
Lupus prognosis: a clinical study 

YANN BRULE 

MSc by Research in Pattern Analysis and Neural Networks 

A 

ASTON UNIVERSITY 

September 2000 

This copy of the thesis has been supplied on condition that anyone who 

consults it is understood to recognise that its copyright rests with its 

author and that no quotation from the thesis and no information derived 

from it may be published without proper acknowledgement.



Acknowledgements 

I would like to thank Dr C. GORDON for the database she has provided to the de- 

partment of Neural Computing and Research Group and for the time she has allocated 

to give advice and to help me in the analysis of the behaviour of the disease. 

My sincere thanks to my supervisor Dr I. NABNEY for his availability, guidance 

and patience. I would like to add thanks for having provided the library of matlab 

functions NETLAB. 

Last but not least, thanks to Miss V. BOND for her help all along the year in the 

administrative tasks which has permitted me to be concentrated on my work.



Contents 

Introduction 

1 Lupus 

1.1 What is lupus? 

1.2 The Database 

1.2.1 Overview 

1.2.2 The patients 

203 ta eS visltG eae ee CM ene ae a WN gee? CM, RF ee 

1.2.4 The clinical values 

1.3 The BILAG index 

2 Variable Selection 

2.1 Correlation 

B2ee Cross-COMe ALON) Now a! 3 Fhe sag Ue Ge Adee, ede sae en Le 

2,3 Principal Component Analysis)... . 6) 6. 6 on ne we ee 

2.4 ARD 

2.4.2) “The evidence framework .. 5... owe eee ws 

2.4.3 ARD 

3 Regression problem 

Ou CREP ORL erga < jalgers cutters Aa ass & rs, Gc AP ae ee en ae, ae 

3.2 | Preprocessing’ of thedatan. «2 fas a: sa cme ea Oe ee Sie te 

o
o
 
©
 
6



CONTENTS 

4) pihecesnl tale et ee 

4 Classification problem 

4:) Introduction... <. 25 7.4... 

4.2 Modeling the problem .... 

4.3 Implementation .... . ee 

4.3.1 Further preprocessing . 

4.3.2 The Neural networks . 

4:4 Resulis ott. ce ees 

4.4.1 Additional background 

4.4.2 Presentation of the results 

4.4.3 Comments... 1... .. 

Conclusion 

A Correlation matrices 

B Cross-correlation 

C Results of the PCA 

D 

3.3 Neural Networks Used ... . 

3.3.1 Introduction. ..... 

3.3.2 Multi-Layer Perceptron 

3.3.3 Generalized Linear Model 

3.3.4 Radial Basis Function 

Results of the classification problem 

Study of the influence of time on classification results 

4 

i)
 

ot
 

27 

31 

31 

33 

36 

36 

36 

37 

37 

38 

40 

40 

40 

41 

46 

47 

49 

51 

53 

57



List of Figures 

ey 

12 

all 

22 

3.1 

3.2 

3.3 

3.4 

3.6 

3.7 

3.8 

3.9 

3.10 

3.11 

Ail 

A.2 

A.3 

Histogram of the delays between two visits ................ 11 

Histogram of the delays less than 6 months 

Cross-correlation between the total BILAG score categorized and F103E 15 

Classification problem for the BILAG score... ...........0. 21 

Histogram of the percentage of missing values considering all the variables 23 

Histogram of missing values for a selection of variables ......... 23 

Representation of anenronys «as ae pence © fly eee al. + 25 

Iilustration of overhting iy nee: cis ssl oe wales. ae. Wee, 26 

MBP with 2 layersvof weights “<ay 5 2. ae ee ee 27 

Illustration of the Back-propagation formula ............... 30 

Graphical representation of ourGLM ................... 32 

A graphical representation of Radial Basis Functions .......... 32 

Result obtained for the Renal score with the MLP with 16 hidden neurons 34 

Result obtained for the Renal score with theGLM............ 35 

Result obtained for the Renal score with the RBF with 16 hidden neurons 35 

@lassification: General scores; .<. se. chee ss eon A 42 

Classification: Renaliscore: oh sich. ae tose RG ae, Mok weve nhes: s 43 

Results for the Haema score as a function of the time .......... 45 

Correlation matrix of allthe data); s. is ses ebay eee AT 

Correlation matrix of all the data for the pred set... ......... 48 

Correlation matrix of all the data for the diffset............. 48



LIST OF FIGURES 

At 

Col 

C.2 

D.1 

D.2 

D.3 

D.4 

ea 

E.2 

Correlation matrix of all the data for the evol set 2... 2.00000. 48 

PCASwithi allithesvartables.s 1. 5. pon in ee an des @ ee wo 51 

PCA with variables adviced by Dr GORDON .............. 52 

Classifications Haemascore. ws: ay i Fn oe Nn oi Ane Se SS 53 

Classification: Mucocutaneous score... ........0...00-00% 54 

Classification:Muscuskeletal score’... j. 4 24 4 ee Hes eee 55 

OlassificationsVasculitisiscoreie 6k sah as eis oes ces toe 56 

Study; of timelag: Renal system... 2. 0 ee me 57 

Study of time lap: Vaseulitisisystem . ... 5 0.0. 2). 3 ls a we 57



List of Tables 

EL 

152 

21 

22 

2.3 

Scoring system for the BILAG index ................... 12) 

Correspondences alphabetical/numerical values for the BILAG index . 13 

Regresssion problem: the results of the ARD process .......... 20 

Classification problem: first ARD process... .............% 20 

Classification problem: second ARD process ............... 20 

Fraction of visits with flare of the disease... .............. 37 

Table of the results of the best model for each system .......... 41 

Cumulative percentage of points... .. 0... ee eee 44



Introduction 

This thesis relies on a partnership between Dr. C. GORDON from the Department 

of Rheumatology of the Faculty of Medicine and Dentistry and the Neural Computation 

Research Group. Dr. GORDON works on a disease which is called Lupus. A lot of 

data has been collected throughout different hospitals from the Midlands on people 

who suffer from this disease and has been put together in a database. At each visit 

the patients undergo some clinical tests and answer questionnaires to better follow the 

evolution of the disease. My goal was to know if, using the database and some neural 

networks, it is possible to predict the global flares of the disease and moreover in which 

part of his body the patient is most likely to have complications. 

In this kind of medical problem, you can usually think of two different ways to 

treat it: either you adopt graphical models or you use neural networks. In this study, 

this is the second method which had been used for simple reasons: the first and most 

important one is that in graphical models, you need the expert. to work with you in 

order to build the model. This task is quite long and the doctor must give a lot of 

his/her time, which is not always possible. Moreover, the computations to run on the 

graphical models for learning are very time-consuming. For these two main reasons, 

neural networks have been used in this study. 

Keeping in mind that we wanted to predict the flares of the disease, I have worked 

on different problems which will be detailed in this thesis. The first one was to find out 

which variables were the most reliable to help us in the prognosis. I have tried several 

different, techniques, the first ones based on linear dependencies while the last one is a 

Bayesian technique called Automatic Relevance Determination.



LIST OF TABLES 

Then we tried to find out using some variables among the clinical tests, if it is 

possible to predict the score! of the general state of health of the patient. This problem 

is a regression problem because, here, we try to predict the exact score. We wanted, 

with the help of the neural networks, to give an approximation of this score at the next 

visit knowing only the results of some clinical assessments. 

Last but not least, we have tried to classify the visits into two groups: the ‘visits 

for which there will be a flare up of the disease at the next visit and the ones which 

will stay normal. This problem is quite different from the first one: we try to predict 

if the score will be greater than a threshold or not. The prediction does not inform us 

of the exact value of the score which can be slightly greater than the threshold or very 

high! It is a binary problem: we try to predict if there will or will not be a flare up in 

the disease. 

So at the start of this thesis, you will find first a quick introduction to lupus. After 

this, I have presented the results I have obtained working on the different problems 

quoted above: the selection of variables, regression and classification problems. 

‘Total BILAG score as will be later described



Chapter 1 

Lupus 

1.1 What is lupus? 

Lupus is an autoimmune disease in which the patient’s immune system creates 

antibodies which, instead of protecting the body from bacteria, viruses or other foreign 

matter, attack the person’s own body tissues. This causes symptomis of fatigue, joint 

pain, muscle aches, anaemia, general malaise, and possibly destruction of vital organs. 

Lupus is neither infectious nor contagious, the cause is not known though research 

has provided evidence implicating heredity, hormones, and infections. including viruses. 

The disease lies dormant in the body until some trigger from outside sets the process 

in motion. 

Lupus mainly attacks women during their child-bearing years but men and even 

children can be affected. In the U.K., 1 in 750 women suffer from lupus, with the ratio 

of women to men being 9:1. 

There is at: present no cure for lupus but careful monitoring of the disease and a 

treatment program with medication adjusted as appropriate enables the condition to 

be controlled, so most patients are able to live a normal life span. 

10



CHAPTER 1. LUPUS 

1.2 The Database 

1.2.1 Overview 

The database contain the data of more than 7000 visits concerning 430 patients. 

Each visit is represented by 78 variables. Some of these variables are categorical while 

others are continuous: 

e variables which characterise the patient, 

e variables which characterise the visit, 

e clinical values which are divided into (with their number into brackets): 

Points values (9), 

— SLICC values (14), 

SF36 values (12), 

— Fxxx values (35) [each x represents a number]. 

It is important to notice that not all these fields are filled for every visit. A particular 

test may not be carried out because it is expensive, inconvenient for the patient or it 

is only done for the people who have certain symptoms. 

1.2.2 The patients 

The patients are defined using a number of fields they have to fill in as to their 

date of birth, sex or race. As said above, the number of patients is 430. Most of them 

(90%) are women and they are born between 1914 and 1980; the majority are between 

30 and 40 years old. Finally, the most numreous race is coded 3 which corresponds 

to the Causcasian. So the “modal individual” is a women between 30 and 40 who is 

Caucasian. 

11



CHAPTER 1. LUPUS 

1.2.3 The visits 

The fields about the visits inform us of the location of the assessment tests, the 

  person who did the test, the date of the vi 

  

It 

  

ems to be interesting to speak 

at this point of the thesis about the frequency of these visits. As vou can see in the 

  

histogram (Figure 1.1) this delay can vary between 3 weeks and several years! The 

distribution of the delays lower than 6 months can be found in Figure 1.2. This variety 

in the range of delays has several different causes. The first reason is that when a 

patient comes to a consultation, the doctor usually asks him either to come back in 

three months if everything is fine or if the disease does not show any evolution, or in 

one month if he thinks there is a risk of flare or if the disease is active for a short time. 

Moreover, these patients do not always come on regular basis because of professional 

reasons, travelling, ete ... 

Histogram of the delays beween 2 consecutives visits 
1200 1 T   

4000] 
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400 

200     
months tyear 2year 

Figure 1.1: Histogram of the delays between two visits
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Histogram of the delays beween 2 consecutives visits 
900 7 T Tr aa   

    
month months months 4months. «= Smonths 6 months 

  

Figure 1.2: Histogram of the delays less than 6 months 

1.2.4 The clinical values 

These variables are the most interesting because they are the ones which are in 

  

direct relation with the disease. 

First of all, there are the Points values. They assess (thanks to a score which 

uses the scale 0, 1, 3, 9) the state of health of different parts of the body: general, 

mucocutaneous (related to the skin), neurological, nusculoskeletal, cardio-respiratory, 

vasculitis (related to the blood vessels), renal and haematological. Each system is 

evaluated thanks to a categorical score assessed by the BILAG index. The last variable 

of this group is the total BILAG score which represents the sum of all the individual 

BILAG systems. Throughout this thesis you will see that either the total BILAG score 

or the individual systems have been considered. Section 1.3 describes in details what 

the BILAG index is and how the doctor can give a score which represents the state of 

health of parts of the body. 

The SLICC index is a measure of disease damage acquired over time either due 

13



CHAPTER 1. LUPUS 

to disease activity, therapy, or other types of disease. This as 

  

sment is done every 

6 months because a clinical feature has to be present for at least 6 months in order 

to score as damage. As for the BILAG score, there are individual systenis which are 

evaluated separately. This variable is a categorical variable. 

After this, there are the SF36 (or Short Form 36) variables which represent a general 

health survey. In agreement with the doctor, this group of variables has not been 

studied. 

And finally the Fxxx variables. They are the clinical tests. Some of these variables 

are continuous, others categorical. They give us different information: 

e they are markers and/or “predictors” of the disease; 

e they identify particular types of clinical disease activity instead of the amount. of 

dis 

  

ase activity; 

© they keep a track of the drug treatment ( if there is a treatment, the change of 

dose...). 

1.3. The BILAG index 

For a better understanding of what’s going on, it seems to be important to explain 

clearly what the BILAG index is. First of all, BILAG means British Isles Lupus 

Assessment Group. It was developed in 1984 in United Kingdom according to the 

principle of the physician’s “intention to treat” on the premise that, while physicians 

might not agree about the significance of individual clinical features or laboratory tests, 

there was broad agreement about when to treat lupus. 

The index allocates separate alphabetic scores to each of eight organ-based systems 

(general, mucocutaneous, neurological, muscoskeletal, cardiorespiratory. vasculitis and 

thrombosis, renal, haematological). These scores and their meaning are described in the 

Table 1.1. To make this index reliable, all the doctors have to answer some questions for 

each system which will determine the score attributed. You will find more information 

about the BILAG index in [5]. 

14



CHAPTER. 1. LUPUS 

In our study, each alphabetical score has been replaced by a numerical value wich 

lies between 0 and 9. You can see the exact correspondence on the Table 1.2. These 

scores had been chosen by the doctor and are based on her judgement and experience: 

it can be admitted that three B’s (3) are equivalent to an A (9). and three C’s (1) to 

a B. This scale seems coherent so we have not modified it. 

  

Category | Meaning 
  

  

A Denotes disease thought to be sufficiently ac- 

tive to require disease-modifying treatment 

B Denotes disease which is less active than in 

“A”; mild reversible problems requiring only 

symptomatic therapy 
  

  

      
C Indicates stable mild disease 
D System previously affected but currently in- 

active 

‘ E Indicates system never involved 
  

Table 1.1: Scoring system for the BILAG index 

  

Alphabetical value| A] B|C]D/E 

Numerical value | 9 | 3]1/]01]0 
  

                

Table 1.2: Correspondences alphabetical/numerical values for the BILAG index 

Knowing this background, the problem appears to be clearer: is it possible to make 

some forecasts of the BILAG scores (total or individuals) knowing the values of the 

clinical tests? But, as you will see in the next chapter, there was a preliminary task to 

select the right variables to use for this prediction. 

15



Chapter 2 

Variable Selection 

A big issue in the study was that we had two problems in one: finding the variables 

which could help us to predict the general state of health of the patients means, without 

even being sure that it was possible to predict anything, selecting the riyht variables 

among all of them (35 in total). We could not use all the variables for two reasons: the 

first one is if we do so, the data sets are too small after the preprocessing to estimate 

parameters reliabily. The second reason is that we want to detect which tests are the 

most relevant so as to minimize the number of tests carried out on the blood samples. 

To find a good selection, we tried different techniques: we begun with computing 

the correlation between the inputs (clinical tests) and the outputs (total BILAG score). 

After this we tried Principal Component Analysis and finally we used a Bayesian tech- 

nique: Automatic Relevance Determination. 

2.1 Correlation 

It is usually a good thing to begin with computing the correlation niatrix between 

the inputs and the outputs because it measures the linear dependencies between vari- 

ables. But before going further, you have to keep in mind that even if there are no 

good correlations, a Neural Network may give good results! Indeed, their structure 

allows them to estimate non-linear function which means that even if there is no linear 

relation between the outputs and the inputs (measured by the correlation). tle estima- 

16



CHAPTER 2. VARIABLE SELECTION 

tion of the function may be very good! The correlation was computed because it could 

show some linear relations among the inputs or between the inputs and the outputs 

that would allow us to take account of only the relevant variables . The correlation 

matrix can be found in the Appendix A where you will find only very poor results i.e. 

there are only small correlations. 

2.2  Cross-correlation 

The goal of this part was to detect if there was a time lag between the assessment of 

the test variables and the response of the disease. A way to confirm such an hypothesis 

for 2 time series is to compute their cross-correlation coefficients. These coefficients 

can show when 2 time series are correlated with a lag. The coefficient of the cross- 

correlation at lag k between 2 time-series x and y which have N points are given in the 

Equation 2.1. You can notice that for the lag k=0. it corresponds to the correlation 

coefficient. 

k€ {0,1,..     

For this part of the study, we only considered the relation between the tests variables 

and the total BILAG score. Because the cross-correlation is applied on time series, we 

have picked up a sample of 7 interesting patients indicated by Dr GORDON. These 

patients are considered interesting because we can observe some relations between the 

tests and the corresponding BILAG scores. We have computed for every patients 

the cross-correlation between their total BILAG score and around ten variables. The 

results, such as the one shown in Figure 2.1, were not very interesting once more. 

As you can observe, the graphs, for all the patients and all the variables, are nearly 

constant at zero. It would have been interesting if we had found a common peak at a 

lag 7 considering one variable and all the individuals of the sample. You will find the 

other graphs in Appendix B. 

17
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FAO3E 

  

  

  

  

  

  

  

  

  

  24
1   BY 1. L 1 . 1 

3 2 A 0 1 2 
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3 

Figure 2.1: Cross-correlation between the total BILAG score categorized and F103E 

2.3 Principal Component Analysis 

The Principal Component Analysis is a simple technique to project the data linearly 

to a lower dimensional space by maximizing the variance of the observation along 

the new axes. This technique is based on the computation of the eigenvalues of the 

correlation matrix. Doing this, we hoped to see some variables which would be more 

relevant than the others thanks to the percentage of variance explained by the axes. 

We computed PCA on 2 data sets: the first one had all the clinical tests while the 

second one only contained the variables advised by Dr GORDON. As you can sce in 

the Appendix C. we did not obtain useful information with this process. That seems 

correct since this process relies on the correlation matrix! 

18



CHAPTER 2. VARIABLE SELECTION 

2.4 ARD 

2.4.1 Introduction 

Automatic relevance determination is a Bayesian technique based on the evidence 

framework introduced by MacKay in [9]. Each input is associated with a hyperparam- 

eter. A hyperparameter is a parameter which belongs to a higher level of inference: it 

controls the distribution of others parameters. In our case, when one of these hyper- 

parameters acquires a large value, the corresponding input can be discarded because 

it is considered as irrelevant. The problem is now to estimate these hyperparameters. 

2.4.2 The evidence framework 

Here we will have to introduce a lot of notions about neural networks. Some will 

be defined here while the others will be seen in Section 3.3. A complete definition of a 

neural network and all its attributes can be found in this part. Futhermore, as I said 

in the introduction, two different problems have been considered: the regression and 

the classification problems. Because they are different, we need to distinguish them to 

explain the way the hyperparameters are computed. 

Nevertheless, in the two cases, the goal is the same: we will analyse the probability 

of the data given the hyperparameters. Once this is done, we can find a way to compute 

the values of the hyperparameters which maximize this probability. 

Classification problem 

First, you have to know that the goal of neural networks is to learn the mapping 

which is defined by some pairs of input and target vectors D = (",t"). The output 

of the network for the given input :c” is noted y”. For a 2-class problem, the target 

vectors use 1 (for class C;) and 0 (for class C,). These represent the probabilities that 

the corresponding input pattern belongs to class C,. Given this, the probability of the 

19



CHAPTER 2. VARIABLE SELECTION 

data (likelihood) is written as: 

p(Diw) = T] pele) (22) 

pw) = [Ju")"a-v)" (2.3) 
n 

Furthermore, if we take negative logarithms 

Ep(D\|w) = - NE (t" Iny” + (1 — t") In(1 — y")) (2.4) 

we obtain: 

p(D|w) = exp(—Ep(D\w)) (2.5) 

Ep(DIw) is an error function: we can use it to assess the performance of our network. 

On the other hand, we assign a prior over the weights, i.e. we assume that the 

weights are generated from a particular distribution, of the form: 

plwla) = ae (26) 

where Zw = J exp(—eByy) is a normalization factor to have the property J p(wla)dw = 

1. By writing the error Ey (w) as 

E(w) = SF xe (2.7) 

where the w; are the weights of the networks, we can see that large weights are penal- 

ized. When they actually are large, the error Ey is large and the probability p(w|q) is 

small. Large weights must be penalized because they may lead to poor generalisation 

as they can be caused by the network overfitting! to the noise in the training data. 

Then, using Bayes’ rule, we can compute the posterior distribution of the weights: 

pw|D) = ewe (28) 
exp(—Ep(Dlw) ~ aBw(W)) p(w|D) Zu (2.9) 

where Zy is again a normalization coefficient defined by Zy = f{ exp(—Ep(D|w) — 

aBy(W)dw). Our goal is to maximize this probability i.e. find the weights of the 

‘cf Section 3.3.1 
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network which are the most. probable given the data. At this point, vou can notice 

that maximizing this probability is equivalent to minimizing the function: 

M(w) = aEy(w) + Ep(D\w) (2.10) 

This function is nothing but the global error of the network. The term aEy (w) is 

a weight decay term which penalized the large weights as seen above. ‘This way we 

regularize? the model by favouring small values of the weights. 

Now, concerning the probability of having the hyperparameter given the data, one 

can write it using Bayes’ rule: 

p(a|D) = ner) (2.11) 

Then, if p(a). the prior distribution of the hyperparameter a, is chosen to be very 

insensitive to the value @ and because the denominator does not depend on a, it 

can be noticed that the probability p(a|D) is maximum when the quantity p(Dla) is 

maximum. Thus, we call this latter probability the evidence. An other way to write it 

is: 

p(D\a) = [ o(2\w.a)p(uwlo)aw (2.12) 

then, 

J exp(—Ep(D\w) — aby (w))dw v(D\a) Z aS) 
orp(Dia) = Zul) (2.14) 

orp(Dja) = a (2.15) 

Z is again a normalizing constant. Finally, maximizing this probability is equivalent 

to maximizing the function Zy(w) 

‘Thanks to this last equality and after some computations, we now can find the best 

a. Let assume that M has a single minimum at reached at the point wyyp. Then if 

A is the He 

  

n matrix of M evaluated at warp, VV M|,,,,p, and if its eigenvalues are 

3 
   

21



CHAPTER 2. VARIABLE SELECTION 

described as (Aj + @)ie{i.w}, we have 7, the number of parameters determined by the 

data, which can be obtained by: 

  

Wy 
i = 2 

» Ata (2:16) 

And then the hyperparameter @ can be computed at each iteration of the training with 

the formula: 

ae = gt (2.17) 

Regression 

A major difference between the classification and the regression problems is in the 

choice of their error function. In the latter case, it is the following error which is 

considered: 

1 Ep(Dhw) = > 5(v" -#"? (2.18) 

The performance is so measured by the distance between the target vectors and the 

outputs of the network. Then, the outputs of the networks can be considered as the 

probability to have the target vector given its input value with the distribution: 

exp(—BE(t"|x”, w)) 
PE a9 wh, 8) = 7Z,(B) (2.19) 

where Z,,(3) = f exp(—ZB) is once more a normalization factor. E is the error for a 

single pattern and / is a new hyperparameter which represents the inverse variance of 

the gaussian noise. Considering the whole data set, we obtain: 

exp(—fEp(D\w)) 

  

  

P(D\w,a) = Zn(B) (2.20) 

In the same way that in the part above, we write: 

M(w) = aE,,(w) + BEp(D|w) (2.21) 

and then the hyperparameters can be computed thanks to the formulas: 

ony = a (2.22) 

N- 
or | — (2.23)
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Summary 

We can summarize the estimation of the hyperparameters in both cases with the 

steps: 

1, Initialize the a’s parameters using some priors knowledge or at random (respec- 

tively 3). 

2. Train the network to minimize the function M(w). 

3. Compute the hessian matrix. 

4. Re-estimate the a parameter using 2.22. (respectively 3). 

5. Return to 2. until a (respectively 3) converges. 

2.4.3 ARD 

The goal here is to see which inputs are the most relevant. ‘To determine this, we use 

Automatic Relevance Determination. As said in the introduction above, this process 

consists in associating a hyperparamcter a; for each input. The values of the a; are then 

computed during the training process using the evidence framework described above. 

At the end, if the value of any of the a;’s is large, we can discard the corresponding 

input. If it is large, it means that penalty associated to the corresponding input is 

large to prevent, the corresponding output from causing overfitting. 

So, I have first run the ARD process considering the variables which are assumed 

to be predictors of the disease by Dr GORDON. To these variables, I have added 3 

other variables, F108, F133 and F75 which I thought were irrelevant. The regression 

problem has first been considered. The results are in the Table 2.1 and show that 

all the variables, except F108, are relevant. So this result does not give us additional 

information and has been discarded. 

As regards the classification problem, the result is different. After the first process, 

six variables were pointed out as relevant whilst the others were uninteresting. Then, 

a second ARD process has been run based on the results of the first one. We have 
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CHAPTER 2. VARIABLE SELECTION 

finally obtained a selection of four variables: F112, F113, F119C and F141. It is quite 

reassuring that the added variables do not belong to this selection. Let describe what 

these variables represent: F112 is the C4 complement test which goes down with disease 

activity. F113 is the C3 complement degradation product, C3d, which was thought: by 

Dr Gordon to be an accurate predictor of the disease since it reflects consumption of 

complement due to disease activity and is independant of the rate of synthesis of this 

protein. F119C is the C-reactive protein (CRP). Finnaly, F141 is the change of steroid 

dose and follow the coding system: 1 for reduced, 2 for the same, 3 for increased and 

4 for start. This group of 4 variables is coherent in terms of following the disease: we 

have information on the evolution of the disease with the three first variables whilst the 

last one indicates the treatment received by the patients which influneces the evolution 

of the disease 

To assess the pertinence of this result, we have tried the classification problem 

using these four variables. As you will be able to judge after having sce Chapter 4, 

the results shown in Figure 2.2 are surprisingly good! The percentage of detection of 

future flares is between 90 and 100% while the false positive rate is around 10%. These 

are the best results obtained for the classification task. So a normal thing to do at 

this point would have been to run the ARD with each system to see which variables 

could be interesting for each classification task. Unfortunately, this'has not been done 

because of time constraints. It could constitute a good basis for future work 

  

F103E | F111 | F112 | F113 | F108 | F119C | F87 | F121 | F141 | F133 | F75 
0.00 | 0.00 | 0.00 | 0.00 | 0.37 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 
  

a                             

‘Table 2.1: Regresssion problem: the results of the ARD process 

  

F103E | F111 | F112 | F113 | F108 | F119C | F87 | F121 | F141 | F133 | F75 

a | 1800 133 35 55 | 341152 39 99 18 6 26 | 222 
  

                        

Table 2.2: Classification problem: first, ARD process 
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Figure 2.2: Results for the classification problem for the total BILAG score. 
‘The inputs variables are F112, F113, F119C and F141.
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F112 | F113 | F119C | F121 | F141 | F133 

a@ | 5.58 | 3.12 | 10.08 | 27.84] 4.65 | 99.79 
  

                  

Table 2.3: Classification problem: second ARD process 
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Chapter 3 

Regression problem 

3.1. The goal 

The problem mainly consisted in forecasting the value of the BILAG score (total 

or individual) of the next visit given a selection of clinical tests. This problem is a 

regression problem, because knowing some variables, we try to find the corresponding 

value which can be considered as the result of a function f applied on these first 

variables. The clinical tests used were chosen thanks to different criteria studied in the 

Chapter 2 so we will not speak about these choices here. 

Since the nature of the inputs are very different, some preprocessing has been done 

to make them have equal weight for the neural networks used. Moreover different data 

sets have been created to obtain the maximum of information from our data. Finally, 

we have used several types of networks to see which one could give the best results. 

3.2 Preprocessing of the data 

The first procedure performed on the data has always been the same: remove the 

visits where there was any missing value. Most of the time, this had not becn a problem 

in term of size of the data sets. Because the database was really big, we usually had 

enough data to work on (it depends on the variables we had selected aud on the type 

of data set used). But another issue arose here: by removing some visits, we lose 
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the trend of the disease, we remove some steps in the disease which can be important! 

Another point is that we had to remove 3 variables because they have too niany missing 

values: F103, F110, F88. The problem was that the variable F103 was believed to be 

a good predictor of the disease. But, because we had no time to work on the missing 

value problem, we have discarded it. A histogram of the percentage of missing values 

for every variable can be found in Figure 3.1. We have plotted these histograms for a 

sample of variables in Figure 3.2. 

Moreover, because an input with large values would have more weight for the neural 

network, all the data are standardized before any work is done. For cach input, we 

apply the following transformation (7 is the mean of the input , and o; its variance): 

  

Finally, we wanted neural networks to learn the standard response of the organism 

in response to the disease, so we have removed 2% of the extreme values (at the top 

and at the bottom) for every data sets. 

Some further preprocessing has been carried out on the data. This way, we obtained, 

for each selection of variables, 4 different data sets which are the Normal set. the Pred 

set, the Diff set and the Evol set. The Normal set has no further transformation while 

  

each of the others uses a different representation. 

The diff set 

We decided to create this data set to answer the question: ”Can a neural network 

learn what the difference is between two BILAG scores from two successive visits know- 

  

ing the differences in the blood tests for these two visits?”. Schematically here is what 

is done for the matrix of all the visits of a patient after having done the standardiza- 

tion: «:; is the input (one variable) and stands for a test undegone at time f; while y; is 

the output and stands for the corresponding BILAG score obtained at the same visit. 
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percentage of missing values considering al the variables 
  

    

  

Points suice 

Figure 3.1: Histogram of the percentage of missing values considering all the variables 

percentage of missing values for a selection of variables 
there are 7547 visits 

045 1 1 r 1 7 T   

4 

    
  

Fig. FIO3E FIN1) | F112 FS. FII9C F872) F141 

Figure 3.3 

  

Histogram of the percentage of missing values considering a selec- 
tion of variables.
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to Yo & — Xo n — Yo 

Tn, Yn In—Fn-1  Yu—Yn-1 

the pred set 

The goal of the study being to predict the flares of the disease, it was natural to 

build the following set: given the test variables at time t we try to predict the BILAG 

score at time f+ 1. 

% Yo x yw 

Ly Yn. Uy-1 Yn 

The evol set 

The last set is a combination of the 2 latest transformations. It just means that 

using the evolution in the blood tests (differences between 2 visits for a test), we try 

to predict the evolution (raise) of the BILAG score. 

Zo Yo Z — Xo Yy2- "1 

In Yn. Tn-1 — Tn-2 Yn-1 — Yn-2 

3.3. Neural Networks Used 

3.3.1 Introduction 

In this section, we will study the use of neural networks in the regression problem. 

All that is said below can be extended for the classification problem; if there are some 

differences it will be explained in the corresponding section. 
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A regression problem consists in finding a scalar variable y given other variables 

  

wv, In our context, y is called the output while wv is a or whose each dimension 

  

corresponds to a variable. In our model, y is considered as the output of a function f 

evaluated at the point 2 plus some noise added: 

y = f(x) + noise 

A neural network is a structure which is flexible and which should estimate the function 

f. Before seeing how we make it learn the function, we describe what a neural network 

is. 

First of all, as its name shows, it is a set of neurons. Each of them takes something 

as input and computes the output with its own activation function. The activation 

function allows the neurons to have different outputs as a function of the inputs. Some 

simple examples follow which are the linear (Equation 3.1) and the logistic (Equa- 

tion 3.2) activation functions. A graphical representation of a neuron is presented on 

the Figure 3.3. 

fia > a (3.1) 

i 
fia > es (3.2) 

yi 

neuron    
  

  

   activation function / 
Figure 3.3: Representation of a neuron 

x 

Because it is a network, all the neurons are connected to other neurons. The 

architecture of the network can vary: all the neurons can be connected together, it can 
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be feed-forward (the outputs are well-determined as a function of the inputs) or not 

have a particular structure. In the network, each connection possesses a weight. This 

weight represents the importance of the contribution of the neuron in the response 

(output): if the weight is high, it contributes a lot whereas if it is low, it participates 

less. 

The weights are adjusted to allow the network to learn the function [. This is 

possible because we train the network with some examples. The training process 

corresponds to an update of the weights to make the network better approximate the 

function. 

In fact, we take all the data (inputs and outputs) and divide them in three different 

sets. The first one is called the training set and is used during the training process 

described above. The second one is the validation set which permits us to detect when 

there is overfilting. We say there is overfitting when the network learns the noise. It just 

means that it fits quite well the training data but does not give a good approximation 

of the function f which generates the output data. Indeed, it is said that the network 

  

does not generalize: it gives good answer for new points which belonged to the trainind 

data set while for others it will give an answer far beyond the range of the training data. 

An illustration is in Figure 3.4. The validation set. is used to detect when the network 

begins to overfit the data. We compute the global crror on this set and controls that 

it goes down. When it starts increasing, we stop the training and prevent this way the 

network from overfitting. This technique is called the early stopping method. 

Finally, the last set is the test set. which is used to assess the performances of the 

  

network. With this last set, we obtain an unbiased estimate of the generalization. error. 

In a regression problem, the performances are assessed by the computation of an error. 

The error is a global error and it is measured with all the points of the test set. The 

error depends on the kind of problem treated. The one chosen in the regression problem
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Figure 3.4: Illustration of overfitting: the network fits the training points (circles) 
well, but the underlying data generator (dashed lines) poorly 

is the mean square error: 

A ast     chain aan (3.3) 

N: number of data in the test set 

dou, : number of dimensions of the output 

y! : i component of the output for the example number n 

t: i component of the target for the example number 1 

‘There exist many different kinds of neural network. In the following, we will explain 

briefly the one we have used, their parameters and training methods. 

3.3.2 Multi-Layer Perceptron 

As you have seen above, a neural network is a flexible structure which can approx- 

imate a given function. A Multi-Layer Perceptron (MLP) is a feed-forward network 

composed of a suce 

  

ssion of L layers of weights. To make it simpler, let’s take the case 

where L=2 (the case used during the study and illustrated in Figure 3.5). We have 

two layers of weights, so there are three levels of nodes. We call them the inputs, the 

hidden neurons and the outputs. The outputs are the final layer of nodes, while the 
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hidden nodes are all layers of neurons between the first layer (inputs) and the outputs. 

  

Figure 3.5: MLP with 2 layers of weights 

Multi-Layer Perceptrons can have different number of units for their inputs, hidden 

neurons and outputs. Usually, the number of inputs and outputs are well-determined 

by the problem studied. Regarding to the number of hidden neurons, it is different. 

It controls the complexity of the mapping: the more hidden units you have, the more 

degrees of freedom your network has. You can make this parameter vary to obtain 

different answers. Now, let’s define mathematically the functionality of the network. 

If (a, t"), are the pairs of input and target vectors represented by vectors of di- 

mension dj, and doz respectively. Let g and h denote the activation functions of the 

first and second layer of nodes, and if w,; is the weight associated at the connection 

‘th between the k"" neuron of the layer /+1 and the j“” neuron of the layer 1, we have, for 

a neuron of the hidden layer: 

din 
y= g, (s wha; + ot) (3.4) 

i=l 
din 

en y (3 oi (3.5) 
i=0 

In the second equation we have just incorporated the bias (wjo) into the sum thanks 

to an extra dimension for x, x, which takes the value 1. To have an interpretation of 
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this bias, let’s take a simpler case. If we consider the problem of finding the space of 

solutions of the equation: 

B\ae apoio y(x) = w* & + wo (3.6) 

Then, the space of solutions is an hyperplane of dimension d — 1 perpendicular to the 

vector w (if a) and ay are solutions, (71) = y(r2) = 0 and w? (%,—2,) = 0). Moreover 

the distance between this hyperplane and the origin is determined by: 

wo = (3.7) 

  

You can then observe that wo or the bias is representative of the distance between the 

space of solution and the origin (to convince yourself, you can try the case y = +). 

Moreover, to make the notation easier to read, we have always included the bias term 

in the following equations adding one dimension to the weights and to the input vector 

such that w becomes (wo, w) and « (1,2). We then obtain for the outputs of a MLP if 

hid_out is the number of hidden neurons connected to the outputs: 

  

hidout 

yu; = h ( Ss ws) (3.8) 

j=0 
hid_out din 

re iS wig (Spin +m)| (39) 
j=0 i=l 

You can then notice that it is not a linear model if g and h are not linear. 

To complete the definition of the structure of this kind of network, the activation 

functions are tanh for the hidden nodes and linear function for the outputs, The error 

chosen is the sum-of-squares error function described in Equation 3.3. 

Training 

Now, it is interesting to see how this kind of network can be trained. The first 

thing to notice is that the training process is just a way to adjust the weights in the 

network in order to minimize the error chosen. To do so, we first have to compute 

the derivatives of the error with respect to the weights and. when it is done, we can 
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use a nonlinear optimization algorithm to compute the new values of the weights. The 

back-propagation algorithm is just a means to compute the derivatives of the error 

function. 

Consider the error as the sum of all the errors obtained after the presentation of 

each pattern: 

E=) 5" (3.10) 

where m is the number of patterns in the training set. Furthermore, we assume that 

we have already computed the activation functions for all the hidden and the outputs 

units. If we write 

2) = g(a;) (3.11) 

a; = Yo wx (3.12) 
i 

where 2; is the output of a neuron. We can write, using the chain rule, 

aB" _ AB" da, 
    

  

  

  

  

= = 3.13 
Owiy Oa; Ow;; eee) 
OE" 

= 5% (3.14) 
Ow;; ay 

where the terms 6; = 0E"/da; depend on the node considered. 

First, if the neuron is an output, z; = y; and it is clear that: 

aE” 
ies 3.15 J da, (3.15) 

OE” Oz 
5 = =—~ 3.16 

4 Oz; Oa; {e16) 

OE” 
6; = =—9'(a;) (3.17) J ay; 9 

For a sum of squares error, we have: 

OE” 
=y—t 3.18 Oyj 2 | ( ) 

If the neuron considered is a hidden neuron: 

OE” 
—_ 3.1 3; 8a; (3.19) 

- OE" da, 
oa —- 3.20 

i= da, 0a; (320) 
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where /& represents the index of the units to which j sends a connection. It can be 

noticed that this latest equation is true because a variation in a; ouly implies variation 

for the ay. We then obtain the back-propagation formula: 

6; = g'(a;) Yo wd (3.21) 
k 

The reason of the name of this algorithm is now obvious: we can compute the 4; of a 

neuron only i! we have computed the ones of the following layer (sce Figure 3.6)! To 

be clear, this algorithm used for evaluating the derivatives of £” with respect to the 

weights can be summarized in 4 steps: 

1. Apply the input « and compute the activations of all the hidden and the outputs 

units. 

2. Evaluate the 6’s of the outputs. 

3. Back-propagate the 6. 

4. Compute the Error derivatives using Equation 3.14. 

  

Figure 3.6: Illustration of the Back-propagation formula 

Once this part is done, we only are half-way to the end of the training iteration: once 

the derivatives of the error have been computed, it remains to use them to adjust the 

values of the weights. 

A lot of different techniques can be used for this computation. As far I am con- 

cerned, T have used the one known as "scaled conjugate gradients”. This one is a 
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development of the "conjugate gradients” method. None of these algorithms will be 

detailed here but if you want further information, you can consult [2]. 

As you have seen in Section 3.3.1, we use a data set in order to control if there 

is overfitting or not. This is called the early stopping method. It simply consists in 

keeping a data set, the validation set, and computing the error on this set alter a part 

of the training has been performed. If this error is lower than the one obtained at the 

previous step, we carry on, otherwise we stop the training. Thanks to this method we 

avoid overfitting in a simple and low-cost manner. 

MLP with weight decay 

To complete the description of this kind of neural network, | have to speak about 

the MLP with weight decay. This is an extension of the MLP where we try to control 

the smoothness of the response of the network to improve its generalization. This can 

be done if we write the error of the network as the sum of 2 terms: the first one controls 

the training sect error while the second controls the smoothness of the response. If this 

second term is not introduced, we can obtain a response of the type of the one shown on 

Figure 3.4: the network has large weights, high curvature and so poor generalization. 

N 
ae 

S(w) = (y(2";w) — t")? + 3 (3.22) 

w
l
 

  

n=1 

with W total number of weight in the network. The parameter a is called hyperpa- 

rameters and have been kept constant once chosen. It controls the importance given 

to the regularity of the function we will obtain. These parameters can be re-evaluated 

during the training process to give a better response in a framework which had been 

called the evidence framework. You will find further details of this framework in the 

Section 2.4 or in [9]. 

In this study, every time we have worked with this kind of MLP, we have tried 

different values for the parameters and select the ones which give the lowest final error 

on the validation set. 
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3.3.3 Generalized Linear Model 

Because this is a regression problem and assuming we work with target represented 

in 1-dimension, we want to approximate a function / such that for all (.c",t"),,n € 

(Tess N}: 

Ree (3.23) 

with 

h:R">R (3.24) 

This function h can be modeled as the following sum: 

wo =o(§ Svs) (3.25) 
jal 

  

where g is the linear activation function. This definition can he extended easily to 

the case where the dimension of the output is greater than one. This inodel is the 

Generalized Linear Model. A graphical representation can be found in Figure 3.7. The 

interest of this model is to see if there was an improvement by using non-linear model 

such as the MLP or RBF. The activation function for the output is defined in the 

saine way thaa for the MLP. The training process used here is an algorithm called the 

Iterative Reweighted Least-Square (IRLS) which will not be described here hut which 

can be found in [12]. 

  

=. 
) 

Figure 3.7: Graphical representation of our GLM 
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3.3.4 Radial Basis Function 

At this point, we introduce a new kind of neural network where the response of a 

neuron is a function of the distance between the input vector and the output vector. 

One way to approximate the function h in Equation 3.23 is to write it as a weighted 

sum of basis functions: 

M 
h(a) = Y> wy; B;(x) (3.26) 

j=l 

where the ©; are defined as following: 

.(2) = 1 Tl (a 39 (2) = exp 4 5 = py)™Ej (0 — 14) (3.27) 

and 

Xj = cov(®;) (3.28) 

The parameters jz; and 0; are the center and the width (or variance) of the basis 

functions. They are different for each of them. Here, we can observe that it is the 

distance between the input vector and the center of the basis function which determines 

the amplitude of the response. You can see the corresponding graphical representation 

in Figure 3.8. 

vy Yow 

ouiputs 

bass functions 

inputs 

  

4 Nin 

Figure 3.8: A graphical representation of Radial Basis Functions 

Moreover, it is important to ensure that the number AJ of basis functions is lower 

than .V, the number of patterns. It is a parameter of the network and it plays the 
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saine role as the number of hidden nodes for a MLP: it controls the complexity of the 

respouse of the network. 

The training process for the Radial Basis Functions is composed of two steps. First 

the centers jz; and the width ©; are computed thanks to an iterative algorithm which 

is called the Expectation-Maximization (EM) algorithm. This part of the training is 

    an unsupervised technique because we do not use the target values. During the second 

step the parameters of the basis functions are kept constant while we compute the 

values of the weights. Assuming that the error function for the regression problem is: 

  

L 
B= 5) ule (3.29) 

n ok 

then if Equation 3.26 is written in the form 

ow? =T (3.30) 

we can find the weights which minimize this error with the equations: 

oow? = oT (3.31) 

so WT = OIT (3.32) 

with 

o! = (6")-'or (3.33) 

and is called pseudo-inverse of the matrix ®. The problem to find the optimum weights 

is then a linear problem and can be solved easily. 

3.4 The results 

To assess the results in a simple and quick way, the value of the BILAG score 

predicted by the network has been plotted against its true value. With a correct 

  behavior for the network we should observe all the points near the line y = 

Regarding the experiments, we have used the 4 data sets described above and 

trained a lot of different networks to see if they could learn what the value of the 
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BILAG index of the next visit will be. For each network where it was possible, we have 

used 4, 8, 16, 32 and 64 hidden neurons to see if there was some improvements in the 

results. 

Concerning the MLP with weight decay, we have used the values 10~°, 10-3, 1, 103 

and 10° for a. The network choosen as the best network is the oue with the lowest 

validation error, and the results are plotted on the test set.    

The plots in Figure 3.9, 3.10 and 3.11 show the results obtained when we tried to 

approximate the BILAG score at the next visit (pred set) using MLP with 16 hidden 

neurons, GLM and RBF with 16 hidden neurons. As you observe, the networks are 

far from giving us the good scores (points near the line y = xx). We observe 4 series of 

points parallel to the axis (Oy). This corresponds to the 4 different values a BILAG 

score can take (0, 1, 3 and 9) taking account of the fact. that these values lave been 

normalized. For these scores, the answers of the networks seem to be at random! 

Thus it appears that a new way to model the problem has to be found. At this 

moment we, logically, decided to look at a classification problem. Because tle outputs 

of the networks we are using are categorized, why not use these categories to work on 

a classification problem?
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Figure 3.9: Result obtained for the Renal score with the MLP with 16 hidden neurons 
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Figure 3.10: Result obtained for the Renal score with the GLM 
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Figure 3.11: Result obtained for the Renal score with the RBF with 16 hidden neurons 
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Classification problem 

4.1 Introduction 

The results of the regression problem being very poor, we worked on a different 

representation of the problem. Roughly, using the neural networks described in the 

Section 3.3, we decided to work on a classification problem. The goal was to classify 

the visits in two subgroups: those for which the next visit will be normal and those for 

which there is a flare of the disease at the next visit. 

4.2 Modeling the problem 

Remembering that the goal was to predict the flares up of the disease. we tried 

the classification problem. The BILAG scores can take 4 different values: 0, 1, 3 or 

9. These 4 scores could have been used to compose 4 classes but the results would 

not have been so accurate: a good way to model the problem is to consider only 2 

categories, the visits with a flare up at the next appointment with the doctor and the 

others. This way the model seems more reliable because while 2 different doctors could 

give a 0 and a 1 for the same observations, it less likely that their judgement differs 

when a 3 or a 9 is scored. So the score 3 appears naturally as a good limit above which 

we can consider there is flare up of the disease. 

Our first approach had been to consider that a score of 3 for an individual score 
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and of 10 for the total BILAG score could be considered as flares. After a while, on 

the advice of Dr GORDON, we decided that having 3 systems scores greater than 3 

should be a better way to represent a flare of the total BILAG score. Once more, 

considering that it is the doctors who give these scores, by doing this it was less likely 

that the subjectivity of the judgement would affect our results. At last. the goal of 

this classification problem was, given the clinical results at the visit v,, to predict the 

BILAG score at the visit v,,;. So we have only considered the pred set. During all 

this part, only one kind of problem has been treated: considering one, and only one, 

BILAG score, we try to separate the visits into 2 subgroups. 

4.3. Implementation 

4.3.1 Further preprocessing 

Because in the original data set, there are only a few points with a high score, we 

had to balance the training set. This just means that we had to select our targets such 

that there were as many points with a high score as with a low score. As you can see 

on the Table 4.1. the percentage of visits with a high value for the BILAG scores varies 

between 2% and 19%. 

  

[ General | Muco | Neuro | Muscu | Cardio | Vascu | Renal | Haema | Total 
  

                    
Fraction 0.05 0.13 0.02 0.17 0.03 0.04 OAL 0.19 0.09     

Table 4.1: Fraction of visits with flare of the disease 

So. to make the Neural Network have an answer different to “all the visits are 

normal”, we gave it in inputs as many “normal visits” as “visits with flare of the 

disease”. This had been done knowing that after we would have to counter-balance 

the probability’ obtained. To compute the right posterior probability we use Bayes? 

‘As explained in Section 4.3.2, the outputs of a neural network in a classification problem are 
probabilities 
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theorem: 

p(2|Cx)r(Cx) 
PS gta (4.1) 

where p(C;) is the prior probability and p(x) the normalization term. Then you have, 

if p(Cir") and p(Cfe"|x) are respectively the prior and the posterior probabilitics after 

having balanced the data set, 

2 i Cl" p)p(Cre") 
Creal |) P(CE d 

CET) = (CE* Ce) 
The prior p(CZ%") is just obtained by counting the number of flares in the original data 

(4.2)    

set. By applying this operation to the outputs of the network, we re-scale them to 

estimate the true posterior probability. Let’s see how it works on a simple numerical 

example: 

If we have 2 classes with the ratios 1/10 and 9/10 respectively for the classes C; 

and C2, We assume than our network gives us the probability p(C,|x). As described 

above, we take as many points from C\ as from C} for the training. Then. p(C{"") = 

1/2 = p(Cye"). Now, assuming that for an input 2" we obtain p(Ci**|x") = 0.8 . We 

then have to correct this probability using the formula 4.2. We begin with computing 

the quantities: 

pCi" a")o(Cre) 

  

got pograiny (43) 

0.80.1 
PaaS, (G4) 
p = 0.16 (4.5) 

and 

(Creat 

gs a ) (4.6) 

1—0.8) «0.9 ¢ = ta (4.7) 
q = 0.36 (4.8) 

then, to keep the property that p(Cf*|2") + p(Ce!|x") = 1, we can compute p(C, |x") 
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by: 

Pi Me 4 pCa") = pad (4.9) 

ee WONG 
WC") = T5503 (29) 
p(Cila") = 03 (4.11) 

So, the probability p(C,|a") has been rescaled from 0.8 to 0.3. This operation is a 

COrT 

  

tion which makes some points move from class C; to Cy because we have not 

taken account to the original distribution of the points. 

Moreover, we remove some points: if the lag between the date when the tests had 

been undergone and the date the next score has been assessed is greater than 6 months, 

we remove the point. We can reasonably assume that the prediction will not be very 

accurate in this case. 

4.3.2 The Neural networks 

While in the regression problem, the target variables were the values of the BILAG 

score, here it is the probabilities of class membership. Indeed, the outputs represent 

the posterior probability of class membership p(C;,|s:) where Cy is the Ath class and x 

the input vector. 

In a classification problem with 2 classes, there exist 2 ways for dealing with the 

data, On the first hand, you can consider a single output for the neuron which repre- 

sents the probability of belonging to the class C). On the other hand, the dimension 

of the output is 2, it is a 1-of-u matrix: each dimension of the output corresponds to 

the probability of the point belonging to the class C;. 

One output 

Here we consider a neural network where the output corresponds to the posterior 

probability p(Cl|#”). It just means that it represents the probability that the point 

presented to the network belong to the class C). The posterior probability of the class 

Cy is then given by the quantity p(C |x") = 1 — p(C,|a") = 1—y". If the target ¢” is 
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| when the vector belongs to class C; and 0 otherwise, we can write the probability of 

observing the target value as: 

pila") = (y")" (1 — yy (4.12) 

The the joint probability density of the whole data set is: 

Qt ie basen 8 Il T[e@2") (4.13) 

TI@7"a-wy" (4.14) 
n 

in. stat ye) I 
To obtain the best performances for our network, we want to maximize this function 

which is called the likelihood. By taking the negative logarithm of this fiction, this 

is equivalent to minimizing the following function: 

E=-) (iny" +(1-¢")In(l —y")) (4.15) 
” 

This is called the cross-entropy function and is the error chosen in the classification 

problem when the dimension of the output is 1. 

The activation function for the outputs is the logistic function. This has been 

chosen because it can be demonstrated under the assumption that the class-conditional 

densities (p(C;|x) can be approximated by a normal distribution that the output has 

the property of being a probability function. Its definition is: 

ib 

L—e=4* 
  y= (4.16) 

Multiple outputs 

In this case, we consider the 1-of-n matrix: each output represents the probability 

to belong to a class given the observation (class-conditional density). If tlie points are 

drawn independently, we then have: 

pe |a")= T]wn" (4.17) 
k=1 
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In the same manner as before, we obtain the likelihood and the error functions: 

  

Pvt ley eo) Te (4.18) 
n k=] 

B=-) tiny (4.19) 
k=l 

(4.20) 

As far as the activation function is concerned. we just use a generalization of the 

one used in one dimension. This one is called the softmax and is defined as following: 

y= (4.21) 

  

4.4 Results 

4.4.1 Additional background 

Now, because it was only a 2 class problem, and because the results were rather the 

samme in both cases, we ouly show the result in the case of one output. This output. is 

then the probability p(C;|x). The value p(C2|2) is obtained by computing 1 — p(C;|x). 

Moreover, we have introduced a quantity which represents the doubt in our decision: 

we have used a threshold of rejection. This threshold is the limit for the probability 

p(C\a) or p(C2\x) below which we will not classify the point because we are not sure 

enough of its class. In this case, the decision is let to the expert point of view that is 

to say the doctor. 

Finally, we should have taken account of the risk of misclassification. Indeed, until 

now, we have made no distinction in mis-classifying an individual in the group of those 

who will have a flare up and the opposite. Because these 2 diagnoses do not have the 

same consequences in a human and a financial point of view, a cost mutrix can be 

introduced. This cost matrix can only be defined hy the experts and represents the 

penalties associated to the different misclassifications. If this matrix is R, we have Rj; 

which represents the cost of misclassifying a pattern of class C; in class C;. It comes 

into play when a decision is nade. This information is very difficult to quantify and is 

left, for future work.
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4.4.2 Presentation of the results 

Finnaly, to have an overview of the results, 4 graphs are plotted for cach BILAG 

score. These graphs give a quick idea of the performances of the networks. On each of 

then, you will find 4 curves which correspond to the 4 kinds of networks used: MLP, 

RBF, GLM and MLP with weight decay (square points). Moreover, these networks 

have been trained with different numbers of hidden neurons (when it was possible, 

ie. not for GLM). So, for each graph, the horizontal axis represents the number of 

hidden neurons of the network. The numbers tried are 4, 8, 16, 32 and 64. Concerning 

the variables selected as inputs, they are the ones adviced by Dr GORDON: F103E, 

F111,F112,F113,F119C,F87,F121,F141. 

Now let see what these graphs represent: 

e First, on the right bottom, you can find the percentage of rejected values. Because 

of the threshold of rejection, not all the points are classified. 

e Secondly, on the left bottom, the false positive rate is presented. This rate is the 

percentage of people classified as “will have a flare up” while they actually will 

not. This quantity is quite interesting since for example, we can be able to detect 

all the flares but if at the time there is a false positive rate of 80%. the results 

are useless. It is equivalent to saying that everybody will have a flare up. 

e Now, the most interesting graphs. On the top right side, is shown the percentage 

of correct classification for the flares considering only the classified visits (true 

positive rate). 

e Last, on the top left side, you will find the percentage of detection of flares 

considering all the visits. This had to be plotted because of the threshold of 

rejection. We can have a percentage of 100% on the last graph because only a 

few flares had a probability high enough to be classified, while a lot of points were 

rejected, Then, with this graph, we will be able to detect this kind of situation 

So. to summarize, a way to read the results is the following: you first look at the 

bottom right graph to see if a lot of points are classified or not. Then. among the 
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classified points, you can look if the false positive rate is high. Last, you look at the 

percentages of detection in the top graphs. 

Figure 4.1 and Figure 4.2 show the results obtained for the General and the Renal 

scores. The others can be found in the Appendix D. You will observe that. 2 scores are 

missing: the cardiorespiratory and the neurological scores. This is due to the way we 

build our training and test sets. As a matter of fact, we take at random 50 individuals. 

The data collected on these 50 individuals will not be included in the training set, 

but kept for the test set. Doing this, this happens sometimes that only a few flares 

actually are in the test set. When it happens, the results can not be interpreted since 

the percentages of detection are based on too few values: 5 for these two scores. The 

Table 4.2 presents a summary of the results: it shows (in order) the true positive rate, 

the true positive rate regarding all the points, the false positive rate and lastly the 

percentage of points which are rejected. The figures are the ones obtained with the 

best model for each system. 

  

  

TP | “EP total FP Rejected 
General | 0.86 0.60 0.33 0.28 
Renal 0.73 0.73 0.39 0.00 

Haema | 0.82 0.73 0.37 0.20 

Muco | 0.44 0.28 0.43 0.46 

Muscu | 0.62 0.35 0.54 0.36 

Vascu 0.54 0.43 0.45 0.16               

‘Table 4.2: Table of the results of the best model for each system 

4.4.3 Comments 

Role played by the threshold 

First, we have to speak here about the role played by the threshold. For all the 

results, we have made this threshold take the values 0.5, 0.6 up to 1 by adding 0.1 

at each time. Then the percentage of rejected points varies between 0 and 1. The 

threshold influences it in the following manner. When the threshold is 0.5. none of the 

points are rejected because we have either P(C|x) > 0.5 or p(Cy|x) = 1—p(C) |x) > 0.5. 
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Figure 4.1: General score. There are 156 and 394 visits for the train and the 
test set among which 78 and 10 are high scores. The best model is 
MLP with 16 neurons 
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% of good prediction of high scores 
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Figure 4.2: Renal score. There are 638 and 394 visits for the train and the 
test set among which 319 and 60 are high scores. The best model 
is MLP with 4 neurons (lower false positive rate for nearly same 

% of right prediction considering only the classified visits 
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Now if the threshold 7 lies in the interval (0.5.1), we have to consider 3 cases (they 

are exclusive) 

1. p(C;|a) > 7 then the visit belongs to the class of the people who will have a flare. 

2. p(C2|x) > 7 then we do not predict any flare. 

3. p(C\|a) < 7 and p(Cy|a:) < 7 then we do not take any decision. The point is left 

to the expert judgement. 

Moreover, this threshold influences in a opposite way the false positive and the false 

negative rates. To illustrate it, let’s take a simple example. Let imagine that we have 

2 kinds of points pl and p2 which are between 0 and 10. If we have the following 

partition (cuniulative percentage): 

{0;2.5[ | [2.5;5[ | (5;7.5[ | [7.5;10[ 
  

pl 10 15 35 100 
  

          p2 80 85 90 100 
  

Table 4.3: Cumulative percentage of points 

Then if the threshold is 7, = 2.5, 10% of the pl points will be classified in p2 (false 

negative rate) while 20% of the p2 points will be classified as p1 points (false positive 

rate). Now if 7 = 7.5 we will a false negative rate of 35% and a false positive rate 

of 10%. So what it gains in one statistic, is lost in the other. Our threshold acts in 

exactly the same way. 

So, by making this threshold vary, we obtain different performances. For cach score 

we have tried to find a compromise between obtaining the lowest false positive rate 

and rejected percentage on one hand, and, on the other hand, the best percentage of 

detection. The results presented are the ones we assumed to be the hest; the scores do 

not have the same threshold. 

on
 
a
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The graphs 

Now let us speak about the results themselves: we can say that they are rather 

interesting. Roughly, we can detect between 60% and 80% of the classified visits which 

do have a flare. On the other side, we usually have a false positive rate which is between 

30% and 40%. This means that 1 patient over 3 will be declared to be at the beginning 

of a flare of the disease while it is not true! This will imply some further tests on these 

patients although they do not need them. You then have to define some priority to 

give a help in the decision making. A way to do so is to fill in the loss matrix and it 

would be very interesting to look at this in the future. 

The time dimension 

Last, but not least, there is one more thing to consider in this problem: the time 

dimension. As a matter of fact, we do not take account of the time in our prediction 

problem. The inputs are the values of some variables taken at time ¢, the outputs 

are a BILAG score taken a time t + 1 but we do not know how many days. weeks or 

months have elapsed between these two visits. To have something more coherent, we 

have removed the points where the time spent between the date when the tests have 

been done and the date of the score was greater than 6 months. In order to see the 

influence of time on the performances of the network, we have plotted some graphs. 

These graphs show the true positive rate as a function of the time. At each point is 

associated a muinber in brackets which is the false positive rate. These curves have 

been plotted for three different systems, Haema., Renal and Vascu., with two kinds 

of neural networks which are the MLP and the RBF. The number of hidden neurons 

selected is 16 for both of them. 

In Figure 4.3, the first thing we can notice is that for the visits which have a time 

lag between % and 4 months there is a big fall in the performances of the network. 

This trend is also true for the other curves you can find in Appendix E. Morcover, the 

performances are slightly growing with the time between 0 and 3 months but this is 

not true for the other curves.
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Figure 4.3: Results for the Haema score as a function of the time 

Another common point beween all these curves to notice is that the false positive 

rate goes down with the time when the lag is between 0 and 3 months. This just means 

that if the visits are too close we have more chances to declare a patient without any 

problem as a patient who is likely to have complications. It is in agreement with the 

usual interval of time adviced by the doctors between the visits and confirms it as a 

  

good lag. It would have been then a good idea to apply our classification problem using 

only the points where the lag is 3 months. Unfortunately, we could not do everything 

we wanted in the time allocated to this thesis!



Conclusion 

As you have seen throughout this thesis, we did not immediately obtain some 

pertinent results. Some issues arose because of the data themselves with the important 

number of variables or missing values by instance, while, at the same time, we did not 

immediately find a good way to model the problem. 

The results obtained for regression problem and the selection of variables with linear 

dependencies were not very satisfying. This could probably be explained by the nature 

and the complexity of the problem itself: we tried to model the evolution of a human 

body. Furthermore these poor results in looking for some linear dependencies may be a 

reason of the difficulties to obtain systematic results on Lupus in the previous studies. 

Nevertheless, it has finally been possible to obtain a good percentage of detection 

of the future flares of the disease. Considering only the classified visits, we can predict 

between 60 and 90 percent of future high scores for six over eight of the BILAG s 

  

and between 90 and 100 percents of the total number of increases of the total BILAG 

score! This last being obtained thanks to the conjunction of two non-linear process: 

ARD and Neural Networks. 

To conclude, I will say that the classication problem seemed to be a good approach 

for our prediction problem and could be the start of some further work. The most 

interesting thing would be to look at the ARD. It can be thought that it is a key 

process in order to determine the relevance of the variables, and so of the blood tests, 

  

in terms of prediction of a BILAG score. It pointed out F119C as a relevant variable 

in the determination of the total BILAG score whereas this variable was usually not 

thought as a yood predictor of the disease. Finnaly. the introduction of a loss matrix  
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will help a lot in decision making for this problem. 
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Appendix A 

Correlation matrices 

These correlation matrices have been computed by taking account to all the vari- 

ables except the ones with too many missing values (103, F109, F110, F88). Moreover, 

after the preprocessing (we had to remove the visits where any value was missing), one 

variable (F108) had a null variance. Because of this we can not compute the correlation 

between this variable and the others so we have discarded it. 

There are 4 result matrices, each of them corresponding to a data set described in 

section 3.2. The target variable (total BILAG score) is the last variable. The results 

are clearly nos interesting, since the magnitude of the correlation is too small. 

  

Figure A.1: Correlation matrix of all the data 
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Figure A.2: Correlation matrix of all the data for the pred set     

  
Figure A.4: Correlation matrix of all the data for the evol set 
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Cross-correlation 
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Appendix C 

Results of the PCA 
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Figure C.l: PCA with all variables. In right figure, we see that 15 variables are 

needed to explain 80% of the variance. As soon as it is noticed, we can stop the 

interpretation since the number of variables is too much great! The left graph could 

show some correlations between the variables but they are noticeable only if their 

value is greatcr than 0.7. Because this not the case, we can not give extract additional 

information from this figure. 
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103E | F111 | F112 | F113 | P119C | F87 | F121 | F141 | Points BILAG 
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Figure C.2: PCA with variables adviced by Dr GORDON. For the same reasons 

than before and because there is no noticeable knee in the cumulative percentage of 

variance explained, the results of this PCA are not interesting 
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Appendix D 

Results of the classification problem 

You will find for every systems the model which I think is the best. The model 

chosen is the best because it has a good percentage a prediction (figures at the top) 

and low false positive rate and percentage of rejected value. 
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Figure D.1: Haema score. There are 858 and 394 visits for the train and the 
te among which 429 and 75 are high scores. The best model 
is the MLP 32 hidden neurons. 
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Figure D.2: Mucocutaneous score. There are 540 and 394 visits for the train 
and the test set among which 270 and 40 are high scores. The best 
is the MLP with weight decay with 32 hidden neurons. 
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Figure D.4: Musculoskeletal score. There are 614 and 394 
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3 for the train 
set among which 307 and 60 are high scores. The best 

model is the MLP with weight decay with 16 hidden neurons. 
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% of good prediction of high scores % of right prediction considering only the classified visits 
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Figure D.4: Vasculitis score. There are 148 and 394 visits for the train and the 
test set among which 74 and 16 are high scores. The best model is 
the MLP with weight decay with 32 hidden neurons. 
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Appendix E 

Study of the influence of time on 

classification results 

I   

         
Figure E.1: Results for the Renal score in function of the time. None of the 

network reject any point. 238 and 250 points over 394 are classilied 
in their good class for MLP and RBF. 

  

First, the graphs in Figure E.1 and in Figure E.2 do not have the same number of 

points because some of the points could have been rejected. So, there is no point for 

some lags. Moreover, we can observe in these two figures a clecrease of the performances 

when the lag is 3 months. Finally, the false positive rate decreases with the time when 

the lay is between 0 and 3 months.
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Figure E.2: Results for the Vasculitis score in function of the time. MLP rejects 
101 and right classifies 171 over a total of 394 points. RBF rejects 
72 points and inakes 172 good prediction for the same number of 
points. 

72



Bibliography 

(1) 

2] 

[6] 

9] 

W.G. Baxt. Use of an artificial neural network for data analysis in clinical 

decission-making: The diagnosis of acute coronary occlusion. Neural Computation, 

2(480-489), 1990. 

C. M. Bishop. Neural Networks for Pattern Recognition. Oxford University Press, 

1995. 

C Chatfield. The analysis of times series, chapter 8. Chapmann aid Hall Ltd, 

1980. 

K. Gurney. An introduction to neural networks. UCL Press, 1997. 

E.M. Hay, P.A. Bacon, C. Gordon, D.A. Isenberg, P. Maddison. M.L. Snaith, 

D.P.M. Symmons, N. Vinner, and A. Zoma. The bilag index: a reliable and valid 

instrument for measuring clinical disease activity in systemic lupus erythematosus. 

Quarterly Journal of Medicine, 86:447-458, 1993. 

D. Lowe and A.R. Webb. Exploiting prior knowledge in network optimization: 

an illustration for medical prognosis. Network: Computation in Neural Systems, 

1(3):299-323, 1990. 

D.J.C. MacKay. Bayesian interpolation. Neural Computation, 4(3):415-447, 1992. 

D.J.C MacKay. The evidence framework applied to classification networks. Neural 

Computation, 4:720-736, 1992. 

D.J.C. MacKay. A practical bayesian framework for backpropagation networks. 

N   

eural Computation, 4(3):448-472, 1992. 

73



BIBLIOGRAPHY 

[10] D.J.C. MacKay. Maximum Entropy and Bayesian Methods. Santa Barbara 1993, 

chapter Bayesian Non-Linear Modeling for the Prediction Competition. Dordezcht: 

Kluwer, 1995. 

{11] S. Magnus and T.J. Sejnowski. A mixture model system for medical and machine 

  

diagnosis. Advances in Neural Information Processing Systems. 7, 1995. 

[12] P. McCullagh and J.A. Nelder. Generalized Linear Model. Chapman & Hall. 2nd 

eclition, 1989. 

[13] M.D. Richard and R.P. Lippmann. Neural networks classifiers estimate bayesian 

a posteriori probabilities. Neural Computations, 3(4):461, 1991.


