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Thesis Summary 

Weather forecasting is one of the most computationally intensive activities that is 

routinely undertaken. This project studies the possibility of reducing the dimensions 

of the models and data sets considered, while maintaining reasonably good predictions. 

Techniques dealing with the two problems separately, dimension reduction and fore- 

casting, are applied on real data provided by the European Center for Medium-Range 

Weather Forecasting, and on an artificial data set generated using the Lorenz equations. 

A new algorithm is presented as an extension of the principal interaction patterns 

framework to neural networks, allowing a simultaneous optimization of the subspace 

basis for the data projection and the model considered to make predictions. 

Advantages and drawbacks of those methods are discussed, and conclusions are 

drawn from this study regarding the feasibility of reducing the dimensions in the fore- 

casting problem. 
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Chapter 1 

Introduction 

1.1 Presentation of the problem 

Today’s biggest computers in the world are used in military applications and to make 

weather predictions. This isn’t a scientists whim, and neither it is a waste of resources. 

Tn fact, weather forecasting is one of the most arduous challenges, partly because of the 

vast amount of computational power required, and partly because of the techniques 

involved, which range from statistical analysis to dynamical systems theory. 

‘The atmosphere is intrinsicly tridimensional, and thus must not be treated only at 

the Earth surface. Data is retrieved on different levels defined by surfaces of constant 

pressure. 

It is possible to infer more or less accurately the sea level pressure, the temperature 

of the atmosphere and the oceans, the relative humidity, the geopotential height’, the 

wind velocities,... at the levels considered thanks to satellites and direct observations. 

But it may not be possible to use all the variables because of practical limitations, and 

a choice has to be done to select the most relevant ones. 

The atmosphere can be modeled, non-uniquely, with a subset of those variables. 

For example temperature, geopotential height, wind velocities, and relative humidity in 

the ECMWF reanalysis reduced-resolution archive’. In this project, longitude-latitude 

gridded data was retained, but it is also possible to work in a frequency space [8]. 

Primary differential equations on those variables, drawn from physical principles, 

can be used to model the evolution of the data [6]. This is currently the approach 

favored in computation centers, as much for prognostic as for diagnostic purposes®. 

Due to the excessive amount of computational power and data storage space required 

to carry on such methods, this project rather uses a data-based approach in its ex- 

1Geopotential height Z is a measure of height defined with the gravity acceleration. It relates to 
the altitude z by the relation Z = [> aan, with g(h) the gravity acceleration at height h, go the 
mean acceleration at the Earth surface. It is useful in meteorological applications because g can be 
linked to the density at that point, which in turn can be written in terms of pressure and temperature. 
It is roughly equal to z at low altitudes where g(h) ~ go. More details can be found in [10]. 

European Center for Medium-Range Weather Forecasting (BCMWF 1996). See next Section 1.2. 
Diagnostic concerns the correction of the model considered in the light of observed data, prognostic 

the making of predictions.
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periments. Models allowing a certain flexibility, like neural networks, are fitted to the 

data. 

This project neither deals with the data assimilation, nor the physical interpretation 

of the variables. Rather, only the prediction aspect will be addressed. The goal isn’t 

so much to make accurate predictions. The main concern is to study the possibility 

of reducing the dimension of the data while keeping the predictions within reasonably 

good error bounds. 

1.2 Presentation of the data set 

The data used in this project was provided by the European Center for Medium-Range 

Weather Forecasting (ECMWF 1996). It consists of the north Atlantic’ subset of the 

2.5° longitude-latitude gridded, initialized, re-analysis global atmospheric data archive, 

over the period 1979-1994. It contains 6 variables: temperature, geopotential height, 

relative humidity, and the wind velocities. Some of those variables are plotted in 

Appendix A. In practice for this project, only temperature and geopotential height 

were selected, on the atmospheric levels of 850mb, 500mb, and 200mb. 850mb roughly 

corresponds to the top of the cloud-free lowest part of the atmosphere directly above 

the surface. The 500mb level is a standard benchmark in meteorology, and lies at a 

medium altitude where the atmosphere dynamics are ‘smoother’ than at lower levels. 

200mb variations exhibit another time scale, and to some extent reflect the longer range 

evolution of the atmosphere. 

The internal dynamics of this north Atlantic region are relatively smooth, and 

mainly driven by a West to East propagation. The 850mb level is more turbulent than 

the higher levels, and also partly forced by them. The 200mb level is the smoothest, 

and the slowest to vary. Those simple observations helped to interpret the results in 

the course of the experiments, justifying the choice for this region. 

1.3. Thesis overview 

Chapter 2 introduces some techniques for dimension reduction and forecasting that are 

already in use. This presentation also serves as a quick reference throughout the rest 

of the thesis. The reader may skip known parts, and come back later when reaching 

such a reference. 

Chapter 3 deals with the approach where dimension reduction and forecasting are 

treated separately. Practical results are shown, as is a justification for the next chapter. 

It is recommended to read both, in order. 

Chapter 4 presents an algorithm able to optimize jointly the dimension reduction 

and the forecasting model. Theoretical aspects and practical limits are discussed, 

together with possible uses for the algorithm. 

“The region selected spans 140°W to 57.5°E in longitude, and 67.5°N down to 30°N in latitude.



CHAPTER 1. INTRODUCTION 

In Chapter 5, an artificial data set is constructed from the Lorenz equations, with 

a much reduced size compared to the real data set. Performances and results of the 

methods presented in the preceding chapters are then compared. The reader is invited 

to use this chapter as a benchmark test for the algorithms introduced in this project. 

The description and results of experiments carried out on the real world data are 

presented in Chapter 6. Differences and similarities with results from the artificial 

set are highlighted. This chapter is helpful when trying to understand the difficulties 

arising when applying the algorithms to real data. 

Appendix A gives a graphical idea of the data set used in this project. 

Appendix B mentions the coding difficulties encountered in this project, and the 

solutions adopted. While not strictly necessary on a theoretical point of view, it could 

prove to be of great value if the reader has to implement similar techniques practically.



Chapter 2 

Standard techniques in previous work 

2.1 Dimension reduction 

2.1.1 The problem 

In a high dimensional dynamic data set, the trajectory in time may span only a lim- 

ited subspace, or it may be driven by a few hidden variables. The ultimate goal of 

dimension reduction in forecasting problems would be to restrict, project, or transform 

the data to retain only the information necessary for making predictions. Because 

dynamics have to be taken into account, dimension reduction doesn’t consists only in 

classifying observations into fixed groups. This is the main difficulty, retaining not only 

information about the data itself, but also on its evolution. Gathering observations in 

a restricted number of classes, as is often done to interpret high dimensional data, 

doesn’t tell much about the internal evolution of the individuals, assuming there is a 

time dimension. 

Nevertheless, similarities exist and can be exploited. For example, Empirical Or- 

thogonal Functions (EOFs) act like a Principal Component Analysis, using a variance 

maximization. On the other hand, the model used for the prediction is equally im- 

portant, and EOFs do not take it in account. For this, Principal Interaction Patterns 

(PIPs) are a possible solution. 

2.1.2 Empirical Orthogonal Functions 

EOFs are the basis vectors of an orthogonal decomposition of the data. Statistics are 

used to define the projection, in such a way as to maximize the variance of the data in 

each subspace in turn. 

More precisely, if e; is the first basis vector, it is computed by minimizing: 

([|Xe— (Xee)ei|!”) (2.1) , 
T 

where X; is a data vector at date t. The notation (); is used to denote averaging over 

10
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time. The second EOF e» can be constructed with: 

(|X — (X,.e:)er - (X:.e2)ea||”) (2.2) ie 

once e; has been obtained. The process can be repeated sequentially to compute all 

the EOFs. 

As detailed in [9], in practice a simpler singular value decomposition on the data 

matrix, 

Tyt=1 Titse +--+. Titer 

Tot—1 Totue «+. Lose 

  

Lnt=1 Tnt=2 +--+. UCnt=T 

is used. The columns 2,...2, are the components of the data vector X, for each 

date t. X can be composed of different variables, at different atmospheric levels, in 

the hope of improving the dimension reduction by using the correlation between the 

variables. Section 3.1, illustrates this on practical examples. Also, for this reason the 

prediction obtained by running models! on each EOF component series independently 

is not equivalent to running similar models in the initial data space. 

Since the variables aren’t homogeneous, it is necessary to mean correct and normal- 

ize them before reshaping and appending in one single column vector. As is customary 

in meteorology, it is also possible to remove the seasonality before computing the EOFs. 

In fact, since seasonality is a strong signal, if not removed it will appear mostly in the 

first EOF component. 

The main advantage of EOFs resides in their ability to capture most of the variance 

in the original data series, using only a few components. A quantitative example using 

radiosonde data is presented in [9, p293]. Unfortunately, maximizing the variance may 

not be relevant to the model used for prediction. Methods like the Principal Interaction 

Patterns, presented in the next section, have been designed to overcome this drawback. 

In practice, though, EOFs are easy to compute and still give acceptable results. 

2.1.3 Principal Interaction Patterns 

Principal Interaction Patterns are constructed so as to best choose simultaneously a 

subspace to project the data on, and a model within a given model class. The projection 

is linear, but the model is generic. In the particular case where the model is also linear, 

the basis vectors are called Principal Oscillation Patterns. 

Tn the following presentation, the notation M : (a,b) stands for a vector or matrix 

M of a rows and } columns. 

PIPs The data vector X; is projected on a (time-independent) reduced dimension 

subspace, by minimizing the residual reconstruction error. Within this subspace, 

1 Autoregressive models are used in Section 3.2.1. 

11
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a class of model is chosen. An objective function for the error minimization 

process is built to take in account both the model parameters and the subspace 

basis vectors. In the continuous case, this error is based on the difference between 

the rate of change of the true data vector, and its modeling using the subspace 

dynamics. In the discrete case, the function is a measure of the error committed 

after prediction and reconstruction. Averaging over the whole time series ensures 

the global best fit. In fact, more constraints and additional weighting terms can 

be added in the objective functions, and the metric chosen for the error measure 

can take in account statistical properties (the inverse of the covariance matrix is 

a common choice). The point is to always parameterize the model and the basis 

vectors, so as to optimize them together during the minimization process. The 

PIPs are the low-dimensional space basis vectors. A more detailed introduction 

to the PIPs scheme can be found in [5]. 

POPs Principal Oscillation Patterns are the linear case of PIPs. A data vector X; is 

expanded as X; = yy 24€; + & with e; the POPs, & residual noise. The model 

class is in the form of an update matrix A, 24; = AZ,+™, with 4 a stochastic 

forcing term (see Equation 2.11 for comparison). The minimization process leads 

to e; being eigenvectors of the averaged matrix < Xp1.X7f >< X:XP >"! A 

derivation of POPs from statistical principles can be found in [9, p335]. 

Let X : (n,1) be the data vector in the high n-dimensional space. The trajectory 

to first order of X is governed by: 

dX _. 
rae 

and in the discrete case: 

An FOG)! (2.3) 

X differs from the reconstructed variable Y : (n,1) by the error €: 

X=V+E, (2.4) 

The reconstruction from Z : (m,1) in a m-dimensional subspace is achieved using 

the PIPs P : (n,m): 

Y =P2Z. (2.5) 

Whereas X may range the original data space, Y can only lie in the region correspond- 

ing to the projection of the reduced dimension space using P. Thus, the assumption 

is that X varies mostly along a few dimensions for € to be small. 

Adjoint patterns D : (n,m) are defined as a set of vectors orthogonal to P, with 

respect to a metric M : (n,n). Setting: 

D=P(P™MP)+, (2.6) 

12
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ensures that P'MD = Ip, since: 

P™MD = P™M(P(P*MP)-*) (2.7) 
= (P™MP)(P™MP)" (2.8) 
= (2.9) 

The reduced dimension vector Z is defined from the original data vector X using 

the adjoint patterns: 

Z = D™MX. (2.10) 

A parameterized class of model G is then chosen to drive the evolution of the 

reduced dimension data Z, with a stochastic forcing term v: 

Z= G(a,Z)+v, with a = a,...a, the model parameters, 

and in the discrete case: 

Zig = G(a, 2) +H. (2.11) 

To build the objective error function e(a, P,G), one may introduce another metric 

M. The model G is fixed in the PIPs framework. The optimization is a least squares 

minimization of the residual error of the rates of change (continuous case) or the residual 

error after prediction and reconstruction (discrete case), averaged over the whole time 

period T considered: 

5. kes e= [IK -Ylhiae 

= fix — PG(a, D'MX)||;,at, using Equations (2.5), (2.11) and (2.10). 
ec 

and in the discrete case: 

€ = (|[Xeu — Yall), 
(2.12) 

a (Xen — PG (a; D™MX,)|li7) [ 

The second form of the equations shows that the optimization variables are a and P 

(since D depends solely on P according to (2.6)). 

Solving the partial derivatives equations with respect to a parameter a;, = =f, 

and with respect to a basis vector p,, Hop; = 0, in the hope of finding a local 

minimum, isn’t easy. In the linear case, though, the search for basis vectors becomes 

an eigenvalue problem. Iterative methods can also be applied directly to minimize the 

objective function e. 

13
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Another strategy could be to include statistical properties, defined using another 

metric M’ for the projected subspace, in the error measure. Denoting the mean cor- 

rected state vector as X, one can use the error function: 

—PG(a, DTMX.) fi) (2.13) 
- ona) 

This latter form is found in [2] and has the advantage of taking into account the variance 

of the data in the reduced subspace, since D7 MX|[;, is maximized at the same time. 

For this project, PIPs were used in a neural network context. See Section 4.1, for 

a detailed presentation of the model chosen. 

2.2 Forecasting 

2.2.1 Time series issues 

Weather forecasting in this project isn’t a problem of predicting physical observations, 

like rain. Rather, it consists in estimating the values of the fundamental physical 

variables that define the actual state of the atmosphere. For this reason, the forecasting 

problem draws on time series techniques, which sometimes necessitate adaptations to 

account for the high dimensionality of the data sets. 

As is often the case in time series analysis, existence of a low-dimensional manifold 

for the dynamics is presumed, the measured variables being driven by the trajectories 

of the state vector there, and noise. Lag vectors can be defined from the observations 

xz, with a delay 7 and a dimension d, by @ = (a, @4~,,...,@+-(d-1)r). The time-delay 

embedding theory ensures, under certain conditions, the existence of a diffeomorphism 

between the manifold on which the lag vector trajectories lie, and the presumed mani- 

fold for the data state vector dynamics. One of those conditions requires the dimension 

d to be sufficiently large. A presentation can be found in [7, p 407], and the models 

used in this project have time delayed input vectors to take this property in account. 

Unfortunately, the lag dimensions used could not be very large, due to computational 

limitations. 

Another problem is the stationarity of the series. All through this project, it is 

assumed that effects like global warming and the solar cycles are negligible, and the 

series obey fixed laws on the period considered. The mean and variance are computed 

on the training set, and used as an estimate for the validation set, even if the actual 

value may differ for some cases. In Section 4.2.2, an algorithm is be presented that can 

be applied on-line, and is thus able to deal with those approximations. 

2.2.2 Auto-Regressive models 

A complete description of Auto-Regressive, Moving Average models, their various com- 

binations and other stochastic processes, can be found in [4]. The following presentation 

14
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only introduces the simple Auto-Regressive model of order p usually denoted AR(p), 

which is used in practice for this project. 

For a single variable x, an AR(p) model can be written as: 

Lp = A Lp-y +++ + ApLt_p + 2; (2.14) 

where z is a random process with mean zero and variance 02. The assumption is that 

each value can be described in terms of a fixed linear combination of the p previous 

values, plus noise. 

Let X : (m,1) be the series vector in a m-dimensional space. This is, for example, 

the data projected on an EOF space. Two possibilities can be considered to extend the 

AR(p) model to vectors. The first is to use one coefficient per vector: 

Xp = Xt +--+ apXip + J. (2.15) 

This ensures a global fit on all the variables, but is a very limited model as it assumes 

the m components evolve in a similar way, and contains only p parameters. 

The other solution, chosen in this project, is to run m AR(p) models in parallel, 

one for each component: 

Lit = O41 Tip-1 + +++ + Qi pTit-p + 2%, along each dimension i. (2.16) 

This has the advantage of being much more flexible. The drawback is that each series 

is now trained independently from the others, and correlations between them aren’t 

taken in account. Still, in practice it gives better results than the first solution. Section 

3.2.1 details the AR models used in this project. 

2.2.3 Neural networks 

Neural networks can be used in numerous areas, and in particular for time series 

prediction. The interested reader can refer to [7] for an analysis of neural networks 

and their applications in specific contexts. The following description presents the use 

of neural networks for making predictions. 

The method consists in using the ability of neural networks to model an unknown 

function, by training a network to produce a time series values from the previous values 

over a past period. Then, assuming the evolution rules driving the data don’t change, 

the neural network is used to produce future values forecasts from the current values. 

Time delay samples are used as inputs for the neural network, ultimately large 

enough for the embedding theory to be verified. They are equivalent to lag vectors 

with delay + = 1 and dimension d. Figure 2.1 illustrates this structure for a fully 

connected feed-forward network with 2 hidden layers. 

Training a neural network typically consists in finding a set of parameters (weights, 

biases,...) minimizing an error function. This can be done quite efficiently when the 

back-propagation algorithm can be applied. In the case of a simple feed-forward net- 

work, this consists in computing the gradient of the error function considered on the 

15
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Figure 2.1: Feed-forward network structure with a time delay input vector. 

outputs with respect to the weights and biases, starting from the output layer and 

deducing the hidden layers in order using the chain rule. More exactly, for 2 layers x 

and y, denoting w;; the weight from «; to y;, a; the activation for the neuron y;, and 

f the transfer function, as sketched in Figure 2.2, the gradient of the error function € 

with respect to w; is: 

  Oe Oe Oa, oh = 1 
wij = » Bag Bai; for all activations k, 

mee 
~ 8a; * 

zy ae Xy nats fe, 

v5 yy = £(a;) 

Figure 2.2: Detail of a neuron computation. 

(2.17) 

- 
05 = D1 Wig Bi
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Starting from the output units, x can be computed directly. Then, in a feed- 
5 

forward network, 

de Oa; 

= = ay Oa; 0a; 

= Dia; de O( Be out 
Oa; 

the network is feed-forward, only k = 7 remains 
a Ge 9 (wij f (ai)) 

0a; 0a; 

"(a) Sv 2. 
= f'(ai) * da,“ 

(2.18) 

Thus, it is possible to propagate the gradient from layer y to layer x, and so on up 

to the input layer, with an algorithm which complexity is the order of the number of 

weights. Back-propagation is used in this project when it is possible. 

2.3 State vector estimation 

2.3.1 Extended Kalman Filter 

This technique is presented for completeness and for its popularity, but isn’t used in 

practice in this project. Some similarity can be observed with the algorithm presented 

in 4.2.2, though. 

The idea is to try to evolve the state of the underlying system and update it to the 

observations. It is separated into 2 steps, the forecast and the analysis. Let X, be the 

current guess (analysis) of the underlying system, and Xy the forecast. The forecast: 

step is: 

X;= M(X,), (2.19) 

where M() represents the model evolution function, usually differential equations based 

on physical laws. 

In the Extended Kalman Filter, this is in fact a matrix M that corresponds to the 

first order linearisation, so Xs = M * Xq. 

The analysis step is: 

Xq=X;+K *(Y)—H* Xj). (2.20) 

Here, X, is the next analysis state, Y, the observed data, K the filter (matrix) and H 

a first order linearisation of the model to observation transfer function. 

Methods for evaluating K vary from updating it each step according to the obser- 

vations, to methods like optimal interpolation found in [3] where the variance of the 

error made is minimized. 

Me
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This process can be done in real time if the filter function isn’t to expansive to eval- 

uate, and takes the observations in account. If no data is available or if it’s incomplete, 

the analysis step can be omitted and a new forecasting can nevertheless be evaluated. 

Tf for any reason the results are not acceptable, this method allows the state X, to be 

reset to a supposedly better new initial condition. 

On the other hand, one needs the model equations to apply this technique, and 

also the model to observation transfer function. The Kalman filter is used to update 

Xq (and X;) but with a fixed known model. This is the reason why it wasn’t used in 

this project. 

The key point of this method is the evaluation of a good filter, which isn’t necessarily 

an easy task. It may also be computationally intensive. 

2.3.2 Variational methods 

Variational methods are currently in use in many of the meteorological centers across 

the world. They are applied on all available data, and require a great amount of 

computational power. These methods are mainly used for diagnostic purposes. 

Observations are taken over a time interval, and are used to minimize an objective 

function, of the type: 

J = 5 (W(X) — ¥)" * Re" + (H(%) —¥), (2.21) 
t 

where H is the model to observation transfer function, X the state of the underlying 

model, Y the observed data and R the estimated covariance matrix of the noise. The 

model is fixed, and a time window moved along the available data. The target variable 

for the optimization is X, Y being known. This is called a 3D variational analysis. 

More elaborate objective functions can also include an a priori weight matrix and a 

term for evolving the state X; itself, in which case the method is called a 4D variational 

analysis because a time evolution rule is also applied. 

The results depend on the objective function, which can tuned arbitrarily. This 

method also takes in account all the data on a given time period to ensure a global 

best fit. Unfortunately, depending on the choice for H, the model can have a very 

large number of free parameters. Thus, if the time period is too short, there will not 

be enough data to account for all the free parameters. If it’s too long, the relation 

between the data at the edges of the time interval might be null or too complex for the 

model. 

When the predictions become too bad, the state has to be re-estimated. 
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Chapter 3 

Prediction in a fixed subspace 

In the chapter, we consider separately the dimension reduction and the forecasting 

problem. The projection is done independently from the prediction model considered. 

3.1 EOFs in practice 

3.1.1 Reconstruction error 

One way to measure the ability of EOFs to faithfully represent the data is to compute 

the error committed when reconstructing the series from a few selected components. 

The data is projected on the set of EOFs retained, and reconstructed. The EOF vectors 

being orthogonal with norm 1, this transformation can be written: 

R=U(U"D), (3.1) 

where R is the reconstruction, U the matrix which columns are the EOFs vectors 

retained, and D the 0-mean, variance corrected data. 

Experiments have been undertaken to investigate the influence of mixing variables 

together in the EOF computations. Specifically, for two variables X and Y, the com- 

putations are run with the matrix structures: 

Tit=1 Vitae --- Liter 

T2t=1 T2t—2 .-- Let=T 

Unt=1 Unta2 +--+ Lnyt=' 3 2) 
; is 

Vit=1  Vist=2 Yijt= 

Y2t=1 Yo,t—2 Yot= 

Ynt=1 Yn,t=2 Ynt=T 
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and: 

Tita. Titse --- Vistar Yit=1 Vitae --- Vite 

T2t=1 Totme ++. Loto ; Yot=1 Yot=2 ++. Yotar , separately (3.3) 

Tnt=1 Int=2 ++» In im Ynjt=1 Ynt=2 +++ Yn t=T 

X and Y themselves can be a union of other variables. For example, X can be the 
temperature at all atmospheric levels considered, and Y the geopotential height at the 

same levels. In each case, the reconstruction Root Mean Square Error (RMSE) was 
computed for each separate variable Z (for example the geopotential height at 200mb): 

il 
c= -||2-- Z|’, (3.4) 

with Z, the corresponding part of the reconstructed data R in Equation (3.1), according 

to the matrix structure chosen, and n its dimension. 

Since the only factor modified is the grouping of variables, it is responsible for the 
difference observed in the reconstruction errors. This operation also serves as a good 

benchmark and helps the interpretation of the prediction errors in later stages. 

The influence of sub-sampling the series in time was also assessed, but the main 

factor for the reconstruction error remains the number of EOF components retained. 

Figure 3.1 is a comparison of reconstruction errors obtained when sub-sampling in 

time 1 every 3 or 5 days, together with the effect of mixing variables. In each case, EOFs 

were computed using the first 10 years as a training set. The remaining 5 years, used 

as the out of period test set, were projected onto the selected number of components, 

and reconstructed. The hypothesis tested here is of the series being stationary enough, 

in the sense that EOFs defined on the training set also span the test set. 

6 variables were considered together; temperature and geopotential height, on 3 

levels: 850mb, 500mb, and 200mb. These variables were processed as described above, 

and once reconstructed the RMSE was computed for each of them. Figure 3.1 shows 

the results only for the geopotential height at 500mb. Other variables behave similarly. 

The 2 lower curves correspond to the same computations using the geopotential height 

at 500mb alone. 

The general shape of the curve is the same whatever the number of variables, 

levels, and the sub-sampling used. The reconstruction error decreases quickly at the 

beginning, then tails off. A possible explanation is because the first EOFs introduced 

capture most of the variance, thus define an orthogonal subspace that best contains 

the data. Hence a quick decrease, so long as another dimension is necessary to describe 

the data, the amount of information introduced by doing so is quite large. Then, when 

the subspace dimension is nearly large enough to describe the data, the reconstruction 

error doesn’t benefit as much from an increase in the dimensionality. At last, the error 

tails off to a plateau, which can probably be attributed to noise. It finally drops to 0 

at the very end, the reconstruction is exact when the EOFs form a basis spanning the 

whole data space (see also Figure 5.2). 
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Figure 3.1: Sub-sampling and mixing variables. 

When the reconstruction computation is done on the same set used to define the 

EOFs, the error committed is lower than what is obtained on the test set otherwise. 

Figure 3.2 is the result of an experiment using only the temperature, but at the 3 levels 

considered, and sub-sampling in time 1 every 3 days. The general shape of the curve 

is the same as in Figure 3.1. However, the reconstruction error on the training set 

is clearly lower than on the test set. This indicates a change in the series, the data 

does not always span the same subspace through time. Either shorter time windows 

could be used to overcome this problem, or a longer training period if we assume the 

variations are due to slow oscillations only partially captured. 

This, together with the fact there was no real sharp break in the real data recon- 

struction error curve, suggests there isn’t any clear simple attractor in the real set 

on the period considered. It could also be that the region selected is too narrow and 

the corresponding system is sensitive to external factors not taken in account. More 

experiments than an EOF reconstruction error would be necessary to confirm those 

hypothesis. 

Concerning the dimension reduction problem, the choice for the number of retained 

components has to be made on the systematic error one is ready to accept before the 
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Figure 3.2: Training and test sets reconstruction errors. 

prediction computations. There is no sharp break in the curve to help this decision, 

as can be observed on the artificial data set on Figure 5.2. This suggests there is no 

clearly defined attractor as well in the real data. A good criterion is a comparison 

with prediction errors previously published; ECMWF results in [1] are a 20m root 

mean square difference between 1-day ahead forecasts from a 4D-variational method 

and observations, for geopotential height at 500mb. This corresponds roughly to a 

restriction to 150 EOFs according to Figure 3.1, when considering temperature and 

geopotential height together, and 50 EOFs when using geopotential height alone. 

Another choice is whether to keep the variables together or split them. Once again, 

it depends on the error one is ready to accept. If it is more important to have a 

very good reconstruction, then splitting each variable for the computation is best. 

On the other hand, the total dimension becomes the number of EOFs retained times 

the number of variables, which might be unacceptable. In the previous example, this 

would be 6 x 50 = 300 EOFs instead of 150, for the same reconstruction error. Mixing 

the variables leads to a higher plateau in the curves, but with EOFs common to all 

it reduces the dimension by as great a factor as there are variables. An explanation 

could be the correlation between the variables, with the definition of common EOFs to 

22



CHAPTER 3. PREDICTION IN A FIXED SUBSPACE 

exploit it. 

Sub-sampling increases the error as the frequency decreases. This might be ex- 

pected, since the lower the frequency is, the more information is lost by sub-sampling. 

Compared to the error values, though, this is a minor factor. Thus it is better to keep 

all the observations, but if this isn’t possible for practical computational purposes, 

sub-sampling can be considered so as to reduce the time and memory consumption. 

3.1.2 Interpretation 

Seasonal components 

The seasonal signal was removed before the computations, by fitting a sine curve with 

a fixed period of one year to each mean corrected data grid point. The corresponding 

code is presented in Appendix B. This preprocessing is quite fast. 

  

      

  

ean 

56°N4 

48°N-Hh 

  40°N 4     32°N-4     

  

Figure 3.3: Amplitude of the seasonal sine fitted to the temperature at 850mb. 

Figure 3.3 shows contours of same amplitude for the seasonal sine fitted to the 

temperature at 850mb. It is interesting how the contours follow the shorelines at this 

low level. Continental climates are typically much sensitive to the seasons, with large 

extrema marking Summer and Winter. In comparison, oceanic climates have relatively 

damped oscillations. 
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Figure 3.4: Phase of the seasonal sine fitted to the geopotential height at 500mb. 
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The phase information for the temperature is also mainly driven by the coast lines. 

On the other hand, for geopotential height at 500mb, Figure 3.4 exhibits a strong 

dependency on latitude. This is coherent with points on the same contour having their 

seasons happening at the same time. But longitude also has an influence, which may 

also be attributed to continental masses, especially on the west sides where the winds 

blowing from the ocean hit the continents. Nevertheless, the relation in not as clear as 

for the amplitude signal. 

In both case, the dependency on the geographic position justifies the procedure of 

fitting one sine signal per grid point. 

Empirical Orthogonal Functions 

The following graphs were obtained by mixing the 6 variables as described above. 

Only the geopotential height at 500mb part of the EOFs computed are presented here, 

reshaped in the original grid. These selections of the full EOFs can be compared to 

real EOFs obtained using only geopotential height at 500mb, but are not necessarily 
orthogonal. 
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Figure 3.5: EOF 1, geopotential height 500mb. 

Figure 3.5 shows mainly a North-South pattern. There is also a center at the 

north of eastern Europe, and another on the western north America. This first EOF 

corresponds to the observed main trends in the north Atlantic climate, the winds in 

between the 2 main centers blowing eastward!. 

The second EOF corresponds to a West-East decomposition. Though not a formal 

result at all, such a behavior might be suspected. If the first EOF captures most of 

the variance in the North-South direction, then the second would have to settle for the 

complementary pattern, that captures most of the remaining variance. Yet, taking care 

in this interpretation is necessary. The full EOFs are constrained to be orthogonal, and 

defined from statistics in a high-dimensional space, which doesn’t necessarily lead to 

intuitive results. 

‘The sign of the EOFs components isn’t relevant, so the direction cannot be guessed from EOF 1. 
See the wind field in Figure A.4 for an actual observation. 

24



CHAPTER 3. PREDICTION IN A FIXED SUBSPACE 

                
  

              

  

  

          

    

64°N- 

56°N4 

48°N> 

40°N4 

32°N HE             

  

  

Figure 3.7: EOF 5, geopotential height 500mb. 

The fifth EOF reverts to larger scale structures. An interpretation can still be 

given, considering the centers to represent the Oceanic, Mediterranean, and Continental 

climates. 
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Figure 3.8: EOF 15, geopotential height 500mb. 

With EOF 15, more centers are appearing and the interpretation becomes difficult. 

In fact, Figure 3.8 is here to show this effect. As the number of EOFs increases, their 

interpretability in terms of the observed weather gets poorer, and the number of minima 

or maxima increases. The associated time series confirm this suspicion, as does EOF 

150 shown in Figure 3.9. 
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Figure 3.9: EOF 150, geopotential height 500mb. 
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Figure 3.10: Series for EOF 1. Figure 3.11: Series for EOF 2. 

The series associated with EOFs 1 and 2 are shown in Figure 3.10 and 3.11, and 

seem very noisy, but a signal may still be detected there. The seasonal component was 

removed prior to the EOF computations. On results where it was not, the time series 

for EOF 1 was strongly dominated by a sine curve of period one year. 

While the series associated with EOF 5 in Figure 3.12 may still be considered to be a 

strongly noisy signal, it is arguable whether the series for EOF 15 shown in Figure 3.13 

is not just noise. On the other hand, in Section 3.1.1, the reconstruction error obtained 

using just 15 components is very high, and more EOFs are required to represent the 

full signal. 

The conclusion is that while EOFs can offer a good dimension reduction, they may 

not be significant in terms of the internal dynamics. Since they are derived from a 

statistical principle, the interpretation for the first EOFs is possible, and this remains 

a great advantage. In fact, when using a scheme as the Principal Interaction Patterns 

presented in Section 2.1.3, the interpretation becomes secondary, since the subspaces 

are built to be more relevant with respect to a prediction model. This is a tradeoff, 

which can be partially overcome when using the EOFs as starting point for other 

algorithms, as done in Section 4.1. 
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Figure 3.12: Series for EOF 5. Figure 3.13: Series for EOF 15. 

3.2 Prediction 

3.2.1 AR models 

In this section we present a practical way to fit an AR model. Refer to Section 2.2.2 

for an introduction. 

Consider the series «;. The problem is to find the set of coefficients a; that minimizes 

the distance between the sum aya; +---+ Qpa-p and 2;, for all t > p the lag 

dimension. 

This problem can be solved easily using a least square minimization: 

ay 

...| minimizes min||Xa - yl’, (3.5) 
a 

O%. 

with: 

The actual computations were performed by the public domain LAPACK least 

square minimization routine. See Appendix B, for more coding information. 

3.2.2 Multi-Layer Perceptron 

A Multi-Layer Perceptron is a feed-forward neural network, with fully connected layers 

of neurons. A simple 2-layer MLP is described in Figure 3.14, with the same input and 

output dimension. 
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Figure 3.14: A simple 2-layer MLP structure. 

The neuron transfer function considered in this project is the hyperbolic tangent, 

and the output activation function is linear: 

Aj = tanh (© wy + re) (3.6) 

vi = >> ryihy, (3.7) 
5, 

with w;; and v;; the weights for the first and second layers. A bias is introduced for the 

hidden layer, but not on the output because the data considered is mean-corrected. 

Prediction can be achieved by training the network to produce the next data, from a 

lag vector. The corresponding structure is shown in Figure 3.15. Unlike the AR, models 

used in the previous section, all the components can interact with each other. This 

means, for i, j two dimension index, the predicted values y; and y; both depend on 2; 

and x;. The aforementioned AR models considered each component as an independant 

time series. 

The training was done using a batch back-propagation with a scaled conjugate 

gradient descent algorithm. Regularization using weight decay was also applied. 
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Figure 3.15: 2-layer MLP with an augmented input vector of 2 time steps. 
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Chapter 4 

Joint optimization 

In the chapter, we consider the dimension reduction and the forecasting problem jointly. 

The projection is done with respect to the prediction model considered. 

4.1 Principal Interaction Patterns in a neural net- 

work context 

For a description of the general PIP framework, please refer to section 2.1.3. The 

following discussion presents the case where the predictive model is chosen to be a 

multi-layer perceptron with one layer of hidden units. Because of the nature of the 

data set, a series of observations at regular time intervals, the discrete version of the 

equations is used. 

Denoting the coefficients of the adjoint patterns D7 M as (B;i), the projected data 

can be obtained by: 

45 = Doha (4.1) 

This can be interpreted as the first layer of a neural network, with input neurons the 

data x;, no bias, and a linear transfer function. 

Similarly, if pj; denotes the PIP components, the reconstruction equation (2.5) is 

now the last layer of the network, with the same characteristics. The full network is 

represented in Figure 4.1. 

Training proceeds by comparison of the network outputs 1; to the data vectors r41. 

With a sum of square error function, this scheme corresponds exactly to the framework 

presented in Section 2.1.3: 

€ = (||Xun — PG(a, D™MX,)|") (4.2) ie 

The norm is Euclidean, G is the 2-layer MLP, and the a parameters are the network 

weights and biases. 
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Figure 4.1: PIPs in a neural network context. 
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Unfortunately, the relation between the first and last layer weights, D'MP = I, 

doesn’t allow to write an individual @;; in terms of the corresponding p;;. Thus, even 

though the network is feed-forward, it is impossible to use back-propagation. 

An additional complication is that the network is really huge. For example, when 

using the temperature and the geopotential height on the 3 levels, as done in Section 

3.1.1, the input dimension is 7680. Supposing that optimizing the subspace basis 
together with the prediction model does indeed improve the data representation, we 

assume only 100 patterns are needed instead of the 150 EOFs. This requires a network 

with over 1.5 million weights. Since back-propagation is unusable, the training is 

prohibitively slow in practice. 

4.2 A two-stage algorithm 

To make up for the drawbacks of the full neural network implementation presented 

above, the idea is to decouple the algorithm. In a first stage, the projection and model 

are optimized so as to minimize the error committed in the reduced dimension space. 

Then, an adjoint model can be created, and the minimization process can be completed 

in the data space. 

This new algorithm can no longer be described as a PIPs implementation, but 

similarities exist, especially in terms of the error functions considered. 

4.2.1 Optimization in the reduced dimension space 

Instead of optimizing directly in the data space, the idea is in the first stage to minimize 

the error committed in the projected space. The mean corrected, normalized data, X, 

is used instead of the raw values. The corresponding error function is: 

a - 
€ = 5(||D"™M Xi — Ga, D™MX)||”) (4.3) ” 

multiplying each term inside equation (4.2) by D7 M, and the result by 3 for practical 

derivation purpose. 

The assumption that the next state depends only on the previous one may not be 

true in practice. For this reason, the error function can be modified to include a lag 

vector (see Figure 4.2): 

€= 5 (||D™M Ries — Ga, D™MR,, D'MR, 4... D?MX,-ta)|”) (4.4) 
€ 

But, using this formula, there is a trivial possible minimum for the prediction. 

From the network point of view, setting 3;; = 0 solves the prediction problem. But 

we’re not looking for a null solution, and the goal is to solve the problem with a norm 

different than 0. A penalty term forcing the (; vectors to have a fixed norm (of 1) has 

been introduced in the error measure. This doesn’t affect the problem, since only the 

direction of the vectors is relevant as any scale factor is absorbed by the MLP weights. 
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in the subspace, with a lag vector. Figure 4.2: Network for minimizing the error 
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Given the number of parameters, regularizing the network seems also necessary. The 

standard weight decay term, with a prior 4, is applied to the MLP weights. The final 

error function is: 

e= aire — Ga, D'MX,, ...D?MXr-tag)|), + oe = 1)" 

+= Le +0 .)): (4.5) 

It is possible to use back-propagation for this network, with some care. Indeed, 

8; appears multiple times in the first layer, and the output comparison z*+! — z’ also 

depends on ;;. The back-propagation can be done as usual, except for the terms: 

t Oe =e in = eaee wlgthinl = dittat + 26(S Bi - 1). (4.6) 
l=1 

In practice, a term similar to the variance maximization in equation (2.13) is also 

included: 

[pr ux|? 

+> (4 - 1)" +35 Dw +08), (4.7) 
a i Vd 

and the corresponding correction in the back-propagation formula. 

The training phase is still very slow, but can be done. This method works well in 

batch mode, averaging computations over all training patterns, and with the scaled 

conjugate gradient algorithm. The patterns (;; can be initialized using the EOFs, so 

that the starting point is relevant and not chosen at random. They are updated at 

each optimization step as any other network weight. 

= 2( Tiamat Mee — Gla, DPM, ... D7MXta)|) 

4.2.2 Optimization in the data space 

The second stage of this algorithm is to complete the minimization process in the data 

space. The same MLP is kept untouched, but the direct patterns are computed from 

the complementary ones. The corresponding network structure is shown in Figure 4.3. 

The error function for this model is a simple sum of squares function, with the same 

weight decay term as in the first stage: 

e= 5 ( (een -¥'|P) + ao (w?, +03 )) (4.8) 

Back-propagation can be used for this network without great difficulty. The main 

problem is after one iteration, the projection in the reduced space has to be recomputed, 

and thus the training set changes at each iteration. Adjoint patterns must be defined 
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Figure 4.3: Complementary model, to optimize computations in data space. 

from the newly updated direct patterns each time, due to the lack of a formula to 

update ;; from p;;. The full patterns must be re-evaluated: 

B= DiM —P(Pt Pp) (4.9) 

Matrix inversions are computationally expensive, and algorithms like scaled conju- 

gate gradient descent are not possible since the training set changes after each step. For 

this project the choice was to fall back on steepest gradient descent for each iteration, 

and not to try to adapt the scaled conjugate gradient algorithm. Hence the direction 

information between consecutive steps is lost, but then, since the training set changes, 

it may prove difficult to adapt the scaled conjugate algorithm. 

Thus, this second stage is slower than the first, and the lack of efficient training 

method means the training error isn’t reduced much. It has however been noted in 
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practice that using this second stage does indeed reduces the error committed, and 

that doing the 2 steps in sequence rather than alternatively gives the best results. 

An interesting use of this complementary model could be on-line training, or for 

diagnostic purposes. The past observations can be used to train a MLP using the first 

stage algorithm, and then this network created. This can be done by keeping the same 

MLP layer, and pseudo-inverting the (;; matrix of the first stage to produce the pj; 

used here according to Equation (4.9). Predictions in data space can be computed, and 

as new observations become available, it is possible to update the model. If no new 

observations are available, it is still possible to make a prediction without the analysis 

step. It is also possible to reset the model to a new value if the error gets too large, by 

repeating the first stage on a new training set and inverting the result. 

On-line training and updated models can also deal with non-stationarity in the 

data. In the method presented here, the mean and variance of the series would have 

to be recomputed when resetting the model. 

36



Chapter 5 

An artificial data set 

The algorithms presented here all have problems dealing with the high dimension of 

the data. Even when reducing the size of the working space to the order of hundred 

variables using EOFs, this difficulty remains. 

In order to overcome this problem, a small artificial data set was created, and 

comparisons between the different algorithms were undertaken. 

5.1 The Lorenz equations 

To build the artificial data set, a sufficiently unstable process was needed to simulate the 

real prediction difficulties. A well known set of equations in meteorology which exhibit 

sensitivity to initial conditions are the Lorenz equations. Their analytic expression is: 

dx n= 1-2) (5.1) 
dy a 28a — y — 2z (5.2) 

dz 8 

ao 3” im 
The dynamics of those equations are driven by an attractor, of which a 3D represen- 

tation is shown in Figure 5.1. 

These equations were integrated using the Ordinary Differential Equation Solver 

of the software package Scilab. This routine "automatically selects between non-stiff 

predictor-corrector Adams method and stiff Backward Differentiation Formula (BDF) 

method. It uses non-stiff method initially and dynamically monitors data in order to 

decide which method to use"'. This solver was chosen over a simple Runge-Kutta 

algorithm, which was implemented first. In fact, since noise is added later to the 

computed values so as to simulate the real input noise on the meteorological measure- 

ments, the precision required for the trajectories and thus the method choice wasn’t 

that important. 

Text cited from the Scilab ode function help file. 
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Figure 5.1: 3D representation of the Lorenz attractor. 

The starting point for the series was chosen close to the attractor, but the first 5000 

iterations were discarded nevertheless to ensure a non-transitory trajectory. The 10000 

next points were chosen for the training set, and 5000 others for the test set. The step 

size chosen corresponds roughly to 60 points per loop. 

Once the series were computed, a 20 x 3 projection matrix was randomly chosen to 

consider this trajectory in a 20-dimensional space. The matrix was tested to be non 

degenerated. Finally, random noise” was added in this space, because there is noise in 

the real data set, and also because it renders the data fully 20-dimensional. 

5.2 Results 

5.2.1 Empirical Orthogonal Functions 

The reconstruction error experiment presented in Section 3.1.1 was tested on this ar- 

tificial data set. The results are presented in Figure 5.2. 

There is a distinct break at 3 components, suggesting the attractor has been cap- 

tured correctly. The residual error tails off and is zero when the EOF space equals the 

data space, with 20 dimensions. The EOFs were defined on the training set, but span 

the validation set equally well. This isn’t surprising considered the way those series 

were generated; they lie on the same attractor. 

On the other hand, this property wasn’t so well verified in the real world data set. 

There, the reconstruction error on the validation set was distinctly higher than on the 

training set. See Figure 3.2 and the corresponding section. 

In any case, when projecting the validation series of the artificial data on the EOFs, 

the emerging structure corresponds to the attractor. Figure 5.3 shows the projection 

in the 3 planes defined by the 3 first EOFs, and the corresponding 3D representation. 

?Gaussian distribution, 0 mean and variance 1. 
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Reconstruction error on the artificial data set 
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Figure 5.2: EOF reconstruction error on the artificial data. 

It is interesting to observe how the directions selected by the EOF process lie along 

the attractor. Along EOF 1, the values alternate from negative to positive regardless 

of the loop that the current point is in. The second EOF defines two modes, one 

for each attractor loop. EOF 3 represents the last dimension. One can suspect the 

orthogonality condition to constrain EOF 3 to a slight distortion, since the shape of 

the attractor suggests an orthogonal basis isn’t the most appropriate. 

5.2.2 2-stage PIP algorithm 

Even on such a small data set, with only 20 dimensions, back-propagation is necessary 

for the computations, for speed reasons. The 2-stage algorithm presented in Section 

4.2 was run instead of the full PIP problem. So as to increase the convergence speed, 

the starting point for the reduced dimension space was chosen to be the one defined 

by the EOFs. The one-step ahead prediction structure is shown on Figure 5.4. 

The basis vectors, still called PIPs for convenience’, are altered, both in norm and 

’This may be an improper usage of the PIP terminology. No proof was given whether the 2-stage 
algorithm converges to the same basis vectors, or not, as the full PIP problem. 
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Figure 5.3: Artificial data structure as captured by the EOFs. 

direction. The basis isn’t orthonormal anymore. The same remarks as for the EOFs 

are still valid, though. This means the process hasn’t gone too far from its starting 

point, and the ordering of the dimension captured is the same. This also means the 

starting point is important, and EOFs were already performing quite well. 

5.2.3 Prediction comparison 

The methods compared are a 5-order Auto-Regressive model run on the EOF space, a 

MLP with lag 5 on the same subspace, and the 2-stage algorithm on the full 20-dimensional 

space but with the same MLP layer. Values were also computed for a persistence pre- 

diction, which is commonly used as a benchmark in weather forecasting, and consists 

in using the current values as an estimate for the future values. The equivalent of the 

climatology, labelled as "no prediction", where only the seasonal component is taken 

as the approximate for the prediction, was also computed using the mean value of the 

series. Results are presented in Figure 5.5. 

Of all the models, only the MLP gives worse results than the persistence. This 

may be due to a problem during training, but repeated experiments with different 

starting points and number of hidden units give approximately the same curve. Another 
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Figure 5.4: One-step ahead prediction structure. 

explanation could then be the number of free parameters in the model considered, and 

effect of local minima on the training process. In the long term‘, the MLP still ends 

beating the persistence, and doesn’t blow up above the "no prediction" climatology 

equivalent. 

The 2-stage algorithm is comparable to the MLP, both were run using the same 

structure (number of hidden units, especially). Thus, the increase in performance is due 

to the combined optimization of the subspace together with the model. This validates 

the idea the projection chosen has to take in account the dynamics, or at least the 

evolution model chosen, rather than being based only on the statistical distribution of 

the data. 

The Auto-Regressive model gives the best results on this experiment. The corre- 

sponding curve stays below the 2-stage algorithm one, but has nearly the same shape 

with a constant difference. No explanation was found for this phenomenon, but a hy- 

pothesis, untested, could be the existence of a ’perfect’ prediction method, modeled 

approximately by the AR(5) and the 2-stage algorithm together. 

In practice, it appears that simple models like the AR(5) used here can do better 

than more complex ones which are theoretically more powerful. 

4A reminder how to make multiple step ahead predictions is given in Appendix B.3. 
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Comparison of different models on a noisy embedded Lorenz attractor 
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Figure 5.5: Comparison of prediction methods on a Lorenzian system. 
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Chapter 6 

Real data 

6.1 Selected data 

The data set presented in Section 1.2 contains 6 variables. Among those, the wind 

velocities have a vector field nature, and are too different from geopotential height 

and temperature. They are kept apart. Relative humidity could have been used, but it 

looks to have a very different scale of variability! and with temperature and geopotential 

height on 3 levels, the data space dimension is already 7680. This is about the resources 

limit for the NCRG servers, and thus the logical choice. Temperature and geopotential 

height are also usually considered very important and informative variables. 

EOF computations were carried out as detailed in Section 3.1. 

As done on the Lorenzian system, different models were investigated for forecasting 

future values. The climatology was computed by fitting a sine with period 1 year to 

each component, as presented in 3.1.2. A 5-order autoregressive model and a multi- 

layer perceptron were used in the 150 EOF space, and the data reconstructed. 

The 2-stage algorithm was also run. Unfortunately, the data dimension was still too 

high to enable it to converge in a reasonable time. With respect to this, a projection 

on 500 EOFs was performed as a pre-processing treatment on the data, in the hope 

the information loss was sufficiently low. Figure 3.1, the reconstruction error curve on 

the real data set, indicates this corresponds to the plateau part, thus presumably only 

noise isn’t captured with 500 EOFs. See Section 3.1.1. The results are presented in 

Figure 6.1 for the geopotential height at 500mb. The 5 other variables behave similarly. 

The AR(5) model gives the best results. It remains below the persistence prediction. 

This means the dimension reduction and forecasting were good enough to give a better 

information on the future of the series than merely keeping today’s values as an estimate 

for tomorrow. 

The multi-layer perceptron starts above the persistence, but even when it beats it 

at 3-day ahead, the prediction is so poor as to be the same level as the climatology. 

Interestingly, the MLP does even give worse results than the climatology. This means 

the MLP makes worse predictions than using the yearly averaged values as an estimate 

'Please refer to Appendix A for data plots. 
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Figure 6.1: Comparison of different forecasting models on real data. 
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for the predicted values. The curve then joins the climatology, which means that 

predictions many step ahead are damped down to 0 and only the climatology remains. 

As for the artificial data set, the results for the AR(5) are better than the MLP. 

Unfortunately the 2-stage algorithm simply could not be trained due to computational 

power limitations, and gives a nearly constant bad result for all forward predictions in 

time. 

Nevertheless, all the methods presented here do not compete with the predictions 

from the ECMWEF? computed on full atmospheric models with 4D variational methods, 

and powerful computers. There, the predictions for geopotential height at 500mb start 

at 10m for the first day-ahead, and reach 100m after 10 days [1]. 

An interesting conclusion is that after 2 weeks, all methods seem to reach climatol- 

ogy level, so cannot do better than a yearly averaged prediction. There is still work to 

do to increase the forecasts accuracy in the 2-3 weeks medium range domain. 

Tn the light of those results, another experiment was carried on. Sub-sampling the 

data allows more dimension reduction, and is presented in the next section. 

6.2 Sub-sampled real data 

Since the full data set is too large for the 2-stage algorithm to converge in a reasonable 

time, an idea is to sub-sample it. The aim here is to be able to compare the different 

methods on real data, instead of the artificial data set presented in Chapter 5. The 

variable chosen was geopotential height at 500mb, a standard level in meteorology, 

alone. This brings the dimension of the data to 1280. The region selected was sup- 

sampled every 5 degrees in space, which further decreases the dimension down to 320. 

The training data set was limited to the 5 years from 1984 to 1989, the validation set 

remaining the same last five years, 1990 to 1994. 

As before, the MLP and 2-stage algorithm were run with the same parameters, 

number of hidden units and weight decay coefficient especially. The observed difference 

can thus be attributed to the effect of optimizing the reduced dimension space basis 

together with the forecasting model, as for the results on the Lorenzian system in 

Section 5.2.3. 

Results are presented in Figure 6.2. For the predictions before 7 days ahead, the 

2-stage algorithm performs slighly, but not really significantly, better than the MLP. 

At 4 days ahead, the error is above the climatology, thus not really relevant. More 

importantly, the MLP ends up predicting a zero value, hence the climatology after 

data reconstruction, whereas the 2-stage algorithm still produces results. This may be 

attributed to the capture of part of the data dynamics, and suggests a comparison to 

the persistence prediction instead of the climatology. 

All the algorithms do better than the persistence, which wasn’t the case for the 

original, not sub-sampled, data set experiment in the previous section. This probably 

shows the importance of a complete training, since the neural networks give better 

European Center for Medium-Range Weather Forecasting 
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results despite the loss of information inherent to the sub-sampling operation. This 

also validates the use of these algorithms, a better prediction is obtained than the 

immediate computations of persistence or climatology. Nevertheless, the 3 algorithms 

considered don’t compete with the ECMWF results in [1] using all available data 

previously mentioned. 

The AR(5) gives the best results. However, for the first 2 days ahead, the 2-stage 

algorithm does equally well. This is encouraging, but more experiments would be 

needed to confirm or invalidate the ability of the 2-stage algorithm to potentially pro- 

duce better forecasts than simpler models. 

47 

 



Chapter 7 

Conclusion 

The aim of this project was to study the possibility of reducing to dimension of mod- 

els and data sets in weather forecasting. Several points were made, concerning both 

aspects, and a new algorithm was presented to decouple the PIPs problem in a neural 

network context. 

Working on multiple variables simultaneously in an EOF reduction enables us to 

take in account part of the relation that exists between them, and may allow a greater 

dimension reduction. The choice is made on the acceptable threshold for the reconstruc- 

tion error. Figure 3.1 illustrates this effect. If a low reconstruction error is important, 

then treating each variable separately is necessary. In that case, EOFs have to be de- 

fined for each variable, and the total number of components, the number of variables 

times the number of EOFs retained for each, will be significantly higher than when 

considering all the variables together. In this case, the minimum error committed is 

higher, but EOFs are common to all the variables. 

Another lesson of Chapter 3 concerns the data reduction problem itself. When 

predictions are made with the reduced data set, a purely statistical dimension reduction 

algorithm based on the distribution of the data may not be enough. The method chosen 

has to take in account the internal dynamics of the data and estimate the projection 

concurrently. The projection may otherwise not be significant with respect to the 

evolution models considered. 

In the light of the comparison results between the different algorithms presented 

in this document, the edge between practice and theory can be observed once more. 

Simple models like the AR(5) can do better than complicated ones theoretically more 

powerful. However, when the models are comparable like the MLP and 2-stage algo- 

rithm, the effect of optimizing the projection together with the prediction model can 

be measured. To do that, all the parameters defining the prediction model, in this 

case the MLP and the corresponding layer of the 2-stage algorithm, are identical. In 

particular, in all the computations, the number of hidden units and the weight decay 

coefficient were identical for the 2 networks. No validation set was used in this project, 

out of sample predictions were felt to be sufficient. The difference in the results could 

be attributed to the subspace basis optimization, and since the 2-stage algorithm gives 

better results than the MLP in EOF space, the theory of optimizing jointly model and 
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subspace is verified. 

Concerning the 2-stage algorithm, the idea of optimizing the error committed in 

the reduced subspace in a first time may be applied with other models than a neural 

network. This is a rather interesting extension to the PIP method, in the sense that 

in can improve the computation time required to carry out the experiments. However, 

convergence is not guaranteed to define the same subspace as the PIPs. 

Other limiting factors were encountered. The region selected might be too small, 

and boundary effects could have perturbed the experiments. Similarly, external factors 

not taken in account may have influenced the results. Those drawbacks are related to 

the tradeoff between precision and computational power required, it wasn’t possible 

to increase the data dimension. The numerical problems encountered are presented in 

Appendix B, but the main concerns were speed and memory requirements. A specific 

C++ library! was created to address these problems, and used for the computations. 

The general impression emerging from this project is that there seems to be no 

efficient way to reduce the dimension in terms of the error committed, and that unfor- 

tunately the huge models dealing with all the data available are required for precision. 

On the other hand, reducing the dimension of the models and data sets can be a way 

to carry out experiments with limited resources. More work is necessary to determine 

whether the precision obtained on reduced dimension models is sufficient, but with 

some improvement this could provide a way to compute ensemble predictions cheaply. 

Extensions to this project could be considered in this area, the ultimate goal be- 

ing to improve the error to an acceptable point, even if not as good as what can be 

obtained using the full models, while keeping the computations affordable for a small 

computing infrastructure. The alternative approach could be to further extend the 

more complicated models, and run them in the powerful prediction centers, in the 

hope of increasing the accuracy of the forecasts. 

The idea of a scale-dependent representation of the atmosphere also came up at 

early stages of this project, and could be an alternative study. Future works could 

consider the problem along these lines, possibly with wavelet decompositions and fractal 

extrapolations, so as to represent more faithfully the nature of the atmosphere. 

In any case, this project can serve as a basis for further experiments. 

1 This library is available at http: //CheapMatrix. sourceforge net 
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Data plots 
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Figure A.1: Temperature at 850mb on November 26”, 1993. 

Figure A.1 gives the temperature contour levels of November, 26", 1993. Max- 

ima/minima can be identified, and the contours around them aren’t just smooth tran- 

sitions but rather occur in sharp gradients. 
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Figure A.2: Geopotential height at 500mb on November 26", 1993. 

Figure fig:lipr93112600-Z-500 shows the geopotential height at 500mb at the same 

as Figure A.1. Though it isn’t the same variable, centers can be found at approximately 
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the same places, hinting at a possible correlation between them. The field at 500mb is 

also much smoother, a feature typical of the atmosphere. 

lipr93112600-R-850 
} 

  

    

    

64°N FE 

56°N 5 

48°N 

40°N-     32°N 7     

120°W 80°w 40°w 02 40°E 

Figure A.3: Relative humidity at 850mb on November 26", 1993. 

The relative humidity has much shorter characteristic scales than the other vari- 

ables, without any clearly identifiable center. This is one reason why this present study 

didn’t take it into account. 
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Figure A.4: Wind vector field at 850mb on April 4", 1992. 

u,v wind velocities are plotted as a vector field, and because of that nature have 

also been kept apart. The interesting point on this representation is the appearance of 

a west-east wave-like propagation for the winds. 
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Appendix B 

Coding issues 

B.1 Presentation 

It’s not surprising to discover that once more, data size and the speed of computa- 

tions are the main problems. The implementation of the algorithms presented in this 

document must address these factors, in addition to usual coding issues like code re- 

usability. 

Early attempts to use the popular interpreter MATLAB were rapidly discarded as 

the memory usage was poorly managed. Additionally, MATLAB isn’t famous for its 

speed, especially when performing iterative processing. A search over the Internet for 

more appropriate tools wasn’t successful. 

A solution was thus specially designed for this project. It had to be able to handle 

the memory efficiently, be easy to use and reuse, and allow scientific computing. As 

customary in computer sciences, ‘reinventing the wheel’ combines both a waste of time 

and a need to solve well-known problems. Adding up those constraints, the natural 

solution was to create a library itself interfaced to a pre-existing package. 

The choice retained was the excellent public domain Linear Algebra Package, LA- 

PACK!, as a back-end for typical problems like Singular Value Decomposition which 

are required for this project. 

The C++ language was retained, for its efficiency, its popularity, and because 

Object Oriented Programming reduces the re-usability and ease-of-use constraints. The 

C translation of LAPACK was preferred over the original FORTRAN code for obvious 

interfacing reasons, though with a little effort the C++ library written for this project 

is now compatible and can be linked with FORTRAN code too. This enables platform 

specific implementation of the BLAS® to be used seamlessly, a great benefit on parallel 

architectures for instance. 

The library itself contains a Matrix and a Vector classes, with all arithmetic op- 

erations and standard functions overloaded. These classes were designed so that a 

~ TLAPACK and many other scientific public domain libraries can be found on the Netlib repository, 
at http://www.netlib.org. 

?In the case of SVD, this routine was needed to compute the EOFs. 
Basic Linear Algebra System, the core routines used by LAPACK. 
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huge matrix may be loaded partially in memory at a given time, transparently, thus 

drastically reducing the memory consumption‘. Extensions exist: a utility mod- 

ule, a link to LAPACK functions, and an optimizer framework. Features were ex- 

tended beyond what’s strictly necessary for this project and allow comfortable com- 

puting in C++, but functions are still missing in other domains. As usual in Open- 

Source development?, the reader is free to contribute! The library is located at http: 

//CheapMatrix .sourceforge .net. 

B.2 Algorithm implementation example 

A fairly complete documentation with examples is packaged with the library, and 

can also be consulted on-line. The programs used for this project can be found at 

http://nicolas.brodu.free.fr/mscr. 

As an example, the following piece of code was used to remove the seasonal com- 

ponents. This isn’t an introductory example at all, yet shows the philosophy behind 

the optimizer framework. 

// Model to fit a sine with the given period to a data vector 

// The model is of the form S(t) = alpha * sin (omega + t + phi); 

class SineModel : public OptimizeTarget 

{ 
protected: 

double omega; 

// Evaluate error and gradients on this series 

MatrixType evaluate(const Matrix& data, const Matrix& target, 

EvaluateTarget what = EVALUATE_BOTH) ; 

public: 

SineModel(double _omega) ; 

3; 

SineModel::SineModel(double _omega) : omega(_omega) 

{ 
// Set initial values to something random 

values = randn(2); 

gradients = zeros(2); 

} 

// Evaluate error and gradients on this series 

MatrixType SineModel::evaluate(const Matrix& data, const Matrix& target, 

EvaluateTarget what) 

4 At the expense of the mass memory (hard drive) space, and a decrease in performance when 
Swapping. 

®This library is released under the GNU Library Public License. See http://www. gnu. org. 

53



APPENDIX B. CODING ISSUES 

a 

Vector common = omega * data + values(2); 

Vector common2 = sin(common) ; 

Vector common3 = values(1) * common2 - target; 

if (what & OptimizeTarget::EVALUATE_GRADIENT) { 

gradients(1) = dot(common3, common2); // alpha derivative 

gradients(2) = dot(common3, values(1) * cos(common)); // phi 

t 

if (what & OptimizeTarget::EVALUATE_ERROR) { 

return 0.5 * dot(common3, common3); // error 

} else return 0; 

t 

The vectors are created and manipulated like any C++ object, operations and 

functions like cos can be applied to them directly. Utility functions are available, 

for example randn(2) creates a 2-dimensional vector whose elements are drawn from a 

Gaussian distribution with mean 0 and variance 1. The model provides its own method 

evaluate to compute the error function, its gradient, or both, according to the need of 

the optimizer®. No extraneous operations will be requested, and calculations common 

to the error function and its gradient can be reused with this system, improving the 

optimizer speed. The actual optimization call, together with the removal of the seasonal 

component from the data, is: 

const double omega = 2.0*M_PI/365.25; 

SineModel sine(omega) ; 

SCG scg; // Scaled Conjugate Gradient optimizer 

scg.option(1) = 100; // For SCG, number of iterations 

Matrix params(2,m) ; 

for (int i=1; i<=m; i++) { 

scg.optimize(sine, range(1,t), 

training(i,all) .transpose()-mean_correction(i)) ; 

Vector alphi = sine.copy_values() ; 

// Correct all the data (extend to the validation set as well) 

data(i,all) -= alphi(1)*sin(omega*range(1,n) .transpose()+alphi(2)) 

+ mean_correction(i); 

params (all,i).copy(alphi) ; 

Cob << 10." << -flushs 

if (!(4%10)) cout << "" << flush; 

if (!(4%50)) cout << i << endl; 

3 
cout <<" " << m << endl; 

®For the reader not familiar with C programming, EVALUATE_BOTH is a binary mask combining 
EVALUATE_GRADIENT and EVALUATE_ERROR. 
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To help the reader, the notation data(i,al1) is equivalent to the MATLAB data(i,:), 

and means the i‘ row of the Matrix data. range(1,n) is equivalent to the MATLAB 

1:n and means all natural numbers form 1 to n included. More information about the 

library syntax can be found in the online documentation. 

B.3 Notions revisited in practice 

This section presents some caveats and tips for the programmer, when implementing 

some of the notions presented in this document. 

EOF Empirical Orthogonal Functions are presented in Section 2.1.2, with the practical 

algorithm using SVD’. This is exactly what has been done for this project. The 

useful property to remember is that EOFs are orthogonal, with norm 1. This 

means projecting the data is just a matter of multiplying by a transpose matrix, 

with some care concerning the singular values. More exactly, the SVD of a matrix 

D is in the form D =U * S «V7, so V7 = S-! «UT * D with S a square matrix 

whose diagonal elements can be stored in a vector in practice. The EOF vectors 

are the columns of U, the associated series the lines of V7. The reconstruction 

from a selection of EOF components is straightforward, but must also take in 

account the singular values. 

Optimization The first step is to code the error function considered, using the model 

parameters to optimize. Very often, part of the computations can be reused for 

the error gradient. Thus, it is a good idea to modify the optimization algorithm 

to calculate simultaneously the error function and its gradient whenever possible. 

This has been done in this project, the code for scaled conjugate gradients was 

adapted from the MATLAB package NETLAB®, and this C++ version includes 

the joint computation of error and gradient improvement. 

RMSE The Root Mean Square Error for a variable is averaged over all error values 

of this variable. One just has to remember to do so on the squared values, in 

a sum of square error, before computing the square root of the result. This is 

especially important when a variable consists in several separated series, like for 

example temperature at 200mb in this project®, that includes 1280 such series, 

one for each grid point. 

Step-ahead To compute a prediction several steps ahead, the principle is to move a 

window along the values and the predictions already computed. More exactly, if 

the model considered uses the 5 last values for the series « to compute the next 

one, then the 1-step ahead prediction «4 will be computed with xj, x2, 23,14, 25. 

7Singular Value Decomposition. 
SNerTLas is a neural network tool box written by Ian T Nabney & Christopher M Bishop (1996, 

1997, 1998). It is available at http: //www.ncrg.aston.ac.uk/netlab/index.html 

®Any variable at any level, for that matter. 
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The 2-step ahead «, will be the value obtained using 22, 73, 4,25, 25, the 3-step 

ahead xg with 23,24,5,2%,27, and so on. As mentioned, a buffer window of 

5 elements can be used to store the values needed for the prediction, and each 

step forward shifts out the leftmost value in the buffer. The last prediction is 

introduced by the right, and the process repeats. 
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