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Thesis Summary 

Current cancer prognosis are based on broad population averages statements. This 

thesis, focused on ovarian cancer, aims to estimate patients survival time. Different 

Neural Networks are tested on a medical dataset containing physiological information 

on patients. First predictions on the survival time are obtained by standard point 

estimators such as Multilayer Perceptrons (MLP) and Radial Basis Function (RBF) 
networks. But as the results are quite disappointing, a novel estimation technique is 

introduced: Mixture Density Networks (MDN). The MDN method provides a proba- 
bilistic model for the estimation which cannot be obtained by others methods. Hence 

we obtained the full distribution of the probabilities of the survival time and discovered 

that it is highly multimodal, so no reliable prediction can be made. Indeed, the error 

rate obtained with the best model is about 70 %. Finally, some attempts at classify- 

ing patients into different classes of survival time are made, and the results are quite 

surprising as the Neural Networks can only distinguish censored patient and patients 

with deadly outcome. 

Keywords: Medical study, Cancer Prognosis, Mixture Density Network
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Chapter 1 

Introduction 

1.1 Overview 

Cancer is one of the most deadly of diseases. According to Cancer Research UK, one 

in three people will be diagnosed with a cancer during his/her lifetime. Each year, 

nearly 7000 new cases of ovarian cancer are diagnosed. When treated early, the sur- 

vival rate for this specific cancer is quite good with nearly 80 percent of 5-year survival 

rate according to Ovacome!, but unfortunately the survival rate decreases dramatically 

with the advance of the cancer. Indeed patients diagnosed with very advanced ovarian 

cancer have a less than 15 percent chance to survive for five year. 

Currently, feedback about survival time of patients is estimated using the expert 

knowledge of the medics, who can only deliver broad-group averages statements rather 

than patient-specific ones. Being able to estimate the survival time of a patient with 

limited medical data would greatly help the doctors in prescribing the appropriate 

treatment balancing quality of life, risks and side effects from various treatments for 

patients suffering from ovarian cancer. 

The aim of the research in this thesis is to see to what extent it is possible to esti- 

mate the likely survival time for ovarian cancer sufferers. Given the fact that current 

medical practice is unable to estimate patient-specific prognosis for this ailment, the 

aim of this thesis is speculative and ambitious, but if partially successful, could have 

significant benefit. 

The Birmingham Women’s Hospital provided us with a large (by medical stan- 

dards) dataset of 1426 patients with 35 variables. But as with most medical datasets, 

it is subject to problems of noisy and missing data, and pointing out the most relevant. 

lwww.ovacome.org.uk



CHAPTER 1. INTRODUCTION 

variables is not easy. 

The issue of reliability should be raised, to ensure that the prediction is actually 

suitable and will really help both medics and patients. Indeed, every prediction meth- 

ods have to be tested and approved before being used in medical environment. But 

unfortunately, as the results of this thesis are not good enough, we did not explore any 

of risks estimation methods. 

1.2 The dataset 

The dataset used as part of this study, containing 1426 patient examples, with each 

patient record corresponding to a collection of 35 different variables, is the result of 

extensive data extraction from patient records taken over a 7-year period (1985-1992) 

in the United Kingdom. But as the data extraction finished, there were no follow- 

ups on people who survived the end of the study, and hence we do not know whether 

they survived the cancer, or for how long. In the following sections, this group of 

patients will be called censored patients. The variables of the dataset cover a very 

comprehensive questionnaire on the patients, ranging from demographic information, 

to medical and personal information. More information on the structure of this dataset 

is given in Appendix A. 

Several different kinds of methods can be used on this dataset in order to try to 

estimate the survival time of the patients, but so far linear methods as well as human 

prediction provide poor results. 

Indeed the survival time is obviously not an easy function of all the variables. 

Moreover the data is subject to noise. First of all there is noise on the inputs, as some 

variables are rather subjective. For example the stage is known to be sometimes over 

or underestimated|3]. Also the target value, the survival time, is subject to noise as 

well since we only know the minimum survival time of each patient. On the inputs, 

the noise will be assumed to be Gaussian, which is the standard assumption on noise 

models, but for the survival time we will see that it might not be the best assumption 

and a right-sided noise function will be used. 

For all these reasons, the main estimation methods in this thesis for the survival 

time will be Neural Networks models, standard ones or combined with Mixture Models 

to obtain probabilistic models. Previous work on this dataset using Neural Networks 

has been conducted by Bruno Vincent in 1999/10], which demonstrated that it is a 

difficult prediction to make as the results obtained were quite disappointing. 

In this thesis, we extend the range of techniques previously used, introducing some 

novel techniques to this domain which should also prove useful in other medical appli- 

cations.



CHAPTER 1. INTRODUCTION 

1.3. Thesis outline 

The first part of this thesis discusses the preprocessing of the data, and mainly the 

missing data imputation using a noisy Independent Component Analysis. Then the 

question of the variables selection to lower the dimensionality of the problem will be 

addressed using non-linear methods and finally the different type of Neural Networks to 

be used to predict the survival time of the patients in both regression and classification 

approach will be discussed. In the regression case, we will especially study the Mixture 

Density Networks (MDN) which combines a Multilayer Perceptron with a Mixture 

Model to provide regions of conditional probabilities rather than the standard output 

of the MLPs and RBF networks which are just single point estimators rather than 

distributions. Moreover, this model allows the use of different noise models through 

different Mixture Models and hence we will explore the possibilities of using non- 

Gaussian or right-sided noise models. Finally, in the classification approach, MLPs 

will be used to try to separate the patients into different classes. 

10



Chapter 2 

Preprocessing of the data 

This dataset consists of raw data extractions from patient records, so it contains dates, 

strings, codes, as well as continuous and semi-continuous values (the full details of 

the variables can be found in Appendix A). Hence it needs to be preprocessed to be 

suitable for automated machine learning techniques. Moreover, most of the patient 

records have at least some fields simply absent as the data was not collected, so all the 

missing values must be imputed for the same reason. 

2.1 Variable modification 

Some of the variables are continuous (for example, AGE) and could be used directly, 

whereas some others are codes (such as DIST) or dates (DLAST). So the first step was 

to recode the data to make them compliant with the use of numerical techniques. For 

example : 

e DAN (Diagnosis Date) and DLAST (Date last seen alive or date of death) were 

combined to obtain Survival time (DLAST - DAN). 

e DIST (Residence subregion) was discarded because there was no way to recode it 

in a sensible way for this study, though for geographic visualization studies this 

code could be used to display the results of any analysis; ID was discarded too 

as it was only an identifier. 

e DHA (Residence) and IDCO-M (ICDO morphology code) could have been dis- 

carded because they are codes, but later we will see that they are meaningful. 

e HADSURG (Did patient has surgery) values were rescaled from ”1-No, 2-Yes,3- 

Laparotomy only” to” 1-No,2-Laparotomy only, 3-Yes”, as Laparotomy is a minor 

surgical procedure and hence it becomes a scaled ordered value. 

Then, all the patients with a survival time lower than one week were dismissed, as they 

seemed to be extreme cases and would introduce a bias in the results. 

11



CHAPTER 2. PREPROCESSING OF THE DATA 

2.2 Missing data problem 

Medical data are notorious for their missing data. This dataset does not contradict 

that rule as we can see in Table 2.1 : 

  

  

Variable Number of missing data 

ICDO-M 74 
ICDO-B 74 
STAGE 257 
ADEQ 346 

HISTO 141 
GRADE 714 

HADSURG 76 
SURGEON 139 
RESDIS 551 

PREVHYST 403 
OPTYPE 160 
HADCT 944 
TYPE 1333       
  

Table 2.1: Number of missing data 

To use a Neural Network, or almost any pattern processing structure, we need to 

have a complete vector of inputs. So we could either dismiss all the patients with 

at least one missing variable, or dismiss all the variables where at least one value was 

missing or finally try to fill in the missing data. We decided to dismiss all the 3 variables 

with more than half the values missing (GRADE, HADCT and TYPE), and then to 

fill in the other values using data imputation methods. 

To fill in missing values in fields in the dataset, first a naive approach using the 

conditional probability has been tried using the following principle : the probability of 

an event ’a being a’ is the sum of all the probabilities of the events ’a being a and b 

being (’ times the probabilities of the events ’b being 8’. So if we consider the event ’a 

being a’ is the event ’variable a has the value a’ and the event ’b being /’ as ‘variables 

b have the values 8’, it comes 

Fr ce P(a = &) — Yiy4e P(a = a|b)p(b) e—et= 2) = 

where a is the missing value to estimate and b indexes other full columns of the matrix. 

(2.1) 

Unfortunately, this leads to very poor results as the probabilities of b are small as b 

has the length of all the variables with all missing values, so nearly all the 8 occur only 

once in the dataset, so p(a = a|b = 8) is nearly p(a = a). 

Since the previous methods was not successful, another approach was considered. 

nsidered 

  

The missing data can be assumed to be values with infinite noise level. So we c 

12



CHAPTER 2. PREPROCESSING OF THE DATA 

using a novel method used in picture reconstruction which provides excellent results 

: the noisy ICA (Independent Component Analysis). This methods is performed to 

estimate the true values of the missing data|6] as following. 

Let us call the original dataset D, its subset without any missing data Deomptete and 

let us assume it is composed of a linear superposition of basis function plus additive 

noise so we have: 

D=As+e (2.2) 

where A is the L « M mixing matrix of the squared ICA whose columns are the basis 

functions, § is a M * N matrix of basis coefficients, and € is the noise on the dataset. 

First we have to compute the matrices A and s as follows : 

Deomplete = As (2.3) 

as Deomptete has no noise on it due to missing data, since all values are known. (At this 

stage we are assuming that the collected data is accurate). Then we need to impute 

the matrix § of basis coefficients which maximizes the prior 

§ = max P(s|D, A) (2.4) 
5 

Using Bayes rule, we have 

P(s|D, A) = P(D|A, s)P(s) (2.5) 

The missing data can be viewed as a form of Gaussian noise. If the noise level on each 

coefficient is \;, the likelihood function has the form : 

P(DA, 8) x exp(— > “iD — As|?) (2.6) 

where 7 is the index within the matrices. On missing data, we say that the variance of 

the noise is infinite, So Amissing = 0 and on the other variables, the noise level is low so 

their is high. 

The prior that has been used is to have the same mean for the features on each of the 

matrices s and $ : 

P(s) x exp (- re zi ») (2.7) 
i 

where ji; is the mean of the 7’ line of s. So taking the negative logarithm, the cost- 

function to optimize is : 

$=min = “ip — As 
i 

  2 ee a (2.8) 

13



CHAPTER 2. PREPROCESSING OF THE DATA 

And finally the denoised (in the sense of missing data) dataset Deconstructed is computed 

as 

Dyeconstructed = AS. (2.9) 

This reconstruction has been performed in two parts (see figure 2.1). 

1. First of all, the data imputation has been performed using a subset Dcomplete; 

of D containing all data without the variables Survival Time which is the target, 

nor RESDIS (the residual decease) neither PREVHYST (previous hysterectomy), 

and without any missing data. This left a 875 * 26 matrix as a prior matrix 

to fill in (impute) only 896 missing values. Then s,; has been computed by 

maximizing the cost-function (2.8) and given s; we obtained Dj, and the values 

of D, corresponding to the discrete variables have been rounded. 

2. Then RESDIS and PREVHYST were added to D, to obtain Dcomplete,. It 

provided a 705 * 28 matrix as a prior to fill in the 1700 missing values (of which 

more than a half have already been estimated in the first part, but are being 

re-estimated here). Then s2 was computed as well as D» and round the discrete 

values of D2. Finally we obtain Dyeconstructed: 

De Benes D 1 

RESDIS eo Latte 

PREVHYST Dcomplete reconstructed 

    

Figure 2.1: Overview of the method to fill in the missing data 

2.3. Normalization 

As the dataset is made of variables of different type and scale, some variables are likely 

to be given higher importance than they should only because of their scales rather 

than their global relevance. Indeed, while the values of ICDO-M (ICDO morphology 

code) are lying between 8000 and 9110, most of the others variables are going fr from 0 

to 9. For each variable X; we compute its mean Xj and variance o? to obtain x the 

normalized variable with zero mean and unit standard deviation 

Xe (2.10) 
% 

14



CHAPTER 2. PREPROCESSING OF THE DATA 

Note that it is a simple linear transformation, so for a MLP! it is not a such important 

issue since unnormalized data can be handled by simply changing the initialization 

methods as the first layer of the network can normalize the data. On the other hand, 

this is a critical issue for the RBFs Networks? as the activation of the basis function are 

determined by the Euclidean distance between the input vector and the basis function 

center. 

2.4 Splitting the dataset 

For later reference, we also divide the dataset Dyeconstructed into two components : 

¢ Deensored Which contains only the data referring to censored patients (STAT = 1), 

¢ Déeaa Which contains the data referring to patients with deadly outcome (STAT = 

2). 

'See 4.2.2 
See 4.2.3



Chapter 3 

Lowering the dimensionality : the 

Variable Selection 

Once the imputation of missing data is completed, it is useful to check whether all the 

variables are relevant to the task of prognosis or not, so we can reduce the dimension- 

ality of the inputs of the Neural Networks or other machine intelligence approaches. 

The variable selection is a good way to keep only the most relevant variables of the 

dataset. Lowering the dimension of the data avoids a too complex model by removing 

the redundant or irrelevant information. Contrary to the feature selection which is a 

transformation of all the variables to obtain features in lower dimensions, the variable 

selection keeps only the interesting variables using different criteria. In this part, two 

different methods of variable selection will be introduced : the Mutual Information{4] 

and the Automatic Relevance Determination[2]. 

Lowering the number of inputs is a good way to prevent a too high complexity of 

the neural network, and it is better to extract only the relevant information about the 

patient. 

3.1 Mutual Information 

The mutual information is a measure of information contained between two variables, 

defined as the difference of the entropy of one of the variables and the cross entropy 

between the variables : 

ae PAESU) corey sci BOYS Dee alg) H(X) — H(X|Y) (3.1) 

Figure 3.1 shows the calculated mutual information between all of the variables of the 

reconstructed dataset Dreconstructed: The Survival Time, our desired target, is the 29” 

variable on the extreme right-hand side of the plot and we can see it has a high mutual 

16



CHAPTER 3. LOWERING THE DIMENSIONALITY : THE VARIABLE SELECTION 

information with several variables listed in Table 3.1. The threshold selected is 1, since 

the values below 1 are relatively lower. 

Plot of mutual information 
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Figure 3.1: Plot of the mutual information 

  

  

NAME VALUE 
ICDO-B 1.0966 
PREVHYST 1.2813 
STAGE 1.5818 
HISTO 1.5856 
OPTYPE 1.9397 
AGP 1.9414 
ICDO-M 2.1123 
DHA 2.4706 
AGE 3.4436 
SURVIVAL TIME | _ 6.5995.       
  

Table 3.1: Highest values of the mutual information with the survival time 

These results are quite logical since nearly all these variables are related to the tumor 

and are commonly used by doctors to set prognosis, except for DHA (Residence) which 

tends to suggest that the medical procedures are more efficient in some regions than 

LY.
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other. So using this threshold, the Mutual Information method selected 9 variables 

from the 27 which could be used. 

To check these results for consistency, an Automatic Relevance Determination has 

also been carried out. 

3.2 Automatic Relevance Determination 

3.2.1 Introduction 

Automatic relevance determination[2] is a Bayesian technique based on the evidence 

framework introduced by MacKay in [8]. Each input is associated with a hyper- 

parameter a, which can be regarded as the variance of the network with respect. to 

the input it is associated with. Two ARD experiments had been performed : one for 

the regression case, and one for the classification case, as it is not obvious that the 

same inputs would be relevant. 

3.2.2 The regression case 

An ARD has been performed with all the dataset Deconstructed using a MLP (see Section 

4.2.2), using all the variables as inputs and the Survival Time as target, and we can 

see in Figure 3.2 that some variables are completely irrelevant, those with the highest 
values of a whereas others are not, those with a low value of a. It ended with the 

selection of the 15 variables listed in table 3.2, using a value of 50 for a as threshold, 

mainly to make sure we were not taking away some variables which might be useful. 

‘Values of alpha for the ARD 

15 
Variables 

Figure 3.2: Plot of the values of a for each inputs of the neural network 
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NAME VALUE 
STAGE 0.9 
HISTO 1.3 
ICDO-M 21 
AGE 3.3 
IDS 7.3 
SURGEON Oy, 
ICDO-B 12.9 
DHA 13.0 
NODES 20.8 
AGP 25.3 
OMENT 27.9 
OTMALIG 34.5 
LAVAGE 37.3 
ADEQ 40.2 
SUBTAH 41.9         

Table 3.2: Lowest values of a 

3.2.3 The classification approach 

Here, ARD has been performed with the whole dataset using also a MLP (see Section 

4.3.2) with all the variables as input, and the class where the patients belongs as 

output(see Section 4.3). The results are not exactly the same as in the regression case, 

as shown on Figure 3.3. The name of the most relevant inputs are given in Table 3.3 

together with the corresponding values of the a parameter. In this case, the values 

of the a parameter are much lower, so a lower threshold was used, because otherwise 

all values but one would have been used. Several attempts of training classifiers with 

different number of inputs show that the best threshold to be used was 7.5, ending 

with the selection of 20 variables. 

1G.
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Values of alpha for the ARD 
450,   

      

15 
Variables 

Figure 3.3: Plot of the values of a for each inputs of the neural network 

  

  

NAME VALUE 
AGE 0.0398 
ICDO-M 0.0692 
DHA 0.0990 
HISTO 0.2485 
STAGE 0.2543 
AGP 0.2591 
RESDIS 0.3647 
ICDO-B 0.4123 
INTERVAL | 0.6611 
SURGEON | 0.6914 
OPTYPE 0.7835 
BSO 1.1183 
ADEQ 1.1814 
TAH 1.8231 
BIOPSY 2.1905 
OTMALIG | 2.5306 
OMENT 4.7397 
LAVAGE 5.7153 
NODES 6.1147 
OOPH 7.1980         

Table 3.3: Lowest values of a in the classification case 

The results of both ARD are more or less the same, with some extra variables se- 

lected for the classification approach. Surprisingly, the ARD in the regression approach 

did not select the variable RESDIS (Residual Disease) while it is known that the size 

20
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of tumor after an operation is a factor of survival[3]. This might be explained by the 

noise embedded in this variable as it is known that some surgeons over-estimate the 

size while others underestimate it, such that the a parameter linked with this input 

becomes too big, in the regression case. 

3.3. Conclusion 

The results of both methods have been combined by keeping the variables retained by 

both the Mutual Information and the ARD, such that we end up with 15 variables as 

input in the regression approach, which is a reduction by nearly a half of the initial 

data dimensionality. On the other hand, in the classification approach 21 variables are 

retained, only a reduction by a quarter of the number of variables. 

21



Chapter 4 

Neural Network Models 

Neural Networks are useful prediction tools, especially when we do not know the map- 

ping function between the input and the target, either because it is too complicated, 

or because we have no hints of what it is like. Neural Networks are able to fit nearly 

any function, with any given precision(2], by feeding it the inputs, and by optimizing 

its parameters such that the outputs correspond to the desired ones : this is called 

training. 

As most of the standard methods are unable to provide good results on this kind 

of problem, Neural Networks represent an interesting and promising approach. 

4.1 Training method 

As said earlier, Neural Networks are able to fit nearly any function, but we want to 

have good estimation not only on the dataset we have, but also to generalize the result 

to new patients. This is why we split the dataset in two equal parts : the training set 

and the test set. The training set was used to train the Neural Networks while the test 

set was used to check whether the generalization was good. Indeed, the main problem 

with Neural Networks is overfitting, ie the network is trained too much and fits the 

data of the training set and its noise perfectly, but has very poor results on other data. 

The method we used for the training, is the hold out method which consists in stopping 

the training when the error on the test set, the test error, starts to increase as this 

implies that the Neural Network stops learning the underlying function and begins 

to learn and fit the noise as well. Hence the test error is a good measure of the 

generalization of the Network since the noise component has different values on both 

sets.
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4.2 The regression approach 

In this approach, the goal is to predict how long a patient will survive as an analogue 

value of the survival time. Hence the input of the Neural Networks are the variables 

that have been selected earlier, whereas the output is the Survival Time, our target. 

4.2.1 Error measure 

The error measure that is used for the regression approach is the normalised relative 

mean squared error 

(4.1) 

  

where y; and ¢; are the network output and the target (Survival Time) for the it” 

pattern, and ¢ is the mean of all the targets, which is the average Survival Time. An 

error value of 0 means a perfect fitting, whereas a value of 1 means randomness. 

4.2.2 Standard point estimators : the Multilayer Perceptron 

The Multilayer Perceptron{2] (MLP) is a feed forward neural network composed of 

several hidden layers of adaptive weights.(Figure 4.1) 

Outputs t y, 
  

Hidden units 

  

  

Figure 4.1: Multilayer Perceptron 

The inputs are propagated through each layer of the network, according to the 

weights and activations functions used, and finally to become the output. The value 

ot of the neuron i of layer h +1 is 

Nn 

yeti f (> wpe ttyh = a) (4.2) 

j=l
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where ” is the layer index, N), is the number of neurons in layer h, bh is the threshold 

of layer h for the i" neuron, w’"+1 is the weight matrix between layers h and h +1 

and f is the activation function. 

To build a network which leads to an output from a given set of inputs, it is necessary 

to adapt the weights and biases. So we introduce the likelihood of the dataset 

L = J] pe’, 2%) = Tp vtele)p(e*) (4.3) 
q q 

and for the computation, we introduce the error function E as the negative log- 

likelihood 

E=-InL (4.4) 

The standard MLP 

If we consider the distribution of the dataset to be Gaussian, we have 

exp { Wool (4.5) 
20? 

  P(tk|z) = Qanjie 

where F},(a) is the underlying generator function of the dataset. Using this distribution 

of the data, as well as (4.3) and (4.4), it comes: 

E=nclno+ = In(2m) + = » Dilielets w)— th)? + De lnplo') (4.6) 

where f;,(x4; w)is the approximation by the neural networks of F(x), w are the weights 

of the network, n the number of samples and c the dimension of the output. In this 

equation, only the middle part is a function of the networks, that is why the cost 

function to be minimized is : 

pl S eee a 
q=1 k=1 

where q is the training sample index, k is the output vector index, and ?? is the desired 

output vector for the gq’ input. 

Given the feed forward nature of the network and the fact that the activation 

function is differentiable, the derivative of this error function in respect of the weights 

and biases of the network can be found. This enables the training of the network 

using optimization algorithms in order to adapt the weights and biases so a given set 

of inputs leads to a corresponding output[2]. 

As we can see in Figure 4.2, the results are better than random but not really good 

enough to use in an advisory environment, with the normalized RMSE for the test set 

always greater than 0.79. The scatter-plots 4.3 and 4.4 of target versus output show 

that the network overestimates the survival time of patients with low survival time 

while it underestimates those with high actual survival time. 
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Test error for the MLP 
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Figure 4.2: Test error for the MLP, the minimum test error is 0.79 reached with 5 
hidden units and 20 iterations 

Output given true value, trainset with 15 input, 5 hidden units, 20 iter 

  
  

Target 

Figure 4.3: Plot of the target vs output for a standard MLP on the train set
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Output given true value, testset with 15 input, 5 hidden units, 20 iter 

  

  area 1 1 1 1 L 
0 1 2 3 4 5 6 

Target 
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© 

Figure 4.4: Plot of the target vs output for the standard MLP on the test set 
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MLP with a censored-compliant cost-function 

One problem with this simple approach is that the MLP is trying to fit the survival 

time for each of the patients, but the actual survival time for the censored patients is 

not known as there was no follow-up study to termination. Therefore we considered 

introducing a different type of error function using this prior knowledge which should 

be able to cope better with this censoring[9] : 

nae (maa(target — predicted, 0))? Deensorea 
(predicted — target)? Déeaa 

The error measure we used for this network was slightly different, as this MLP is 

made to overestimate the survival time of censored patients. Hence we do not take the 

overestimation of survival time for censored patients in the RMSE into account. 

Er = Dic dicot (yi ti)? + DHCD ensored (maz((t; — y:),0))? 

os Sh - 8? 
The results for the MLP with an error function able to cope with censored data 

are in Figure 4.5. We can see that the results are slightly better with a RMSE of 

only 70%, but the scatter-plots of target versus output on Figures 4.6 and 4.7 are not 

fundamentally different from those of the standard MLP. 

It can be assumed that the improvement in the error measure is mainly due to the 

  

  (4.8) 

fact that the overestimation of the survival time of censored patients is not taken into 

account. Hence the overestimation which was previously considered as an error is not 

any more, and the modification of the cost-function offers only slight improvement of 

the model. 

iS)
 
a
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Test error for the censored MLP with delta=1 
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Figure 4.5: Test error for the MLP with the censored compliant cost-function, the 

minimum test error is 0.70 reached with 56 hidden units and 20 iterations 

Output given true value, trainset with 15 inputs, 56 hidden units, 20 iter 

Ou
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Target 

Figure 4.6: Plot of the target vs output for the MLP with the censored compliant 

cost-function on the train set 
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Output given true value, testset with 15 inputs, 56 hidden units, 20 iter 
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Figure 4.7: Plot of the target vs output for the MLP with the censored compliant 

cost-function on the test set
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MLP with exponential cost-function 

One of the main issues with the sum-of-square error is that it receives the largest 

contributions from the data with the largest errors. If the distribution has long tails or 

if some of the data are mislabeled, the solution is dominated by only a finite number 

of points called outliers (see Figure 4.8) 

6 

  

  

0 2 4 6 0 2 4 6 

Figure 4.8: Example of fitting a linear polynomial through a set of noisy points with a 

sum-of-square cost-function. On the left, there is a good fitting, whereas on the right, 

with one extra point away from the others, the fitting is dominated by this point 

For the rest of this thesis, let us call funcerp the continuous function defined as : 

—Bax if x < -e 

funcerp(x) = 4 x ifs >e 

Wine ifoe<a<e 

The 7" order polynomial between —e and ¢ is to make the function continuous and 

differentiable to the 2 order, and 8 is a parameter to allow stronger penalties on 

underestimated values as we know the minimum survival time of each patient. Indeed, 

for each patient we only know the diagnosis date and the date when the patient was 

last seen alive. So the actual survival time is longer than the one we know, and a 

right-sided model is interesting as it allows stronger penalties on the underestimation 

of the Survival Time. 

In this part, the negative log-likelihood of cost function to be optimized is : 

B= ap YS funceap(rg'* — th) (4.9) 
qk 

The Table 4.1 shows the minimum test error obtained for different values of 8. The 

best results are for 8 = 1 so skewing the distribution in this case is not interesting. 

The scatter-plots of target versus output on Figures 4.9 and 4.10 are a bit worse than 

before, as the spread of the points is wider. 
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Value of 3 1 10 |e 250/75) |e 2.5 3 

Min test error | 0.80 | 0.82 | 0.82 | 0.81 | 0.82 | 0.86 | 0.87 | 0.90 
  

                      

Table 4.1: Minimum values of the test set error for the MLP with exponential cost- 
function given 3 

Output given true value, trainset with 15 inputs, 32 hidden units, 20 iter 
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Figure 4.9: Plot of the target vs output for the MLP with exponential cost-function 

for the train set 
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Output given true value, testset with 15 inputs, 32 hidden units, 20 iter 

  

  

Figure 4.10: Plot of the target vs output for the MLP with exponential cost-function 

for the test set 
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None of the attempts to improve the results of the MLPs by modifying the cost- 

function and the noise models assumptions has been successful, so another kind of 

network has been tried: the Radial Basis Function network. 

4.2.3 Standard point estimators : RBF networks 

Radial Basis Function networks[11] (RBF) are related to kernel methods for density 

estimation and regression, and to normal mixture models. The idea of a RBF model 

is to expand a given function f using a set of basis function of the form ®(|| z— <x" ||), 

where ® is a non-linear function to be chosen. The output is then taken to be a linear 

combination of the basis functions : 

F(z) = YF wp(\| « — 2” ||) + wo (4.10) 

where w, is the weight of the n basis function and wo is the bias. Several forms of 

basis function can be used, a common one is the thin-plate spline: 

®(x) = 2? In(z) (4.11) 

which is the best solution for curve fitting. 

A radial basis function network uses several RBFs as hidden units. (Figure 4.11) 

Outputs t y, 
  

     

  

basis functions 

  

Inputs t x, 

Figure 4.11: RBF network 

The interpolation formula 4.10 is then: 

M 

n(x) = D> wyj®; (x) + weo (4.12) 
jal 
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and the thin-plate spline basis function can be expressed as: 

(x) =| 2 — 4; ||? In(|| 2 — p45 ||) (4.13) 

where x is the input vector and ju; is the vector determining the centers of the basis 

function ®;. Once the basis function have been chosen, we have a simple model. Its 

parameters can be found by a least squares, or any other optimization procedure. 

For a large class of basis functions, RBF networks are universal approximators[11]. 

Besides, they possess the property of best approximation, which means that the set of 

functions corresponding to all possible choices of the adjustable parameters includes 

the optimal approximation. One advantage of this family of networks is that RBF 

models are very fast to train in comparison to networks with sigmoidal units. 

Table 4.2 shows that the results are more or less the same as those with the standard 

MLP. The plots of target vs output on Figures 4.12 and 4.13 are very much like those 

for the standard MLPs and those with a censored compliant cost-function. It can be 

concluded that standard Neural Networks are unable to provide good generalization 

with this dataset. 

  

  

  

  

Number of iterations 
Number of hidden units 30 60 | 100 | 150 | 200 | 300 | 400 | 600 | 800 

16 47.10 | 9.41 | 1.63 | 0.85 | 0.81 | 0.81 | 0.81 | 0.81 | 0.81 

32 35.35 | 7.60 | 1.76 | 0.99 | 0.82 | 0.83 | 0.83 | 0.96 | 0.96 

64 34.53 | 13.01 | 3.76 | 1.36 | 1.02 | 0.84 | 0.89 | 0.95 | 1.03 

96 164.24 | 21.14 | 2.41 | 1.13 | 0.85 | 0.82 | 0.84 | 0.86 | 0.86 

128 176.60 | 36.70 | 7.46 | 1.46 | 0.94 | 0.83 | 0.85 | 0.85 | 0.85                       

Table 4.2: Test error for the RBF 
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Trainset with 15 input, 16 hidden units, 400 iter 

  

  (ee 1. L 1 L 1 1 4 
° 1 2 3 4 5 6 Zz 8 

Target 

Figure 4.12: Plot of the target vs output for the RBF for the train set 

Testset with 15 input, 16 hidden units, 400 iter, 
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Figure 4.13: Plot of the target vs output for the RBF for the test set 
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4.2.4 The full distribution of the patients’ prognosis : MDNs 

So far, the results have been quite disappointing, with always more than 0.7 normalized 

error in the prediction of the survival time. Rather than trying a point fit, it could 

be better to use models which fit the whole distribution, and moreover these would 

provide confidence intervals, the error bars. So another approach was considered using 

the Mixture Density Networks[1] which combine a standard Neural Network with a 

mixture density model to provide a conditional distribution rather than a single output. 

In other words we accept that patient prognosis for ovarian cancer is strongly 

stochastic and a simple point estimator for survival is not an adequate statistic to 

describe a given patients’ prognosis. Instead, we need to have a better characterisation 

of the full distribution description the patients’ prognosis. 

Introduction 

We consider the probability density of the target as a combination of kernel functions 

of the form 
m 

p(t) = }> aj(x)¢i(tIx) (4.14) 
i=1 

where m is the number of components in the mixture, the a;(x) are the mixing coef- 

ficients (priors probabilities) and the ¢;(t|x) are the conditional densities of the target: 

vector t for the i’” kernel. The implementation of such a model is straightforward as 

shown in Figure 4.14: 

e First there is a Neural Network with an input vector x and an output vector z of 

parameters for the functions : priors (z*), centers(z") and variance/skewness(z7/*). 
So if c is the dimension of the target, the dimension of z is (e+ 2) *m: m for the 
priors, c * m for the centers or origins of the function and m for their variances 

or skewnesses. 

e Then there is a mixture model with the parameter vector z as input and p(t|x) 
as an output. 

As this is a mixture model, there is the constraint 

m 

So ai(x) =1 (4.15) 
i=1 

This can be obtained by considering a;(x) as the softmaz function of the output of the 

neural network “ 
_ __ exp(z?) 

OR a 4.16 
Em, exp(4) aa) 
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conditional 
babili 

Peet i p(tlx) 

eee a mixture 
model 

parameter Zz: 
vector 

neural 
network 

input X 
vector 

Figure 4.14: The Mixture Density Network 

The centers/origins are simply the network outputs 

Hik = 2x (4.17) 

Let us define the error function for the MDN as 

E=))§B (4.18) 
q 

where the error from pattern q is the negative logarithm of the likelihood (4.3), without 

the terms p(x‘) as they are independent of the parameters of the mixture model. 

E%=-—In {Satna} (4.19) 
i=l 

To optimize the network, we have to minimize this function with respect to the output 

of the Neural Networks and then to back-propagate the modification of the output into



CHAPTER 4. NEURAL NETWORK MODELS 

the MLP to optimize its weight. To simplify the computation, let us introduce the 

posterior probabilities, obtained using Bayes rule 

  

  
    

i 
1,(2,t) = =a (4.20) 

et a5; 

Using (4.20) and (4.19) the required gradients can be calculated as : 

as as 
be aes (4.21) 

and using (4.16) 

a = Oindy — O4OLp (4.22) 
k 

Using the chain rule : ae aera 
a 1 Oo; 

Ooze iv : da; Oze (23) 

So finally using (4.21), (4.22) and (4.23) it follows 

OE 
aise Qk — Tr (4.24) 

k 

The other gradients depend on the used distribution. 

Gaussian kernels 

First of all, the functions used as kernels are Gaussian (universal estimators{11]). In 

this particular case, the kernel function is : 

1 Ile = wi(x)|? Tala) = a 4.25 Ot) = ayeRaitaye P Borla)? oe 
where j1;() and o;(a) are the center and variance of the 7" kernel. 

The variance parameter has to be always positive, so it can be considered as an expo- 

nential 

oi = exp(z?) (4.26) 

Using (4.19), (4.20) and (4.25) the gradient with respect to 0; is 

  

a {Lgek - 2} (4.27) 
And as 

00; ea als (4.28) 

we have aE4 ; 22 OP {meee 5 ej (4.29) 
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And finally using to (4.20) and (4.25) 

4 2) Ont é {“ 4)} (4.30) team, 2 Oz, 
  

% 

Now we have the derivative of the cost-function with respect to all the outputs of the 

network. 

The output of the MDN with Gaussian kernels is directly converted into a prog- 

nosis by taking the center of the Gaussian with the highest prior, as to say the most 

likely Survival Time. Another approach was considered using the mode of the whole 

distribution (4.14) but the results obtained were worse than those with only the mode 

of the Gaussian kernel with the highest prior. 

The variance of this Gaussian provides a confidence level in the output.In Figures 

4.15, 4.16 and 4.17 we cannot see any major improvement in the results. The results 

with more than 6 kernel functions are not shown as they are as bad, or worse than 

those with 6 kernels. 

Even worse, the best result for the test set is for 2 Gaussian kernels and has a 

normalised error of 0.82. The scatter-plots of target versus output in Figure 4.18 and 

4.19 are very similar to all the previous results. This can be easily explained by the fact 

that the plots are representing the mode of the distributions and by looking closely to 

the central plots on Figures 4.20 and 4.21, we see that it is always the same gaussian 

kernels which has the highest prior, so all the assets of using a MDN is lost, except for 

the fact that we have the variance on each output and so we have a confidence interval. 

Indeed, the third plots on Figures 4.20 and 4.21 show the values of the variances of the 

Gaussians given the actual survival time. The curve of the variances of the only Gaus- 

sian which is being used shows that its variance is quite low, about 0.5 year, resulting 

in an fairly good confidence in the results, even if the plots of the target versus output 

are showing that the MDN is nearly always missing the target, and has not learned 

the underlying parameter. 

The plots 4.22 and 4.23 show the full distribution p(¢|z) as a density. They represent 

the probability for a patient on the x-axis to have its Survival Time with the same value 

as the Survival Time indexed on the y-axis. The patients have been ordered by Survival 

Time, so the aim is to obtain a diagonal, which means that the MDN can fit the target 

values (the Survival Time). For every patient, the output probabilities have been 

divided by its maximum value to obtain a normalised plot, therefore we can see the 

distribution for each patient without changing the scale of the plot. Indeed, on the high 

survival time side of the plot, the probabilities are very low and the distribution is very 

flat. The red zone of these plots corresponds to the area with at least 95 % the value 

of the maximum probability and the blue one is 85 % of the maximum probability. 
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On the left hand side of the plots, the distribution is highly multi-modal, with 2 areas 

of high probability, whereas on the right hand side, the spread of the high-probability 

area is wide, so the error bars are quite wide. 

So we can conclude that the point sampling from the MDN offers no significant 

advantage over the standard neural network approach because of this multi-modal 

probability density. 

Test error for the MDN with 2 centres 

2 & 

No
rm

al
is

ed
 
RM
SE
 

© & 

0.85 

  

Number of hidden units o 9 Number of iteration 

Figure 4.15: Test error for the MDN with 2 centers, the minimum test error is 0.82 

reached with 25 hidden units and 30 iterations 
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Test error for the MDN with 4 centres 
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Figure 4.16: Test error for the MDN with 4 centers, the minimum test error is 0.94 

reached with 2 hidden units and 400 iterations 

Test error for the MDN with 6 centres 
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Figure 4.17: Test error for the MDN with 6 centers, the minimum test error is 0.95 

reached with 20 hidden units and 400 iterations 
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Train set 15 hidden 2 centres 30 iter 
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Figure 4.18: Plot of the target versus output for the MDN for the train set 

Test set 15 hidden 2 centres 30 iter 

  

  ae 1 L . L 1 

Figure 4.19: Plot of the target versus output for the MDN for the test set 
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Mixture centres for train set 15 hidden 2 centres 30 iter 
  

  

  

Mixture priors for train set 15 hidden 2 centres 30 iter 
A r r T T +            
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Mixture variance for train set 15 hidden 2 centres 30 iter 
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Figure 4.20: Plot of the centers of each Gaussian kernel, its prior and variance given 
the actual survival time for the train set 

Mixture centres for test set 15 hidden 2 centres 30 iter 
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Mixture priors for test set 15 hidden 2 centres 30 iter 
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Mixture variance for test set 15 hidden 2 centres 30 iter 
  

    
  

  

Figure 4.21: Plot of the centers of each Gaussian kernel, its prior and variance given 
the actual survival time for the test set 
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Conditional density for train set 25 hidden 2 centres 30 iter 
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Figure 4.22: Plot of the conditional probability of the survival time for each patient. 
The patients are ordered by Survival Time for the train set 
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Figure 4.23: Plot of the conditional probability of the survival time for each patient. 
The patients are ordered by Survival Time for the test set 
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Exponential kernels 

Since the Gaussian kernels provided only poor results, as for the MLPs, the use of 

exponential kernels was considered. Through a MDN, this model could offer good 

results by not being penalised by the outliers nor the long tail, and also the use of the 

right-sided approach introduced before could improve the model. 

The exponential kernel function is defined as : 

Ber f@)= 55 
where \ is the age specific failure rate. This function integrates to 1 and has a mean 

of &. The plot of this function can be found on Figure 4.24. As 6 increases, the 

probability decreases more sharply and quickly for the negative values of x, i.e when 

  exp(—Afuncerp(z)) (4.31) 

the Survival Time is underestimated, the penalty increases with (. 

Plot of the exponential kemel 
  

      

  

  

Figure 4.24: Plot of the exponential kernel with 4 = 1 and different values of 3 

The kernels are defined as : 

ri . dita) = (2) exp(—Ai(z) + funcexp(t—yi(z))). (4.32) 
The \; parameter is always positive, so: 

ds = exp(z?) (4.33) 

The derivative of the negative log-likelihood is now 

OE c 
ei, a —Tj * Ge — A; funcerp(t — 1;)) (4.34) 
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And as : 

a Xi (4.35) 

it it comes ane 

Oz) 

Finally to conclude the computation of the derivative : 

= —1; (2c — 2? funcexp(t — Hi) (4.36) 

OEY __,2ofunceap(te — Hi) —— 4, se ae (4.37) 

The optimum test error with these kernels is reached with 2 centers again, and 8 

equals to 1.25 as shown on Table 4.3. So with a MDN, the right-side model offers better 

results than the standard one, opposite to the MLP with an exponential cost-function. 

  

  

  

    

Value of 8 

Number of centers | 1 Te eo a5 oe 7572 2.5 3 

2 0.87 | 0.86 | 0.82 | 0.85 | 0.85 | 0.87 | 0.90 | 0.92 

4 0.91 | 0.91 | 0.92 | 0.93 | 0.90 | 0.89 | 0.95 | 0.96 
6 0.92 | 0.95 | 0.92 | 0.96 | 0.89 | 0.93 | 0.96 | 0.96 

8 0.88 | 0.89 | 0.92 | 0.90 | 0.95 | 0.94 | 0.90 | 0.88                   

Table 4.3: Minimum values of the test set error for the MDN with exponential cost- 

function given 3 

The results with the best combination of number of hidden units, number of it- 

erations and number of kernels are shown in Figures 4.25 and 4.26. The results are 

similar to the results previously obtained, but a sort of clustering appeared, with two 

main groups along the diagonal and two small clusters misclassified. In this case, all 

the kernels are used (see Figures 4.27 and 4.28 ): 

e The first kernel with a low parameter is used to predict the first half of the 

patients 

e The second with high peaks in its parameters is used for the high actual survival 

time. 

The plots of the conditional probabilities 4.29 and 4.30 show once again a strongly 

multi-modal distribution, especially for the test set where the trend is not along the 

diagonal at all, whereas for the train set a global trend can be observed along the 

diagonal. This feature is quite surprising since the normalised test error is at its 

minimum with this amount of iterations, hidden units and kernels. Nevertheless there 

is overfitting as the train set has some of its features perfectly fitted by the network 

since a diagonal line appears in the plot, and so this Network with this kind of noise 

model seems unable to provide good generalization. 
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Train set 40 hidden 2 centres 150 iter 

  

  
Figure 4.25: Plot of target versus output for the MDN with exponential kernel functions 
for the train set 

Test set 40 hidden 2 centres 150 iter 

  

  
Figure 4.26: Plot of target versus output for the MDN with exponential kernel functions 
for the test set 
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Mixture centres for train set 40 hidden 2 centres 150 iter 
  

  

  

  

  

    

  

Figure 4.27: Plot of the center of each exponential kernel, their prior and parameter 

given the actual survival time for the train set 

Mixture centres for test set 40 hidden 2 centres 150 iter 
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Mixture priors for test set 40 hidden 2 centres 150 iter 
  

  

  

0 1 2 3 4 5 6 
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Figure 4.28: Plot of the center of each exponential kernel, their prior and parameter 
given the actual survival time for the test set 
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Conditional density for train set 40 hidden 2 centres 150 iter 
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Figure 4.29: Plot of the conditional probability of the survival time for each patient. 
The patients are ordered by Survival Time for the train set 

Conditional density for test set 40 hidden 2 centres 150 iter 
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Figure 4.30: Plot of the conditional probability of the survival time for each patient. 

The patients are ordered by Survival Time for the test set 
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Erlangian distribution kernel 

Another possible approach is to use the results of renewal theory([5]. Renewal theory 

is the study of probability problems connected with the failure and replacement of 

components, and can be extended to medical statistics where the failure could be the 

relapse or the death. The main goal is to be able to predict the failure-time, the time 

when the event failure occurs, which is a random variable T. 

T is non negative, and its probability density functions (p.d-f.) is defined as 

2 a proba < Xi < a+ 2) 

f(a) = ae ox 
(4.38) 

with 
+00 

f(a)de = 1. (4.39) 
0 

One of the most used distributions in renewal theory is the Erlangian distribution, 

which will be used in this part. The p.d-f of this distribution is 

p*(x — w)**exp(—p(a — n)) See eee (4.40) 

where p/ is the origin of the function as it is defined only on [j1; +00[ and p its parameter. 

The a parameter is the form parameter of the distribution. In the case a = 2 which 

will be explored later, the function has two interesting features as shown on Figure 

4.31 

e A broad peak corresponding to the highest probability of dying, 

e A long tail so that the probability of dying does not go to zero too quickly. 

This function might fit the noise on the Survival Time, as we always know the 

minimum of Survival Time and the most likely true length of Survival is therefore 

greater than the one in the dataset. 

In this case, the kernel functions are : 

o,(ta) = EE weer ote —)) (4.41) 
The parameter p as to be always positive, so it is considered as an exponential 

pi = exp(z?) (4.42) 

The derivative of the log-likelihood is 

= =n {2 — max(0, (t— wy} (4.43) 
Pi 
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‘The Ertangian distribution 
  

o4 

0.05 

    0 = 
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Figure 4.31: The Erlangian function with p = 0.75 and a = 2 

And as 
  Opi ie. agp =P (4.44) 

we have 
OE4 
oe TT {a — pmax (0, (t — u;))} (4.45) 

And finally 
OE? a-1 pias een) Ob see Ne: Bee 4. aa arenes } ae) 

The initialisation of this MDN is made by setting all the priors with equal values, 

summing to one, by all the centers having the value 0 and by setting the p parameters 

to obtain the modes evenly distributed in the space of the target (see Figure 4.32). 

This allows for a large overlap of the kernels and simplifies the optimisation. 

Here the actual prognosis is obtained by taking the mode of the Erlangian distribu- 

tion with the highest prior. Taking the mode of the whole distribution would be useless 

as the distribution can have really high peak for high values of p as shown on Figure 

4.32 : the function on the left of this plot has the highest value of p and its mode is 

much higher than the modes of the others. So the whole distribution is dominated by 

the function with the higher p, whatever its associated prior is. That is why there is no 

plot of the conditional density, as they are all strongly dominated by the low survival 

time. 

The plots of target versus output 4.37 and 4.38 show four bars, corresponding to 

the four kernels as the functions are defined only from their origin and have high peak, 

51



CHAPTER 4. NEURAL NETWORK MODELS 

Initialisation of the MDN with Erlangian kernels 

0.4 

    

  

Target space 

Figure 4.32: Initialization of the Erlangian distribution 

especially for the low survival time, when p is high. Two main clusters can be seen on 

these scatter plots : 

e One at the low actual survival time, where a lot of points are grouped under 1 

year predicted 

e One at the high actual survival time, where a lot of points are spread in the band 

3-5 years predicted. 

Very few are really misclassified, but this model misses the global trend of survival to 

provide only clusters, as a classifier would. 
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Test error for the MDN with 2 erlangian kernel functions 
No
rm
al
is
ed
 R

MS
E.

 

400 

  

: oo Number of hidden units. Number of iteration 

Figure 4.33: Test error for the MDN with 2 erlangian kernel functions, the minimum 

test error is 1.01 reached with 10 hidden units and 300 iterations 
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Figure 4.34: Test error for the MDN with 4 erlangian kernel functions, the minimum 

test error is 0.84 reached with 2 hidden units and 300 iterations
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‘Test error for the MDN with 6 erlangian kernel functions 
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Figure 4.35: Test error for the MDN with 6 erlangian kernel functions, the minimum 

test error is 0.89 reached with 2 hidden units and 300 iterations 

Test error for the MDN with 8 erlangian kernel functions. 
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Figure 4.36: Test error for the MDN with 8 erlangian kernel functions, the minimum 

test error is 0.89 reached with 2 hidden units and 200 iterations
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Train set 2 hidden 4 centres 300 iter 

  

  

Figure 4.37: Plot of target versus output for the MDN with Erlangian kernel functions 

for the train set 

Test set 2 hidden 4 centres 300 iter 

  
  

Figure 4.38: Plot of target versus output for the MDN with Erlangian kernel functions 

for the test set 
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Mixture modes for test set 2 hidden 4 centres 300 iter 
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Figure 4.39: Plot of the mode of each Erlangian kernel, their prior and parameter given 
the actual survival time for the train set 

Mixture modes for test set 2 hidden 4 centres 300 iter 
  

  

  

  

  

        

  
Figure 4.40: Plot of the mode of each Erlangian kernel, their prior and parameter given 
the actual survival time for the test set 
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4.3. The classification approach 

So far, the results have been disappointing. So rather than trying to estimate the 

Survival Time, trying to separate the patients into different clusters was considered. 

To perform this, the data set was divided in c different classes corresponding to the 

different features we want to extract. The most interesting features would be, in our 

case, to predict if a patient will live longer than a fixed period, or in which period of 

Survival Time she is most likely to be. The results with classification are likely to be 

better than with the regression because the cluster size is bigger, and the output is less 

sensitive to the noise. 

4.3.1 The error measure 

When using a classifier, the straightforward error measure is the misclassification rate, 

ie. the number of patients which are classified as being in one class while belonging 

to another 
12 

Ae 9 _ 4/9) |2 Err = y |le7 -— "|| (4.47) 

where n is the number of patterns, ¢ is the target and y is the network output. 

4.3.2 The Neural Networks 

The most standard classifier is the standard MLP with c binary outputs, corresponding 

to each of the classes. The likelihood of the observations is : 

L=][T[e@t ® = TT] ocilep)pcet) (4.48) 
k=1 q k=1 q 

Be Hw )p(02) (4.49) 
k=1 q 

Finally, the target values for a 1-of-c coding scheme are binary, so are far from having 

or 

a Gaussian distribution. 

Once again, the probability of the input is independent of the parameters of the 

—Vtinf) (4.50) 
k=1 q 

The outputs of the MLP are considered as probabilities to belong to one class, so 

models, so we have 

they should sum to unity and lie between 0 and 1. Indeed, using Bayes’ rule, the 

posterior probability of class Cj, is : 

P(2lCx)p(Cr) 
P(Cx|z) = ¥ pan PG) (4.51) 

on
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where z is the activation vector of the last layer of units. 

This can be enforced by using a softmaz activation function 

exp(aj,) 
Uk = 35, exp(a’y (4.52) 

where aj, is defined as 

aj, = ay + In P(C,) (4.53) 

and a, is the summed inputs of the k’” output unit, or the output of the network in 

the case of linear output hence corresponding to p(z|C,)[2]. 

So using this activation function, the prior probability of belonging to a class is 

included in the cost-function and prevent one of the most annoying features of the 

classifier which is to have a bias toward the biggest class[7]. 

4.3.3 Classification in time 

The first attempt with the classifier was to try to predict in which period of Survival 

Time a patient is most likely to be. The Survival Time has been divided into c classes, 

containing the same number of patients but with a different time span. Indeed the Fig- 

ures 4.41, 4.44 and 4.47 show the length of each of the classes (vertical line) altogether 

with the censored patients (dots on line with 1 on the vertical axis) and the patients 

with deadly outcome (0 on the vertical axis). 

With only two classes, the results are quite good as the classifiers can predict if the 

patient is to survive at least 1.7 years with only 22% of error (Figure 4.42). Moreover, 

the confusion matrices in Figure 4.43 show small confusion, and there is no bias toward 

any of the two classes since the number of misclassified are about the same for each 

class.
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Censorship given the survival time 
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Figure 4.41: Censored patients given the actual survival time 
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Figure 4.42: Test error for the classifiers with 2 classes of equal size, the misclassification 

rate on the test set is 22% reached with 2 hidden units and 150 iterations
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Figure 4.43: Plots of the confusion matrices on the train and test set with 2 classes 

With three classes, the results are a bit worse. As shown in the confusion matrices 

on Figure 4.46, the MLP cannot recognize the second class. Indeed, patients belonging 

to the second class are mainly (mis)classified in the first class. Less than a third of 

them are correctly classified, and another third is classified in the class corresponding 

to the longest survival time. Nevertheless, the first class and the last class are still 

properly recognized, resulting in an overall misclassification error of only 40% (Figure 

4.45). 
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Figure 4.44: Censored patients given the actual survival time 
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Classification error with 3 classes 
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Figure 4.45: Test error for the classifiers with 3 classes of equal size, the misclassification 

rate on the test set is 40% reached with 2 hidden units and 60 iterations 
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Figure 4.46: Plots of the confusion matrices on the train and test set with 3 classes 

Again, with four classes, the results are quite disappointing as only the patients 

of the first class (lowest survival time, less than 8 months) and the last class (more 

than 4.5 years) are not mostly misclassified (Figure 4.49). The patients of the second 

class are classified one time over three in the right class, one over three in the first 

class, and the remaining evenly between the last two classes. Worse, the patients of 

the third class are nearly always misclassified, and half of the time they are classified 

as being in the last class. The overall test error is 54 % (Figure 4.48), so the classifier 

is misclassifying more than classifying properly. 

One may believe the different time length of the classes is the reason for the misclas- 

sification, but the third class, the longest, is least recognized by the Neural Network. 

Moreover the Network classifies the patients of the second class as often in the first as 

in the second class, while the first class is shorter. So the time length of the classes is 
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not the issue. 

Figure 4.47 shows the partition of censored patients and patients with deadly outcome 

given the actual survival time, altogether with the class length. This graph emphasizes 

the increasing number of censored patients with the actual survival time, and therefore 

with the increase of the class index. So maybe a classification with only the patients 

with deadly outcome would perform better as it would remove a large amount of noise 

on the target. 

Censorship given the survival time 
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Figure 4.47: Censored patients given the actual survival time 
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Classification error with 4 classes 
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Figure 4.48: Test error for the classifiers with 4 classes of equal size, the misclassification 

rate on the test set is 54% reached with 2 hidden units and 60 iterations 
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Figure 4.49: Plots of the confusion matrices on the train and test set with 4 classes 
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4.3.4 Classification in time with only the patients with deadly 

outcome 

By removing the censored patients, the noise level on the output has been mainly set 

aside. Indeed in the last but one class in each previous case, a lot of patients are 

censored, so are more likely to live longer and be in the higher classes. It can be 

assumed that in this case the error rate would be lower. 

Strangely, the results are not improved, and worse, the classification rate dramatically 

decreases, as shown on Figures 4.50 and 4.52. On the two classes problem, only two 

thirds of the patients are properly classified (Figure 4.51), whereas four fifths were 

correctly classified if the censored patients were kept. With three classes, only half of 

them are correctly classified (Figure 4.53), the other half being equally spread over the 

two others classes. 

So it seems that the prediction of a Survival Time is impossible with this dataset.But 

what about the prediction of deadly outcome or censorship, which could be viewed as 

being cured. 

Classification error with 2 classes 

8 
$
6
 

& 
Mis

cla
ssi

fic
ati

on 
rat

e 

  

Let a Matias Number of iteration 

Figure 4.50: Test error on the classification between censored patients and patients 

with deadly outcome, the misclassification rate on the test set is 37% reached with 2 

hidden units and 500 iterations 
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Trainset with 19 input, 2 hidden units, 500 iter 

NEURAL NETWORK MODELS 
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Figure 4.51: Plots of the confusion matrices on the train and test set with 2 classes 
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Figure 4.52: Test error on the classification between censored patients and patients 

with deadly outcome, the misclassification rate on the test set is 51% reached with 5 

hidden units and 40 iterations 
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Figure 4.53: Plots of the confusion matrices on the train and test set with 3 classes 
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4.3.5 Classification censored patients vs patients with deadly 

outcome 

The goal of this experiment is to predict whether a patient will be censored or not. So 

as the number of censored patients is different of the number of patients with a deadly 

outcome, the classes have no longer the same size. 

Figure 4.55 shows that very few of the censored patients are misclassified, with only 

one sixth considered as having a deadly outcome by the network, and a fourth of the 

patients who did not survive are classified as being censored. So globally the results 

are quite good, with 20% overall misclassification rate (see Figure 4.54). On the other 

hand if someone is predicted to be censored, the confidence is this prediction is only 

two thirds whereas is someone is predicted to have a deadly outcome, the prediction is 

true 90 % of the time. 

Classification error with 2 classes 

  

Number of hidden units Dane Number of iteration 

Figure 4.54: Test error on the classification between censored patients and patients 

with deadly outcome, the misclassification rate on the test set is 20% reached with 2 

hidden units and 60 iterations 

Unfortunately, this experiment is not relevant because : 

e A censored patient cannot be confirmed to be a patient who survives. 

¢ The spread of the censored patients is quite wide, most of them being after 4 

years of actual Survival Time, but some lying between 2 months and 4 years. 

Although this issue is interesting, due to lack of time, we could not explore it any 

further. 
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Figure 4.55: Plots of the confusion matrices on the train and test set: for the classifica- 

tion between censored patients and patients with deadly outcome 

 



Chapter 5 

Discussion and Conclusion 

In this thesis, we used several different Neural Network methods to try to predict the 

survival time of patients suffering from the Ovarian Cancer. This problem is not an 

easy one, obviously, as it is the case for most of the medical problems. First of all, the 

dataset contained some missing data and was filled for medical purpose, so it needed 

recoding and filling in of the missing values by estimating what would be these missing 

values. 

Then several variables selection methods were performed to choose only the most 

relevant inputs. Thus it helps keeping low the complexity of the network. It also im- 

proves the training method. Furthermore, these methods allow the reduction of the 

needed amount of data to be collected on the patients, and ease the data extraction. 

Other methods, such as feature selection, could be used and may provide better re- 

sults. The feature selection combines several variables into a feature and reduces the 

-dimensionality of the inputs for the neural networks. Moreover, with this type of pow- 

erful preprocessing, expert knowledge can be used and could dramatically improve the 

results. 

Once all the data has been prepared for the analysis, standard point estimators, the 

MLPs and RBF networks, which are typical tools for prediction, were used. However, 

they provided disappointing results, even when tuned to fit the characteristics of the 

dataset. Indeed the error measure remained consistently over 0.7. 

Hence, another approach was considered using the full distribution of the output 

probabilities, thus providing much more information than the point estimators. The 

distributions of the Survival Time were obtained through MDNs which combine an 

MLP and a mixture model. Unfortunately, these distributions occur to be highly 

multi-modal and quite wide. This explains why the point estimators failed to predict 

reliably the Survival Time. However, a global trend can be outlined. 
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The classification attempts show consistent results with the regression case, but the 

strange discrimination of censored patients vs patients with deadly outcome could not 

be explained. 

The output probabilities of the MDNs, although multi-modal, have a global trend 

along the true probabilities. So the MDN is able to learn some of the features of the 

dataset, but misses some hidden information since other modes appear. Hence, we 

can conclude that some information is lacking, for example the psychological state of 

a patient which can change the reaction to the treatment a lot and thus the outcome. 

Moreover, a lot of medical predictions using neural networks include more precise 

physiological data such as blood proteins measurements. Indeed, there are some blood 

screening tests for ovarian cancer involving 2 proteins, the CA 125 and OVXI, which 

are known to have a diagnostic potential'. 

This may partly explain why the results obtained are so disappointing, whereas 

other studies involving cancer and neural networks provide exciting results. For ex- 

ample the best model developed in [9] achieved an accuracy of around 79 %, but it 

involved a much more complex preprocessing by using a hazard model . 

Nevertheless, the techniques used in this thesis can be considered as standard meth- 

ods for further work with neural networks in medical problems as they provided inter- 

esting results. 

The issues of safety and reliability have not been raised in this thesis since the 

predictions of the networks are not yet suitable for medical usage. Nevertheless, one 

should bear these issues in mind as the use of such predictions in a practical setting 

is not straightforward. Indeed, before being used, such methods need to be validated. 

Since predicting the outcome to a ailment is a really sensitive issue because the predic- 

tion impacts on both treatment on patients and their psychological state, the doctors 

need to be conviced with both extensive testings on new patients and with methods 

which have been shown to be efficient. The simplest methods are the ROC curve in 

the classification approach, which is also the most commonly used by medics, and the 

error bars in the regression approach. 

Moreover, thanks to the MDN, the full conditional probability of the survival time 

can be plotted and thus medics can easily spot what is the most likely survival time, 

and if other likely survival times appear, they can use their expert knowledge to decide 

whether to trust the network or not in such case, or just use it as a complement to the 

doctors expertise in case of doubt. 

thttp://pathology2.jhu.edu/ovca/ 
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Appendix A 

Description of the dataset 

The data was provided to us by Dr Judy Powell and Dr Sean Kehoe of the Birmingham 

Women’s Hospital and involved patient records of 1426 patients over a 7-year period 

  

  

  

  

  

  

  

  

  

  

  

  

of study. 

NAME DESCRIPTION CODES 
ID Arbitrary case identifier 

AGE Age in years 

AGP quinary ageband 1 to 20 

1=0-4 years, 2=5-9 years etc. 

DIST residence: DHA subregion e.g. 57CA 
DHA Residence: DHA 1 to 22 1-11, rural, 

12-22 within WM county 

ICDO-M ICDO morphology code 8000-9110 
e.g. 8450=papillary cystadenocarcinoma 

ICDO-B | ICDO behaviour code (modified) | 0 ”malignant” - but no biopsy 
1 borderline malignancy 
3 malignant 
4 malignant, mod/well differentiated 
6 malignant, metastatic site 

8 malignant,poorly differentiated 

DAN anniversary date (diagnosis date) 
DLAST date last seen alive or date death 

STAT vital status on dlast 1 alive 

2 dead 

COD | cause of death from death certificate | 1 cancer 
2 2nd malignancy 
3 other - cancer mentioned on DC 

4 other=cancer not mentioned on DC 

5 Indeterminate (2 primaries present)       
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STAGE Clinical stage/substage 1 stage I 

2Ia 

3 Ib 
4 Ic 

5 stage II 

6 Ila 
7 IIb 
8 IIc 

9 stage III 

10 IIa 
11 IIb 
12 IIc 
13 Stage IV 0 or 99 NK 

  

ADEQ Adequacy of staging procedures 1 adequate 

2 inadequate 

0 or 9 NK 
  

HISTO Histology 1 Serous 

2 Mucinous 

3 Endometroid 
4 Clear cell 

5 Germ cell 
6 Granulosa 
7 Theca 

8 Adenocarcinoma 

9 Bordeline malignancy 
10 Mixed mullerian 

11 Brenner 

12 Mixed mesodermal 

13 Sarcoma 
14 Mesonephroid 

19 Borderline (serous) 
29 Borderline (mucinous) 
69 Borderline (granulosa) 0 or 99 NK 

  

GRADE Tumour grade 1 Well differentiated 

2 Moderately differentiated 

3 Poorly differentiated 

0 or 9 NK 
  

HADSURG     Did patient have surgery   1 No 

2 Yes 

3 Laparotomy only 

0 or 9 NK 
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TAH Various surgical procedures | Y or blank 

OOPH 
SUBTAH 

GIT 
BSO 

LAVAGE 
OMENT 
BIOPSY 
NODES 

SURGEON Type of surgeon 1 Gynaecological oncologist, 
(3 surgeons, 1 doing 70 
2 Gynaecologist 
3 General surgeon 
4 Other surgeon or clinician 

5 Surgeon outside region or NK 

0 or 9 NK 

RESDIS Residual disease 1 None 
2 Seedlings 

3 < 2cm 

4>2cm 

5 Bulky 

0 or 9 NK 
PREVHYST Previous hysterectomy 1 No 

2 Yes 

0 or 9 NK 

IDS Intervention debulking surgery | 0 no (i.e. second operation after CT) 
1 yes 

OPTYPE Extent of surgery 1 Biopsy only 

      
1=dx only, no attempt at surgery 

2 GIT surgery +/- palliative surgery 
2-5=palliative surgery 

3 Oophorectomy 
(includes prev hysterectomy) 
4 Oophorectomy + palliative surgery 

5 BSO alone 

6 attempted (failed) radical 
7-12=radical surgery 

7 TAH (+/- ooph, oment) 
8 TAH + BSO 
9 TAH,BSO, Oment 
10 TAH,BSO,Oment, nodes 

11 TAH,BSO,Oment, nodes, lavage 
12 TAH + GIT 
52 BSO + GIT 
53 BSO+palliative (group with 5) 
54 BSO +palliative++ (group with 5) 
0 or 99 No surgery or NK 
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HADCT Type of chemotherapy 1 single agent 

(incomplete data - many blanks) 
2 combination chemo 

blank not known 
  

PM 

OTMALIG 

Diagnosed at post mortem 

Other malignancy at dx 

0 No 

1 Yes 

0 No 

1 Concurrent tumour 
2 Previous tumour 

  

LY PE: type of tumour 1 endometrial cancer 

2 breast cancer 

3 colon/rectum 
4 cervical cancer (excluding CIN III) 
5 Skin cancer 
9 miscellaneous 

    INTERVAL   interval between tumours   0-25+ time in years 
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