
Object Recognition by Parts

MATTIAS BOSTROM

MSc by Research in Neural Networks and Pattern Recognition

THE UNIVERSITY OF ASTON IN BIRMINGHAM

September.1997

This copy of the thesis has been supplied on condition that anyone who
consults it is understood to recognise that its copyright rests with its
author and that no quotation from the thesis and no information derived
from it may be published without proper acknowledgement.

THE UNIVERSITY OF ASTON IN BIRMINGHAM

Object Recognition by Parts

MatT1As BOSTROM

MSc by Research in Neural Networks and Pattern Recognition, 1997

Thesis Summary

Object recognition is one of the major challenges in computer vision and a vast number
of approaches have been proposed. One approach to this problem is to try to recognize
an object by building feature detectors for its various parts, and then checking that the

parts lie the correct spatial relationships. A key advantage of the recognition-by-parts

strategy is that it is robust to problems of occlusion that bedevil strategies based on

observing the whole object.
In this thesis we examine feature detectors for images of 3-D objects which use a

m xm window of the image as the input. A number of feature detectors including

multiple logistic regression, linear subspace models, k-nearest-neighbours and differ-

ent types of artifitial neural networks are investigated. The performance of these
classifiers has been assessed using both representative test sets and receiver-operating-
characteristic (ROC) curves.

Keywords: PCA, K-Nearest-Neighbours, Neural Networks, Object Recognition

Acknowledgements
First of all I would like to thank my supervisor Dr. Chris Williams for his guidance

and good advice throughout the project. Apart from sharing his knowledge and insight
into object recognition with me he also provided me with good references.

Thanks also to my fellow MSc students at the Pattern Analysis and Neural Network

program who in addition to giving good advice and useful tips also were supportive
late nights when software bugs and writers block made life miserable.

The rest of the people in the Neural Computing Research Group who always have
been willing to help and have made this year at Aston an interesting and stimulating

year to remember.

Linképing University in Sweden that sent me here to do my final year as an exchange
student deserves to be mentioned.

And finally but not least Claudia for giving support and correcting my English.

Contents

1 Introduction

1.1 Recognising objects using global properties.
12s Object recovn ition Dyguacidiak. Wen eee ths, 6 02) he eee
TiS emi ee ic CUM nome MAME. oc). MC UL threat Gee ce. cre Ge. 8 acuae cette

2 The Data

2 Tame OLUOU Rater tence Met Teme tr escapee S15) se emer es na
eo Generation ol Datars mec st) el. ain seta. Yo ee fara oly

3 Methods

Sol aercurcipal. Component Analysisiel iver. sre 0s. vay te. ie Ie, eee

3.2 Multiple Independent Attributes (MIA) Classifier

3.3 Multiple Logistic Regression with softmax output

3 alelsnear subspace Clasaifier (LSC \i. 0. feces scotia. es chs ale wes
iB Opals Nearest Metpn bourses ns is aye (Rs n mete, iy. oceemney s
3.6 Scoftinax NeuralNetworks st eyo) ie ss oot: eee. | pleteas
3.7 Multiple Independent Attributes Neural Networks (MIA NN)......

4 Results

Mal MMUSCOL RALESs calc or sires Voesae ete ciidiw echoes as aosi'e 4, 8 gee os

AD ROC Curves shemyrtas 0. os sett ty sper came oe meee) Sle aye
eh Dates eae attr Ay eee Mp eoereteren od ss Yo, Nel WP SY Gene wy Ame

22:2) Comparison Of ROW Guryeem sem. se ue) Go wees
4.3 Multiple Independent Attributes Classifier--

MO e ep trrOr Rates wo. ee sagenn reese. eh ehsis Gl es ak Sake yh We lcs

SCO AS SHO) GP Ohba qo Soere 18 Sale od lee) RUMI iC hs sl i
4.4 Multiple Logistic Regression Classifier..................--

SA AM gr Oran bes Pea eer icon as Ser se Se 1% Gechinn «tye ee eee
Mia Die "ROC Carves nist es Me eae ae: ues Sue en

Aoy linear SubspacerOlassitierimes, shart. s AF waite 2 oat eng: bc Sadia fs nag
Atel <a PRTOMRALCa alte tet cee ee. Ree oh nA i, cg Sr me

aOo) = ROG Outves cents cate amis Me Me, seh.) see, wakes a he

4.6 .K-Nearest-Neighbours Classifier . 30... oes eee oe a a

A-OolmeaRrrOr Ralesu s1 mas) es jkr Mes ccs see Se

a Gro ROG Cunvesem tamer. seri Pees Bet. be ebtear = a sah Pea +
4.7 Softmax Neural Networks Classifier . . .

Arils HCO ates Fa eit SAM yt awk Gosis) Fl) hie eee

CONTENTS

Bs ROG) Curves masigesmars valde let a Mate sh Aem mem se ege aa
4.8 Multiple Independent Attributes Neural Networks Classifier

4.8.1 Error Rates
AS PUR OG Cunvess.o ec entity ol alee ee ernie cata se

4.9 Comparison between the methods2.-.+5+005%
4.10 Block-sizes

5 Discussion

Dy WesvOI Wa Cy Beamer me mre knee. pant ce Ga Mare Maite tn eer.
Orley Mainscontrbutionscite: jialchlel< weve cet aies eo Sirs aS sais

A Software

Atak a DG) gUOO Meee ins ee MORON Tees <n (ee = 2), SU, dod. n wx mage cle emeMngl te

A) Prom Wabelslist tortraming Dates <2. 2 << ec se es eee
Ad) preprocessing and Classifiers; a7. «jus + sa ss aun ase
FAL yaeWIN LHe Venn te Wns meet en cE ne Moons be es! eo A

B ROC Curves
B.1 Plots‘of ROC curves using threshold =3 ..2.....-542.-+++-5
B.2 Plots of ROC curves using threshold r = 5

List of Figures

2.1 The 20 different objects in the COIL-20 database 14
2.2 One view of the piggy-bank 15
ZioeeOnewiewior the Loy. Car Wena emir Misra aia her Beh 5k cual 16

3.1] ‘Structure of MIA“and MLR Classifier ..5:.%.0+..<¢.%s86-% 21
3.2 A Linear Subspace Classifier in a two dimensional space. . 25
3.3 The topology of a Neural Network.-.000005 27

4.1 2ROC:curves for the USC models 28 3 fy + ee we hee es 32
4:2 Gocal-marms probaniinyemap cums & Le oleh ee wee) edule sow a ees 33
4.3 The average image for the tail feature, the first five PCs and three ex-

empleamapesn. etic cheers chy wo «eek: ars res oy aoe ake ioe 38
4.4 Reconstruction using ’tail’ PCs for features in the validation set. To the

left original feature and to the right the reconstructed. 39

4.5 The average performance of Softmax NN asa functionof M....... 43,

4.6 The confusion matrices of the best models for each method. Test per-

formed onthetpigey-bank test data, + sere. <9 49s. tes ei 46

4.7 Areas under ROC curves for different models. 4T
4.8 Error rates for the best models. 49

4.9 Areas under ROC curves in decreasing order...-.:. 51
4.10 The confusion matrices for LSC models using block sizes 9 x 9 to the

Het andeol eollto Themen pee ete eet eae iced mat. ie. 53
4.11 The ROC curve areas for LSC models using block sizes 9 x 9, 15 x 15

and 21 x 21, in the lower plot the areas for the features are in descending
OLC er aue at eMes ite t=, ete ot pete EM MeD ABE Ala ey Vea sn et 53

A.1 The user interface for the label tool...5..-.-000200-5 61

B.1 ROC curves for the MIA model in original space. 63
B.2™ ROC curves for the MLR model.) 4555 scans se tl oe ae 64
B.3 “ROC curves/for the LSC in original'space. «2... 6.6: oes: 64
B.4 ROC curves for the LSC model in universal space............. 65
B.5 ROC curves for the 1-nearest-neighbours in universal space. 65

B.6 ROC curves for the softmax NN with importance weighting, shift invari-
ence atid commitveess. 4. a... Waeiei tps became s oi te ny oes aah Des 66

B.7 ROC curves for MIA NN using shift invariance and committees. 66
B.8 ROC curves for the MIA model in original space. 67
B9- ROG curves forthe Mim model, 2.1, ws. <a Geemene™s aye eae ah 68
B.10 ROC curves for the LSC in original space. .. 2... 2... .0-00.. 68

LIST OF FIGURES

B.11 ROC curves for the LSC model in universal space............. 69
B.12 ROC curves for the 1-nearest-neighbours in universal space. 69
B.13 ROC curves for the softmax NN with importance weighting, shift invari-

ance/and commiticsukaas rental Mien Me mn OR ine eae Bice! 5 70
B.14 ROC curves for MIA NN using shift invariance and committees. 70

List of Tables

21s Che pigey-bank features. Gib vac ye itt coisa ss ee Se 15
2i2e) Wheyboyscartenvuresy en ct ss ete ere GM see” oa erst a SS sas 16

4.1 Performance for different MIA models.............--+---- 36
4.2 Performance for different MLR models.............-..--- 37
433 Performance for different USC models... 6. 40
4.4 Performance for different K-NN models.................. 42
4.5 Performance for different Softmax NN models.- 44
4.6 Performance for different MIA NN models............-.2-.-. 48

4.7 CPU time needed to label one image on a 200MHz R10000 cpu. 50

Chapter 1

Introduction

Computer vision deals with the problem of automating processes and representations

used for vision perception. It includes areas such as image processing, statistical pattern

classification, techniques for geometric modelling and cognitive processing. As we can

see it spans a large number of topics and many of them are treated as a research area

in themselves because of their complexity and usefulness. In our everyday life we don’t

think too much about all the difficult tasks our biological vision system has to cope

with, but when it fails we usually become aware of it. One important capability we have

is to recognise objects. The basic case is to separate objects from the background, but

we also have more complex and specialised capabilities like face recognition. The ability

to perform object recognition is essential in order to interact with our surroundings.

Often it is not enough to just recognise an object, we also need to know where it is in

our environment, i.e. localise it, which can be achieved in the same process.

Some tasks concern two dimensional objects like recognising letters when we read

and picking out Mona-Lisa in a painting. Others deal with three-dimensional objects

like finding a coffee mug when looking down in the sink which is different from recog-

nising it in someone’s hand. The appearance of the mug is different, although it is

the same object. Obviously a three dimensional object recognition problem is more

complex because of the higher number of degrees of freedom (this is not the same as

saying that recognising letters is easy!).

CHAPTER 1. INTRODUCTION

For the reasons mentioned above, i.e. importance and complexity, object recogni-

tion is one of the major challenges in computer vision and a vast number of approaches

have been proposed. An obvious component of it is to have some sort of sensor and

map this sensor input to a suitable space where the objects have certain properties.

For a vision system to be able to recognise objects, it must have knowledge about the

objects stored in its memory. This knowledge about the objects is then compared to

the mapped data from the sensor input to find a match in some sense. A success-

ful matching means that the object is recognised. The most common sensor and the

one that has been used in all the work below is a camera whose output is digitised

into a gray-scale or colour image. To incorporate this knowledge about objects several

different methods can be applied.

1.1 Recognising objects using global properties

One category tries to recognise objects using global properties of the object. One

example of this approach is Turk and Pentland (1991), which treats face recognition

as a pattern recognition problem and uses principal components of the face images,

referred to as eigenfaces, to model the faces. A new image is recognised by projecting

the image into “face space”, consisting of the first few eigenfaces. By calculating the

Euclidian distance to different face-classes a classification is made.

A similar approach is used in Murase and Nayar (1995) where a technique to au-

tomatically learn three-dimensional objects from their appearance in two-dimensional

images is presented. The appearance of an object is the combined effect of its shape,

reflectance properties, pose in the scene, and the illumination conditions. Each object

is modelled with a manifold, parameterised by pose and illumination, in the universal

eigenspace, which is used to distinguish between objects.

One limitation with this approach is that before we can recognise the object we have

to find it in the scene. Segmentation of an input image is done in the first example

by using motion detection. For face-detection one might argue that most of the time

10

CHAPTER 1. INTRODUCTION

a face is in motion but for other objects this is not always the case and other methods

have to be used. Another problem is that if an object is occluded these algorithms

have difficulties as they rely on using the whole object for the recognition.

1.2 Object recognition by parts

Another technique, that is more robust to the above mentioned problems, can be

described as recognition by parts. The idea is to extract local features from the image

and consider all possible correspondences between them and similar local features in

the model. Occlusion will remove some features from consideration but by allowing

missing features in the matching phase the object can still be recognised.

In Grimson (1990) this approach is thoroughly examined using geometric properties,

like edges and surfaces, as local features. With primitive feature detectors like edge

detectors etc. we get many positive responses from an image, i.e. we can find a lot of

edges in it. This results in a correspondence space that is too big to search. But as the

objects in question are rigid, shapes invariant under the allowed transformations are

used to constrain the correspondence search. For instance relative angle between two

edges can be used to eliminate a large number of constellations from consideration. A

number of different constraints are examined. Both two and three dimensional objects

are discussed.

Another way of reducing the correspondence search is to use more complex features

to reduce the matching that has to be performed. An example of this is Burl and

Perona (1996) which considers non-rigid objects, namely faces. To detect the features

a technique based on matching descriptors produced by multi-orientation, multi-scale

Gaussian derivative filters was used. These local feature detectors are used to identify

candidate feature locations for eyes, lips and so on, which are grouped into hypothe-

ses. The hypotheses are scored based on the spatial arrangement of the features. A

joint probability density over feature positions is used for scoring which allows for

deformability of the model.

iol

CHAPTER 1. INTRODUCTION

Similar work has been carried out in Cootes and Taylor (1996) where statistical

feature detectors are constructed and easily detectable features are automatically cho-

sen to form a model. All plausible sets of features are located in an image and tested

against a shape model to locate the object of interest. The main difference compared

to Burl and Perona (1996) is the type of feature detector used. Here principal compo-

nents are used to create “eigenfeatures” which are then used in the same manner as

the “eigenfaces” in Turk and Pentland (1991).

In this thesis we are seeking good feature detectors. If we want an recognition-by-

parts algorithm for rigid, 3-D objects what kind of local feature detector should we

use? The appearance of the features in two dimensional gray-scale images are used as

the space hige feature detection is made. The geometric properties of the objects are

not explicitly used in the detection. The methods tested include linear and non-linear

statistical pattern recognition methods. We compare the feature detectors by using

both representative test sets and receiver-operating-characteristic (ROC) curves.

1.3. Thesis outline

Chapter 2 describes the database that has been used for this project. It also explains

how the images in this database has been processed to construct input and target data

for the different methods.

Chapter 3 describes the theory behind all the different methods that have been

used in this project. These include linear, generalised linear, non-linear and kernel

methods.

Chapter 4 explains the two different ways in which we have evaluated the perfor-

mance of the methods. The results from the experiments with the different models are

given and a comparison between them is made.

In Chapter 5 I discuss the results from the experiments and give some suggestions

on how to improve the performance and possible directions for future work.

12

Chapter 2

The Data

The ultimate goal in object recognition is to take a cluttered image and identify an

object in real-time. However as a first step when exploring new approaches it might

be sensible to try the methods without confusing background and time constraints.

The data used in this project comes from Columbia Object Image Library (COIL-20)

(Nene, Nayar, and Murase 1996). This is a set of 20 objects in gray-scale seen in figure

2.1. For each object there are 72 images showing the object from different angles.

2.1 COIL-20

The image acquisition was done in the following way. An object was placed on a

turntable covered with black cloth, also the background was covered with black cloth.

The turntable was rotated 360 degrees and at every 5 degrees of rotation an image was

taken. The digitised images where resized to 128 x 128 pixels with preserved aspect

ratio. In addition to the resizing every image was histogram stretched, giving it pixel

intensities between 0 and 255. The images were saved as 8-bit PGM (portable graymap)

images.

13

CHAPTER 2. THE DATA

Figure 2.1: The 20 different objects in the COIL-20 database

2.2 Generation of Data

The 72 images of each object were divided into training-set (32 images), validation-set

(16 images) and test-set (24 images). This was done randomly but with a constraint

making sure that the training images where spread out over all the 72 images. A

software tool was developed to interactively label features in the images, this and

other software tools are described in appendix A. All the programming was done in

MATLAB (The MathWorks, Inc.).

A number of object specific features were chosen and their position in the images

determined. The objects used are the piggy-bank and the toy car. In figure 2.2 and

2.3 example images are shown where some of the feature-labels (table 2.1 and 2.2

respectively) are visible. There are also 10 randomly placed background-labels in every

image, used to represent the background. As constraint for the placement of the 10

background-labels a minimum distance of 15 pixels to nearest other label was used.

Using the position of all the labels m x m pixel blocks have been cut out from the

corresponding images. Finally placing the rows from one block after each other creates

a vector for each label that has been used as input data for the models, denoted x

with length d. The size of the block that we used for most of the experiments in this

project is 15 x 15 pixels which results in 225-dimensional input vectors, d = 225. The

CHAPTER 2. THE DATA

Figure 2.2: One view of the piggy-bank

Nr. | Feature Name Nr. | Feature Name

1 | Front Left Leg 9 | Right Eye

2 | Back Left Leg 10 | Tail

3 | Front Right Leg || 11 | Money Slot

4 | Back Right Leg || 12 | N

5 | Snout 13 | Top of Right Heart

6 | Left Ear 14 | Top of Left Heart

7 | Right Ear 15 | Background

8 | Left Eye

Table 2.1: The piggy-bank features

15

CHAPTER 2. THE DATA

Figure 2.3: One view of the toy car

Nr. | Feature Name Nr. | Feature Name

1 | Front Left Wheel 8 | Back Plate

2 | Back Left Wheel 9 | Left Front Light

3 | Front Right Wheel |) 10 | Right Front Light

4 | Back Right Wheel |} 11 | Left Door

5 | Hood 12 | Right Door

6 | Top 13 | Background

7 | Trunk

Table 2.2: The toy car features

16

CHAPTER 2. THE DATA

original range of the values for each pixel have been transformed from [0,255] to [-1,1].

To each vector @ an output vector t is associated. These have the length c which is the

number of different features (classes). The vectors t are l-of-c binary coded, meaning

that t; = 6;; where j = feature-number and 6 is the Kronecker delta function!.

Due to the fact that the images are obtained by a rotation of the object, each

feature is not present in all the images. This means that in the training data each

feature is represented by approximately 10 to 32 different example vectors, depending

on the location of the feature on the actual object. This means that we can have as

few as 10 examples of a class in a 225-dimensional space which is a key problem in this

project.

Since we are labelling by hand, the exact centre of a feature is difficult to determine.

Even if the label would have been placed in a adjacent pixel, it should still be a valid

example of the same feature. This is known as invariance to shift and can be exploited

to try to solve the problem above. If we transform our original 2 to a shifted version

and add these to the training set, with the same target vectors t, we increase the

number of training examples without having to do more labelling or get more images

of the object. We can shift the # in 4-directions (horizontal and vertical) or 8-directions

(the above plus diagonal) resulting in 5 or 9 times as much training data. This can be

done by multiplying x with a perturbation matrix, copying a row or column, from the

original block cut out from the image, into the same row or column while shifting all

the others one step. Eg. a shift to the left is done by shifting all columns one step to

the left and placing a copy of the old first column as a new first column.

1§,; =1iffi=j

17

Chapter 3

Methods

This chapter introduces the different ways in which we can model the data in order to

classify novel data. What is meant by this is that for each input vector x there is a

corresponding output vector t indicating which class x corresponds to. The training

data is used to build a model of the data and when a novel input vector is presented

to the model, the model predicts which class this vector corresponds to. There are a

number of different ways in which the models can be built. The parameters in the model

can be explicitly calculated from the training data in one shot or a training procedure

can be iterated in which an error function is minimised to find the parameters for the

model. The model can be either linear or non-linear.

Section 3.1 explains principal components analysis (PCA), which is a linear projec-

tion method. Sections 3.2 and 3.3 explain two other methods, multiple independent

attributes (MIA) and multiple logistic regression (MLR). The linear subspace classifier

(LSC) is handled in section 3.4 , and a kernel method (K-nearest-neighbours (K-NN))

in section 3.5. Two different kinds of neural networks (NN) are explained in sections

3.6 (softmax NN) and 3.7 (MIA NN).

18

CHAPTER 3. METHODS

3.1 Principal Component Analysis

Principal components analysis (PCA) (Bishop 1995), also known as Karhunen-Ldeve

expansion, is a projection method, performing a linear transformation on the data. It

is used for dimensionality reduction and works by the following principle. We have a

dataset (ai,é =1,..,N) with a mean p and a covariance matrix © defined as

1 wn N

Hay LR Pete sais ay (3.1)

The vector x in our original space can be written as

d
a SD ZU; (3.2)

i=1

where d is the dimension of the original space and u; is a set of orthonormal vectors.

If we want to use a lower dimension to express x we can do it by writing it as

M d

B=)ozuit SD dyn; (3.3)
t=1 i=M+41

where the constants (b;) in the second term replaces the coefficients (z;). This is like

cutting out a hyper-plane in the original space. The error that occurs due to this is

zw-@= DO (2; —bj)uj. (3.4)
i=M41

We can formulate the sum-of-squares error over the entire dataset, containing N

different vectors, introduced by this procedure as

1 d

E= mL Grae) (3.5)
n i=M+1

If we want to minimise this with respect to the 6;’s we first have to set

N

= = (2b) =0. (3.6)
n=1

Which using equations 3.1 and 3.2 gives us

19

CHAPTER 3. METHODS

We can now rewrite 3.5 using 3.1 and 3.2 as

1S SA rin _ yt, E ey on (ufa” — wu} p)
onal icM+

oe uf Su; (3.8)

In (Bishop 1995) it is shown that in order to minimise E you should choose the d— M

smallest eigenvectors of the covariance matrix of X as the u,’s to.replace. This leaves

us with the residual error

1 7
Emin = a. ee (3.9)

i=M41

where 4; are the eigenvalues of 2. This means that to reduce a d dimensional vector

to M dimensions in order to preserve most of the information we should project them

onto the M largest eigenvectors of the covariance matrix, the principal components.

This has the effect that most of the variation in the data is accounted for by the first

few PC’s. This method was used on the training data to reduce the dimension of the

input vectors by projecting them down into what we call the universal PC space. It

was also used to calculate the class specific subspaces used in the Linear Subspace

Classifier method described in section 3.4.

3.2 Multiple Independent Attributes (MIA) Clas-

sifier

We can construct a linear discriminant function y(«) to predict if an input vector x

belongs to a certain class or not as

d
=) w;x; + wo (3.10)

s=1

20

CHAPTER 3. METHODS

where d is the number of input dimensions, w; are the parameters in the discriminant

function and wo is the bias. We say that x € Cif y(x) > 0 otherwise not. The equation

3.10 can be written in a simpler form if we include the bias in the sum by introducing

Xo = 1, which gives us

d

y(z) = > wiz: (3.11)
i=0

If we want to do some post-processing of the prediction it can be useful to be able

to interpret y(a) as a probability, i.e. in the range (0,1]. This can be achieved by using

the logistic sigmoid

1

a) 1+exp(—a)
(3.12)

with the sum in equation 3.11 as the input a. This also makes it easy to decide the

target for the training of the model, namely if 2 € C then t = 1 otherwise t = 0.

If we have more than one class we can extend this model by having one output yx

for each class which gives us something that can be viewed as a number of one-layer

neural networks (see figure 3.1).

Figure 3.1: Structure of MIA and MLR Classifier

The y%’s can be described using equations 3.11 and 3.12

d

ya(@) = 9(D) waies) (3.13)

To decide which class (attribute) the input vector x belongs to we have to compare

the different outputs and pick the largest one. This model is called multiple inde-

pendent attributes (MIA) (Bishop 1995). Compared to the softmax model (discussed

21

CHAPTER 3. METHODS

in section 3.3) which gives us normalised probabilities this model can give several at-

tributes a high probability.

The number of free parameters in the model is (d+1) for each class which is (d+1)c

in total, but since the outputs are independent we can look at each net separately.

Consequently if the number of training examples (JV) is smaller than d+1, then there

are an infinity of exact solutions and the model is not well specified by the data. If

N =d+1 we have a generalised linear system with a unique solution for the w’s. And

finally if N > d+1 it is not possible to solve the system exactly and we have to find the

weight vector w* that minimises the error function (equation 3.14). For the problems

we have looked at there is sufficient data so that N > d+1 regardless of if we use

the original 225 dimensional input or the smaller universal space discussed in section

3.1. In order to find w* the scaled conjugate gradient (scg) search method (see for

instance (Bishop 1995)) is used to minimise the negative log likelihood cross-entropy

error function,

E=-S Pay? + (1-)la(t— yp). (3.14)
nm k=l

When we use the y, as given in equation 3.13 this error function has one unique

minimum with respect to w.

As mentioned in chapter 2 background labels have been added to help train the

models to distinguish between features and background. However a correct classifica-

tion of the background is not as important as correct classification of features. Since

we have more examples of background than of features (approx. 50% of the labels

are background and the rest are divided among the different features) a model always

guessing that the background feature is the class of the input would perform quite well.

One way to try to avoid this is to make the background labels less important in the

training. This can be done by associating a weight (aj) to all data points, setting this

to one for all features except for the background features for which it is set to a lower

value. The error function given in equation 3.14 can then be modified so that (aj) is

multiplied to the factors inside the summation. We can call this method importance

22

CHAPTER 3. METHODS

weighting of the training data.

3.3. Multiple Logistic Regression with softmax out-

put

Multiple logistic regression (MLR) is very similar to MIA in section 3.2. If we instead

of having independent outputs make sure that we have a normalised probability, i.e.

the sum of the outputs equals one, we get the MLR. We can do this by using a different

activation function. Instead of the logistic sigmoid in equation 3.12 we use the softmax

function:

exp (ax)

EE exp (a) Ill g(ax) (3.15)

with the sum in equation 3.11 as the input a,’s. We have a layout as in figure 3.1 with

the difference that the y,’s depend on each other. This also means that instead of c

nets with d+ 1 free parameters we have one big net with c(d + 1) free parameters.

We now have the following conditions on the number of training examples N. If the

number of training examples is smaller than c(d+1), then there are an infinity of exact

solutions and the model is not well specified by the data. If N = c(d+ 1) we have

a generalised linear system with a global minima with respect to w. And finally if

N > c(d+1) it is not possible to solve the system exactly and have to find the weight

vector w* that minimises the error function (equation 3.16). In our cases we don’t

have enough training data and therefore we have to do dimensionality reduction before

we can feed our input to the model and we use the universal space discussed in section

3.1. The error function for this net is different from the one for MIA. Since we have

softmax output we get the negative log likelihood error function

B=-D Yo efingg. (3.16)
nm k=l

We use the same search method (scg) as for the error function given in equation 3.14

to find the global minimum.

23

CHAPTER 3. METHODS

The same method, with (af) as weighting of labels, as used for the cross-entropy

error function in equation 3.14 can be used for this error function.

3.4 Linear Subspace Classifier (LSC)

In section 3.1 we explained how we calculated the universal PC space. If we don’t

use all our data to do PCA, but instead it is divided into c different sets according to

which class the data belongs to, and we perform PCA for each set of vectors, we get

feature-specific PC spaces. These are optimised to represent the input vectors for the

specific features. If we assume that all of the examples for each feature are localised

in a small subspace of the original space, and the subspaces are different from all of

the PC spaces for the other features, we can say that the error due to dimensionality

reduction should be smallest for a novel data point when the correct PC space is used.

The sum-of-squares error could be calculated by squaring the expression in equation

3.4 but another way to calculate it is

E=(«—#)"(x—@) (3.17)

where @ is the reconstructed approximation given by

&=Q7Q(z@-w) +H. (3.18)

In this formula Q is a matrix with the columns set to the basis vectors in the PC-space

and y is the mean calculated for each class in the original space. If we compare these

reconstructions errors we can classify x as belonging to the class with the smallest

error, that is to the class that have the PC-space that lies closest to a. We can call this

method Linear Subspace Classifier (LSC) A common guideline for how many PC’s are

needed in each subspace is that 95% of the variance should be explained by the PC’s.

If we want the same number of PC’s in all subspace we can take the average.

In figure 3.2 we can see an example of what it could look like in a two-dimensional

space with two one-dimensional linear subspaces. PC A is the first principal component

24

CHAPTER 3. METHODS

Figure 3.2: A Linear Subspace Classifier in a two dimensional space

for class A and PC B the first for class B. They both have y = 0, otherwise the PC’s

would be transposed to have the centre at yz. The reconstructions error for the data-

point 1 is equal to the squared distance along the dotted lines. This means that

data-point 1 would be correctly classified as belonging to class B. The data-point 2 is

closer to PC A which means it would be classified as class A. All the other class B

data-points would be correctly classified in this example. In (Turk and Pentland 1991)

LSC (called eigenfaces) is used to recognise face images and in (Hinton, Revow, and

Dayan 1994) multiple LSC for each class are used to recognise digits.

3.5 K-Nearest-Neighbours

The K-Nearest-Neighbours algorithm (Bishop 1995) (Ripley 1996) can be seen as a

template matching model or a kernel based model. All the training data is saved and

when we want to classify a novel data point 2°” we start by computing the distances

from 2"*” to all the input vectors in the training data. We then find the K vectors

that are closest to a"*” and look at the classes for these; let these labels be denoted

t1..t®. Divide these into subsets T!..T°, one for each class. y"*” the output value for

a”” is assigned to be the same class as the largest set 7’. If there is a tie we have to

break it in some way. One way is to look at the sets of equal size and choose the one

which contains the ¢* with the lowest index 7, that is the one that is closest to a”, to

25

CHAPTER 3. METHODS

win.

An other important issue is the choice of metric. One common choice is the Eu-

clidean distance, where all the dimensions are equally important. Another possible one

is the Mahalanobis distance

d(w,z) = \/(@ —z)TA(a — 2) (3.19)

with A as the inverse covariance matrix. This is very expensive computationally, an

issue which is discussed further in section 4.6.

One problem with this algorithm is that we have to save all training data and

for each data point to be classified we have to calculate as many distances as there

are training data. There are some algorithms that try to get around this problem.

One is called multiedit algorithm (Ripley 1996) and means that you discard from the

training data the points that don’t improve the classification performance, i.e. you save

the ”important” points. Another is a tree-search algorithm (Fukunaga and Narendra

1975) that reduces the number of distances that have to be calculated in order to make

a classification. The idea is to cluster training vectors that are close to each other

together. For these clusters you then calculate a mean position and the distance to the

point in the cluster that are farthest from the mean. By using a branch and bound

search in a tree structure with this information the number of vectors to consider when

we search for the closest one is reduced. These are also discussed in section 4.6.

3.6 Softmax Neural Networks

The neural network architecture used in this project is the Multi Layer Perceptron

(MLP) which is a more complex non-linear model than MLR with softmax output

described in section 3.3. The name can be understood if we look at the schematic

figure of a MLP in figure 3.3.

It consists of one input layer, one output layer and a number of hidden layers

in between. It has been shown that it is enough to have a MLP with one hidden

26

CHAPTER 3. METHODS

Figure 3.3: The topology of a Neural Network.

layer, if the number of nodes in the hidden layer is large enough, to be an universal

approximator, i.e. it can model any arbitrary function. We can describe the network

with the following equations

zi(@) = aS wi;2;) (3.20)

where z is the input, z is the output from the hidden layer, n is the input dimension

and M is the number of hidden units. The bias is included in the sum as in equation

3.11 by setting zo = 1. g is the activation function for the hidden nodes and is a logistic

sigmoidal function as described in equation 3.12. The output from the hidden layer

serves as input to the output layer.

vs(2) = a why) (3.21)

In this equation ¢ is the number of classes, i.e. the number of output nodes. The

activation function g in this layer is for the Softmax Neural Network a normalised

exponential function, called softmax which gives the model its name, which is the same

as in equation 3.15. The number of parameters in this model is (d+ 1)M +(M +)c.

To find these parameters an error function is minimised. The same error function

27

CHAPTER 3. METHODS

(equation 3.16) as in section 3.3 is used. Again scg is used to try to find the global

minimum, but since we have a more complex function y, here the error function can

have a number of local minima where the search algorithm can get stuck. Another

complication is that we have to calculate the gradient of the error function not only

with respect to w? but also to w' in the first layer. This is done with a method called

back-propagation (eg. (Bishop 1995)).

One way to try to improve the performance of a Neural Network is to train com-

mittees of networks and let them vote((Bishop 1995)). In the simple approach used

here the only difference between the nets is the random weight-vector (w) used to

initiate the training. This results in that the nets get stuck in different local minima

but (hopefully) some of them find a good minimum. The reduction in the error can

also be viewed as arising from reduced variance in the prediction. No weighting of the

votes or Bayesian approach is used, the class with most votes wins ((Bishop 1995)).

3.7 Multiple Independent Attributes Neural Net-

works (MIA NN)

The multiple independent attributes Neural Network works the same way as the soft-

max Neural Network in section 3.6 apart from the activation function in the output

layer g which instead of the softmax function is the logistic sigmoid which is the same

as in equation 3.12. The difference between these two Neural Networks is therefore the

same as the difference between the models in sections 3.3 and 3.2, that the outputs

in MIA NN represents the posterior probability that a data-point is of a certain class

independently from the probabilities that it belongs to any other class, while the out-

put from a Softmax NN is normalised to sum to one. The error function is the same

(equation 3.14) as for the MIA method described in section 3.2.

Chapter 4

Results

Using the data described in chapter 2 we want to test the different methods in chapter

3 to see if we can find which one is best suited for use in a object-recognition-by-parts

scheme. The two objects used in the comparison are the piggy-bank (third row, third

column in figure 2.1) and a toy car (first row third column in figure 2.1). We have

used two different methods for comparison between models which are described in

sections 4.1 and 4.2. In sections 4.3 to 4.8 the results achieved by applying these two

comparison methods on the different models are discussed. In section 4.9 the difference

in the performance between the methods is discussed. A short discussion of the effect

of using different block sizes appears in section 4.10.

4.1 Error Rates

If we feed the validation set into our models we can calculate the percentage of the

labels that are correctly classified. But as mentioned earlier it is not so important to

get the background correct as the features. Therefore it can be valuable to distinguish

between correctly classified feature labels and correctly classified background labels.

With these statistics we can compare different approaches with the same method or

different methods with each other.

Sometimes an even more detailed study of the performance is needed. If we have a

29

CHAPTER 4. RESULTS

c X ec matrix where c is the number of classes and let each row stand for the true class

and each column stand for classified class, a correctly classified class 1 data-point would

end up in position (1,1) and a class 2 data-point classified as class 3 in position (2,3). If

we normalise the entries in each row this gives us a percentage of the true members of a

class being classified as a certain class. To make this easier to interpret we can display

this, not as numbers, but as squares with size proportional to the value and the result

is a confusion matrix. The diagonal represents all the correct classified labels and we

can also see which class (feature) that is most easily confused with another class and

which ones are easy to classify. In figure 4.6 confusion matrices for the performance of

the best models for each method are shown.

4.2 ROC Curves

Instead of using a data set with a limited number of labelled input vectors to test the

performance of our models, we can feed an entire image into the classifier. For the

models using the original space as input we have to cut out a 15-by-15 pixel block

around the pixel, transform it into an input vector (as described in section 2.2) and

repeat this for every pixel. This gives us an input matrix where each row is an input

vector from a pixel. We feed this into the classifier and transform the output back

to a matrix, giving us a classification for each pixel. For models using the universal

space the procedure is more efficient. We filter the image with the principal components

(two-dimensional convolution) and transforms the resulting matrices to column vectors

that we places together in a matrix. Each row now consists of the responses from the

different filters for a pixel. This matrix is fed into the classifier and the resulting

prediction vector is as above transformed to a matrix with the image dimension. This

is the same procedure that would be used to do the actual object recognition once the

best method to be used have been determined. For every pixel we get a classification

(the resulting matrix is a label-map) and a value describing our confidence in the

classification (probability-map). We can pick the K pixels from each class in the label-

30

CHAPTER 4. RESULTS

map that have the highest confidence. For each of these pixels we can calculate the

distance to the correct position using Pythagoras theorem. If one of these K’ pixels is

closer to the correct position than a threshold r, we know that if we allow K — 1 false

alarms we will find the feature position (within r pixels). The threshold should give us

a circle with radius = r within which we classify a guess as correct but since we have

a discrete number of possible distances due to the use of pixels we end up with a very

edgy circle. We can repeat this procedure with all the test images for different K’s.

For each class/feature we can then calculate the probability (P,) of finding the feature

within the K best guesses . Py is the fraction of correct predictions over all images

containing the feature. So for K = 1, Py is the probability that the top classification

in the probability-map is correct (within 7 pixels), and for K = 2 that one of the two

top classifications is correct and so on.

A receiver operating characteristic (ROC) curve is a graph used to present the

performance of a system responding to a signal. In (Green and Swets 1966) they are

used to plot the probability of correct response to a stimulus against the probability

of an incorrect response. With a slight modification we can use them here to plot P;

against K which is good to know when we want to construct our object recognition

system. A high P; for low K obviously means a good feature detector, or at least an

easily detectable feature, in this case the ROC curve is close to the top left corner in

the plot.

In figure 4.1 some examples of ROC curves are shown. The ROC curve for the

*front right leg’ is an example of a good feature detector, with high P; for low K, and

the one for the ’snout’ is an example of a not very good feature detector.

4.2.1 Local Maxima

If we look at the above mentioned label-map and probability-map we can have the

case that we have all the highest confidence values for a certain class grouped together,

due to e.g. the shift invariance. In this case we are “wasting” our guesses when

31

CHAPTER 4. RESULTS

Front Let Leg Buck Let Leg From Right Leg Back Right Leg Front Let Leg Back Let Lew From Rig Len Back Right Leg 1 1 4 ~—— 1 , y ’
[—_| [7 eet

°. os| os| os| os| / os os os

"= 7% 30 ° W030 30 2 aye :

 8 8 8 B Fe}
 8

\ ; - J

 ol ol ol Bm 0 ° 0 po 30 ° 70 eo ° 0 a0 e 2 ° Te 9030 °° 9 30 ° Wo 2030 Bam Bre tat ney Sot N i ney Su N

os| y 1 "I a os os| os| 1,220 ° 710, 30 ° 10 2 ao ° 10 a0 oat °7,19,20,20 ° 10 20 30 ° to 3590 ‘Top UF Righ Hear Top UeRightHean” Top st Leh Heart

9, os| os| 25] q I
i 702030 ° W020 90 To 3 20 ° 10 3030

Figure 4.1: The ROC curves for the LSC model with r = 3. P, is plotted against K.
Piggy-bank test data used. To the left the original probability-map is used and to the
right the local maximum probability-map.

we calculate the ROC curves. A method is needed to group these pixels with high

confidence together. One solution is to find the local maxima in the probability-map

and only use these when looking for the K best guesses. This local maxima probability-

map is created in the following way. For each pixel in the probability-map all eight

neighbours are checked for a pixel that has a higher confidence and has been classified

as the same class in the label-map. If a pixel is found that fulfils these two criteria,

the value for the current pixel is set to zero in the probability-map, i.e. we have no

confidence in that this pixel is the feature any more. The product of this procedure is

a local maxima probability-map with only the local maxima set to non-zero values.

Figure 4.2 shows where a model using LSC in universal space thinks the pigs snout

is. The gray areas are all the pixel classified as the snout. In the left half we have the

normal probability-map and the crosses are the 20 most likely positions, highest value

in the probability-map. The 20:th guess is only one pixel away from the correct position

(the ring). In the right half the local maxima probability-map is used. The number of

possible locations is much lower and the 4:th guess is the one only one pixel away from

the correct position. This is an example when the use of local maxima probability-map

CHAPTER 4. RESULTS

Figure 4.2: An example of the difference between the probability-map (to the left) and

the local maxima probability-map (to the right) for the snout. The LSC in universal

space is used.

worked very well. If the most likely positions in original probability-map had been more

spread out they could all have been local maxima and no improvement would have been

achieved. An even worse scenario would be if the guess near the correct position was

not a local maximum and was eliminated in the local maxima probability-map, which

could lead to worse performance.

4.2.2 Comparison of ROC curves

Plotting ROC curves allows us to compare one model’s performance on different fea-

tures and also different models on the same feature. Using visual inspection it is easy

to see which model performs best on a specific feature and which feature that is easiest

to classify, but if we want a more objective measure or want to compare model per-

formance over all the features we have some problems. The area under a ROC curve

is normally used as a measure when different curves are compared, but normal ROC

curves are also plotted as a probability with respect to another probability. This gives

us an area that is limited to the range [0,1]. In our case we plot Py with respect to

4 where we choose a maximum K (here 30 is used). Having the same K for all our

33

CHAPTER 4. RESULTS

plots is absolutely necessary to be able to compare the results and we can normalise

the areas, divide by K’, which gives us the range [0,1] (the average Py). But we can

still get misleading results from this. Imagine one curve that rises slowly to a high Py

and another curve that rises fast but to a lower Py. These two could have the same

area but very different characteristic, the first one is good at classifying if we allow for

a large number of false alarms and the second does fairly good for a small K but does

not perform better even if we allow for a higher K. In figure 4.1 we can for instance

look at the ROC curve for the ’right eye’ which has larger area than the ROC curve for

*N’ but for a low K the later is preferred anyway. Since we don’t know what value of

KC is going to be used we will compare the methods based on the areas under the ROC

curves but when a choice of method is made for use in a object recognition algorithm

and the K is known, inspection of the ROC curves is a better way. We have also the

choice of +, the threshold for when a classification is correct. This depends on the

matching strategy used to compare hypothesis of features with a model of the object

(see section 5.2). We have used t = 3,5 and 7 and the results seems consistent in the

sense that the ranking of the methods are independent of the choice of Tr.

4.3. Multiple Independent Attributes Classifier

For this method we can use both the original space and the universal space. If we use

the universal space we loose information but we get less parameters to optimise and

the training procedure takes shorter time, also the classification is faster.

Using down-weighting of the background, as discussed in section 3.2, introduces

one new parameter that we could optimise over. For the MIA and MLR (section

4.4) methods this is possible but for the neural networks methods in sections 4.7 and

4.8 this would be infeasible. Optimise might also be a too strong word for it. Since

we trade better performance on the feature labels against poorer performance on the

background labels, there is no optimal choice. There is only a choice of how much

tradeoff we want. Because of this a value of 0.1 was chosen as weighting for the

34

CHAPTER 4. RESULTS

background labels compared to 1 for the feature labels. This was done because we add

ten background labels to each image and we can have only one feature label of each

sort in an image. Using this weighting means that the importance of the background

is roughly equal to the importance of the other features.

The results used are the average over ten models.

4.3.1 Error Rates

Since we don’t have an output node for the background, instead all the feature output

nodes should show zero ideally, we have to find a threshold to decide when an input

vector should be classified as a background label. Here we have used the threshold that

gives correct classification of 95% of the background labels in the training data.

When the different models were compared using the test data (table 4.1) the one

with the original space as input space performed better on the feature labels and the

one with the universal space better on the background labels. The model using the

original space did not seem to have enough complexity or free parameters to benefit

from the importance weighting of training data, the error rate was almost identical.

For the model using the universal space a very small improvement on the classification

of the feature labels and a worse performance on the background was achieved. The

use of committees did not make any difference for this method as there is only one

global minimum and our search method can find it. In figure 4.6 the confusion matrix

for the best model for this method is shown, which after consulting the error rate for

the validation set as well as the test set was the model using the original space without

background weighting. The piggy-bank test data is used and the most striking thing

about the confusion matrix is that the four legs (features 1-4) are notoriously difficult

to distinguish from each other. We have a lot of different misclassifications between

the other features too.

35

CHAPTER 4. RESULTS

% correct, Piggy-bank (left) Toy car (right)

Model Features | Background Total

MIA 1% | 61% || 60% | 72% || 64% | 67%

Orig. space | Imp. Weight | 71% | 60% || 62% | 72% || 66% | 67%

MIA 50% | 51% || 87% | 75% |] 70% | 65%

Univ. space | Imp. Weight | 54% | 53% |] 54% | 73% || 54% | 65%

Table 4.1: Performance for different MIA models

4.3.2 ROC Curves

The model that gave the best performance in section 4.3.1 was used to calculate the

ROC curves but the performance was poor. We don’t have to worry about the threshold

for background classification here since we only look at the pixels with the highest

values in the probability-map anyway. 10 out of 14 features on the piggy-bank and

all 12 features on the toy car got an increased ROC curve area when local maxima

probability-map was used, but still it was not very good. In figure 4.7 we can see the

performance on the different features for the MIA in original space model.

4.4 Multiple Logistic Regression Classifier

As we mentioned in section 3.3 we have to use the Universal space for this model,

since we don’t have enough training data to train the model otherwise. 10 models were

trained and the average results were used for comparison.

4.4.1 Error Rates

The performance (shown in table 4.2) turns out to be quite poor for the feature labels

and good for the background. We can improve this result by using importance weight-

ing of the training data which results in a better classification of the feature labels, but

we have to pay for this with a poorer performance on the background. As for the MIA

36

CHAPTER 4, RESULTS

model above, use of committees does not improve the performance since there is only

one global minimum. In figure 4.6 the confusion matrix for the importance weighted

model is shown. Also here the pigs legs are confused, a lot of random misclassifications

and quite a few features are classified as background.

% correct Piggy-bank (left) Toy car (right)

Model Features | Background Total

MLR 48% | 39% |) 92% | 88% |] 71% | 68%

Imp. Weight | 61% | 62% || 69% | 72% |! 65% | 68%

Table 4.2: Performance for different MLR models.

4.4.2 ROC Curves

This is the model that gives the worst performance of all. 11 out of 14 features on the

piggy-bank and 11 out of 12 features on the toy car got an increased ROC curve area

when local maxima probability-map was used, but the performance is still not good.

In figure 4.7 we can see the performance on the different features for the MLR with

importance weighting model.

4.5 Linear Subspace Classifier

If we use the 95% rule (see section 3.4) to choose the number of dimensions for each

subspace, we get between 4 and 10. The average is 5 so we can also use a model with

5-dimensional subspaces for all the features which is easier to handle. We can also

project the input vectors into the universal space and then calculate subspaces. This

results in loss of information but also in great speed gain.

In top left corner of figure 4.3 we can see the average image of the ’tail’ feature in

the training data for the piggy-bank. This is subtracted from the input vectors in the

training data (the bottom row in figure 4.3 shows three of the training vectors) and

37

CHAPTER 4. RESULTS

Figure 4.3: The average image for the tail feature, the first five PCs and three example
images.

then the principal components are calculated (the first five PCs are shown in figure

4.3). The deviation from the average image can be described by a five dimensional

vector (how much of the five PCs the image contains). If we multiply this vector with

the PCs and add the average image back we end up with an image containing 95% of

the information of the original image. As the PCs are adapted to describe the ’tail’

images best we lose more information when we use this basis to describe other features.

An example can be seen in figure 4.4. The top two images shows a ’tail’ vector from

the validation set, to the left the original one and to the right the reconstructed image.

The error in the reconstructed image is 8 gray-scales/pixel in average. The middle row

shows how a right eye’ image is reconstructed. As we can see the image itself is not

that different from a ’tail’ image, they are both a heart but at different angles. The

reconstructed image to the right has an error of 27 gray-scales/pixel in average. The

last row shows a ’front right leg’ image which is not very similar to the ’tail’ and the

reconstruction error for the image to the left is 40 gray-scales/pixel in average and the

result is shown to the right. This is the principle behind the LSC method. The LSC in

universal space can not be visualised in this way but it works the same way except that

38

CHAPTER 4. RESULTS

Figure 4.4: Reconstruction using ’tail’ PCs for features in the validation set. To the
left original feature and to the right the reconstructed.

it starts with compressed versions of the features, i.e. the projections in the universal

space.

4.5.1 Error Rates

The model using original space gives a good performance but is computationally in-

tensive. Using the LSC in the universal space gives worse performance but increases

the speed significantly. The results using the test set is shown in table 4.3. In figure

4.6 we can see the performance of the model with 5 PC’s in the original space. This

model has (like all others) difficult to distinguish between the legs, left and right ear

and eye (features 6,7 and 8,9) and the heart on the right and left side (features 13,14).

A few features are classified as background but we do not have much of the random

misclassifications that we had in the methods above.

39

CHAPTER 4. RESULTS

% correct Piggy-bank (left) Toy car (right)

Model Features | Background Total

LSC | Orig. Space | 83% | 73% || 94% | 92% |] 89% | 85%
 Univ. Space | 72% | 69% || 84% | 84% || 79% | 78%

Table 4.3: Performance for different LSC models

4.5.2 ROC Curves

The performance is very good both when using the original space and LSC in the

universal subspace as we can see in figure 4.7. 10 out of 14 features on the piggy-

bank and 9 out of 12 features on the toy car got an increased ROC curve area when

local maxima probability-map was used for the model using original space. For the

model using universal space the numbers were 12 out of 14 features for the piggy-bank

and 8 out of 12 features for the toy car. The model using the original space needed

approximately 8 times as long time to classify one image. The LSC model in original

space is the models that gives the best performance of all.

4.6 K-Nearest-Neighbours Classifier

The two methods suggested in section 3.5 to reduce the amount of calculations needed

to make a classification don’t work for our problem. The multiedit algorithm discards

almost all non-background vectors from the training data. This is probably explained

by the fact that approximately 50% of the training data is background labels. For

the tree search algorithm it is difficult to cluster the training data due to the high

dimensionality. The result is that the entire tree has to be searched anyway and the

number of distances needed to be calculated is not reduced.

We have 4 models to compare, combinations of original and universal space with

Euclidian or Mahalanobis distance.

40

CHAPTER 4. RESULTS

4.6.1 Error Rates

If two input vectors are projected into the Universal space the Euclidian distance be-

tween the two projections is a measure of similarity between the two vectors. This

means that using a Mahalanobis distance in the Universal space would decrease per-

formance and the experiments showed that this also was the case. The best perfor-

mance, independent of choice of metric, was K = 1. This is probably due to the random

distribution of background labels. The optimal AK was determined by performing leave-

one-out cross-validation. This is when a classification is made for each input vector of

the training data, when that particular vector has been left out from the training. The

percentage of correct classified training vectors where calculated for different values

of K and compared. The same K were also optimal when the performance on the

validation data was compared.

In table 4.4 the results on the test data is shown. In the original space the models

using Euclidian space again performed better. Both models using Euclidian distance

were almost equally good when compared over both the test set and validation set.

But a drawback with the model using the original space is that this is much more

computationally intensive (around 25 times more calculations are needed), since in the

higher dimensional space there are many more coordinates to calculate distances over.

In figure 4.6 we can see the performance of the 1-NN model in the universal space.

Here more fentmes are classified as background, which is quite natural since they are

randomly spread out and easily can be the nearest neighbour to an input vector. Apart

from that the structure of the misclassifications are roughly the same as for the LSC

model, mostly between similar features.

4.6.2 ROC Curves

The original space is too computationally expensive to use. By using the universal

space we can reduce the number of calculations to 3% but it is still computationally

intensive, almost as much as the LSC model in original space. 8 out of 14 features on

41

CHAPTER 4. RESULTS

% correct Piggy-bank (left) Toy car (right)

Model Features | Background Total

K-NN K=1 Euclidian 84% | 75% |] 95% | 91% || 90% | 85%

Orig. space | K=1 Mahalanobis | 22% | 11% |} 96% | 92% || 61% | 60%

K-NN K=1 Euclidian 83% | 83% || 92% | 90% || 88% | 87%
 Univ. space | K=1 Mahalanobis | 71% | 65% || 93% | 90% |] 88% | 80%

Table 4.4: Performance for different K-NN models

the piggy-bank and 8 out of 12 features on the toy car got an increased ROC curve area

when local maxima probability-map was used. In figure 4.7 we can see the performance

on the different features for 1-NN model in universal space.

4.7 Softmax Neural Networks Classifier

The universal space has to be used for this method to reduce the number of free

parameters that we have to optimise. The networks were trained using scg for 250

epochs. This can seem high but was chosen to make sure that all nets were trained

enough. Visual inspection of the validation error to find a suitable time for early

stopping for each net was infeasible, because of the high number of networks trained.

This extensive training can lead to over-fitting in the trained networks, which is the

same as high variance component in the error, but using committees should reduce this

high variance and give us a reasonably good performance.

In order to decide how many hidden nodes that is needed to model the data several

different nets were trained. The number of hidden nodes (M) varied from 10 to 15

and 10,nets were trained for each M. The only difference between the training was

the weights in the net from the beginning that were generated randomly. For each M

the average performance on the validation set was calculated. The M that had the

best average performance on the features were chosen as the optimal M unless the

CHAPTER 4. RESULTS

performance on the background was very poor. If the average is plotted against M a

peak in the plot is wanted, but this is not always present. Instead the curve can be

Jagged and if the performance is almost the same for different M, the one with the

lowest M was chosen. That is a simpler model with the same performance is preferred.

The optimal M for different models are printed in table 4.5. In figure 4.5 is an example

which shows the performance of a softmax NN averaged over 10 nets for each value of

M. This was the first net to be trained so here M varies from 1 to 20. 14 hidden units

were found to be optimal for this model but one might argue that 12 is almost as good.

 1 — ‘ 1 + ' r : r '

oot tees eee ee ees, eel

0.8 af

° Q T !

S a T 1

Pe
rc

en
t

co
rr

ec
t

cl
as
si
fi
ed

o
 in T

0.4

Features
oe —-+- Background

0.2r 4

OF |

0 1 1 L 1. ! 1 1 L 1
0 2 4 6 8 10 12 14 16 18 20

Number of hidden units

Figure 4.5: The average performance of Softmax NN as a function of M.

4.7.1 Error Rates

Since the error function has a number of local minima where the search algorithm

can get stuck and we can have slightly over-fitted networks, committees can be used to

improve performance. As we can see in table 4.5 committees increased the performance

CHAPTER 4, RESULTS

with around 10 percentage units. The method of down-weighting of the background

labels also improves the performance for ihe feature labels but as usual we have to

pay for this with worse performance on the background labels. Using shift invariance

adds a little bit to the performance as well. In figure 4.6 we can see the confusion

matrix for the best version, a softmax model with shift invariance, 15 hidden units and

a committee of ten nets. Many misclassifications are features classified as background,

but we also have the usual ones between legs, ears and eyes.

% correct Piggy-bank (left) Toy car (right)

Model Features | Background * Total

Softmax NN 14/13 hn 61% | 53% || 90% | 87% |] 76% | 73%

Com. 12/11 hn | 70% | 66% || 95% | 93% || 83% | 82%

Softmax NN 13/11 hn 68% | 56% || 90% | 89% |] 80% | 76%

Shifted Com. 15/15 hn | 80% | 80% || 95% | 92% || 88% | 87%

Softmax NN Imp. | 14/12 hn 66% | 63% || 76% | 79% || 72% | 72%

Com. 12/12 hn | 75% | 75% || 78% | 82% || 77% | 80%

Softmax NN Imp. | 12/14 hn 73% | 72% || 75% | 81% || 74% | 77%

Shifted Com. 11/14 hn | 80% | 84% || 76% | 84% |] 78% | 84%

Table 4.5: Performance for different Softmax NN models. hn = hidden nodes. Ex.
14/13 hn = 14 hidden nodes for the piggy-bank model and 13 hidden nodes for the toy
car model.

4.7.2 ROC Curves

10 out of 14 features on the piggy-bank and 8 out of 12 features on the toy car got

an increased ROC curve area when using local maxima probability-map. This method

takes only half the time compared to LSC and is faster that the K-NN method. The

performance can be compared in figure 4.7 where the softmax model with 11 hidden

units, importance weighting, shift invariance and 10 nets committee is used.

44

CHAPTER 4. RESULTS

4.8 Multiple Independent Attributes Neural Net-

works Classifier

Also for this method we have to use universal space to be able to optimise the param-

eters. The same method as for softmax in section 4.7 was used to train the networks

and to find the optimal M.

4.8.1 Error Rates

Committees also here improved the result for the same reason as for the softmax

method above. The MIA neural network does not have a special background output,

but a low probability for the other classes is interpreted as implying that a background

label is the input vector. As for the MIA method (in section 4.3) we have to find

a threshold for the background labels and we used the same rule, i.e. that 95% of

the background labels in the training data were correctly classified. This also means

that down-weighting of the background labels only makes it harder to find the correct

threshold, since the range of the outputs are not stretched as much. Because of this

we could not see a clear improvement of the performance when weighting was used.

In table 4.6 the performance for the different models are given. In figure 4.6 we can

see the performance of a MIA NN model with shift invariance, 14 hidden units and a

committee of ten nets. Apart from the easily confusable features which are the same

as for all the other models a lot of the misclassification comes from background being

classified as features, which is not that serious.

4.8.2 ROC Curves

11 out of 14 features on the piggy-bank data and 9 out of 12 features on the toy car

data got an increased ROC curve area when using local maxima probability-map. The

speed is the same as for the softmax method. In figure 4.7 the performance is shown.

45

CHAPTER 4.

Rea
l

Fea
tur

e
Rea

l
Fea

tur
e

Rea
l

Fea
tur

e

RESULTS

MIA in Original space. MLR with importance weighting.

a _#
ae
an x

. ms = .
an oh
.

2p ee eeu ‘ : es . a
2 4 6 8 10 12 4 2 4 6 8 10 2 4

Classified Feature Classified Feature

LSC in Original space. 1nearest—neighbour in Universal space.

us
cae | .

" .
ate

6

g
8 é .

3 .
10) =

12) =

14 14 “me

 2 4 6 8 1012
Classified Feature

Softmax NN 15 hidden units with shift invariance and committee

2 4 6 8 1012
Classified Feature

14

MIA NN 14 hidden units, shift invariance and committee.

nh
2

Fy
4s

: a:
6 .

| 5
8 mw. é

. g
10]

12

4

eran s oo 102 2 Ot ee 6
Classified Feature

6
Classified Feature

Figure 4.6: The confusion matrices of the best models for each method. Test performed
on the piggy-bank test data.

46

CHAPTER 4. RESULTS

1

208
3 —— MIA NN

ie oS —+- Softmax NN
20.4 LSC Univ.

s
<02 4

0
2 4 6 8 10 12 14

Feature

>
3 —L Bo. Sc '

x . ‘—+- MIA Orig.
B04
=
<= 0.2

. 3 aera :
2 4 6 8 10 12 14

Feature

1

2 MIA NN
3 Sofumax NN 2 LSC Univ.
€

z 3 <
0.2

0
1 2 3 4 =) 6 7 8 9 10 iW 12

Feature

—— Ese
See MIA Orig.
senees MLR
aa 1-NN Univ.

Feature

Figure 4.7: The normalised areas under ROC curves for different models. This is equal
to the average probability over K that the correct feature position is found within
K —1 false alarms. Local maxima probability-map and r = 3. In the top two plots
Piggy-bank test data is used and in the bottom two the toy car test data. Feature
numbers can be found in table 2.1 and 2.2.

AT

CHAPTER 4. RESULTS

% correct Piggy-bank (left) Toy car (right)

Model Features | Background Total

MIA NN 10/13 hn 54% | 53% |) 62% | 58% || 58% | 56%

Com. 11/13 hn | 71% | 67% || 74% | 81% || 72% | 75%

MIA NN 14/13 hn 66% | 72% |] 58% | 69% || 62% | 70%

Shifted Com. 14/14 hn | 75% | 75% || 72% | 80% || 74% | 78%

MIA NN Imp. | 13/14 hn 51% | 59% || 84% | 48% || 68% | 53%

Com. 10/14 hn | 60% | 70% || 90% | 73% |] 76% | 72%

MIA NN Imp. | 13/13 hn 64% | 62% || 57% | 56% || 60% | 58%

Shifted Com. 14/11 hn | 77% | 74% || 71% | 76% |] 74% | 75%

Table 4.6: Performance for different MIA NN models. hn = hidden nodes. Ex. 14/13
hn = 14 hidden nodes for the piggy-bank model and 13 hidden nodes for the toy car
model.

4.9 Comparison between the methods

There are many aspects to be considered when the methods are compared. Not sur-

prisingly we don’t have one method that is better than all the other in every aspect and

depending on the intended use, different methods can be the best suited. In figure 4.8

the percentage of correct classification for each method are shown as a staple diagram.

According to this diagram 1-nearest-neighbour should be the best classifier, if we use

error rates as criteria. In table 4.7 the time needed to classify one 128 by 128 pixel

image is given for the different methods which also is an important aspect. We can try

to summarise the pros and cons for the different methods.

e The MIA method using the original space is not very computationally intensive

but also not very good. The performance is not good enough to use in an object.

recognition algorithm.

e The MLR method is very fast but the performance is poor and not good enough

to use in an object recognition algorithm.

48

CHAPTER 4. RESULTS

e The LSC method is computationally intensive when the original space is used

but using the universal space makes it three times as fast as the neural network

methods. The performance when ROC curves are used for evaluation is very

good. The LSC in original space is the best and the one in universal space is also

good.

e The K-nearest-neighbours method performed well when assessed with the error-

rate and is among the best when ROC curves are used for evaluation. It is

computationally intensive even using the universal space.

¢ The softmax method is in the middle when it comes to computational expense

and also performance.

e The MIA network is in the middle when it comes to computational expense but

the performance is very good.

Features
Background

Pe
rc
en
t

mS 3

[os
1-NN

90}

Features
Background

80

70

Pe
rc

en
t

60} -

50}

40
MIA Lsc 1-NN_ Softmax NN MIA NI

Figure 4.8: Percent correct classified for the best model for each method. Top diagram
uses the piggy-bank data and the bottom one uses the toy car data.

CHAPTER 4. RESULTS

Model CPU time / image

MIA orig. space 17.48

MLR 3.6 s

LSC 100.2 s

LSC univ. space 13.7 s

1-NN univ. space 12.5's

Softmax NN Com. 54.1 s

MIA NN Com. 50.0 s

Table 4.7: CPU time needed to label one image on a 200MHz R10000 cpu.

Another way to plot the average probabilities for ROC curves is to order them in

descending order which makes it easier to compare them (figure 4.9). According to this

plot the LSC model is the best one, this can be compared to figure 4.8 above. This

can also be used to study the effect of not using all the features for recognition of an

object. If we can choose to exclude some of the features from a model of an object

without losing the ability to recognise it we could achieve better performance. If we

exclude features that are hard to recognise we both reduce the number of false alarms

and makes the search among hypothesis easier. This is discussed further in section

5.2. Features on the piggy-bank that are hard to recognise are not the same for all

methods but some that most of the models have difficulties to find are the ’snout’, the

*money slot’ and the ’tail’. In Appendix B the ROC curves for the best models for

each method is shown for different values of r.

So which method is the best? If the time to do a classification is not an issue,

then obviously the LSC in original space is the best choice. This method has the

best performance when the ROC curves are used for evaluation and it is quite easy

to implement. The only drawback with this method is that it is slow, so if a fast

classification is needed other choices are better. The MIA NN method is twice as fast

as the LSC classifier when committees are used. The performance is still good and

50

CHAPTER 4. RESULTS

—— MIA NN
—-- LSC Univ.

Softmax NN
— — 1-NN Univ.

0
2 4 6 8 10 12 14

Number of features included

1

Posh ~~

3 — Lsc
eos - MIA Orig.
0.4 = MERE

=
<02

0

|
1

208

3 —— MIA NN 8 0.6 ; & —+- LSC Univ.
0.4 » Softmax NN

s — — 1-NN Univ.
<02 4

0
2 4 6 8 10 12

Number of features included

1

— Lsc
= —-- MIA Orig.

a -- MLR S
: Se

Number of features included

Figure 4.9: The normalised areas under ROC curves for different models sorted in
decreasing order. Piggy-bank test data used in upper two plots and toy car data in the
two lower plots.

51

CHAPTER 4. RESULTS

the only drawback is that the training of the networks is time consuming and several

different sizes have to be trained and compared. The LSC in universal space is almost

four times as fast as MIA NN method and the performance is almost as good. This

makes it a good candidate. For the LSC in original space feature detector, 11 out of 14

feature detectors had over 80% probability of finding the correct feature position when

the parameters K = 10 and r = 5 were used. The average probability was 86.5%.

4.10 Block-sizes

The effect of using different block sizes when the input vectors are constructed from

the original image has not been tested for all methods. The different block-sizes used

were 9x 9, 11 x 11, 13 x 13, 15 x 15, 17 x 17, 19 x 19 and 21 x 21. When the LSC

method in original space was used the performance got better and better the larger

block size that was used when the comparison was made using the error rates. In figure

4.10 the confusion matrices for the models using the smallest and largest block size are

shown. The percentage of correctly classified features spanned from 68% for the 9 x 9

model to 83% for the 21 x 21 model. But when the ROC curves were calculated the

smallest block size had 6-7% worse performance than the largest block size and the

number of calculations needed was only 20% of the numbers needed for the largest size.

Figure 4.11 shows three of the ROC curve areas. This means that if we want faster

recognition we might be able to use LSC feature detectors but with smaller blocksize.

CHAPTER 4. RESULTS

mg:
2} Ba

= «Be

4 a
a " |

6 f a: aa eI
5 7 _a § ‘Bi
é 8 | é 8 m.
3 . Ba 3 a

10] | | 10] ww
. | a

12 | | 2 om Ba

14 4

2 4 6 He a Ome 2 4 6 8 1012 Classified Feature Classified Feature

Figure 4.10: The confusion matrices for LSC models using block sizes 9 x 9 to the left
and 21 x 21 to the right.

208
= —— USC sizes £06

—-+- LSC size 15
2 = — LSC size 21 Bos

<02

°
2 4 6 8 10 12 14

Feature

—— LSC size 9
—-- LSC size 15
—— LSC'size2

 2 4 6 8 10 12 14
Number of features included .

Figure 4.11: The ROC curve areas for LSC models using block sizes 9 x 9, 15 x 15 and
21 x 21, in the lower plot the areas for the features are in descending order.

53

Chapter 5

Discussion

Section 5.1 summarises the content of the thesis. In section 5.2 some possible directions

for future work is given.

5.1 Summary

In this thesis we have examined several different feature detectors for use in a recogni-

tion by parts algorithm for three dimensional rigid objects. For two different objects,

features have been chosen and labelled in images showing the object from different

angles. Out of these labelled images m x m pixel wide blocks have been cut out and

turned into training, validation and test data. One kernel method, one linear method,

two generalised linear methods and two non-linear methods was used to construct fea-

ture detectors based on the training data. These feature detectors have been compared

by error rates on the test data and also on how well they detect features in the test

images. The later was done by constructing ROC curves that plots the probability

of predicting the correct position for the feature as a function of the number of false

alarms. The speed of classification for the different methods have also been taken into

account.

54

CHAPTER 5. DISCUSSION

5.1.1 Main contributions

e A label tool for labelling images has been built.

e Functions to generate training data for classifiers from the labelled images have

been coded.

e K-nearest neighbour, LSC, MIA and MLR classifiers have been coded.

e After the tests performed in this thesis the LSC in original space can be recom-

mended as the classifier best suited for use in a recognition by parts algorithm,

if the time for classification is not critical. If the time for classification is a con-

straint the LSC in universal space or MIA neural networks are the classifiers best

suited for use in a recognition by parts algorithm.

The first three items are addressed in appendix A and the last one in chapter 4

5.2 Possible direction for future work

The first thing to do is to build a recognition by parts system that is using LSC in

original space. The LSC in original space should be used because speed is not important

at first, only performance. To be able to recognise an object we have to have some

sort of model of the object, a geometric model is probably the first try, and use this

to do correspondence matching. Given the performance of the LSC feature detectors

presented in chapter 4 we have a few problems that need to be solved. Allowing a high

number of false alarms for every feature detector results in a higher probability to detect

the true feature, but it also gives us a larger correspondence search space. ‘To reduce

the number we have to use constrains. For instance we can use something similar

to the conditional search approach used in (Burl and Perona 1996). This approach

uses the fact that given the position of two features, the possible position of all the

other features are highly constrained and a lot of constellations can be excluded from

the search. Here we can allow for an uncertainty for the position and use different

55

CHAPTER 5. DISCUSSION

values for r. Since we are viewing three dimensional objects from different angles we

also know that hypothesis containing features from opposite sides of the object are

not possible, i.e. we can not have an image of the piggy-bank that contains both the

heart on the right side and the heart on the left side of the pig, so these can also be

excluded. Another way to reduce the number of constellations is to not use all of the

features. If the features that are most difficult to recognise can be excluded from our

model of the object the number of false constellations as well as the number of possible

constellations would decrease. We must also make it possible to recognise an object

with missing features. There are two reasons for this. First of all because we want

robustness against occlusion and secondly because even for high K we don’t have a

100% probability of finding all features. Experiments with a system like this would

reveal a suitable K to use to get good enough performance without having too large

correspondence search space.

Instead of using the simple four-way shift invariance described in section 2.2, we

can use more complex shift invariance like eight-way, several pixels shift or rotational

invariance to give us more training examples and a more robust performance.

We have used the first few principal components to filter the images, which gives us

an optimal linear dimension reduction. Instead of using a linear method a non-linear

method such as auto-associative net (Bishop 1995), could be used. The reason we have

not tried this is because of the number of free parameters that have to be optimised.

We don’t have enough training examples to do this. If, however, invariance is used

to artificially create more training examples or a smaller block size is used , we might

have enough training data to train an auto-associative net.

More training examples would also make it possible to try to use factor analysis

(FA) (Everitt 1984), Factor analysis is a latent variable model and can, like PCA,

be used to do dimensionality reduction. As mentioned above, PCA gives the optimal

linear dimension reduction so using FA for this is pointless. A more interesting use

would be to construct the linear subspaces used in LSC. FA tries to determine if a

56

CHAPTER 5. DISCUSSION

set of observed variables can be explained by a small number of uncorrelated latent

variables. Each observed variable is a function of the latent variables plus a residual

term. To find the latent variables the covariance matrix that the model give rise to is

fitted as good as possible to the covariance matrix of the observed variables. If we have

less examples than the dimension of the examples , as in our case, this is not possible

without adding additional constraints. If we could determine the latent variables for

a feature we know that all the training examples of this feature lies spread around the

subspace spanned by the latent variables at a distance of the residual terms. We could

use this information to make a classifier.

57

Bibliography

Bishop, C. M. (1995). Neural Networks and Pattern Recognition. New York: Oxford

University Press.

Burl, M. and P. Perona (1996, June). Recognition of planar object classes. In Pro-

ceedings of the 1996 IEEE Computer Society Conference on Computer Vision

and Pattern Recognition.

Cootes, T. and C. Taylor (1996). Locating objects of varying shape using statistical

feature detectors. In Proceedings from the 4:th European Conference on Computer

Vision 1996, pp. 465-474. Spring-Verlag.

Everitt, B. (1984). An Introduction to Latent Variable Models. Chapman and Hall.

Fukunaga, K. and P. Narendra (1975). A branch and bound algorithm for computing

k-nearest neighbors. IEEE Transaction on Computers (24), 750-753.

Green, D. and J. Swets (1966). Signal detection theory and psychophysics. John

Wiley and Sons, INC.

Grimson, W. (1990). Object Recognition by Computer. Cambridge, Massachusetts:

The MIT Press.

Hinton, G. E., M. Revow, and P. Dayan (1994). Recognizing handwritten digits

using mixtures of linear models. In Advances in Neural Information Processing

System, Volume 7, pp. 1015-1022.

Murase, H. and S. K. Nayar (1995, January). Visual learning and recognition of 3-d

objects from appearance. International Journal of Computer Vision 14 (1), 5-24.

58

BIBLIOGRAPHY

Nene, S. A., S. K. Nayar, and H. Murase (1996). Columbia object image library

(coil-20). Technical report, Department of Computer Science.

Ripley, B. D. (1996). Pattern Recognition and Neural Networks. Cambridge Univer-

sity Press.

Turk, M. and A. Pentland (1991). Eigenfaces for recognition. Journal of Cognitive

Neuroscience 3(1), 71-86.

59

Appendix A

Software

All the experiments in this thesis were implemented in matlab (The MathWorks, Inc.).

‘The two neural network methods were implemented using Netlab, a tool-box for matlab

developed by Prof. Chris Bishop and Dr. Ian Nabney at Aston University. This tool-

box also contains the scg search algorithm. The rest of the tools are described in this

appendix and has been implemented as part of this thesis.

A.1 Label-tool

The label-tool is the interactive matlab program that is used to label images. In

Figure A.1 the menu for the label-tool is shown, in the following description a number

in parenthesis is a reference to the corresponding number in this figure. The label-tool

is intended for use with the COIL-20 database described in Chapter 2, which contains

of twenty objects with 72 irnages for every object. In the text field (2) the name of the

image to be labelled should be typed. The format of the name is ’objx_n’ where x is

the the object number (between 1 and 20) and n is the image number (between 0 nd

71). When this has been confirmed by pressing Return, the image can be loaded by

pressing the Load button (1). The image is loaded and displayed in the image-window.

If there exists a label-file for this image this is loaded. The label-file is a file containing

the positions of the labels for a specific image and the feature number for the label.

60

APPENDIX A, SOFTWARE

The labels are displayed as crosses on the image (see Figure 2.2 or 2.3). All objects

need a label-list file that contains the feature names for the object. If one is already

created it is loaded together with the image, otherwise one has to be created before

labelling is possible. To create or add a feature name to the label-list, New should be

chosen in the label-list pop-up menu (6). A dialog box comes up where the name of the

feature should be entered. This name will now show up in the label-list pop-up menu.

By selecting New in the label-list pop-up menu repeatedly one can add all the feature

names that should be associated with this object. Pressing the Labellist save button

(4) save this list. To place a label on the image the wanted label should be chosen from

the label-list pop-up menu and then the Label button (5) should be pressed. The left

mouse button places the label, the middle mouse button removes a label and the right

mouse button displays information about a label. When all the features in the image

have been labelled one can save the resulting label-file by pressing the Save button (3).

The Update button (8) can be used to refresh the image. The Help button (9) displays

a short help text. Pressing the Quit button (7) exits the program.

Menu

1 | Load obj3_0 2

3} Save Save Labellist | 4

5 | Label New o| 6

7) Quit Update Help | 9

8
Load an image to label

10

Figure A.1: The user interface for the label tool.

61

APPENDIX A. SOFTWARE

A.2 From Label-list to Training Data

We now have a label-file for every image. In Section 2.2 the addition of background

labels is mentioned, this is done by using the function randlab that takes a file name

and a distance d as arguments and adds 10 random labels to the label-file that are at

least d pixels away from the other labels. The function label2data cuts out m x m pixels

around the label positions and creates input vectors and output vectors and saves this

to a .nnd file.

A.3 Preprocessing and Classifiers.

Sending in all the training input vectors to the pea function creates the projection

matrix for the universal space. Sending in the input vectors for one feature at the

time produces the projection matrices for the LSC classifier. The functions ml, mlerr,

mlgrad and mlfwd are used to construct and make classifications with the MIA and

MLR models. The knn function are used to make classifications using the K-nearest-

neighbour models.

A.4 Viewing the results.

To calculate error rates and make confusion matrices the function confmat is used.

The function rocmatriz constructs ROC curves. To view the result of classification on

different images displaytest is used. This tool lets you choose the image to view, which

feature to look at and which classifier output to use. It views all the areas that have

been predicted as the specified feature and the top p guesses, where p can be specified.

To create the local maxima probability-map the function locmaz is used.

Appendix B

ROC Curves

Here the ROC curves for the best models for each method are displayed. To the left the

piggy-bank test data is used and to the right the toy car test data. The local maxima

probability-map is used. For an explanation of the ROC curves see section 4.2.

B.1 Plots of ROC curves using threshold r = 3

j—Bimiletee | y-Machiciey y- Fuioules Bac Rite fos Wied | ButLchWad FR Wied Bat Rt Wid

a a in iz ia a ad Si ial
dl dl ee A ‘ cos’ wpe’ wan’ wae nes CaItEN aT SAEs eae S

4S {tte Ree yes of 1—_ tna erat

i si V4 | a of as al SI
R A

oa 0’ own’ oo uw” wa Bate? tet? oe 2 8S Page eng ey , joan? Cand! Lf

Ll lf a al os aa os of os

o o o 4 A v Sees wets aaah © care a o ol ono now 0 oD 0 oO 0
Tasted

as) / os

Figure B.1: ROC curves for the MIA model in original space.

63

APPENDIX B. ROC CURVES

pista | j- Bitaeg tier Ba pf Md | Bae Whey FcR Ws) Bt Ra Wh

ag os 05] | tal os os 05] os ae) | | Late q |
wpe om n° 0mm”? 0 mw 4p 2° 0m a oo 6m wD je wee | Rede Men (ote ot Bee

as 0s} as as as as as

a o o Ls e
w 2 0 » wo oD 5? 2 ta il poe ty jtettoatin | nitrate

as 5} A as as < et ba

o a ol ny Q Q oan 0m wo wm” 0 a’ oo 2° 0 mw e —

0 2 Tose tatea

as} as} a ooo 0 mH

Figure B.2: ROC curves for the MLR model.

feretig |, haisia! | Wiemnate Seetia Hiss arog ay Tec | ac ebi
| as 4s 8 os A i fr

dl ’ ’ A : Aas) Shae ees RES wae Sea oa pL Ee LL an ae
[-—— (ie

o t 0 0 a a e o ow m0 w W 2 w om w 0 mo wD oo? 10 0 om # Be? 2 Bee we, ee

os availa as 8s 8 4 8
a a wa” «ew ww’ wm Cari Cmca jolatic® eta

Fe os
’ ea a ow ae

Figure B.3: ROC curves for the LSC in original space.

64

APPENDIX B. ROC CURVES

j_fotlehiy 4 BetLeet leg Bet ie j fom atest, Foi), nd
eee I

| ama as} os) 05) 0s) os} os} os}

a ar a ee vo Oo a) nM wo 0 0 a wn oe” ae ee ae fan SM Rie ae Ry oe

as} Wy | qr | eee | a) os / os

dl wan’ won’ pp»? ww» “Gat? a? Be? Be pS Ue EAS, re eee jtttents | efien? | Bao tac

a Al ‘a ‘i of os oa os os

o o 0 wee’ pow’ www www oa» 0 eo ° wa a’ 0 oO jfatitelen” | ralathen
rt |

0s 05] a oo > OM

Figure B.4: ROC curves for the LSC model in universal space.

jfetlile jean ra Rtee Ba Le foal pp Betiial fai isd Ba Ba ed

of alia ne 4 tad vn
dl ‘ d dl rarer) 10 2 0 0 mo D 0 0 w om 0° ww Ww mo w wv a fat cae) eer’ eee aS OS ERO) es

oe are vo’ 0m wo’ 0 mw Tet tw?’ ww ew pm Be?) 2 feo hat ane = one

ae a of] a as| asl) as os//

‘ d ’ dl d ‘ en) Se 7’ aa wo 2 wD jiotathes eae

ioe a]

as

Figure B.5: ROC curves for the 1-nearest-neighbours in universal space.

65

APPENDIX B. ROC CURVES

jp folate yee rte Ba ie pf Set LA Wiel Fe W— Bet Rh Wd

a df fie Le “ _ lL
’ ‘ ‘ :

amy’ pa» np» w’ ow 0 0 2 Ww mn » 0 0 » 2 ES ea Le), Ue eS ae
« asl f 4 | ad al sal of | as ro

ee eC (Weta? | indie” | Ea ? | Be > Ree 1_—Maersia ' jefe 1h

df | ‘ala wee : » of fa
hE aaa aia ea Gas ‘ceca GNA ® awe ie” Gaga

os} a5}

a»

Figure B.6: ROC curves for the softmax NN with importance weighting, shift invariance
and committees.

fete jetty fovea pte j Battal, nevada mand

ol” | os asf asf os | I eel as

dl dl dl dl oa» ’ pew’ pp» ow» op 2 we 2! ap "pw » a ee ee ee Re

os] 0s lara 47 ap e4 oe 4] a

“enw? paw’ pm wo ow Ee,” oo 0° om» oa 2 ee ae idiots”; ulead”? | Band Had

J plies Wa In of os of i ae

ct o o . 0 2 s on DD oo DY o a ee Ce) adden | talon

asf ae

d \ 7 ee oe ee

Figure B.7: ROC curves for MIA NN using shift invariance and committees.

66

APPENDIX B. ROC CURVES

B.2 Plots of ROC curves using threshold 7 = 5

jp fdletlen | j- Butta uti Bat Ry foils! | BatLehWied FeRAM! Ba Ri Wt

as| lod o5| 05 na os ‘fay os| | 4 | as} “(|

as” em m° on wn’ 0 mw op ® veo” 0 oD 0 02 poe, tne de | nee fia fee eas jt ee

AS as| v4 eI | os os| os)

0 0 a o o

jee” ae ee j_letfonlin "| nid ontige a De Rigs ae

0 o ‘ no» oo » o 0 D oa wD

Figure B.8: ROC curves for the MIA model in original space.

67

APPENDIX B. ROC CURVES

y-Frmtlattey back eee Ft Rit Le

faulted BAL Wal Find Ba eh Wa

os] yi os} 0s Say ro fas feed

“aaa om» www’ www oo m3 7m 0° om’ 0 mw ie tae et pe el Rent

05} A os} as} 2 as} 4 os) os} os} as}

oO o o o a on Do 8 Ow 0 2 % 0 0 Lite” pln” Be Be fe a ttl? | tintin? Raat | vc

i a as as as oe es

o cd a a 1° oe o> 2° we» 2”; (wf jpteitiattee” Tagen

0s 0s A

Q t ooo 0 mw

Figure B.9: ROC curves for the MLR model.

Petals jinn yD ow Wied 5 Buc La Wel Fee igh Whee

“ “ “ ne " oneal

a ee ee

ELE a Ee a ES Bat” ° 0 2 0 0% ta Meas Uy jute a 1—_taoe | Rave

0 o € 0 ow 0 OD w : 0 2 0 a 0 0 0 w 0 0 w 0 oD 0 oO 2 I

; !

Figure B.10: ROC curves for the LSC in original space.

68

APPENDIX B. ROC CURVES

Fea Ries

jp fawlelg ttt | beta Pea

a
Be | as as os os as

Q dl Q dl d wm»? oa” ome’ ow © 0, 8 wa op n° pw ted ye fee Lene ie! 1—_l tat bare

os / a | 0s 04 a

Q ae ein “ee, »' ow om’ p mw ; huge jbo? eatin | Band Ba

o o o “7s s°® won’ www 0 ww oa» 0 ao ww 0 @ ® j tata
—a |

as} 0s

on u’ 0 BD

Figure B.11: ROC curves for the LSC model in universal space.

ce aes iat san
Bet ae a Pela oe ae

Q dl p ono" pw’ op a’ om ae oe ® pee et ee | en tel ane

——] iaae a ye as| os

a a Q dl
» Ww m0 0 0 2» 0 a w oe a2 2 OMRON) eo ites aimee le ae sft tae

05} 4 | as] 05} ty ae zl oF

c o 7» 0 ww 0 a wo o a w er oe iad | yin

05 as

dl o «a 2° wm @

Figure B.12: ROC curves for the 1-nearest-neighbours in universal space.

69

APPENDIX B. ROC CURVES

ft Batley Bebb uals ated Fae a ng

cea 4 ts ae 0s 0s 03 Lt

wa” oo»? 0 OO 0 0 0 : oo » ° W 0 mn 0” 0 0 » 1—_ 3 tee” Ree | Lene 1nd 1— 2 lat bane

Vv asl os] as as os} as os) as}

e ¢ e f 0 » ° aE) 0 20 0 0 op ve’ wae’ pan’ wom ie” Ma ee ey jena” «mde? Rant Had,
a re

asl al | os] os| 05} 05 os} Os)

dl a d dl d dl dl a i rr
0 0 ow 0 a H 0 0 mo Oo 0 se eto) mi ae | tata

os as

Figure B.13: ROC curves for the softmax NN with importance weighting, shift invari-
ance and committes.

jp fielder Bat Leey Fr Bek Rite,

ma

C o a a ¢ ¢ e
0 2 0 20 #0 0 2 ® oo 0 as Pl Jo alas Ld 22

o t o t oT ew 0 a yo” ow %

:

Figure B.14: ROC curves for MIA NN using shift invariance and committees.

70

