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Thesis Summary 

We consider financial time series by representing the movements in the data rather 

than the prices at fixed time steps. More precisely, we first identify a set of discrete 

levels and then record the first time the process crosses a level. This information can 

be simplified still further by simply recording the direction of the movements, creating 

a binary string: 1 for “up” and 0 for “down”. We show that it is possible to use this 

representation in order to create effective forecasting models based on the distance 

between the different sequences. Their parameters are determined by cross validation, 

the maximum likelihood and the data complexity. Afterwards, we construct several 

trading strategies based on the predictions given by the model, then, we measure the 

trading rules performances and compare them to a Buy and Hold strategy. 
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Chapter 1 

Introduction 

The Efficient Market Hypothesis developed in 1965 by Fama [11] asserts that 

the current price of an asset already contains all information from the past prices; 

however, forecasting future values of financial series is of obvious interest in empirical 

finance, and there is plenty of practical evidence that forecasting can be successful. 

Numerous models involving sophisticated techniques such as neural networks, genetic 

algorithms, ARMA and GARCH models, already exist to reproduce the behaviour of 

price evolution with greater or lesser accuracy. While the complexity of the forecasting 

methods increases, financial organisations are seldom able to generate a very accurate 

prediction of asset prices. 

Therefore, in this project, we evaluate a new approach: we study financial markets 

by representing the movements in the data rather than the prices at fixed time steps. 

Thanks to this process, we can describe the behaviour of the price in a different way: 

we define a set of levels instead of a set of times and record the times at which they are 

reached. Then we condense the recent past into a sequence of binary digits where “1” 

means up and “0” means down and we try to estimate the probability for the next bit 

to be an up. We then build forecasting models for this set of strings; we consider them 

as patterns and we compute the expected next bit by comparing distances with the 

other sequences; the predictions given by the model are then transformed in trading 

strategies. 

As our purpose is to seek an efficient financial forecasting model using patterns in



CHAPTER 1. INTRODUCTION 

the data, we start by introducing the efficient market hypothesis issues and presenting 

fore existing models. Then we will present and analyse the data which are used for 

all the experiments: 10 years of daily records of main stocks indexes. Using cross 

validation, maximum likelihood and maximum entropy, we manage to determine the 

parameters of our models. Finally, their outputs permit us to build trading rules and 

we compare their performances with the Buy and Hold strategy. 

1.1 Plan of the Thesis 

Chapter 1 is this introduction. 

Chapter 2 is an overview of financial forecasting and explains the processes we will 

apply to the data in order to transform them into binary strings. 

Chapter 3 describes the stock index series and explores their statistical properties. 

Chapter 4 looks at the statistical properties of the string time series and determines 

the optimal length of the words using the principle of maximum entropy. 

Chapter 5 investigates different methods to estimate the parameters of the model such 

as cross validation and the maximum likelihood and describes the classifications ob- 

tained using neural networks. 

Chapter 6 discusses prediction accuracy and trading rules measurements. 

Chapter 7 concludes the thesis with a discussion of the major results and some sugges- 

tions for future work. 

10



Chapter 2 

Presentation of the model 

2.1 The efficient market hypothesis 

The main purpose of this project is to predict the future behaviour of stock index 

time series, but it takes place in an old financial controversy: can we use past data to 

predict an asset’s future prices? 

Intuitively, it seems logical that price history influences the current price of a stock, 

nevertheless, the efficient market hypothesis (first stated 30 years ago) asserts that 

the present value of an asset encompasses all the available information. It means that 

future prices are independent of past information. Louis Bachelier (1870-1940) was 

the precursor of this theory and found out that the price returns can be modelled by 

Brownian motion under the following assumptions [30]: 

e Let P(y) :price of the stock at time y, 

e Let P(t + y) : price of the stock at time t+ y, 

P(t+y) 

Ply) 

P(t+y) 

P(y) 

e If is independent for all prices up to time y, 

e Iflog( ) follows a normal distribution with mean ji*t and variance V/t+*o, 

then P follows a geometric Brownian motion with mean p and volatility o. This 

phenomenon is a continuous time stochastic process with continuous state space or a 

11



CHAPTER 2. PRESENTATION OF THE MODEL 

Markov model which assumes that future states of the machine depend only on the 

current state and have no link with earlier states: the increments are stationary, inde- 

pendent and Gaussian but Brownian motion is not differentiable anywhere. Although 

this model may be convenient to describe the movement of market indices in the short 

run but it is useless in the long run. 

Thus, if we assume that a security’s price follows geometric Brownian motion, it 

means that only the present value affects the evolution of future prices. For instance, 

this also implies that the probability that a given stock doubles its price in the following 

month is the same if its present value is 5 or 55: this hypothesis seems not to reflect a 

realistic market. The efficient market hypothesis has numerous variants as the so-called 

martingale hypothesis: the present price of a security is the fair price in the sense that 

the expectation of the present value of a future price is equal to the present price, which 

implies that the best estimate of future value is the current value. Moreover, there are 

some specific cases for which it is proven that price sequences do not follow a geometric 

Brownian motion. Indeed, if we consider crude oil time series, a new model can be built 

under “the assumption that the future resembles the past and a risk neutral valuation 

based on the new model” [29]. We can therefore remark that security price data are not 

all consistent with the efficient market hypothesis. In particular, many traders believe 

that the prices of some securities tend to revert to fixed values: when the current price 

is less than a threshold, the price is more likely to increase and when it is greater it 

tends to decrease. This phenomenon is called mean reversion and it can be explained 

by an AutoRegressive Model (AR). 

Benoit Mandelbrot (known for his studies in fractals) demonstrated in 1963 that 

the assumptions of Wiener Brownian motion cannot be applied to a real stock market 

because of the ‘Noah’ and ‘Joseph’ effects [7]. He found out that price sequences 

are discontinuous and have an infinite variance: every time a price suffers a strong 

discontinuity, a new point appears on the distribution tail and these big movements 

are concentrated in time. Furthermore, he proved that the return distributions are 

not Gaussian, but are sharp-peaked and heavy tailed but L-Stable [7]. He called this 

12
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phenomena the Noah effect. Later he demonstrated the cyclic aperiodic behaviour of 

economic evolution: in 1975, he published a new model taking in account the role of 

long run memory in financial time series. He proved that returns follow a cyclic but 

non-periodic behaviour that he called the Joseph effect; afterwards, he mixed these two 

models to produce a new one called multi-fractional Brownian Motion. 

To conclude, it was shown that there are useful patterns in past data; therefore, 

many people think it could be reasonable that a stock’s recent price history can be 

used in financial forecasting. Consequently, a new line of research has emerged in data 

technical analysis since the 90s and these new methods permit building simple trading 

rules which are now used in the stock exchange every day. 

2.2 Forecasting methods 

During the past few years, a lot of financial prediction models have been built but 

only a few of them achieved good predictions which can be applied in the real stock 

market. Most of these models use new techniques such as time series models, neural 

networks, machine learning or genetic algorithms, and consequently most technical 

analysis are mainly based on past. price observations. 

An example of the application of simple trading methods such as Moving Average 

and Trading Range Break could be found in the studies by Brock, Lakonishok and 

LeBaron in 1992 [34]. These indicators lead to very easy and popular trading strategies 

which permit making direct profits in the stock exchange. Many other models have 

been developed with more or less success to estimate price evolution: new trading 

rules appeared as the “relative strength” [21] or the “buy and hold” which consists 

to purchase an asset at the beginning of a period and to keep it until the end. Some 

other forecasting methods have been developed using chartist analysis: according to 

Murphy(1999) and Béchu & Bertrand(1999) [14], it is possible to recognize some 

non-linear configurations which can be used in trading strategies. 

Price prediction algorithms are also used for trading: in 1997 Mitchell [31] used 

common learning algorithms while Muller [16] tried a new and powerful algorithm, the 

13
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support vector machine. During the same period, Kutsurelis and Cheung [13] used 

neural networks with back-propagation to predict equity price evolution. Moreover 

genetic algorithms are also applied to financial markets and often mixed with neural 

networks in order to achieve good short term predictions. One of the features of these 

processes is the fact that they are constantly learning and so improving, they can adapt 

themselves to all the current situations. 

Although all these methods are very sophisticated, they can not really achieve good 

predictions, they can not guess the exact future value of a stock and their forecasting 

capacity is very limited. Nevertheless, they are accurate enough to build more complex 

trading rules which make profits; that is one of the reasons why we decided to look 

at another aspect of the problem in this project. Instead of forecasting stock future 

prices, we will try to predict the next movement: basically, if the index value is in- 

creasing or decreasing in the next days or weeks depending on the prediction’s accuracy. 

2.3 Binary string models 

In this section we will describe the new forecasting method introduced by Dupire 

from which we based our study [6]. 

2.3.1 A new approach 

As we explained in the problem statement, the classical way to summarize the 

information contained in a financial time series is to define a set of times at which 

to record the asset price. Then we apply algorithms to this data in order to predict 

the future values; Dupire’s approach was different, in that he defined a set of levels 

and recorded the times at which these levels are reached. Indeed, he studied financial 

markets by representing the movements in the data rather than the price at fixed time 

points. 

14
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2.3.2 Cross points and binary strings 

Dupire defined a set of levels which are equally spaced and then recorded the times 

at which a level different from the last one is reached. More precisely, let us suppose 

we are on a time interval [0;T] and n levels. We first record the time when the curve 

crossed first a level /;, then we save the date t; and the associated price at t,, ;. 

Afterwards, we are looking for the next reached floor either immediately above 1:41, 

the same 1; or below J;_1. We save again the data (t2, Po) with P, = liz; or Py = lj) 

, depending on the path behaviour, and then carry on this process. At the end, we 

obtain a discretization of the information in the original data series. By linking all 

these recorded points, we can construct a staircase function FE. 

Considering this representation, we are able to record the information in a different, 

way: if we use the convention up = 1 and down = 0, we can represent the curve’s 

movement as a binary string. When the function F is going up we record a 1 and when 

E is going down we code a 0; this succession of up and down movements contains all 

the information we need. 

The following figure gives a good illustration of this process. It shows the original price 

time series, the levels (10 in this case), and the function E constructed as we described. 

The binary string derived from £ is given in the title. It is observed that the curve 

reach first the level 4400. Therefore this point is recorded. Then the path again crosses 

the level 4400, the data is also saved but we do not take it into account in the binary 

string because no new level is reached. Afterwards, a new floor is attained, the level 

4700. We record the point and we write the first 1 of the binary string. As the next 

level reached is 5050, we write a second 1. But then, the next floor attained is 4700. 

Here the function E is decreasing so we code the first 0. We pursue this process to 

build all the binary sequence of this example. 

15
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conversion in binary sting : 1101110001117101011001010001000100010001111111110101 7000 r r r r r   

    ss00F function E 4 
Index 
levels 

  

      

  

8000 4 
  

5500 zl 

sooo} 4 

PX,
 A
ST

 

  

4500} a} 
  

  4090 at 

  

3500+ 4 

      3000   1 L L 1 
0 500 7000 1500 2000 2500 "3000 

time 

Figure 2.1: Example of binary string’s construction. 

2.3.3 Forecasting by non-parametric estimation 

Once we have obtained a binary string, we choose a window length and we construct 

a series of delay vectors. We observe that these vectors are similar to DNA sequences 

coding a protein: each sequence means a different protein and thus it is possible to 

recognize the string which produces a particular protein. In our case, we would like to 

select patterns which predict an “up” using non-parametric estimation. It is therefore 

essentially a weighted kernel regression model, in that it consists of a set of past strings 

and their outcomes. For a new point we apply Dupire’s theory by computing distances 

to those past strings and then weight their outcomes accordingly. 

We have to define a distance between the sequences, because we require the predic- 

tions of nearby vectors to be substantially weighted and distant vectors almost ignored. 

We thus need a criterion that expresses the degree of similarity or difference of two 

strings. Two strings differing by one bit will be considered similar if the differing bit 

16
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is in further back, but if the differing bit is in the position corresponding to the most 

recent price change, the two strings will be judged as more different. Let us suppose 

we have the three following strings, A is the current string: 

A=011101, 

B=111101, 

C=011100. 

B is closer to A than C because more recent bits match. 

Dupire adopted a weighting scheme with exponential decay and defined the distance 

between two strings X and Y by the following formula: 

N 
A(X, Y) = aN) (Xj —¥j)?,0<a<1. (2.1) 

j=l i 

We still have to estimate the influence of strings similar to the current one on the 

prediction of the next binary bit. 

Dupire proposed the following model where each past string votes for its next bit with 

its own future weighted by its distance with the current strings. 

_ De) xp, 
P= MER) (2.2) 

where p; = 0 or 1 is the digit following Y; and p is the computed probability for the 

current string to be followed by an up. 

2.3.4 Another way to use binary strings 

Lutz Molgedey and Werner Ebeldling [35] [17] [23] also use binary strings for local 

prediction of financial time series but unlike in Dupire’s work they keep the notion of 

time. They consider small pieces of the returns record and build digit sequences by 

considering the values of returns over a few days. 

LG
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Returns are defined by: 

_ 
Pei 

The alphabet is composed of three digits :“0” ,“1” “2” depending of the return at time 

Re (2.3) 

(t). Afterwards, using conditional entropy, they achieve convincing prediction of the 

next move. While their way to construct the bit sequences is totally different, their 

process is quite interesting, especially about the concept of uncertainty, that is how last 

move predicts the next one using the minimisation of the conditional entropy. Besides, 

they applied this model to other fields such as human writing, images and astrophysics. 

2.3.5 Conclusion 

To conclude, Dupire can create effective forecasting models that achieve good prof- 

its with simple trading rules. One of these strategies consists in buying assets if p > 0.6 

and selling them if p < 0.4. 

18



Chapter 3 

Data Analysis 

The aim of this chapter is to present the data used in this project and explore its 

basic statistical properties. 

3.1 Data presentation 

To carry out empirical experiments, 5 sets of daily closing data for the main equity 

indices were used. It was decided to study the evolution of indices rather than stock 

price records because they are less dependent on a specific economic environment. 

Moreover, using this type of data avoids many distracting technical problems like no- 

quotation days or dividend payments. This data are from the Dow Jones BUROSTOXX 

50 Index, FTSE 100 Index, Standard and Poor’s 500 Index, Russell 2000 Index and 

NASDAQ-100 Index. In order to simplify the code and the figures in Matlab, the data 

are considered as a function of working days. The financial time series are defined as 

following: 

e The Dow Jones EUROSTOXX 50 Index (SX5E Index): this is the lead- 

ing blue-chip index for the Euro area, covering 50 stocks from different European 

countries. 

19
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0 500 4000 1500 2000 2600 3000 

umber of dave 

Figure 3.1: The Dow Jones EURO STOXX 50 Index between 1997 and 2007. 

e The FTSE 100 Index (UKX index): The Financial Times Stock Exchange 

(FTSE) is an index of the 100 most highly capitalised companies listed on the 

London Stock Exchange. It represents about 80% of the capital of the whole 

London Stock Exchange and is by far the most widely used UK stock market 

indicator. 

  7000 

      

0 500 7000 4500 2000 2500 3000 
number of dave 

Figure 3.2: The FTSE 100 Index between 1997 and 2007. 

e The Standard and Poor’s 500 Index (SPX Index): The S&P 500 is an 

index containing the stocks of 500 Large-Cap corporations, which represents 70% 

20
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of all US publicly traded companies. All of the stocks in this index are those of 

large publicly held companies and trade on the two largest US stock markets, 

the New York Stock Exchange and the Nasdaq. After the Dow Jones Industrial 

Average, the S&P 500 is the most widely watched index of Large-Cap US stocks 

and it is usually considered as the benchmark for U.S. equity performance. 

  
0 500 7000 7500 2000 2500 3000 

umber of dave 

Figure 3.3: The Standard and Poor’s 500 Index between 1997 and 2007. 

e The Russell 2000 Index (RTY Index): The Russell 2000 is used to measure 

the performance of U.S. small companies stocks (“small caps”). It focuses on 

smaller capitalization companies and is quite diversified. This is the most quoted 

index that focuses on this portion of the economy, this index is quite volatile both 

in composition and in valuation. 

21
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0 500 1000 1600 2000 2500 3000 

number of dave 

Figure 3.4: The Russell 2000 Index between 1997 and 2007. 

e The NASDAQ-100 Index (NDX Index): The National Association of Secu- 

rities Dealers Automated Quotation (Nasdaq 100) tracks the 100 largest stocks 

listed by the Nasdaq exchange. Nasdaq’s companies tend to be smaller and 

younger than New York Stock Exchange companies, but the exchange also lists 

Dow Jones Industrial Average giants like Microsoft or Intel. This index is often 

treated as a “tech stock” index simply because its components are mostly new 

technology companies. Moreover this index can be extremely volatile. 

  

4500 

      
0 500 7000) 1600 2000 2500) 3000 

umber of dave 

Figure 3.5: The NASDAQ-100 Index between 1997 and 2007. 
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All the experiments of this project have been run for these five indices. 

3.2 Autocorrelation and partial autocorrelation 

In this section we explore the correlation structure of the time series in order to see 

if an autoregressive model could be appropriate for the data. The autocorrelation helps 

to find repeating patterns in a process, such as the presence of periodic components. 

By definition, the total autocorrelation coefficient for a given time series X; is [27]: 

  px(h) = = a = Corr(Xtan, Xt); (3.1) 

for all ¢ and for all h where h is the delay. 

It means that the correlation is computed between the original time series T and T 

delayed by a lag of size h. Autocorrelograms can be built by applying this formula to 

the different indices for large numbers of lags. 
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Figure 3.6: Autocorrelation of the 5 sets of data. 

We notice that the autocorrelation is decreasing slowly on all the charts. Appar- 

ently the data remained autocorrelated all over the different lags. Therefore it is not 

possible to apply a Moving Average (MA(q)) model because the autocorrelation does 

not remain around 0 after a certain delay. However, these results must be interpreted 

carefully because it is likely that the time series are non-stationary. 

In theory, partial autocorrelation shows if one can apply an AutoRegressive (AR(p)) 

model to a stationary time series. The partial autocorrelation is used to measure the 

relation between observations k steps apart after removing the correlation between ob- 

servations 1, 2, ..., k — 1 steps apart. By definition, the partial autocorrelation at lag 

k is the autocorrelation between X; and X;_; that is not accounted for by lags 1 to 

k—1 [27]. 

The partial autocorrelation between X; and X;, is given by the following formula: 

Pp uXpa(X1, XK) = corr(Xy — Pxp,...,.X_-1(X1), Xk — Pxp,...Xn-1(Xk)) (3.2) 

corr = coefficient of classic correlation 
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Pz,....Xn-1(X1) = projection of X1 in the vector space generated by Xo, ..., Xp-1- 

So if the partial autocorrelation is computed for a window of one year or one month, 

the partial correlation decreases very quickly after oscillating around 0 for all the 

indices. 

Considering a period of one week, we obtained the graphs in Figure 3.7 : 
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Figure 3.7: Partial Autocorrelation. 

These graphs represent the evolution of the partial autocorrelation for the five in- 

dices for five lags, so the equivalent of a trading week. After the first day, the partial 

autocorrelation is oscillating around 0, which means there is no AR(p) model that 

would be appropriate for the time series for p > 1. Of course, a random walk model is 

AR(1). There does not appear to be any significant autocorrelation in any of the stock 

index time series. 
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3.3. Unit Root Tests 

In this section, the stationarity of the stock indices is studied. A time series is 

weakly stationary if its mean value and covariances are time invariant: in the finance 

literature, the weak stationarity of asset return series is often assumed. 

However, most stock price time series are not stationary and also very noisy. On the 

index plots, there appears to be no long-run average level about which the series evolve: 

this is evidence of non-stationarity. Statistical tests exist to prove that a time series 

is stationary or not: for example, the Dickey Fuller Test (1979) [3] augmented Dickey 

Fuller Test (1981) [9] and Phillips and Perron Test(1988). All these tests state on the 

modelling of the series by an AR(p) model: a series is. not stationary if when fitting 

the following model, one finds out that a is not significantly different from 0: 

Y= B+ ay-1 +e. (3.3) 

Tt means that the system has a unit root. 

To apply the Dickey Fuller Test, equation (3.3) is transformed [27]: 

YU-MW-1 = B+ ay-1 — Y-1 + Et, (3.4) 

Ay = B+ (a— Iya + (3.5) 

Thus the null hypothesis Ho is defined: 

Ho = the series is not stationary and there is a unit root a = 1 or (a—1)=0 

So if t (test) > t (table of Dickey-Fuller), Ho is accepted and the series is non stationary. 

This test is run for three different cases to find out if the series is stationary or not: 

without drift, with a drift and with a time trend. If Ho is accepted for one of them, the 

series is not stationary, y, is differenced and the Dickey Fuller (DF) test is performed 

until Ho is rejected. Most of the time, financial time series are non-stationary mainly 

because there is no fixed level for the prices. 

The augmented Dickey-Fuller test is the same as the simple Dickey-Fuller test 

but is applied to another model which takes into account the autocorrelation of the 
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differenced time series with a correction on the delayed values: 

P 

He =B+ay1+ > (HAu+) +e. (3.6) 
fal 

This test is used to prove that the indices are non-stationary time series. By using 

the GRETL software [1], the following results were obtained: 

  

  

  

SX5E UKX SPX REY NDX 
result | -0.0019791 -0.0026511 -0.0027134 -0.00109 -0.00219 

t val -1.88234 -1.97087 -2.142 -1.15201 -1.78695 

Ag accepted yes yes yes yes yes         
Table 3.1: Augmented Dickey Fuller Test. 

According to these results, the null hypothesis is accepted for all the indices. It is 

now assumed that the index series are non-stationary. 

3.4 Returns 

Most financial studies consider the returns of assets instead of prices. Two main 

reasons are invoked for using returns by Campbell, Lo and MacKinlay(1997) [36]: first, 

the returns series is a complete summary of the investment opportunity which are easier 

to manipulate. Indeed the returns usually have more attractive statistical properties, 

such as stationarity, than price series. As it is observed about the indices, the prices 

could be non stationary and the returns could be stationary for a same series. - 

In order to avoid some problems due to non-stationarity, it is often useful to consider 

the times series of returns or logarithms of returns instead of the values themselves. In 

the following charts, the time series of returns (called “one period single return” [27] 

or shorter “simple return”) is computed. It means that the return of the assets are 

calculated between the time t—1 and t. In this case, t is the current day and t—1 the 

previous day. 

If P, is the asset price at time ¢ and R;, is the asset return at time t, 

P, R= pt (3.7) 
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By applying equation (3.7) to the index datasets, the following graphs are obtained: 
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Figure 3.8: Returns time series from the original data. 

3000 

It is noticeable that for all the graphs, the curves seem to be more regular than 

the prices and there are sometimes quite big variation upon one day. They look quite 

stable over the time and stationary. 

So, as before, the autocorrelations is computed for the returns to investigate if it 

confirms our intuition. 
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Autocorrelation of SXSE returns. Autocorrelation of UKX returns. 
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Figure 3.9: Autocorrelation of returns. 

The graphs obtained are totally different than for the price series. Indeed, after the 

first lag, the autocorrelation oscillates around 0, but the absolute value decays slowly 

even though there is no serial correlation. We chose to stop studying the returns curve 

at this point. Indeed the Dupire process we will apply to the data includes defining 

levels, crossing points and distances between the strings. Hence a return is either 

positive or negative and it is defined by the current price divided by the last price. If 

levels are defined, they separate different sets of return values. Supposing a positive 

level is reached by the return path, the interpretation in terms of trading rule is not 

obvious to determine. Indeed if the return is positive, the today’s price will be higher 

than yesterday’s price but maybe lower than the price on the day the asset was bought. 

Consequently we would need to compute simulation of returns for a large number of 

cases. Moreover two or three levels will be enough to determine when the expected 

return is either positive or negative. It is clearly not the process described by Dupire 

and, as it was explained before, some studies already predict the sign of the expected 

return to know the direction of the next move. So we consider now only the index 

values to achieve the model. 
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3.5 Distributions 

In this section, the distributional properties of the indices daily evolution are stud- 

ied. It is interesting to understand the behaviour of the series over time to help deter- 

mine the level size in the Dupire model. 

A classical statistical normality test is run on the daily evolution of prices and gave 

the following plots for the SX5E index. 
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Figure 3.10: Frequency of the daily evolution and comparison with the normal distri- 

bution. 

This plot shows an histogram of daily evolution and the associated normal curves. It 

is noticed that the curve does not seem to fit well to the data. The peak and the tails of 

the histogram are above the normal density curve; this is a fat-tailed distribution which 

is very common with financial time series. Therefore a Anderson-Darling normality test 

was run which is defined as [2]: 

HA: the data follow a normal distribution. 

H,: the data do not follow a normal distribution. 

Hi, is rejected if the “p-value” calculated is less than the significance level 
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Figure 3.11: Normal test for SX5E. 

According to the calculations, Ho is rejected because AD = 21.9 and P — Value < 

0.005. The distribution is not normal and the same result was obtained with the four 

other indices. The data distributions are more fat-tailed than a normal distribution. It 

means in particular that very extreme variations happen more often than the normal 

distribution predicts. This is what Mandelbrot called the Noah Effect [2]. To confirm 

this, the skewness and the kurtosis of the data were calculated. 

Skewness is a measure of asymmetry: a negative value indicates skewness to the left 

and a positive value indicates skewness to the right. 

Kurtosis is a fourth-moment measure of the shape (peakedness) of a density. It has 

the value 3 for a normal distribution. A positive value typically indicates that the 

distribution has a sharper peak than the normal distribution and a negative value 

indicates that the distribution has a flatter peak than the normal distribution [27]. 

  

  

  

  

  

  

mean std | skewness | kurtosis 

SX5E | 0.8956 | 47.456 -0.15 1.89 

NDX | 0.444 | 47.961 0.11 10.95 

RTY | 0.142 | 6.797 -0.25 eG 
: SPX | 0.257 | 13.102 -0.13 2.69 

UKX | 0.849 | 59.98 -0.23 1.58               
Table 3.2: Distribution moments. 

For all indices the skewness is quite different from 0 and the kurtosis is bigger than 
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for a normal distribution, especially in the case of the NASDAQ indices. One can 

conclude than unexpected extreme variations happen more often for these indices. 

To implement the model described in the last chapter, the size of the levels must be 

defined. As the optimal choice of level depends on the nature of the prediction task, 

their size is chosen depending on the shapes of distributions. To predict the movement 

on the following day, a smaller threshold than the one for a two weeks horizon is 

used. Looking at the data repartition, the optimum levels must be a percentage of the 

standard deviation like 5%, 10% or 15%. For the experiments, this value is determined 

according to the expected degree of precision. 

3.6 Conclusion 

This chapter confirmed that the data studied have the well known features of financial 

time series: non-stationarity, non-normal distribution, and small partial autocorrela- 

tion. Therefore it is not possible to apply a standard time series model to the prices 

and it is one reason why Dupire’s process may be of interest. Furthermore, the statis- 

tical properties of the data permit us to define one parameter of Dupire’s model, the 

size of the levels. 
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Chapter 4 

String Analysis 

In this chapter, it is assumed that the sequences of binary strings have already been 

built. The purpose of this chapter is to study the strings’ statistical properties. 

4.1 String length 

In this section we apply several methods in order to determine the optimal length of 

string for prediction. 

4.1.1 Entropy measure 

Entropy measures the degree of disorder of a thermodynamical system (Boltzmann 

entropy) or the mean quantity of information generated by the data (Shannon en- 

tropy). This tool applied to the structure of sequences was introduced by Shannon in 

1951 in [10]. Furthermore, his concept was also applied to many other languages and 

other fields like biosequences, information processing, medical diagnosis and physics. 

Kolmogorov [19] investigated dynamic processes and used the Shannon entropy to cal- 

culate the algorithmic Kolmogorov complexity and established what is now usually 

called the Kolmogorov-Sinai entropy. Both measures are frequently used to investigate 

irregular time series which have high correlation order. 

By definition, the formula of the Shannon entropy is, for a sequence of discrete 

observations: 
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N 

Twindow = —k Yi logy pi, (4.1) 
i=l 

__nb(occurrences(i)) (4.2) 

* “nbtotal(windows) ’ . 

and k > 0, in the case of bits, k = 1 and In = log. 

Therefore, the entropy of the data sets is calculated in order to determine the 

optimum size of the window, which is equal to the length of the strings. The entropy is 

graphed for different window sizes for the different indices and for several level sizes. It 

was noticed that the results were similar for all the experiments; the following curves 

were obtained with the SX5E index. 
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Figure 4.1: Graph of entropy as a function of the window size for 10 levels. 

In this case, it is obvious that the curve reaches a maximum for strings of length 8 

and decreases after the peak. So in this case windows of size 8 contain the maximum 

information or the maximum randomness. If we are looking at smaller levels, the 

general behaviour of the plot is the same but the maximum is reached for strings 

which are a little bit longer. 
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Figure 4.2: Graph of entropy as a function of the window size for 200 levels. 

  

      

Figure 4.3: Graph of entropy as a function of the window size for levels of size 10. 

For very small levels, the entropy reaches a near-maximum for windows of size 12 

and start to decrease after 22. It means that strings of size 12 hold a sufficient quantity 

of information, very close to the maximum of information. With this length, the 

randomness reaches the point when the strings represented in the dataset appear with 

roughly equal probability. For greater window sizes there is an excedent of information 

which decreases the randomness. The experiments performed for the other indices and 
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other level sizes confirm empirically these results, and so we concluded that 12 may be 

a good value for the string length although this was larger than we had anticipated. 

Indeed a window of 12 bits means that there are 2!” = 4096 different possible strings. 

As there are about 1000 windows after pre-processing the dataset, it means that it will 

be probably unlikely to find more than 2 occurrences of a given string of that length. 

4.1.2 Conditional entropy 

Assuming the word sequences of length k have already been built, it is possible 

to compute the conditional entropy which measures the uncertainty of predicting the 

next letter. This is actually the difference of the Shannon entropy computed for words 

of size k + 1 and words of size k [23]. 

hy = Ansa — He. (4.3) 

The conditional entropy was plotted for the different indices. The following curve 

is obtained for the NDX index. It was noticed that the graphs have the same shape 

for the other indices. 
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Figure 4.4: Graph of the conditional entropy as a function of the window size for 200 
levels. 

The curves decrease slowly at the beginning and faster for windows of size bigger 

than 6. The existence of long correlations is expressed by long decreasing tails of 
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the conditional entropies. Moreover "beyond k = 5 or k = 6 the calculation of the 

conditional entropy is not reliable due to large statistical error” [17]. It is concluded 

from these experiments that 6 could be a good length for the strings. Indeed, 6 means 

that there are 2° = 64 different possible strings. Our view was that this was better than 

a length of 12 because it would be easier to create a predictive model that generalised 

well with smaller pattern space. 

4.1.3 Singular Value Decomposition 

A singular value decomposition of the data was done in order to determine by 

another method the optimum length of the strings. The goal of this experiment was 

to look for a threshold for the singular values which would indicate the optimum size 

of window. Unfortunately, this experiment gave no decisive result: for all the indices 

and for all the sizes of levels, the singular values were decreasing too quickly after the 

first one. Here are the results for the SX5E index: 
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Figure 4.5: 1. Singular value decomposition for SX5E index.2. Percentage of singular 

value decomposition for SX5E index. 

4.2 String statistics 

By creating the binary strings, a time series of words is obtained. The same 

statistics used for the price sequences can be computed for the string time series in 
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order to understand their properties better. 

4.2.1 Autocorrelation 

In order to discover if the strings is correlated, the autocorrelation was computed 

for the string time series. To apply the usual formula, it is necessary to transform each 

string to its corresponding value in the decimal system. So each word is represented 

by a number lying between 0 and 2°” — 1 where sw is the length of the strings (i.e. 

size of windows). The most recent value is mapped to the largest power of 2. The 

autocorrelation was computed for windows of size 6 and 12 following the conclusions 

of the last section. Similar results were obtained for all the plots so only the curves 

graphed for the SPX index are shown. 
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Figure 4.6: Autocorrelation for SPX index with words of length 12. 
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Autocorrelation of binary strings. 
  

& 
aut

oco
rre

lat
ion

 
° 

e 
  

0 100 200 300 400 500 600 700 800 900 
fag 

Zoom tor autocaroation o binary stings, 
  

aut
oco

rre
lat

ion
 

    
  

274 ee 1G 12 4s 16 te) 
lag 

Figure 4.7: Autocorrelation for SPX index with words of length 6. 

The strings seem to stay strongly correlated over all lags but there is a big 

decrease at the beginning. That is the reason why a zoomed plot of the autocorrelation 

on the smallest lags is shown. It appears that until the third lag the curve is decreasing 

quickly. Thus, the string times series are significantly more autocorrelated during the 

three first lags than afterwards. This property is true for words of both size 6 and size 

12. Moreover the values of the autocorrelations are similar whatever the string length. 

It is concluded that here again a Moving Average (MA) model ié not appropriate. 

As for the price time series, the partial autocorrelation was computed for the 

string time series. The experiments were run for words of size 6 and 12 by transforming 

the binary strings to a decimal number in order to apply the usual partial autocorrela- 

tion formula. The same type of plots were obtained for all the sets of data. Figures 4.8 

and 4.9 present the partial autocorrelation graphs of the SX5E index: 
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Figure 4.8: Partial autocorrelation for SX5E index with words of length 12. 
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Figure 4.9: Partial autocorrelation for UKX index with words of length 6. 

After the first lag, the partial autocorrelation oscillates around 0 although the 

variations are bigger than those observed with the original indices values. The curve 

indicates that the amplitude can fluctuate about 10% around 0. Thus, there is a very 

weak coefficient of partial autocorrelation between the different lags. It is concluded 

that it is not possible to find a good AR model for the string time series. 
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4.2.2 Distribution 

It is interesting to look at the string distribution, since this could indicate if some 

sequences happen more often than others, if they following a particular distribution 

or if there is a pattern which has a high or low frequency. In this aim, the string 

distributions are graphed for all the indices and sequences of length 6 and 12. The 

following figures present the curves obtained for NDX and UKX with strings of size 6. 
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Figure 4.10: Strings histogram for the NDX index with words of length 6. 

The histogram does not seem to follow a particular distribution. It is noticed 

that the word consisting entirely of ones has the biggest frequency, almost double the 

number of any other word. There are some strings which are totally absent from the 

distribution. This shape is similar for all the indices, but the UKX histogram contains 

more peaks, consequently, the peak of “111111” is a little bit smaller than the others. 
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Figure 4.11: String histogram for the UKX index with words of length 6. 

This is the plot obtained for NDX index and strings of size 12: 

45 

a5 

nu
mb
er
 

of 
oc
cu
re
nc
e 

  
-Soo0 $00 1000 1500 2000 2500 3000 3500 4000 4500 

sequences indec 

  

Figure 4.12: String histogram for the NDX index with words of length 12. 

In general these graphs generated with longer words are really undersampled; the 

biggest occurrence which is reached is 3 and there are a lot of strings which are not 

present. According to the maximum entropy theory, the probabilities for all the strings 

are almost equal, there is practically only one occurrence of each possible sequence. As 

the model computes the distance between the strings, the fact: that we do not have the 

list of all the words in the distribution should not pose any difficulty. 
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To conclude, it is not possible to fit these histograms with a classical distribution 

such as the normal distribution. 

4.3 String Entropy 

The next step was an investigation of the dataset size needed to create a model 

that generalises. To do this, we calculated the Kolmogorov entropy function of the 

number of strings. The aim was to find out if the entropy has a maximum or not; if 

such a point existed, it would mean that the corresponding number of strings contains 

the maximum of past information and that using more strings to train the model will 

be a waste of time. The following graphs are obtained for the RTY index with binary 

words of size 6 and 12: 
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Figure 4.13: Kolmogorov entropy for SPX index with words of length 6. 

It is observed that the curve was irregular especially at the beginning where there 

are large fluctuations, while for sets of more than 300 strings, the curve continues to 

increase but very weakly. Thus we concluded that to obtain enough information, at 

least 300 words are required to train the model. This big number would probably 

contain enough long-range memory to achieve good predictions. 

Here, the path was considerably more regular, especially around the inflexion point, 

but even if the entropy increased quite slowly after this point, it still rose steadily. We 
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Figure 4.14: Kolmgorov entropy for SPX index with words of length 12. 

hypothesised that, as the size of the strings was bigger than previously, the graph would 

probably have the same behaviour if it was possible to pursue the experiments with 

more data. Recall that we showed in Section 4.2.2 that the data were undersampled 

for this size of string and more data would be required to reach valid results. 

As it could be interesting to know the proportion of digits 1 and 0 in the time series, 

this information is summarized in the following table: 

  

% | SX5E | NDX | SPX | RTY | UKX 
0 | 47.15 | 45.68 | 46.83 | 44.63 | 47.15 
1 | 52.85 | 54.32 | 53.17 | 55.37 | 52.85 

  

  

                

Table 4.1: Bit distribution. 

It is noticeable that for all the series there are more 1s than 0s, which means that the 

market prices have a higher probability of increasing (by at least the amount between 

levels) than decreasing. That could explain the reason why if a Buy & Hold strategy 

is applied during a long time, there is a good chance of making a profit. 

The experiments run with the other indices showed the same feature so we concluded 

that a data set containing about 300 words should be sufficient train the model. In the 

next chapter, the model will be implemented. 

44



Chapter 5 

Model implementation 

This chapter investigates the implementation of the model introduced by Dupire 

and compares it with other models, such as neural networks. In order to optimize the 

process, the right values of the Dupire’s model parameters need to be determined [6]: 

Dee py 2= SS ae (6.1) 

and 
N 

(X,Y) = aN x (X;-¥j),0<a<1 (5.2) 
j=l 

where p; = 0 or p; = 1 is the digit following Y;. 

The two parameters to be established to use this model are a and . We tried to 

determine them using two techniques: cross validation and maximum likelihood. 

5.1 Cross-validation 

Cross-validation is a commonly used empirical model evaluation method. For 

instance, it has been used to compare neural networks with different architectures in 

order to determine which has the best performance on new data to avoid overfitting. 

In this application, we will compare the performance of different models by evaluating 

the error function on different sets than those used for the training. There are several 
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algorithms for this purpose: hold-out, leave-one-out and K-fold cross validation. The 

differences between these methods lie in the way the sets are defined before computing 

the error for each of them. We chose to apply the simplest cross-validation, the hold- 

out method. The data were separated in three independent sets, called the training 

set, validation set and test set with the respective proportions: These sets ae 
2186) 

were selected as blocks of data keeping the time order intact. A range of models with 

different values of 0 < a < 1 and 0 < X were trained using the training set. The 

performance of the models was compared by evaluating the error function using the 

validation test. The ordered pair (a,) minimizing the error function was selected. 

To get an unbiased measure of generalisation, the performance of the selected network 

was measured on the test set and compared with the error for a benchmark model 

(such as random walk) [18]. The random walk process is defined by the following 

model,p; = pi-1 (where p; is the 7** move): the next move is the same as the last one. 

The error function is defined by the following formula: 

=) [sok 
BOG 

where ¢; is the i*' bit, p; the probability for the i bit and ¢ the mean. A value of 

2 

  

      — pi) 

1 indicates a model that is no better than predicting the mean outcome, while a value 

of 0 means perfect predictions. 

This method was run for all the indices with strings of size 6 and 12. It gave these 

results for the SX5E index: 
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lambda oo alpha 

Figure 5.1: Error for the validation test of SX5E index with strings of size 12. 

We are looking for a minimum of the error surface. However, there is no sharp 

dip around the minimum, so determining the exact value is difficult; it was achieved 

by zooming in the graph. This also means that the value of parameters need not be 

fixed precisely, as a small variation will not have a significant effect on the predictive 

accuracy. Moreover the minimum is not necessarily unique, as it could be reached at 

several points. 
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lambda oo alpha 

Figure 5.2: Error for the validation test of SX5E index (zoom) with strings of size 12. 

In this example, the error was minimum for a = 0.6 and \ = 1.5. When the selected 

model is run on the test set, the following results were obtained (the letter in brackets 

indicates the name of the corresponding column in the following array): 

e 35 (el) predictions were false out of 97 examples (card), which means the false 

prediction rate is around 36% (E1). 

e The normalized error on the validation test was 0.9550 so it was a little better 

than the average (e2). 

e If the random walk error (¢3) is calculated, an error of 36%(E3) is obtained so 

exactly the same as the model. 

e The trading rule was used as described before but only probabilities under 40% 

and bigger than 60% are considered. So the number of false predictions is evalu- 

ated if this probability threshold is considered. Then we find out that 12 predic- 

tion (e4) are false in the sample of 39 (cardrj) elements which correspond to an 
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error of 30.8% (E4) which is a little bit better than before. 

The table 5.1 presents the summary of the experiments run for strings of size 12. 

  

  

    

Index | SL SW a 1 card el e2 e3 e4 cardrj El E3 E4 

SXS5E) 70" 12) 0.6 4.5 97 35 0.955 35 12 39 0.361 0.361 0.308 
NDX | 40 12 08 17 111 40 0.954 44 22 65 0.36 0.396 0.338 

BEY es 12 019 2:3" 9 166) 73) 11025, 73 73 165 0.44 0.44 0.442 
SPX | 13 12 0eL 7 138 60 1.023 60 46 113 0.435 0.435 0.407 

UKX | 50 12 0.08 10 165 69 0.979 69 28 67 0.418 0.418 0.418 
  

Table 5.1: Cross Validation results with strings of length 12 with: 
sw: size of windows, a: alpha, l: lambda, card: cardinal of the test set, e1: number of 

false bits, E1: percentage of false bits, e2: normalized error, e3: random walk error, 

E3: percentage of random walk error, e4: number of false bits for the rejection method, 

E4: percentage false bits for the rejection method, cardrj: cardinal of the test set with 

the rejection method. 

The graphs have similar shapes for all the indices but the minimum is reached for 

a different ordered pair (a, \) for each index. 

Similar experiments have been run with strings of size 6 and the UKX index. 

lambda alpha 

  

Figure 5.3: Error for the validation test of UKX index with strings of size 6. 
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The figure was very similar to the one obtained for strings of size 12. Here again 

the miminum seems to be in a broad flat area of the graph, so we had to enlarge the 

plot in order to find the right values. The error here is minimum for a = 0.11 and 

A= 18. 

  

Figure 5.4: Error for the validation test of UKX index (zoom) with strings of size 6. 

Table 5.2 presents results obtained with the test sets for several different indices. 

  

  

  

Index | SL SW a 1 card el e2 e3 e4 cardrj El E3 E4 

SX5E/ 60. 6 0.08 1.8 113 45 0.976 45 23 68 0.398 0.398 0.338 

NDX | 40 6 1 1 111 40 0.97 45 19 57 0.36 0.405 0.333 

RTY 6 6 0.01 2.8 166 74 1.034 74 74 166 0.446 0.446 0.446 

SPX | 13 6 0.08 7.1 138 61 102 61 31 83 0.442 0.442 0.373 

UKX | 50 6 0.11 18 165 69 098 69 26 68 0.418 0.418 0.382   
  

Table 5.2: Cross Validation results with strings of length 6. 

From these experiments, we can conclude that the error is not sensitive to the value 

of A and a because the graphs look quite flat. Whatever the index and the string 

length, the error is similar to the one generated by a random walk process. That is not 

conclusive, even if the results obtained for the Nasdaq are better. Dupire defined the 

trading rule by considering only the probability higher than 60% and lower than 40%. 

When the number of false predictions is computed after deletion of probabilities close 

to 50%, the error is always smaller than achieved by a random walk. To find out the 

50



CHAPTER 5. MODEL IMPLEMENTATION 

performance of this method, we apply it to trading rules, it will be covered in the next 

chapter. 

5.2 Maximum likelihood estimation 

The maximum likelihood method was used to seek the optimum values for the 

parameters \ and a. The vector containing all the parameters is called w. For a 

sample of n data, the probability of observing all these points is the joint distribution 

p(t1,£2,...,2n). The analysis is based on the assumption that the data is all inde- 

pendent and identically distributed, when the likelihood function for all n data points 

becomes [18]: 

L(w) = []e@itu). (5.4) 

The likelihood function gives the probability density of the observed data as a 

function of w. The value of w is selected by maximizing the likelihood of the model 

having generated the training data. In practice, it is often convenient to minimise the 

negative log-likelihood, which is seen as an error measure [18]. 

E(w) =—InL(w). (5.5) 

Combining this with equation the following expression is obtained: 

E(w) = — > Inp(2ilw). (5.6) 
i=1 

From this equation, the likelihood of the model is calculated, calling X the current 

string and p; the bit following the current string. 

eM) 4 p; 
P(p2|w) = Thee) n(X). (5.7) 

This probability is computed for the training data: 

—Ad(¥5,¥i) 
y= Deen DE (5.8) 

Sy e-Ad(¥5,¥i) 
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The classical binomial formula is used for the likelihood, the training data containing 

both the strings and their following bits: 

L(a, 4) =] 9/(1 — 75)". (5.9) 
jel 

We can then compute the error as follows: 

m 

E(a,d) = — So (pj ln; + (1 — pj) nd — 73). (5.10) 
j=l 

The terms of the products are expanded: 

E(a,) Spe AAG) ep, ~ nee 20) 
jal i=l (5.11) 

— Efea (1 = pln Dh exp" M9 (1 — py) — In OP exp MH 
By factorising the last expression, we obtain 

m n 

= y pilin > exp-40) ap)] 
=1 i=l 

— Vj=(1 —P;) net, exp 45%) «(1 — p,)] 

ae ye In We exp 4). 

The parameter values that give the maximum likelihood cannot be found analytically, 

(5.12) 

so it is necessary to use a non-linear optimisation algorithm. To apply such an algo- 

rithm, it is necessary to be able to compute the error gradient. By differentiating with 

respect to lambda, this is obtained: 

  
a (a, = 7 exp 405%) ad(¥j, Yi) # pi 

“De ame xprAUYG.¥) xp; 

a expC 0) ad(¥j, Yi) * (1 — pi) (5.13) 
a exp Ad(¥.%i) *(1— pi) 

" cs exp, Y) xd(¥j, Yi) 
~ Dj we xp AU¥5,¥s) i 

$e = 

The derivative is calculated with respect to a, sw being the length of the strings. But 

there is a constraint on a in the model: 0 < a < 1. To avoid this issue, a is defined as 

a deterministic function of an unconstrained variable a: 

exp”° 
= — 5.14 

dP expe ( ) 
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So we need to compute the derivative of the error function with respect to a. The first 

step is to differentiate the distance by a: 

  

Gay, ¥) _ Soha Tp egpea)™ Oe Yu) 
ba ba 61) 

By computing the derivative: 

ad( sw-l 
oe) Yow 4 Nea Mal, (616) 

the derivative of the error function is calculated 

  

  

eu d,a) Doe xD OY eA Dee Dope (ew — K)) (eeteas) 1M — Yin)? 
=> Pi em exp AE up, 

em py PMH eh (1) + SE ow = ERE) = Ya)? 
j=l aS exp*4¥,¥1) «(1 — p;) 

va Tk ep MU wh es ow — B) (GES) On — Yin? 
j=l =m exp-4j.¥) 
  

(5.17) 

Once all the terms of the gradient function had been determined, it was possible to 

implement the maximum likelihood algorithm using MATLAB and NETLAB [32]. The 

network is constructed in the NETLAB framework by creating the same type of data 

structures and functions. The model is called ’bst’ and the following functions were 

defined: 

e bstinit constructs the network data structure with a training set, a target set (the 

bits following the strings in the training set) and the two parameters a and 2 . 

e bstfwd computes the predictions the model calculates from an input set. 

e bsterr computes the log likelihood error for an input set. 

e bstgrad computes the gradient over a and X of the negative log likelihood error 

function. 

e bstpak condenses the parameters @ and in a vector w. 

e bstunpak sets the parameters a and A of the network from the vector w. 
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After implementing these functions, the “netopt” function in netlab was used with 

the option ’scg’ (scaled conjugate gradients optimisation) algorithm to seek the mini- 

mum of the error function so the maximum of likelihood and then the optimum value 

for a and A. The two last functions, bstpak and bstunpak, allow the new model to be 

used in conjunction with a Poel purpose non-linear optimisation algorithm in the 

NETLAB framework. The following values were obtained for the parameters: 

  

Index a alpha lambda 

SX5E, 5,6] —6.7861 0.9989 23.0565 
NDX, 5, 6 | —15.6674 0.9999 22.78 
RTY, 5,6] 9.4622 0.9999 23.4623 
SPX, 5, 6 | —11.0408 0.9999 13.9541 
UKX, 5, 6 | —43.3279 0.9999 16.8221 

  

        

Table 5.3: Results of Maximum Likelihood. 

The algorithm gives an estimate for a which is very close to its upper limit. How- 

ever, the trend is the same for all the indices, an a almost equal to 1 and a \ around 

20 which is much larger than the results obtained with cross-validation. The model 

given by these values will be evaluated in the next chapter. 

5.3 Logistic regression 

Logistic regression is a generalized linear model used when the target variable is 

a binary discrete variable, which corresponds to a single-layer perceptron or single- 

layer artificial neural network. These models calculate a linear combination of the 

input variables, in which the coefficient are the parameters, followed by an activation 

function appropriate to the type of data being modelled [18]. 

a= Sy, wy; + b;, (5.18) 

with a; associated to each output. 

Then a; are transformed by an activation function which is monotonic. This function is 
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the logistic sigmoidal activation function applied to each of the outputs independently 

1 
os (5.19) Yj 

In our application, the input values are the strings converted to decimal numbers 

and the output is the following bit. So there is only one input neuron and one output 

neuron. This process permitted us to classify the strings into two classes, those followed 

by an “up” and those following by a “down”. We implemented this model using the 

“glm” function of netlab with option “logistic”. We recorded our results in a confusion 

matrix which is a convenient way of presenting the results of a classification model. 

They provide information on the model performance on each class. The rows represent 

the true class and the columns the predicted classes. Using the function “confmat” in 

netlab [32] we obtained for the SPX index with strings of size 12 the following matrix: 

Classification rate: 58.3942% 
  

  

      
Figure 5.5: Confusion matrix from a logical regression for the SPX index with strings 

of size 12. 

The classification rate was more than 58%, but we noticed the logistic regression 

tends to predict more “1” than “0”. This is since, on average, there are more up than 

down moves in the data. 

Moreover when we look at the other indices, sometimes the classification is empty 

for the bit“0”. That confirmed our hypothesis, and if we run the classification on 

strings of size 6, we obtain the following matrix with the same index: 
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Classification rate: 63.0435% 

  

      

Figure 5.6: Confusion matrix from a logical regression for the SPX index with strings 

of size 6. 

The rate here is better than for strings of size 12 but the main issue remains, the 

classification for the “up” is identical. In table 5.4, the resumed of the classifications 

rate are presented for all the indices with different sizes of string: 

  

sw| SX5E NDX RTY SPX UKX 
57.5221 57.6577 56.0241 61.5942 50 
59.292 54.0541 57.2289 63.0435 55.1515 

51.3274 50 57.2289 52.1739 55.1515 
58.0457 50.9091 57.2289 54.3478 58.1818 

9 | 54.4643 46.3636 57.2289 56.5217 53.9394 
10 | 53.5714 55.4545 57.2289 59.854 55.1515 
11 | 50.8929 58.1818 57.2289 59.854 55.1515 
12 | 55.3571 58.1818 57.2289 58.642 —_ 54.878 

  

O
I
A
 

        

Table 5.4: Classification accuracy as a function of the string length. 

The results vary depending on the length of the strings, but the cardinal of the 

set predicting the bit ’1’ is always much bigger. The next step was to train a more 

complex logistic model, a multi-layer perceptron. 

5.4 Multi-layer perceptron 

The multi-layer perceptron is the most often used neural network. It follows the 

same principles as the simple perceptron but has more than one layer of adaptive 
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weights. The first layer activation variables a} are given by the linear combination of 

the inputs. They are then transformed by a logistic sigmoidal activation function. The 

output layer activation variables are a linear combination of the first layer activations. 

The final output value is a logistic sigmoid applied to the the output layer variables. 

We used this model to classify the strings in two classes, the sequences following 

by a 1 and by a 0, so we have one input neuron which receives the string converted in 

decimal and one output neuron which predicts the following bit. However, the number 

of hidden neurons (first layer variables) in the perceptron is not known a priori. In 

order to determine it, we used cross validation again. The minimum of the error 

was determined for the validation set and then the generalisation performance of the 

network was evaluated on the remaining test data. The following figure is an example 

of the results obtained with the NDX index with string of size 12 and 6: 

  

          

Percentage of correc classifications. Error of validation set, 
464 09 
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numbers of hidden neurons numbers of hidden neurons 

Figure 5.7: Cross validation results for an MLP with the NDX index and strings of 

size 12. 
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Figure 5.8: Cross validation results for an MLP with the NDX index and strings of 
size 6. 

As the curves were very noisy, it was impossible to find a well-defined minimum of 

the error rate, and hence the optimum number of hidden neurons. Similar results are 

obtained with the other indices and size of strings. According to Figures 5.8 and 5.7, the 

optimum number of hidden neurons seems to be 4. The result is not really conclusive 

but nevertheless the confusion matrix was computed for this network architecture to 

give an idea of the model’s performance. 

Classification rate: 46.3636% 
  

  

0 : 102       

Figure 5.9: Confusion matrix for an MLP with the NDX index and strings of size 12. 
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Classification rate: 56.7568% 
  

  

      
Figure 5.10: Confusion matrix for an MLP with the NDX index and strings of size 6. 

The classification rates are no better than those for logistic regression. The matrix 

put in evidence the trend to class all the strings in the “up” class here again, but for 

strings of size 6, the prediction is more diversified between up and down. Finally, the 

results achieved with neural networks were not very convincing. 

In the following chapter, the model is applied to effective trading rule. 
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Chapter 6 

Trading rules 

The goal of this application is to create a prediction model that can be used to 

trade profitably. Hence the results we obtained in the last chapter have to be evaluated 

through simulated trading. The model will be compared with a Buy & Hold strategy. 

6.1 Performance evaluation by trading rules 

6.1.1 Trading strategies 

It is assumed that the probabilities for the next bit to be an “up” move are already 

computed by a predictive model. Then two thresholds which determine a high and a 

low limit have to be defined. When the probabilities are bigger or lower than these 

borders, we buy or sell some assets as described in the Dupire method [6] with limits of 

40% and 60%. When the output probability is less than 40%, the trader sells the stocks 

because the model indicates that the prices are likely to decrease. On the contrary, 

if the model predicts an upward move with an probability of greater than 60%, the 

trader buys assets. Between these limits, the trader does not perform any action, he 

just holds the current position. 

Several variants of this rule can be imagined. For instance, following the same prin- 

ciples, the high and low limits can be moved depending on the probability distribution. 

Another idea is to invest proportionally to the probabilities to have an up. Supposing 
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that the output is x% > limityp, the trader buys assets for x% of our capital. Logically, 

if 2% < limitaown, he will sell stocks for 100% — 2% of the capital. 

Once the trading rule is defined, its performance is evaluated. There are several 

ways to measure performance: the first is to compare the profits generated by our strat- 

egy to those obtained using a Buy & Hold strategy [24]. It is a long term investment 

strategy based on the concept that, in the long run, financial markets give a good rate 

of return despite periods of price volatility or decline. The strategy consists of buying 

at the beginning of the period as much stock as the trader can afford and to save it 

until the end. 

To compare the performance of the Binary Strings strategy and Buy & Hold, we 

computed the annualized returns and the annualized volatility. Indeed it was not 

sufficient to simply look at the returns because that does not account for the risks in 

trading. The annualized return for a period T (measured in years) is given by: 

Rp= (= . 1) /?, (6.1) 

where Sr is the value of the portfolio at time T. 

The annualized volatility for the same period T is given by 

Vr = 0(Sr) * e (6.2) 

Rr and Vr are computed for the two strategies and compared, so that the performance 

of the models is evaluated in using both yield and risk. 

Another way to determine the performance of a trading rule would be to calculate 

the Pessimistic Return Ratio (PRR). This is a profit factor measure adjusted to give 

more importance (bigger weight) to more reliable trading times. It is given by the 

following formula [24]: 

_ ((W=VW)/T) * AW) 
cae (((L + VL)/T) * AL) (G3) 

where 

e W is the number of winning trades; 
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e L is the number of losing trades; 

e T is the total number of trades; 

e AW is the average winning trade amount; 

e AL is the average losing trades amount. 

PRR measures greater than 2 are indicative of a good system and over 2.5 of an excel- 

lent system. Unlike other performance estimates, this method takes into account the 

number of effective trades, which is valuable since an approach that trades frequently 

is hit by larger trading costs. 

6.1.2 Trading rules experiments 

We combined the prediction model given by the cross-validation process with the 

simplest trading rule. The limits were fixed at 40% and 60%. Every time a trade was 

made, all the the capital was invested or all the assets were sold. Table 6.1 presents the 

summary of the results for an initial investment of 100. We will only present results 

for the strings of length 6, since the results for strings of length 12 were consistently 

  

  

worse. 

Index | SL SW alpha lambda ar BS ar BH vaBS vaBH| PRR 
SX5E | 60 6 0.08 18 14.14 15.39 8.0013 8.1966 | 1 purch 

NDX | 40 6 1 i 7.93 8.79 6.5518 6.7229 | 1 purch 
RTY 6 6 0.01 2.8 14.05 6.46 6.5423 5.4452} 2.1475 

SPX | 13 6 0.08 ols 9.45 9.95 5.8234 5.879 | 1 purch 

UKX | 50 6 0.11 18 9.67 5.51 4.8569 3.612 | 2.5457           

Table 6.1: performance of the trading strategies with the cross validation estimations 
where: 

SL=size of levels, SW=size of windows, arBS=annualized return for the binary string 

strategy, ar BH=annualized return for Buy & Hold Strategy, va BS=annualized 

volatility for the binary string strategy, va BH=annualized volatility for Buy & Hold 
Strategy,purch= number of purchases during the period. 

The performance is better than a random walk process for the RTY and UKX 

indices. For these series, the return and the volatility overperformed significantly the 
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B& H strategy and the PRR is better than 2 which is supposed to indicate a good 

trading rule. However, we must be careful with this measure because the strategy 

only sold stocks fewer than 40 times and only trade have a negative return. It seems 

to especially mean that most of the trades are successful and that trade are seldom 

compared to the test set length. The other experiments achieve worse performances 

than random walk. This could be explained by the fact that the trading rule made a 

single trade to buy the assets and keep them until the end. Unfortunately, it bought 

the stocks at a point when they more expensive than the Buy & Hold strategy (which 

buys them at the very start of the time period. In this case, the problem is due to a 

bad choice of the thresholds or of the parameters. In addition, these trading strategies 

were applied to the models obtained using maximum likelihood parameter estimation 

and the trading rule achieved worse results than the Buy and Hold Strategy whatever 

the thresholds. The following figures illustrate these two cases: 

25   

      
    
    
  

      

20] 
—— Binary stings 
—— B&H strategy 

45] 

2 3 19} 
3 

3 5 
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time 

Figure 6.1: Trading rule for the RTY index for strings of size 6. 

On this curve, the trading rule is particularly effective at avoiding losses. In order 

to overperform the index when the prices increase, it would be of interest to apply 

more complicated trading rules including short sales. 
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Figure 6.2: Trading rule for the SX5E index for strings of size 6. 

As this graph is not very conclusive regarding the trading point of view, we com- 

puted the probabilities given by the model in order to modify the thresholds of the 

strategy: 

The result of the trading strategy can be explained by the lack of small probabilities. 

The value of the low limit was changed to 0.48 and a best model was obtained with an 

annualized return of 18% , an annualized volatility of 9.6720 and a PRR greater than 

5 which is illustrated in the following figure: 

This model almost classifies the strings in two separated sets, one of strings followed 

by an “up” and the other one strings followed by a “down”. It shows that the model 

can be improved by varying the thresholds of the trading strategy. 

6.1.3 Relationship between the parameters of the model and 

of the trading strategy 

From the experiments in the last chapter, we deduced that if we change the values 

of the parameters by a small amount, the model accuracy does not vary. The initial 

experiments reported in this chapter show that, by moving the thresholds of the decision 
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Figure 6.3: Probabilities for the SX5E index for strings of size 6. 
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Figure 6.4: Trading rule for the SX5E index with a low limit of 0.48. 

function of the computed probabilities, the performance of the trading rule can be 

improved. Following on from this, experiments have been run with samples of the pair 

(a, A) and 2 pairs of thresholds (40%, 60%), (45%, 55%). Using these tests, we would 

like to find empirical evidence of a relationship between (a, A) and the thresholds. We 

ran these experiments for all the indices and with training sets of 300 strings as advised 

by the analysis of string entropy: indeed, it is sufficient because larger sets have been 

tested empirically and this does not improve performance. 
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Figure 6.5: Annualized returns for the SX5E index (limits 40% and 60%). 

Figure 6.5 represents the graphs of the annualized returns as functions of a and 

A. The maximum is obtained for a = 0.1 and for \ between 5 and 20. As was stated 

before, the model performance is steady over smaller parameter variations. For the 

other indices, the optimum values of (a, ) change but the stability remains especially 

related to A. We observe that all the indices achieve a better performance than the 

Buy & Hold strategy as the following table illustrates: 

  

index | delta sw alpha lambda arBS arBH vaBS vaBH  mup _ stdp 
  

SX5E 5% «6 0.1 5-20 24.28 12.47 12.087 6.9952 0.552 0.1373 

    
NDX 5% 6 0.9 5-20 17.34 10.37 10.346 7.1881 0.5809 0.1967 
RTY 5% «66 0.1 5-20 14.36 4.69 6.004 5.2475 0.5403 0.1649 
SPX 5% 6 0.9 10 10.51 8.64 5.3621 5.5795 0.514 0.2335 
UKX 5% 6 0.1 5-20 - 9:82 3.79 4.9543 3.5938 0.5348 0.1105     

Table 6.2: Trading rule performance with the threshold (0.4, 0.6). 

Moreover the volatility curves show the same shapes as the returns. It confirms 

that the higher are the risks higher should be the returns which is a very well-known 

rule in finance. 

66



CHAPTER 6. TRADING RULES 

  

  

  

Figure 6.6: Annualized volatility for the SX5E index. 

By using a narrower threshold (45%, 55%) for the trading strategy, globally better 

returns were obtained whatever the parameters: 
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Figure 6.7: Annualized returns for the SX5E index (0.45% — 0.55%). 
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This table summarizes the information obtained with narrower limits: 

  

  

    

index 6 sw alpha lambda arBS arBH vaBS vaBH  wmup _ stdp 

SX5E | 5% 6 0.1;0.5 5-20;5 24.28 12.47 12.087 6.9952 0.552 0.1373 

NDX | 5% 6 0.9 5-20 19.48 10.37 10.57 7.1881 0.5809 0.1967 

RTY | 5% 6 0.1;0.5 5-20;5 14.36 4.69 6.004 5.2475 0.5403 0.1649 

SPX|5% 6 0.9 5 12.14 8.64 6.7089 5.5795 0.5185 0.2003 
UKX|5% 6 0.5 20.11.87 3.79 5.5521 3.5938 0.5381 0.1528 
  

Table 6.3: Trading rule performance with the threshold (0.45, 0.55). (0.1; 0.5): a=0.1 
or 0.5, (5 — —20): A= 5 to 20. 

As the returns are greater for a narrower threshold, it seems that these limits are 

better suited to the set of predicted probabilities from the model. When the model 

outputs are almost separated in two classes, we should choose limits which permit as 

many trades as possible. But the distribution takes this shape only for small a ~ 0.1 

and large \ > 5 or small A ~ 1. Moreover, some indices (e.g. SPX) reached their 

best performance with the biggest values of parameters. Then, when the parameters 

increase, the distribution becomes more and more continuous, as shown in Figure 6.8: 

Figure 6.8: 

A=5. 
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Histogram of prebabilties. 
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Figure 6.9: Histogram of probabilities distribution for the SPX index a = 0.9 and 

A=5. 

The conclusion of these experiments is that the performance of the model is strongly 

dependent on the relationship between the pair (a, A) and the thresholds. To construct 

a profitable trading rule from on this task there are two solutions: 

e From a small a or \, the computed model gives a classification and then the 

limits are chosen in order to perform the most trade as possible. 

e With a medium lambda and a > 0.1, the computed model gives a continuous 

probability distribution including extreme values, such as 10% and 90% and then 

the trading limits are adapted. 

One way to do the adaptation of the thresholds is cross-validation. After separating 

the data between the training set, the validation set and the trading set, the annualized 

return and the annualized volatility are computed on the validation data. When the 

optimum values of the parameters is found, the new model is tested on the test set. 
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6.2 Moving memory trading rule 

The prediction model does not take time into account (apart from the creation of 

delay vectors) even though this notion seems important in the financial market field. 

The data are considered as training patterns so the model will give the same output 

probabilities whatever the string order. In particular, we have assumed that the data 

generator is stationary over the training, validation and test sets. This is unrealistic, 

given the results in Chapters 3 and 4. 

Our approach to address this was to try a new process including online learning: 

the number of training strings is fixed but their set is moving with the time. In other 

words, the training set is never the same, it evolves with time. A moving memory 

means that the training set which moves when the next bit is predicted: the first 

pattern of the training set is deleted and the more recent bit is added to this set. 

Figure 6.10: 1-prediction with a fixed training set.2-prediction with a moving training 

set 

6.2.1 Kullback-Leibler Divergence 

The idea of a moving string set assumes that the distribution of a fixed number of 

strings is stationary but that it changes over time (so that the series as a whole is non- 

stationary). From the histograms of the distributions, it is not possible to determine 

if the samples are close. An objective measure of distribution similarity is helpful to 

determine how large the moving string set should be. The Kullback-Leibler (KL) di- 

vergence is a fundamental equation of information theory that quantifies the proximity 
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of two probability distributions. For each index the array of sequences was divided into 

sets of same cardinality from 200 to 400 samples. We computed the KL divergence 

between sets of the same cardinality. 

The Kullback-Leibler Divergence [26] between two probability distributions P and 

Q is given by. the following equations: 

nb(i) 
nbtotal( sequences) * P,, probability that the i** sequence occurs: P; = 

Dus(PIIQ) = SD Plows Z. (64) 
Note that the KL divergence Dx,(P||Q) is not symmetric in P and Q. 

Dxr(Q\|P) = >): log 2 (6.5) 

We defined an overall KL distance as follows 

D(P,Q) = 5 * (Dxx(P||Q) + Dxx(Q||P)). (6.6) 

The values obtained were less than 0.40. In order to evaluate the significance of these 

results and hence determine the optimum size of set, the method of surrogate sets 

* was applied [15]: this process is convenient to estimate the validity of an hypothesis 

without using a distribution-based statistical test and is consequently a useful concept 

in system evaluation, particularly when working out the relevant distribution for the 

null hypothesis is difficult. It is a statistical test, but it is distribution-free and does 

not require any theoretical analysis of the distribution of a parameter under the null 

hypothesis. The idea is to generate surrogate data sets sharing characteristics of the 

original data (e.g. permutations of series have the same mean, variance etc.) and for 

each surrogate to compute a statistic of interest, here the KL divergence. If a large 

proportion of the surrogates give more extreme statistics than the original series, then 

the null hypothesis (that the result is not significant) can be rejected. 

It is assumed that there are two initial sets S1 and $2 and we would like to know if 

their distributions are similar in order to understand if the moving sets are stationary. 

Then, the null hypothesis is stated: 

Ho: the probability distributions generated by the pre-processing are stationary. 
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The surrogate data are generated by randomly constructing sets of smaller cardinality 

from $1 and $2 and the KL divergence is computed between all these subsets to de- 

termine the optimal length for the moving memory. The following plot was obtained 

for the SX5E index: 

  

      

  

  

2 400 680100 120 140160 «180200 
random sets 

Figure 6.11: Method of surrogate sets: KL divergence. 

On the graph, all the curves are grouped together and this was also found to be the 

case for all the indices and all size of sets. The percentage of points under the horizontal 

line (which represents the KL divergence on the original datasets) is calculated. We 

observed that the number of surrogate sets whose KL divergence is smaller than the 

KL divergence computed for the two initial sets decreases when the cardinality of the 

sets increases. It seems to suggest that the larger training sets are more stationary. 

But when we compared the results for the UKX index, we notice some inconsistent 

percentages, for the same cardinality, between different sets, the method of surrogate 

sets gave very varied values like 1.5%, 91% and 33.5%. 
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sl sw nbdata nbset KLdivl/2 KLdiv1/3 KLdiv2/3  pret1/2 prct1/3 __pret2/3 
  

  

50 6. 250 3 0.15 0.26965 0.21375 15 91 

50 «6 300 3 0.17 0.1826 0.28765 3.5 12.5 

50 «6 350 2 0.21 18.5 

50 «6 380 2 0.21 14 

50 6 400 2 0.13 0 

33.5 

78.5 

  

Table 6.4: Method of surrogate sets where: 

sl=size of level, sw=size of windows,nbdata=number of data in the original 

sets,nbsets=number of original sets,KLj/k=KL divergence between the sets j and 
k,PRj/k=percentage of KL divergence computed from the surrogate sets under the 
KL divergence calculated between the sets j and k. 

The results of these experiments are too variable to give a conclusion and we are 

going to test the performance of moving memory strategy within next chapter. 

6.2.2 Performance of the moving memory rule. 

Despite these results, the moving windows trading rule was tested on the indices. The 

only change compared with the original models was the use of the training set. Indeed 

for each prediction, the data set used to compute the distance is different because 

it moves with time. So the training set is defined by the 300 last windows before 

the predicted bit. The probabilities generated by the model were computed for this 

strategy: 
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Histogram of probabilities. 
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Figure 6.12: Histogram of probability distribution for the RTY index a = 0.5 and 

=1. 

This distribution is similar to the ones obtained with the original model but the 

classification model is different. Indeed, with a small a, the probabilities took only four 

different values. Here, we observe almost a line but it is not straight. On the other 

hand, when a and \ become bigger, the distribution spreads out. 
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Histogram of probabilities. 
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Figure 6.13: Histogram of probability distribution for RTY index a = 0.5 and A = 20. 

If these predictions are compared to the ones obtained with a fixed training set 

(figure 6.8), one notice that the histogram is shifted right. So this model tends to 

predict more “up” than “down”.
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Figure 6.14: Evolution of the mean of the probability distribution. 

The distributions obtained for the two trading rules are distinct as the mean evo- 

lution of the computed probabilities is higher for the moving memory model than for 

the fixed training set. The volatilities of the computes probabilities evolve also in two 

separate sets but, conversely, they are smaller with this new method. This explains the 

trend of this moving windows model to predict more “up” than the last one. As before 

the trading rule is computed and the annualized return and the annualized volatility 

are calculated. 
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Figure 6.15: Annualized returns for the RTY index for the thresholds (0.45, 0.55). 

76



CHAPTER 6. TRADING RULES 

  

alpha_mem 
or 
os 
09 
01.300 

Sesto ee cea ——— 015.300 
09.300   

Figure 6.16: Annualized volatility for the RTY index for the thresholds (0.45, 0.55). 

Globally, the results obtained with the moving training sets achieve worse returns 

than the fixed training sets. But, for the RTY index, with a = 0.5 and A = 5, the new 

model achieves the best returns. 
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Figure 6.17: Trading results for the RTY index a = 0.5 and A = 20. 

Nevertheless, for the other indices the trading performance is worse. To conclude, 

using a moving training set in the model does not necessarily achieve better results. 
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Chapter 7 

Conclusion 

The purpose of this thesis was to try a new approach in order to predict the 

behaviour of times series. Instead of forecasting the prices, we implemented Dupire’s 

approach and predicted the next move that is to say if the market is going up or down. 

Therefore, we studied 5 financial time series which were 5 main indices of financial 

markets. These indices had the same main features as financial time series: non- 

stationary and fat-tailed distribution. We converted the times series into a string time 

series using Dupire’s process. Afterwards, we studied the entropy of these new data and 

found out that the maximum was reached for strings of size 12. Furthermore we tried 

to classify the strings using logical regression and multilayer perceptron but the model 

tends to predict more up than down. Then we used cross validation and log-likelihood 

estimation to determine the values of the parameters of the model and implemented the 

model considering the parameters adapted to the data. We computed and compared the 

error generated by Dupire’s model and a random process and concluded that the order 

of magnitude was almost the same. We then applied the model to a trading strategy 

to find out if it permitted to make profits. Most of the time, when the strategy ordered 

a trade, this was a winning trade. So in average, when the parameters are correctly 

determined, we make money and more money than a simple Buy and Hold Strategy. 

This was tested with a fix training set and a moving training set as it. was explained 

within the last chapter. But most of the time a moving memory model does not achieve 

better performance. However, from our experiments we can list several modifications 
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which could improve the model. 

e We observed that the trading rule avoids losing money, which is “down” predic- 

tion. Indeed, “short sales” is a convenient method to take advantage of a falling 

market. We could imagine a more sophisticated trading strategy which would 

say: “if the next bit prediction is a “1”, borrow some money or buy options in or- 

der to purchase more assets and then return it after have sold everything.” This 

process implies the access to supplementary data like option prices or interest 

rates. 

e To really compute the exact returns and apply the process to stock prices , there 

are more parameters to take in account like compounding, dividend payments, 

and slippage (price movements between making a decision and executing a trade). 

e We considered daily values, so that implied a limited set of data. Therefore, the 

number of trades is also restricted. We expect that by training models on higher 

frequency data, the results will be more significant and probably more conclusive. 

At the end of this report, we tried to include take account of non-stationarity in the 

training set by using moving training sets. The experiments proved that for most 

indices the returns reduced. Nevertheless, there are some other ways to keep this idea. 

It should be possible to find a decreasing function for X which will give more weight 

to closer windows than distant ones. Furthermore, it is important to take particular 

care in choosing the training sets. If we consider the totality of the price history, the 

model will be too long to compute. If we chose the training data too far-off in time 

from the prediction, it may be too different than the current situation to achieve good 

forecasts. If the string distribution is too different from the test sets, that will also 

reduce performance. 

To conclude, the empirical results we obtained are encouraging but several poten- 

tially interesting tracks remain that we didn’t explore because of a lack of data or a 

lack of time. 
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