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Thesis Summary 

This thesis describes a project in two parts. The project is an application of data mod- 

elling techniques to satellite scatterometer data. Scatterometer data is computed from radi- 

ation returned to a satellite as a result of its emitted radar beam interacting with the surface 

of oceans. The frequency of the beam is fixed to react to ripples on the water surface which 
are a result of the surface wind conditions, therefore the amount of power reflected back to 

the satellite is dependent on the surface wind vectors. The satellite has three radar beams so 

the scatterometer data is 3-dimensional and is believed to lie close to a cone-like manifold. 
The two parts of the project are: 

1, The application of a Generative Topographic Mapping (GTM) to the data in order to 

create a manifold in data space which can be used identify outliers for the purposes of 

exclusion from further processing. 

2. The modelling of the noise variance in order to see if there is any variation depending 

on the position within the data. The noise is modelled using an iterative technique 

involving 2 interacting neural networks, one modelling the mean of the data and one 

modelling the noise. 
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Chapter 1 

Overview 

This thesis is split into two parts: 

e Application of a Generative Topographic Mapping (GTM) to satellite data with 

the intention of ascertaining whether it is a suitable technique for identifying/ex- 

cluding outliers. 

e Modelling the output noise of the satellite data, treating it as input dependent. 

The thesis will begin with an introduction, covering the basics of satellite scat- 

terometer theory including the forward model which will be used in the project, the 

principle of GTM and its proposed application to the scatterometer problem which is 

the aim of the first part of the project. 

In Chapter 3 changes to the latent space of the GTM are detailed to take account 

of the prior knowledge of the shape of the satellite data. In addition the method of 

initialization and training of the model will be detailed and an investigation into ways 

of maximizing the effectiveness by varying the GTM will follow. Targeting of outliers 

using the trained model will then be dealt with. Finally in this chapter, the results of 

the application of the GTM are discussed; this concludes the first part of the project. 

In the second part, the output noise variance will be modelled as input dependent. 

Chapter 4 describes adaptations to the currently utilized scatterometer model, 2 meth- 

ods of modelling input dependent noise and their application to a toy problem and to 

the scatterometer data. The results of this part of the project are discussed at the end 

of this chapter.



CHAPTER 1. OVERVIEW 

Finally the two parts of the project are brought together in Chapter 5 in which 

what has been learned from the project is discussed and some ideas for future work are 

proposed.



Chapter 2 

Introduction 

2.1 Scatterometer 

Satellite scatterometer observations are derived from the backscatter radiation ‘re- 

flected’ from ocean surfaces. The satellite emits radiation at a frequency set to inter- 

act with the ripples on the ocean’s surface which are dependent on the surface wind 

conditions. The amount of backscattered radiation received by the satellite varies ac- 

cording to the surface wind vectors. The observations are measured by the satellite’s 

on-board scatterometer. In this case information from the ERS-1 satellite, which was 

launched in July 1991 is used. The information is backscatter radiation at a frequency 

of 5.3GHz, the power of which is affected by ripples on the ocean’s surface of approx- 

imately 5cm. Figure 2.1 shows the geometry of the radar scan; a swathe of 500km is 

swept in nineteen 50km tracks which gives rise to some overlap. Individual readings 

come from a 50km cell within each track. 

There are 3 radar beams mounted on the satellite. The fore and aft beams are 

angled at + and — 45 deg respectively to the mid beam. The incidence angles (to the 

normal) of tracks 1 — 19 are 25 — 59 deg for the fore and aft beams and 18 — 47 deg for 

the mid beam. In the course of experiments carried out during this project, models 

are constructed for tracks 1, 10 and 19. All diagrams are taken from the model trained 

on the data from track 10. 

Each cell is therefore scanned 3 times from different angles and the resulting ag- 

gregate reading is referred to as the o° triple which comprises of, of, and o?. When
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Figure 2.1: ERS-1 satellite showing geometry of fore, aft and mid beams, the incidence angle 

(to the normal) and the scanning pattern. 

plotted, the o° readings appear to lie in a self intersecting double cone [6] (Figure 2.2). 

  

Figure 2.2: A theoretical cross-section of the scatterometer data showing the relationship 

between relative wind direction and position around the conical surface. The wind speed is 

related to the position of the data along the axis of the cone. Outliers may fall inside or 

outside the cone, or between its surfaces. 

Outliers are due to various geophysical phenomena (e.g. ice) and to measurement 

noise and it is these which the first part of this project aims to identify in order to 

exclude them from further processing. 

The scatterometer forward model, which will be used in the second part of the 

project, is a variation of NN3CMop [2]. This is a hybrid model based on the functional 

forward model Cmop4 [6]. The aim of a forward model is to predict the scatterometer 

10



CHAPTER 2. INTRODUCTION 

data as accurately as possible from various wind and observation parameters. The na- 

ture of the double cone of backscatter data may be understood from the basic functional 

form established by empirical studies 

Olin ~ Bo(s, 8) + bi(s, 8) cos(x) + ba(s, 8) cos(2x), (2.1) 

where s is the wind speed, @ the satellite beam incidence angle and x is the wind 

direction, relative to the satellite azimuth angle. This model computes oj, the linear 

scaled output; as the model develops, the log scaled output, o4, will be used. The 

position along the axis of the cone is mainly dominated by s while the cos(2,) term 

generates the resultant o° value around the cone surface, the dual path coming from 

a moderating cos(y) term which contributes the upwind or downwind component!. 

Cmop4 is the most commonly used functional mapping between the wind vectors and 

the scatterometer data and develops the form of (2.1) 

Flin = Boll + Bi(s,0) cos(x) + Bs(s, 8) cos(2x)]"®, (2.2) 

the result being raised to the power 1.6 compensate for the series (effectively a Fourier 

series) being truncated to two terms. 

The hybrid model NN3CMOD retains the Fourier terms of CMop4 but improves 

upon the calculation of the coefficients from the original method, which used Legendre 

polynomials, by using an MLP network [1] in order to learn them, 

hin = Ao[1 + 0.37 tanh(a;) cos(x) + 0.62 tanh(az) cos(2x)]?, (2.3) 

where p, do, a; and az are the outputs from the the neural network and the tanh function 

ensures of, remains real for all inputs. If this is now converted to log space, the noise, 

which is assumed to be a function of of,, becomes additive. 

Giz = a (« + pln{1 + 0.37 tanh(a;) cos(y) + 0.62 tanh(a2) cos(2x)]). (2.4) 

1This explains the maximum discrepancy between Odeg and 180deg positions around the cone 
séction (Figure 2.2). 
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CHAPTER 2. INTRODUCTION 

This was called NN2CMoD where the inputs to the neural net were log(s) and sin(0) 

and the outputs were as stated above. These outputs, in addition to x were then the 

inputs to the functional part of the model, the output from which was o4,. 

The improvement in NN3CMOD was to use two models, one for fore and aft satellite 

beams and one for the mid beam; it has been estimated [2] that the noise in the data 

from the mid beam was higher than that of the fore and aft ones and was not therefore 

modelled well by NN2CMop. It is NN3CMOD which is the starting point for the second 

part of the project. 

2.2 Generative Topographic Mapping 

2.2.1 The GTM Model 

The Generative Topographic Mapping (GTM) [7] is traditionally used for visualizing 

high dimensional data in a lower dimensional space. The principle, illustrated in Figure 

2.3, is that all points in an L-dimensional latent space are mapped non-linearly to the 

D-dimensional data space*. In this instance the latent space is 2-dimensional and the 

data space 3-dimensional. 

a (RBF Network) 

  

x 
L-Dimensional Latent Space D-Dimensional Data Space 

Figure 2.3: The non-linear mapping between the latent and data space is shown with the 

noise model in data space varying with the density of the data. A data point (represented by 

the (red) star) will have high posterior probability towards its closest noise model centres. 

2Normally L < D. 
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CHAPTER 2. INTRODUCTION 

A grid of K selected points {x1,...,x,} is set up in the latent space and mapped 

to the centres of a Gaussian Mixture Model (GMM) [1] in data space {y1,...,yx}, 

the ordering of the mixture model is constrained by the grid of points in latent space 

such that they lie on an L-dimensional manifold within the data. The mapping can be 

performed by any continuous differentiable function but the usual and most convenient 

form is of a Radial Basis Function (RBF) network [1] with M fixed basis functions ¢n, 

m= O.r.,M— TL 

M 

y(x, W) = > d(x)wm. (2.5) 
m 

The network has L input units, therefore x will be a set of L column vectors, each 

containing KC elements. ¢ is referred to as the activation and is usually a non-linear 

function. In this project two functions will be considered. The Gaussian 

$(x) = exp (-3), (2.6) 

in which @ is the variance of the function. This is the most common form of activation 

and is an example of a localized function with the property that ¢ — 0 as |x| — oo. 

In addition the Thin Plate Spline (TPS) will be used for comparison purposes 

$(x) = x” In(x), (2.7) 

which has the property that ¢ — oo as |2| — oo. 

The centres of the activation functions, more commonly known as RBF centres, are 

usually positioned to span the data. This can be adapted so that they take account of 

different densities in the data, that is that they are closer together in areas of high data 

density and vice versa. The term (¢) is a bias term having a value 1 and is included 

to account for an offset of the function. 

Referring back to (2.5), wm is the set of weights and biases which act on the ac- 

tivation to produce the final mapping. Part of the training of the GTM, which is 

13



CHAPTER 2. INTRODUCTION 

discussed in Section 2.3, is to optimize the weights in the RBF network. The latent 

space mapping through the RBF network may be expressed in matrix form as 

Y=ow, (2.8) 

where Y is a K x D matrix of mixture component centres* , ® is a K x M matrix of 

basis function activations and W an M x D matrix of weights and biases. 

The mixture model in data space has an isotropic Gaussian noise distribution, given 

by 

v(t, W, 8) = Ny, W),8) 
D/2 D 

= (Fe) e[-$ te — wala wy]. eS 
d 

This gives a probability of a data point t dependent upon its proximity to the 

manifold’, The variance of the noise is given by 371; this will vary the probability of a 

data point for a given distance from the manifold. By integrating out x, the probability 

distribution in data space can be expressed in terms of the parameters 3 and W 

p(t[W, 8) = / p(tlx, W, B)p(x) dex. (2.10) 

If the prior, p(x) is taken as a set of K equally weighted delta functions 

K 
1 

P(X) = 5g 9 5(x — xx); (2.11) 
k=1 

the integral becomes a sum 

K 

p(t|W, 8) = ¥ p(tlx,, W, 8). (2.12) 
k=1 

The log-likelihood may then be expressed as 

®The network has D output units. 
4The manifold is the result of the mapping (y) of x into data space. 

14



CHAPTER 2. INTRODUCTION 

N K 
1 _ D(z > pltalxe, W.A)), (2.13) 

n=1 k=l 

assuming an i.i.d. set of target data points {t1,...,ty}. 

If, for instance, a Multi Layer Perceptron (MLP) [1] is used in place of the RBF, 

the optimization of the mixture model could be carried out using any non-linear opti- 

mization technique. However, it is more efficient when using a mixture of Gaussians 

and an RBF network to use an Expectation Maximization (EM) algorithm to fit the 

manifold to the data. 

2.3. The GTM EM Algorithm 

2.3.1 Expectation 

This step involves the calculation of the responsibilities of the k'" Gaussian mixture 

component for the generation of the n‘" data point and, using (2.11), (2.12) and Bayes’ 

Theorem, it is expressed as 

D(tnlxx, W, BPC) 
Pie = BOs Ws) — Soe ae, Ws )DW) ee 

The prior terms will cancel as they were taken to be ‘flat’, i.e. an evenly weighted 

sum of 1/K. So rg, represents the responsibilities of centre k for generating data point 

n. 

2.3.2 Maximization 

Using (2.5), (2.9) and (2.14), the derivatives of the log-likelihood (2.13) with respect 

to the weights may be expressed as 

N,K M 

ae = DnB (So) ~ tn) Onl) (2.15) 
Ww; 
Wm nk=1 mi 

  

15
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A detailed explanation of the differentiation process is given in Appendix A of [7]. 

By setting (2.15) to zero and using (2.8) we can get the update formula for W 

as 

&'GOw = @'RT, (2.16) 

where T is an N x D matrix containing the data points, R is a K x N matrix of 

responsibilities and G is a K x K diagonal matrix with responsibilities summed over 

all points and components defined by 

N 

Ce — 0 en (2.17) 
n=1 

In addition, it is possible to add a regularization (weight decay) factor @ in order 

to improve generalization in training. This modifies (2.16) in the following way 

(7G + al)W = ©’RT, (2.18) 

where a is the inverse variance of the prior and I is the identity matrix with the same 

dimensions as ®’G®. This is equivalent to restricting W by placing an isotropic prior 

upon it of the following form 

nw) = (=) a ex (—SIwi?). (2.19) 

Equation (2.18) can then be solved for W updating the weights in the RBF and thus 

changing the mapping such that the mixture model centres are globally closer to the 

data. Effectively, the aim is to move the centres of the mixture model towards the 

point where they have maximum responsibility for generating the data. 

The partial derivative of the log-likelihood (error) function (2.14) with respect to 

the noise variance § may be used in a similar way, yielding 

1 1 NK 

3 = Np Dy Melly(ee, W) — taIP, (2.20) 
nk=1 

16



CHAPTER 2. INTRODUCTION 

where W stands for the updated weights. 

This outlines one step of the EM algorithm. By iterating the steps in the following 

way, the GTM is trained until the probability of the data given the model is at a 

maximum. 

1, Generate latent points x. The latent points (and the subsequent RBF centres) 

are usually arranged in a regular grid spanning the latent space. The particular 

latent space in these experiments will be described in Section 3.2 

2. Create RBF network, setting basis function centres (and widths, o, in the case 

of the Gaussian activations). Compute activations using x. 

3. Create an initial set of mixture model centres using the target data if possible 

and compute the matrix of weights W, from (2.8). 

4. Initialize 3; a suitable value for this is half the average distance between initialized 

mixture centres. 

5. If applicable, assign a regularization factor, a. If no regularization is required, 

then a = 0. 

6. Compute the responsibilities for the model generating the data using (2.14). B- 

step 

7. Update W and @ using (2.18) and (2.20). M-step. 

8. Repeat 6 and 7 until convergence. 

2.4 Using GTM for Outlier Detection 

The GTM is a density model which lends itself to visualizing data in high dimensions, 

and this is indeed a common use. However it seems feasible that, if the manifold is to be 

trained to the solution which gives the highest probability of the data given the model 

(the maximum likelihood solution) then points in a test data set with low probability, 

aly
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p(t|W, 8), can be considered outliers. We have said that the satellite scatterometer 

data is conical in shape so the intention is to train a GTM using this prior knowledge. 

Outliers in a test set of data are then identified/excluded on the basis of their low 

probability given the model. 

The above sounds simple enough; however it may be worth taking some time to 

discuss what an outlier is (there may be several conflicting definitions) and to look at 

the mechanics of training which may be affected by them. 

An outlier, from the point of view of a GTM is purely judged on its weighted 

distance to the sum of the GMM centres, as it is from this that its probability is 

computed. However more generally one might say that an outlier is a point that is 

not in the ‘correct’ position, given its peers. It may be therefore that there are points 

which lie in the main cloud of scatterometer data o°, and therefore be close to the 

manifold, but that are in the ‘incorrect’ position using some other criterion. In fact, as 

will be discussed later, in wind vector space, it perfectly possible for this to happen. It 

is worth bearing this in mind when we come to a critical appraisal of using the GTM 

for this purpose. 

If a set of data contains outliers, by any definition, the maximum likelihood method 

of training (a GTM for instance) using the sum-of-squares error function (5 eta - 

t,}) will certainly be influenced by them. This may also have some bearing on the 

effectiveness of this method and could be cause for caution when evaluating the results. 

Even if one is fortunate enough to have a training set which has had outliers manually 

removed (as we have), the criteria used to identify them may still have a bearing on 

the effectiveness of training. 

18



Chapter 3 

Outlier Detection Using GTM 

3.1 Introduction 

We have said that the satellite scatterometer data lies close to a conical manifold. It 

seems sensible, therefore, to use this information to tailor the GTM. To this end, it 

was decided that instead of arranging the latent space points and RBF centres in a 

rectangular lattice, as is traditional for a 2-dimensional latent space, the latent space 

would be laid out as the development of a cone and that distances between points 

would be made as if across the conical surface. p(x) still retains the property defined 

in (2.11) and so we can still treat the probability distribution in data space as a sum. In 

this chapter these changes will be detailed along with the initialization and training of 

the GTM. In addition, the results of experiments involving changes in the parameters 

and mapping function of the GTM will be shown. 

3.2 Changes in Latent Space 

Essentially it is the input side of the RBF network which is concerned with measurement 

in latent space. This is required during any mapping to determine distances from latent 

points to RBF centres for the purposes of calculating activations. Figure 3.1(a) shows 

the revised conical development layout of the latent space. 

The latent space was constructed as the development of the cone used in the ini- 

19.



CHAPTER 3. OUTLIER DETECTION USING GTM 

x x x x x 
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(a) Latent Space Geometry (b) Measurement in Latent Space 

Figure 3.1: In the left figure the (red) crosses show the arrangement of latent points, the 

(blue) circles, a similar arrangement of RBF centres and the (green) dots the mean respon- 

sibility of the currently positioned centres in data space for the data points. The two edges 

of the developed cone are coincident in data space; therefore there is a space, equivalent to a 

column of latent points before the right hand edge to avoid duplication of points along this 

line. In the right hand figure the distance between (for instance) a latent point (shown as 

a (red) cross) and an RBF centre (the (blue) circle) is measured as the lesser of distances d 

and d’, calculated using ¢ and 0. 

tialization of the GTM (see Section 3.3.2), scaled to fit in a square of side 2 units. The 

polar coordinates of the relevant points were used to calculate distances and the Carte- 

sian coordinates stored only for displaying the latent space. Because the two sides of 

the conical development are concurrent, a space, the equivalent of an extra column of 

points, was included on one side; this avoided duplicated columns of points where the 

cone joins in data space. When calculating distances, the distance across the conical 

surface in both directions must be considered, so two calculations were made as shown 

in Figure 3.1(b). 

Comparison was made between the included angle of the two points being considered 

(¢) and the total included angle of the conic surface development (@). 

20



CHAPTER 3. OUTLIER DETECTION USING GTM 

qu {° if @ < 0/2, cay 
0—¢ otherwise. 

The simple geometry involved in the calculation of the distance d or d’ is based on 

the resultant angle ¢ and the shortest distance around the cone’s surface is calculated. 

3.3 Initialization and Training of GTM Manifold 

3.3.1 Introduction 

The above technique was initially developed on a toy problem, using a bullet shaped 

set of 163 synthetically generated points based on a cone with a tanh profiled surface 

including additive Gaussian noise with a variance of 0.01. The technique was then 

transferred to the scatterometer data, using training data sets of 964, 954 and 936 

points for tracks 1, 10 and 19 respectively. Outliers had been manually removed on 

this training set. The test error was evaluated on a test set, also with outliers removed, 

comprising 478, 476 and 464 points for each of the 3 tracks. 

3.3.2 Initialization 

An initial conical set of target coordinates for the RBF was created in data space using 

the Principal Components (PCs, see Appendix A) of the data scaled to give reasonable 

alignment. This technique is commonly used for dimensionality reduction, where the 

data is mapped onto a lower dimension spanned by the eigenvectors associated with 

the largest eigenvalues. In our case, however it is utilized to construct a framework 

of vectors on which to build an initialized conic manifold. Again, we can make use 

of our prior knowledge of the shape of the data; the largest PC will be roughly along 

the axis of the cone (the cone is longer than its base is wide) and the second on a 

plane which intersects the data approximately parallel to its base. The third will lie 

on the same plane, orthogonal to the second. Initially a cone is constructed, with 
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arbitrary! alignment and with length of axis and radius of base taken from the two 

largest eigenvalues. This is then mapped onto the three eigenvectors of the covariance 

matrix (PCs) with the mean of the grid of GMM centres coincident with that of the 

data. The cone in 3-space is an example of a data set with an intrinsic dimensionality 

of 2. If PCA was being used for dimensionality reduction, it would not be able to 

detect the intrinsic dimensionality as the 2 PCs with the smallest eigenvalues are so 

similar. In our case, since we are not using it for this purpose, this is not a problem. 

The noise variance parameter of the GMMs () was set to the smaller of the fol- 

lowing 

e Half the distance between centres 

e The magnitude of the third PC?. 

Figure 3.2 shows the initialized cone. 

ntkonton of OTM Maro 

   

  

Figure 3.2: The initialized conical manifold lying along the main axis (first principal com- 

ponent) with large and small diameters computed using scaled second principal component. 

The (blue) crosses represent the targets, to which the initialized RBF was mapped; these are 

coincident (nearly) to the mixture model centres. The view is along the mid beam axis. The 

cloud of data points are shown as (red) dots. 

With its axis running along the y axis of the data coordinates. 

In practice, the magnitude of the third PC will always be similar to the second due to the conical 
shape of the data. 
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3.3.3 Training 

Training of the GTM used 30 iterations? of the standard GTM EM algorithm as detailed 

in [7]. Figure 3.3 shows the manifold after training. The model was then applied to 

test data (t’ = t{,...,t\) which had been manually processed to remove outliers, and 

the log likelihood test error computed (2.13). 

\Vavataaton in ia Space Ato 30 van 

  

Figure 3.3: After 30 iterations of the EM algorithm the manifold has aligned itself with the 

data. 

Experimentation resulted in the choice of a combination of 36 RBF centres on a 6 

by 6 grid (which seemed to adequately span the dimension and scale of the data) and 

400 latent points (GMM components) which together proved to be a good compromise 

between computational effort and minimum test error (See Section 3.5). Experiments 

were carried out with increasing numbers of latent points, including some in which 

there were more GMM components than points in the data set. This did not result 

in a significant reduction in training error, nor in final variance of the elements of the 

GMM (8), which would have indicated a tighter, more accurate noise model. With 

fewer components in the model, 3 rapidly increased indicating that the convergence of 

the GTM was subject to a higher degree of uncertainty. 

  

’Due to good initialization, convergence can feasibly be achieved, regardless of various considera- 

tions (track etc.), within this number. 

23



CHAPTER 3. OUTLIER DETECTION USING GTM 

3.4 Hyperparameters, Activations and Generaliza- 

tion 

The character of a GTM is fundamentally controlled by three parameters. 

e The number of RBF functions. 

e a- The prior distribution over W, introduced in (2.18), which controls the mag- 

nitude of the weights and penalizes sharp curvatures. This is often referred to as 

a weight decay factor. 

e a - The variance of RBF functions (2.6) which controls the ‘stiffness’ of the 

manifold in data space. This parameter only exists with Gaussian activations in 

the RBF. 

The parameters in the last two methods are commonly referred to as hyperparam- 

eters. 

The first of these can be fairly roundly dismissed as a fairly blunt tool for improving 

generalization and the model can be more flexibly controlled by varying the latter two 

hyperparameters. Experiments were carried out in hyperparameter space to see how 

the initialization and training of the model were affected. 

3.4.1 Hyperparameters 

The GTM with Gaussian RBF activations was trained with all combinations of the 

following values, determined by experimentation 

e a=0,0.001,...,0.1 

eo =0.4,0.48,..., 1.2 

and the resulting test error plotted. 
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From Figure 3.4, which shows the effect of the two hyperparameters on the negative 

log likelihood (2.13) test error, it can be seen that in the area of the minimum test 

error the effect of a was relatively slight and that the model was much more sensitive 

to variations in o. 

  

Figure 3.4: The surface shows the variation of test error with the two Gaussian activation 

hyperparameters. The prior over the weights (a) has very little effect on the error in the 

region of the minimum error (along the line ¢ = 0.9) while the variance (7) has a more 

marked effect. 

3.4.2 Alternative Activations 

Although the most popular activation function for the mapping is Gaussian, experi- 

ments were also carried out using the TPS activation to see if this would have any effect 

on training performance. In addition, experiments were carried out with the similar 

R4LogR function (x*In(z)) which has similar properties to the TPS. 

The thin plate spline does not have any variance (width parameter) o and therefore 

its only regularization comes from the prior over the weights a. Figure 3.5 illustrates 

that, as with the Gaussian activation, the error is very insensitive to the weight decay 

factor until the point where it becomes so big that any non-zero weights are penalized 

so heavily that the manifold collapses into a single line along the axis of the cone. 
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Figure 3.5: Thin Plate Spline and R4LogR activations have no width (variance) parameter. 

The variation with test error is relatively insensitive to the prior over the weights until the 

collapse of the manifold to a single line. The solid (blue) line shows TPS performance and 

the dashed (red) one, that for R4LogR 

3.5 Manifold Aligned/More GMM Components 

Since we are trying to model off-manifold noise, it seems reasonable that we should 

investigate a noise model with a full or diagonal covariance matrix, where the noise 

normal to the manifold is less than that along it and sensitivity to outliers which are 

removed from the dense layers of the data would be increased. A contrasting method 

of achieving the same effect is to increase the number of mixture components which 

will result in each having a reduced variance in the maximum likelihood solution. 

A possible scenario is illustrated in an area of low data density in which a relatively 

low number of spherical Gaussian centres exist (Figure 3.6) where points may have low 

probability to centres but be close to the line of the manifold. 

Full covariance or increased numbers of spherical Gaussians may account for these 

points more correctly (Figure 3.7). 

The first method considered for calculating the full covariance matrices involved the 

use of directional curvatures of the GTM manifold, as discussed in [8], which requires 

the partial derivatives of the mapping y(x, W) with respect to the latent variable x 

Oy _ Ibm 
Oc, Oz,’ 
    (3.2) 
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Probability of Data Points - Spherical Gaussians 

  

Figure 3.6: Relatively low numbers of spherical covariance noise modelling nodes in 

areas of low data density may erroneously mis-identify points which lie close to the 
manifold but not to their nearest GMM centres as outliers. The lightly shaded (yel- 
low) points outside the circles representing the mixture component variances will have 

disproportionately low probabilities even though they may lie close to the manifold. 

Probability of Data Points - More Spherical Gaussians 

Oe 
(a) Manifold Aligned Noise Model (b) Increased Centres Spherical Noise Model 

  

Figure 3.7: Increasing the variance along the manifold is one solution to the misrepre- 
sentation of data points illustrated in Figure 3.6, as is increasing the number of mixture 

model components to correctly model the data close to the manifold. 

where r = 1,...,L latent space dimensions! and m = 1,...,M — 1, hidden unit 

activations excluding the bias term ¢o. The idea for each latent point was to map a 

line of unit length, with the latent point at one end, into data space. The alignment 

of the line in latent space would dictate the direction of the resultant vector in data 

space. For instance a vertical line in Figure 3.1 would emerge in data space as a 

tangent running parallel to the axis of the cone. A similar process could be carried 

out with a horizontal line in latent space resulting in a tangent at right angles to the 

first. Lastly the line normal to the surface to the cone could be constructed using the 

ones {2i5 220.5 EL}. 

27



CHAPTER 3. OUTLIER DETECTION USING GTM 

first two. From these 3 vectors, which could be scaled as required, a full or diagonal 

covariance matrix could be constructed for each Gaussian mixture component. In 

this case, a diagonal covariance matrix could be used as only the variance along the 

principal axes are of interest and so the off-diagonal elements in the matrix would 

be redundant. Subsequently a simpler chord-based method, which generated similar 

vectors purely using the position of neighbouring mixture centres in data space was 

tried. The vectors could be scaled such that the axis aligned covariance was increased 

or conversely the covariance normal to the manifold was reduced. 

Having full covariance matrices changes the EM algorithm in the following ways. 

e Instead of calculating Euclidian distances between data and centres in data space, 

the Mahalinobis distance (A), which takes account of the shape of the covariance 

matrix, is required in the E-step 

A? = (x— y)7 E(x — y); (3:3) 

where © is the D x D covariance matrix and y is the centre of the mixture 

component. This results in increased computational effort. 

e The closed form updating of the weights using the original M-step is lost as the 

weights W are used in the calculation of the covariance matrix which is required 

in the E-step. The existing M-step can still be used, however, as an approximation 

to update the weights. 

Experiments using this approach soon confirmed the problems discussed in [7] Chap- 

ter 6. 

e The added computational effort in calculating the full covariance matrices with 

less centres was approximately equivalent to increasing the number of centres. 

This has a similar effect in modelling off-manifold noise as the variance of the 

mixture components reduces in the maximum likelihood solution and the area of 

data will contain more mixture components. 
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e Increasing the number of centres (with spherical covariance matrices) retained 

the M-step as an exact, closed form method of updating the weights. 

e After a point, there was no significant reduction in test error as a result of either 

increasing the number of centres or using full covariance matrices. In addition, 

after this limit in the number of centres with spherical covariance matrices had 

been reached, the final variance of the GMM model components did not decrease 

indicating that the limit in modelling of the off-manifold noise using GTM had 

been reached and that using manifold aligned covariance matrices would achieve 

nothing. 

For these reasons, the use of full covariance matrices was abandoned. 

Figure 3.8 shows the performance of the GTM manifold with increasing numbers 

of centres. It can be easily seen that there is a minimal reduction in both error and 

noise variance for a significant increase in computational effort. 

Folate Pedormance of GTM with Number of Con 

  

      
aoe ss ae reo a See 

Figure 3.8: Performance of the GTM manifold in training: The reduction in test error is 

illustrated by the dotted (green) line, the final covariance (3 - a measure of the effectiveness 

with which the noise has been learned) by the solid (blue) line and increase in computational 

effort in terms of time to train by the chained (red) line. 
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3.6 Identification of Outliers 

The pre-processed test data discussed in Sub-section 3.3.3 was used to choose a prob- 

ability threshold p;,(t|W, 3), where W and are the parameters of the GTM, below 

which data points (using the same test set without the outliers removed: t°) were 

deemed to be outliers. Figure 3.9 shows a plot of the probabilities of the data points 

and the threshold. 

Pontar Pratl Ona Pots Tah 00008 
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Figure 3.9: Data points and their probability plotted with threshold of 0.004. Those falling 

below the threshold (shown as a (green) horizontal line) are classified as outliers. The manu- 

ally identified outliers, which were removed from the test set and used as a basis for scoring 

the success of the model are shown as (blue) circles. 

The success of the model in identifying outliers was scored on the number correctly 

identified’ as a proportion of the total identified including erroneous ones. This is a 

rather misleading measure, as will be discussed in Section 3.7. 

Figure 3.10 shows the outliers identified on the plot of the trained manifold; it should 

be remembered that these outliers are identified on the basis of their probability under 

the trained model, which is based upon their distance to it. It will be noticed that 

there are a larger number of identified outliers at the ‘nose’ of the cone; perhaps this is 

an indication the cone is not so well defined in this area, that is to say that there may 

be more noise. This is more evidence for fact that the noise varies over the surface of 

®Compared with those manually removed from a test set. 
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the cone; this will be addressed in the second part. 

Figure 3.10: Manually identified outliers are shown as (red) stars, those identified by the 

GTM as (blue) circles. As can be seen, many more GTM outliers are identified towards the 

*nose’ of the cone, where the shape is less well defined. Also, some manually identified outliers 

lie close to the GTM manifold but are spurious from the point of view of wind vectors as 

  

discussed in Section 3.7. 

The quantitative results are tabulated in Table 3.1, based on a comparison between 

the test set referred to in Subection 3.3.1 and the original set from which it came before 

excluding the outliers. 

cE SST) 
Sigma? 

  

  

  

  

Track | Threshold | ‘True’ Outliers | GTM Outliers | Score 

i 0.0004 22 26 9 

0.0008 34 11 

10 0.0004 24 34 8 

0.0008 72 11 

19 0.0004 34 62 18 

0.0008 105 22           

Table 3.1: The ’score’ based on 2 validation samples of 500 points with and without 

manually identified outliers removed. The table shows the track number, two threshold 

values, the number of outliers identified manually and removed from the validation set, 

the total number of points identified as outliers by the GTM, and finally, the number 

of GTM outliers which agreed with the manually removed ones. 
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3.7 Discussion 

Having attempted to model the scatterometer data using a GTM, the following points 

are drawn, 

e The use of GTM for the visualization of high dimensional data has been proven 

to be useful. The first part of this project has borne out that the basic method is 

valid for the modelling of data noise and identification of outliers although with 

some reservations as will be discussed. 

e The modification of latent space is useful for incorporating prior knowledge of 

the data being modelled. The more the geometry of the latent space can reflect 

that of the data, the more accurate the model and the less the mapping function 

is having to distort the manifold to ensure it fits the data. Comparisons carried 

out using GTM with a regular flat latent space still managed to model the data 

after a fashion and even identify outliers, although generally it identified less in 

total and less of the manually identified ones. The main difference, however, was 

in the final variance of the noise model which was much greater. This would 

indicate that the GTM with latent space topography modified to incorporate 

prior knowledge of the data will model it in a more accurate manner. Table 3.2 

shows the comparison of the test error and final variance between the conical and 

flat GTMs for the 3 sample tracks. 

  

Track 1 | Track 10 | Track 19 

Test Error Conical | 4.539 6.3524 6.9787 
Flat 4.583 6.489 7.000 

Final Variance | Conical | 0.109 0.1768 0.1755 

Flat 0.130 0.2536 0.2292 

  

  

          
Table 3.2: The comparison between a GTM with a plain rectangular grid of latent 

points and one with the latent space topography discussed in Section 3.2. The conical 

GTM outperforms the other marginally in test error and by a more significant amount 

in terms of the final variance of the GMM components. The data set was the same as 

used to produce Table 3.1. 
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e The main weakness of the procedure was that of trying to model a double skinned 

self intersecting cone with a single GTM manifold. The ‘best fit’ will be some- 

where between the two skins and, in areas where the distance between the two 

skins is large, this will vary quite considerably from the actual data. This will 

result in a false representation of the variance of the data at these points and the 

identification of any outliers will therefore be flawed. Fig 3.11 shows the single 

path of the GTM manifold through a cross-section of the scatterometer cone. 

  

Figure 3.11: True outliers (shown as (blue) stars) are correctly identified by the GTM if 

they have low probability to the GTM manifold, shown as a (red) dotted line. This will not 

always coincide with data points which lie a long way from the theoretical cone. Similarly, 

in areas where the GTM manifold has to find the best fit to areas where the two surfaces of 

the cone are far apart, valid scatterometer points may be identified as outliers. 

e Variation of hyperparameters (see Figure 3.4 in Subsection 3.4.1) obviously has 

an effect upon how the GTM behaves. However the model is far more sensitive to 

the variance of the RBFs (a) mapping the latent to data space than to the prior 

imposed on the weights a. This would seem reasonable, as the mapping from 2 

to 3 dimensions and to the target data is relatively smooth and therefore will not 

require, nor be affected by such regularization as a imposes. The stiffness of the 

manifold, however, will affect the manifold’s ability to fit to such curves as the 

data has® and this, in turn will affect the test (and training) error. 

°The data by no means lies on a perfect cone, and its curvature does change dependent upon the 
track, and therefore incidence angle, of the satellite beam. 
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e Success of the model. The main fault with the scoring of the model’s ability to 

identify outliers rests with the definition of what is an outlier. When manually 

removing outliers from the test set, not only was ‘distance to cone’ taken into 

account but also readings which were on the cone, but spurious from the point 

of view of their position in terms of wind speed and direction. The outliers from 

the training and comparison test set had been removed using visualization of 

the data relative to a theoretical manifold created by NN3CMop (described in 

Section 2.1) and by identifying data points which were at grossly at odds with 

their neighbours in the wind fields identified by wind speed and direction; it was 

this latter criterion which identified outliers which could not be subsequently 

highlighted by GTM. A data point which provides a spurious wind vector due 

to its position on the cone is rightly deemed an outlier in v,v’ space but not o° 

space and consequently the GTM will not classify it as such, since its probability 

given the model is high enough to be above the threshold. This is illustrated in 

Figure 3.9 where the main body of the manually excluded outliers lie well above 

the threshold in the main body of the data. 

e In the initial stages of the project it was questioned whether the data should be 

modelled using a double-skinned cone. However it was decided that the nature 

of the theoretical shape of the data was such that, whereas a double-skinned 

might effectively model areas where the two layers of data were well separated it 

would have problems where they coincided. In these areas, two layers of mixture 

components would effectively be competing for a single layer of data points. It is 

likely then that a situation may arise where component centres would compromise 

by finding a position either side of the data and be effectively repelling each other. 

The situation is the converse of the actual result where the single GTM is torn 

between data in areas where the skins of the cone are separated. 

e We were fortunate to have both a training and test set from which outliers had 

been manually removed. If the GTM had been trained, using the EM algorithm 
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and sum-of-squares function, on a data set which included outliers this would 

affect the convergence of the model with the result that data points which were 

outliers might not get identified as such and vice versa. For this reason alternative 

error functions (such as Minkowski Error [1], Least Median of Squares [4] or Least 

Trimmed Squares [5]), which have been investigated in general outlier detection 

research, might improve the effectiveness of the model in this regard. An alter- 

native is to use an iterative technique in order to progressively remove outliers; 

training with outliers initially, removing those which are identified, re-training 

and so on. 

e The shape of the GTM manifold seems to be less well defined at either end of 

the cone (Figure 3.3). This could be because there are less data points in these 

areas, or because the noise is increased. Hopefully the second part of the project 

will go some way to clarifying this. 
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Chapter 4 

Input Dependent Noise 

4.1 Introduction 

We now come to the prospect of modelling the output noise separately as dependent 

upon the inputs. This is termed Input Dependent Noise and will be referred to from 

now on as IDN; it should not be confused with any input noise, which is dealt with 

separately in the model which will be used to compute o°. 

The current residual noise projection of the o° data is a function of retrieved wind 

speed and incidence angle is illustrated in Figure 4.1 and strongly implies that there is 

at least a trend in the noise variance with speed. This projection uses the NN3CMOD 

model as described in Section 2.1. 

In the first part of the chapter the principle of modelling output noise using 2 net- 

works will be discussed in general. There are two methods of modelling the noise: 

Using the maximum likelihood method to update the weights of both networks simul- 

taneously, or an iterative approach in which the training of each network is linked with 

the other and each is updated as a result of the output of the other. In this project, 

the maximum likelihood method will be discussed but only the iterative technique will 

be used in the experiments. 

Next, some modifications to the scatterometer forward model NN3CMopD, intro- 

duced in Section 2.1, will be implemented. Finally, the iterative technique is initially 

applied to a toy problem and then transferred to the scatterometer model which has a 

slightly more complex structure. 
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(a) Variation of Noise Variance with Speed (b) Variation of Noise Variance with Incidence 
Angle 

Figure 4.1: Residual values 60° = O predicted ~ 0 .erved Plotted as a function of retrieved wind 

speed (a) and incidence angle (b). The solid line gives the running mean, the dotted line + 

one standard deviation. In the speed graph, all beams are considered together, however, the 

mid beam incidence angle range is lower and therefore to the left in (b). 

4.2 Input Dependent Noise 

In this scenario, it is assumed that the noise in a data set is given by 

tn = f(Xn) + U(Xn), (4.1) 

where x, and t, are an input and target respectively of a set of N data points, f(-) is 

the function mapping the mean of t, and v(-) is the noise, generated from a random 

process having a Gaussian distribution with a zero mean and a variance dependent 

upon x. 

4.2.1 Maximum Likelihood 

There are two networks, given by yn = y(Xnj;w) and 6, = {(x,;u), modelling the 

mean and the noise of the function respectively. The likelihood function may then be 

expressed as 
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(Dw, 2) = 7 ex (— Spats) (42) 

where D is the data {x,,, t, } comprising N points, E, = 3(yn—t n)* and the normalizing 

factor is given by 

(2n)N/2 

Thies Bn! pe Be 

It will be remembered that (3, is the inverse noise variance 1/a? associated with a single 

ae (4.3) 

input Xp. 3, therefore, will be a vector {(1,...,8n} . 

The error (negative log likelihood) function may then be expressed as 

E(w,u) = —Inp(Djw,») 
N N 

=> fEn—5> Ih. ea! 
n=l n=1 

The third term (—In(27)%/) is constant and, since it is minimization of the error 

term that we will subsequently be interested in, is ignored. The addition of regulariza- 

tion terms (priors) gives 

N N 
uf 

E(w,u) = 2d BnEn — 5 » InBy + Qw By + OuEu, (4.5) 

where 

1 2 1 2 =i == . 4, Ew = 5ilwi? Bu = 5llull (4.6) 

In the pure Bayesian framework, the priors (a, and a,,) would be estimated proba- 

bilistically; in the scatterometer case, however we have sufficient prior knowledge to fix 

them a priori. The method used in this project, then, is penalized maximum likelihood. 
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4.2.2 Bayesian Inference/Penalized Maximum Likelihood 

For a data sample, D = {t,,t2,...,¢y}, maximum likelihood will yield the standard 

results for the most probable values of jz, the mean and o?, the variance 

1 x 

n= » tn (4.7) 

and 

oS i 
Sa dit — pi)’. (48) 

This value of G is known to be biased, the average over the samples being 

(4.9) 

  

where (-) is the expectation or average. This only approaches (4.8) as N — oo. 

This bias may be compensated for by marginalizing over the prior distribution! 

giving a marginal likelihood 

w(D|o*) = f »(Dlo?,n)p(w)au 

  

1 1 wv (4.10) 
a2 

aiet |-a di ltn — fi) |: 

which when maximized with respect to o? gives 

1 
x2 _ a2 e = Waid a. (4.11) 

which is unbiased. 

At this stage it is wise to identify the exact models used for the networks modelling 

the mean and variance of the data? which will facilitate some of the computations later. 

RBFs are again used with the @-network having an exponential output in order that 

the noise variance is always positive® 

1A “flat? prior is used. 
Hereafter referred to as the y-network and the G-network. 
’This is a common procedure and simply means that the output of the 8 network is In 3. 
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y(x;w) = ¢(x)w B(x; u) = exp[y)(x)ul. (4.12) 

As in the first part of the project (2.5), the RBF mapping comprises activations 

combined with weights. @(x) and w(x) are the activations and w and u the weights 

for the y-network and the 6-network respectively. As before Gaussian, 

(x) = eo(-3). (4.13) 

and TPS, 

(x) = x*In(x), (4.14) 

activation functions are used. 

The next step is to develop the error functions for the two networks and the hier- 

archy which will be used in their optimization. The first stage is to define the weight 

priors which are taken as Gaussian and isotropic 

kw/2 

vielax) = ($2) exp(—a»Zw), (4.15) 

ky /2 

ntula.) = ($2) exp(—auBu), (4.16) 

where k is the number of elements in the respective weight vectors (w and u) and 

is defined in (4.6). 

So, for a given 0 (which will be determined in the next stage), W is found by 

maximizing the posterior distribution 

p(D\w, 0)p(wlaw) P(w|D, 8, aw) = = 4.17 (w| ) P(DIG, ae) (4.17) 

where the denominator is given by 

HDi oy) = [vow ipcwlen) dw: (4.18) 

40



CHAPTER 4. INPUT DEPENDENT NOISE 

Using (4.2) and (4.15), taking the negative log and ignoring any constants, an 

expression for the error of the y-network is obtained 

N 

S(w) = 7 Bn En + Shh, (4.19) 
n=1 

where £,, is the squared error for a single point 3 (Yn - tena Here we have the first of 

the advantages of using RBFs, where the most probable weights can be found by ‘one 

shot’ matrix inversion techniques. In this case 

w=A'8 Bt, (4.20) 

where @ is an N x N diagonal matrix with the elements 6(x,;u), ® is an N x M 

matrix of RBF activations (M is the number of basis functions including the bias), t is 

an N x D matrix of targets (D is the dimension of the data) and A is the regularized 

Hessian matrix of the y-network which is discussed in Appendix B. The Hessian matrix 

is regularized in the same way as the error functions, 

Ay = Hy + aul, (4.21) 

where Hy is the unregularized data Hessian, a is the weight decay factor for the y- 

network and I is the identity matrix with the same dimensions. 

Now we develop the error function for the $-network which comes from the marginal- 

ized posterior distribution 

p(D|u, p(t, a) 
ulD, Qu; Ww) = p(ul ) (Dae. a) (4.22) 

This is the probability of the G-network weights, given the data and the weight 

regularizing terms in both networks and uses Bayes’ rule, (4.16) and (4.18). The 

denominator is marginalized in the same way as (4.18) by integrating w out. In the 

case of the models and priors we are using, this integral becomes Gaussian and therefore 

can be performed analytically. Taking logarithms and discarding constants as before, 

the error function for the -network may be expressed as 
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N 

= PoE + Shu P= ES wi 5 mnlAl, (4.23) 
n=1 n=1 

where | -| indicates the determinant. The value for i may be found by minimizing this 

function using any non linear optimization technique. In this case Scaled Conjugate 

Gradient (SCG) is used which, in common with most optimization techniques, required 

an expression for the gradient of the error with respect to the network weights. Thus, 

an expression for 0M (u)/0u is required. In the main, the expression is fairly straight- 

forward. The addition of the Hessian term‘ and its derivative with respect to the 

network weights is the main complication. Utilizing the chain rule of differentiation, 

ae 5 Pell ae 
Op, Ou 

OBn = Jy ie An'g,g7) oe (4.24) 
n=1 

N 

0B, a. T a-i CPn = Doers Baa 

where g, = Oy,/Ow. The whole expression for the gradient of the @-network with 

respect to the weights is therefore 

N aM(u) _ 1 
aan aC 58a AD Ba —   OBn 

A, am) + ayu. (4.25) 

The evaluation of the Hessian is discussed in Subsubsection 4.3.2 and Appendix B. 

The algorithm, then, is iterative 

1. Evaluate W using an initial value of and (4.20) 

2. Optimize (4.23) to find @ 

3. Re-evaluate W using 

4. Repeat 2 and 3 until converged 

“This is the only difference between the error term in the Bayesian inference (or penalized maximum 
likelihood) technique and the Maximum Likelihood one. 
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True Bayesian inference would involve third stage described in [3], which would go 

on to carry out a similar procedure to update values of a, and a,, but as stated in 

Subsection 4.2.1 these will be fixed using prior knowledge. 

4.3 Applications 

4.3.1 A Toy Problem with IDN 

Before applying the above technique to the scatterometer data, it was decided to ex- 

periment with the toy sine wave problem used in [3] with some modifications. The 

target data comprised 100 training sets of 10 data points, each randomly selected from 

1000 points based on sin(0.357x) with zero mean Gaussian noise with variance given 

by o? = 0.05 + 0.05x?. The modifications concerned a change of activation function in 

the RBFs (the RBF variant of NN3CMop currently uses Thin Plate Spline (TPS) ac- 

tivations, as opposed to Gaussian ones in the original toy problem) and to experiment 

with varying (but not updating) values for ay/u. Figure 4.2 shows the performance of 

the two networks on the toy sine problem. 

The results of the toy experiment are similar to those in [3] although there did 

seem to be a tendency for the thin plate spline activations to be somewhat unstable 

with points which are at the extremes of the range spanned by the RBF centres. It 

was found that this effect could be reduced by setting the RBF centres to span the 

expected range of the data, rather than the actual one for each data set; in this way 

the data was more effectively encompassed. Because we wanted to model the noise 

evenly across the whole data set, it was decided to set the RBF centres to evenly span 

the data limits without taking any account of varying density within it. With this 

reservation, it seemed fair to transfer the procedure to the scatterometer data. 
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(a) Y-Network Results with Error-Bars (b) @-Network Results 

Figure 4.2: The results of the toy IDN problem averaged over 100 sets of 10 data points. On 

the left (blue) solid line shows the original function, the (red) chained line is the mean of the 

RBF output, the (black) dashed lines represent one standard deviation from the mean. The 

spacing of the RBF centres is even across the range of the data and the widths (in the case 

of Gaussian activations) are chosen as the distance between centres. The activations of the 

y-network are TPS while those in the @ network are Gaussian. The prior over the weights in 

the y-network was 20 and in the 3-network 0.01. On the right, the (blue) solid line shows the 

true function variance of 0.05 +0.05x? and the (red) dashed line the output of the 3-network. 

4.3.2 Application to Scatterometer Data 

This section deals with applying the IDN algorithm’, to the scatterometer data. This 

will involve a modification to NN3CMopD. In addition the mechanics of computing the 

Hessian A will vary from the straightforward RBF Hessian due to the inclusion of the 

functional part of the model which results from the Fourier terms. 

Scatterometer Error Function 

The first thing to consider in the application of the IDN technique is the error function 

which will be used for the training of the mean of the o° data. It not only relies on the 

data sum-of-squares error and a regularization term involving a prior over the weights 

5As it has been shown that for limited data sets, the Bayesian iterative model is superior to the 
Maximum Likelihood approach [3] it is this method only which will be employed on the scatterometer 
data. 
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but also the error involving the input noise from the wind vectors® from which the 

speed s and relative wind direction x are computed. The error is given by 3 terms’ 

E=E,+2,+E& 

= DUG %.8,w) - 0°)/(202) 
+0(@- wy? + @- wy) 28) 

+ ow? /(202). 

(4.26) 

The full derivation of this cost function can be seen in [2], Section 3.4. E2 represents 

the error due to input noise, that is the difference between the noise free (ideal) wind 

vectors and the corresponding noisy ones given in the data set. The distribution, 

P(%n|%n), where x, and %, are the noiseless and noisy inputs respectively, is assumed 

to be spherically Gaussian in the wind component vectors (v, v'). 0? is the variance in 

the wind vector measurements. The value used in these experiments is estimated [6] at 

2.25m?s~?. A more in-depth study of modelling data with input uncertainty is carried 

out in [9]. 

The abstract y-network error function derived in Subsection 4.2.2 is reproduced 

here for contrast 

N 

S(w) = > BrEn + wl. (4.27) 

It can be seen that E, and Ey in (4.26) are equivalent to the two terms in (4.27) where 

By, = 1/20? and ay = 1/02, and so the error function for the scatterometer model may 

be rewritten in the same form as (4.19) 

~ 5Tn [2] these are referred to as u and v but, to save confusion with the 6-network weights, we will 
refer to them as v and v’. 

7A fourth term H,(!), involving the prior distribution of the noiseless wind vectors is assumed 
constant and therefore ignored.
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S(w) =E, + Eo + Ey 
N 

=o PnBa 
n=l (4.28) 

+ © Iw? 

Modifying the Scatterometer Model 

One modification to the NN3CMoD model was to remove the index (p) from (2.3) 

which reduces it to a linear equation and simplify subsequent calculations. It will be 

remembered that the purpose of the index was to compensate for the truncated (2 

terms plus a constant) Fourier series. It is now, therefore, necessary to extend the 

series to include a further 2 terms. The equation now becomes: 

Oy = A + a; Cos(x) + a2 cos(2x) + a3 cos(3x) + a4 cos(4x), (4.29) 

which is a much simplified form and, since the expression will be automatically be real 

for all inputs, the need for the tanh(-) term is also removed. The conversion to of, 

is equivalent to 2.4. This form, with an RBF network in place of the MLP, and the 

separate model for fore/aft and mid beams is labelled RBF3CMop and is illustrated 

in Figure 4.3. It has the property that it is linear in the network weights which is of 

use in computing the Hessian as will be seen in Sub-subsection 4.3.2. 

The Hessian Matrix for RBF3Cmod 

The justification for using the outer product to determine the Hessian matrix for 

RBF3Cmod is discussed in Appendix B but we need to take into account the functional 

element of the model, retained from the original CMop4. (4.29) may be rewritten as 
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Figure 4.3: A block diagram of the hybrid model RBF3CMop. The inputs s and x are 

computed from the wind vectors (v and v’) and @ is the radar beam incidence angle. ao,...,a4 

are the outputs from the RBF network and the coefficients of the Fourier series. oo is the 

inferred scatterometer value. 
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From (4.12) we get the expression 

ge =¢, (4.31) 

where a is the output of the y-network. @ comprises columns ¢,, each an N element 

column vector with k = {0,1,...,M@} where M is the number of hidden units in 

the network, including the bias term ¢p. Because the terms of the Fourier series are 

summed, the output off, is affected by each weight in the network; this would not be the 

case if we were computing the derivative for each of the 5 outputs of the RBF3CMop 

network alone where only the weights on the path to the individual output units have an 

effect. The expression for the derivative with respect to each row of weights associated 

with individual hidden units (each of which comprises 5 elements), is 

Oar, T: in — 4,32 B= Dy, OF, (4.32) 

where F is defined as 

F = |cos(0x) cos(x) cos(2x) ... cos(4x)| » (4.33) 
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an N x 5 matrix and then 

& = {g0,81,---,8u}; (4.34) 

resulting in a row vector with M x 5 elements®. It is now possible to compute the 

Hessian matrix for the whole model using the outer product method. 

Training the y-network 

Tt has been said in Subsection 4.2.2 that the y-network can be trained using matrix 

inversion in a single step (4.20). This is fine with a straight RBF network. RBF3Cmop, 

however aims to not only learn the mean of the scatterometer data, but also the input 

noise of the wind vectors, v and v'. The ‘true’ values 0 and v’ can only be learned by 

non-linear optimization. There are subsequently two options. One is that the matrix 

inversion technique is used for a initial or interim value of the wind vectors (from which 

are calculated, the speed and relative direction inputs) in order to obtain W for those 

values. Then, an optimization routine could be employed to update the ‘true’ value of 

the vectors and the process repeated. The other option is to optimize the whole model 

using SCG (or similar) converging towards the ideal values for the wind vectors and 

the network weights at the same time. Preliminary experiments showed that the latter 

approach was no more computationally expensive and that the risk of converging to 

spurious weights, for a given set of wind vectors, was reduced. In subsequent work, 

SCG is used for optimization of both the y and 6-network weights. 

Results of Scatterometer Experiments 

Initially the RBF3CMoD model was completely trained, using 50000 iterations of the 

SCG method and a fixed variance, estimated by Stoffelen [6], of 0.04 for the fore and aft 

8In this resulting vector, the elements are ordered with bias term at the front of each gy, compo- 

nent. In practice this is rearranged so that all the bias terms (the column vectors resulting from the 

multiplication by ¢o) are all grouped at the end of the vector and consequently in one corner of the 

Hessian matrix. 
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beams and subsequently Cornford [2] of 0.08 for the mid beam before the IDN algorithm 

was applied in order to learn the variance more accurately. The subsequent training to 

learn the noise variance consisted of an outer loop, in which the y-network is trained 

to learn @ for the current value of w, the weights of the 3-network are then updated 

using the weights of the previously trained y-network. We used 12 hidden units in 

both the RBF networks; 3 to cater for the speed input times 4 for the incidence angle. 

This appeared to be sufficient for both the forward model mapping and that of the 

noise model. Noticeable during this part of the training was that it seemed that a 

lot of time was lost unnecessarily training the initial model so thoroughly. When the 

iterative IDN algorithm was applied to a roughly trained model, as soon as the noise 

variance was adjusted as a result of learning 0 for an interim value of w, training of 

the y-network advanced in large steps, thus making the training much quicker. This 

can be seen from the record of the training error for both the y and # networks, Figure 

4.4. As will be discussed later, this proved to be a rather false indication. 

  

    

a a a ee) B00 600~=«700~=S«CiRODSSCOSC«N0. 

Figure 4.4: A plot showing number of SCG training iterations along the x-axis with training 

error along the y-axis. The training consisted of an outer loop of 10 cycles, within which 

the weights of the y-network were updated using 100 cycles of SCG. The weights of the 3 

network were then updated over a further 100 cycles of SCG. The (blue) dashed line shows 

the progress of the y-network and the (green) solid line, that of the G-network. 

The weight decay priors a, and a, and, for the y-network, were applied only to 

the hidden to output layer weights and not the biases. They were arrived at using a 
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validation data set and were set at 0.1 for the y network and 0.0001 for the -network. 

Our prior knowledge of the mean and noise variance of the data was such that we were 

confident that the mapping in both cases would be reasonably insensitive to any prior 

over the weights. 

The results of the training are illustrated in Figure 4.5 relative to geophysical speed 

and incidence angle. 

      

          

         

  

  
  

eae oo 
Sinadtmins ee ceocenerrebeestt |= siwnronaia 

on + 18.deg, Mid = va + 2s, Mid 

© ring see i 

i i 

a si Cceccvececceccescooesooreoen” 

on prin eee Hl 000008099000000000060000000000 

i J re ee salen 
, 7 . i = A i eau ape er ee cee ane aa) anes ran ao Cao 

(a) Noise Variance with Geophysical Speed (b) Noise Variance with Incidence Angle 

Figure 4.5: Both plots represent noise modelling using Gaussian activations in the 3-network 

and TPS activations in the y-network. Both networks contained 12 hidden units. The 

networks were trained using 10 iterations of 100 cycles of SCG for the y-network, followed 

by 100 cycles for the $-network, that is to learn the most probable weights (ti and W). Plot 

(a) is the variation of noise with speed. The (red) line is readings taken using the fore and 

aft beam model at fixed incidence angles of 25 degrees (o) and 59(*) degrees. The (blue) line 

represents readings using the mid beam model at angles of 18 degrees (+) and 47 degrees 

(<). These plots represent tracks 1 and 19 respectively for both the fore and aft and mid 

beams. Plot (b) is the variation of noise with incidence angle and shows variance with speeds 

of 2ms~!/24ms~! for the fore and aft beam (red, o and *) and mid beam (blue, + and ¢) 

models respectively. 

Finally, the IDN method was compared with modelling the data with fixed variance 

using RBF3CMop. The variance used was that discussed at the beginning of this 

section. The measure used for comparison was negative likelihood test error and as 

an example, in the experiment which produced Figure 4.5 the training error per data 

point was 2.584 compared to 5.076 for the model with fixed output noise. 
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4.4 Discussion 

e The Qazaz iterative IDN algorithm, when applied to the satellite scatterometer 

data seems to bear out some of the previous ideas of Cornford and others. Pri- 

marily, from Figure 4.5 we see that there appears to be a definite increase in the 

noise at the nose (low speed) end of the data. This would bear out not only what 

was previously thought, but the evidence from the GTM phase of the project. 

e In addition, there would also seem to be some correlation between incidence angle 

and noise and it would seem that the mid beam has higher noise associated with 

although there seems to be no physical explanation as to why. 

e An interesting by-product of the IDN technique is the effect of speeding up the 

initial stages of the training of the function network. Of course, this is an illusion 

since what is actually happening is that the training error is being reduced by the 

fact that the noise is being either modelled more accurately, or that the iterative 

technique is allowing the variance parameter to become too large. In the case of 

the scatterometer, it seems likely that unless a y-network is used whose weights 

have fairly well converged upon @, then the 3-network is accounting for the wind 

vector input noise. 

e It seems that, from the evidence in the toy experiment the TPS model was a little 

unstable at the extremes of the data range. It was found, however, that if the RBF 

centres were moved to span the possible range of the data (i.e. extend further 

than many of the data samples) the model performed much better. Gaussian 

activations appeared to be more stable in these areas. 
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Conclusions and Future Work 

5.1 Conclusions 

So what have we learned from the project? 

e The GTM as a technique for identifying outliers has been, in general, validated, 

although the reservations concerning the definition of an outlier would imply that 

some caution is needed in its application. 

e The scatterometer data set was not ideal for density modelling with a GTM; data 

with clearly separated layers which do not intersect would be more suited. 

e The choice of RBF activations had only little effect on the performance of both 

the GTM and the IDN techniques. TPS activations, however did seem to be a 

little more unstable in certain conditions and lacked the extra control of the 7 

hyperparameter. The GTM is, in this application, insensitive to variations of the 

weight regularizer a. 

e The view that the data output noise varies, dependent on at least one of the 

inputs to the forward model seems to have been borne out by the results of the 

IDN part of the project and, based on the comparison of training error discussed 

in Sub-subsection 4.3.2 the IDN technique does result in a more accurate model 

of the data in this case. 
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e It is possible that there is a need to exercise caution when applying IDN Bayesian 

inference, particularly to a training set with possible input noise. It seems wise 

to train the function mean network (the y-network) to a stage at least where it 

is close to convergence before trying to learn the noise. If not, the result could 

be noise modelling with a misleadingly large variance. 

5.2 Future Work 

The work of this project could possibly be continued in the following ways. 

e Investigation of combining the use of GTMs to identify outliers, with different 

error functions has the potential to improve performance, especially when using 

training data sets which contain, or may contain outliers. 

e Performance of the IDN technique might be improved by the inclusion of a noise 

hyper-hyperparameter to the $-network in order apply error bars to the way 

that the noise is modelled as well as to the mean of the function network. This, 

however is a never ending road would not, perhaps, reap any great rewards. 

e The use of data sets of increased size might yield some interesting results. A 

comparison of results between the maximum likelihood method of learning IDN 

and the Bayesian inference method may be worthwhile. With a large data set the 

under estimation of noise variance using the maximum likelihood method might 

not manifest itself as it would theoretically do with the small data sets which 

have been utilized in this project. 
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Appendix A 

Principal Component Analysis - in 

brief 

This Appendix briefly explains the basic technique of Principal Component Analysis 

{1] for as much as it is relevant to the application of GTM initialization. For this 

purpose, the specific case of 3-dimensional data is used. 

The data vectors, being in 3-dimensional space may be represented as a linear 

combination of 3 vectors 

3 
= SS ZUn; (A.1) 

n=1 

where x = {2}, 2»,23} and the vectors u, are orthonormal 

uj uy = by, (A.2) 

6 is the Kronecker delta. 

ce ae (A.3) 
0 otherwise. 

To ensure that the vectors u are the principal components of the data, the eigen- 

values of the covariance matrix of the data is used 

Duy = nn; (A.4) 
where © is the D x D covariance matrix of the data and D is the dimension of the 
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data: 

N 

D=)i@,—2)(@.—2)° (A.5) 
n=l 

and X is the mean of the data. The order of the principal components will be given 

by the magnitude of the eigenvalues and their respective eigenvectors. Because the 

covariance matrix is real and symmetric its eigenvectors are orthonormal. 

 



Appendix B 

The Hessian Matrix and the Outer 

Product Method 

The Hessian matrix, which is required for the calculation of the G-network error func- 

tion (4.23) and therefore the gradient function (4.25) is a matrix of second derivatives 

of the network error with respect to the weights with elements 

OE 

* Ow Owe’ ey) 

equation 

where the subscripts i, j, k and / are nodes in the network between which the weights 

apply. This is the generic formula for the Hessian and takes into account weights 

between input and hidden units and hidden and output units. In the case of the 

RBF network used in RBF3CMoD, the Hessian comprises elements associated with the 

hidden to output units only. 

The sum-of-squares output error function is being used, therefore 

1 N 

= Bap Yn — tn)”. (B.2) 

The second derivative with respect to the weights may be expressed as 

  
247 H= Aye Yn Fon ts) oy i} (B.3) 

Ow; Owy Ow Owe n=1 

The second term on the right hand side will be rendered negligible if 

e The outputs of the network are close to the target data set.
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e The second derivative of the outputs is small. 

In the case of RBF3Cmod, where the model (4.29) has been contrived to be linear 

in the weights, then the second derivative is zero and the second term disappears 

completely. (B.3) then reduces to the outer product approximation and may be written 

as 

N 

H=) gn, (B.4) 
n=1 

where g is defined in (4.24). It is this method which is used in the application of IDN 

inference to RBF3Cmod. 

It is worth noting that the outer product can be used for an MLP but, because it 

is non linear in the weights (see [1] 4.1.1 and 4.10.2 for a detailed explanation) and 

the network is not fully trained or the data is noisy, such that y — t is large, then the 

second term in (B.3) cannot be discounted and the outer product technique becomes an 

approximation. There are methods of accurately computing the Hessian for an MLP 

but non to date as computationally efficient as the outer product. It is for this reason 

that the NN3CMOD was adapted to use RBFs. 
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