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Thesis Summary 

This thesis introduces a new approach in survival data analysis i.e., Cox regression 
using neural networks. It is implemented on a data set of 575 patients which was 
provided by the CRC trials at Birmingham University. 

In the first part of the project, the standard Cox regression method was imple- 
mented. The objective of Cox regression is to model the probability functions of the 
patients based on a fundamental hypothesis which is described in the thesis. First the 
method was implemented on synthetic data in order to check its performance. Then it 
was implemented on the real data, and the results were compared with the ones found 
by the statisticians at the CRC trials. 

In the second part the new approach was introduced: Cox regression using neural 
networks. It was again applied first to synthetic data, and then to the real data. The 
results obtained were compared with the ones found by the implementation of standard 
Cox method. 

In the third and last part, the cumulative baseline hazard function was estimated. 
After applying the method to synthetic data, as before, it was implemented on the real 
data, and the cumulative hazard function and survival probability were also estimated. 
The implementation was done using both approaches and the results were compared. 
The conlcusions derived from the results obtained are discussed at the end of the thesis. 

Keywords: Cox regression, Cox regression using neural networks, Prognostic 
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Chapter 1 

Introduction 

The introduction includes background information about the problem, a description of 

the data set used, and the way that the data was pre-processed for the purpose of this 

project. 

1.1 The problem 

1.1.1 Overview of the problem 

The project deals with survival data analysis. In survival data analysis, interest centres 

on a group or groups of individuals (or objects) for each of whom (or which) there is a 

specific time event, normally called failure, which occurs after a period of time called 

the failure time. Failure can occur at most once for any individual of the group (Cox 

& Oakes [1]). 

Examples of failure times include the lifetimes of machine components in industrial 

reliability, the durations of strikes or periods of unemployment in economics, the times 

taken by subjects to complete specified tasks in psychological experimentation and the 

survival times of patients in clinical trials, which is the topic under consideration in 

this project. 

We are concerned with the problem that clinicians have to face when treating 

patients with cerebral metastases. These patients have had a primary tumour elsewhere 

in the body and then cancer metastases in the brain. 

The aim of the project is to help statisticians to predict the survival times of 

10



CHAPTER 1. INTRODUCTION 

the patients, given their characteristics. This will be achieved by introducing neural 

networks in addition to the standard methods used up to now. All the results are 

scientifically confirmed and tested. 

1.1.2 Background of the problem 

There has been a lot of study of patients that develop cerebral metastases by clinicians. 

The location of metastases within the brain has been analysed. The parietal lobe 

is the most common site that the tumour appears. Multiple sites follow: frontal lobe, 

temporal lobe, occipital lobe and cerebellum, in that order. Other locations with 

occasional metastases are the mid-brain, hypothalamus and ventricles. There are also 

some cases where the location of the brain tumour cannot be specified (J, West et al 

(11). 
Lung cancer is the most frequent primary site, comprising 50% or more in the 

case of most series, breast is the second most common primary side with a reported 

frequency that varies greatly (10 - 45%), depending on the population under study 

(Lawrence et. al [12]). 

The diagnosis and management of patients with cerebral metastases and the tech- 

niques for irradiation have slowly evolved over the past four decades. Major factors in 

this evolution include improved brain imaging through the development of CT scan- 

ning and MRI, and improved knowledge of optimal dose fraction schedules determined 

largely by randomised trials conducted by the Radiation Therapy Oncology Group 

(RTOG) (Lawrence et al [12]). 

A study that took place in Texas showed that cancer metastases in the brain are 

usually multi-focal, even though diagnostic tests may not demonstrate multiplicity. It 

has been stated that approximately 80% of cases actually involve multiple metastases 

(Borgelt et. all [10]). Of course, the form of the brain tumour is not the only factor 

that influences the survival time of the patient. There are several other factors that 

have a big contribution. As the statisticians at the CRC trials Unit in Birmingham 

University have stated, the actual form of the tumour is not a very important factor. 

A patient who has multiple tumours spread around in the brain may be better off than 

a patient who has one solitary tumour. What is important in this case is the position 
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CHAPTER 1. INTRODUCTION 

of the solitary or the multiple tumours and how that position affects the condition of 

the patient. 

Possible factors influencing the survival time of the patients are: their age, their sex, 

the treatment they are currently receiving, the extent of their condition, and the form 

and the position of the primary tumour. The last factor is quite important because 

there are various kinds of primary tumours that can be treated depending on their 

position. For example a tumour appearing on the breast is easier to handle than one 

that appears on the liver. 

As clinicians state, determining the best treatment for the patients with cerebral 

metastases is very difficult to achieve. Part of the difficulty arises because metastatic 

cancer of the brain is not a single entity but rather a spectrum of diseases with differing 

natural histories relating to site and aggressiveness of the primary tumour. Also, as 

stated before, the clinical course of brain metastases depends greatly on the general 

condition of the patient, the results of the treatment of the primary tumour, compli- 

cations and the presence or absence of other distant metastases. 

The major concern of clinicians is to find an effective treatment for each patient. 

Usually the patients suffering from cerebral metastases now undergo radiotherapy. The 

importance of radiotherapy in the treatment of metastatic brain cancer was first re- 

ported by Chao et al in 1954 at the Thomas Jefferson University in Philadelphia, and 

later by Chu and Hilaris in 1961 at the same university (Borgelt et al [10]). They used 

conventional fractionation regimes to a total whole-brain dose of 3000 to 4000 rad in 3 

to 4 weeks: they noted good palliation of symptoms in 60 to 80% of their patients, and 

a mean survival of 6.6 to 8.2 months in those who responded. Since then, others have 

confirmed the value of palliative whole-brain irradiation in patients with metastases. 

Hindo et al at the Hahnemann Medical College in Philadelphia and Shehata et al at 

the Columbia Presbyterian Medical Centre in New York showed that higher increment 

doses given in fewer fractions may be as effective as standard fractionation schemes. 

A number of factors may be used to predict the degree of response to the irradiation, 

or its duration, or both: their roles remain unclear. These factors include: primary 

site and extent of metastases, status of the primary site, neurologic status, general 

functional status and whether corticosteroids are used. 

12



CHAPTER 1. INTRODUCTION 

Radiotherapy is the method of treatment used in the trial that we are concerned 

with in this project. It is described in detail in the next section. 

1.2. Description of the data set 

A data set of 553 patients was provided by the CRC trials unit at Birmingham Uni- 

versity. All the patients included in the set have developed cerebral metastases. From 

those 553 patients we excluded the ineligible patients, i.e. those who are still alive, as 

well as those for whom the data is not complete. The patients who are still alive are 

only seven and that is why they were excluded from the data set. So, finally, we have 

a data set of 475 patients. We know eight characteristics of these patients, which are 

presented in table 1.1. These eight characteristics are called prognostic factors in the 

survival data analysis literature. 

  

  

  

  

  

  

  

  

  

VARIABLES VALUES 

Treatment 2 fractions 
10 fractions 

Sex Male 
Female 

Age number of years 

Primary Tumour bronchus - small cell 
bronchus - other 

breast 
other 

not known 

Extent Solitary 
Multiple 

Dexamethasone number of milligrams 

WHO index WHO =0 
WHO =1 
WHO =2 

WHO = 3 

WHO =4 

Survival Times number of days       
  

Table 1.1: Prognostic Factors 
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CHAPTER 1. INTRODUCTION 

An explanation of the prognostic factors is given below: 

e Treatment: All the patients in this trial had undergone radiotherapy. As men- 

tioned earlier, radiotherapy is the most effective treatment used up to now for 

treating patients with cerebral metastases. The patients of this trial were split 

into two groups. The split was well balanced according to the patients charac- 

teristics. The first group, which consisted of 270 patients was, receiving 12 Gy 

(Grays) of radiation in two fractions on consecutive days. The other group with 

263 patients was taking 30 Gy in ten daily doses. Treatment was given using 

parallel opposed fields to the whole brain with the total dose calculated at the 

mid-plane. 

The object of the study carried out was to determine whether a short fraction- 

ation schedule was as effective as a more conventional, longer regimen in the 

management of patients with symptomatic cerebral metastases. 

Clinical assessment of neurological symptoms and performance status was carried 

out 4, 8 and 12 weeks after commencing radiotherapy and at 3-monthly inter- 

vals thereafter until death. The response was assessed at 4 weeks, 12 weeks and 

3-months thereafter. The response was defined as an improvement in at least 

one of the neurological symptoms without deterioration of any of the other neu- 

rological symptoms or signs, or the development of new a neurological deficit. 

This response had to last for a minimum of 4 weeks. The control of previously 

uncontrolled fits was also accepted as evidence of an objective response. 

e Sex: A binary variable stating whether the patient is a male or a female. 

e Age: This variable indicates the age of the patient when entering the trial and 

is measured in years. It is calculated as: Date of Entry (DOE) - Date of Birth 

(DOB). 

e Primary Tumour: This is the location in the body where the first tumour 

appeared. There are five cases as shown in table 1.1. It is important to know 

the position of the primary tumour because it greatly affects the condition of the 

patient after the cerebral metastases. 
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CHAPTER 1. INTRODUCTION 

e Extent: This variable denotes the condition of the brain tumour. It is binary 

and defines whether the metastases are ”solitary” or ”multiple”. Solitary implies 

that there is only one tumour in the brain, and multiple means that there are 

several tumours spread around in the brain. The condition of the patient cannot 

be assesed immediately from this variable because, as stated earlier, one patient 

that has multiple metastatic tumours in the brain may be better off than another 

who has one tumour. 

¢ Dexamethasone: This variable indicates the number of milligrammes of dex- 

amethasone taken by each patient. It ranges from 1-16 mg and, if a patient 

requires increasing amounts of dexamethasone, this implies that his/her condi- 

tion is getting worse. 

e WHO index: Stands for World Health Organisation index. It ranges from 0 to 

4, 

0. Able to carry out any normal activity without restriction. 

1. Restricted in physically strenuous activity, but ambulatory and able to carry 

out light work. 

2. Ambulatory and capable of self-care, but unable to carry out any work; up 

and about more than 50% of working hours. 

3. Capable only of limited self-care; confined to bed or chair more than 50% of 

working hours. 

4. Completely disabled; cannot carry out any self-care; totally confined to bed 

or chair. 

In this trial, there are no patients with WHO index 4. It ranges only from 0 to 

3. 

e Survival Time: This variable is the most important one in the trial. It states 

the survival time of each patient. It is measured in days and is calculated as: 

Date of Death (DDeath) - DOE. 

There were several entry criteria for a patient to be accepted in this trial (The 

Royal College of Radiologists [6]). They included the confirmation of a primary site or, 

where no obvious primary was apparent, historical confirmation of cerebral metastases; 

15



CHAPTER 1. INTRODUCTION 

the presence of symptoms directly referable to cerebral involvement; a stable dose of 

dexamethasone over the week prior to randomisation; and the provision of informed 

consent. All patients had to be over 16 years of age, with WHO performance status 

0-3 and a neurological status smaller than 4 according to a modified Medical Research 

Council scale. Patients who had received cytotoxic chemotherapy in the previous 4 

weeks were excluded. 

1.3. Manipulation of the data set 

1.3.1 The log-rank test 

In order to be able to perform the necessary tests, the statisticians at the CRC trials 

units have converted the values of the prognostic factors to binary values. They were 

interested in which of the patients were considered to be in a good group and which in 

a bad group, according to their condition. In this way, the treatment for each group 

would be determined. Therefore, a binary data set would be helpful in detecting the 

good and the bad values of the prognostic factors, and subsequently to separate the 

patients into good and bad groups. 

  

  

  

  

Age 
150 

: 3 100 2 
© 
2 50] 
2 

3 107) pe So, 90 "40 01 veg 70m, 80, 60. 
Years 

Survival Times 
400, 

2 200 
a 
3 200) 

g 100 2 ol 
9 
0 200 400 600 800 1000 1200 

        
  

Days 

Figure 1.1: Histograms for age and survival times of the patients 

For continuous variables like age and survival times, the median was taken as the 

boundary because in both cases the distribution is skewed, as shown in the histograms 
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CHAPTER 1. INTRODUCTION 

of figure 1.1. As seen from the histograms, there are many patients who are in older 

ages 55-68 years old, and also many patients who have lower survival times. 

They carried out a log-rank test for the variable that include categories, as discussed 

by Elisa T. Lee in her book (Lee [4]). They found the expected and observed values 

for each category. The category that had the lowest value was considered good and so 

it was given the smallest transformed value. For the purposes of this research, it was 

assigned the value 0. 

A brief explanation of the log-rank test is as follows: As stated earlier, this test 

was carried out only for categorical variables that have more than two categories. The 

assumption made was that all categories come from the same distribution, so that at 

each failure time the number of deaths in a given category should be proportional to 

the size of that category. 

The log-rank statistic can be shown to be equal to the sum of the observed failures 

minus the conditional expected failures computed at each failure time, or simply the 

difference between the observed and expected failures in one of the groups (category). 

Let O; be the observed numbers and E; be the expected numbers of death in i categories 

for a specific variable. Since this statistical test is similar to the chi-square test then 

the value is given by: 

2 
x= ae" (1.1) 

The category with the smallest X? value is considered to be the best and, in this 

case, is given the smallest transformed value, i.e., zero. 

To compute E; we arrange all the observations in ascending order and compute 

the number of expected deaths at each time and sum them. The number of expected 

deaths is obtained by multiplying the observed deaths at the time by the proportion 

of patients exposed to risk in the treatment group. Let d, be the number of deaths at 

time t and nj; be the number of patients still exposed to risk of dying at time up to t 

for each category. Then, the expected number of deaths for each category is given by 

Nit 

Dinit 
Then, the total number of expected deaths in the category is: 

  e=d (1.2) 
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CHAPTER 1. 

Usually this method, the expectation table is constructed and values of X? values are 

calculated. 

The actual observed and expected values are listed in table 1.2. As one can see from 

this table, the category with a lower obs/exp value also has a lower number of deaths. 

That is why this category is considered to be the best.Table 1.2 was derived by the 

statisticians in the CRC trials and they have used 533 eligible patients, that is, they 

included those patients that have missing data. In our case we do not use the patients 

  

  

  

  

  

  

  

  

INTRODUCTION 

Factor Total | Deaths |Obs/Exp 

Treatment 
2 fractions 270 269 1.09 
10 fractions 263 257 0.92 

Sex 
Male 269 267 eld 
Female 264 259 0.91 

Age in years 
<=60 266 262 0.90 
> 60 267 264 dal3, 

Primary Tumour 
Bronchus small cell 103 103 132 
Bromchus other 207 204 1.04 

Breast 101 98 0.79 
(Other + Not known 122: 121 1.00 

Extent 
Solitary 212 208 0.88 
Multiple 297 295 TPep 

[Dexamethasone 
<= 8 mg daily 183 179 0.84 
> 8 mg daily 325 323 112 

WHO index 
0 46 45 0.88 
1 149 145 0.80 
2 156 155 0.99 
3 1S 150 1.40           

Table 1.2: Obs/Exp values found at the CRC trials unit 

E,=e 
t 
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CHAPTER 1. INTRODUCTION 

with missing data so that we have, as stated before, 475 patients to consider. Even 

then the categories determined to be good are found to be the same for the patients 

under consideration. 

1.3.2 The pre-processed data set 

The new values that we have set for each prognostic factor and category appear in 

table 1.3. As mentioned before, the best category takes the value 0 and the rest 1. 

Appendix A includes the original survival curves of the data by taking into account 

one prognostic factor at a time. Therefore, in order to verify the results of the log-rank 

test presented in this section, it is better to inspect the curves in appendix A. This 

binary data is only used, however, in the calculations of chapter 3, so that the results 

can be compared with the ones found by the statisticians at the CRC trials unit. To 

have more accurate and reliable results in the implementation of the new method we 

use the data set that includes the real values of the prognostic factors. 
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VARIABLES VALUES NEW VALUE 
  

Treatment 2 fractions 
10 fractions 
  

Sex Male 
Female r

o
l
o
-
 

  

Age Below median 

Aove median H
o
 

  

Primary Tumour breast 

bronchus - small cell 

bronchus - other 

other 

not known 
  

Extent Solitary 

Multiple H
o
l
e
 
H
e
 

n
o
 

  

Dexamethasone Below 8mg 

Above 8mg “
o
O
 

  

WHO index     WHO =0 

WHO = 1 

WHO =2 

WHO =3   i
)
 

  

Table 1.3: New values of the variables 
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Chapter 2 

Cox Regression 

In this chapter the Cox regression method is described. This is the method that is 

mostly used by statisticians for survival data analysis. 

2.1 Description of the method 

2.1.1 Overview of standard Cox regression method 

The basic problem that statisticians are concerned with is the prediction of the survival 

times of the patients, and the goal is to model the distribution of the survival times 

within a given population, conditional on the prognostic factors. The statistical ap- 

proaches used for this problem are generally based on Cox regression. The statisticians 

at the CRC trials units in Birmingham University that provided us with the data set 

also use Cox regression. 

Cox regression is a semi-parametric technique which combines a log-linear model 

with the key assumption of proportional hazards (Bishop et al [7]). Let us assume a 

very basic example to start with. We have a model whose included particles have the 

following characteristics: 

they are identical, which means they have exactly the same behaviour; and 

e they remain unchanged over time until they decay. 

Therefore, the probability that a given particle of this model will have a survival time 

T which is greater than t is given by the well known exponential function: 
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CHAPTER 2. COX REGRESSION 

P(T >t) = exp(—ht) (2.1) 

where h is called the hazard rate and is a characteristic of the particular type of the 

particle. 

For the case considered in this project, things are different. The particles in the 

model concerned are the patients suffering from cerebral metastases. So neither of 

the characteristics described above are valid. Each patient’s survival time depends 

on his/her characteristics and one patient does not have the same values of prognostic 

factors as the other. So the hazard rate will now depend on both the prognostic factors, 

a vector z, and a function of time ¢ and it will be denoted as h(z, t) which is the hazard 

function. It depends on ¢ as well, because h is not constant over time (as it was at the 

simple example assumed in the beginning of this chapter). The probability of dying 

from cancer is not constant over time but, in fact, increases with time. 

The formal definition of the hazard rate h(z, t) is that it represents the probability 

per unit time of a patient surviving until time t and then dying before ¢ + dt. The 

survival time T of the patient satisfies t << T < t+ dt, and the hazard function is given 

by: 

A) ies P(T <t+6|T >t) 
6t->0 ot 

A ee es) 
5 Ss P(T > t)6ét ; ee) 

P(t<T <t+6t) 
= #2, PTs Oat 23) 

we then obtain 

__ G-P(T > est 
Met) = "Sars poe 

=! in PT >?) (2.4) 7 ap : 
Intergrating h between 0 and t, we obtain 

t 

P(T > t) = exp(- it A(x, t")dt’) (2.5) 
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If we want to justify the expression of the simple example model stated in the 

beginning, we make the assumption that h(z, t) is constant. So the integral ff h(x, t’)dt’ 

equals ht and expression 2.1 is satisfied. 

We can introduce here an important simplifying assumption due to Cox, called 

proportional hazards. This assumes that the hazard function can be factored into a 

product of a function of the prognostic factors and a function of time in the form 

A(x, t) = ho(t)d(x) (2.6) 

where ho(t) is called the baseline hazard rate and y(x) denotes the hazard rate of the 

patient. This factorisation assumes that there is a common hazard rate curve which is 

scaled by the prognostic factors. 

Formally, the baseline hazard ho(t) is the hazard at time t of an individual whose 

zx’s, prognostic factors, are all zero. Usually, ho(t) is of little interest in itself, since it 

may depend on the prognostic factors. Thus, the Cox model assumes that the hazards 

of any two patients are proportional over time, ie., the ratio between the hazards is 

the same at any time t. This does not mean, however, that the hazard will not change 

over time. However, the Cox model assumes that changes in the hazard of any patient 

over time will always be proportional to changes in the hazard of any other patient 

and to changes in the underlying hazard over time. In other words, it is assumed here 

that there is a common hazard rate curve which is scaled by the prognostic factors. 

To verify the previous assumption, let us consider a statistical test mentioned by 

Lee [4], where a check is performed to determine whether the assumption is valid for 

each new application. If we rewrite the survival time function using the proportional 

hazards hypothesis, we have, (P(x > t) is denoted as S(t, )) 

Stra) era f h(a,t")dt’) (2.7) 

exp( [holly H(2)at') = exp(—v(2) [* hole’) (28) 
since ~ does not depend on ?’, and since exp(ab) = exp(a)’, we have 

S(t, x) = So(t)”©) (2.9) 

23



CHAPTER 2. COX REGRESSION 

where 

So(t) = exp(— d. ho(t!)dt!) (2.10) 

Expression 2.9 is important, because it is the central idea behind Cox analysis. 

As ho(t) is a positive function, So(t) has values between 0 and 1. Because S(t,z) = 

So(t)* is a probability function, values of y lie between 0 and +00. So the constraint 

w(a) > 0 is always satisfied. We can also note here that since the survival has an 

exponential relation with ~, this implies that the closer 7 is to zero the better the 

survival is (since S(t,) + 1 (equation 2.10)). 

Determing wy is the main goal of Cox regression; the clinician can then classify the 

patients into categories. He/she takes into account the patients ~ value and determines 

the patients profile, so that he/she can make better decisions. Also with the ~ index 

(which can be viewed as a hazard index or a prognostic index) we can determine the 

importance of the prognostic factors. 

2.1.2 The Function wy 

In order to calculate the hazard function it is necessary to know 7}. The nature of 

is determined a priori. An assumption made is that the function (x) depends, apart 

from the prognostic factors z, also on a vector 3 that characterises the prognostic 

factors. Therefore, we can write 

v(z) I exp(Gix;) = exp(Gie1 + Bor2 +... + Bixi), (2.11) 
jel 

or 

(zi) = exp(Gjx5), (2.12) 

where @ is a vector that has one element characterising each prognostic factor. 

Whatever the value of x, its parameters, i.e., the # vector, is optimised so that the 

model accurately describes the data. The method suggested by Cox is the maximum 

likelihood procedure. 
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2.2 Maximum Likelihood 

The likelihood function to optimise the parameters of the Cox regression model is 

quite different from the type of likelihood function encountered when designing an 

error function of a multi-layer perceptron in a classification or in a regression problem 

(Bishop [3]). In Cox regression the likelihood function includes the probability that 

the parameters describe accurately a distribution of points drawn from a series of 

probability distributions, namely, the hazard functions. These probability distributions 

are of a similar form, but distinct. It is not from a combination of distributions that 

one can draw points. The points come from different distributions. 

The definition of the likelihood function in survival data analysis is actually the 

probability that all the patients in the set die. 

The likelihood functions varies based on the assumptions made for the data. In 

this project we make two assumptions concerning the data: 

e there is continuity of time, i.e., that two or more patients do not die on the same 

day, and 

there is no missing data, i.e., no information is missing from the data set. Actually 

we took care of this problem simply by not including those patients with missing 

information in the data set. 

In order to derive the likelihood, we need to consider the fact that the baseline 

hazard function is completely unknown, and we want to infer the @ vector. We therefore 

suppose we have a training data set D = {r,,t,} consisting of pairs of vectors z, of 

prognostic factors together with survival times t,, where n = 1,...,N. In order to 

determine a suitable form for the likelihood function it is convenient to re-express 

the data in an equivalent form as {tp,7,Jn} where {t,} denotes the survival times 

and {I,} represents labels which denote the identity of the patient who died at the 

corresponding survival time {7,}. The joint probability of survival times and labels, 

given the prognostic factors and the parameters {, is 

P({tn In} | {en}, 8) = P({In} {7m tn}, B)P({™m}l {en}, 8) (2.13) 

To determine the vector @ we assume that P({t,}|{zn}, 3) is independent of (. 
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If we suppose that the examples are ordered so that 7, < T2 < .... < Tw, then we 

can use the rules of probability to give 

N 

PUL} tn, en}, 8) = [] Pash, In = 1,4tns Sn} 8) (2.14) 
n=1 

2.2.1 The Risk set 

For each failure time a risk set is defined. The risk set, denoted as ¥;, is the set of 

patients m for which t,, > tn. In other words, it is the set of patients alive at the time 

that patient n dies. 

Let 7 < 12 < ... < T, be the ordered survival times of n patients and let f; denote 

the patient that dies at time 7;. Then, the definition of the risk set is 

Ry) = {i ti <3}, (2.15) 

and in addition, 

fr=i iff t= 7 R75) 

. Suppose we have the survival times of four patients as shown in figure 2.1. 

isl 

1=2 

Peg ON Be 18 
Deed nS ie) (Peck ieee 

1 1 ; 

ene 

tl t2 t3 t4 

  

  

Figure 2.1: Example of survival times of four patients 

The risk sets are: 

oR = {1,2,3,4} 

oR = {1,2,4} 
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e R; = {1,2} 

oe Ri = {2} 

This example shows clearly that the risk set 9; at time t; is the set of patients who 

are still alive at the moment another patient dies. 

2.2.2. Maximum Likelihood derivation 

Since the risk set is now defined we can derive the likelihood function. The probability 

of death of patient n in the time interval t < T < t¢ + dt is given by A(zp,t)dt. So, 

given that one of the patients in the risk set dies in this time interval, the probability 

that it is patient n is given by 

h( ap, t) dt _ (tn) 

Ler, (Lm; t)dt  Lmer, Y(%m) 

where equation 2.6 was used. From equations 2.14 and 2.16 we obtain the likelihood 

(2.16) 

function which is of the form 

eee) ae 
ed ee a) 

(2.17) 

So the final likelihood function is the product over all the patients in the set, of 

the hazard function of the patient n, divided by the sum of the hazard functions of 

the patients who belong in the risk set ,. Here we see that the proportional hazards 

assumption has simplified the formalism since the baseline hazard function ho(t) does 

not enter the likelihood. In this manner, the likelihood function is obtained. It is 

a product rather than a probability, because terms that determine which individuals 

should be censored from among the survivors of each risk set have been omitted. 

The log-likelihood is given by the expression 

N 

L=S1[(6.2;) In YD exp(G.24)] (2.18) 
i=l KER: 

Since in standard Cox regression we need to obtain the 3 vector, we need to compute 

first the gradient of the log-likelihood with respect to GB. 
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Liew: (He-Te) 2 
ce -¥s oe Deen, ve ee 

Knowing the log-likelihood expression and its gradient according to 3, we can obtain 

the @ vector. We can use a standard algorithm such as scaled conjugate gradient to 

find the optimise 6. This implementation is described in the next chapter. 

2.2.3. Problem with the likelihood function 

The problem faced in reality is that, in the case of the CRC data the first assumption 

made to derive the likelihood function does not hold for the cases of all patients. If 

time was measured with infinite precision, time could be considered as continuous. 

However, in survival data analysis, time is usually measured in days. Therefore it is 

common that more than one patients die on the same day. 

The simplest computation method derived to include this possibility in the likeli- 

hood expression is given by Cox [1]: 

ee (Ta 4s) 

Pls, OYE ve 
where d is the number of patients who die on the same day. 

As mentioned by Cox and Oakes, this expression is valid only if d is a small number 

compared to the number of individuals in the set. This approximation is used by most 

statistical packages for survival data analysis, and is also used by BMDP which is the 

statistical package used by the statisticians in the CRC trials in Birmingham University 

[16]. 
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Chapter 3 

Implementation of Standard Cox 

Regression 

The standard Cox method is first tested on synthetic data, in order to be able to 

determine whether the implementation is correct, and then it was applied to the real 

data. These procedures are described in this chapter. 

3.1 Implementation of toy problem 1 

The objective of this implementation is to obtain the @ vector using standard Cox 

regression. However, to be able to determine if our implementation is successful, we 

applied the method first on synthetic data, and we called it toy problem 1. 

The methodology was as follows: 

e First, we created the synthetic data using a random number generator and we 

chose it to be of d dimensions and length N. This indicates that the input data 

includes N patients, and that we know d prognostic factors for each of them. The 

synthetic data is derived from a normal distribution with mean 0 and variance 1. 

e Then, we chose 6 to be a vector Gini, again by using a random number generator, 

from a normal distribution. 

e In order to generate the survival times for the synthetic data, ~ is computed. 

A vector r having length N is generated again from a normal distribution. The 
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survival times were then generated by the relation —log(r)/. Once they are 

generated they are sorted, and the data set is sorted according to the survival 

times. 

e We computed the log-likelihood and its gradient according to 3, using equations 

2.18 and 2.19 respectively. 

e The @ vector was initialised again to some random vector, by using a random 

number generator for normal distribution. 

e In order to obtain G we need to optimise it, using a standard algorithm, and we 

used scaled conjugate gradient. We optimised the vector 3, and it was named 

Byin- 

e We compared the optimised Gin with Gini. If those two vectors are similar then 

it means that our implementation of the standard Cox regression model has been 

successful. 

The actual program for which we tested the method considers 8 to be of three 

dimensions, and also considers four cases of inputs, in this case, the number of input 

points. It implements the method using 10, 100, 1000, and 10000 points. 

Table 3.1 presents the results obtained by the implementation of the standard Cox 

regression on the toy problem. This implementation was performed five times keeping 

the same fjniz. As observed from the table, the values of 3,;, in all the 3 dimensions of 

the variable get closer and closer to Sjnie as the number of points increases. This was 

observed for all five implementations. 

A comparison of the two vectors is shown graphically in figure 3.1. The relation 

presented here is 

Byin — Binit- 

If Byin is close to Binit, the above relation should be close to zero. As seen clearly 

from the figure, as the number of points increases, it gets closer to zero in all the 3 

dimensions, so this verifies that the implementation is correct. 

The next step is to apply standard Cox regression on the real data. This imple- 

mentation is described in the next section. 
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Dim. 1 Dim. 2 Dim. 3 # Points 

Beta_init | - 0.6927 1.3227 - 0.3623 
- 1.1256 1.3654 - 0.9736 

Cui Mee Ose0s 0.1968 - 0.3980 a 
2 - 1.0261 1.5369 - 0.6697 

-1.3318 1.6567 = 0.6912 
- 1.6446 2.2870 - 1.4668 
- 0.8903 1.3668 - 0.4687 
- 0.9182 1.3908 = 0.1853 

Petar 05004 1.2414 = 0.4904 i 
- 0.7916 1.2443 - 0.4733 
- 0.6695 1.1474 - 0.3040 
- 0.6442 1.2660 - 0.3464 
= 0.6285 1.2548 - 0.3610 

peat ne a ee O0es 1.2323 - 0.3425 nt 
- 0.7252 1.2813 - 0.3460 
- 0.7386 1.2998 = 0.3755 
- 0.6937 1.3100 = 0.3489 
- 0.7068 1.3277 = 0.3683 

ei eon 1.3318 - 0.3628 a 
- 0.6994 1.3445 - 0.3616 
- 0.7165 1.3255 - 0.3541               

Table 3.1: The values of @sin compared with Gini done for 5 cases, for the number of 

input points ranging 10 - 10000 

3.2 Implementation of standard Cox model on the 

real data 

We applied standard Cox regression on the real data in order to obtain the coefficients of 

the prognostic factors, which is the 8 vector. By knowing the value of their coefficients 

we can tell their order of importance. 

The step-up procedure done by the statisticians at the CRC trials units has selected 

5 prognostic variables. So that 

b = Bir + Bowe + Psx3 + Bara + Soars. 
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Results of Toy Problem 1 
  

  

ee / 4 
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=5t 7 a       
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Figure 3.1: Graphical representation of the relation yin — init 

These 5 prognostic factors are: 

Treatment 

e Age 

Primary Tumour 

Dexamethasone 

e WHO index 

They are considered to be the most important prognostic factors, and the most essential 

ones for the analysis. 
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The coefficients obtained are given in the first half of table 3.2, and the prognostic 

factors are presented in order of importance according to their coefficients absolute 

value. 

  

  

  

  

OUR RESULTS STATISTICIANS RESULTS 

Coefficient Value Coefficient Value 

WHO 0.380175 WHO 013990 

es 0.246429 oe 0.3248 
  

Dexamethasone | 0.212985 | Dexamethasone 0.2827 
  

Treatment - 0.106477 Treatment - 0.2052 
  

Age 0.065085 Age 0.1985             

Table 3.2: Coefficients of the prognostic factors using standard Cox model as found by 

our implementation and as found in the CRC trials units 

The log-likelihood was also calculated using the data for the 475 patients available 

and is: 

L = 2443.6 

These results that we found by implementing standard Cox regression are compa- 

rable with the ones that the statisticians at the CRC trials units obtained. They have 

used a statistical package called BMDP and their results are presented in the second 

half of table 3.2. Also, the log-likelihood value that they obtained is very similar to 

the one found using our implementation: 

L = 2432.69 

As one can see from the comparison of the two halves in table 3.2, the order of 

importance of the prognostic factors is the same, as is the sign of the values of their co- 

efficients. The values themselves have a small difference, but this is because a different 

software was used in the two cases. 
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In conclusion, we can say that the implementation of the standard Cox regression 

is successful since the results obtained are comparable with the ones found in the CRC 

trials unit in Birmingham University. 
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Chapter 4 

Cox Regression Using Neural 

Networks 

In this chapter a new approach is introduced, which is Cox regression using neural 

networks. It was first tested on synthetic data and then on the real data. In the last 

section of the chapter, the results found from the two approaches are discussed. 

4.1 Overview of Cox regression using neural net- 

works 

The purpose of the new approach, Cox regression using neural networks, is to check the 

performance of the model when a neural network is introduced. The real advantage of 

introducing a neural network lies in its capability to model a large variety of functions 

(Bishop et al [7]). 

In order to derive a more flexible model, a simple procedure is to introduce quadratic 

terms of the form z;x; or z?, where z is the vector of the prognostic factors. 

wp =exp(Gxr+ » wijti2;) (4.1) 
ij 

We can then consider a generalisation of the Cox formalism in which we choose 

¥(z) = exp(y(z; wv) 
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Maximum likelihood is used to determine the values of the parameters in the net- 

work. 

We suppose that our training data is the same as described in section 2.2. Follow- 

ing the same procedure as we did to derive the likelihood function for standard Cox 

regression, we derive the likelihood function for this model which is given by 

He Ces) 
= lyre eed (9) 

It can also be written as 

om Il exp(y(ijw)) 
jai User, Exp(y(x;; w)) 

To be able to work with the likelihood expression we take the log-likelihood which 

(44) 

ik Smo (zi)) —In }) ¥(z;)] (4.5) 
GER: 

Combining equations 4.2 and 4.5 we get 

N 
InL= Dly(eaw) ) = In © exp(y(2;; w))] (4.6) 

JER: 

We can determine the parameters w of the neural network by maximising In£ with 

respect to w using a standard algorithm such as scaled conjugate gradient. To achieve 

this we need to find the gradient of the log-likelihood with respect to w. In practice 

though, we consider the negative logarithm of the likelihood and by minimising it with 

respect to w, we obtain the optimised parameters of the network. 

In order to derive the gradient of the likelihood with respect to the parameters of 

the network w, we apply the chain rule. So we have the expression: 

wo 08 so 
= =D 36 Ow 

We can easily calculate the partial derivative - the likelihood with respect to (2) 

  (4.7) 

from the log-likelihood expression 4.5 

OL Nea 1 

Hila) We) ~ Sie, Hn on 
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We can also find the partial derivative of ~ with respect to w from equation 4.2 

Prt) yey. 
Ow’ 

Finally, by substituting ae 4.8 and 4.9 into the chain rule equation 4.7, the 

  (4.9) 

gradient of the log-likelihood with respect to w is calculated as 

ae lel) 
Bw ~ el Fe, va) Bu ae 

which can also be written as 

26 Soy _ evolve) _ Ou. a 
cs Sew exp(y(z;;w)) Ow 

4.2 Implementation of toy problem 2 

As before, we want to test the performance of the present method. We therefore apply 

it to synthetic data first, in order to test its performance. 

The procedure is similar to toy problem 1, which was described in section 3.1: 

e We generate the synthetic data using a random number generator, but this time 

having one dimension. As before, the synthetic data generated are normally 

distributed. 

e We choose yinit to be equal to some function of the prognostic factors z, f(z). 

e We compute the likelihood and its gradient in terms of w, so that we can deter- 

mine the parameters of the network. 

¢ We then initialise the parameters of the network w by constructing the two layer 

feed-forward neural network. 

e The weights are then optimised by using a standard technique such as scaled 

conjugate gradient. 

e The output of the network ys, is then calculated. 
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In order for our implementation to be successful, we expect the output of the neural 

network yin to be close to the initial function stated, namely yinit- 

Several functions have been tested, starting from the most simple ones, such as 

sin z, to complicated functions, such as sin 2? + cos z*. 

4.2.1 Implementation of simple functions 

To start with, we used a simple function 

Y= sine 

As one can see from figure 4.1, in this very simple example, the prediction of the 

network gets closer to the original values one as the number of points increases. When 

using 10 points, presented in the first graph, the prediction is far from accurate; it 

is actually not even close to the original function. With 100 points, as shown in the 

second graph, the prediction is again quite bad, but certainly much better than in the 

case of 10 input points. When having 1000 points, which is the third case, we see that 

the prediction of the network is quite good as the shape of the two graphs is the same, 

but the predicted one is a bit lower than the original. For the case of 10000 input 

points which is the fourth case, it is clearly observed that the prediction of the neural 

network is most accurate. Here, it seems that the network was able to determine the 

tight weights to use, so as to predict the expected function. 

Taking into account figure 4.2, we can see some improvements regarding the per- 

formance of the network. That is because the results are when using the same initial 

function (same initial hazard function) sin x but using 3 hidden neurons. We also have 

four cases of the number of input points 10, 100, 1000 and 10000. The important point 

here is that comparing the two figures, figure 4.1 and figure 4.2, one sees clearly that 

the network has better performance not only when the number of inputs increase, but 

also when the number of hidden neurons increase as well. This justifies the fact that 

even when having 100 input points when using the 3 hidden neurons, the network can 

identify the initial hazard function quite accurately. Of course, in the case of 1000 

input points the prediction is much better and at 10000 input points we have the most 

accurate prediction of all the cases. In the last case the network can identify the hazard 
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Figure 4.1: Function sinz using 1 hidden neuron and input points ranging from 10- 
10000. The first figure has 10 input points, the second 100, third 1000 and fourth 
10000 
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Figure 4.2: Function sin z using 3 hidden neurons. The first figure has 10 input points, 
the second 100, third 1000 and fourth 10000 
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function most accurately. In the case of 100 input points it can guess the shape of the 

function well, but is a bit lower than it. In the case of 1000 points it again guesses the 

shape of the function but now is above it. When using 10000 input points, which is 

the last case, the network predicts the function most accurately. There is only a small 

difference between the two curves, a small offset. 

4.2.2 Implementation of more difficult functions 

Lets consider now a more difficult function, which is 

y = cos(x? + 32) 

Figure 4.3 has this implementation. It was again tested using 10, 100, 1000 and 10000 

input points. In this case, we started with using 3 hidden neurons since the hazard 

function we need to predict is a more difficult one than the previous one. It is clearly 

seen from this figure that the performance of the network gets better and better as the 

number of inputs increases. 

Figure 4.4 represents the results of the training of a network that has 4 hidden 

neurons and takes 1000 points as inputs. The network in this case is trained for 400 

iterations. From this figure one observes that even with 1000 input points, the network 

can predict the shape of the survival function accurately. Comparing figures 4.3 and 

4.4, we can conclude that increasing the number of hidden neurons leads to better 

network performance. 

We then tried to train the network using a greater number of iterations while keeping 

the number of hidden neurons and input points the same as before. This enables us 

to check if the performance of the model is affected. Figure 4.5 represents this case. 

Here, the network has 4 hidden neurons, with 1000 input points and it was trained for 

800 iterations. As seen from the figure, the prediction of the network is slightly better 

than the one in figure 4.4. We can say, therefore, that the prediction of the network 

depends on the number of iterations that the network is trained for. 

In figure 4.6 the network was trained using 1000 input points as before, but this 

time it was constructed with 5 hidden neurons. It was again trained for 400 iterations, 

and as can be seen, it has a better performance compared with the results in figure 
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Figure 4.3: Function cos(z? + 3z) using 3 hidden neurons. The first figure has 10 input 
points, the second 100, third 1000 and fourth 10000 
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N= 1000 y =cos(x"2 + 3x) Using 4 hidden neurons 
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Figure 4.4: Function cos(x?+3z) using 4 hidden neurons and 1000 input points, trained 
for 400 iterations 

N= 10000 y = sinx‘2 + cosx4 Using 5 hidden neurons 
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Figure 4.5: Function cos(x?+3z) using 4 hidden neurons and 1000 input points, trained 

for 800 iterations 
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4.4. We again notice from these two figures that, as the network has an increasing 

number of hidden units, its performance improves. This indicates once again that our 

implementation of the new model, Cox regression using neural networks, seems so far 

to be correct. 

N= 1000 y = cos(x‘2 + 3x) Using 5 hidden neurons 
  

  

—— Y initial 

—— Networks Guess       

    
  

  

Figure 4.6: Function cos(x?+43z) using 5 hidden neurons and 1000 input points, trained 
for 400 iterations 

In figure 4.7 we used the same network construction as in the one in figure 4.6, but 

this time it receives 10000 input points. The difference between the two figures is clear 

enough. The network in figure 4.7 could predict the hazard function quite well, much 

better than in the case of figure 4.6. This suggests that the more input points we give 

to the network, the better the prediction it can make. 

In figure 4.8 the function was implemented using 10 hidden units. Here we see that 

the estimation is not so good. That means that, as the number of hidden neurons keep 

increasing, the network performance degrades after a point. This is expected, because 

overly complex networks overfit the data, corresponding to high variance, and they 

have poor performance (Bishop [3]). That is explained better in section 4.3.1. Thus, 

in cases where there are more hidden neurons than needed, the network does not have 

a good performance, and that is’only to be expected. 
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N= 10000 y =cos(x*2 + 3x) Using 5 hidden neurons 
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Figure 4.7: Function cos(x? + 3z) using 5 hidden neurons and 10000 input points, 
trained for 400 iterations 

N= 1000 y =cos(x2 + 3x) Using 10 hidden neurons 
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Figure 4.8: Function cos(x? + 3x) using 10 hidden neurons and 1000 input points, 

trained for 800 iterations 
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We then moved on and tried an even more difficult function for the neural network 

to predict, one that has more bumps. This survival function is: 

y=sinz’ + cosz* 

Figure 4.9 shows the results of a network that has 5 hidden neurons, and receives 

10000 input points. It was trained for 400 iterations and, as one can see from the figure, 

the networks prediction is not so accurate. There is a big offset between the two curves. 

Knowing that we are dealing with a difficult graph to predict we can say that since the 

network could at least find the shape of the curve, this is quite an encouraging result. 

Most probably, in this case, the network should have been trained for more iterations, 

or have more hidden neurons. 

N= 10000 y= sinx‘2 + cosx*4 Using 5 hidden neurons 
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Figure 4.9: Function sinz? + cosa‘ using 5 hidden neurons and 10000 input points, 
trained for 200 iterations 

Figures 4.10 to 4.12 represent the results when using the same survival function but 

with 1000 input points. 

Figure 4.10 shows much better results than figure 4.9, and that shows once again 

that the network with more hidden neurons has a better performance. Here, the 

network has 9 hidden neurons, trained for 800 iterations. In the case of figure 4.11, 
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N= 1000 y =sin(x‘2) + cos(x4) Using 10 hidden neurons 

  

        

  

  

—— Y initial 

—— Networks Guess        
    
  

0.5 1 oO 
x 

Figure 4.10: Function sin? + cosz* using 9 hidden neurons and 1000 input points, 

trained for 800 iterations 

N= 1000 y = sin(x*2) + cos(x\4) Using 11 hidden neurons 
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Figure 4.11: Function sin x? + cos x* using 11 hidden neurons and 1000 input points, 
trained for 800 iterations 
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N= 1000 y =sin(x*2) + cos(x4) Using 17 hidden neurons 
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Figure 4.12: Function sin x? + cos z4 using 17 hidden neurons and 1000 input points, 

trained for 800 iterations 

N= 1000 y =sin(x*2) + cos(x™4) Using 25 hidden neurons 
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Figure 4.13: Function sinc? + cos x4 using 25 hidden neurons and 1000 input points, 

trained for 800 iterations 
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the prediction of the network is even much better. In this case having 11 hidden 

neurons, and again trained for 800 iterations the network is able to predict fairly well 

this difficult hazard function. From figure 4.12 we can see that when using 17 hidden 

neurons and 800 iterations the network can predict better the hazard function. One 

can notice that the network can predict the curve more accurately, but the predicted 

curve is actually above the original one. Also, the offset of the two curves is the least 

from among all the cases up to now using this function. 

From figure 4.13, we see as similar event as in figure 4.8, which is that after a 

point, when the number of hidden neurons increases, the network does not have a good 

performance. This observation is quite useful for us because it shows that the approach 

used here seems to be successful. 

Observing all the results presented in this section, we gained confidence that the 

new approach, Cox regression with neural networks, is going to be correct. It seems 

that it was quite well implemented in the case of the toy problem, tested on synthetic 

data. Actually this was the whole idea of the toy problem, namely, to see if the method 

works successfully on synthetic data, which may imply that it will work as well on the 

cancer data that we have. 

One can say, though, that the problem faced here is that we need a large data set 

to be able to have an accurate prediction of the network. That is because we are not 

actually fitting a line to some points, but we are trying to predict the hazard function 

of the patients (yiniz) given their prognostic factors, and their survival times. The 

actual purpose of this toy problem is to verify that by predicting the hazard curve of 

the patients hazard, we will be able to tell his/her hazard value as and when a new 

patient comes along to the trial . 

4.3. Implementation of the new approach on the 

real data 

From the implementation of the approach on the toy problem we gained confidence 

that this is a successful method, and so we applied it on the real data. The purpose 

here is to find the values of the log-likelihood and compare them with those found using 
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the linear method, namely, standard Cox regression. 

4.3.1 Structure of the network 

The network used, as mentioned before, is a two layer perceptron. To have an idea 

of the complexity of the model that can be used regarding the number of the hidden 

neurons, we consider equation 4.12, where ¢ is an approximate rate of misclassification, 

W the number of the parameters in the network and Npattern the number of data points 

available (Bishop [3]). 

la Npatern & ~~ (4.12) 

For ¢ = 0.1 the minimum number of patterns necessary to train the network is 

about ten times the number of the parameters W. The network is a two layer per- 

ceptron with sigmoidal activation units. In this case, the number of parameters of the 

network are found from the equation 

lee layer bias ly, layer na layer bias of 2ng layer 

(no. inputs + ii + no. outputs) x no. hidden units + no. outputs . 

Using the previous equation we derive table 4.1, which shows the number of param- 

eters for a network according to its number of hidden units. As seen from the table, a 

rough estimate shows that in the case of the amount of the current data, up to seven 

hidden neurons may be used. In our case though, as will be discussed in one of the 

next sections of the chapter, we trained the network on up to four hidden units due to 

the slow execution time of the programmes. 

  

Number of hidden units 1 2 3 4 5 6 7 

Number of parameters W 8 1S 22 29 36 43 50 
  

                    

Table 4.1: The number of parameters for a neural network according to its number of 
hidden neurons 
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4.3.2 Cross validation procedure 

In order to compare the performance of the linear model and the neural network, the 

data set is divided into a training and a test set. Since the data set is very small a cross 

validation procedure is performed in order to determine the generalisation performance 

of the network. 

In practice, the availability of the labelled data may be very limited and we may not 

be able to afford the luxury of keeping aside part of the data set for model comparison 

purposes (Bishop [3]). As mentioned in section 1.2 the data set we are using consists of 

475 patients, so in our case we need to use the cross-validation procedure. We divided 

the first 470 points of the data set into 10 equal sets of 47 points, which were used as 

the validation set. To evaluate the performance of the network we take each time a 

pair of a training set, which are the remaining 428 points, and a validation set. For 

each initial guess of the weights, we train the network using the training set and then 

test its performance, by evaluating the log-likelihood function using the validation set. 

For each couple of a training and validation set, we made five initial guesses for the 

weights. For each one of these guesses, the network parameters are optimised using 

the scaled conjugate gradient algorithm. This process was repeated for all the pairs of 

training and validation sets, and the log-likelihood results are averaged first over the 

five values obtained, and then over the ten values obtained from all the pairs. At the 

end, we had two values of the log-likelihood for the training and the validation set. 

The whole cross-validation procedure is explained in figure 4.14. 

The cross-validation procedure was performed for networks with 1, 2, 3 and 4 hidden 

neurons. Figure 4.15 show the results of the cross-validation procedure. It presents 

the likelihood values of the training and the validation set in two different graphs so 

that one can see the difference. It also shows the error bars of the likelihood values. 

As seen from the figure, the value of the log-likelihood increases until the case of 2 

hidden neurons and then it declines. In the case of the validation set, it increases as 

the number of hidden neurons increase. 
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Figure 4.14: Description of the cross-validation procedure 
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Figure 4.15: Log-likelihood values for training and validation sets 
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4.3.3. Comparison of the Cox and the neural network model 

In order to compare the performance of the two models, we found the log-likelihood 

values of the training and validation pair sets using the Cox regression method as we 

did in the case of the cross validation procedure where we used the neural network 

method. To be able to see the comparison between these results figures 4.16 and 4.17 

were created. 

Figures 4.16 and 4.17 present the graphical representation of the difference between 

the log-likelihood values found when using Cox method and the ones using the neural 

network method. The results are found for both the training and the validation sets. 

As seen from figure 4.16 the values of the difference between the log-likelihood values 

using the Cox model and the neural network model is below zero for the training set for 

all the cases of the hidden neurons. This implies that the log-likelihood value obtained 

by the neural network method is always greater than the one found by the standard 

Cox method. 

In the case of figure 4.17, which shows the difference when using the validation set, 

one observes that the curve is declining and that it lies a bit above zero, starting from 

value 1.2. That means that the value of the log-likelihood when using the standard Cox 

model is a bit larger than the one using the neural network model. However the fact 

that the difference is not big and that it decreases is encouraging. For 1 to 2 hidden 

neurons the difference decreases steeply, for 2 to 3 decreases smoothly, and from 3 to 

4 hidden neurons it again decreases steeply. This implies that the log-likelihood values 

for the validation set do not have much difference. 

4.4 Log-likelihood results obtained 

The data set was split into a training and a test set after performing the cross-validation 

procedure. We calculated the log-likelihood of the training and the test set, using 4 

different constructions of networks, and also using the linear approach. The results 

are presented in table 4.2. In this case, we have used all the five prognostic factors 

that we used in section 3.2. To remind those prognostic factors, they are: WHO index, 

Primary Tumour, Dexamethasone, Treatment and Age. 
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Comparison of Cox and NN model for the training set 
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Figure 4.16: Comparison between Cox method and the neural network method for 

the training set. It actually represents graphically the relation: Log_likelihoodC ox — 
Log_likelihoodN N 

  

  

  

  

  

      
  

Parameters of the networks] - L training - Ltest 

Num. | Num. | Num. 
Inputs |Hid. Un.| Outputs 

5 1 1 2198.81 117.81 

5 2 1 2199.58 117.77 

5 3 1 2199.80 117.84 

2 4 1 2189.80 117.69 

Linear case 2185.72 118.56         
  

Table 4.2: Log-likelihood results using 4 networks constructions, and using five prog- 

nostic factors 
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Comparison of Cox and NN model for the validation set 
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Figure 4.17: Comparison between Cox method and the neural network method for the 
validation set. It actually represents graphically the relation: Log_likelihoodCox — 
Log_likelihoodN N 

The parameters of the network are described by a vector of dimension 3. The first 

element indicates the number of inputs, that is, the number of the prognostic factors 

used, the second element indicates the number of hidden neurons and the third, the 

number of outputs, which in our case is always 1. 

As seen from table 4.2 the result of the linear case for the training set is always 

smaller than the ones obtained from the neural networks. In fact, from the different 

constructions of the networks, we see that the error value for the training set is rather 

similar for the cases of the 1, 2 and 3 hidden neurons. In the case of four hidden 

neurons, the result is quite smaller than the other cases, but is still larger. Observing 

the results from the test set, one notices that they are a bit smaller than the linear 

case, but the difference is quite small. 

To see the changes of the log-likelihood values when one of the prognostic factors is 

not included in the data set, we derived table 4.3. By excluding from the data set one 

prognostic factor at a time, the error values were calculated using the linear method 

and the four constructions of the neural networks. Observing the linear case results 
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and comparing them with the values presented in table 4.2, one notices that the values 

for the training set are bigger than the ones in table 4.2. This observation stands for 

all the exclusions of the factors. In the cases of the neural networks we observe that 

the values for the training set are generally smaller than the ones found in table 4.2. 

Only in the case of the network having 4 hidden neurons the training values are bigger. 

The test set values in general do not have much difference from the case of table 4.2. 

  

Parameters of | Without Without Wihtout Without Without 

the network Treatment WHO index | Primary Tumour | Dexamethasone Age 
  

sta eb “Lh | -L “Lf -beieeb | -L Le |p le 

training | test | training | test | training } test | training | test | training | test 
  

Linear | 2186.08) 118.54 | 2191.47} 119.16 } 2188.73 | 118.58 } 2185.84) 118.46 | 2187.95 | 117.75 

  

411 | 2197.56} 118.49 | 2198.92 | 117.73 | 2198.93 | 117..53 | 2192.85} 117.98 | 2197.78 } 117.77 

  

421 2199.58) 117.77 | 2194.46 | 118.14 | 2199.39 | 118.69 } 2197.10} 118.98 | 2198.17} 117.01 

  

431 | 2198.56} 117.02 } 2199.45) 118.22 } 2196.76} 117.91 | 2186.40} 118.64 | 2191.47] 119.33 

  

441 2199.22} 117.65 } 2199.56} 117.77 | 2199.39 | 117.85 | 2193.94} 117.96 | 2179.94} 118.92                           

Table 4.3: Log-likelihood results using 4 networks constructions, and using four prog- 
nostic factors, that is excluding one prognostic factor at a time 
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Chapter 5 

Estimated cumulative hazard and 

survival probability 

The goal of the Cox regression method is to estimate the hazard rate of the patients of 

the trial, and draw conclusions from there. In this chapter, results are presented from 

the estimation of the cumulative baseline hazard function, first by using synthetic data 

and then using the real cancer data. The objective in this chapter is to estimate the 

cumulative hazard function H(t) using the method of Cox and Oakes (1984) [1] and 

also in Christensen’s paper (1987) [5]. 

5.1 Overview of hazard function estimation 

5.1.1 Estimation method by Cox and Oakes 

The established way of presenting survival data is to estimate the survival curve. In 

the case of the data that we have, since all the survival times are complete, meaning 

that there is no missing data, the survival curve is estimated simply as the proportion 

of individuals to whom the event has not yet occurred at each point of time during the 

observation period (Cox & Oakes [1]). 

To estimate the cumulative hazard rate H(t), we first need to estimate the cumu- 

lative baseline hazard Ho(t) which is given by 

H(t) = f ho(u)du (5.1) 
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As suggested by Cox and Oakes, we can compute Ho(t) non parametrically, by noting 

that the total number of failures in the time interval (0,t) is 

D(t)= Yo d; (5.2) 
160 

where d; is the number of deaths at time t. This implies that we take into account the 

fact that there might be more than one death at time t. 

So the cumulative baseline hazard is suggested to be estimated by 

f(t) = > ~—t (53) 
ryet Deen(rs) (6) 

where 7(€) is a vector including the estimated values of (2). 

The estimated baseline hazard for time t;, is the number of deaths that occurred at 

that specific time t, divided by the estimated hazard rate of the patients that belong 

to the risk set. Therefore, the cumulative baseline hazard is the sum of the baseline 

hazards up to time t. 

The estimated hazard function can be found by using 

H(t) = H(i) Ho(2).- (5.4) 

It can also be estimated by the total survivor function, or the cumulative survival 

probability denoted by F(t), which can be determined as: 

A(t) = [Ao(e) (6.5) 

where F(t) is the estimated baseline survivor function and is given by 

F(t) = exp[— b(t) ]. (5.6) 

With the aid of these estimators, graphical illustrations of the estimated effects of 

the prognostic variables on survival time can be given. 

This method of estimation as found in Cox and Oakes can be established by using 

both approaches, i.e., the Cox method and the neural network method. 
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5.2 Implementation of toy problem 3 

In order to evaluate the performance of the approach, we tested the methods, using the 

standard Cox method and the Cox method with neural networks, on synthetic data. 

5.2.1 Implementation using the Cox model 

For this toy problem, the same synthetic data as that in toy problem 1 described in 

section 3.1 is used. The purpose of this toy problem is to determine the success of 

the implementation by re-evaluating the initial estimated cumulative baseline hazard 

function. 

The procedure followed for the implementation of this toy problem is the following: 

e The synthetic data was generated exactly in the same way as in toy problem 1 

and so it is a normal distribution. 

¢ 6 vector is chosen to be a vector Ginit that again is normally distributed. 

e The survival times were estimated and sorted in ascending order, using the 

method described in toy problem 1, and the data was sorted according to them. 

e Having the data, the estimated cumulative baseline hazard was computed and it 

was called Ho(t)init- 

e The ( vector was again initialised to some random vector. 

e By using the scaled conjugate gradient the @ vector is optimised, and yin is 

obtained. 

e The estimated cumulative baseline hazard is then calculated and is called Ho(t) fin- 

e The initial and the final estimated cumulative baseline hazard are compared and 

if they are similar then it means that the implementation used is successful. 

Figures 5.1 to 5.4 show the results when using 10, 100, 1000 and 2000 input points. 

As observed from the figures 5.1 to 5.4 as the number of points increases, the ap- 

proximation to the initial Ho(t) gets closer and closer. In figure 5.4, which is the one 

59



CHAPTER 5. ESTIMATED CUMULATIVE HAZARD AND SURVIVAL PROBABILITY 

Ho(t) using Cox model 
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Figure 5.1: Estimation of Ho(t) on a synthetic data with Cox model, using 10 input 
points 
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Figure 5.2: Estimation of Ho(t) on a synthetic data with Cox model, using 100 input 
points 
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Ho(t) using Cox model 
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Figure 5.3: Estimation of Ho(t) on a synthetic data with Cox model, using 1000 input 
points 
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Figure 5.4: Estimation of Ho(t) on a synthetic data with Cox model, using 2000 input 
points 
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where 2000 input points are used, the best approximation is obtained from among all 

the cases. In the other cases though, of the 100 and 1000 input points, the approxima- 

tion was not so bad, in fact it was fairly accurate. The worst case is found of course in 

figure 5.1 which uses 10 input points. This shows that the method applied here using 

the standard Cox method, seems to be correct. 

5.2.2 Implementation using neural network model 

This implementation of the toy problem, using the neural network method is actually 

a continuation of toy problem 2 which is described in section 4.2. The way that the 

data was generated is the same as in toy problem 2. 

The procedure followed for this part of the toy problem is the following: 

e The synthetic data is generated exactly the same way as in toy problem 2. So it 

has one dimension, length N, and is normally distributed. 

© Yinit is chosen in this case to be a simple function f(z), such as sin z. 

e Knowing yini the pb vector is then computed, and so the Ho(t)init is calculated. 

e The parameters of the network are initialised by constructing a two layer feed- 

forward neural network. 

e Then the weights are optimised using scaled conjugate gradient. 

e The output of the network y;;, is then derived. 

e w vector is calculated and then Ho(t) sin is derived. 

e A comparison of the two baseline functions will show if the implementation is 

successful. 

As expected, this toy problem will prove as well that by increasing the number of 

input points and ‘hidden neurons up to a point, the networks performance improves. 

Keeping in mind the results of toy problem 2, the implementation here was tested for 

10, 1000 and 2000 input points, as the programs require a lot of execution time. The 

results are presented in figures 5.5 to 5.7. 
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In figure 5.5 one observes that for 100 points and 3 hidden neurons, the networks 

guess is quite far from Ho(t)init- In figure 5.6 were the number of input points is 1000 

and the network has 3 hidden neurons, the prediction of the true Ho(t) is much better. 

The offset is smaller than the previous case but still is quite large. The next experiment 

is presented in figure 5.7 and the result is a bit better than in figure 5.6. Here, 2000 

input points and 3 hidden neurons are used. One notices that the performance of the 

network is better. The offset between the two curves is now quite small, and the shape 

of the predicted graph is now close to the initial one. Of course, as expected, the 

performance of the network gets better as the number of input points are increased. 

In the experiments of this implementation the number of hidden neurons were kept 

the same, although from the previous toy problems it is noticed that as the number of 

hidden neurons increases the network has better performance. 

Ho(t) using NN model for 100 points using 3 hidden neurons 
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Figure 5.5: Approximation of Ho(t) using the NN model with 100 inputs and 3 hidden 
neurons 
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Ho(t) using NN model for 1000 points using 3 hidden neurons 
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Figure 5.6: Approximation of Ho(t) using the NN model with 1000 inputs and 3 hidden 
neurons 

Ho(t) using NN model for 2000 points using 3 hidden neurons 
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Figure 5.7: Approximation of Ho(t) using the NN model with 2000 inputs and 3 hidden 
neurons 
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5.3 Implementation on the real data 

In this section, we present the results of the implementation of both methods, Cox and 

neural networks, on the real data, in order to estimate the cumulative hazard function 

of the patients. 

As observed from the figure as the number of inputs increases, then the estimation of 

the network is improves. This shows that the implementation to derive the cumulative 

baseline hazard seems to be successful. 

5.3.1 Implementation using the Cox model 

By using equation 5.3, the cumulative baseline hazard Hp(t) is derived from the real 

data. In this implementation, the data set used is one that has the actual values of the 

prognostic factors. It consists all the 5 prognostic factors mentioned in section 3.2. 

Figure 5.9 shows the cumulative baseline hazard found from this implementation. 

Estimated Ho(t) using standard Cox 
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Figure 5.8: Estimation of Ho(t) of the real data with Cox model 

As figure 5.9 shows, after about 350 days of survival time, the cumulative baseline 

hazard stabilizes, then it increases smoothly and after about 900 days it increases 
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steeply. This happens because after 350 survival days there are not many patients that 

are still alive and that is confirmed by figure A.8 and by the histogram in figure 1.1. 

So the first part of the graph, until the 350 days, increases quite steeply and is has a 

ramh form, which is expected. 

Knowing Ho(t) and by applying equations 5.4, 5.5 and 5.6, it is quite easy to 

estimate the cumulative hazard function H(t), and the survival probability F(t). These 

estimations are presented in figure 5.10. 

The estimated cumulative hazard using Cox model 
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Figure 5.9: Estimation of H(t) and F(t) of the real data with Cox model 

Observing figure 5.11 shows that the estimated values for H(t) and F(t), are as 

expected. The bottom graph that presents the survival probability F(t) is a ramh 

curve which drops off quite steeply until the 350 days, as it should. After that point, it 

becomes closer to zero, since very few patients are alive at the interval after 350 days. 

Also H(t) increases steeply in a fluctuating form until 350 days, and then gets abit 

smoother. That is expected again, because an increasing hazard results in a decreasing 

survival probability. 
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5.3.2 Implementation using Cox method with neural networks 

The equations used in this implementation are the same as the ones used with the 

standard Cox model. What differs is that now we use the generalised Cox formalism 

for ~ as given by equation 4.2. It was tried with different network constructions, using 

1, 2, 3 and 4 hidden neurons. 

Figure 5.10 presents the cumulative baseline hazard Ho(t) when using a network 

with 1 hidden neuron. The result obtained is very close to the Ho(t) found when using 

the standard Cox method. The values of the two estimations are not very different, as 

observed from the comparison of the figures 5.8 and 5.10. 

Estimated Ho(t) using Neural Network model with 1 hidden neuron 
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Figure 5.10: Estimation of Ho(t) of the real data with Cox model using neural networks 
with 1 hidden neuron 

Figure 5.11 represents the estimated cumulative hazard and the estimated survival 

probability. Both graphs are much smoother compared to the ones obtained when 

using the Cox model in figure 5.9. 

In figures 5.12 to 5.17 we present the results obtained when having 2, 3 and 4 hidden 

neurons in the network. 

Judging from figures 5.12 to 5.17, there is not much difference in the values obtained 

for the estimated baseline hazard, compared to the Cox model results. Generally, one 

notices that the curves for the estimated cumulative hazard and survival probability 

are smooth, unlike the ones obtained using the standard Cox model which have a 
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Estimated cumulative Hazard Using Neural Network Model with 1 hidden 
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Figure 5.11: Estimation of H(t) and F(t) of the real data with Cox model using neural 
networks with 1 hidden neuron 

Estimated Ho(!) using Neural Network model with 2 hidden neuron 
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Figure 5.12: Estimation of Ho(t) of the real data with Cox model using neural networks 
with 2 hidden neurons 
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Estimated cumulative Hazard Using Neural Network Model with 2 hidden 
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Figure 5.13: Estimation of H(t) and F(t) of the real data with Cox model using neural 
networks with 2 hidden neurons 

Estimated Ho(t) using Neural Network model with 3 hidden neuron 
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Figure 5.14: Estimation of Ho(t) of the real data with Cox model using neural networks 
with 3 hidden neurons 
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Estimated cumulative Hazard Using Neural Network Model with 3 hidden 
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Figure 5.15: Estimation of H(t) and F(t) of the real data with Cox model using neural 
networks with 3 hidden neurons 

Estimated Ho(t) using Neural Network model with 4 hidden neuron 
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Figure 5.16: Estimation of Ho(t) of the real data with Cox model using neural networks 
with 4 hidden neurons 
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Estimated cumulative Hazard Using Neural Network Model with 4 hidden 
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Figure 5.17: Estimation of H(t) and F(t) of the real data with Cox model using neural 
networks with 4 hidden neurons 

fluctuating ramh form. 

These results indicate that the Cox method using neural networks is similar in 

performance to the standard Cox method, in estimating the cumulative baseline hazard, 

and also the cumulative hazard and survival probability. That means that, in this case, 

both methods can be used for the estimation of the cumulative hazard and survival 

probability. The encouraging result here is that we know that the neural network 

approach, which is the new method introduced, is capable of at least estimating similar 

results as the standard Cox regression method for this particular application. 
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Chapter 6 

Discussion 

It is already known that the Cox regression model is a powerful statistical tool for 

survival data analysis. It is the principal method used up to now by statisticians in 

clinical trials. 

In this project we attempted to introduce a new approach, based on the Cox re- 

gression model that includes neural networks. As one can conclude from the several 

implementations presented in the project, the results obtained with the new approach 

are comparable with the ones found by using the standard Cox regression method. All 

the implementations of the new approach were first tested on synthetic data, so as to 

gain confidence that the implementation is correct. 

For that reason, toy problem 2 and toy problem 3 were created. As mentioned 

in section 4.2, in toy problem 2 the network tries to compute the hazard function 

of the patients, given their prognostic factors and survival times. So by having the 

correct survival function, when a new patient comes along, then by knowing his/her 

prognostic variables, we would be able to predict his hazard and in effect his/her 

estimated survival. 

In chapter 5, it was attempted to estimate the cumulative hazard function and 

cumulative survival probability of the patients. It is interesting to use equation 5.1 

to find the baseline hazard ho(t), so that it can be used in estimating the hazard and 

survival probability for the individual patients, knowing his/her prognostic variables. 

Such an implementation, however, is computationally very time consuming. Usually, 

the statisticians use a standard package for survival data analysis,which computes the 
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baseline hazard ho(t). By studing the user manual for such packages, one can find the 

way that is computed in the package and apply it using the Cox method with neural 

networks. Because of a lack of time, this estimation was not attempted in this project. 

Concerning Cox regression, the likelihood expression for the survival function varies 

according to the hypothesis. The hypothesis used for these implementations, as men- 

tioned in section 2.2, is that the likelihood function is the probability that all the 

patients in the set die. The same hypothesis was used to derive the likelihood expres- 

sion for the neural networks case. A test was designed to compare the likelihood values 

obtained when using the linear and the neural network model in the Cox regression. A 

test was also designed to compare the likelihood values, when one prognostic variable 

was taken out from the set one at a time, by using the two approaches. After performing 

the cross-validation procedure the data set was split into a training and a test set. The 

log-likelihood values of the two sets were calculated using both approaches and they 

were compared. For the neural case, network four network constructions were tested, 

having 1, 2, 3 and 4 hidden neurons. The error values obtained for the training set of 

all the cases of the neural networks were greater than the value using the linear case. 

This result is quite encouraging, as it means that by using the new approach, namely, 

standard Cox with neural networks, the specific data set can be modelled better than 

in the linear case. Also, in the case in the test set, the difference in the error values 

for the two approaches is very small; actually they are almost similar. In general, it 

can be said that whether neural networks can improve the goodness of fit or not is still 

undecided for this example and in general. 

The big problem, however, that we concluded from the implementations of the new 

approach in this project is the one derived from the toy problems. It is the fact that 

in order for the neural network approach to achieve accurate results, it needs a large 

number of input points. Such an amount of input data is of course not possible to 

be found in clinical trials, as the clinicians do not deal with so many patients in the 

trials. So it can be said that for this particular application where if all the patients of 

this data set are dead, the new method is not going to be as successful. As mentioned 

before, it is good if the method is tested on new data, and performance is compared. 

The problem that is faced by the statisticians in clinical trials is that the small 
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amount of data in cerebral metastases makes prior knowledge very important. That 

means that the statisticians must be able to select the right prognostic variables that 

are going to be used for the analysis. If too many prognostic factors are used, then 

neither a neural network nor a Cox survival function will be able to produce a good 

estimation of the real survival function. 

The conclusions and suggestions that comes from this research are that to be able 

to understand the advantage of the new approach, it should be applied on several data 

sets, and the results compared with the standard Cox method. As mentioned before 

the new approach, namely, Cox regression using neural netwroks is not suitable for this 

specific application. When it is applied, however, on a bigger and different data set, 

then there are might be satisfactory results. If neural networks prove to be efficient in 

modelling survival functions of different survival data sets, then it will be a powerful 

tool for the statisticians to use. It will compensate for the lack of prior knowledge and 

the results will be more accurate. 
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Appendix A 

Survival curves 

To verify the results of the log-rank test, it is better to examine the true survival curves 

of each prognostic factor. In this way, we will have a clearer graphical way to determine 

the best category of each prognostic factor. 

Figures A.1 to A.7 present the survival taking into account each prognostic factor. 

Brain Metastases 
Survival by Age group 

  

Figure A.1: Survival by Age of the patients 

As seen in figure A.1 those patients that are less than 60 years old survive more 

than those that are older than 60 years. So based on this graph and on the exp/obs 

value of the first category, given in table 1.2, it seems clearly that the first category is 

the best.
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Brain Metastases 
| \ ‘Survival by dose of Dexamethasone 

  

Figure A.2: Survival by the dexamethasone dose taken by the patients 

Brain Metastases 
‘Survival by Extent of Disease 

  

Figure A.3: Survival by the patients extend of the disease 
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” 
- Brain Metastases 
: Survival by Site of Primary Tumour 

® 

  

Figure A.4: Survival by the patients primary tumour 

Brain Metastases 
Survival by Performance Status 

  

Figure A.5: Survival by the WHO index of the patients 
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survival by the sex of the patients 

  

Figure A.6: Survival according to the patients sex 

Survival by treatement 

  

Figure A.7: Survival by the treatment each patient is receiving 
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Brain Metastases - Overall Survival 

  

Figure A.8: The overall survival of the patients 

The same stand, when observing figures A.2 to A.7. All the categories for the 

prognostic factors that were found to be the best according to the log-rank test as 

presented in table 1.2, now we see that the survival by those categories is better then 

the others of the prognostic factor. 

79



Bibliography 

[1] Cox D. R. and Oaks D. Analysis of survival data. Chapman and Hall, London 

1984. 

[2] Mashesh K. B. Parmar and David Marchin, Survival analysis: a practical approach. 

Willey, Chichester, 1995, pg. 121 - 142. 

(3] Christopher M. Bishop Neural networks for pattern recognition, Clarendon press, 

Oxford, 1995. 

[4] Elisa T. Lee, Statistical methods for survival data analysis, Wiley, New York, 1992, 

pg. 109-113. 

[5] Erik Christensen, Multivariate survival analysis using Cox’s regression model, Spe- 

cial articles, 1987. 

(6] T J Priestman, The Royal College of Radiologists - different dose/fraction regimes 

in cerebral metastases, Birmingham 1989. 

[7 Christopher M. Bishop, Francois Collet, Janet Dunn and Christopher Poole, Neu- 

ral networks for cancer prognosis article, 1996. 

[8] L. Tarassenko, R. Whitehouse, G. Gasparini and A. L. Harris, Neural network 

prediction of relapse in breast cancer patients, Neural Computing and Applications, 

London, 1996. 

(9 Douglas G. Altman, Practical statistics for medical research, Chapman and Hall, 

London, 1992. 

80



BIBLIOGRAPHY 

{10] B. Borgelt, R. Gelber, M. Larson, F. Hendrickson, T. Griffin and R. Roth, Ultra- 

rapid high dose radiation for brain metastases, Radiation Oncology, Volume 7, 

Number 12, 1981. 

[11] J. West and M. Maor, Intracranial metastases, Radiation Oncology, Volume 6, 

Number 1, 1980. 

[12] Lawrence R. Coia, The role of radiation therapy in treatment of brain metastases, 

Radiation Oncology, Volume 23, Number 1, 1992. 

[13] M. D. West, T. Dobbins, T. Phillips and D. Nelson, Brain metastases optimal 

subgroup, Radiation Oncology, Volume 16, Number 3, 1989. 

[14] Statistical methods in medical research,Blackwell scientific publications, London, 

1971. 

(15) A. J. Gross and V. A. Clark, Survival distributions: reliability applications in the 

biomedical sciences, Wiley distributions, New York, 1975. 

(16) BMDP manual. 

(17] B. Borgelt, R. Gelber, s. Kramer, L. Brady, C. Chang, L. Davis, C. Perez and 

F. Hendrickson, The palliation of brain metastases: final results of the first two 

studies by the radiation therapy oncology group, Radiaton Oncology, Volume 6, 

Number 1, 1980. 

81


