or self harm, it was too 

time-consuming and impractical to subject them all to full detailed tests. Instead the 

Trust wanted a tool that identified ‘high risk’ patients for practitioners working in any 

mental health settings. Such a low-level, intuitive data-gathering tool should not re- 
quire expert knowledge. 

In order to create such a tool, a project was set up with financial support from the 
NHS Beacon initiative. It officially commenced in November 1999. The outcome was 
GRiST, which can be used by any health care professionals without lengthy train- 

ing or specialised clinical expertise capacities. The information profile generated by 

GRiST would alert the assessor if needed. In that case, a more detailed risk as- 

sessment will be used. GRiSTprovides documented evidence of the decision-making 
process in risk assessment. It aims to help practitioners to consider the risk factor 

systematically in order to supplement good practice in patient assessment. 

12



CHAPTER 2. GALATEAN RISK SCREENING TOOLS 

2.2 Development and Properties 

2.2.1 The Galatean Model 

Buckingham and Adams have argued in [4] that many clinical decisions can be viewed 
as classification tasks. The descriptive attributes, called cues, are used to assign pa- 
tients to one specific category. This approach to clinical decision making is useful as 

it prevents confusion between practitioners from different backgrounds and training. 

They can communicate with the same terms rather than losing time and being misun- 
derstood just because of differences of terminology. 

The Galatean model is a theory of psychological classification based on the pro- 

totype model theory ((4]). In a prototype model, classes are represented by a single, 

most typical member. This member can be viewed as the class central tendency. For 
example, if clinicians use the prototype model’s representation of suicide, they would 

take a single member from people having previously attempted suicide. This patient’s 

cues will most likely have occurred amongst most of the known members of the suicide- 

attempting class; for that reason, the prototype is a hypothetical summary represen- 

tation of the class. Actually, no one is likely to possess all of these typical cues. The 

prototype is used for comparison with new clients, to determine how similar they are 

to it and, therefore, how likely they are to be also a member of the suicide-attempting 
class. Another way to say it is, how high a risk of attempting suicide they present. 

As explained in [4], for prototypes, the most typical class member which is the 

class representation has, by definition, cues with the highest probability of occurrence 

within the class, P(cues|Class)maz- The prototypical suicide-attempter would be the 

client whose cues are the most frequent values within its class. Instead of representing 

the most likely cues amongst all people known to be suicide-committers, the Galatean 

model represents cues of people representing the highest risk of becoming a member of 

this class. This “perfect” object does not maximize the conditional probability of its 

cues given the class; but maximizes the conditional probability of the class given its 

cues, P(Class|cues)maz- These class representations are called “galateas” in reference 

to Pygmalion’s statue of his perfect woman; their cues are the “perfect” ones, an ex- 

ception and not the most typical cues. 

GRiSTis a web-based tool so given the answer of the form it will estimates the 

risk of the patient by comparing with its existing base. This estimation is given in an 

understandable result and also purpose a treatment that should be followed. 

2.2.2 Evolution of the Tool 

First of all, the hierarchical tree of Figure 1.1 was not easy to construct and has re- 

quired many interviews. A first prototype of the tree concerning self neglect can be 

seen in Figure 2.1, extracted from [4]. 

Finally, after lots of work and interviews, this graph has become much easier to 

deal with and clearer as well; the final version is shown in Figure 2.2. 

13
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In home 
ces 

  

   ength se      
      

  

Figure 2.1: Mind map of the self neglect part of the domain. 

  

| 
access of history of 
seve: accidents/falls 

seeping problems 
aimlessness, 
lack of 

motivation - 

  

medication’ —_—_abscond/disengage 

treatment contact 

Figure 2.2: Final version of the self neglect part of the Galatea. 
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CHAPTER 2. GALATEAN RISK SCREENING TOOLS 

2.2.3 Properties of the Tool 

Another interesting point to notice is that some information is not exact: to quantify 

the client’s suicidal ideas or fantasies there is no objective measure without uncertainty 

such as, for example, a person’s height or weight. Given this observation, we can better 

understand that GRiST does not require ‘yes’ or ‘no’ answers. Most of them are 

numbers between 0 and 10. 

e 0 means not at all, 

e 10 means certainty. 

e a special answer ‘don’t know’. 

An excerpt from the questionnaire can be found in Figure 2.3, extracted from [3]. In 

[19], there is a discussion on how most experts give the same figure on such a scale and 

so decrease the uncertainty of probabilities. According to this article, it seems that 

people feel much more comfortable with a scale than with only a percentage whose 

meaning is really obscure. 

The relationship between answers “0” and “don’t know” is really important. Con- 

sider, in Figure 2.3, the question “To what extent does the client have a serious inten- 

tion to commit suicide?”. For a given patient, some clinicians may assume that as no 

references to this question have been expressed, the “zero” extent is justified, whereas 

other clinicians will judge that not enough information has been collected during the 

interview, so they will mark “don’t know”. According to [3], assessors are prepared 

to make a judgement about the importance of an item if it relates to the actual man- 

ifestation of the client. Thus they might reasonably formulate an opinion from the 

client’s behaviour but not if the issues are linked with historical matters. In this way, 

the assessor will more easily give a zero rating to issues about the present state of the 

client if there is no evidence to infer them from the interview. They consider “no news” 

as “good news” and they would rather give a zero rating than taking no information 

as an indicator of ignorance. This behaviour is the desired one in risk assessments, 

indeed the “don’t know” answers have to be considered as missing information. Too 

much missing information would seriously jeopardize confidence in the assessments. It 

also corresponds with common sense; proving the absence of something is not an easy 

task. The best way to justify this choice is, given a thorough assessment, to consider a 

failure to detect the cue as a good cause for believing it is not present. Finally, there 

is a really thin line between non-detection and absence of knowledge; that is why the 

relation between “don’t know” and “0” answers, and how clinicians conceptualise it, 

needs monitoring. 

Another interesting point about GRiST also highlighted in [3], is that some of the 

questions are subsidiary ones, that is, they depend upon parent questions. They should 

not be answered except if the root question has a particular value. Given this observa- 

tion, it is normal to have some missing values in the data. For example, in Figure 2.3 

it is obvious that the question “If a plan exists, to what extent have steps been taken 

to implement it?” would not need an answer if the previous question “To what extent 

does the client have a realistic plan or method in mind?” received a negative answer. 

15
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DK 

Have auy parents/siblings ever previously attempted or committed suicide ..... Yes ie No {3} [7] 

Has the client made a suicide attempt at any time in his or her life .............. Yes (ia No ial 

verylow low medium high very high DK 

Afyes, to what extent were there triggers for the attempt(s) ..............0... [01/2/33 See iD 

Uf triggers existed, to what extent are they present now .................. [0] 123) 2] 

To what extent does the client: 

inform/wam others about threatened or actual suicide attempts ............... 

express suicidal ideas or fantasies ..............-0cseesecesceseeeseeeeteeeeeee 

have a realistic plan or method in mind ........0.0...0.0.cceecseeeeseeeceseeeeeee 

Ifa plan exists, to what extent have steps been taken to implement it. 

  

have a serious intention to commit suicide    
Figure 2.3: Suicide questions in GRiST. 

In this Chapter we have described a tool developed on the basis of interviews with 

experts: the Galatean Risk Screening Tool. Its aim is to help predict risk of mental 

problem, such as suicide, without requiring special training or lot of knowledge in 

mental health. The thesis objective is, using mathematical theory, to create a software 

tool that is also capable of predicting risk and then to compare the attribute hierarchy 
of the software with the expert’s one. The following chapter describes the mathematical 
background used in this thesis. 

16



Chapter 3 

Structure Learning in Bayesian 

Networks 

3.1 Introduction 

Over the last few decades, Bayesian belief networks, introduced by Pearl in 1986 [14], 

have become an important tool for representing and reasoning with uncertainty. Sys- 
tems based on Bayesian networks have been used in many different areas, from medical 

diagnosis to computing the prices of shares [17]. 

Despite these successes, a major obstacle to using Bayesian networks lies in the 
difficulty of constructing them in complex domains. Indeed it can be a very time- 

consuming and error-prone task to specify a network for a specific problem. 

Some recent research have led to methods for learning the structure of Bayesian 
networks from data. These new techniques are still evolving but they have been shown 

to be remarkably effective for some data-analysis problems [8]. 

Decision trees, artificial neural networks and expert systems are some techniques 

available for data analysis; many other techniques exist to deal with problem such 

as density estimation, classification, regression and clustering. So why should we use 

Bayesian networks and Bayesian inference? At least three answers emerge from [8]. 

1. For incomplete data sets, Bayesian networks are more usable than other statistical 
techniques, for which missing values have to be estimated. For example, if we 

consider a classification problem where two inputs are strongly anti-correlated, 

if all the inputs can be measured in every case, supervised learning techniques 
will not face any problem. Nevertheless, when one of the inputs is not observed 

the results will become dramatically inaccurate. Bayesian networks do not suffer 
from such a problem. 

2. Bayesian networks can deal with causal relationships. This is useful when we 

try to understand completely a problem domain, for example, during exploratory 

data analysis. Another interesting point with a causal relationship, is that it 

allows one to make predictions in the presence of interventions. For example, a 

student may want to know if it is worthwhile to spend more time working in the 

17
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library in order to increase his marks. To answer this question, the student has 

only to determine whether or not spending time working in the library is a cause 
for increased marks, and to what degree. The use of Bayesian networks helps to 
answer such questions. In a Bayesian network, arcs are oriented from cause to 

effect. 

3. Bayesian networks used with Bayesian statistical techniques makes the combi- 
nation of domain knowledge and data easier. When we perform a real-world 
analysis, an important thing is the prior or domain knowledge, especially when 
we have only a small amount of data. A proof of the importance of prior knowl- 
edge, is that some expert systems can be built from it. As said before, Bayesian 
networks have a causal semantic that makes causal prior knowledge very easy 

to encode. Moreover, as we will see further in Section 3.2, Bayesian networks 

encode the strength of causal relationships with probabilities. 

3.2 Bayesian Networks 

All definitions in this chapter are taken from [11]. 

Definition 1 

B= (G,0) is a Bayesian network if G = (X,E) is a Directed Acyclic Graph (DAG ) 
where the set of nodes represents a set of random variables X = {Xi,...,Xn}, and 

if 0; = [P(Xi/Xpax;))] is the matrix containing the conditional probability of node i 
given the state of its parents Pa(X;). 

When we refer to parents of X; we speak about all the nodes Xj such as there is 

an arrow from X; to Xj. 

A Bayesian Network for X = {Xi,...,Xn} consists of: 

e a network structure, G, that encodes a set of conditional dependencies about 

variables in X. Each of its nodes represents a variable of X. A lack of arc joining 
X; to X; in G denotes that these two variables are not directly dependant. 

e a set 6 of local Conditional Probability Distributions (CPD) associated with 
each variable. 

Together these components define the joint probability distribution for X , which 
is given by: 

1
5
 

P(X) = ] P(%i|Pa(X;)). (3.1) 
i 

Figure 3.1 represents a simple Bayesian network with the conditional probability table 
associated to variable S. Here S is a discrete variable; if it were a continuous variable 

we would not have a table but a density function. We shall focus on discrete variable 
in this thesis. 

1 
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Figure 3.1: A simple network and the associated CPD for S. 

3.3 Structure Learning 

3.3.1 Introduction 

As we have seen, a Bayesian network is composed of a structure and a set of parameters; 

that means that two different networks could have the same structure but different 

conditional probability tables. For that reason learning a network from data is a 2 step 

process: 

1. find the structure; 

2. find the parameters. 

In this thesis we will focus on structure learning rather than on parameter learning; 
indeed we want to compare the structure learnt from the data with the structure given 

by the experts. 

Basically, there are two main methods to learn structure from data: 

¢ constraint-based approach, starting with a fully connected graph, we remove 

edges if certain conditional independencies are measured in the data. 

e Search-and-score approach (most popular), we perform a search through the 

space of possible DAGs, and either return the best one found, or return a sample 

of the models found. 

An intuitive idea for learning structure is to consider all the possible DAGs, and, 

given a scoring function, to mark all these DAGs before finally choosing the best one. 
This idea is very good a priori, unfortunately, in [16], Robinson in 1977 has shown that 
the number of possible structures for a Bayesian networks of n nodes is given by the 
recurrence formula: 

r(n) = (-1)1C8 2! Yen — 4) = 0?™., (3.2) 
i=1 

19



CHAPTER 3. STRUCTURE LEARNING IN BAYESIAN NETWORKS 

The number of possible DAGs is super-exponential with respect to the number 
of nodes. For that reason “brute-force” is useless since it would be much too time 
consuming and thus computationally infeasible for all but the very smallest networks. 
To illustrate this, Table 3.1 (extracted from [12]) contains the exact number of possible 
DAG for small networks. 

  

25 

543 

29, 281 

1.1 x 10° 

7.8 x 10! 

oFxe1 O18 
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6 3, 781, 503 
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10 42x 10" 

Table 3.1: Number of possible DAGs as a function of the number of nodes. 

In addition to this issue, when we explore the set of possible DAGs, to go from 
one DAG to another one we will perform some basic operation; basically we will add, 

remove or invert an arc. This set of operations defines the neighborhood of a DAG. 
As only one dependence changes each time, to reduce the computation required for the 

evaluation of a neighbor’s graph score, it is a good idea to use a sum of local scores. 

Definition 2 

A score S is said to be decomposable if it can be written as the sum or the product 
of functions that depend only on one vertex and its parents. If n is the graph numbers 
of vertices, a decomposable score S must be the sum or product of local scores s: 

n 
S(G) => s(X;, Pa(X;)) or SG = [Is X;, Pa(X;)). 

i=1 i=1 

3.3.2 Markov Equivalent Set 

As we have seen in Section 3.2, there is a unique joint probability function defined by 

a Bayesian Networks given by formula 3.1. But the opposite is not true; indeed, using 

Bayes’ rules: 

P(A,B,C) = P(A)P(B|A)P(C|B) 
P(A|B)P(B)P(C|B) 

= P(A\B)P(B|C)P(C) 
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We can see that the structures in Figure 3.2 are associated to the same joint prob- 

ability and all give ALC|B (i.e. A is independent of C given B). In other words, given 
just the data, it will be impossible for someone to say which one of these three struc- 

tures is correct, the one which generated the data. For that reason it is useless to try 
all of them. 

(a) (b) (©) 

Figure 3.2: Three equivalent structures. 

Definition 3 

Two DAGs are said to be equivalent (denoted =) if they imply the same set of condi- 
tional dependencies (i.e. they have the same joint distribution). The Markov equivalent 
classes set (named E) is defined as E = A/ = where A is the set of all DAGs. 

Basically, the structures in Figure 3.2 are said to be equivalent since they belong 
to the same Markov equivalent class. So, given the data we won’t be able to choose 

between these structures which means that the scoring function should give us the 

same results for all these structures. 

Definition 4 

A score is said to be equivalent if applied to equivalent DAGs, it gives exactly the 

same results. 

To sum up, for the moment the space of possible DAGs is reduced; indeed why 
should we consider all equivalent graph given that just from the data we will not be 
able to differentiate one from the other? This means that we only need to look one 
instance of each Markov Class. 

We are facing a problem here; our goal is to retrieve a structure in order to compare 

it with the hierarchy given by the expert. From the previous paragraph, we know that 

from the data we would not be able to differentiate between two equivalent structures, 
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which means that our task is made more difficult. 

The following definition is extracted from [9]. 

Definition 5 

A V-structure in a DAG is an ordered node triple (X;,Xj,X,) such that 

e the DAG contains arcs X; + Xj and X, — Xj, and 

e there is no edge between X; and Xx. 

The structure, A + B < C implies A / C|B which means that if we know the 
state of node B, the knowledge of node A has a direct impact on node C whereas in 
the three structures of Figure 3.2 this is not the case. In [11], Verma and Perl showed 
that two DAGs are equivalent if and only if they have the same skeleton and the same 

V-Structures. This allows us to determine in a straightforward way if two networks are 

equivalent. 

Definition 6 

An arc is said to be reversible if its reversal leads to a graph which is equivalent to the 
original. The space of Completed-PDAG s (CPDAGs or essential graphs) is defined 
as the set of Partially Directed Acyclic Graphs (PDAGs) that have only undirected or 

irreversible arcs. 

In a later discussion (Chapter 4) we will not compare directly the graph found and 
the real one but we will compare their equivalent PDAGs and count as an error each 
misplaced or misdirected arc; basically we will count as a single error any of the fol- 

lowing: 

© one missing arc, 

e one extra arc or 

© one misdirected arc. 

We have already spoken about scoring functions, it is now time to introduce two 

classic scores. 
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3.4 Score function 

In this section we will use the following notation: 

e the Bayesian Network, B composed of 

— the structure G and 

— the parameters 0. 

D is the dataset containing N examples, 

e 9™¥ is the maximum likelihood parameters, 

Dim(B) is the network dimension defined in equation 3.7, 

e 7; is the size of X; and 

pa; is a specific value of the parentsX;. 

3.4.1 Bayes’ Score 

Introduced in [11], Bayes’ score is an equivalent and decomposable score. It is exactly 

the logarithm of the likelihood of the data. Bayes’ score is given by: 

BAY (B,D) = log P(D|B). (3.3) 

In our case, as we will be looking for the structure and the parameters this score could 

be written as in formula 3.4 where 0” represents the maximum likelihood parameters. 

BAY (B,D) = log P(D|G, 0"). (3.4) 

3.4.2 BIC Score 

Introduced in [11] as well, the Bayesian Information Criterion is also decomposable and 

equivalent. It comes from principles stated by Schwartz in 1978 and can be expressed 

by the formula: 

BIC(B,D) = log P(D|B, 6") — ; Dim(B) log N. (3.5) 

As we need r; — 1 parameters to describe the conditional probability distribution 

P(X;|Pa(X;) = pa;),we need Dim(X;, B) parameters to describe P(X;|Pa(X;)) with: 

Dim(X;,B) = (ri—1)qi wheregi= [TI 7. (3.6) 
Xj€Pa(X;) 

The Bayesian network dimension Dim(B) is defined by: 
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Dim(B) = > Dim(X,,B). (3.7) 
i=l 

The BIC score is basically the sum of the likelihood term and a penalty term which 
penalizes complex networks. As two equivalent graphs have the same likelihood and 
the same complexity, their BIC scores are equivalent. 

Using these two basic scores let us now consider some algorithm that can be used 
to learn the structure of the network. 

3.5 Structure-Learning Algorithms 

3.5.1 K2 

This algorithm is described in many papers (for example [11] or [12]). Developed by 
Cooper and Herskovits in 1992 ([7]), the K2 algorithm is a greedy search algorithm 
that works as follows. 

1. Initially each node has no parents. 

2. Order all the nodes and start step 3 with node 1. 

3. Add incrementally those parents whose addition most increases the score of the 

resulting structure. 

4. When the addition of a single parent does not increase the score, stop adding 

parents to the node. 

5. Go to step 3 with the next node in the order until all the nodes have been treated. 

The fixed order needed by this algorithm, avoids some arcs; indeed if the order is 
1—2-—3-4 then node 1 can not have any parents whereas node 4 could have nodes 

1, 2, and 3 as parents. 

This algorithm belongs to the class of search and score algorithm as defined in sub- 
section 3.3.1. 

The basic idea of the K2 algorithm is to maximize the structure probability given 
the data. In order to do so, we can use the fact that: 

PID) "Mer P(Gi,D)     

P(G:|D) FP) P(G2,D) 

and the following result given by Cooper and Hersovits in 1992 :
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Theorem : If Njj, is the number of data points where X; has the value xj, and 

Pa(X;) is instantiated in paz and Njj = yy Nijx then 

; Feo ces Doe 
P(G,D) = P(G)P(D\G) with P(D|S) = TT I] = TD Nise! — 3.8) 

(Nig +75 — 1)! pi é=1 j=l 

where P(G) is the prior probability of the structure G. 

Equation 3.8 can be viewed as a measure of the quality of the network given the 
data and is named the Bayesian measure. 

Given a uniform prior on structures, the quality of a node X and its parents can 
be evaluated by the local score: 

a Gaps 
3(Xj, Pa(Xi)) = i (Nj +n- 0)! TL Nie! (3.9) 

Cooper and Hersovits have also shown that we can reduce the size of the search 
space using a node order. According to this order, a node can be a parent only of a 
node which is after it in this order. The search space becomes the subspace of all the 
DAGs admitting this order as topological order. 

The K2 algorithm tests parent insertion according to this order described pre- 
viously. The first node cannot have any parent, and for other nodes, we choose the 

parent set that best upgrades the score; that means we add only the parents which 
most increase the score. 

Heckerman et al. have proved in [9] that the Bayesian measure need not be equiv- 

alent and has proposed the BDe score, which is basically the Bayesian measure with 
a specific prior on parameters, in order to avoid this. It is also possible to use the 
BIC score in the K2 algorithm. 

3.5.2 PC 

This algorithm, also described in [12] and [11] uses a different approach from the K2 al- 
gorithm. Indeed the idea is not to find dependencies but to find independencies. 

This algorithm belongs to the class of constraint based algorithm that were defined 
in sub-section 3.3.1. 

The PC algorithm, which was first developed by Spirtes, Glymour, and Scheines 
in 1993 [18], is a faster version of the IC algorithm introduced by Pearl and Verma in 
1991 [15]. Basically, it computes many conditional independence tests, and combines 
these constraints into a PDAG to represent the whole Markov equivalence class. 

This algorithm works as follow: 
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e First, start with a full connected graph. 

e Using a statistical test evaluate whether or not there is a conditional indepen- 
dency between two variables. 

e If independency has been found remove the corresponding arc. 

This algorithm was not used in this research because its results are not accurate; it 

is usually to give someone information of independencies among variables rather than 

to find a structure. 

An interesting point in Figure 1.1 is that the structure given by the expert for 
suicide, which is precisely the one the project is focused to retrieve from the data, is a 

tree. The following definition is extracted from [1]. 

Definition 7 

A connected undirected graph is a tree if for every pair of nodes there exists a unique 

path. 

As a tree is a particular case of a DAG the previous algorithms could be used to 

retrieve it; the next algorithm is not a DAG learning algorithm but a tree learning 
algorithm : The Maximum Weight Spanning Tree. 

3.5.3 MWST 

This algorithm is not recent and one of its variations has been proposed by Chow and 

Liu in 1968. This variation, which has the name of its creators, is fully described in [6] 
and also in [11]. This method associates a weight to each edge. The weight could be 

either the mutual information between the two variables or the score variation when 

one node becomes a parent of the other (see Heckerman et al. in 1994 [9]) or even the 
BIC score. When the weight matrix is created, the standard MWST algorithm gives 
an undirected tree that can be oriented with the choice of a root. 

The main idea of this algorithm is to approximate optimally an n-dimensional 

discrete probability distribution by a product of second-order distributions. In this 

sub-section we will denote by P(x) the true distribution and by P,(x) the approxi- 
mation by the tree. Our goal is to make P,(x) as close as possible to P(x) and it is 
precisely from the mutual information that we will characterize this closeness. 

Definitions in this section are taken from [6]. 
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Definition 8 

The mutual information I(x;,2;) between two variables x; and x; is given by: 

I(2;,2;) = >> P(2i, a;) log (Fos) (3.10) 

It is well known that J(2;,2;) is non-negative. In the graphical representation of 
dependence relations, to every branch of the dependence tree we assign a branch weight 

I(a;, xj). Given a dependence tree t, the sum of all branch weights is a useful quantity 
for determining the closeness of two trees. 

Definition 9 

A maximum-weight dependence tree is a dependence tree t such that for allt’ in the set 
of all possible dependence tree, 

I(ai, 25) = YT (ei, 291). 
i=l i=l 

M
e
 

Our goal can now be stated as follows. A tree probability distribution P,(x) is an 
optimum approximation to P(x) if and only if its dependence tree t has maximum 
weight 

Given samples (x1,22 ... tN), 

1. Start with an empty structure. 

. Compute the mutual information matrix Jj; = I(2;, 7;). 2. 

3. Let k defined by the pair (i, j,) such that Jj,;, = max Ij. 

4. Put Ii,;, =0. 

5, . If the vertex 7% or j, is not in the structure yet and if the addition of the arc 

je —> ix does not lead to a cycle then add it. 

6. Go back to step 3 until Jj; = 0, V(i,j) or we have already N — 1 arc. 

To compute correctly the mutual information you should know entirely the proba- 

bility distribution for each pair of variable (e.g. to know P(x, 22) for all value of x; 
and x2). In our case we won’t have such knowledge so we will estimate the distribution 

from the data statistics by computing the frequency of all cases. Basically we will 
count the number of occurrences of each case and divide this number by the total of 
numbers observations. Just in order to avoid any problem and division by zero in the 
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logarithm of formula 3.10, we can put a Dirichlet prior in order to smooth these fre- 

quencies. Basically what we will do is to add 1 occurrences for all the possible values, 

in other word if there were 3 binary nodes (A,B and C) that mean 2° possibilities and 
if we have really observe only 2 cases (first case: {A = 1,B = 1,C = 0}, second case: 
{A = 1,B =0,C = 0}), then we will ‘fake’ to have observed 2 + 2° cases the 2 real 

cases and the 2° virtual just to make sure that there won’t be any log (aeeises) term 

which will corrupt our computation (in our case P(C=1) without the Dirichlet prior 
would have been 0). 

In this chapter we presented a mathematical way to represent data and the links 

between them: a Bayesian network. We have then seen some algorithm to learn the 
structure of such a network directly from the data. We will now use this Bayesian 
network to retrieve an unknown structure and compare it with the Galatean model 

introduced in the first chapter. 
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Chapter 4 

Experiments in Structure Learning 

on Toy Data 

In this chapter we will describe some experiments on toy data, and the next chapter 

will deal with real data. Basically all the experiments are similar: from a network 

(which is known in this chapter) are generated some data. Given this data, the aim of 
the experiment is to compare the structure of networks found with K2 algorithm and 

the MWST. All the scores introduced on Chapter3.2 will be used in order to test if 

one of them gives better results than the others: 

e Bayes’ score, 

e BIC score and 

e mutual information. 

In all the experiments, we have used the useful Bayesian Network Toolbox (BNT) 

written by Kevin Murphy and also very well documented in [12]. This toolbox needs 

the Matlab program and also the Netlab toolbox. 

4.1 Description 

We carried out experiments on three different networks. 

e The first one, is very small: only 4 nodes and 4 arcs. 

e The second network is a 10-node network with many more arcs. 

e The third network is a 10-node tree. 

The first network, in Figure 4.1, has often be studied; it is the “sprinkler network”. 

We can see that the structure is not a tree so the first thing we have to expect is that 
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Figure 4.1: First network. 

the MWST will not give the correct network, but it will be interesting to see whether 
or not the found arcs are correct. Another point to notice is that given there are only 

4 nodes, so there are 543 possible structures (according to Table 3.1) and given that all 

nodes are binary, the amount of data needed to learn the structure should be relatively 
limited. 

  

Figure 4.2: Second network. 

This second network, in Figure 4.2, is also not a tree, so again the MWST would 

not give a correct network but again we aim to test if the found arc are correct. This 

network is far more complicated than the previous one. For that reason, we can expect 

that to retrieve the correct structure we will need a lot more data than in the first case. 
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Figure 4.3: Third network. 

Finally, the third network is a tree (see Figure 4.3) so we expect good results with 
the MWST algorithm. There are 10 nodes and 9 edges so it is quite similar to the 
structure given by the experts for suicide in Figure 1.1. Thus the results on this struc- 

ture will be very useful for the experiment on the true data. 

In order to generate the data, as we have fixed the structure and also the conditional 

probability tables we can create a dataset for the network. Basically, that means that 
we will generate a possible value for each node of the network. In order to determinate 

how much training data is needed, we performed many experiments with different sizes 

of data set look for the size beyond which the results are constant (i.e. one algorithm 

gives always the correct structure). 

4.2 Results 

In this section we will present tables of the errors using different algorithms and different 

scores. To obtain this error, we compute the PDAG associated to the found network, 

and count the number of misplaced or misdirected arcs compared to the PDAG derived 
from the true network. The algorithm used are: 

e K2 algorithm with good and bad node orders and with BIC and Bayes’ score. 

e MWST algorithm with BIC score and mutual information. 

The good or bad order for the K2 algorithm can be defined because, as we generate the 
data from the networks, we know how the nodes were ordered. If we give the K2 algo- 
rithm this order we will say it was the good order; whereas if we give the reverse order 
we will speak about the bad order. 

To add some statistical reliability to these results, multiple seeds have been used 
and the computation time is also calculated. We perform each experiment with more 
than 100 seeds but we just present here results on 4 seeds chosen because they give the 

31



CHAPTER 4. EXPERIMENTS IN STRUCTURE LEARNING ON TOY DATA 

best answer (i.e. the resulting structure are found correctly with less data). Indeed 
the choice of the seed is important because every time a choice is made “randomly” it 
is in fact defined by the seed: 

¢ first of all when we generate the data from the network the choice to generate it 

is random. 

e In the K2 algorithm if the addition of several parents lead to the same maximal 
increase of the score the parent is choose randomly. 

e Finally in the MWST algorithm if several mutual information has the maximal 

value one is chosen randomly. 

Sprinkler Network 

Consider the found structure and a table containing the number of error (in term of 
arc misplaced or misdirected) with K2 algorithm with the correct order. 

<> 

Gam 

Figure 4.4: Learned network for the K2 algorithm in good node order for the sprinkler 

network. 

  

  

  

        

Seed 14 49 51 66 

BAYE 0 0 0 0 

BIC 0 0 0 0 

Time (s) | 0.1402 0.1402 0.1402 0.1402 
  

Table 4.1: Incorrect arcs for K2 algorithm in good node order for the sprinkler network. 

The first thing to notice is that the found network structure is perfect. We have 
used only 50 data point and we can see that for all seeds, the resulting network is 

accurate and also found in a very short time. 

The next experiment will highlight the importance of the node order in the K2 al- 

gorithm; in the following examples the order is exactly the reverse of the correct order. 
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Seed 14 49 51 66 
BAYE 5 4 4 4 
BIC 5 4 4 4 
Time (s) | 0.0701 0.0701 0.0701 0.0701 
  

Table 4.2: Incorrect arc for the K2 algorithm in bad node order for the sprinkler 
network. 

pats Cais *X—C in) 

Cats) 

Figure 4.5: Learned network for K2 algorithm in bad node order for the sprinkler 

network. 

As expected, the network is totally wrong: there is one extra arc and all the others 

are misdirected. If we train the network with much more data the resulting network is 

still the same because of the node order. 

Another interesting point is the invariance of the resulting network from the score 
used in the learning; indeed we find the same network if we used either BIC score 
or Bayes’ score. That point is quite easy to understand: the main difference between 

these scores is the penalty term which avoids too complex networks and in this case 

the network is really simple so this penalty term is small. 

Finally, when we used the MWST algorithm the resulting structure and error were 
as follows: 

  

  

  

        

Seed 14 49 51 66 
Mutual 2 2 2 2 

BIC 2 2 2 2 
Time (s) | 0.3405 0.3405 0.3405 0.3405 
  

Table 4.3: Incorrect arc for the MWST algorithm for the sprinkler network. 
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Figure 4.6: Learned network for the MWST algorithm for the sprinkler network. 

The result should not be a surprise; indeed the original network is not a tree, since, 
ignoring the arc orientation there is a cycle that could not be present in a tree. Never- 
theless we notice that all the arcs found are correct and whatever the number of data 
points used to perform the experiment it is always this final arc between “sprinkler” 

and “wet grass” which is missing. That means that the score associated to this arc 

must be the smallest, either in mutual information or in BIC score; so it would be 

chosen after the others but as the number of arcs is limited in MWST, the algorithm 
stops before the addition of this arc. 

Another point to notice is that the time for the experiment is greater than with the 

K2 algorithm; this observation confirms the results of [6] that for small networks this 
algorithm is slower than others. 

Note that the number of incorrect arcs is 2 simply because in the BNT toolbox, 

when an arc between node A to node B is reversible, in the associated CPDAG there 

is an extra arc between node B to node A. All arcs found with the MWST algorithm 
are reversible whereas in the true structure there are only 2 reversible arcs. 

Finally, Figure 4.7 represents the number of errors as a function of the training 

dataset size. 

On this graph, we can clearly see that with more than 80 data points, the K2 algo- 

rithm gives a constant answer which is the exact network; whereas the MWST algo- 
rithm gives its final answer after only 10 training data. Nevertheless, except between 

20 and 30 training data the results of the K2 algorithm are better than the MWST. 
The average error for the K2_ is 0.88 with a standard deviation of 1.453 whereas for 

the MWST algorithm the mean error is 2.16 and the standard deviation is 0.24. This 
figure are the same for both scores. 
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Figure 4.7: Number of incorrect arcs in function of the number of training data. 

Second Network 

For this experiment, we have used 8100 data points (this number has been found as the 

smallest data points needed to have a correct answer with the K2 algorithm) to train 
the network. Consider the found structure and the error results with the K2 algorithm 
with the correct node order. 

  

Figure 4.8: Learned network for the K2 algorithm in good node order for the second 
network. 

The graph in Figure 4.8 has been obtained with seed 14 and is perfect. Table 4.4 
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Seed 14 49 51 66 

BAYE 0 5 0 5 
BIC 0 5 0 5 
Time (s) | 7.2248 6.9243 7.2448 7.2348     

Table 4.4: Incorrect arcs for the K2 algorithm in good node order for the bigger 
network. 

shows that for different seeds we can have different networks but all are quite close to 
the true-one. Once more, there is no difference between the results achieved with the 2 

scores. Last but not least, we can notice that this experiment is more time consuming 

than the previous one and we have to keep in mind that the nodes are only binary. 

Using the same algorithm but with the reverse node order gives totally different 

results both for the found structure and for the error. 

  

Figure 4.9: Learned network for the K2 algorithm in bad node order for the bigger 
network. 

  

  

  

        

Seed 14 49 51 66 
BAYE 43 41 41 43 
BIC 43 42 52 43 

Time (s) | 7.7956 7.4551 7.8156 7.3950 
  

Table 4.5: Incorrect arcs for the K2 algorithm in bad node order for the bigger network. 
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In this experiment, we can see that the importance of the node order in K2 algo- 

rithm is even more highlighted than before; the resulting network is far from the true 

one and we can also see that the scoring function sometimes makes a difference. For 

example, for seed 49 we can see that the BIC score is worse than the Bayes’ score: 
as it penalizes complex networks it avoids some arcs which could be reversible and so 
not count as error at the end. The time of the experiment is roughly the same as with 
good node order. 

Finally, when the MWST algorithm is used to discover this network, the results 

are as shown in Figure 4.10. 

  

Figure 4.10: Learned network for the MWST algorithm for the bigger network. 

  

  

  

  

Seed 14 49 51 66 
Mutual 21 17 21 17 

BIC 21 17 21 17 

Time (s) | 4.5209 4.0402 4.3807 4.2605         
Table 4.6: Incorrect arcs for the MWST algorithm for the bigger network. 

As explained in subsection 3.5.3, this algorithm can only find N — 1 arcs given 
there are N nodes. That is why the bad results for this network are predictable there 

were too many arcs as the true network was not a tree. Arcs in dashed lines are well 

directed; the other are misdirected and there is also one arc from 6 to 10 that does not 

exist. There is no difference if we used mutual information or BIC score. 
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According to [11], a good idea when we do not know the order of the nodes is first 
to apply this algorithm and given the dependency, order the nodes. We can see that in 
this case the resulting order is really far from the reality, and this is likely to be true 

for many complex network. 

Finally Figure 4.11 represents the number of errors as a function of the training 

dataset size. 
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(a) K2 (b) MWST 

Figure 4.11: Number of incorrect arcs in function of the number of training data. 

We can see on this graph that if we want to be sure to have a correct result using the 

K2 algorithm we should use more than 8000 training data points; however, with the 

Chow Liu algorithm the result are pretty constant, but really bad, whatever the size 

of the dataset used in the training process. The mean of error for the K2 algorithm 
is 6.11 but it’s standard deviation is really large 3.9 whereas for the MWST it is the 
opposite, the mean is large(18.4) but the error bars are really small(1.8). 

Tree Network 

The experiments done so far are not in favour of the MWST algorithm but with the 

last experiment we will see the practical aspect of this algorithm. For this experiment, 

we have used 1300 data points to train the network. The resulting error and the found 

structure with the K2 algorithm with the correct order for the tree network are shown 

in Figure 4.3. 
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Seed 14 49 51 66 
BAYE 0 0 0 0 

BIC 0 0 0 0 
Time (s) | 4.3907 5.0116 4.2505 4.3406         

Table 4.7: Incorrect arcs for the K2 algorithm in good node order for the tree network. 

FO Oe 

Figure 4.12: Learned network for the K2 algorithm in good node order for the tree 

network. 

Once again, if we know the correct order of nodes, the K2 algorithm is accurate 
but quite time consuming. Whatever the seed and the scoring function used the results 

are almost constant: 

e every time the network is accurately found and 

e the experiment lasts about 4.5 seconds. 

Then if we used the same algorithm but with the reverse order we found two dif- 

ferent structures depending on the score used. 

  

  

  

        

Seed 14 49 51 66 
BAYE 13 13 11 11 
BIC 10 13 11 10 
Time (s) | 5.2519 5.2820 5.4222 5.3020 
  

Table 4.8: Incorrect arcs for the K2 algorithm in bad node order for the tree network. 

As usual, with a wrong node order, the K2 algorithm loses all its accuracy. All 

arcs present are misdirected or should not exist at all. For the first time, we can see a 
difference between the resulting structure if we used the Bayes’ score (Figure 4.13 a) or 
the BIC score (Figure 4.13 b). Basically there are two extra arc with the BIC score: 
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(a) Bayes’ (b) BIC 

Figure 4.13: Learned network for the K2 algorithm in bad node order for the tree 

network. 

between node 2 and node 1 and between node 8 and node 7 . 

Finally, when we used the MWST to retrieve this tree here are the resulting error 

and the structure we obtain: 

OO O70 

Figure 4.14: Learned network for the MWST algorithm for the tree network. 

  

  

  

        

Seed 14 49 51 66 

Mutual 0 0 0 0 

BIC 0 0 0 0 
Time (s) | 3.1189 3.3091 3.1890 3.0588 
  

Table 4.9: Incorrect arcs for the MWST algorithm for the tree network. 
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The resulting network is perfect and found a little faster than with K2 algorithm 
with good node order. Again the seed does not modify the results and the scoring 
function used does not seem to interfere either. This result is encouraging for work 

on the real data set because the true model should be a tree according to the experts. 
Nevertheless, the negative point of this experiment is the amount of data used: 1300 
points, which is much more than the dataset we have for the suicide case. Indeed we 
have only 308 data points and in addition, not all the nodes are binary but will have 
12 possible values: the scale answer from 0 to 10 plus the “don’t know value”. 

As for the previous experiments, Figure 4.15 represents the number of errors as a 

function of the training data set size. 
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(a) K2 (b) MWST 

Figure 4.15: Number of incorrect arcs in function of the number of training data. 

Once more we can see that the difference between the score are very small; the 
number of training point that should be used to avoid any fear of error is about 1300, 
over this number all the algorithms give a correct answer. 

On one hand, we can notice a ‘step’ with the K2 algorithm, indeed between 200 

and 900 training data the number of error with resulting network is constant: 2. On 

the other hand, with the MWST algorithm we notice that the number of errors is less 

constant with less than 1000 values but if we train the network with more than 1300 
values, the resulting network is exactly the one we are looking for. The mean of error is 
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higher in the K2 algorithm(2.3 errors with this algorithm and 2 for the MWST) but 

the standard deviation is smaller for the K2 , results are less (2.7 for the MWST and 

2.4 for the K2). 

From these experiments we can conclude some points: 

e The K2 algorithm strongly depends on the order; if the node are ordered correctly 
the results are pretty good,but otherwise the results are awful. 

e When the correct structure is a tree, MWST becomes more interesting, since 

it does not require any knowledge of node ordering and gives almost the same 
results as the K2 algorithm even faster. 

e The scoring function used does not seem to affect the resulting structure a lot. 
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Chapter 5 

Experiment on Real Data 

5.1 Description 

We are now working with the real data (i.e. data collected from GRiST ) we assume 
the structure to be a tree and to order the node, we will use the order of the questions 
of Figure 2.3. 

The dataset consists of 308 anonymised answers of GRiST in an Excel sheet. We 
are focused on the suicide sub-domain so we will use only answers associated with 

Figure 2.3 and General information. As mentioned earlier, some special answers are 

encountered: ‘don’t know’ and the absence of answer; these are represented respec- 

tively by 99 and #NUL!. 

We performed some preprocessing on this data in order to be able to use the toolbox. 

e First of all, we will add 2 to all the data values so the answers will be now scaled 
from 1 to 11 for questions 3 to 10 and from 2 to 3 for questions 1 and 2. 

e We note that questions number 1 and 2 are in reverse scale: indeed in the ques- 

tionnaire 0 (so 2 in our new data sheet) represented ‘YES’ and 2 meant ‘NO’. 

We swaped these answers in order to be coherent with the rest of the questions: 

low value means unlikely and high value means probably. 

e Finally, the toolbox treat #NUL! answer as Nan (e.g. Not a number) and all 
the algorithm do not work in the presence of NaNs. In order to deal with this 
issue, we considered the absence of an answer as an absence of knowledge. Thus 
such values were treated as ‘don’t know’ and we regrouped these values in one 

category represented by number 1. We discussed before of the thin line between 
‘NO’ and ‘don’t know’ that’s why we have chosen to assign a small value to that 
answer. 

Another important thing to notice is that for a network with 10 nodes, the result of 
the previous Chapter show that to retrieve its structure requires much more than 308 
data points if all nodes are binary. Nevertheless, here, nodes which will be associated 
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to each question could have between 3 answers for question 1 and 2, and 12 answers 

for the others. 

From the results in the previous Chapter, we have seen that for sparse networks 
(ie. with few links) the differences among the scores are very small even when they 
exist. That is why we will use only Bayes’ score for the K2 algorithm and mutual 

information when we used the MWST algorithm. We will use the order of the ques- 
tions, that means that some links should be present, indeed question 4 should only be 

answered if there was an answer to question 3; so there must be a link from node 3 to 
node 4, For the same reason there must be a link from node 2 to 3 and from node 8 to 9. 

Our first task will be to select among the General settings questions those which 

are influencing the risk of suicide. To do so we will use the ARD algorithm. 

In all this chapter, when it is not mentioned, the seed used was 14. 

5.2 Selection of Variable 

The Automatic relevance determination (ARD) algorithm, introduced in [13], is an 
algorithm to test the dependencies among variables. This test is done by training a 

classification model in a Bayesian framework. 

The basic idea in ARD is to give each weight an hyperparameter: 

= TM (wil0, a7"), 
i 

  

p(w| 

where a = a,, is a hyperparameter vector that controls how far away from zero each 

weight is allowed to go(it is the inverse of the variance). The hyperparameters a are 
trained from the data by maximizing the Bayesian ‘evidence’ p(t\a). The outcome of 
this optimization is that many elements of a go to infinity such that w would have only 
a few nonzero weights w; . This naturally prunes irrelevant features in the data. 

In our case, we wanted to select variables among the General settings and for 

that we executed the ARD algorithm looked at the hyperparameters learned. The 
hyperparameters characterise the dependencies between the variable and the risk of 

suicide of the patient; the larger the hyperparameter alpha, is the less correlated the 
variables are. Here are the resulting hyperparameters found: 

e For the question ‘Sex’, alpha = 7.24284, 

e Question ‘Marital status’ alpha = 0.1703, 

e Question ‘Employment status’ alpha = 0.5465, 

e Question ‘Accommodation’ alpha = 0.9801, 

e Question ‘Household shared with’ alpha = 0.0143. 
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So we can conclude from this experiment that the sex of the patient does not highly 

influence the risk of suicide but the other variable are really important. So we will now 
start the learning process with the question of Figure 2.3 plus four questions of the 

General settings: 

1. ‘Marital status’, 

2. ‘Employment status’, 

3. ‘Accommodation’ and 

4. ‘Household shared with’. 

5.3 Structure Learning and Prediction 

The learning process was divided in 2 stages: 

1. retrieve the DAG using the algorithms of Chapter 4, 

2. once the DAG is found, we learn the parameters of the Bayesian network (i.e. 

the conditional probabilities). 

The second step will not be detailed,since our forms is on the structure and the 

prediction. With the structure found we can try to predict the answer to the last 

question of GRiST (which was not shown in Figure 2.3): “In your judgement, to what 

extent is the client at risk of suicide?”. 

To do so we will perform some inference which means to estimate the probability of 
unknown (‘missing’ values) given some observation. We will observe the 9 first nodes, 

which means the 9 first answer plus the 4 answer of the general questions and try to 
predict the answer to the last question. A common algorithm to perform inference is 

the junction tree algorithm. 

The junction tree algorithm is well-documented in [10]; the first idea in this algo- 
rithm is to work with potentials instead of probabilities. A potential is associated to 

a clique instead of a single node. A clique is a set of nodes that are all connected to 
each other. The original graph can be represented as a graph of cliques linked by their 
common nodes named the separator; such a graph is called a Cluster Tree. The 3 steps 

of the algorithm are as follows [1]: 

1. Moralization: 

add links between parents of a shared child, 

2. Triangulation: 

avoid loop of more than 3 nodes by adding a link between any two nodes in such 

a loop, 

3. Construct the Cluster Tree as defined before with the corresponding potentials. 
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After that the potentials are updated so that each clique is coherent with every sepa- 

rator. 

Nevertheless, as explained in [12] sometimes the junction tree algorithm is slow 
and may even not work. That is why we will use another engine existing in the BNT 
Toolbox: likelihood_weighting_inf_engine which is similar to the junction tree algorithm 
but gives better results. 

The accuracy of the resulting network will be characterised by the number of cor- 

rect predictions on a test dataset. 

We started experimenting just with the data without forcing any links in the DAG; 

with these DAGs we will select the best seed to use among the 100 first seeds. To do 
so we performed the same experiment with all seeds: count how many prediction are 
correct. With the seeds found we will re-do the experiment to analyse the results. We 
will then perform the same process but with different DAGs: we forced some arcs to 

be present. 

Then we reduced the number of possible answer to 4 categories (except for the last 
question) and performed the same experiments: firstly without forcing any links and 

then add some links. 

We then reduced the number of possible answers for the risk of suicide to 4 cate- 

gories as well. 

Finally we tried removing the 4 questions of the General settings to see if the re- 
sulting structure and results change a lot. 

Experiments 

The first experiment has been done with the whole dataset corresponding to Figure 

2.3 plus the 4 other questions of General settings. 

The resulting DAG are shown in Figure 5.1 for the K2 algorithm and in Figure 
5.2 for the MWST algorithm. 

What appears on the first DAG is the absence of links between nodes associated 
to question 3 and question 4 of the suicide part. Otherwise we can notice that the 
other necessary links are found. The node associated to the risk of suicide is a leave in 
this DAG, which means that it depends on all nodes before it in the graph. Moreover, 
the nodes associated to the general settings are grouped together and only linked to 

the rest by one link. 
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Figure 5.1: Resulting DAG for the complete dataset with the K2 algorithm. 
  

2 attempt       
Figure 5.2: Resulting DAG for the complete dataset with the MWST algorithm. 
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On the second graph, we can highlight the lack of 2 necessary links (2 + 3, 8 > 9). 

In this case the nodes associated to the general settings seems more linked to the other 

than in the previous graph. 

With these two DAGs we have looked for the best seeds among seeds number 1 to 

seed number 100. To do so we used this algorithm: 

for seed = 1..100 

for DAG=1..2 

learn the parameters with all the data 

for i = 1..308 
given the observation of the 13 first question of line i 

predict the risk of suicide 

if correct 

result (seed,j)+= 1 
endif 

endfor 

endfor 

endfor 

The choice of the seed will implies many change in the results. Basically, for a 
fixed seed the random generator is fixed too and will generate the same list of random 

number and in the previous chapter we highlighted the points where the algorithms 

use random numbers. As our dataset is not large, we perform the training and the test 

on the whole dataset. 

Once this algorithm has run we just have to look at the maximum of result(:, 1) to 
know which seed is the best for DAG associated to the K2 and find the maximum 
of result(:, 2) for the MWST. 

For the first experiment, with the K2 algorithm: 

e the best result was 66 good predictions, 

e the worst was 45 good prediction, 

e the mean of correct answer is 50.5 with a standard deviation of 9. 

For the MWST algorithm: 

e the best result was 91 correct answers, 

e the worst is 42 good prediction, 

e the mean of correct answer is 74.84 with a standard deviation of 10. 
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The first thing to notice is that our prediction is really poor; if a network only 
predict 2 (ie. no risk) it would have 160 good answer. Nevertheless, let us have a 
closer look to the result. 

With seed number 66 with the K2 algorithm we obtain 66 correct predictions; the 

confusion matrix is shown in Table B.1. Basically, the confusion matrix allows us to 

see which prediction was correct: 

for each prediction p, associated to the real result r 

ConfusionMatrix(r,p)+=1 

endfor 

So ConfusionMatrix(3, 2) will represent the number of answers which are 3 that have 
been misspredicted to be 2. The diagonal of the confusion matrix, that show the cor- 
rect predictions is: (9, 25, 1,1,16,3,3,1,2,4,1,0). That mean that only 25 2-answer, 

no risk at all, were correctly predicted. We also noticed that we try to predict “don’t 
know” answer or the absence of answer so if we remove this case we had 52 correct 
predictions over 240 cases. 

We also have performed the experiment with seed number 22 over the DAG found 
with the MWST algorithm; the confusion matrix is exposed in Table B.2 and if we 
remove the “don’t know” answer the result is 67 correct predictions over 240 cases. 

The second experiment has been done with the whole data corresponding to Figure 
2.3 plus the 4 others question of General settings. In fact we just have forced the link 

that we had to, in order to be coherent with the questions(i.e. link 3 — 4 for the 

K2 and links 2 > 3 and 8 > 9 for the MWST). 

The resulting DAG are shown in Figure 5.3 for the K2 algorithm and in Figure 
5.4 for the MWST algorithm. 

The only point to notice is that for the second graph, we had to remove one arc: 

the one between node 6 and node 1. Indeed if you look at the graph if you keep this 
arc we have a cycle :1 + 24+ 3-46-10 the graph is not a DAG anymore. 

As in the previous experiment we have tested 100 seeds to find the best one; the 

results were: 

e for the K2 algorithm, 76 good predictions and 

e for the MWST 77 correct predictions. 

For the K2 algorithm, the diagonal of the confusion matrix (see Table B.3) is: 
(4,32, 5, 1,19, 4, 2,2, 1,3,3,0). The prediction is a little better than before, indeed 
without the “don’t know” answer, we have 72 correct predictions over 240 cases. 
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Figure 5.3: Resulting DAG for the complete data with the K2 algorithm and some 

forced links. 

With the MWST algorithm we finally obtain 78 accurate predictions, the diagonal 

of the confusion matrix (see Table B.4) is: 
(4, 36, 6, 2,11, 7,4, 2,4,2,0,0). 36 “no risk at all” were correctly predicted and we can 
see from the second column of the confusion matrix that many predictions are false 
because “no risk at all” is predicted very often. 

In order to improve the results we tried to reduce the number of possible answer by 

grouping answers into 4 categories. Here is the list of the categories we have created 

for each question: 

e Marital status: 

1. Single 

2. Married + Cohabiting 

3. Divorced + Widowed 

4. Other 

e Employment status: 

1. Full Time 

2. Part Time 

3. Sickness benefit + Unemployed + Retired 

4. Other 
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Figure 5.4: Resulting DAG for the complete data with the MWST algorithm and 
some forced links. 

e Accommodation: 

1. Own home 

2. Rented home + hotel + Group home 

3. Homeless + Warden assisted 

4. Other 

e Household shared with: 

1, Adult children + Spouse/Partner + Parents + Children + Other Relatives 

2. Friends 

3. Nobody 

4. Other 

© Question 3 to 9 from the suicide part: 

1. Absence : 1 

2. very low: 2+3+4+5 

3. average: 6+7+8 
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4, high 94+10+11412 

At first we kept the suicide risk on a 10 scaled answer and then, we also grouped 

this question. As before, we first learn the DAGs without forcing any links; the results 
can be found in Figure 5.5 for the K2 algorithm and in Figure 5.6 for the MWST al- 

gorithm. 

     
House-Share    

    
  

Figure 5.5: Resulting DAG for the reduced data with the K2 algorithm. 

The first thing to notice on the first DAG is the separation between the variables of 
general setting and the rest; the node employment is totally isolated. That means that 
the K2 algorithm does not find any significant correlations between this variables and 

the rest. Another point to notice is that all the links that should be here are present, 

so this DAG is coherent with the order of the questions. On the other DAG , all the 
links are here as well but some of them are misdirected so we will have to modify them 

in the next step. 

As usual we first find the best seed and then use that model to make predictions. 

For the K2 algorithm, the best result is 74 good prediction, the worst is 45; the 

mean of correct predictions is 58 with a standard deviation of 7. 
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Figure 5.6: Resulting DAG for the reduced data with the MWST algorithm. 

For the MWST algorithm,the best result is 75 accurate answer, the worst is 26; 

the mean of correct predictions is 50 with a standard deviation of 8. 

For the experiment with theK2 algorithm, the confusion matrix is represented in 

Table B.5; its diagonal is: (23, 20, 2,1, 10,6,5,0,4,1,1,1). The final result are 51 good 

prediction for the K2 algorithm. The results are so wrong that we will directly force 

some links for the MWST. 

We did not need to force link for the first graph because we have seen that all links 

were present; nevertheless the second DAG is represented in Figure 5.7. The result 

was even worse than the previous experiment. 

Indeed after having performed a search of the best seed for this DAG we launch 

the prediction with seed 70 which was the best but only 58 right prediction and if we 

remove the “don’t know” answer the final results become 44 correct over 240 cases 

which is the worst result so far. The confusion matrix for this seed are represented in 

Table B.6. All these results are worse than before but it can be understood; indeed by 

grouping the possible answer we decrease the accuracy of the answer but we kept a 10 

scale answer for the prediction so that’s why the next experiment will group the last 

question into 4 categories as well. 
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Figure 5.7: Resulting DAG for the reduced data with the MWST algorithm with 
some forced links. 

The resulting DAG for the K2 algorithm is the same as the one in Figure 5.5, for 
the MWST the result is in Figure 5.8. 

As in the previous experiment some link are misdirected, for example there is a 

link between node 4 and node 3 which should be reversed. This orientation could be 
understood as an obligation of answer for node 3 where there is an answer to node 4 

but we will force them in the other sense in the next experiment. 

For the K2 algorithm, the best result is 158 correct predictions, the worst is 115; 

the mean of correct predictions is 143 with a standard deviation of 10. 

For the MWST algorithm, the best result is 158 correct predictions, the worst is 
123; the average is 138 with a standard deviation of 7. 

For the experiment with the K2 algorithm, we found this confusion matrix: 

20 34 9 5 

28 99 32 2 

6 20 24 5 

4.41. 3 46 
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Figure 5.8: Resulting DAG for the totally reduced data with the MWST algorithm. 

If we don’t count the “don’t know” answer we have 138 good prediction over 240 

cases which is more than half good prediction. This result is still not higher than a 
network which only predicts ‘no’, which has 161 correct predictions; but 24 average (of 

the 55 average risk) and 16 of the 24 very hight risk have been correctly classified, 3 

were classified as ‘average’ and only one is no risk. 

With the same seed the MWST gives almost the same result; its confusion matrix 

is : 
14 40 12 2 
34 92 34 1 
4 24 22 5 
Qa AS bye 15) 

The final result for this DAG is 137 good predictions over 240 cases but we can notice 

that this time the number of ‘very high risk’ is less than before and 4 are ignored and 

classified as ‘no risk’. 

Final results with seed number 31 are almost the same (e.g. :135 for the K2 and 
140 for the MWST), so we will now perform another experiment where we have 

forced links in the correct sense in the MWST resulting DAG. The resulting graph 

is represented in Figure 5.9. 
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Figure 5.9: Resulting DAG for the totally reduced data with the MWST algorithm 

and forced links. 

The best seed associated to this DAG is the 63 where the confusion matrix is : 

17 34 12 5 

31 110 15 5 

6° 922) 21." 6 

Owe Ly: 

One more time, if we remove the “don’t know” answer from the prediction we have 

148 good prediction over 240 cases and if we look closer to the confusion matrix we 

can see that the majority of the error are between very low risk and average risk. The 

high risk are well predicted only 7 are misclassified and only 1 is detected as ‘no risk’. 

Finally, in order to see the benefits of the insertion of the 4 variables of the general 

settings we will perform a last experiment without these 4 nodes. We learned the DAGs 

with the two algorithms as usual and we directly forced some links. The resulting 
graphs are represented in Figure 5.10 for the K2 algorithm and in Figure 5.11 for the 

MWST. 
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Figure 5.10: Resulting DAG for the reduced suicide data with the K2 algorithm and 
forced links. 

We found the best seed as usual for the 2 DAGs and performed predictions with 
the corresponding networks. We used the best seed for the MWST: seed 51; the 

results were worse than before. The final results are only 100 correct predictions for 

the K2 algorithm and with the MWST here is the confusion matrix: 

20 18 20 9 
26 65 54 16 
19: ale 2254 
36 ei) 4 

We have only 91 correct predictions. With the best seed for the DAG associated 
to the K2 algorithm the result are even worst for the MWST (e.g. final result: 56 

correct predictions). The confusion matrix associated to the K2 DAG is: 

18 35 14 0 

29 Ill 16 5 

Orzo lio 

a> a2y Va eis 
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Figure 5.11: Resulting DAG for the reduced suicide data with the MWST algorithm 

and forced links. 

These are close to the results we had with the 4 additional nodes; indeed we obtain 

141 good predictions over 240 cases. 

What we can conclude from all these experiments is that to have added some extra 
nodes gives us better results for the predictions but even with a diminution of the 

number of possible answers, prediction is not perfect at all: a network which will always 

answer “very low risk” will obtain better results than ours. In term of classification 

accuracy, some of our networks were quite accurate on the high risk class, which is 

the most important. The high variabilities of the results with different seeds is strong 

evidence that the dataset is not large enough to learn Bayesian network structure and 
parameters reliably. 
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Conclusion 

In the past ten years medicine has modernized a lot and is still evolving. The mental 

health part of the medicine is an area where there is a lot of scope for technological 

assistance. 

The idea to use mathematics and more specifically Bayesian network to help ex- 

perts doing prediction has a growing success nowadays; indeed expert systems are used 

more and more often in our society. 

Given the increasing number of suicides and mental health problems in modern 

society it was reasonable to think about an expert system to help predicting risk of 

suicide: that is one main target of GRiST and also of that project. 

In this thesis, we have used different algorithms to retrieve an unknown structure 

from the data. Basically, we have tried the K2 algorithm and the Maximum Weight 

Spanning Tree algorithm. Once we had figured out the structure, the next step had 

been to predict the answer of the last question of GRiST (i.e. to know how likely the 

patient is to commit suicide). 

In theory, when someone does not know the node order a good way to find it is 

to use the tree given by the MWST algorithm to order the nodes and then apply a 

morel general structure learning algorithm. Thanks to some experiments we have seen 

that this idea does not in practice every time. 

We faced a lot of technical problems because we used algorithms already coded and 

not always well documented; understanding why sometimes it suddenly crashed was 

not easy. 

We tried many different approaches for preprocessing of the data: 

e we first started with the original data associated to the suicide part of the ques- 

tions of Grist and we add 4 questions selected from the General settings, 

e we forced some links to be coherent with the question and 

e we regrouped answers into 4 categories. 

Given the small amount of data, we were able to construct different structures and 

predict with a different accuracies (i.e. from 16.6% to 61.6%) the possibility of suicide 

of a patient given a piece of information. Nevertheless, this results should be taken 
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with caution; indeed to predict the risk we had to group the possible answers into three 

categories so we can predict only if the risk is: 

e less than 33% of risk, 

e between 33% and 66% and 

e more than 66%. 

The fourth category was used to regroup the special answer :“don’t know” or the 
absence of answer; such answer could not be predicted reliably. 

In other word the results are not wrong but suffer from a lack of precision. The final 
point to notice is that every error in this domain are important: if a potential suicide~ 

committer is not “detected” the tool is flawed but if a “safe” patient is suspected to 
be suicidal he will have to pass through long and difficult exercise which could led him 

to mental disorder. 

For sure, a larger dataset will be welcome and it will even be better if all questions 
were answered and to remove all the missing data which were really significant on our 

little dataset. 
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Listing 

Here is the code: to generate the sprinkler network of Figure 4.1. 

% SPRINKLERINIT Generates the sprinkler network 

clear all; rand(’state’, 14); randn(’state’, 14); 

% Number of nodes 
N= 4; 

% The different nodes 
C=1; S=2; R= 3; W= 4; 

% The graph 
dag = zeros(N,N); dag(C,[S R]) = 1; dag(S,W) = 1; dag(R,W) = 1; 

discreteNodes = 1:N; 

nodeSizes = 2*ones(1,N); % binary nodes 

% label 
label = {’cloudy’, ’sprinkler’, ’rain’, ’wetGrass’}; 

% The network 

bnet = mk_bnet (dag, nodeSizes,’names’, label) ; 

% The prior 
bnet.CPD{C} = tabular_CPD(bnet, C, [0.5, 0.5]); bnet.CPD{S} = 

tabular_CPD(bnet, S, [0.5, 0.9 0.5 0.1]); bnet.CPD{R} = 

tabular_CPD(bnet, R, [0.8, 0.2 0.2 0.8]); bnet.CPD{W} = 

tabular_CPD(bnet, W, [1.0 0.1 0.1 0.01 0.0 0.9 0.9 0.99]); 

% Print the network 
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% coordonate of the nodes 
[x,y]= make_layout (dag); draw_graph(dag,label,zeros(1,N), x, y); 
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Appendix B 

Confusion matrices 
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Table B.1: Confusion Matrix for the first experiment with the K2 algorithm. 
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Table B.2: Confusion Matrix for the first experiment with the MWST algorithm. 
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Table B.3: Confusion Matrix for the second experiment with the K2 algorithm. 
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Table B.4: Confusion Matrix for the second experiment with the MWST algorithm. 
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Table B.5: Confusion Matrix for the third experiment with the K2 algorithm. 
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Table B.6: Confusion Matrix for the third experiment with the MWST algorithm. 
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