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Thesis Summary 

This thesis discusses the application of a modern signal processing technique known as 

independent component analysis (ICA) or blind source separation to univariate time 

series. To perform single channel ICA on this univariate time series, we work within 

the embedding framework, using Takens’ delay coordinate maps. After a brief presen- 

tation of the results obtained with PCA (Signal/Noise decomposition, dimensionality 

reduction), we show that the same kind of experiments can be done with ICA. Studies 

done so far have yielded encouraging results among which the following emerge as the 
most noteworthy : 

e ICA, just like PCA, preserves the possibility to perform a Signal/Noise decom- 

position. 

e Independent components (ICs) reveal evidence of clustering amongst them. 

e The possibility to efficiently rank the ICs. 

Using all these results, we show that the time series can be reconstructed surprisingly 

well by using a small number of weighted ICs. Independent component analysis seems 
to be a promising powerful method of analyzing and understanding driving mechanisms 
in financial markets. 

Keywords: Feature extraction, Principal Component Analysis, Independent 

Component Analysis, Dynamical Embedding, Delay Coordinate Maps, Clustering, 

Financial Time Series
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Chapter 1 

Introduction 

The search for underlying deterministic forces which guide financial markets, and the 

construction of models which forecast these forces has provided the focus of many re- 

search papers. Traditionally these tasks have been approached by exploiting a variety 

of statistical tools. However, financial markets have three characteristics — noise, non- 

stationarity and nonlinearity. This suggests the use of unsupervised learning techniques 

in order to capture the nonlinearity inherent to the time series. 

1.1 Independent Component Analysis in finance 

It is also well known that financial time series often originate from different and in- 

dependent sources, such as foreign politics or microeconomic variables or traders deci- 

sions. 

Under the assumption that financial time series are generated according to an un- 

derlying (and unknown) nonlinear process, there is a need to examine techniques which 

might be capable of extracting the “nonlinear” principal components, or the statisti- 

cally independent components of a process.



CHAPTER 1. INTRODUCTION 

In this thesis we want to apply and compare different extensions to the Principal 

Component Analysis, for instance ICA, to financial time series within the embedding 

framework. The aim thereby is primarily to seek dimensionality reduction of the data 

in order to extract characteristic features from the data. Projections of the data on 

to these bases allow a reparameterisation of the dynamics which then might be sub- 

sequently more amenable to traditional modelling techniques. A side effect of this 

process should be to allow a noise reduction of the data which should also have the 

effect of simplifying subsequent modelling. 

The basic process begins with an embedding into a feature space. This embedding 

allows us to study the dynamical properties of the underlying system, without know- 

ing any information about the original manifold. The feature space is characterised 

by “principal directions”. (The significance of the directions needs to be determined, 

as does the number). The time series data is projected into this feature space where 

either a clustering or a direct neural network modelling can take place. A problem 

with this approach is that financial time series are nonstationary. Hence the number 

of components and their directions may/will change over time. The relevance of Inde- 

pendent Components needs to be discussed in the context of financial data. Foreign 

exchange data will be used as input data. 

1.2 Time Series Analysis 

A principal feature of historical/retrospective analysis is that one of the measurement 

axes is time. Intrinsically, observations on a phenomenon (or process) over time are 

correlated with, or dependent on, their past. Thus, there are two major consequences : 

first, the order of observations is important and second, the assumption that consecu- 

tive observations constitute independent samples is invalid.



CHAPTER 1. INTRODUCTION 

A set of statistical tools and techniques, referred to as time series analysis (TSA), 

has been developed to analyze data collected sequentially over time. There are actually 

three main goals of time series analysis. The first goal is to predict the future behaviour 

of a time series given information concerning its present state [prediction]. The second 

goal is to model the dynamics of a time series as a function either of its own past 

history (univariate TSA) and/or the history of other explanatory time series (multi- 

variate TSA) [modelling]. Finally, the third goal of time series analysis is to diagnose 

the nature of time-related behaviour within and between time-series [characterization]. 

The emphasis of this thesis is laid on the last point — characterization — and concerns 

only univariate time series. More precisely, we will try to estimate to what extent noise 

is present in a time series, as well as to reconstruct a time series from a reduced number 

of features. 

1.3 Thesis Structure 

Chapter 1 gives a brief presentation of financial markets, and the inherent problems 

encountered when trying to study financial time series. 

After explaining a few mathematical concepts required to understand the rest of 

this thesis in Chapter 2, we use embedology to preprocess our univariate time series. 

This allows us to find a few characteristics of this time series (such as the number of 

degrees of freedom), as well as to perform a Signal/Noise separation on this time series 

(using PCA). 

Chapter 4 provides theoretical background to understand ICA principles, shows 

different ICA algorithms and illustrates the main ideas with a toy problem. The JADE 

algorithm [8] is also introduced and examined. 

10



CHAPTER 1. INTRODUCTION 

We use Chapter 5 to elaborate on experimental results, with particular emphasis 

on ICA’s ability to reveal clustering, efficiently rank the ICs and perform Signal/Noise 

decomposition. 

Finally, Chapter 6 highlights the main strengths of the methods studied, and an- 

nounces ideas for future work. 

dy
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Chapter 2 

Basic concepts 

2.1 Principal Component Analysis 

Principal component analysis (PCA) [17] is a classical statistical method of data analy- 

sis for reducing the dimensionality of data. The purpose is to find a set of n orthogonal 

vectors in data space that account for as much as possible of the data variance. In 

terms of linear algebra, this problem consists of finding a new basis for the data so that 

if we drop out the least important components in the new basis, the reconstruction 

error is as small as possible. 

To achieve this goal, we proceed as follows : the first principal component is taken 

to be along the direction with maximum variance. The second principal component is 

constrained to lie in the subspace perpendicular to the first, within which it is taken 

along the direction with maximum variance. Then the third principal component is 

taken in the maximum variance direction in the subspace perpendicular to the first two, 

and so on. In general, the k“" principal component direction is along an eigenvector 

direction belonging to the k’" largest eigenvalue of the full covariance matrix. 

Let {(€1, 1), -.-, (€ns€n)} denote the set of eigenvector/eigenvalue pairs of cov {x}. 

Let P =[e, ... e,] and D = diag(€,,...,&,). If we consider the projection of the data 

13



CHAPTER 2. BASIC CONCEPTS 

on the new basis, the new components are uncorrelated. As a matter of fact, the 

expression of the components in the new basis is given by x,,,., = P'x, so new 

Covi{xa7,)) = Biba 

ll v 4
 

° 9 < on
 

i ~ Sy 

Il vy,
 3 0 S S 5 kg
 (as P is an orthogonal matrix) 

PCA is widely used in statistical signal processing, and most often, to separate the 

data into a pair Signal space/Noise space. Indeed, small eigenvalues can be associated 

with noise, whereas the most important ones give the dimension of the data. Thus, 

noise may be removed by reducing the dimension of the data. 

2.2 The Concept of Independence 

Given two events A and B in an event space of an experiment, we can say that A and 

B are independent if 

P(.AB) = P(A)P(B) 

Using the conditional probability P(B|.A) given by 

P(AB) 
P(A) 

we can see that independence implies P(B|A) = P(B), if P(A) 40. As the implication 

P(BIA) = 

holds in the other direction, this condition is equivalent to independence. Assuming 

that P(B) 4 0, we can also derived the following equivalence 

P(A|B) = P(A) = > P(AB) = P(A)P(B) 

Actually, it is quite intuitive to think about equations P(B|.A) = P(B) and P(.A|B) = 

P(A) in terms of independence : if one event happens, it does not give any additional 

14



  

CHAPTER 2. BASIC CONCEPTS 

information about the probability of the other event. In terms of information, inde- 

pendence of two events could be interpreted so that information about one event gives 

no additional information about the other one. 

We can give a very similar interpretation of independence in the case of random 

variables. The definition of independence of two random variables x and y is 

Pte A,ye B)=P(rxeE A)P(yEe B) A,BCR 

This is equivalent to 

Sey(@,y) = fel) fy(y) 

if the densities exist. Thus the conditional density 

fo(vla) = 2) 

becomes f,(y|x) = fy(y). Here, information about the value of one random variable 

gives no information about the value of the other one. 

The main interest in independence lies in the fact that the independent components 

can often be processed separately. That is, in the case of a system trying to learn some 

aspects of the incoming data, the separation of the data into independent components! 

allows to infer properties by examining individually the characteristics of the compo- 

nents and combining them in the end to form some view of the data. 

Thus appears the fundamental interest in ICA for data analysis: if one could apply 

ICA to a complex data set, the resulting independent components could describe some 

underlying factors of the process. But this approach suffers from several drawbacks, 

particularly because the ICA linear model is too rigid, and independence is a very 

strong condition. 

tie. components that do not interfere with each other 

15



CHAPTER 2. BASIC CONCEPTS 

2.3 Linear Model of Independent Component Analysis 

Let us assume that we have some phenomenon which manifests itself through a set 

of n independent random variables, and let s denote the random vector which is the 

combination of these variables. Thus s = [s; s2...8n]’ where s1, 82,..., 8, are called 

sources and s is called the source vector. 

Now suppose suppose that the original independent source components are observed 

via a linear process. Let x be the observed random vector. Since the process is assumed 

linear, the relation between x and s can be expressed as 

x= As (2.1) 

The problem is to find a demizing matrix? W so that 

y = Wx (2.2) 

= WAs (2.3) 

where y denotes a (new) set of statistically independent vectors, that are estimates of 

the original source signals. Figure 2.1 shows the most basic form of ICA. 

  

Sources Signal Independent 
(original) (mixed) Components 

Figure 2.1: Basic representation of ICA 

In the most general case, matrix A € C(R",R™) is refered to as a mixing matrix, 

since it mixes the independent sources. Its companion is matrix W € £(R™,R"). Even 

though all cases m < n,m =n and m > n are possible, and differ significantly from 

each other, we assume throughout this thesis that there are as many observed signals 

2also called separating matrix 

16



  

CHAPTER 2. BASIC CONCEPTS 

as there as sources’, that is, A is a square n x n matrix. 

If W = A7!, then y = 8, and perfect separation occurs. In general, it is only 

possible to find W such that WA = PD where P is a permutation matrix and D is a 

diagonal scaling matrix. 

To find such a demixing matrix W, three main assumptions are made : 

e The sources s; are statistically independent 

e There is at most one source with a Gaussian distribution 

e The signals are stationary 

2.4 Removing Correlations 

Let us consider that we are dealing with zero-mean data, i.e. E [x] = 0. According to 

the linear model discussed in Section 2.3 (equation 2.2), the independent components 

of s are also zero-meaned. So, let assume that our data has been centered’ for the 

following discussion. 

Given two components s; and s, of vector s, (i,j) € [1,n]?, their covariance is 

E[sis;] = var{e;}=1, ift=j 

E[s;sj] = El[sj]E[s;]=0, ifi <j 

So, the covariance matrix of s is the identity matrix, and components of s are un- 

correlated. Thus, we have a necessary — but not a sufficient — condition between 

independence and uncorrelatedness in the case of zero mean data 

  

  
independence => uncorrelatedness 

  
  

3We shall see later that there can be repetition of sources 
4i.e. we have zero mean data 

17



  

CHAPTER 2. BASIC CONCEPTS 

So, it seems quite logical to think of decorrelation as a first step towards independence. 

We can accomplish it by transforming x so that its covariance matrix will be diagonal. 

Furthermore, if all components have unit variance, a random vector is referred to as 

being white: this process is called whitening or sphering. 

To perform whitening, we can use PCA basis vectors and variances along them. Let 

P denote the matrix formed of the eigenvectors of cov {x}, and D = diag(&,...,&:) 

a diagonal matrix of corresponding eigenvalues. Let V = D~'/?P7 denote a whitening 

matrix, the expression of the new whitened data vector is given by 

vy = Vx (2.4) 

D-M2ply (2.5) 

We can check that v is really white by computing its covariance matrix 

cov{v} = E [Dee Bex Pg. 

= D-?PT cov {x} PD-'/? 

D“?PT(PDP™)PD-"/? (by definition of cov {x}) 

= 2h 

One can notice that PCA whitening is not the only possible method for whitening, 

but it gives optimal (in the mean square sense) dimensionality reduction, which can be 

combined with the whitening operation. Nevertheless, if we consider any orthogonal 

matrix P and a whitening matrix V, then PV is also a whitening matrix, as 

E [(PVx)(PVx)"] = PE [Vxx"V"] P? = PE [(Vx)(Vx)"] P* = PIP? =1 

2.5 Cumulants and Cumulant Matrices 

Cumulants are higher-order statistics that have become increasingly popular in various 

signal processing tasks [26, 27]. When correlation and power spectra> are commonly 

5Fourier transform of autocorrelation 
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used in signal processing, as 2” order statistical tools, cumulants and polyspectra® can 

be seen as the corresponding statistical tools of order higher than two. 

It is particularly difficult to illustrate the properties of cumulants, as well as their main 

advantages. We will give briefly a definition of cumulants, and some of their properties. 

Let cum(z;,...,2,) denote a cumulant of random variables 7), ...,2,. Cumulants are 

then defined as the coefficients of the Taylor series of the characteristic function of 

x=([z ... tJ" at point 0, that is 

  

  cum(21,...5%,) = ——-.. 5 W(w1,.--, Wn) 
w1=0,...,Wn=0       

where 
  

  
W(wW1,...,Wn) =I E [edewirs] 

    

The class of cumulants involving just one random variable is denoted by the letter 

K, so that 
  

(a) = cum(z,...,2 

i times       

Among the useful properties of cumulants, we can notice : 

1. Cumulants are multilinear’. Let x and y denote two random variables and a a 

scalar 

CuM(%i5- 5.5 2:+s-.05¢n)) = Cum(2i,...,23,-.-.4n) 

+ceum(qi,...,Y,--+) Tn) 

Cum (21, ...;OLj;00558n) = ocum(n,...,2%,.--2En) 

2. If a subset of random variables 21,...,2p is independent of the others, then 

cum(Zj,...,2n) =0- 

3. If x1,...,2, are Gaussian random variables and n > 3, then cum(a),...,2n) =0 

®Fourier transforms of cumulants 
“multilinear means linear for each entry 
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While properties 1 and 2 enable the use of cumulants as operators, property 3 makes 

cumulants insensitive to Gaussian noise, and thus, gives us a measure of nonnormality. 

One concept which has been influential in ICA is that of 4" order cumulant matri- 

ces [8]. A cumulant matrix Q,(M) is defined for a real n-dimensional random vector 

x and an n X n matrix M as 

  

Qx(M) 74 = YY cum(a;, 2), 24,0), i,j € {1,...,n} (2.6) 
k=1 [=1       

Since we are working under the linear model assumption of Section 2.3, premultiplying 

equation (2.1) with the PCA whitening matrix V of Section 2.4 gives 

i—VE— VAs — Bs. 

where v is called the whitened data vector, and B € CL(R",R") is the whitened mixing 

matriz. As v and s are white, 

I=E [vv] = E [Bss"B"] = BE [ss"] B7 = BBT 

so B is orthogonal. As a consequence, matrix A can be factored as 

A=Vi eB = Va'\(bj,..-, by] 

where B is unitary. Using the cumulant properties — Gaussian rejection, additivity, 

multilinearity — it is straightforward to establish that 

Qv(M) = > a(sp)b?7 Mb, VM. 
p=1 

This can be equivalently rewritten as 

Qv(M) = BPyB™ Ty = diag(4(s,)b? Mby,... , K4(Sn)b? Mb,,). 

This means that columns of matrix B are eigenvectors of matrix Qy(M) for any ma- 

triz M. Let ; denote the expression K4(s;)b7 Mb;, i = 1,...,n. Thus, as long as 

20



CHAPTER 2. BASIC CONCEPTS 

B, # Bj Vi Aj — that is, Qy(M) does not have identical eigenvalues — columns of ma- 

trix B can be determined up to a scalar multiplier by solving the eigenvalue problem. 

Then the eigenspaces are one dimensional, and the indeterminacy of the eigendecom- 

position precisely corresponds to the fundamental indeterminacy of ICA®. 

Even though computationally simple, this approach suffers two major drawbacks : 

e We do not have any prior knowledge as how to choose M before evaluating Qy(M) 

e We use only a fraction of the 4"" order information 

The poor statistical performance of this method (See [8]) will let us see and use a vari- 

ant that works by diagonalizing many cumulant matrices simultaneously, thus trying 

to improve the performance (See the JADE algorithm in 4.5). 

With the basic concepts clearly presented, we shall use the subsequent chapters to 

gain more insights into single channel times series analysis, with an emphasis on the 

exploration and study of PCA and ICA within the embedding framework. 

The sign/magnitude indeterminacy 
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Chapter 3 

Dynamical Embedding 

3.1 Dynamical Systems 

The notion of dynamics first appeared in the fifteenth century, when Isaac Newton 

invented differential equations. But the initial enthusiasm concerning this invention, 

quickly lead to hopelessness in the way to solve them, that is, to obtain an explicit form 

for the solution. It is only centuries after that these equations were thought about in 

term of systems’ behavior, by Henri Poincaré. He particularly concentrated his studies 

on overall behavior and stability. But it is only in the fifties that scientists were armed 

to discover chaotic behavior, strange attractors and fractals, with the development of 

high-speed computers. 

One can distinguish two kinds of dynamical systems : 

e Differential equations (for continuous time problems) 

Iterative maps (for discrete time problems) 

22



CHAPTER 3. DYNAMICAL EMBEDDING 

A very general form for ordinary differential equations is the system —— = f(x), where 
ot 

7 

is the set of the system’s state variables and 

fil@iy..-32m) 

fx) = 

Nin (21, acs 2va) 

describes the system’s behavior. An analogous form for a general iterative map would 

be 41 = f(a). The main particularity of nonlinear systems is that, for most of them, 

it is impossible to solve them analytically. 

3.2 The Embedding Theorem 

Given two spaces A and B, a mapping between them is a function f that associates 

every element a € A with the uniquely determined element 3 € B. Thus, is called 

the image of a, and a is the preimage of 3. When spaces A and B are metric, the 

notions of continuity and smoothness can be introduced in that scheme. We can define 

then a diffeomorphism as a C* mapping that is bijective. We will also define a smooth 

mapping f that is only injective as an immersion. As we are interested in preserving 

topological properties, we will also want the mapping to be proper, that is, the pre- 

image of every compact set is a compact set. Finally, we will define an embedding as 

a proper immersion. To simplify this idea, we can think of an embedding as being a 

smooth local change of coordinates : even when disfiguring a subset S C A, its local 

properties and fine structure are kept intact. 

The fundamental result concerning embeddings was stated and proved by Takens, 

in [34], and is presented below in its original form. 
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Theorem 1 Let M be a compact manifold of dimension m. 

For pairs (y,y), ¢ : M++M a smooth! diffeomorphism andy : M+> R a smooth 

function, it is a generic property that the map ®y4) : M+ R°™*! defined by 

Doy(x) = (y(x), ¥(¢),---,y(¥?"(x))) 

ts an embedding. 

For a dynamical system os = f(x), the manifold M would be the set of a 

system’s state x(t) for which it is very rare to find an analytic form. Thus, the map ® 

is a useful way to refer to an arbitrary switch of the space’s nature. Indeed, according 

to Theorem 1, the new set ® carries the same fine structure as the original manifold 

M. As a direct consequence to this, this new set in R’’"+! can be interpreted as the 

solution of a dynamical system which exhibits a behavior that is very similar to the 

one of the original system ox = f(x). It is important to notice that the dimension of 

the manifold is unknown (m = dim(M)). Nevertheless, this is not a problem as long 

as the embedding space — R” — has embedding dimension n > 2m+1. The framework 

discussed here is illustrated in Figure 3.1. 

3.3 Delay Coordinate Maps 

Let us pick the manifold M to be the set of our system’s state x(t), where x(t) represents 

the system’s state at time ¢. Let x(t) = y(x(t)) denote our scalar observation at time t. 

If we chose the map y : M+ M to be such that y(x(¢)) = x(t +7), it will represent 

the system’s internal dynamics. Finally, we define 

Sigg) 7M +4 Rt 

x ++ (y(x), y(9(x)),---, y(v?"(x))) 

1By smooth, we mean at least C? 
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Dy, (M) 

Figure 3.1: The embedding of a manifold into a Euclidean space with time series data 
using Takens’ construction
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y : M++Mandy : M+ R satisfy the hypotheses of the embedding theorem, 

and m is chosen to be big enough for the map ®,) to be an embedding. 

Given the choice we have made for y and y, (yy) maps the system’s state space 

to the observation’s lag space 

Dyy(x)) = (y(x(), v(¥(eM)),--.,¥?"(x()))) 

= (y(x(t)), y(x(t +7)),...,y(x(t + 2mr))) 

= (a(t),2(t+7),...,0(t + 2mr)) 

So, the trajectory of a 1-dimensional observation in a d-dimensional lag space and 

the trajectory of the system’s state space differ only by a smooth local change of co- 

ordinates (as d is big enough). There are two main advantages to this. First, in a 

modelling context, there is no need for variables other than the lag values of the time 

series we are studying. Furthermore, the number of necessary lag values is directly 

linked to the number of the system’s degrees of freedom, and this number can also be 

estimated by measuring statistics on the initial observation. 

The strong relationship between the state space and the lag space allows us to 

manipulate lag values of an observation as if they were directly state variables of our 

system. 

3.4 Degrees of Freedom 

Given a time series x(t), t € [1, Naata], we have seen in the previous sections that it is 

possible to study the dynamics of the corresponding system by considering a sequence 

of N = Nata — (n — 1) vectors (a(t), x(t+7),...,2(t+(n—1)r)), t=1,...,N, where 

n is the window size of the embedding, 7 is the sampling interval, and Noata is the 
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number of data points in the time series. 

Thus, we can construct an N x n trajectory matrix Z from this sequence : 

a(1) a(l+r) ... 2(1+(n—1)r) 

ms (2) a2(2+7) ... 2(2+(n—1)r) 

a(N) a(N+7) ... 2(N+(n—1)r) 

As shown in [5], an analysis of the number of degrees of freedom in Z leads to 

a PCA of the trajectory matrix (For further explanations on PCA, see Section 2.1). 

After having constructed the embedding, a PCA is carried out on the transpose of this 

matrix. Using the notation of Section 2.1, {(e,,&1),...,(ey,&v)} denotes the set of 

eigenvector/eigenvalue pairs of cov {Z}, with & > & >--- > €y. We might think 

that, as the {&, i= 1,..., N} are the root mean square projections of the trajectory   

matrix onto the basis vectors, the number of that are non-zero is the number of degrees 

of freedom. But Z is generally affected by experimental noise, which gives a wrong es- 

timate of the number of degrees of freedom. The solution to this problem is to identify 

a noise floor in the eigenspectrum [5]. 

To find this noise floor, one of the simplest tests, and probably the most widely 

used, is the scree test [9] which derives from a visual inspection of the eigenvalues 

plotted against their root number. A typical eigenvalue plot shows a steep slope over 

the first few roots and a gradual trailing off for the rest of the roots (the scree). The 

term scree derives from the resemblance to the rubble that forms at the foot of a 

mountain. Cattell hypothesized the scree represented unwanted noise and that only 

the eigenvector/eigenvalue pairs prior to the scree should be retained for further use. 

The main problem with this method is the identification of the exact root where the 

scree begins to form, as it is rather subjective. An alternative to this method consists 
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of considering the log-eigenvalues plotted against their root number. This is the one 

we will adopt for our experiments. So, to sum up briefly, we will try to detect first 

major “kink” in the spectrum, and this will give us the number of degrees of freedom 

of the system. 

3.5 Experimental Results 

3.5.1 General comments about the data 

The time series that has been used in our experiment is the raw time series formed 

from some British pound futures contract data. Even though the open, high, low and 

close fields were available, only the close field has been used. The original time series 

is composed of 4225 points, but we have only considered the first 1000 points. Given 

that a trading year is roughly made of 250 days, our data is therefore spread over 4 

years. This signal is represented in Figure 3.2. 

3.5.2 Determining the embedding delay 7 

The main concern in the choice of the embedding delay 7 is to avoid two major pitfalls. 

If one chooses too small a value for 7, then successive values are too close together 

and the embedding vectors are packed more or less around the identity line in the 

embedding space. On the other hand, when 7 is too big, there is a big risk of losing 

information from all values between x(t) and z(t+7). So, the best thing possible in the 

choice of 7 is to reach a trade-off. In this thesis, in order to incorporate every available 

data point, we have chosen rT = 1. 

3.5.3 Determining the window size of the embedding 

The main problem with this part is that we are dealing with financial time series, which 

are well known to be nonstationary. Thus, we need to find a window size small enough 
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Figure 3.2: The original signal for the British pound futures contract data 
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so that the time series is stationary during this period. Finding such a window size 

is a very subjective problem. Thus, we cannot pretend to have an accurate approach 

to do it. Nevertheless, we can try to find the best window size for the embedding by 

looking at the eigenspectra for different window sizes. This is what can be seen in 

Figure 3.3. From this figure, we observe that there is a “convergence of the spectra” 

when the window size is of the order of 50, thus we chose n = 50. 

3.5.4 Determining the degrees of freedom 

Once the embedding parameters 7 and n are set, it is interesting to determine the 

degrees of freedom of the data, by considering the singular spectrum of the delay 

vectors. The result of this procedure is shown on Figure 3.4. We know that for a signal 

free of noise, the spectra would be expected to show a smooth decline. Unfortunately, 

we can observe several kinks that may be attributed to the noise. Thus, by detecting 

the first major kink in the spectrum, we can have an idea of the actual complexity of 

the signal determistic component. Figure 3.4 shows that the the number of degrees of 

freedom is actually of order four. 

We can then compute the percentage of variance explained by the first i dominant 

eigenvectors using the following formula: 

i 

Sg 
, A jt 

Percentage variance explained = 2~— 

Sg 
j=l 

For i = 4, we find that the first four principal components explain 99.20% of the 

variance. 

3.5.5 Shape of the attractor 

Even if we do not have any idea about what the original manifold looks like, it is 

possible to study it using a diffeomorphism existing between the reconstructed space 
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Figure 3.4: The eigenspectrum of the delay vectors restricted to the first ten principal 
components 
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and the original space. This is allowed because all transformations up to this point 

are linear, and do not create additional dynamics of their own. But we must be aware 

that four degrees of freedom is too high to visualize. That is why we will only study 

the projection of the data (i.e. the delay vectors) into the space spanned by the three 

dominant eigenvectors. For these eigenvectors, the percentage of variance explained is 

98.98%. 
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Figure 3.5: Initial Time Series 

When looking at Figure 3.6, the first thing we can notice about the raw structure 

obtained by projecting the delay vectors into the three most significant directions (from 

the PCA point of view), is the shape of the structure. Indeed, we do not have a space 

filling figure, but a “bobbin-like” structure around which our signal is wrapped. Thus, 

with only four degrees of freedom, we have extracted some kind of geometric structure 
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Figure 3.6: Projection of the delay vectors onto the three first eigenvectors 
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from the British pound data. 

More interesting is the point that, when spotting some turning points on the origi- 

nal time series, we can study the evolution of this turning points in the “bobbin-like” 

structure (See Figures 3.5 and 3.6). It appears that every turning point of Figure 3.5 

seems to match a change in direction concerning the structure of Figure 3.6. 

But the problem with PCA is that it imposes such strong constraints as the or- 

thogonality of axes, and only deals with the first and second order moments. In the 

event of independent sources in the series, such restrictions may lead to a rather poor 

performance of the PCA algorithm. As we shall see in the next chapter, ICA turns out 

to be the suitable tool for handling such situations. 
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Chapter 4 

Independent Component Analysis 

4.1 General Overview of ICA 

Recently [3, 7, 24, 25, 29, 6, 16], blind source separation by Independent Component 

Analysis (ICA) has received attention because of its potential applications in signal 

processing such as in speech recognition systems, telecommunications and medical sig- 

nal processing. The goal of ICA is to recover independent sources given only sensor 

observations that are unknown linear mixtures of the unobserved independent source 

signals. In contrast to correlation-based transformations such as Principal Component 

Analysis (PCA), ICA not only decorrelates the signal (using 2" order statistics) but 

also reduces higher-order statistical dependencies, attempting to make the signals as 

independent as possible. To sum up the main idea, one can say that ICA is a way 

of finding a linear non-orthogonal coordinate system in any multivariate data. The 

directions of the axes of this coordinate system are determined by both the second and 

higher order statistics of the original data. The goal is to perform a linear transform 

which makes the resulting variables as statistically independent from each other as pos- 

sible. 

Two different research communities have considered the analysis of independent 

components. On the one hand, the study of separating mixed sources observed in 
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an array of sensors has been a classical and difficult signal processing problem. The 

first studies undertaken by Herault and Jutten (1986) [15] have been further developed 

by Jutten and Herault (1991) [18], Karhunen and Joutsensalo (1994) [19], Cichoki, 

Unbehauen and Rummert (1994) [10]. Comon (1994) [11] elaborated the concept of 

independent component analysis and proposed cost functions related to the approxi- 

mate minimization of mutual information between the sensors. 

On the other hand, in parallel to blind source separation studies, unsupervised 

learning rules based on information-theory were proposed Linsker (1992) [22]. The 

goal of such methods was to maximise the mutual information between the inputs and 

outputs of a neural network. This approach is related to the principle of redundancy 

reduction suggested by Barlow (1961) [2] as a coding strategy in neurons. Each neuron 

should encode features that are as statistically independent as possible from other neu- 

rons over a natural ensemble of inputs. Bell and Sejnowski (1995) [3] also developed an 

algorithm turning the blind source separation problem into an information-theoretic 

framework and demonstrated the separation and deconvolution of mixed sources. 

Other algorithms for performing ICA have been proposed, and we can try to classify 

the existing algorithms according to the following scheme : 

  

  

  

  

  

Method of solution 

Mathematical |} Diagonalization Fixed point Gradient method 
approach 

Fourth order cu- JADE Original fixed point Bigradient 

mulants 

Contrasts based a Generalized fixed point Bigradient 
on other nonlin- 

earities               

Table 4.1: A classification of ICA algorithms. 

The JADE algorithm is the only one used in our experiments, nevertheless we will 
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describe briefly all these algorithms. 

4.2 Entropy Maximization 

Though it is possible to perform ICA by maximizing the entropy of the outputs in a 

two-layer neural network, it is very difficult to form a computational procedure based 

directly on the general theory, mainly because we cannot determine the density func- 

tions of the unknown components. To overcome this problem, Bell and Sejnowski [3] 

have derived a gradient ascent algorithm for changing the weights of the first layer (lin- 

ear layer) and the biases of the second layer to maximize the entropy of the outputs. 

They use the logistic transfer function 

1 
1 + ewttwo g(x) = 

where w controls the steepness of the function and wo is a bias parameter. The per- 

formance of this algorithm depends on how well the nonlinear transfer functions ap- 

proximate the cumulative distribution functions of the independent components. The 

main limit to this algorithm is that it may not work for negatively kurtotic sources, as 

suggested by Bell and Sejnowski. 

4.3 Fixed-Point Algorithms 

This algorithm has been introduced by Hyvirinen and Oja [16]. Basically, the idea is 

to optimize a contrast function. We have already seen that kurtosis can be used as 

an optimization criterion for ICA. Let us consider the optimization of kurtosis of the 

projection of a zero mean whitened random variable v onto vector w 

J(w) = E [(w"v)‘] — 3 ||wll* 

under the constraint 

h(w) = |lwl|? -1 =0 
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Using the method of Lagrange multipliers, we find the following necessary condition 

for an optimum 

4E [(w"v)?v] — 12 ||w||’w + 2Aw = 0 

which can be rewritten as 

  

Nw = E [(w"v)8v] — 3w 

using ||w||? = 1 and \’ = —4). This equation show that at an optimum w the right 

hand side of the equation is parallel with w, or that the direction of w remains fixed 

under the iteration 

w(k +1) = E [(w(k)*v)°v] — 3w(k) 

The fixed point algorithm is guaranteed to find one source, starting from a random 

initial point. 

If one needs to find more sources, it is possible to use extra information from the 

fact that the whitened ICA basis vectors are orthogonal, ie by orthogonalizing the 

found vector w against the subspace spanned by previously found vectors. The main 

problem with this algorithm is due to the termination criterion: instead of having a 

termination point being the fixed point of the iteration, we have it as the fixed point 

of the iteration-orthogonalization-normalization combination. 

Finally, there is an alternative to this algorithm using a simultaneous search for all 

basis vectors of ICA as well as a symmetric orthogonalization [16]. 
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4.4 The Bigradient Algorithm 

Let us suppose that the kurtoses of the sources have the same sign. Then we can find 

a new contrast function 

Jnson(B) = >> Ka(bi x) 
i=l 

= OE [(b? x] - 3B [(b?x)"])? 
i=1 

where B = [b, ...b,,]” and «4 denotes the fourth-order cumulant, ie the kurtosis. Using 

the fact that E [(by-v)?] =1 Vi € [1,n] for any whitened random vector v, we can 

drop out the second term of the equation and then rewrite a new simplified objective 

function 

Jesx(B) = YE [(bix)'] (4.1) 
i=1 

To find the ICA basis, we should optimize (4.1) under the constraint “B is orthog- 

onal”. To perform this, we can use a penalty function approach, where the penalized 

object function is 

Tegenaity(B) = Jvx(B) +9 ||I- BTB|lp (4.2) EW) eee eI 
original objective orthogonalization 

and p € R is a penalty coefficient and ||X||7 = S07}, 20}: Taj" denotes the Frobenius 

norm of matrix X. 

The actual optimization is performed using a gradient descent algorithm which yields 

in the final form of the bigradient algorithm 

B(k +1) = B(k) + wxE [y(k)(w(4)"B(k))*] + %B(k) — B(k)” B(K)] 

where ji is an adaptation parameter which is either a small constant or decreases 

slowly with the number of iterations, and acceptable values of (7% = (epPx) have 

been observed to lie in the range [0.5, 1]. One can notice that, like in the fixed point 

algorithm, the third power of the algorithm may be changed to another nonlinearity 
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g', thus yielding the generalized bigradient algorithm 

B(k +1) = B(k) + mE [v(h)o(w(k)” B(R))] + WBA) — BEY" BEA)] 

Nevertheless, this algorithm is only able to separate sources all of which have either 

positive or negative kurtoses. 

4.5 Joint Approximate Diagonalization of Eigen- 

matrices 

4.5.1 The algorithm 

The JADE algorithm of Cardoso and Souloumiac is based on joint approximate diago- 

nalization of eigenmatrices. In Section 2.5, we have seen that the ICA problem could 

be solved by computing the eigenvectors of the cumulant matrix Qy(M) for any ma- 

trix M. JADE is an extension of this idea in that it diagonalizes a set of eigenmatrices 

representing the whole cumulant matrix set Cy. The diagonalization in JADE proceeds 

by maximization of 

C(P)= So |\diag(P™MP)|I? 
MECy,e 

where P is an orthogonal matrix and Cy,, is a set of eigenmatrices of Qy with nonzero 

eigenvalues 

Ove = {EM | Qv(M) = EM AE F Of 

(Here diag(P7 MP) is a vector formed by scanning the diagonal elements of P™M P). 

In [8], it has been shown that |Cy| =n, so the computations need only be performed 

over a set of n matrices. For the ICA model, the optimization over this eigenset Cy, 

is equivalent to the optimization over the whole set Cy, thus giving a significant com- 

putational advantage. 

‘9(t) = tanh(t) is quite popular for such a function 
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As described in [8], the JADE algorithm can be described as a 4-step process : 
  

Step 1: Form the sample covariance matrix R, and compute a whitening matrix Ww. 

Step 2: Form the 4" order cumulants Q, of the whitened process 4(t) = Wa(t); 

Compute the n most significant eigenpairs {€,, M, | 1 <r <n}. 

Step 3: Jointly diagonalize the set {€,M, | 1 <r <n} by a unitary matrix U. 

Step 4: An estimate of Ais A= W#U       

Step 1 concerns the 24 order statistics part, and is implemented via eigendecom- 

position of Ry. According to the white noise assumption, an estimate of the noise 

  

variance & is the average of the m — n smallest eigenvalues of R,. Let fs shin (be 

the n largest eigenvalues and h,,...,h,, the corresponding eigenvectors of R,. Thus, 
a 5 ze i 1 

a whitener W is W = |—————h,,...., ————=h, 
Via : Vin — oF ™ 

In step 2, computation of the eigenmatrices amounts to diagonalizing a n? x n? ma- 

trix made from the elements of Q. As we deal with real-valued signals, it is possible 

to exploit the symmetries of the cumulants to further reduce the number of matrices 

to be diagonalized. Furthermore, it is not necessary to compute the eigenmatrices as 

it suffices to jointly diagonalize a set of cumulant matrices. 

Step 3 is implemented using a variant of the single-matrix Jacobi technique to sev- 

eral matrices, called Givens rotations. (See Appendix A for further explanations.) 

In step 4, the pseudo-inverse of W need not be explicitly computed: the eigen- 

decomposition of Re may be recycled by w= [Vi — Ghy,-.-, Vln — h, ‘ 
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4.5.2 A toy problem 

An example of how the JADE algorithm performs can be seen by considering the fol- 

lowing toy problem. Let s;,s2 and s3 denote the three independent sources defined 

e s,: A sine wave 

e so: A square wave 

e s3: A white Gaussian process 

We just mix these signals by a 4 x 3 random matrix, and then add a small Gaussian 

noise to the resulting mixture. Then, we run the JADE algorithm on the mixtures 

to extract the new recovered signals. The three steps of this procedure are shown in 

Figure 4.1 
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The source signals 
  

            

  

              

    

              

1 200 u 200 1 200 

(a) Source signals 

The observed mixtures 

1 200 200 1 200 200 

(b) Mixture signals+noise 

The estimated source signals 

1 200 1 200 1 200 

(c) Recovered signals 

Figure 4.1: An example of how the JADE algorithm performs on a mixture of signals 
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ICA Results 

Previous Chapters have discussed the ability of ICA to detect and extract independent 

sources from the time series. This is both interesting and powerful, and presents a 

great interest for financial times series that are very often the resultant of sometimes 

drastically independent factors (traders’ actions, natural catastrophe, governmental 

decisions, etc). 

5.1 General Information Concerning ICA 

5.1.1 Reasons to use ICA in finance 

We have seen previously in Chapter 4 that ICA provides a mechanism of decomposing a 

given signal into statistically independent components. Thus, it might seem interesting 

to explore whether ICA can give some indications of the underlying structure of the 

stock market, by finding a bunch of interpretable factors. Such factors can be economic 

indicators (unemployment, internal product, ...), business-related information (assets, 

debt, productivity, type of production, announcements), monetary parameters, interest 

rates, relevant political events (international wars, government directives, ...). Most 

often, it is very difficult to find which of these variables are relevant and how to evaluate 

their effect without the help of a human expert. 

45



CHAPTER 5. ICA RESULTS 

5.1.2 Description of the data 

As one of our main concerns in using an ICA algorithm, the observed signals need to 

be stationary. Thus, we use the first difference V(t) = x(t) — a(t — 1) instead of the 

raw data a(t). This is the input of our embedding process, with tT = 1, n = 50. The 

embedding matrix is now the entry of our ICA algorithm , that is the JADE algorithm 

[8] (See Section 4.5). 

5.1.3 Structure of the independent components 

In all our experiments concerning financial data, we assume that the number of signals 

provided as an input to the algorithm equals the number of sources supplied to the 

mixing model. As mentioned by Cardoso in the code of JADE, there is a practical limit 

to the number of independent components that can be extracted with this implemen- 

tation, and we reach this limit using n = 50. As all the ICA computations are quite 

time-consuming, we have therefore reduced the number of data points available to the 

first 500 data points of our time series. As we have quite a large number of sources, 

each time we plot some results, only a few of them are represented. 

We can see a few examples of what these independent components look like in Fig- 

ure 5.1. 

The plots shown in Figure 5.1 reveal two very interesting features. It has already 

been mentioned in Section 2.3 that the JADE algorithm can only recover independent 

sources most often permuted and rescaled. For instance, components IC), [Cy and IC3 

seem very similar (taking in consideration this scaling problem). Thus, this suggests 

that there might be some kind of clustering among the independent components. This 

issue will be discussed later on in this thesis. Another problem we have to be aware of 

in this chapter is the absence of order amongst the independent components, or more 

precisely, how to find an accurate way to order the recovered sources. 
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Figure 5.1: The first 20 independent components recovered by the JADE algorithm 

5.2 Reconstruction of the Time Series 

One of the main concerns of this section is to reconstruct an approximation to the 

initial time series using only a few independent components. 

5.2.1 Reconstruction algorithm 

Using equation 2.1 of Section 2.3, we can rewrite it as : 

a(t) =) ai5;(t) (5.1) 

Thus it is possible to obtain the reconstruction of the i‘* return in terms of the estimated 

ICs as 

&i(t—j) = Doanm(t-9) j=0,...,N-1 (5.2) 
ket 

where y;,(t—j) is the value of the k" estimated IC at time t—j and aj, is the weight in 

the i” row, kt" column of the estimated mixing matrix A. A is obtained as the inverse 
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of the demixing matrix W. Then, the reconstructed prices are found as 

BiG) +4i(j) j=t—N,...,t-1 

pi(t — N) 

Di(j +1) 

pi(t — N) 

One can notice that using the whole set of ICs (that is 50 ICs) allows us to recon- 

struct the original time series, that is, there is no information lost in any stage of the 

ICA process. This is due to the fact that the product of the mixing matrix and the 

independent sources matrix is the starting matrix (X = AS). 

As we have already mentioned before, ranking the ICs is a difficult task. Further- 

more, there are various criteria to sort them. In their implementation of the JADE 

algorithm, Cardoso and Souloumiac [8] used an Euclidean norm to sort the rows of 

the demixing matrix W according to their contribution across all signals. In [1], Back 

and Weigend used an L,, norm on the weighted ICs to show the ICs which cause the 

maximum price change in a particular stock. We used a different way of sorting the 

ICs as explained in the following paragraph. 

5.2.2 Sorting the independent components 

The method presented here is inspired by the following phenomenon. We want to 

rank the ICs by order of importance in the reconstruction process, so we consider Z;, 

the approximate value of the embedding matrix obtained by considering IC number i. 

Then we construct matrix S; whose i** line is made of the i** independent source, and 

all other terms are zero, that is 

0 0 0 

Si=] sa sa ... sin 

( 0 
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By constructing Z; = AS;, i=1,...,n, we obtain a new set of n approximations to 

the embedding matrix. We then compute ||Z; — Z||, the error in the approximation of 

Z by Z;. Therefore, we can sort these values in increasing order, such that the index 

corresponding to the minimum error value gives us the most important IC, the one 

corresponding to the second minimum error, the second most important IC, and so on. 

For the following step, we sort the columns of the mixing matrix and the rows of 

the independent sources matrix according to this order, and then follow the procedure 

described in Section 5.2.1. 

Figure 5.2 shows all 50 different curves obtained by using 1 to 50 ICs in the recon- 

struction process. 
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Figure 5.2: Reconstruction of the Contract Price time series using the i most important 

ICs, i =1,...,50. The actual data are indicated by open circles. 
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5.2.3 Interpretation of the results 

Even though Figure 5.2 is a bit overloaded, because of the superimposition of all the 

plots, it is reassuring to see that the original time series (represented with circles) is 

perfectly reconstructed when using the whole set of independent components, as men- 

tioned in Section 5.2.1. 

While analyzing the figure, the most obvious feature we can see is a kind of clus- 

tering in the reconstructed time series, more particularly 6 different groups of curves. 

These groups are isolated in Figure 5.3 to ease their identification. 
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Figure 5.3: Illustration of the clustering phenomenon 

These clusters suggest that in each group, there is no need to consider several ICs, 

as the reconstruction process should not be affected by adding several independent 

components belonging to the same cluster. If we carefully attempt to identify this



CHAPTER 5. ICA RESULTS 

cluster, a “by hand” approach reveals the following clusters : 

  

Cluster 1 | IC, > IC3 
  

Cluster 2 | IC, > IC, 
  

Cluster 3 | IC; > IC\3 
  

Cluster 4 | [C4 > [C22 
  

Cluster 5 | [023 > [C45 
        Cluster 6 | [Cg > ICso 
  

These clusters are identified by vertical lines on pictures 5.4 and 5.5. 
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Figure 5.4: Cluster identification. The ICs are sorted in increasing order of the norm 

magnitude ||Z; — Z||. 

In the following paragraph, we will see how the reconstruction is affected by taking 

just the first IC of each cluster. 
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Figure 5.5: Cluster identification. The reconstruction error is computed using the 

Mean-Square Error between the original time series and its approximant
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5.2.4 Reconstruction using clusters 

In this part, we see how the reconstruction is affected by considering only one com- 

ponent of each cluster described in the previous section. To simplify this proce- 

dure, we have chosen to consider only the first component of each cluster, that is 

IC,, IC4, ICz, TC\4, [C23 and ICyg. The new reconstruction curves are shown in 

Figure 5.6, whereas the new reconstruction error is plotted in Figure 5.7. 

Even if we can see that the reconstruction process improved a lot after clustering, 

it is interesting to look carefully at Figure 5.7. Indeed, it suggests that [Cy4 — that 

is, the first IC of cluster 4 — does not contribute to the signal, as it increases the 

reconstruction error. Thus, we can try to reproduce this experiment by dropping out 

IC\4 from the reconstruction. The new results are shown in Figures 5.8 and 5.9. Now, 

the reconstruction error curve is monotonic decreasing. 
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Figure 5.6: Reconstructed Time Series using 1 to 6 ICs
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Figure 5.8: Reconstructed Time Series using 1 to 5 ICs



ee ky 
CHAPTER 5. ICA RESULTS 

  

Re
co
ns
tr
uc
ti
on
 

Er
ro
r 

  

    0 L 1 1 

1 2 3 4 5 

Number of ICs used 

  

Figure 5.9: Reconstruction Error after Clustering (without IC\4)
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5.3. Thresholded Reconstruction 

In the previous section, we have discussed the effect of reconstructing the original time 

series by considering the cumulative sums of only a few dominant ICs. This section 

goes further by thresholding these dominant ICs. The threshold process is simple : if a 

weighted IC value is below a threshold, we set it to zero. Thus, only the values above 

the threshold are used to reconstruct the signal. 

The thresholded reconstructions slightly differ from the normal reconstruction, as 

we can see in equations 5.3 and 5.4. The new algorithm is presented below : 

II a(t-j) = >oo@uu(t—3)) 7=0,....N-1 
k=l weighted ICs 

Ss@ate-3)) 5=0,...,N-1 (5.3) 
k=l 

uu jul>e 
gu) = (5.4) 

0 Jul <e 

where Z;(t —j) denotes the reconstructed returns using thresholds, g(.) is the threshold 

function and ¢ is the threshold value. The threshold was set arbitrarily to a value, such 

that most of the lower level components were excluded. The new reconstructed prices 

— after thresholding — are found as 

BG) +2i(9) J=t—-N,...,t-1 

pi(t — N) 

Bij +1) 

Bi(t — N) 

The contract price reconstructed from the thresholded returns are shown in Fig- 

ure 5.10 b. This figure indicates that the thresholded ICs provide useful information, 

as well as a tool to extract the turning points of the original time series (Figure 5.10 a). 
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Figure 5.10: Reconstructed prices obtained by computing the cumulative sum of only 

the thresholded values of the five most dominant ICs. The original time series at the 
top is just plotted for comparison purposes. 
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5.4 Comparison with PCA 

As we discussed earlier (See Chapter 2), PCA is a well established statistical method 

of data analysis. In this section, we seek to compare the performance of PCA with 

ICA. 
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Figure 5.11: Reconstructed prices obtained by computing the cumulative sum of the 2, 

4, 6 and 8 first PCs, respectively. The original time series is plotted with open circles. 

From the above results, it turns out that PCA yields a better performance in the 

reconstruction of the original time series.



Chapter 6 

Conclusions 

6.1 Dynamical Embedding 

Throughout this thesis, we have dealt with a single univariate time series. Data analysis 

techniques — such as ICA — are most often used in a multi-channel context, so we first 

need to preprocess our data. To address this problem, we have used a technique called 

embedology, or more precisely a class of embedding methods known as Takens’ Delay 

Coordinate Maps [5, 33, 34]. The strength of this method is that it allows us to study 

the dynamical properties of a system without knowing any information about the 

original manifold. Furthermore, even if the attractor is disfigured, all the topological 

properties are preserved. Finally, it is the basic step for any further study in our thesis. 

The main difficulty encountered for this part is due to the very subjective approach in 

the way of finding the embedding parameters — such as the window size or the time 

delay — to provide a time interval over which the time series is quasi stationary. When 

we have used the scree test, it could have been possible to consider other methods [30]. 

6.2 ICA 

The ICA approach we have pursued in this thesis is quite novel. Indeed, people gen- 

erally address the problem of multi-channel ICA. Furthermore, unlike EEG signals 
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analysis, image processing and signal processing, for which there has already been a 

widespread applications of ICA, there had so far been only few papers concerning the 

application of ICA to financial markets [1]. So, it was really challenging to investigate 

the field of single-channel ICA applied to financial time series. We have implemented 

an efficient way to rank the ICs, which is not an easy task, as one of ICA weaknesses 

is the absence of order among the ICs. Our experiments have also revealed evidence of 

clustering. All this information has been used in order to reconstruct an approxima- 

tion of the original time series with only a few ICs. We have also considered that by 

thresholding those few ICs, it is possible to get some morphological information about 

the time series. 

6.3 Limitations of the ICA model 

Our main concern about the JADE algorithm is that it is a batch algorithm. Thus, 

it cannot address the problem of too much data. Moreover, we have used it close 

to its limits, that is with a number of sources too high. This resulted in incredibly 

long running time sessions, which suggested that another algorithm might be more 

appropriate. 

6.4 Conclusion 

The theory of embedology provides a powerful framework for financial time series 

analysis and preprocessing. The use of Takens’ delay coordinate maps along with 

PCA and ICA, has allowed the reconstruction of an unseen attractor based solely on 

observations of a single time series — a British Pound future contract. 
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6.5 Future Work 

Throughout this thesis, the majority of our experiments were solely based on Futures 

Contract data. In order to assess the real performance of the methods used, it would 

be sensible to test them on data exhibiting different behaviour such as Commodities 

data. 

Another study which would be of great interest is how to find a means to detect 

clusters automatically. Indeed, our study revealed that the independent components 

are grouped by clusters. But we have only found these clusters “by hand”, which is far 

from an optimal method to do it. Although some kind of k-means clustering was briefly 

attempted during the course of the research, we can think of techniques as Kohonen’s 

Self-Organising Map (SOM) [20], or Sammon Mapping [31] to be more appropriate, 

while keeping in mind that such a technique should provide us with a way to identify 

which components belong to a given cluster. 

Concerning the ICA point of view, in all our experiments, we used the JADE al- 

gorithm [8]. The main reason that influenced this decision is that this algorithm is 

originated from research in signal processing, and rests on strong foundations. Fur- 

thermore, it has already been used by Back and Weigend [1] in a financial data context. 

But we have also seen that it is used close to its limits, so it might be interesting to test 

another algorithm such as the fast fixed-point algorithm designed by the ICA group, 

from Helsinki University of Technology [16]. 

Eventually, we can think about other techniques such as NLPCA [21], Curvilinear 

Component Analysis [13], or context-sensitive ICA [28] as possible extensions to the 

work undertaken in this thesis. 
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Appendix A 

A Joint Diagonalization Algorithm 

The JADE algorithm uses an extension of the Jacobi technique [14] for diagonalizing 

a unique hermitian matrix. This technique aims at finding a joint approximate diag- 

onalization of a set N = {N,|1 < r < s} of arbitrary n x n matrices. It consists in 

minimizing the diagonalization criterion 

C(V,M) = > ldiag(V"N,V)[? (A.1) 
T=1 

by successive Givens rotations. Describing the 2 x 2 case, let N, be defined by 

Np = for 15.8 

A complex 2 x 2 Givens rotation is defined by 

cos@ = —e/* sin 

e/?sin? cos 

Let a,,b,,c, and d, denote the coefficients of V" N,V. Thus, optimization of (A.1) 

amounts to finding @ and ¢ such that >>, |a,|? + |d.? is maximized. Noting that 

2A(a,|? + |d,|?) = ja, — d.? + la, +d,|? and that the trace a) +d. is invariant in a 

unitary transformation, maximization of criterion (A.1) is equivalent to maximization 

of Q, defined by 

QS la. -d,? (A.2) 
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It can be easily checked that 

, 
a, — d, = (a, — d,) cos 20 + (b, + ¢,) sin 20.cos $+ j(c, — b,)sin20sing —-(A.3) 

for r=1,...,s8. Then, by defining the vectors 

u © [a,-d,,...,0,-d]" (A4) 
v af [cos 20, sin 20 cos ¢, sin 20 sin ¢]” (A.5) 

gS lap — dbp + ep, 5(cr — by)” (A.6) 

the s equations (A.3) may be written in the form u = Gy where G7 ae [e,, as .8,| 

so that Q also reads 

Q=u"u = v'G" Gy = v" Real(G"G)yv. 

where we have used that, GG being hermitian by construction, its imaginary part 

is antisymmetric, hence contributing nothing to the above quadratic form. The last 

step is to recognize that the particular parameterization (A.5) of v is equivalent to the 

condition v’v = 1. Thus, the optimal v is the eigenvector of Re(G"G) associated 

to the largest eigenvalue, which is easily computed from the coordinates of v without 

even using trigonometrics as in the standard Jacobi technique [14]. 
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Appendix B 

Reconstruction Using Raw Data 

In Section 5.2, we have preprocessed the data using the first difference 

Va(t) = x(t) — x(t — 1) 

instead of the raw data z(t). Here we examine briefly the effect of using the raw data 

when using the JADE algorithm to perform ICA. We are especially interested in the 

reconstruction of the initial time series using only a few ICs. 

If we examine carefully the recovered independent sources (See Figure B.1), we can 

see that they seem almost identical — which is not particularly good for the reconstruc- 

tion of the initial time series using only a few ICs. 

We can even go further by considering the independent vectors — which are actually 

the rows of the mixing matrix — in Figure B.2. As for the independent sources, they 

are almost identical. Such a performance is not surprising because the JADE algorithm 

that is used assumes stationarity of the data provided to it, which unfortunately is not 

the case with the raw financial data we are concerned with. 

From the above, it turns out to be pointless using such transformation to reconstruct 

the time series. 
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Figure B.1: The first 20 independent components recovered by the JADE algorithm 

using raw data.
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Figure B.2: The first 20 independent vectors recovered by the JADE algorithm using 
raw data. 
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